
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics

Using Fast Upper-Bound Approximation in
Heuristic Search Value Iteration

Jakub Brož

Supervisor: doc. Mgr. Branislav Bošanský, Ph.D.
Field of study: Open Informatics
Subfield: Artificial Intelligence and Computer Science
May 2021

ii

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

483529Personal ID number:Brož JakubStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Cybernetics

Open InformaticsStudy program:

Artificial Intelligence and Computer ScienceSpecialisation:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Using Fast Upper-Bound Approximation in Heuristic Search Value Iteration

Bachelor’s thesis title in Czech:

Využití rychlé aproximace funkcí v heuristickém algoritmu iterace hodnot

Guidelines:
One-Sided Partially Observable Stochastic Games are dynamic games with infinite horizon where only one player has
imperfect information and the opponent has full information. Despite the numerous possible application domains (e.g., in
security), the applicability of the existing algorithm PG-HSVI [1] is limited due to insufficient scalability. Computing and
querying the upper-bound of the value function is one of the key bottlenecks of the algorithm. This upper-bound value
function is represented as a lower convex envelope of a set of points in a high-dimensional space. The goal of the student
is to:
1. Get familiar with the algorithm PG-HSVI.
2. Identify and implement an appropriate method for fast approximation of the upper-bound value function (e.g., using
neural networks).
3. Modify the exploration phase of the PG-HSVI algorithm to use approximate upper-bound value function (e.g., by
computing bounded-rational game-theoretic strategies).
4. Experimentally compare the convergence of proposed modifications with the original algorithm.

Bibliography / sources:
[1] Horák, K., Bošanský, B., & Pěchouček, M. (2017). Heuristic Search Value Iteration for One-Sided Partially Observable
Stochastic Games. In AAAI (pp. 558-564).
[2] McKelvey, Richard; Palfrey, Thomas (1995). "Quantal Response Equilibria for Normal Form Games". Games and
Economic Behavior. 10: 6–38.

Name and workplace of bachelor’s thesis supervisor:

doc. Mgr. Branislav Bošanský, Ph.D., Artificial Intelligence Center, FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 21.05.2021Date of bachelor’s thesis assignment: 09.01.2021

Assignment valid until: 30.09.2022

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
doc. Mgr. Branislav Bošanský, Ph.D.

Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

Acknowledgements
I would like to thank my supervisor,

doc. Mgr. Branislav Bošanský, Ph.D., for
his guidance, invaluable advice, welcom-
ing approach and a good dose of patience.
I would also like to thank him for helping
me choose a project which I enjoyed work-
ing on, I had an interest in and allowed
me to grow in a lot of areas.

Computational resources were supplied
by the project "e-Infrastruktura CZ" (e-
INFRA LM2018140) provided within the
program Projects of Large Research, De-
velopment and Innovations Infrastruc-
tures.

Declaration
I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

Prague, May 21, 2021

Prohlašuji, že jsem předloženou práci
vypracoval samostatně a že jsem uvedl
veškeré použité informační zdroje v
souladu s Metodickým pokynem o do-
držování etických principů při přípravě
vysokoškolských závěrečných prací.

V Praze, 21. května 2021

v

Abstract
Many security problems, such as pursuit-
evasion games or patrolling games, can be
modeled as one-sided partially observable
stochastic games (OS-POSGs). In these
problems, two sides compete against each
other, although only one side has full in-
formation about the current state. Due to
the similarities with partially observable
Markov decision processes (POMDPs), a
modification of the heuristic search value
iteration (HSVI) algorithm can be used to
solve these kinds of problems. However,
the HSVI for OS-POSGs unfortunately
does not scale well and therefore is not
applicable to larger problems. The main
bottleneck of the HSVI for OS-POSGs
algorithm is the frequent usage of linear
programs that slow down the computa-
tion. We provide a solution to this per-
formance issue in the form of two modi-
fications. The first modification replaces
the computation of the upper bound value
function by a method that utilizes neural
networks to approximate the true value
of the upper bound. Our second contribu-
tion is the replacement of the exact Nash
equilibrium stage game solution with a
bounded-rational quantal response equi-
librium (QRE). The usage of QRE allows
the incorporation of the approximative
upper bound method into the original al-
gorithm.

Keywords: game theory, partially
observable stochastic games, one-sided
information, heuristic search value
iteration, neural networks, quantal
response equilibrium, approximation

Supervisor: doc. Mgr. Branislav
Bošanský, Ph.D.
Praha 2, Karlovo náměstí 13, E-407

Abstrakt
Řada bezpečnostních problémů, jako jsou
pronásledovací hry nebo hlídkovací hry,
lze modelovat jako jednostranné, čás-
tečně pozorovatelné stochastické hry (OS-
POSG). V těchto problémech proti sobě
soupeří dvě strany, ale pouze jedna ze
stran má úplnou informaci o současném
stavu. Vzhledem k podobnostem s čás-
tečně pozorovatelnými Markovovými roz-
hodovacími procesy (POMDP) lze k řešení
těchto problémů použít modifikaci heuris-
tického algoritmu iterace hodnot (HSVI).
HSVI pro OS-POSG bohužel špatně šká-
luje, a proto není použitelný na větší pro-
blémy. Hlavní překážkou algoritmu HSVI
pro OS-POSGs je časté využívání line-
árních programů, které zpomaluje výpo-
čet. Poskytujeme řešení tohoto problému s
rychlostí ve formě dvou modifikací. První
modifikace nahrazuje výpočet horní meze
hodnotové funkce metodou, která vyu-
žívá neuronové sítě k aproximaci skutečné
hodnoty horní meze. Naším druhým pří-
spěvkem je nahrazení přesného řešení Na-
shovy rovnováhy v jednotlivých fázích po-
mocí omezeně racionální rovnováhy kvan-
tových odpovědí (QRE). Použití QRE
umožňuje zakomponovat přibližnou me-
todu pro horní mez do původního algo-
ritmu.

