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Abstract

This thesis describes the implementation
of a virtual environment and a trajectory
tracking algorithm of the first autonomous
vehicle of the eForce FEE Prague Formula
team for the Formula student competi-
tion. It is mainly focused on two topics.
The first topic is the implementation of a
virtual environment in which control algo-
rithm testing occurs. The Ansys VRXPE-
RIENCE Driving Simulator tool is used
for this implementation. The second topic
focuses on designing a path tracking al-
gorithm. For this purpose, the Stanley
control law is used for lateral control and
negative feedback control with a P regu-
lator for longitudinal control.

Keywords: autonomous vehicle, formula
student driverless, virtual environment,
simulator, path tracking, lateral control,
longitudinal control

Supervisor: Ing. Tomáš Haniš Ph.D.

Abstrakt

Tato práce se zabývá implementací virtu-
álního prostředí a algoritmu pro následo-
vání vytyčené trajektorie pro první auto-
nomní vozidlo týmu eForce FEE Prague
Formula team pro soutěž Formula student.
Primárně se zaměřuje na dvě témata. Prv-
ním tématem je implementace virtuálního
prostředí, ve kterém se odehrává testování
samotného řídícího algoritmu. Pro tento
účel byl zvolen Ansys VRXPERIENCE
Driving Simulator. Druhým tématem je
design algoritmu pro sledování trajektorie.
Pro příčné řízení je využit řídící zákon
vyvinutý na Stanfordově univerzitě a pro
podélné řízení je využita záporná zpětno-
vazební smyčka s P regulátorem.

Klíčová slova: autonomní
vozidlo,formula student
driverless,virtuální
prostředí,simulátor,sledování trajektorie,
příčné řízení,podélné řízení

Překlad názvu: Vývoj virtuálního
verifikačního prostředí pro autonomní
vozidla
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Chapter 1

Introduction

1.1 Formula student SAE competition

Formula student is the largest competition for technical students in the world.
It was founded in 1981 in Texas, USA, as a competition in which students
could apply their knowledge to a real world engineering design problem - the
design of a race car. Since then, this competition has undergone great changes.
In 1998, the first formula student race took place in Europe. Nowadays, there
are dozens of races all around the world. Every race has its own control of
rules but rules across all races are more or less the same with small variances.
One of the most prestigious races in Europe is Formula Student Germany,
which has built a reputation of benchmark across races. From the beginning
Formula Student was purely a competition for vehicles with combustion
engines but in 2010 due to the development in the automotive industry and
probably the social opinion on fossil fuels, the competition was divided in two
divisions - FSC and FSE, Formula Student Combustion and Formula Student
Electric. In 2017, regarding the rise of autonomous driving vehicles, another
division was announced - FSD, Formula Student Driverless. Nowadays, over
800 student teams compete across these three divisions. Some of the teams
worth mentioning are KIT Karlsruhe, ETH Zurich, UAS Hamburg, TU Delft.
In the future, another change is expected. It is already announced that in 2022
at FSG all categories will be merged together, and autonomous functionality
will be demanded in every vehicle. However, FSG is the only race that has
announced such statement and none of the other races e.g. FS Spain, FS
Netherlands, has done this yet.
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1. Introduction .....................................
1.2 eForce FEE Prague Formula team

eForce FEE Prague Formula is a student team of the international Formula
Student competition competing under the Faculty of Electrical Engineering
of the Czech Technical University in Prague. The team was founded in 2010
under the banner of CTU CarTech, as the first Czech team to successfully
build a formula with an electric drive. It has been the only team with this
prerogative ever since then. This team has achieved many great results. One
of the most significants is a 1st overall place at FS West in USA and FS
North in Canada in 2016. Other honourable mentions are a 2nd Overall
place at FS Italy in 2014 or a 1st overall place at FS Czech in 2018. The
team consists of about 30 active team members who work every year on
designing a new vehicle from scratch. The team is divided in working groups
such as electrotechnical, mechanical, IT and project group. In summer 2019,
with taking the fact of the creation of a driverless division into account, a
driverless group has been formed under the supervisors Marek Szeles and
Ondřej Šereda.

