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Abstract

This thesis deals with developing a method for a systematic fusion of the
point cloud data measured by LiDAR with colour information from a set of
cameras. Several filtration methods have been implemented to increase the
robustness of the developed algorithm. The proposed solution is generally
applicable for all robotic solutions. However, the main motivation is to
equip all these sensors onboard an unmanned aerial vehicle and fuse the
colour and the spatial information online mid-flight during an inspection
mission. A process of calibration of the LiDAR and multi-camera sensors
is also designed and implemented as one of the main challenges of the
fusion process. With attention to finding the precise transformation, a
calibration checkerboard pattern is used in this thesis. The developed
methods are analysed and their performance is evaluated on data from
simulation and real-world tests.

Keywords: unmanned aerial vehicle, LiDAR, camera, extrinsic cali-
bration, sensor fusion, point cloud, ROS

Abstrakt

Tato práce se zabývá vývojem metody pro systematickou fúzi mračna
bod̊u naměřeného LiDARem s barevnou informaćı ze sady kamer. Pro
zvýšeńı robustnosti vyvinutého algoritmu bylo implementováno několik
filtračńıch metod. Navržené řešeńı je obecně použitelné pro všechny
robotické systémy. Hlavńı motivaćı je ale použit́ı těchto senzor̊u na
palubě bezpilotńı helikoptéry, kde budou data fúzována online během
letu inspekčńı mise. Jako jedna z hlavńıch výzev fúze dat z rozd́ılných
senzor̊u byla specifikována, navržena a implementována také kalibrace
vněǰśıch parametr̊u LiDARu a v́ıcekamerového senzoru. Pro nalezeńı
přesné transformace mezi senzory je v této práci použit šachovnicový
vzor pro kalibraci. Vyvinuté metody jsou analyzovány a jejich chováńı je
testováno na datech ze simulace i reálného světa.

Kĺıčová slova: bezpilotńı helikoptéra, LiDAR, kamera, kalibrace
vněǰśıch parametr̊u, fúze senzor̊u, mračno bod̊u, ROS
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In the field of autonomous robots multi-sensor systems are often used, containing radars,
laser range-finders and cameras. In many applications like obstacle detection and localization
systems, it is necessary to fuse data information supplied by each sensor to combine the
advantages of every individual system in the final structure. The aim of this thesis is to
develop a framework for a systematic fusion of XYZ point clouds from a Light Detection
and Ranging (LiDAR) sensor and RGB images from a set of cameras. The proposed solution
is generally applicable for all robotic solutions. However, our main motivation is to equip
all these sensors onboard an unmanned aerial vehicle and capture data mid-flight during an
inspection mission.

This thesis focuses on the methods for generating large coloured point clouds by fusion
of the data from a LiDAR and a set of cameras. Due to the principle of modern LiDARs,
which produce only spatial measurements, the colour information has to be supplied by other
sensors. This is particularly important for 3D map colourization, but the fusion of the extra
information can also improve navigation and localization of a mobile robot [1, 2]. The fusion
also enables compensation of the individual limitations of each sensor type. For example, the
colour information can be provided by cameras capturing the variable attenuation of light
waves to produce colour information, but it is not possible to do spatial measurements with
it.

For LiDAR and cameras data fusion purpose, the relative poses of the sensors have
to be estimated. This thesis also aims to design and implement the process of calibration of
the LiDAR and multi-camera sensors. With attention to finding the exact transformation,
a calibration pattern is used. This thesis uses a planar checkerboard pattern to compute
the calibration parameters. This approach can detect the inner corners of the checkerboard
pattern from the camera with pixel accuracy. A planar model of the pattern can be estimated
to the LiDAR point cloud corresponding to the plane with similar parameters as the real-world
pattern board.
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1.1 Motivation

In recent years, Unmanned Aerial Vehicles (UAVs) have been widely used in many
fields, for example, the industrial [3, 4] and the heritage sector [5]. This technology can be
used for inspection of the interior of warehouses [6,7], factories [8] or power plants [9], and for
inspection of artefacts within interiors of historical structures [10–12]. UAVs can carry various
sensors, such as high-resolution cameras or laser scanners. The data from these sources are
then used for creating static images, videos, or 3D maps.

This thesis is motivated by the existing industrial and cultural projects with the goal of
autonomous inspection. The camera offers information about the colour of the surroundings,
while LiDAR provides a spatial information. The fusion allows the construction of accurate
and complete models of their environment. The fused information supplied by each sensor
associating the advantages of every individual system brings benefits in many applications
like navigation tasks. Depending on the application, coloured point clouds are also of great
benefit for human or machine interpretation. Using the fusion of LiDAR and multiple cameras
provides a more effective solution as the cameras may cover a wider field of view, which is
typical for LiDARs opposite to using only a single camera, which is limited to its own field
of view.

This thesis builds on the work of the MRS team of the Faculty of Electrical Engineering
at Czech technical university. The main source of its data is the Dronument project 1, which
is also the motivation for this thesis.

1.2 Related Work

To find the transformation between a camera and a 2D Laser Rangefinder, Zhang and
Pless [13] introduced one of the first uses of a planar checkerboard. In their method, for several
checkerboards poses, the checkerboard plane parameters are found relative to the camera.
They then optimize the transformation by minimizing the euclidean distance error between
the laser points and the checkerboard plane. A similar approach could be used to calibrate a 3D
laser scanner and a camera. But most of these methods require some geometric constraints
or some manual choice. Unnikrishnan and Martial [14] manually choose the 2D region of
interest in the laser range image to find plane correspondences in both sensor frames. A two-
stage optimization process is used, which involves estimating the rotation and translation
independently and then jointly optimizing the two sets of parameters. In [15], the authors use
a V-shaped calibration target formed by two triangular boards with a checkerboard on each
triangle. As their target is non-planar, they are able to exploit the geometry of the setup to
formulate a well-constrained cost function, minimizing point to plane distances. In [16] it is
needed to define the bounds of the 3D experimental region relative to the LiDAR coordinate
system and need to have a special stand, which does not hold the board with significant
protruding elements close to the board boundaries or corners. This thesis tries to avoid most
of these restrictions of [15] and [16]. It also avoids a manual choice of points from LiDAR or
pixels from a camera like in [14].

1See: https://dronument.cz/

https://dronument.cz/
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Fusion of LiDAR data with sensors of different properties is a problem often tackled
in literature. One of the many examples is the fusion with monocular or stereo depth cam-
eras. Monocular cameras estimate the depth of the scene by estimating the ego-motion of the
camera first. In contrast, stereo cameras benefit from the static width of the baseline (the
relative placement of the pair of two monocular cameras). This is addressed, for instance,
in [17]. The dense stereo depth estimation is computationally complex due to matching cor-
responding points in the stereo images. A drawback of stereo based depth estimation is the
limited range of depth sensing. Furthermore, dense depth estimation using stereo images is
limited by a dynamic range of the image sensors, for example, the saturation of pixel values
in bright areas [18].