Klíčová slova: teorie her, částečně
pozorovatelné stochastické hry,
jednostranná informace, heuristický
algoritmus iterace hodnot, neuronové
sítě, rovnováha kvantových odpovědí,
aproximace

Překlad názvu: Využití rychlé
aproximace funkcí v heuristickém
algoritmu iterace hodnot

vi

Contents
1 Introduction 1
2 Game Theory 3
2.1 Normal-form games 3
2.1.1 Zero-sum games 4
2.1.2 Strategies 4
2.1.3 Nash equilibrium. 5

2.2 Minimax . 6
2.2.1 Maximin and minimax
strategies . 6

2.2.2 Minimax theorem 7
2.3 Quantal response equilibrium. . . . 7
2.3.1 Expected utility and error 8
2.3.2 Definition 8
2.3.3 Logit equilibrium 10
2.3.4 Influence of λ parameter in logit
equilibrium 10

2.3.5 Iterative method 11
3 HSVI for POMDPs 13
3.1 MDPs . 13
3.1.1 Discount factor 14
3.1.2 Policy . 14
3.1.3 Value Iteration 15

3.2 POMDPs . 15
3.2.1 Policy . 16
3.2.2 Value Iteration 17
3.2.3 Value function representation 17

3.3 HSVI . 19
3.3.1 Bounds’ representation 19
3.3.2 Point-based updates 20
3.3.3 Excess gap 21
3.3.4 Exploration 22
3.3.5 Algorithm 23

4 HSVI for OS-POSGs 25
4.1 OS-POSGs 25
4.2 HSVI . 26
4.2.1 Strategies 26
4.2.2 Belief update 27
4.2.3 Stage game. 27
4.2.4 Bounds initialization 29
4.2.5 Excess gap 30
4.2.6 Exploration 30
4.2.7 Algorithm 30
4.2.8 Partitions 31

5 Approximation methods 33
5.1 Upper bound approximation . . . 33

5.1.1 Original representation 33
5.1.2 Available alternatives 34
5.1.3 Approximation using neural
network . 35

5.1.4 Pruning 35
5.1.5 Implementation details 36
5.1.6 Method drawback 36

5.2 Stage game equilibrium
approximation 37
5.2.1 Problem of using neural
network with minimax 37

5.2.2 Stage game quantal response
equilibrium 38

5.2.3 Expected utility of an action 38
5.2.4 Implementation details 40
5.2.5 Modification of exploration
heuristic . 41

6 Experimental evaluation 43
6.1 Games . 43
6.1.1 Representation 43
6.1.2 Pursuit-evasion games 44

6.2 Implementation 44
6.2.1 Julia . 45
6.2.2 Libraries 45

6.3 Parameters 45
6.3.1 Shared parameters 45
6.3.2 Neural network parameters . . 46
6.3.3 Quantal response equilibrium
parameters 48

6.4 Experiments 48
6.4.1 Environment 48
6.4.2 Recorded values 49
6.4.3 Parameters evaluation 49
6.4.4 Robustness, performance and
scalability evaluation 50

7 Conclusion 59
7.1 Future work 59
A Parameters evaluation 61
B Attachment content structure 65
C Bibliography 67

vii

Figures
2.1 Payoff matrix of the normal-form
game Prisoner’s dilemma 4

2.2 Payoff matrix of the zero-sum
game Matching pennies 4

2.3 QRE ij-response sets Ri1 and Ri2
of player i for xi = (2, 1) 9

2.4 Payoff matrix of the zero-sum game
for the demonstration of the influence
of λ on the logit equilibrium 10

2.5 Influence of λ on logit equilibrium
value of a game 11

3.1 Representation of value function
composed of α-vectors 18

3.2 Point-based update of V Γ
LB and

V Υ
UB . 21

5.1 Comparison of upper bound value
function representations 34

5.2 Neural network approximating
convex hull imprecisely 37

6.1 Initial state of the peg05.posg
game . 44

6.2 peg06.posg gap convergence graph 54
6.3 peg08.posg gap convergence graph 57
6.4 Scalability of the algorithm
variants . 58

Tables
6.1 Set of pursuit-evasion games . . . 44
6.2 peg03.posg results 51
6.3 peg04.posg results 52
6.4 peg05.posg results 53
6.5 peg06.posg results 53
6.6 peg07.posg results 55
6.7 peg08.posg results 56

A.1 Configurations 61
A.2 peg03.posg parameters evaluation
results . 62

A.3 peg04.posg parameters evaluation
results . 62

A.4 peg05.posg parameters evaluation
results . 62

A.5 peg06.posg parameters evaluation
results . 63

A.6 peg07.posg parameters evaluation
results . 63

A.7 peg08.posg parameters evaluation
results . 63

viii

Chapter 1
Introduction

Games, in general, are often used to model real-life security problems. They
can have the form of defender-attacker games, where the defending side
protects some critical targets against attackers, or the pursuit-evasion form,
where the defenders are trying to capture the evading target. The real-life
problems modeled can be, for example, the allocation of limited security
resources (such as patrolling units) to protect vulnerable targets, protecting
computer networks against cyberattacks or protecting wildlife against poachers
[SFA+18, Tam09].

The one-sided partially observable stochastic games (OS-POSGs) are non-
deterministic dynamic games with infinite horizon, in which only one side has
full information about the current state. Because in most security problems,
the information the defending side has available is not complete, the OS-
POSGs can be used to model them. In particular, the OS-POSGs can be used,
for example, to solve problems such as the strategic allocation of honeypots
in computer networks [HBT+19] or protecting critical infrastructures against
sequential attacks [TBN20].