1.3 Driverless formula eForce DV.01

Eforce DV.01 is the name of the first autonomous eForce formula (DV stands
for Driverless). To speed up the process, our team has decided not to build
a new vehicle from scratch but to rebuild one of the cars from the previous
seasons. From a few operational vehicles, FSE.07 was chosen. Not only
monococcus but also engines, suspension, brake system, battery pack, and
all electronics were reused in DV.01. However, changes had to be made to
meet the rules, e.g., an emergency brake system and steering actuators were
added. The vehicle was equipped with a set of sensors to enable vision and
orientation in space and finally a CPU.
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............................ 1.3. Driverless formula eForce DV.01

Figure 1.1: eForce DV.01

1.3.1 DV.01 hardware

As said, DV.01 has evolved from FSE.07 and it has inherited all its parameters.
DV.01 has the weight of 202 kg with a 1.54 m wheelbase. Every wheel is
powered by a separate engine placed inside the wheel. These engines are 8.6
kW with the weight of 3.5 kg and a maximal torque 16.2 Nm in front and
35.3 kW with the weight of 8 kg and a maximal torque 48 Nm in the rear
wheels. This gives the vehicle the total power of 87.8 kW, but this parameter
is limited to 80 kW because of the FS rules. The steering wheel is controlled
by an electric power steering kit. Braking is managed by engines in the wheels
by forcing them to exact torque. To enable perception, 3 stereocameras
and LiDaR were added. There are 2 Intel Realsense and 1 Stereolab ZED
stereocameras and Ouster OS1-64 LiDaR on the vehicle.
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1. Introduction .....................................

Figure 1.2: Sensor layout 1,2 - Intel Realsense; 3 - Ouster OS1-64 LiDaR; 4 -
Stereolab ZED

1.4 Formula Student Driverless disciplines

Driverless vehicles are rated in two disciplines - static and dynamic. Both of
these are divided to 4 subdisciplines. Engineering design report, cost report,
business plan and energy efficiency in the static disciplines and acceleration,
skid pad, autocross and endurance in the dynamic disciplines. Vehicles can
get 1000 points at maximum, these points are distributed between disciplines
in the manner described in the table below. In this thesis, we are developing

Discipline Maximum points
Statics Bussines Plan 75

Cost and Manufacturing 100
Engineering design 300

Dynamics Acceleration 75
Skidpad 75
Autocross 100
Track Drive 200
Overall 1000

Table 1.1: Point distribution amongst disciplines

a simulating platform for our autonomous formula, so the main goal is to
increase the point gain in the dynamic disciplines. They will be introduced

4



..........................1.4. Formula Student Driverless disciplines

Figure 1.3: Skidpad track layout[7]

further in the following paragraphs

1.4.1 Skidpad

The skidpad track consists of two pairs of circles in a figure of an eight pattern.
The distance between the circles is fixed to 18.25m, as the diameters of the
inner (15.25m) and outer (21.25m) circle. The driving path is marked by 16
cones on the inside and 13 cones on the outside of each circle. The discipline
consists of arriving perpendicularly to the skidpad track, then encircling each
circle twice. The right circle is encircled first, then the left circle. Only the
second encirclement of each circle is measured. After the completion of the
skidpad discipline, the vehicle leaves the skidpad track in the same direction
as it arrived. Finally, it must come to a full stop after 25m. Apparently,
the goal is to get the best time possible. It should be mentioned that in the
skidpad procedure as well as in every following procedure, teams get penalties
for knocking down cones and noncompliance with other rules mentioned in
[7].
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1. Introduction .....................................
1.4.2 Acceleration

The acceleration track is 75 metres long and at least 3 metres wide. Cones
are placed along the track in intervals of 5 metres. The foremost part of the
vehicle is staged at 0.30 m behind the starting line, the vehicle accelerates
from a standing start. After the finish line, the vehicle must stop within 100
m inside the marked exit lane. The goal is to get the best time possible.