Another option of the fusion is with a monocular camera, which is also the tackled
problem in this thesis. In literature, this problem is challenged in various scenarios, such as
the creation of 3D models of urban scenes for virtual reality [19] or for use in simultaneous
localisation and mapping (SLAM) fusing either monocular [20, 21] or stereo [17] cameras.
The colour data of each point is typically determined from a single observation, most often
the closest frame or the first frame. In [22], the authors assume that the camera may not
see an object measured with LiDAR. Therefore algorithm performs a visibility analysis first
and uses only visible observations of a projected 3D point to compute the final colour. This
thesis assumes that the distance between the camera and the LiDAR is low, therefore the
pixel-based discrepancies of cameras are minimized. This assumption allows us to avoid the
problem presented in [22]. Many systems [23, 24] capture high-resolution images instead of
video. These systems typically use measured scene information to position each image within
the LiDAR scans. In the proposed solution in this thesis, the data might be fused online
during an inspection mission, since the static geometrical transformation among sensors is
known from a calibration procedure.

1.3 Problem Definition

The key problem of creating a 3D model is an effective fusion of the data from multiple
sensors. It is possible to use an RGB-depth camera like Kinect, which is a sensing device that
captures both RGB image and depth image [25], however, the RGB-depth camera provides
depth information up to a very limited range. In addition, the depth estimates obtained by
the RGB-D camera are very noisy compared to a LiDAR. Therefore, the colour and texture
information is usually collected by the camera, and the depth information is captured by the
separate range sensor.

Using two different sensors brings other problems. The main challenge in fusing data
from these two different sensor modalities is the requirement for precise calibration. It includes
calibration of the camera’s intrinsic parameters and the geometrical extrinsic parameters —
precise transformation between the camera and the LiDAR. This calibration parameters are
critical for correct fusion colours and points.

Obtaining the extrinsic parameters (the relative rotation and translation) between a
camera and a LiDAR is a particularly discerning problem as the object features are obtained
from different sensors with different modalities and noise patterns. Noise reduces the accuracy
of the calibration. Furthermore, not all LiDARs and cameras have the same behaviour and
measurement errors, which makes it difficult to generalize an approach. It is needed to address
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these issues using features that are less susceptible to noise from sensor measurements and
which are using a robust optimization strategy.

Apart from a precise intrinsic and extrinsic calibration, time synchronisation is also
necessary to fuse camera data with a 3D points cloud. Both sensors are expected to be in
motion, therefore data captured at different times may detect different objects.
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1.4 Mathematical Notation

Summary of mathematical notation used throughout the thesis is presented in Table 1.1.

Symbol Example Description

upper or lowercase letter m, M, M a scalar
bold upper letter R a matrix or set
bold lowercase letter h a column vector

upper index T RT , x T matrix and vector transpose

hat index T m̂, P̂ a point in a homogeneous coordinate system

Table 1.1: Overview of the mathematical notation
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1.5 Table of Symbols

Chapter Symbol Description

Mathematical background (Chapter 2) f Focal length
m Point on the image plane
P Point in space
K Camera calibration matrix
I Identity matrix
R Rotation matrix
t Translation vector
k1, k2, k2 Radial distortion parameters
p1, p2 Tangential distortion parameters

Calibration (Chapter 4) f Focal length
m Point on the image plane
P Point in space
K Camera calibration matrix
r Rotation vector
t Translation vector

Table 1.2: Summary of symbols utilized



Chapter 2: Mathematical background

Contents

2.1 Pinhole Camera Model . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Camera Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Camera Lens Distortion . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Pinhole Camera Model

The pinhole camera model represents a simple camera with a single small aperture
without a lens. The camera uses the central projection of three-dimensional points in space
onto the two-dimensional image plane. It creates a centre-rotated image on the image plane.
To simplify the mathematical description, the image plane between the focus and the scene
is used. The image plane is located at the focal length f . This virtual image plane is parallel
to the image plane behind the focal point and it has the same distance from the focal point
as the image plane. The advantage of using the virtual image plane in front of the focus is
that the projected image is not rotated (see Figure 2.1). In the following parts of the thesis,
the term image plane is always used for the virtual image plane.

Figure 2.1: Central projection a pinhole camera model [26].
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2.2 Camera Parameters

Let the centre of projection Fc be the origin of a Euclidean coordinate system and let
the plane Z, with equation z = f , be called the image plane, where f is the focal length and
the plane Z is the plane in the direction of the optical axis. The point, where an optical axis
intersects the image plane is called the principal point and it has coordinates (cx, cy). A point
in space with coordinates P = (X,Y, Z) is mapped onto the point m = (u, v) on the image
plane where a line joining the point P and the centre of projection Fc intersects the image
plane. This is depicted on Figure 2.2. Using similar triangles, it can be shown that the point

(X,Y, Z)T is mapped onto the point
(
f X

Z , f
Y
Z , f

)T
, which lies on the image plane and could

by called image point [27].

Figure 2.2: Projection of a point in space onto a point on the image plane [28].

If the points in space and on the image plane are rewritten in a matrix form, then the
central projection is very simply expressed as a linear mapping between their homogeneous
coordinates. It can be written in terms of matrix multiplication as

X
Y
Z
1

→
fXfY
Z

 =

f 0 0 0
0 f 0 0
0 0 1 0



X
Y
Z
1

 . (2.1)

In practice, it may happen that the origin of coordinates of the image plane is not at the
principal point. As a result, the general formula for the mapping is

X
Y
Z
1

→
fX + Zcx
fY + Zcy

Z

 =

f 0 cx 0
0 f cy 0
0 0 1 0



X
Y
Z
1

 . (2.2)
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Let the matrix on the right-hand side of the equation Equation 2.2 be labeled as

K =

f 0 cx 0
0 f cy 0
0 0 1 0

 . (2.3)

Then Equation 2.2 can be rewritten in a concise form

m̂ = K [I|0] P̂ , (2.4)

where m̂ is an image point vector and P is a world point vector in the homogeneous coordinate
system. The matrix K is also called the camera calibration matrix.

At this point, the coordinates in the image coordinate system are known, however, the
points in space are described in terms of a different Euclidean coordinate system, known as the
world coordinate system. The two coordinate systems can be transformed between each other
using a geometric transformation. It is also better not to make the camera centre explicit, but
to represent the world to image transformation as Pcam = RP + t, where R is a 3x3 rotation
matrix and t is a 3-dimensional translation vector. This equation is commonly described as

x’ =

[
R
0

∣∣∣∣ t1
]

x, (2.5)

where x is the homogeneous representation of the point P and x’ represents the same point
in the camera coordinate system.