An existing heuristic search value iteration (HSVI) algorithm [HBP17,
HBKK20] can be used to solve OS-POSGs games. It is an extension of the
HSVI algorithm for solving partially observable Markov decision processes
(POMDPs) [SS12b]. However, the existing HSVI algorithm does not scale
sufficiently, which makes it inapplicable to larger games.

One of the key bottlenecks of the HSVI algorithm is the querying of the
upper bound value function. The upper bound value function is represented as
the lower convex hull of a set of points in high-dimensional space. Obtaining
the value of the upper bound at an arbitrary point requires solving a linear
program.

Our goal is to find a suitable approximative method that could replace
the computationally heavy querying of the upper bound value function
and incorporate it into the existing algorithm. This also requires replacing
the exact stage game solution computation with an approximate method
compatible with the modified upper bound value function.

In Chapter 2, we define some basic concepts from game theory that the
HSVI algorithm utilizes, and we also introduce the quantal response equi-
librium [MP96], which will be used as the stage game solution concept in

1

1. Introduction
our modifications. In Chapter 3, we first introduce Markov decision pro-
cesses (MDPs) and their partially observable extensions and then describe
the version of HSVI algorithm for solving POMDPs. In the following Chapter
4, we define the OS-POSGs and describe the modifications that make the
usage of HSVI for OS-POSGs possible. In Chapter 5, we introduce our two
main contributions: approximate computation of the upper bound value
function using neural networks and approximate stage game solution using
quantal response equilibrium. In Chapter 6, we evaluate our modifications
and compare them with the original algorithm.

2

Chapter 2
Game Theory

In this chapter, we will introduce the most fundamental representation of
games in game theory and some concepts to help us reason about games. We
will also describe two solution concepts that can be used to solve games.

Games, in general, can be described as a multiagent environment where
each of the agents acts to maximize his expected utility. When choosing an
action in a multiagent environment, one needs to consider the actions of other
agents. The other agents also act in their best self-interest and, by doing so,
affect other agents by changing their utility gain.

2.1 Normal-form games

The most fundamental representation of games in game theory is the normal
form. This representation is very straightforward. All agents in the envi-
ronment choose one action and play it simultaneously. For every possible
outcome of the game, utility rewards are given. We will further use the terms
agent and player interchangeably.
Definition 2.1 (Normal-form game [SLB08]). A (finite, n-person) normal-form
game is a tuple (N,A, u), where:.N is a finite set of n players, indexed by i;. A = A1 × · · · ×An, where Ai is a finite set of actions available to player

i. Each vector a = (a1, . . . , an) ∈ A is called an action profile;. u = (u1, . . . , un) where ui : A 7→ R is a real-valued utility (or payoff)
function for player i.

The normal-form games are usually represented as an n-dimensional payoff
matrix. The available actions of each player are listed in the corresponding
axis of the matrix. The matrix cells represent the possible outcomes with
each player’s utility given in the order of players.

The famous Prisoner’s dilemma is an example of a normal-form game. In
this game, both players have two available actions - cooperate and defect. It
can be represented as a 2× 2 payoff matrix, as shown in Figure 2.1.

3

2. Game Theory.....................................
Player 2

C D

Player 1 C −1,−1 −3, 0
D 0,−3 −2,−2

Figure 2.1: Payoff matrix of the normal-form game Prisoner’s dilemma

We will be focusing on noncooperative normal-form games. In noncoopera-
tive branch of game theory, the agents compete independently against each
other in a competition. The goal of an agent is to maximize his own utility
while taking into account that all other agents are doing exactly the same.

2.1.1 Zero-sum games

We will focus specifically on zero-sum games. These are two-player games, in
which for every possible outcome, the sum of utilities of the two players is
equal to zero:

u1(a1, a2) + u2(a1, a2) = 0 ∀(a1, a2) ∈ A1 ×A2 . (2.1)

This can be expressed also as

u2(a1, a2) = −u1(a1, a2) ∀(a1, a2) ∈ A1 ×A2 . (2.2)

As a result, the goal of maximizing own utility is actually exactly the
same goal as minimizing the utility of the opponent. This also significantly
simplifies the representation of the game because the outcome rewards have
to be specified only for one player. Rewards of the second player can be
computed simply by negating the rewards of the first one.

For the payoff matrix representation of normal-form games, this means
that the sum in each outcome cell is equal to zero. An example of such a
game is a simple game of Matching pennies, shown in Figure 2.2. In this
game, both players choose one side of a coin, either heads or tails, and reveal
their choice simultaneously. If the top side of the coins matches, the first
player wins; otherwise, the second player wins.

Player 2
H T

Player 1 H 1,−1 −1, 1
T −1, 1 1,−1

Figure 2.2: Payoff matrix of the zero-sum game Matching pennies

2.1.2 Strategies

Players in normal-form games follow strategies. The simplest strategy a
player can play is a single action. This is called a pure strategy. If we choose
a single action for each player, we get a pure-strategy profile.

4

..................................2.1. Normal-form games

However, these are not the only strategies the player has available. He can
choose randomly from a set of his available actions according to a probability
distribution. This strategy combined from multiple actions is called a mixed
strategy, and we denote it si. If we choose a mixed strategy for each player,
we get a mixed-strategy profile, denoted s = (si, . . . , sn).
Definition 2.2 (Mixed strategy [SLB08]). Let (N,A, u) be a normal-form
game, and for any set X, let Π(X) be the set of all probability distributions
over X. Then the set of mixed strategies for player i is Si = Π(Ai).

For a given mixed-strategy si ∈ Si, si(ai) denotes the probability that
player i plays an action ai under mixed-strategy si. The elements of Si are
probability distributions. Therefore, it must hold that ∀ai ∈ Ai : si(ai) ≥ 0
and ∑

ai∈Ai si(ai) = 1.
The set of mixed-strategy profiles is a Cartesian product of individual

mixed-strategy sets S = Si × · · · × Sn.
We extend the domain of the utility function u from the set of action

profiles A to the set of mixed-strategy profiles S. For a given mixed-strategy
profile s, the expected utility of player i is

ui(s) =
∑
a∈A

ui(a)
n∏
j=1

sj(aj) . (2.3)

2.1.3 Nash equilibrium

With the terms strategy and strategy profile defined, we can now introduce one
of the most important solution concepts in game theory - Nash equilibrium.
For this, we will need to know what is a player’s best response to a strategy
profile.