1.4.3 Autocross

The autocross discipline takes place on a handling track with the following
parameters:

. Straights: No longer than 80 m.. Constant turns: Up to 50 m in diameter.. Hairpin turns: Minimum of 9 m outside diameter. Slaloms: Cones in a straight line with 7.5 m to 12 m spacing..Minimum width: 3 m.

The length of the race is approximately 200m to 500m. The vehicle accelerates
from a standing start and takes one lap aiming for the best time possible.

1.4.4 Trackdrive and efficiency

The trackdrive and efficiency discipline is almost the same as the autocross
discipline. Apart from autocross, in trackdrive and efficiency discipline, the
vehicle takes 10 laps. Energy consumption is measured and the goal is to get
the best time possible with the lowest power consumption possible.
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Chapter 2

Objectives of thesis

To achieve the best results possible, the whole car pipeline must be working
at its best. This means hours and hours of testing. Since eForce is a student
project with limited resources, this is not possible. Having a high-reliable
tool for simulating the real environment is crucial. This thesis aims at
implementing this tool. Several algorithms will be used. This includes a
track generating algorithm that generates the positions of a set of cones
marking the track, a path planning algorithm which calculates a center line
from the detected cones, and an identification of the physical model of eForce
DV.01. These were created by eForce team members and are already tested.
Objectives for this project are the following:..1. Become familiar with virtual testing platforms. Search market for possible options. Choose best solution..2. Implement suitable test scenario in selected software. Design vehicle as similar to DV.01 as possible. Add sensors to vehicle. Create track. Automate track creation..3. Implement reference trajectory tracking algorithm..4. Verify the control algorithm using virtual testing scenarios

7
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Chapter 3

Virtual testing platforms

While the automotive industry invests an immense amount of resources in
autonomous driving, the development of the autonomous driving industry
is conditioned by the development of reliable virtual testing platforms. In
general, these platforms are developed to match the needs of single automo-
tive manufactures, they are expensive, and it is hard to get access to such
technologies. In this chapter, the research of these platforms is described and
further choice of ANSYS VRXPERIENCE is explained.
A virtual testing platform must fulfill these requirements:

. Python and Matlab interface. Physics engine. Creating and editing scenarios. Creating and editing vehicle. Sensors used in the car must be supported. Software in the loop simulation

in addition, other functionalities are welcome:

. User-friendly manipulation. Free to use software

9



3. Virtual testing platforms................................
3.1 Research of automotive simulation tools

3.1.1 CarSim

CarSim1 is a commercial software package that delivers accurate, detailed
and efficient methods for simulating the performance of passenger vehicles.
It also supports sensors but without any way of editing them. Furthermore,
using sensors in CarSim is a condition of the ownership of an extended license.

Figure 3.1: CarSim simulator[10]

3.1.2 dSpace - Automotive Simulation Models

dSpace ASM2 is a tool suite for simulating combustion engines, vehicle
dynamics, electrical components, and the traffic environment. It has Simulink
interface, also vehicle editing is at a great level. However, this software mainly
focuses on vehicles with a combustion engine and regarding this fact, dSpace
is not the best tool for this work.

1For more information see www.carsim.com
2For more information see www.dspace.com

10

www.carsim.com
www.dspace.com


.........................3.1. Research of automotive simulation tools

Figure 3.2: dSpace simulator[11]

3.1.3 rFpro

rFpro3 provides driving simulation software, and Digital-Twins for the devel-
opment and testing of autonomous vehicles, ADAS, and vehicle dynamics. It
is solely focused on ground-based road vehicle simulation. rFpro was created
in 2007 as a project within a Formula 1 team, where performance, speed of
response and simulation of the fastest, most dynamic road vehicle on earth
was all that mattered. The main disadvantage of this tool seems to be the
absence of creating your own scenarios. Scenarios are, probably because of
the top level of road quality and the fact that these roads are very close to
reality, made mainly by rFpro and it looks like they cannot be edited. Also
this product appears to be more premium thanwhat we could afford.