This equation may be then written as
Xcam

Ycam
Zcam

1

 =


r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3
0 0 0 1



X
Y
Z
1

 . (2.6)

Using Equation 2.5, the camera equation Equation 2.4 can be simply written as

m̂ = K

[
R
0T

∣∣∣∣ t1
]
P̂ , (2.7)

where R is a rotation matrix and t represents a translation vector.

2.3 Camera Lens Distortion

The camera matrix does not account for the lens distortion because the pinhole camera
model does not have a lens. To accurately represent a real camera, the camera model needs
to include the lens distortion. There are two main distortion types: radial and tangential
distortion.
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2.3.1 Radial distortion

With real lenses, rays farther from the centre of the lens are bent more than those
closer in (see Figure 2.3). This phenomenon is called radial distortion. This bulging effect is
the source of the “barrel” or “pincushion” distortion, which are shown in Figure 2.4.

For radial distortions, the distortion is zero at the optical centre of the image and
increases as it moves toward the edge. This distortion is so small that it can be characterized
by the first few terms of a Taylor series expansion around a distortion radius r = 0. OpenCV
library uses three such terms. The first term is conventionally called k1 and the second one k2
for most camera lenses. For highly distorted lenses there can be added a third radial distortion
term k3 [29].

To consider these distortions in our camera model we modify the pinhole camera model
as follows:

r2 = u2 + v2,

u′ = u (1 + k1r
2 + k2r

4 + k3r
6),

v′ = v (1 + k1r
2 + k2r

4 + k3r
6),

(2.8)

where u and v represent the original location of the image of the distorted point, u′ and v′

are the new location coordinates as a result of the distortion.

Figure 2.3: Radial distortion [29].

Figure 2.4: Example of the effect of barrel distortion and pincushion distortion on a square
grid [30].
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2.3.2 Tangential distortion

Tangential distortion is caused by the manufacturing imperfections of the camera con-
struction. Lens and CCD sensor are misaligned from their mutual parallel position. This
misalignment changes arrays from their ideal, perpendicular orientation to the optical axis
and in effect moves the point where an array meets the sensor (see Figure 2.5). The points
with the same distortion form an ellipse.

Figure 2.5: Tangential distortion [31].

OpenCV library uses two additional parameters p1 and p2 to characterize it. This results
in

r2 = u2 + v2,

u′ = u+ (2p1uv + p2(r
2 + 2u2)),

v′ = v + (p1(r
2 + 2v2) + 2p2uv),

(2.9)

where u and v represent the original location on the image of the distorted point, and u′ and
v′ represent the new location as a result of the distortion [29].
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The aim of this thesis is to design a completely autonomous system for fusion of the
data from LiDAR and camera. This system consists of both software and hardware. The
implementation is performed with the Robot Operating System (ROS). This tool is hugely
popular for its evolving functionality and there is also support for processing of the data from
LiDAR and cameras attached to an unmanned aerial vehicle.

3.1 Robot Operating System

ROS (Robot Operating System) provides libraries and tools to help software developers
create robot applications. It provides hardware abstraction, device drivers, libraries, visualizers,
message-passing, package management, and more1.

ROS Nodes are processes that perform computations in a modular way. A UAV control
system usually includes many nodes. For example, one node handles sensory data, one node
performs localization, and another node controls sensors. ROS Master is the principal part
of a ROS computational process because it provides naming and registration for ROS nodes.
Without the ROS Master, the nodes would not be able to find each other. Figure 3.1 illustrates
the core communication between ROS master and nodes.

The concept of ROS allows every node to transfer messages to other nodes. A message
is a data structure consisting of typed fields. Messages are transported via so-called topics
or services. There are two types of topics. The first type is a subscriber, which listens to the
topic with a specific name and acquires data. The second type is a publisher, which publishes
this data. There can be multiple publishers and subscribers for a single topic.

ROS source code is organized in packages. Packages are atomic items in ROS, which
means that it is the most granular part that can be built. Packages use runtime processes —
nodes, ROS-dependent libraries, configuration files, or anything else that helps with organi-
zation.

1Source: http://wiki.ros.org/

http://wiki.ros.org/
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Figure 3.1: ROS environment communication between master and nodes [32].

3.2 Hardware

On the hardware side, this thesis works with two basic sensors. The quality of data from
both sensors fundamentally affects the resulting calibration and the quality of the fused map.
To better understand calibration and fusion problems, it is good to know the functionality
principle of both sensors.

3.2.1 LiDAR

The Light Detection and Ranging (LiDAR) system is an onboard system for the local-
ization of UAVs and the mapped environment surrounding the UAV. The system consists of
a laser transmitter and a laser receiver. The measurement of distances is then based on the
measurement of the time between sending the laser beam and receiving its reflection. The
differences in the laser return time give the distance between the UAV and the object. The
distance combined with a known angle can be used to make a 3D point that represents the
environment. The scanning speed of the LiDAR also determines the maximum speed of move-
ment of the drone, because the movement of the UAV reduces the accuracy of measurements.
Modern systems cope with LiDAR movements during a continuous laser measurement using
integrated IMU and motion de-compensation.

For this thesis, a rotation LiDAR from the MRS team laboratory is used. It is Ouster
OS0-16 or OS1-128, with rotation rate of both 10 and 20 Hz. This model of the LiDAR is
shown in Figure 3.2.

3.2.2 RGB camera

A camera is an electromechanical device using the process of image formation, namely
the formation of the two-dimensional representation of the three-dimensional world. This
thesis assumes that cameras can be modelled as a pinhole camera, although a real camera has
slight differences compared to the pinhole model. For example, a real camera has a standard
CMOS or CCD sensor with an RGB pixel array instead of an image plane of a pinhole
model. The camera sensor is divided into individual pixels, each detecting red, green, and
blue wavelengths. The resolution of the camera sensor, i.e. the number of pixels, also affects
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(a) OUSTER OS0-128 LiDAR sensor [33]. (b) Data from LiDAR

Figure 3.2: Demonstration of LiDAR and produced data

the quality of the resulting fusion, especially at larger distances. There is also a lens on a real
camera that adjusts the flight path of the rays and adds other distortion to the projection.

For this thesis USB 2.0 board-level camera - mvBlueFOX-MLC with Resolution 640x480
pixels is used and it is shown in Figure 3.3.

Figure 3.3: mvBlueFOX camera [34].