If we leave other agents’ actions fixed and only focus on one player i, we
can define his best response to a strategy profile. Assume we have a strategy
profile s−i with all actions except for the one player i defined. Now the
strategy chosen from his set of mixed strategies that would give him the
greatest utility reward is the best response to the strategy profile s−i.
Definition 2.3 (Best response [SLB08]). Player i’s best response to the strategy
profile s−i is a mixed strategy s∗i ∈ Si such that ui(s∗i , s−i) ≥ ui(si, s−i) for
all strategies si ∈ Si.

Now we can use the notion of best response to define Nash equilibrium, a
mixed strategy profile in which every player plays his best response. Assume
we have a mixed-strategy profile s. If for every player i, his strategy in this
profile is his best response to the same profile with his strategy left out s−i,
then this mixed-strategy profile s is a Nash equilibrium.
Definition 2.4 (Nash equilibrium [SLB08]). A strategy profile s = (s1, . . . , sn)
is a Nash equilibrium if, for all agents i, si is a best response to s−i.

In Nash equilibrium, no player would change his strategy because he cannot
gain any utility by doing so. He maximizes his utility by playing the best

5

2. Game Theory.....................................
response. Because of this, Nash equilibria are stable strategy profiles and can
be considered a solution to a noncooperative game.

For the game of Prisoner’s dilemma introduced in Figure 2.1, there exists
only one Nash equilibrium. It occurs when both players choose to defect - a
pure strategy.

On the other hand, the game of Matching pennies from Figure 2.2 does not
have a pure strategy Nash equilibrium. A mixed strategy profile, in which
both players play heads or tails with the probability of 50 %, is the unique
Nash equilibrium of this game.

Finding such equilibria is our goal. Luckily, the Nash theorem tells us that
there exists at least one Nash equilibrium for every game.
Theorem 2.5 (Nash theorem [Nas51]). Every game with a finite number of
players and action profiles has at least one Nash equilibrium.

2.2 Minimax

Finding Nash equilibria of two-player, general-sum games is a very hard
problem - it belongs to a PPAD-complete (Polynomial Parity Arguments
on Directed graphs) complexity class [SLB08]. We are, however, interested
only in two-player, zero-sum games. These can be solved using maximin and
minimax strategies.

2.2.1 Maximin and minimax strategies

For two-player games, we can define a strategy for player 1 that maximizes
his worst-case payoff. He assumes the opponent will play the action that
causes him the most harm and plays the action that maximizes his utility,
given this assumption.
Definition 2.6 (Maximin strategy, two-player [SLB08]). In a two-player game,
the maximin strategy for player 1 against player 2 is

arg max
s1∈S1

min
s2∈S2

u1(s1, s2) ,

and player 1’s maximin value is

max
s1∈S1

min
s2∈S2

u1(s1, s2) .

Analogously, we can define a strategy that minimizes the best outcome of
the opponent:
Definition 2.7 (Minimax strategy, two-player [SLB08]). In a two-player game,
the minimax strategy for player 1 against player 2 is

arg min
s1∈S1

max
s2∈S2

u2(s1, s2) ,

and player 2’s minimax value is

6

..............................2.3. Quantal response equilibrium

min
s1∈S1

max
s2∈S2

u2(s1, s2) .

We also defined the maximin and minimax value of a player. The player’s
maximin and minimax values in two-player games are actually the same:

max
s1∈S1

min
s2∈S2

u1(s1, s2) = min
s2∈S2

max
s1∈S1

u1(s1, s2) . (2.4)

2.2.2 Minimax theorem

Because of the property of two-player, zero-sum games described in Equation
(2.2), the maximin and minimax values of both players in these types of
games actually coincide with Nash equilibrium:
Theorem 2.8 (Minimax theorem [vN28]). In any finite, two-player, zero-sum
game, in any Nash equilibrium each player receives a payoff that is equal to
both his maximin value and his minimax value.

The Nash equilibrium value of two-player, zero-sum, normal-form game,
corresponding to maximin and minimax strategies, can be computed using
linear program:

max
V1,s1

V1 (2.5a)

s.t. V1 ≤
∑
a1∈A1

s1(a1)u(a1, a2) ∀a2 ∈ A2 (2.5b)

∑
a1∈A1

s1(a1) = 1 (2.5c)

s1(a1) ≥ 0 ∀a1 ∈ A1 (2.5d)

This will prove useful for us when solving stage games in the original HSVI
for OS-POGSs algorithm.

2.3 Quantal response equilibrium

Nash equilibrium is an exact solution concept. However, finding the exact
solution to a game might not be necessary for some situations. Sometimes, an
approximative method that is less computationally demanding and offers a
reasonable solution is sufficient. Therefore, we will introduce an approximative
method for solving normal-form games called quantal response equilibrium
(QRE) [MP96].

QRE is a solution concept based on statistical models for quantal choice.
The players choose their strategies based on an estimated expected utility.
Because of this, better responses have a higher probability of being played
than the worse ones. However, the best responses are not certain as with
Nash equilibrium.

7

2. Game Theory.....................................
The method does not approximate Nash equilibrium. Instead, it finds

an equilibrium with bounded rationality - meaning the equilibrium is not
perfectly rational. The equilibrium is based on estimations and therefore is
noisy or imperfect.

The method of finding QRE is an iterative process. We start with some
default estimation of strategies and expected utilities and refine them during
each iteration. We do this until we converge to a fixed point - a quantal
response equilibrium.