3For more information see www.rfpro.com

11
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3. Virtual testing platforms................................

Figure 3.3: rFpro simulator[9]

3.1.4 IPG CarMaker

IPG CarMaker4 is one of the best softwares for simulating car behaviour.
It meets almost all of our requirements except for Python interface. IPG
CarMaker includes a complete model environment for vehicle testing. Most
of the student formula teams use IPG CarMaker as their main simulating
tool which only underlines the usability of this tool. Despite that we decided
not to choose IPG CarMaker and go for a new product on the market with
great expectations.

4For more information see https://ipg-automotive.com/products-services/
simulation-software/carmaker/
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........................3.2. ANSYS VRXPERIENCE Driving Simulator

Figure 3.4: IPG CarMaker simulator[12]

3.2 ANSYS VRXPERIENCE Driving Simulator

The author’s decision was to use ANSYS VRXPERIENCE Driving Simulator
as the tool for our simulations. VRXPERIENCE is powered by SCaNeR by
AV Simulation. It enables creating our own scenarios, creating and editing a
vehicle. The software in the loop is available as well as the hardware in the
loop and the driver in the loop. Matlab and Python interface is possible and
it meets all of our requirements. It supports LiDaR, camera, which can be
created, adjusted to match our sensors and put on objects in the simulation.
The only disadvantage is the absence of INS, but we have found a pretty easy
workaround, which will be presented further in the thesis. Python interface
is used mainly for creating scenarios and Matlab interface is used for vehicle
control and reading data from sensors.

3.3 Comparison of simulation tools

All of the simulation tools mentioned above were compared regarding require-
ments.

13



3. Virtual testing platforms................................
CarSim dSpace rFpro CarMaker VRXPERIENCE

Python and Matlab interface Yes Yes Yes Partially Yes
Physics engine Yes Yes Yes Yes Yes

Creating and editing scenarios Yes Yes No Yes Yes
Creating and editing vehicles Yes Yes Yes Yes Yes

Sensor support Yes, with license Yes Yes Yes Yes
Software in the loop Yes Yes Yes Yes Yes

Table 3.1: Simulation tools comparison

It is shown that CarSim, dSpace, CarMaker and Vrxperience completely
fulfill our requirements. The Ansys VXPERIENCE Driving Simulator was
chosen between these because I wanted to explore the capabilities of a new
software rather than using a proven solution. In addition, support from Ansys
was promised.

14



Chapter 4

Virtual reality implementation

In this chapter, virtual reality implementation is described. Ansys VRXPE-
RIENCE was chosen as our main tool. It is important to create a virtual
reality environment, vehicle similar to eForce DV.01 with appropriate sensors,
to create a track which consists of a set of cones and finally to create an
interface between VRXPERIENCE and Simulink.

4.1 Virtual reality environment

The first thing that needs to be done is the creation of a virtual reality
environment. In VRXPERIENCE virtual reality is called Terrain, so in the
rest of the thesis virtual reality is referenced to as terrain. The VRXPERI-
ENCE was developed mainly for the simulation of real-life traffic. It aims
at creating road networks with realistic road intersections, traffic lights and
pedestrians for autonomous vehicle development purposes. Therefore, editing
the road profile gets us straightforward to creating real world roads with
certain properties, such as the number of traffic lanes in the road, travel
direction and so on. However, nothing from the above is needed for the
purposes of this work. That is why in creating the terrain we somply focus
on creating a vast concrete plain similar to a small airport or a big parking
lot. The dimensions of this plain are 1000m x 500m. This is done by placing
several 1km long roads abreast.