3.3 UAV platform

In real experiments and simulations, a drone developed by the MRS team of the Fac-
ulty of Electrical Engineering in CTU is used. This thesis uses the Tarot T650 model of a
platform (see Figure 3.4). The platform is capable of completely autonomous flight and oper-
ation. Various sensory packages are used for different tasks, allowing autonomous operation
in difficult environments with obstacles. The package with a camera, LiDAR sensor and a
large data storage disk is used in this thesis. The platform is equipped with a PixHawk flight
controller running the PX4 stack, which acts as a low-level controller. It also has a powerful
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onboard computer, usually an Intel NUC. This computer runs all the control and estimation
algorithms and takes in data from multiple sensors [35].

(a) Tarot T650 model in simulation. (b) Tarot T650 model in real-world.

Figure 3.4: Photo of the Tarot T650 UAV model used in this thesis.
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This part of the thesis deals with extrinsic calibration, which aims to find the geometric
transformation matrix between a camera and a LiDAR. The transformation matrix converts
the point coordinates between the coordinate systems of the two sensors. Without precise
calibration, it is not possible to fuse points from LiDAR and pixels from the camera. As the
projection errors arise with the distance of the objects to the sensors, even slight calibration
errors may produce infeasible results, which results in high requirements for precise retrieval
of calibration. The Figure 4.1 describes the transformation between LiDAR and camera co-
ordinate system.

Figure 4.1: Projection model of the camera in a LiDAR-camera system. P represents the 3D
point, Od and Oc are LiDAR and camera coordinate systems [36].

This thesis uses a checkerboard pattern as a reference to obtain points of interest in the
image and point cloud. It uses the same checkerboard pattern as for the intrinsic camera cali-
bration (see Figure 4.3). The calibration method could be divided into three parts: extraction
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of the checkerboard corners from the camera, extraction of the desk corners from the LiDAR
data, and finding the transformation between the points and the pixels.

These parameters are required for the extrinsic calibration.

� The number of internal corners in each row and column on the calibration checkerboard
pattern (see Figure 4.2).

� Side length of the squares of the checkerboard pattern (see Figure 4.2).

� Length between each edge of the desk and the checkerboard pattern (see Figure 4.2).

� Camera intrinsic parameters including the focal length, principal point, distortion coef-
ficients and real size of pixels on the camera sensor (i.e., the sensor size).

Figure 4.2: Parameters of checkerboard pattern desk – red circles show internal corners in a
row and a column, and black arrows show the side length of the squares and length between
each edge and checkerboard pattern.

4.1 Checkerboard extraction

Checkerboard detection consists of two steps. The first is to detect the checkerboard
as a whole and distinguish it from other content on the image. This determines whether the
image can be used in the calibration or not, particularly in difficult conditions. The second
is finding the accurate corner locations. This determines the accuracy and precision of the
calibration. Checkerboard corners are well suited because they have strong gradients in all the
directions. The Harris operator is the most well-known corner detector often used in camera
calibration [37].

In this thesis, the checkerboard pattern in the image from the camera is detected using
the OpenCV function cv::findChessboardCorners1. OpenCV library uses adaptive threshold-

1See: https://docs.opencv.org/3.2.0/d9/d0c/group__calib3d.html

https://docs.opencv.org/3.2.0/d9/d0c/group__calib3d.html
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ing and erosion to binarize the image and separate the checkerboard squares into quadrilat-
erals by contour following. Finally, the checkerboard is detected as a 2D grid of connected
quadrilaterals [37].

After detection of internal checkerboard corners, it is required to calculate the real
corners of the board. Thus, the known real size of the squares is used together with the
lengths between each edge from the pattern board. Using the similarity of the triangles, the
distance of the real corners from the corners detected on the checkerboard in both dimensions
of the image is calculated. The Figure 4.3 shows a checkerboard with detected internal and
external corners from real data.

Figure 4.3: Checkerboard with detected internal and real corners.

From this data, the distance of the board from the camera can also be calculated. This
distance is then used to detect the board from LiDAR data. The following equation is used
to calculate the distance to the object d(mm)

d =
fohrih
ohsh

, (4.1)

where f is the camera focal length in millimetres, ohr is the real object height in millimetres,
ih is the image height in millimetres, ohp is the object height in pixels and sh is the sensor
height in millimetres. Equation 4.1 can be rewritten as

d =
fdhr
dhpps

, (4.2)

where dhr is the real height of desk in millimetres, dhp is the desk height in pixels and ps is
the pixel size in millimetres.

4.2 Desk extraction

The estimated distance of the board, which is calculated from the cameras data, allows
the separation of the experimental region (including the board) from the environment point
cloud. Due to the inaccuracy in distance calculation, a small deviation in both directions needs



20 Chapter 4. Calibration

to be added. The obtained experimental region consists of all objects at the same distances
around the sensor, including the board. However, this step will significantly speed up and
simplify the search for the board in the next step because it radically reduces the region of
interest. It also removes all large planes, like walls, ceiling or ground, or at least a significant
part of them.

Further, the experimental region is segmented into planes. In this thesis, the RANSAC
algorithm is used to get a robust estimate of the board plane because it is suited for applica-
tions where interpretation is based on the data provided by error-prone feature detectors [38].
The algorithm selects the smallest number of data samples required to define a model uniquely.
In the case of a plane, it selects three points. The RANSAC extracts shapes from the point
cloud and constructs corresponding primitive shapes based on the three randomly selected
points. The resulting candidate shapes are tested against all the points in the data to deter-
mine which points are well approximated by the primitive. After a given number of iterations,
the shape which is largest and approximates the most points is extracted [39]. The Figure 4.4
shows RANSAC algorithm to estimate a line in 2D. This shape is cleansed from outlier points
using a filter. The filter uses a simple principle; it filters points in a cloud based on the number
of neighbours they have. It retrieves the number of neighbours within a certain radius for each
point. The point is considered as an outlier if it has too few neighbours and the filer removes
it.

Figure 4.4: RANSAC algorithm to estimate a line. Green points are randomly selected points,
blue ones are inliers, and reds are outliers [40].

The next step is the comparison of the plane to the checkerboard board. Parameters like
height, width or number of points are tested. If parameters are almost the same, the plane is
identified as the board. If they are not, points from the plane are extracted and the algorithm
continues with the remaining data until the right plane is not found, the point cloud is too
small, or the number of iterations is exceeded.

However, the obtained point cloud of the board may not include the whole board. The
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problem could be with edges and corners. This problem may be caused by noise from LiDAR
but also by the use of a filter of outlier points. Therefore a new point cloud of the board is
created such that it physically corresponds to the real dimensions of the board. This model is
aligned with the board from the previous part using an iterative closest point (ICP) algorithm.
ICP starts with two meshes and an initial guess for their relative rigid-body transform. ICP
then iteratively refines the transform by repeatedly generating corresponding points on the
meshes and minimizing an error metric [41]. The Figure 4.5 shows idea behind the iterative
closest point algorithm. After the end of the ICP algorithm, the corners from the aligned
board are saved for the last part of the calibration proposed in Section 4.3.