2.3.1 Expected utility and error

First, we define some new notations. We will use Ji to denote |Ai|, the
cardinality of a set of available actions for player i. Xi = RJi will denote the
space of possible payoffs for the actions player i might adopt and X = ∏n

i=1Xi.
We define the function u : S 7→ X as

u(s) = (u1(s), . . . , un(s)) , (2.6)

where

uij(s) = ui(aij , s−i) (2.7)

is the expected utility of player i playing action aij ∈ Ai against the
opponents’ mixed strategies from s.

We assume that instead of observing ui, each player observes ui with some
error εi. Specifically, player i observes

ûij = uij + εij , (2.8)

where εi = (εi1, . . . , εiJi) is player i’s error vector. Each εi is distributed
according to a joint distribution with a density function fi(εi), f = (fi, . . . , fn).
f is admissible if the marginal distribution of fi exists for each εij and
E(εi) = 0. We assume that for a given mixed-strategy profile s, player i will
choose an action aij ∈ Ai, for which ûij(s) ≥ ûik(s)∀k = 1, . . . , Ji.

2.3.2 Definition

For any expected payoff x = (x1, . . . , xn), where xi ∈ Xi, and f , we can for
each player i and each his action aij ∈ Ai define the ij-response set Rij ⊆ Xi:

Rij(x) = {εi ∈ Xi | xij + εij ≥ xik + εik ∀k = 1, . . . , Ji} . (2.9)

Given a mixed-strategy profile s, Rij(u(s)) specifies a region of errors,
for which player i chooses the action aij against the profile s. For any
εi ∈ Rij(u(s)), ûij(s) is maximal among his available actions and therefore,
he chooses to play the action aij . Figure 2.3 shows Rij response sets of player
1 for xi = (2, 1) in a game where he has two available actions. Because he
expects more utility from action ai1 (i.e, xi1 > xi2), the boundary between
the two response sets is shifted in favor of action ai1.

8

..............................2.3. Quantal response equilibrium

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

xi

Ri1

Ri2

εi1

ε i
2

Figure 2.3: QRE ij-response sets Ri1 and Ri2 of player i for
xi = (2, 1)

We can then define

σij(x) =
∫
Rij(x)

f(ε)dε (2.10)

as the probability of player i playing the action aij given x. We compute
the integral of errors’ relative likelihood (i.e., f(ε)) over the errors for which
aij is the best available action (given the noisy information).

Finally, we can define QRE as a vector π ∈ S, for which

πij =
∫
Rij(u(π))

f(ε)dε (2.11)

holds for every player i and every action aij .
Definition 2.9 (Quantal response equilibrium [MP96]). Let (N,A, u) be a
normal-form game, and let f be admissible. A Quantal response equilibrium
(QRE) is any π ∈ S such that for all players i and j = 1, . . . , Ji:

πij = σij(u(π)) .

The function σi : Xi 7→ Si is called a quantal response function. It gives
us a probability distribution over actions (i.e., a mixed strategy) given the
expected (noisy) utilities of these actions. The probability of playing an
action is positively related to the payoff from that action. QRE is actually a
fixed point of σ ◦ u. Moreover, the existence of QRE is guaranteed for every
normal-form game.
Theorem 2.10 ([MP96]). For any normal-form game (N,A, u) and admissible
f , there exists a QRE.

9

2. Game Theory.....................................
2.3.3 Logit equilibrium

To be able to compute QRE, we must first specify a density function f for
errors. The most common specification of QRE, and the one proposed in the
original paper [MP96], is the logit equilibrium (LQRE).

LQRE is a parametric class QRE parametrized by λ ≥ 0. We define the
logit quantal response function σi : Xi 7→ Si as

σij(xi) = eλxij∑Ji
k=1 e

λxik
. (2.12)

This corresponds to fi having an extreme value distribution, where the
cumulative density function Fi(εij) = e−e

−λεij and εij ’s are independent. If
we use this distribution fi for each player, we get

πij = eλxij∑Ji
k=1 e

λxik
, (2.13)

where xij = uij(π).

2.3.4 Influence of λ parameter in logit equilibrium

The parameter λ ≥ 0 in LQRE controls the level of error. λ = 0 means that
the observations are full error. This gives us

πij = e0∑Ji
k=1 e

0
= 1
Ji
, (2.14)

which means that the optimal strategy to play is the uniform strategy,
where each action has the same probability of being played.

The higher we set λ, the smaller errors will be used. When λ → ∞, the
logit equilibrium approaches Nash equilibrium. We must, however, be careful
with setting high λs, because eλxij can easily overflow.

We define a simple two-player, zero-sum game to demonstrate the effect
λ has on the LQRE value V . Both players have 4 available actions A, B, C
and D. The utilities are shown in Figure 2.4.

Player 2
A B C D

Player 1

A 3,-3 -3, 3 -3, 3 -3, 3
B -3, 3 -3, 3 3,-3 3,-3
C -3, 3 3,-3 -3, 3 3,-3
D -3, 3 3,-3 3,-3 -3, 3

Figure 2.4: Payoff matrix of the zero-sum game for the demonstration
of the influence of λ on the logit equilibrium

For comparison, we compute the Nash equilibrium strategies and value
V using the maximin linear program from Equation (2.5). The game is
symmetrical. Therefore, both players have the same optimal mixed strategy

10

..............................2.3. Quantal response equilibrium

(0.4, 0.2, 0.2, 0.2). The player 1’s value of the game in Nash equilibrium is
−0.6. If both players adopted uniform strategy (0.25, 0.25, 0.25, 0.25), player
1’s utility would be −0.375.

We also solve this game using logit equilibrium for different values of λ.
The results are shown in Figure 2.5. We can see that for λ ≥ 10, the LQRE
value is very close to Nash equilibrium value, and for very small λ, the value
is close to −0.375.