15



4. Virtual reality implementation .............................
4.2 Road profile

VRXPERIENCE comes with 27 prebuilt road profiles. Most of them are
however defined by traffic lanes and surrounded by grass at the sides. The
only choice was to use ’DefaultMonotrack’. Because ’DefaultMonotrack’ has
a default width of 5 m, placing 100 roads would be unnecessarily difficult,
change in width is used to simplify the process of terrain generation. ’De-
faultMonotrack’ was used to form ’DefaultWideMonotrack’. The road profile
is defined by several properties where the most importants are width, ground
and material, which are specified later. However a majority of the properties
are used for controlling a vehicle in traffic mode, in which the car’s behaviour
is controlled by a set of rules, which vehicles obey. Since I do not use traffic
mode and in the simulation there will be only one car controlled by Simulink,
only these parameters are necessary to be set:

.Width.Ground name.Material name

Width should be set to the biggest value possible, which is 100m. Ground name
is the type of ground that is represented by the track profile. VRXPERIENCE
comes with 4 built-in ground types:

. Asphalt. Concrete. Cobblestone.Grass

Even though ground types can be created or edited by setting parameters to
different values, e.g., grip, roughness, etc., I decided to use asphalt as our road
profile because it appears that creating several road profiles with different
values would be unnecessary. Yet creating a set of ground types for each track
on which the formula would race seems as a good opportunity to get better
results. Material name only defines VISUAL parts of the road profile. It can
be either a smooth color or it can be defined by texture. For the purposes of
this thesis, I wanted to get a concrete look material ’macadam’, it is a perfect
match.

16



................................. 4.3. Road interconnection

Figure 4.1: DefaultWideMonotrack profile

4.3 Road interconnection

Each road in VRXPERIENCE is represented as a curve in a road network.
Every road is made easily by drawing a line using tools (highlighted yellow
in figure 4.2). As said earlier, I want to generate just a vast plain with the
proportions 1000m x 500m, and since I have created a road profile 100m wide,
putting 5 roads side by side is needed. Drawing a line of an exact length in
an exact position is almost impossible, exact values can be edited using the
selection window in XY function section(highlighted blue in figure 4.2).

Figure 4.2: Network generation

When a network (highlighted in red in 4.2) is created, it is important to
generate the terrain and export it to 3D Visual. This is done in ’Terrain ->

17



4. Virtual reality implementation .............................
Terrain generation’ and ’File -> Export 3D Visual’.

4.4 Vehicle

For a vehicle model generation, the mode ’Vehicle’ is used. Vehicles are
divided into different groups in VRXPERIENCE. Most of the vehicles are in
Simple class which means that their physics is just a 6DOF object floating
through space with some friction, and an internal force drives them forward.
No further dynamics, vehicle tires nor suspension is implemented. Because my
goal is to get as close to reality as possible, formula will be simulated as Callas
vehicles. Callas is a French acronym for Couplé A La Limite d’Adhérence
au Sol translated as "Coupled with the Limit of Adhesion to the Ground".
These have a much wider range of possibilities. Due to this fact, I decided to
redesign ’Callas’ vehicles to resemble an eForce DV.01 car. Every part of the
car can be edited in VRXPERIENCE. For this purpose, models of engine,
aerodynamics, transmission and tires were incorporated.

4.4.1 Scenario

When the terrain and the vehicle are created, the next step is to generate
a driving scenario. In ’Scenario’ mode, I created a new scenario following
the user manual, I selected the generated terrain and edited a scenario. For
this thesis, it means adding a vehicle to the scenario, which is done by drag
and drop from Resources. After that, track generation follows. Since there
was no possibility shown to me on how to generate it automatically, this was
done manually by drag and drop of cones from resources to scenario and then
editing the position for each cone individually.

4.5 Vehicle Sensors

Sensors cannot be added to the vehicle right away in the ’Vehicle’ mode
during vehicle generation. As all sensors behave as part of the scenario and
thus they need to be added during a scenario definition. A doubleclick on
the selected vehicle opens the vehicle instance setup which includes Sensor
configuration. Here, I created a sensor configuration. In this thesis, it includes

18



....................................4.5. Vehicle Sensors

creating two models of stereocameras, one model of LiDaR, and adding them
to the sensor configuration.