Figure 4.5: Idea of iterative closest point algorithm [42].

4.3 Search transformation

Given the 2D and 3D coordinates of the checkerboard pattern corners from the camera
and the LiDAR, the extrinsic calibration can be initiated. The optimization problem can be
defined as the Perspective-n-Point (PnP) problem, which determines the position and ori-
entation given a set of n pairs between 3D points and their corresponding 2D projections
in the image. Many methods can be applied to solve the 3-to-n points PnP optimization,
ranging from iterative and non-iterative techniques, to methods with and without apriori in-
formation about the camera parameters. The further described optimization process is reliant
on the number of correspondences, hence supplying more correspondence pairs improves the
robustness of the camera-to-lidar pose estimation.

The solution proposed in this thesis uses the Efficient PnP (EPnP) algorithm, intro-
duced by F.Moreno et al.s in 2008 [43]. The EPnP solves the camera pose by expressing the
coordinates as a weighted sum of 4 non-coplanar virtual control points (see Figure 4.6). The
coordinates of the control points become the unknowns of the problem. It is from these control
points that the final pose of the camera is solved for. The EPnP method assumes that the
camera parameters are known.

The EPnP problem is formulated as

pw
i =

4∑
j=1

αijc
w
j , (4.3)

where pw
i is a reference point in the world coordinates system, αij are the homogeneous

barycentric coordinates, and cwj is a control point in the world coordinates system, which is
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Figure 4.6: Given a set of 3D points Mi and their 2D projections mi onto the image, the
points c1..4 form the base, representing all the set by a linear combination.

the unknown of the problem. The same relation holds in the camera coordinate system

pc
i =

4∑
j=1

αijc
c
j , (4.4)

where pc
i is a reference point and ccj =

[
Xc

j Y c
j Zc

j

]T
is a control point in the camera

coordinates system.

The derivation of the matrix M, in whose kernel the solution must lie given that the
2D projections of the reference points are known, is as follows

∀i, wi

uivi
1

 = Kpc
i = K

4∑
j=1

αijc
c
j , (4.5)

where the wi are scalar projective parameters, ui and vi are the 2D coordinates of a projected
pi point and K is the camera parameters matrix.

Using the Equation 2.3 and rearranging it, the following two linear equations for each
reference point could be written as

4∑
j=1

αijfx
c
j + αij(cx − ui)zcj = 0, (4.6)

4∑
j=1

αijfy
c
j + αij(cy − vi)zcj = 0. (4.7)
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By concatenating them for all n reference points, we generate a linear system of the form

Mx = 0, (4.8)

where M is a 2n× 12 matrix, generated by arranging the known coefficients of Equation 4.6

and Equation 4.7, and x =
[
cc1 cc2 cc3 cc4

]T
is a vector made of the unknowns.

The solution to this system lies on the null space, or kernel, of M, expressed as

x =
N∑
j=1

βivi, (4.9)

where the set vi are the columns of the right singular vectors of M corresponding to the
N ∈ {1, 2, 3, 4} null singular values of M. After calculating the initial coefficients beta, the
Gauss-Newton algorithm is used to refine them. The rotation matrix R and translation vector
t minimizing the reprojection error of the world reference points pw

i and their corresponding
image points pc

i , are then calculated using methods presented in [43, 44]. In this thesis the
OpenCV function cv::solvePnP2 is used to estimate the extrinsic transformation in the form
of orientation R and translation t.

The optimal convergence of the EPnP method is not guaranteed, therefore the repro-
jection error of the optimization error is manually computed and used to filter out incorrect
results. This improves the robustness of calibration, particularly during real-time calibration
with incrementing number of frame correspondences over time.

The reprojection error is given by the following equation

ε =

∑n
i=1(uoi − upi)2 + (voi − vpi)2

n
, (4.10)

where uo, vo are the original coordinates on the image, and up, vp are the projected coordinates
using the estimated transformation and rotation vector from the EPnP.

If the reprojection error is smaller than from the previous iteration, a new rotation and
a translation vector are stored. If the optimization converged to similar values, the average of
old and new transformation is used and stored, making the calibration more robust to outliers.
The output of the calibration, which continuously combines pairs of LiDAR and camera data
in real-time until terminated, returns the transformation with the smallest reprojection error.

2See: https://docs.opencv.org/3.2.0/d9/d0c/group__calib3d.html

https://docs.opencv.org/3.2.0/d9/d0c/group__calib3d.html
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This part of the thesis solves the problem of the fusion of data from a colour camera
and a LiDAR. The result should be a coloured point cloud based on the data from the sensors.
The fundamental process to achieve colourised point clouds is to project the 3D points onto
2D points in images, such that the appropriate colour is assigned to each 3D point. Because
sensors could catch the same points several times it is necessary to add filters. Also, filters
help to make the process more robust with the respect to potential errors. The fusion method
in this thesis is separated into three parts: data association and point cloud transformation,
a projection of points from the LiDAR onto the camera, and post-processed filtration.

5.1 Data association

When trying to fuse data from different sensors, it is necessary to know how to convert
one sensor frame from its coordinate system to the coordinate system of the other sensor in
order to map them on top of each other. Because even small calibration errors may produce
infeasible results, this assumes that exact extrinsic calibration is known, as described in Chap-
ter 4. This calibration is used as one of the input parameters of the program and without it
the program cannot work properly.

Data synchronization is especially important when working with data from multiple
sources. It means that the data coming from different sensors at a specific moment should
have the same timestamp. When the data is processed, the point cloud from LiDAR and RGB
image from the camera with equal timestamps are fused, providing a correct representation
of that moment in time. In the opposite situation, when the timestamps aren’t the same, the
data from LiDAR and camera are discarded. It is because the UAV could move and the data
that are taken at different times could represent a different point in space.

The time synchronization between sensors is achieved by using the TimeSynchronizer
filter from the ROS message filters library. The Synchronizer filter synchronizes incoming
channels by the timestamps contained in their headers, and outputs them in the form of a
single callback that takes the same number of channels. The Synchronizer filter is templated
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on a policy that determines how to synchronize the channels1. ApproximateTime policy was
implemented to use an adaptive algorithm2 to match messages based on their timestamps.