10−2 10−1 100 101 102

−0.6

−0.55

−0.5

−0.45

−0.4

λ

V

Maximin V
QRE V

Figure 2.5: Influence of λ on logit equilibrium value of a game

2.3.5 Iterative method

As we said, QRE is a fixed point of σ◦u and can be therefore found iteratively.
We simply compute u followed by σ during each iteration until convergence.
We will use the logit equilibrium definition of σ from the previous section.

We start by initializing π(0)
i with the uniform strategy (i.e., π(0)

ij = 1
Ji

for
i = 1, . . . , Ji) for each player i. Each iteration t consists of two steps. First,
for every player i, the expected utilities of his actions x(t)

ij are computed
against the strategies from the previous iteration π(t−1)

−i :

x
(t)
ij = uij(π(t−1)) = ui(aij , π(t−1)

−i) . (2.15)

In the second step, for every player i, the new strategies π′(t)i are computed
from x

(t)
i using σ:

π
′(t)
ij = σij(x(t)

i) = eλx
(t)
ij∑Ji

k=1 e
λx

(t)
ik

. (2.16)

To guarantee a convergence, the new strategy is computed as the cumulative
moving average of all previously seen strategies and the new strategy π′(t)i :

11

2. Game Theory.....................................

π
(t)
i = t · π(t−1)

i + π
′(t)
i

t+ 1 . (2.17)

We repeat these alternate steps until the strategies converge for all players,
i.e., until

π
(t)
i ≈ π

(t−1)
i ∀i = 1, . . . , n . (2.18)

We use some small precision constant εqre (e.g. 10−3) to test for the
approximate equality of the strategies. When the algorithm converges after
t iterations, the logit equilibrium strategy for player i is π∗i = π

(t)
i and the

corresponding QRE value of the game is u(π∗).

12

Chapter 3
HSVI for POMDPs

The heuristic search value iteration algorithm (HSVI) for one-sided partially
observable stochastic games (OS-POSGs) is a modification of HSVI for par-
tially observable Markov decision processes (POMDPs). It is thus reasonable
to first describe the original algorithm.

This chapter introduces Markov decision processes (MDPs) and how we can
solve them using value iteration. Then we are going to describe the partially
observable extension of MDPs - POMDPs. Solving POMDPs only by the
plain value iteration is very inefficient. The solution to this performance issue
is HSVI algorithm, which will be introduced at the end of this chapter.

The definitions of MDPs, POMDPs and value iteration algorithms in this
chapter were taken from [RN09].

3.1 MDPs

Markov decision processes are used for representing and solving sequential
decision problems. These are very similar to games. An agent takes actions
in a sequence in a defined environment, and his goal is to maximize his
expected utility. However, there is one main difference. The environment
is not multiagent. It is not a game, so the only one who can act on the
environment is the single agent.

Moreover, an MDP environment is nondeterministic (i.e, stochastic). This
means that there may be multiple outcomes to a single action taken by the
agent. These outcomes have predefined probabilities given by probability
distributions.

For now, we assume that this environment is fully observable, meaning the
agent always knows in which state he currently is.
Definition 3.1 (Markov decision process [RN09]). A Markov decision process
is a tuple (S,A, T,R), where:. S is a finite set of states, with initial state s0 ∈ S;. A is a finite set of actions the agent can take;. T : S×A×S 7→ [0, 1] is a transition probability function, where T (s′ |s, a)

is the probability of transitioning from state s to state s′ by action a;

13

3. HSVI for POMDPs
. R : S 7→ R is a reward function assigning every state an utility reward.

The agent starts at time t = 0 from the initial state s0. At a given time
t, the agent is in a state st and can choose an action from the finite set of
actions A. After he takes an action at, he gets a reward rt = R(st) and
ends up in a state st+1 sampled from the probability distribution given by
T (st+1 | st, at). By choosing the correct sequence of actions, he is trying to
maximize his accumulated reward. In finite-horizon MDPs, this goes on for a
fixed number of stages. In infinite-horizon MDPs, this goes on forever.

We can also look at MDPs as search trees rooted at the initial state s0.
The agent navigates downward by choosing an action in each node. The
transition probability function T determines the next node (i.e., state) after
taking an action a ∈ A.

3.1.1 Discount factor

We will focus on MDPs with infinite horizon. This means that there is no
limit on the number of stages the process goes through. Because of this, we
need a way of comparing infinite sums of accumulated rewards.

The solution is to use a discount factor γ ∈ (0, 1) that will make future
rewards smaller. Instead of maximizing the simple sum of the rewards, we
will maximize the discounted accumulated reward ∑∞

t=0 γ
trt. As a result, the

agent will prefer the current rewards over the ones he gets in the future.

3.1.2 Policy

Because the environment does not change in time, we can simplify the task
of finding the optimal sequence of actions by finding only the optimal action
for each state s ∈ S. If we know the optimal action for each state, we can
easily use this information to find the optimal sequence.

To describe what action to take in a particular state, we will introduce
the notion of policy. Policy π defines an action to take for each state s ∈ S.
π(s) = a tells us we should take the action a every time we find ourselves in
the state s.

The expected utility of policy π starting in state s is given by

V π(s) = E

[∞∑
t=0

γtrt

]
, (3.1)

where rewards rt were gained when following the policy.
An optimal policy π∗s starting in state s is a policy that maximizes expected

utility:

π∗s = arg max
π

V π(s) . (3.2)

Because the environment does not change in time, the optimal policy π∗ is
actually independent of s. It gives us the optimal action π∗(s) = a for each
state s.

14

...................................... 3.2. POMDPs

3.1.3 Value Iteration

One of the algorithms for finding the optimal policy π∗ is called the value
iteration algorithm. We can rewrite the expected utility from previous section
like this:

V (s) = R(s) + γmax
a∈A

∑
s′∈S

T (s′ | s, a)V (s′) . (3.3)

This is called a Bellman equation. Given that maxa∈A(s) chooses the best
available action a (similarly to an optimal policy π∗), the expected utility
V (s) of state s is the sum of the immediate reward R(s) and the discounted
expected utilities of neighboring states s′ weighted by the probability T (s′ |s, a)
that we end up in them.