4.5.1 Sensors definition

The biggest advantage of VRXPERIENCE is that it enables sensor generation.
In generating a stereocamera system, it includes creating a set of lens with
these parameters:

. Position of sensor reference frame. Focal dimensions. Field of view. Resolution. Distortion cartography.Max beam range. FPS

Figure 4.3: Sensor configuration screen

19



4. Virtual reality implementation .............................
This was done for both stereocameras. The next step was generating the
model of LiDaR. Generating the LiDaR model is as easy as generating camera
models. Parameters that can be edited are:

. Horizontal and vertical field. Horizontal and vertical step. Range. FPS

The next step is adding sensors to a vehicle reference frame.

4.5.2 Adding sensors to vehicle

When sensor models are created, adding sensor models to the vehicle reference
frame is necessary. As stated in figure 1.2 , each sensor has its defined position
on the real vehicle. All sensors were added to the simulated vehicle at the
same positions.

4.6 Simulink interface

To be able to control the vehicle, Simulink interface is implemented. Ev-
ery Simulink model which is used in VRXPERIENCE, must be compiled.
MinGW64 compiler is recommended. Additionally, the target compilation
must be set. Steps for a well-working interface before starting are the follow-
ing:..1. In Matlab use command mex -setup to configure mex to use MingGW64

C++ compiler...2. Run setScanerPath.m and setupScaner.m..3. Open new Simulink model...4. Press CTRL+R and in code-generation choose grtscanerapi.tlc as target,
and C++ as language.

20



......................................4.7. Simulation..5. Check model...6. Add Controller from ScanerAPI to model (remember to add ScanerAPI
to path.

4.7 Simulation

When all of the above is done, the last step is to create a process in Sim-
ulation. In VRXPERIENCE start ’Simulation’ and in ’Configuration’ ->
’Configuration manager’ add process named ’SIMULINK’. Name does not
need to be exactly ’SIMULINK’ but it is the most practical. Then in the
Simulink model change Controller property process name to ’SIMULINK’.
After this is done, select the vehicle that will be controlled and change its
Driver process to ’SIMULINK’. After that, simply run the Simulink model
and start Simulation. If everything was set right, a black square in a green
circle will appear over SIMULINK process in VRXPERIENCE.

4.8 Vehicle control

As noted earlier, the Simulink interface is used for the vehicle control. In
this thesis, as in a real vehicle, the control of the steering wheel and the
accelerator and brake system is utilized. For this task a block in ScanerAPI
is created. These blocks use direct communication with the shared memory
of VRXPERIENCE.

4.8.1 Simulator inputs

For control of the steering rod, brakes, and the accelerator blocks that are
used are named ′ModelCabin_CabToModel_Output′ for the accelerator and
the brake pedal control and ′ModelCabin_CabToSteering_Output′ for the
steering rod control. Both blocks have several inputs but only a few are
important. For the steering rod control these are:

. IsTorqCommand(boolean) - if is true, torque which is also one of inputs
is applied
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4. Virtual reality implementation .............................
. SteeringWheel(rad) - steering wheel angle

since vehicle steering is regulated to an exact position and does not use torque,
IsTorqCommand is set to 0. For control of the accelerator and the brake
pedal important inputs are:

. Accelerator - from 0 to 1 (1 is fully pressed) accelerator. Brake(Newton) - force applied to brake. IgnitionKey - ignition key position.GearBoxAutoMode - gear box mode

IgnitionKey MUST be set to 2 which corresponds to the running engine and
GearBoxAutoMode to 11 which corresponds to Gearbox in automode racing.
More modes can be used but author prefers this choice as it appears to be
the most reliable.