Using the rotation matrix and the translation vector, a 3D point is transformed from
the LiDAR coordinate system into the coordinate system of the camera. Then the 3D point
can be projected by the camera projection matrix to the appropriate pixel in the image plane
in the camera. RGB color information is selected from the camera data and it is assigned to
the original 3D point in the LiDAR coordinate system. It is impossible to find the correct
colour value for invalid 3D points, so they should be filtered out before colouring the 3D point
cloud. Obviously, points behind the camera are invalid. In addition, it is useful to reduce the
number of points, which are close to each other. This results in a more continuous and uniform
distribution of the points in space. This is accomplished by doing a convolution between a
kernel and an image.

For the reduction of the number of points, a voxel grid filter was used. This filter
falls into the class of down-sampling filters as it reduces the number of points in a cloud.
It computes the centroid, a single point which then represents the given group of points – a
voxel or a cluster. That means that the set of points which lie within the bounds of a voxel are
assigned to that voxel and will be combined into one output point. The formula to compute
the centroid is

p̄ (x̄ȳz̄) =
1

n

n∑
i=1

(xi, yi, zi) , (5.1)

where n is the number of points inside the voxel, x̄,ȳ,z̄ of p̄ are coordinates of the centroid,
and xi, yi, zi are the coordinates of each point pi within the voxel [45].

Clearly, this option is more accurate since it considers the point distribution inside the
voxel and then takes the geometrical centre of the voxel. Figure 5.1 is a comparison of voxel
grid centroid and geometric centre in two dimensions.

5.2 3D-to-2D projection

Using the rotation matrix, the translation vector and the camera projection matrix
a 3D point from LiDAR is projected onto a pixel in the image plane in the camera. The
Equation 2.7 may be written as

uv
1

 =

f 0 cx 0
0 f cy 0
0 0 1 0



r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3
0 0 0 1



X
Y
Z
1

 , (5.2)

where u and v represent the undistorted image point as projected by an ideal pinhole camera.

However, as it was described above, the camera has distortion, so it is necessary to
use equal distortion on the image point. Combining the formula for tangential and radial

1Source: http://wiki.ros.org/message_filters
2Adaptive algorithm, see http://wiki.ros.org/message_filters/ApproximateTime

http://wiki.ros.org/message_filters
http://wiki.ros.org/message_filters/ApproximateTime
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Figure 5.1: A 2D Voxel Grid with red stars representing the voxel centroids and green stars
the geometric centres [46]

distortion results in the equation[
u′

v′

]
= (1 + k1r

2 + k2r
4 + k3r

6)

[
u
v

] [
2p1uv + p2(r

2 + 2u2)
2p1

(
r2 + 2v2

)
+ 2p2uv

]
, (5.3)

where u and v are the coordinates from ideal pinhole camera, r2 = u+ v2, k1, k2 and k3 are
the terms for the radial distortion and p1 and p2 are the terms for the tangential distortion.

The next step is to remove the points which are out of bounds of the camera sensor.
Given that the image plane is infinite and the area of the camera sensor is limited, the
projection matrix can generate a 3D point outside of the camera sensor area. Out-of-view
points need to be removed because no colour can be detected for these points. Therefore,
every point that is projected out of sensor size is removed.

Finally, to get RGB colour information, a kernel is used around the projected pixel.
Using a convolution between a kernel matrix and an image also allows the use of surrounding
pixels and makes the algorithm more robust in case of inaccurate projection. This also helps
with the increase in the uncertainty of the pixel location with increasing camera distance.
The obtained colour information is assigned to the correct 3D point from the LiDAR data.
This process is repeated for every point obtained from LiDAR.

5.3 Post processing

After getting the colour of the 3D point from the LiDAR, another filtering is needed.
This is caused by the fact that the unmanned aerial vehicle moves and leans in all directions,
so it is likely that LiDAR and camera catch the same 3D point several times. Because the
lighting conditions of the same point from various angles may be different, using an average
of more colour information leads to a better result.
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This filter is also a member of the class of down-sampling filters. The first step of the
filtering is to compute the Euclidean distance between each pair of points. The formula to
compute a Euclidean distance is

d (P1, P2) =

√
(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2, (5.4)

where x1, y1, z1 are the coordinates of the point P1 and x2, y2, z2 the coordinates of the point
P2.

If the computed distance is less than the specified value, it merges the two points and
computes their average colour. Using this filter in conjunction with the voxel grid filter from
Section 5.1 ensures that the new points from each iteration are merged with points from
the previous iterations. This results in maintaining an even distribution of points in space.
Figure 5.2 is a comparison of two different values for distance in the filter.

(a) Filter distance d = 0.2 (b) Filter distance d = 0.5

Figure 5.2: Comparison of two different values for distance in the second filter. Red points
are affected by the distance-based filtration.

The next step is the transformation of the resulting point cloud into a stable frame. Until
now, we considered all the points relative to the camera or the LiDAR frame. However, the
LiDAR and the camera move in space, so the measured points move with them. Therefore, the
points must be transformed for the last time into a frame that has an absolute and unchanging
position. Without this, it would not be possible to create a 3D map. This stable frame might
be e.g. the localization frame of the robot.

The final step, before publishing the resulting point cloud, is smoothing by convolution.
Convolution filters are often used for adaptive smoothing or feature extraction. It also helps to
remove the noise created by moving the sensors. This is accomplished by doing a convolution
between a kernel and a point cloud. A kernel is a 3D matrix, and the convolution process can
be expressed like

g(x, y, z) = wf(x, y, z) =

a∑
dx=−a

b∑
dy=−b

c∑
dz=−c

w(dx, dy,dz)f(x+ dx, y + dy, z + dz), (5.5)



5.3. Post processing 29

where g(x, y, z) is the output filtered point cloud, f(x, y, z) is the original point cloud, w is
the filter kernel, and a, b, c are the kernel size.

This thesis uses a convolution filter with a Gaussian kernel. The kernel calculates the
new point’s 3D position and colour based on the Gaussian distribution and the specified
distance that forms a sphere in 3D space. The result of the filter is smooth colour and position
of points (see Figure 5.3).

(a) Original point cloud (b) Point cloud with gaussian filter

Figure 5.3: Comparison of the same point cloud before and after Gaussian filter.



30 Chapter 5. Fusion method



Chapter 6: Results

Contents

6.1 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.2 Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

This chapter presents the results of the designed system for calibration of the camera-to-
lidar extrinsic parameters (see Section 6.1) and the data fusion from the LiDAR and cameras
sensors (see Section 6.2). To qualify and quantify the performance, the calibration process
was performed on simulated and real-world data. The performance of the proposed filters
on the colour fusion is then analysed and compared in simulation and on real-world data
qualitatively.