Putting together all Bellman equations for n states gives us a system of
n equations with n unknowns. Because of the maxa∈A(s) operation in the
Bellman equations, we have to use iterative methods for solving the system.
The iterative method, in this case, is called the value iteration.

We initialize the values of V (s) to arbitrary numbers. Then in each step,
we compute the left-hand sides V (s) of the equations from the right-hand
sides. After each step, we update the right-hand side of each equation by
plugging in the newly computed value. This step is called the Bellman update,
is applied simultaneously to all states s ∈ S and can be written like this:

Vi+1(s)← R(s) + γmax
a∈A

∑
s′∈S

T (s′ | s, a)Vi(s′) . (3.4)

The value iteration algorithm eventually converges and gives us a unique
solution for the optimal policy π∗. For each state s, the optimal action to
take is the maximal argument of the maxa∈A(s) operation in the final system
of Bellman equations.

3.2 POMDPs

The extension of MDP, where the agent does not know the state he is currently
in, is called the partially observable MDP. In this stochastic environment,
instead of getting the information in which state s′ the agent ends up after
taking an action a, he gets only an observation o from a finite set of obser-
vations O. He can then use this information to deduce the true state (or at
least its distribution).
Definition 3.2 (Partially observable markov decision process [RN09, HBKK20]).
A Partially observable markov decision process is a tuple (S,A,O, T,R),
where:. S is a finite set of states;. A is a finite set of actions the agent can take;. O is a finite set of observations the agent can observe;

15

3. HSVI for POMDPs
. T : S × A × O × S 7→ [0, 1] is a transition probability function, where

T (o, s′ | s, a) is the probability of transitioning from state s to state s′
by taking action a while observing observation o;. R : S × A 7→ R is a reward function, where R(s, a) is an immediate
reward for taking action a in state s.

As we said, the agent does not have to know the true state in each stage of
the game. Instead, the agent keeps internal information telling him which
states he might be in and which are more likely to be the true state. This
estimation concept is called the belief state.

A belief state is a probability distribution over the set of states S. Given a
belief state b, b(s) is the probability that the agent is in state s. Furthermore,
in POMDPs, the agent does not know the initial state. Instead, the agent
starts with an initial belief state b0 information, which gives us the probability
b0(s) that s is an initial state.

The visualization of POMDPs as search trees can still hold as with MDPs.
However, the agent does not know the true state. Instead of representing
states, the nodes will represent belief states, starting with the initial belief b0
at the tree’s root. At each node, the agent chooses an action a ∈ A, receives
an observation o ∈ O, sampled from the transition probability function T ,
and ends up in a new node (i.e., belief state) τ(b, a, o).

Given belief b, action a and observation o, the agent can deduce the next
belief τ(b, a, o) after taking a in s and observing o as

τ(b, a, o)(s′) = η
∑
s∈S

b(s)T (o, s′ | s, a) , (3.5)

where η is a normalizing constant such that ∑
s′∈S τ(b, a, o)(s′) is equal to

1. While taking action at in belief state bt at time t he also gets a reward
rt = ∑

s∈S bt(s)R(s, at).

3.2.1 Policy

Similarly to MDPs, there exists a policy concept for POMDPs, which rec-
ommends when to take which action. However, in POMDPs, the agent does
not know the true state. He only knows the probability distribution given by
the belief state b. Because of this, in POMDPs, the policy π(b) maps from a
belief state to an action.

We can define the expected utility of policy π, starting from a belief state
b, in a similar manner as in MDPs:

V π(b) = E

[∞∑
t=0

γtrt

]
. (3.6)

As in MDPs, the optimal policy π∗ is a policy that maximizes the expected
utility and chooses an optimal action for each belief state.

16

...................................... 3.2. POMDPs

3.2.2 Value Iteration

Like with MDPs, we can rewrite the expected utility in the form of a Bellman
equation - in terms of immediate reward and discounted expected utility
of the subsequent beliefs. This gives us the Bellman update equivalent for
POMDPs. We will use the operator H for the Bellman update:

HV (b) = max
a∈A

[∑
s∈S

b(s)R(s, a) + γ
∑
o∈O

Pb[o | a]V (τ(b, a, o))
]
, (3.7)

where

Pb[o | a] =
∑
s∈S

b(s)
∑
s′∈S

T (o, s′ | s, a) (3.8)

is the probability of observing observation o after taking action a in belief
state b.

This can be also rewritten in terms of the value of taking action a in belief
state b:

QV (b, a) =
∑
s∈S

b(s)R(s, a) + γ
∑
o∈O

Pb[o | a]V (τ(b, a, o)) . (3.9)

The Bellman update H is then the maximum of QV (b, a) over a ∈ A:

HV (b) = max
a∈A

QV (b, a) . (3.10)

Because there is an infinite number of belief states, we cannot use this
representation for value iteration as we did with MDPs. Instead, we will
represent the value function V as a piecewise linear and convex (PWLC)
function composed of a finite set of α-vectors and replace Bellman update
with the operation of computing a new set of α-vectors.

3.2.3 Value function representation

Given n states, the space of all belief states can be seen as n-simplex, with
the n states being its vertices. We denote this simplex by ∆(S). An α-vector
is a linear (affine) function α : ∆(S) 7→ R that assigns a real value to each
belief state b ∈ ∆(S). It is a hyperplane in a (|S| + 1)-dimensional space.
Because it is linear, it can be defined only by values in the vertices of the
∆(S) simplex (i.e., states). Value in arbitrary belief b ∈ ∆(S) can be then
computed as α(b) = ∑

s∈S b(s)α(s) or simply as dot product α · b.
This α-vector can represent an arbitrary fixed strategy. Here, strategy

has the same meaning as in game theory. It can be a pure strategy (i.e.,
single action) or a mixed strategy (i.e., probability distribution over available
actions). However, the strategy is always the same independent of the current
belief b.