4.8.2 Simulator outputs

For the communication between the vehicle and the Simulink block named
′ModelCabin_CabToModel_Input′. From this block user is able to get all
information about the vehicle and its state. In this project, position, speed,
acceleration in reference frame and yaw position, speed and acceleration is
everything that is needed.
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Chapter 5

Path tracking

5.1 Path planning

A path planning algorithm implemented by an eForce team member Matěj
Zorek is used. This algorithm calculates the center line as a set of discrete
points in the plain, taking into account the fact that at least 3 cones were
detected. In this thesis I don’t focus on the vision algorithm, so it is assumed
that all cones are already detected. Algorithm is further described later in
algorithm 1. Because the Stanley control law, which is described below, takes
not only positions as input but also the yaw angle, yaw rate and vehicle
speed, this algorithm needs to be upgraded. First, as the speed reference
generator is not implemented yet the author has decided that the constant
speed vref = 5m

s will be used at all path points. Next the yaw angle and yaw
rate reference signal generation was implemented. The yaw angle signal is
calculated by the following equation:

ψ = atan2( by − ay

bx − ax
), (5.1)

where ~a = [ax; ay] is the point for which the yaw angle is calculated and
~b = [bx; by] is the next point in the trajectory. The yaw rate signal is calculated
as

r = vref (ψ(i)− ψ(i− 1))
d

(5.2)

where ψ(i) is the yaw angle at a point for which the yaw rate is calculated,
ψ(i− 1) yaw angle, and d is the distance between the two points.
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5. Path tracking.....................................
Algorithm 1: Path planning algorithm

Result: Path
B ← set of points in 2D representing blue cones;
Y ← set of points in 2D representing yellow cones;
k ← 1;
Path(k) ← starting point;
while True do

instructions;
if k = 1 then

b ← B(argmin(‖B - Path(k)‖));
y ← Y(argmin(‖Y - Path(k)‖));

else
p ← line defined by normal vector(Path(k) - Path(k-1)) and
point Path(k);
ρ ← half-plane degined by lin p and direction of vector
(Path(k) - Path(k-1));
B̂ ← B ∩ρ ;
Ŷ ← Y ∩ρ ;
if B̂ = ∅ or B̂ = ∅ then

break ;
else

b ← B(argmin(‖B̂−Path(k)‖));
y ← Y(argmin(‖Ŷ−Path(k)‖));

end
end
Path(k+1) ← mean(b+y);
k ← k+1 ;

end

5.2 Stanley control law

Due to easy implementation and its robustness, it was decided that the
Stanley control law will be used. The Stanley control design has proved to be
useful as it was implemented and tested on vehicle competing in the DARPA
Grand Challenge 2005. This vehicle was the only one out of 40 competitors
not to hit an obstacle or miss a gate, and had the fastest course completion
time.[5]
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.................................. 5.2. Stanley control law

5.2.1 Lateral control

Lateral control is used to control vehicle steering. It calculates the angle of
the front wheels based on the following equation[5]:

δ(t) = (ψ(t)− ψss(t)) + arctan( ke(t)
ksoft + v(t))+

+ kyaw(rmeas(t)− rtraj(t)) + ksteer(δmeas(t− δt)− δmeas(t))
(5.3)

where δ(t) is the angle of the front wheels with respect to the vehicle,rtraj is
the yaw rate for the trajectory, rmeas measured yaw rate, ψ(t) the yaw angle,
kyaw, ksteer, and ksoft are tunable constants, and ψss is a steady state yaw
which can be found by the equation:

ψss = mv(t)rtraj(t)
Cy(1 + a

b ) (5.4)

where m is the weight of the vehicle, Cy is the lateral tire stiffness, a is the
distance of the front axle from the vehicle center of gravity, and b is the
distance from of the rear axle from the vehicle center of gravity.

Figure 5.1: Kinematic model of the vehicle[5]
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5. Path tracking.....................................

Figure 5.2: States of the vehicle[5]

This control rule implementation is taken from Automated driving toolbox
in Matlab. Because the angle of the front wheels cannot be forced to an exact
value and the only interaction with this angle is through the steering wheel,
negative feedback control with P regulator was implemented. In the figure
below results can be seen.