6.1 Calibration

To verify and validate the functionality of the proposed methods as well as to quantify
the performance, the accuracy of the calibration process was performed on precise simulated
data. Having a known extrinsic calibration, the obtained results can be seamlessly compared
and the performance can be quantified. Throughout the validation, the same checkerboard
pattern is used in simulated environment as well as in real-world experiments. This checker-
board pattern board has 8 interior columns and 6 interior rows with the square size of 0.052
meters, and distance between edge and checkerboard pattern 0.014, 0.018, 0.028, 0.055 meters
(see Figure 4.2).

In the simulated environment, a robot equipped with a camera and a LiDAR was mov-
ing around a static calibration pattern while performing the calibration. In the real-world
conditions, it is often more practical to move the calibration pattern in proximity to static
sensors, but the calibration process is independent on the movement of both components. De-
spite the ideal simulation environment, many keyframes could not be captured. The problem
was with the cv::findChessboardCorners library function, which could not find a checkerboard
pattern on the image data. Nevertheless, several keyframes with the detected board in camera
and LiDAR data were captured. Table 6.1 compares precise and final obtained calibration
parameters from simulation data after just six keyframes. Figure 6.1 also quantifies the errors
between the correct transformation and the data obtained from the program depending on
the number of keyframes.
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Parameter Correct Estimated Error

x [m] 0.200 0.196781 0.00322
y [m] 0.000 0.004171 -0.00417
z [m] -0.106 -0.126256 0.02026
roll [rad] -1.571 -1.56713 -0.00387
pitch [rad] 0.000 -0.00165 0.00165
yaw [rad] -1.571 -1.54927 -0.02173

Table 6.1: Comparison of the true and the estimated values of calibra-
tion parameters from simulation data.

(a) Translation errors from simulation data. (b) Angles errors from simulation data.

Figure 6.1: Errors from simulation data depending on the number of keyframes.

The performance of the LiDAR-camera extrinsic calibration on real data is tested using
128 channel Ouster OS1-128 LiDAR and mvBlueFOX colour camera with resolution 640x480
pixels as described in Chapter 3. Both sensors are mounted together on the UAV, as shown in
Figure 6.2. UAV was steadily placed with the calibration checkerboard pattern board moving
and thus changing the angle of inclination relative to the camera. Board was moving within
the overlapping field of view of the camera and LiDAR.

The same calibration board with the same parameters was used as in the simulation
test. A minimal distance of 15 pixels was set to differentiate individual keyframes in the
image data. That means that a board had to be moved at least 15 pixels to capture the next
keyframe. 89 keyframes were captured during the test with real data. At every keyframe,
the checkerboard pattern board was detected in the data of both sensors. From the second
keyframe, the calibration parameters were estimated until the end of the test. The Figure 6.3
shows that at the beginning, the parameters of translation vector and quaternions changed a
lot. Later they settled at almost the same values. The image from the camera, shown in the
Figure 6.4, is overlaid with the data from LiDAR after obtaining the final extrinsic calibration.
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Figure 6.2: Camera-LiDAR setup on UAV.

(a) Translation vectors from real data. (b) Angles from real data.

Figure 6.3: Estimated geometrical transformation from real data depending on the number
of keyframes.

6.2 Fusion

To verify and validate the functionality and the quality of the proposed method, the
fusion process was performed on precise simulated data first. Having a precise known extrinsic
calibration, the obtained fusion results can be precisely compared without errors caused by
inaccuracies in the calibration and in the state estimation of the robot using different filters
type. Then, the fusion process was performed on precise real-world data to verify functionality
on the inaccurate data.
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Figure 6.4: Camera image overlay with the estimated camera-to-LiDAR geometrical transfor-
mation.

6.2.1 Simulated data

During all the fusion tests, a UAV equipped with two cameras and a LiDAR was moving
inside a simulated building in the virtual environment (see Figure 6.5). Because the LiDAR
sensor could catch some part of the UAV, e.g. rotors, points near the UAV are ignored. Also,
points far from UAV are removed because the distance negatively affects the colourisation
quality from the camera. The valid point cloud distance from the UAV was hence experi-
mentally set from 1 to 37 metres. The voxel grid filter with a voxel size of 0.05 metres was
used to reduce the number of points and hence to reduce the computational load. Several
Gaussian kernel convolution filters and kernel matrix settings were tested for the quality of
color information filtration. The influence of these filters on the resulting point clouds are
compared below.

Figure 6.5: UAV trajectory during a simulated fusion test.

The first test compared several setting of kernel matrices to select colour information
from the image. Figure 6.6a shows the result of the fusion using only one pixel to select RGB
information. Using single-pixel projection of the laser points onto the image plane can cause
noise in colours, especially in practice where spatial and temporal inaccuracies are present.
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Small noise can be even seen in Figure 6.6a. The use of noise reduction techniques (blurring)
on the data is shown in the rest of Figure 6.6. The differences can be observed at the edges
of the columns of the building. The blur box method (Figure 6.6b) minimizes the noise in
colour, keeps the colours smooth and the spatial information sharp. For this reason, the blur
box method is validated as feasible in our scenario.

(a) One pixel selection (b) Blur box

(c) Gaussian blur 3x3 (d) Gaussian blur 5x5

Figure 6.6: Comparison of the results of several kernel matrices for selecting colour informa-
tion.

In the second test, several Gaussian kernel convolution filters were compared (see Fig-
ure 6.7). During this test, ground truth location was used. That means that the true geo-
metrical transformation between LiDAR and stable coordinate systems was known at every
time. The Figure 6.7b shows the final point cloud without using the convolution filter. Due
to precise known extrinsic transformation, the resulting point cloud is adequately colourised
without significant visible noise. The resulting point cloud with the convolution filter set at
a small distance is shown in Figure 6.7c. The result is adequately colourised, still has sharp
colours and also does not contain noise. Compared to that in Figure 6.7d, with the convolu-
tion filter set at a larger distance, the point cloud colours are blurred. This test shows that if
the precise value of the transformation between LiDAR and the stable frame is known at any
time, it is enough to set the filter to short distance values of filtration or not to use it at all.
Therefore, these filters are more important in the real world applications, where inaccuracies
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of many types occur.

(a) Original simulated environment. (b) Fusion without the filter.

(c) Filter with a distance of 0.08 meters. (d) Filter with a distance of 0.3 meters.

Figure 6.7: Comparison of the original simulated environment and resulting point clouds with
several setting of Gaussian kernel convolution filters with precise transformation.