Figure 5.3: Front wheels angle controller
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.................................. 5.2. Stanley control law

5.2.2 Lateral control improvement

It was found during testing that this algorithm could be simplified. ψss = ψref ,
and ksteer = 0 This was done and lateral control rule changes to:

δ(t) = (ψ(t)− ψref (t)) + arctan( ke(t)
ksoft + v(t) + kyaw(rmeas − rtraj)) (5.5)

this control rule had better overall results in comparison to the Stanley lateral
control. These results are further presented in the next chapter. This may be
caused by either a low constant speed or a wrong choice of constants.

5.2.3 Longitudinal control

The longitudinal control follows simple rules:

a =


0.1(vref − vmeas) if 0 ≤ vref − vmeas < 10
1 if vref − vmeas ≥ 10
0 if vref − vmeas < 0

(5.6)

b =
{

0.2 if ≤ −0.1
0 if vref − vmeas > −0.1

(5.7)

where vref is speed reference and vmeas is measured speed, and a is press
ratio of accelerator pedal and b is press ratio of brake pedal.
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5. Path tracking.....................................

Figure 5.4: Speed controller
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Chapter 6

Experiments

In this chapter results of path tracking algorithm are presented. Virtual
reality implementation and path tracking algorithm were tested on different
tracks. These experiments show, that even though I thought that Stanley
control law was performing better if ksteer = 0 and ψss = ψref , it is only
partially true. Surprisingly this weakness of perfomance was revealed on
simple and monotonous tracks such as circle track. Regarding this fact, it
seems that using Stanley control law (5.3) rather than law(5.5) is necessary.

6.1 Advanced track

First experiment took place on advanced track with challenging setup.
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6. Experiments .....................................

Figure 6.1: Advanced track experiment - trajectories

Figure 6.2: Advanced track experiment - crosstrack errors

In this experiment improved Stanley control was performing better.
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................................... 6.2. Route approach

6.2 Route approach

Another experiment tests approach to the trajectory in a case, when vehicle
is not on the starting line. It is easily shown, that here the original Stanley
control law 5.3 has better performance.

Figure 6.3: Route approach trajectories
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6. Experiments .....................................

Figure 6.4: Route approach crossroad errors

6.3 Circle track

Second experiment takes place on track with circle profile with diameter of
300m. It is probably the most basic experiment. This experiment shows, that
despite good performance on advanced track, Upgraded Stanley algorithm
5.5 is not best choice.
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...................................... 6.4. Star track

Figure 6.5: Circle track experiment trajectories

6.4 Star track

In experiment with track of a star shape concerns about performance of
Upgraded Stanley algorithm 5.5 are confirmed. As this algorithm is not able
to follow path which is unacceptable.

33



6. Experiments .....................................

Figure 6.6: Star track experiment trajectories
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Chapter 7

Results

. In chapter 3 I did research of possible solutions for implementing vir-
tual reality scenarios and chose a new and challenging option - Ansys
VRXPERIENCE. In chapter 4 I successfully implemented a virtual reality scenario with
a vehicle model similar to eForce DV.01. A large concrete plane was
generated as well as a track marked with cones.. In chapter 5 I got familiar with a path planning algorithm, and the Stanley
control law. Also, an improvement of this path tracking algorithm was
suggested.. In chapter 6 I tested a virtual reality implementation, the Stanley control
law and the suggested improvement to the algorithm. Unfortunately,
this algorithm did not prove to be working and therefore will not be used
in future work.

35



36



Chapter 8

Conclusion

In this thesis all of the objectives were met. However another work should be
done in the future. Next step would definitely be to automatize the process
of creating a track, because adding each cone manually is tedious. Also the
vehicle dynamics should be more detailed, for example by implementing a
suspension system, which was not included in this thesis. Finally, connecting
the simulating tool to the DV.01 pipeline should be done to test all capabilities
of Ansys VRXPERIENCE, and also the DV.01 pipeline itself.
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