To simulate the real-world conditions on the simulated data, the same qualitative analy-
sis is performed after an artificial noise is added in the state estimation of the aerial robot (see
Figure 6.8). In other words, an error is added to the transformation between the LiDAR sen-
sor and a stable coordinate system. Normal distribution with zero means of the distribution
and 0.1 standard deviations was used. This better corresponds to testing on real data, where
it is not possible to use ground truth location and the estimated pose of the robot always
contains inaccuracies. The resulting point cloud coloured without using the convolution filter
contains a colour error and noise (see Figure 6.8a). The Figure 6.8b shows that the resulting
point cloud with the convolution filter set at a small distance filtering has significantly better
colourisation quality. In this point cloud, the points are still not completely spaced smoothly.
This problem is solved by a convolution filter set at a larger distance filtering, but the resulting
point cloud has blur colourisation (see Figure 6.8c). This test shows that if the precise value
of the transformation between LiDAR and the stable frame is not known, the convolution
filter set at a feasible distance has sufficient colourisation quality and spatial smoothing.
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(a) Fusion without the filter.

(b) Filter with a distance of 0.08 meters. (c) Filter with a distance of 0.3 meters.

Figure 6.8: Comparison of resulting point clouds with several setting of Gaussian kernel
convolution filters with precise transformation.

The final result is that the blur box method to select colour information and convolution
filter set to short distance values of filtration is validated as feasible in our scenario with or
without the precise value of the transformation to a stable frame.

6.2.2 Real-world data

To obtain the transformation between the camera and the LiDAR in the real world,
the calibration algorithm described in Chapter 4 was used. During the calibration process
approximately 400 keyframes were obtained. For the fusion test on the real-world data, a
UAV equipped with a single camera and a LiDAR was used in an outdoor environment. The
valid point cloud distance from the UAV was experimentally set to the range from 1 to 37
metres, exactly the same as in the simulation. The same voxel grid filter with a voxel size of
0.05 metres was used to reduce the number of points and reduce the computational load. The
same filtration settings were used as in the analysis on the simulated data (i.e., the kernel
matrix and the blur box method).

In this test, several Gaussian kernel convolution filters were compared (see Figure 6.9).
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Figure 6.9a shows the real-world environment. The resulting point clouds from the fusion
process have a little different colour. This is caused by using white balancing in the image
data preprocessing. The Figure 6.7b shows the resulting point cloud without the use of the
convolution filter. This point cloud contains a visible colour error and noise. The resulting
point cloud in Figure 6.9c shows that using the convolution filter set at a small distance has
significantly better colourisation quality. Compared to that, Figure 6.9d shows the convolution
filter set at a more large convolution kernel size. This results in to point cloud with heavily
blurred colour and smooth spatial point distribution.

(a) Real world environment. (b) Fusion without the filter.

(c) Filter with a distance of 0.08 meters. (d) Filter with a distance of 0.3 meters.

Figure 6.9: Comparison of the real-world environment and resulting point clouds with several
setting of Gaussian kernel convolution filters.

This test verified that the proposed method also works on real data. In addition, it also
confirmed that the settings tested on the simulated data are also validated as feasible in our
real-world scenario.

The quality of the coloured point clouds produced by the method described in this
thesis is adversely impacted by localization errors, camera distortion parameters, quality of
the extrinsic calibration of the camera and the LiDAR synchronisation depending on the
speed of movement of the UAV. The feasible filter settings depend on the accuracy of these
parameters and the desired quality of the inspection task. Glass is also one of the sources of
errors, which are created by the LiDAR sensors themselves, and it affects the colour quality of
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the resulting point cloud. The effect of the glass can be seen in Figure 6.10. Another source of
errors are objects from fine materials with holes, such as a net (see Figure 6.9). The LiDAR
detects these objects, but even if the precise calibration is known, the camera detects the
background colour. The feasible filter settings in this thesis cannot solve the error caused by
the glass and the specific objects made from fine materials.

Figure 6.10: Resulting point cloud of the real-world data fusion.
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In this thesis, a method to fuse the point cloud data and the RGB information from a set
of cameras was developed. Firstly, the optimization task was formulated and solved to obtain
precise extrinsic calibration among fused sensors. The developed method goes beyond [16] by
removing the need for a calibration pattern placement and does not need any apriori informa-
tion. Next, the image projection was used to fuse 3D point clouds with colour information from
cameras to colourize spatial information measured by precise laser scanners mounted onboard
an autonomous robot. Several spatial and colour filtering methods were tested, implemented,
and applied to reduce inaccuracies in sensing and fusion. The calibration of extrinsic param-
eters was validated and verified in the simulation as well as on the real-world datasets. It was
demonstrated experimentally that the method is able to obtain consistent results, which are
improved as more samples are added into the optimization process. The multimedia materials
used in this thesis are available at http://mrs.felk.cvut.cz/theses/fischer2021.

In this thesis, the tasks given by the following list were successfully completed.

� The problem of extrinsic parameters calibration of sensors was tackled in Chapter 4.
The algorithmic solution can be run for each LiDAR-to-camera link to obtain individual
calibrations.

� A method to fuse the point cloud measured by a LiDAR with the RGB information
from a set of cameras was developed. The fusion algorithm and implemented filtration
of data are described in Chapter 5.

� The algorithm described in Chapter 4 was tested and analysed in simulated and real-
world conditions in Section 6.1. Furthermore, the functionality of the calibration algo-
rithm was quantitatively compared with the precise transformation from simulation.

� Results of the fusion algorithm within simulated conditions were tested, analysed, and
described in Section 6.2. Also, the settings of the implemented filters were compared
and qualitatively analysed for their effect on the resulting point cloud.

� Real-world data calibration algorithm results were used as input to the fusion algorithm
in Section 6.2.2. Results in real-world conditions were tested, analysed, and described.

http://mrs.felk.cvut.cz/theses/fischer2021
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7.1 Future Work

In the thesis, calibration methodology with functional results was presented. The accu-
racy of the calibration method can still be improved by other optimization, such as Kalman
filtering.

The calibration of colour information from the camera can further extend the work.
White balance, especially for indoor measurements, will improve the appearance and refine
the result. This may help the human operator with assessing and segmentation of the results.
Another extension can implement filtration depending on the brightness of the colour while
flying in dark areas while the robot carries its own light source. With the prioritization of
lighter colour information, a more realistic result can be obtained.
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Appendices





List of abbreviations

Table 1 lists abbreviations used in this thesis.

Abbreviation Meaning

UAV Unmanned Aerial Vehicle
FEE CTU Faculty of Electrical Engineering, Czech Technical University in Prague
MRS Multi-Robot Systems group at FEE CTU
LiDAR Light Detection and Ranging
ROS Robot Operating System
RGB Additive colour model
SLAM Simultaneous localization and mapping
ICP Iterative closest point
RANSAC Random sample consensus
PnP Perspective-n-Point
EPnP Efficient PnP

Table 1: Lists of abbreviations
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