The PWLC value function V is then defined by a finite set Γ of α-vectors
(i.e., strategies). For each belief b, we choose the best available fixed strategy

17

3. HSVI for POMDPs
represented by some α. In other words, the value of the value function V in
an arbitrary belief state b is a maximal projection of b onto the set Γ:

V (b) = max
α∈Γ

α(b) . (3.11)

This divides the belief space simplex ∆(S) into regions, for which the
optimal strategy is the same. Below, in Figure 3.1, is an example of a value
function in one-dimensional belief space (i.e., with only two states) composed
of α-vectors. Each α-vector is fully defined by its values in these two states.
The final value in each belief state, i.e., the maximal projection onto the set
of α-vectors, is shown in bold blue line.

We can see that some α-vectors do not contribute to the value function V
(shown in orange dashed line). These α-vectors are said to be dominated. If
more than one vector is needed to dominate a strategy, it is weakly dominated.
If one vector is enough to dominate a strategy, it is called strongly dominated.
Because dominated strategies do not contribute to the value function V , they
can be removed from the set Γ.

b

V

Figure 3.1: Representation of value function composed of α-vectors

The value function can be updated by computing a new set of α-vectors
Γt+1 composed of

α : ∆(S) 7→ R | α(s) = R(s, a) + γ
∑

(o,s′)∈O×S
T (o, s′ | s, a)αo(s′) , (3.12)

for some a ∈ A and αo ∈ Γt, o ∈ O, where αo is a strategy for observation o.
This approach, unfortunately, does not scale well. The number of combinations
between A, Γt and O is too high and grows exponentially. Because of this,
we need to use a different approach that will approximate the PWLC value
function V .

18

.. 3.3. HSVI

3.3 HSVI

Due to the time complexity of the exact value iteration, we cannot compute
the optimal value function V exactly. Instead, we will approximate its value
by two PWLC functions V Γ

LB and V Υ
UB . These two functions will be the lower

bound and the upper bound of the optimal value function V .
We are going to recursively explore the search tree driven by a heuristic

until the gap between the bounds in the initial belief state b0 is smaller than
the predefined precision ε. In each visited belief state, the bounds will be
refined by a point-based update that is derived from the Bellman update H.
These updates will bring the bounds closer together, effectively shrinking the
gap and approximating V .

The original HSVI for POMDPs was introduced by [SS12b]. However, we
are going to present a variant from [HBKK20] with a slightly altered notation.

3.3.1 Bounds’ representation

The α-vector representation works fine for the lower bound V Γ
LB. However,

this representation does not make sense for the upper bound V Υ
UB. We need

the function to be PWLC and to decrease with each point-based update.
Instead, we will use the point set representation.

The upper bound will be represented by a finite set Υ of belief-value pairs
(b, v), where b ∈ ∆(S) and v ∈ R. We can imagine these pairs as points above
(or below for a negative value v) the simplex ∆(S) in (|S|+ 1)-dimensional
space. The value of V Υ

UB(b) in belief state b is computed as a projection of b
onto the convex hull of Υ:

V Υ
UB(b) = min

{
m∑
i=1

λivi | λ ∈ Rm≥0 :
m∑
i=1

λi = 1 ∧
m∑
i=1

λibi = b

}
, (3.13)

where m = |Υ|. This requires solving a linear program.
We also define the width of the gap between V Γ

LB(b) and V Υ
UB(b) in belief b

simply as

width(V (b)) = V Υ
UB(b)− V Γ

LB(b) . (3.14)

There are multiple approaches to the initialization of the bounds. It plays
an important role in the performance of the algorithm. The smaller the initial
gap is, the faster the algorithm will converge to the desired precision.

The easiest way how to initialize the bounds is to use the discounted sum
of the smallest and the largest possible immediate reward:

19

3. HSVI for POMDPs

Rmin = min
(s,a)∈S×A

R(s, a) (3.15)

Rmax = max
(s,a)∈S×A

R(s, a) (3.16)

L =
∞∑
t=1

γtRmin = Rmin
1− γ (3.17)

U =
∞∑
t=1

γtRmax = Rmax
1− γ . (3.18)

These values are then used for the whole belief simplex ∆(S). This can
be achieved by initializing Γ with one α-vector and Υ with a point for each
state s:

Γ = {α | α(s) = L,∀s ∈ S}
Υ = {(s, U) | ∀s ∈ S} .

(3.19)

This sure is a viable initialization of the bounds, but it is not very good.
The L and U are actually the smallest and largest possible value of the game,
respectively. The gap between them is very large in general.

A more suitable way of initializing the upper bound is to initialize it with
the value obtained by solving the same problem as MDP (i.e., with perfect
information). The lower bound can be initialized, for example, by constructing
a lower bound of the strategy ’always play the same single action’:

Ra = min
s∈S

R(s, a)
1− γ , (3.20)

for each action a. We can then easily choose the action for which this lower
bound is the largest:

L′ = max
a∈A

Ra . (3.21)

3.3.2 Point-based updates

We can use the equivalent of Bellman update H for POMDPs from Equation
(3.7) to derive the point-based updates for V Γ

LB and V Υ
UB.

To update the upper bound V Υ
UB in belief state b, we simply compute

HV Γ
LB(b) and add the new value with the belief b into Υ:

Υ = Υ ∪ (b,HV Υ
UB(b)) . (3.22)

The procedure of updating V Γ
LB is more complex. We have to find a new

α-vector that contains the point (b,HV Γ
LB(b)) by Bellman backup operator

20

.. 3.3. HSVI

with the use of gradient information. The point-based update procedure for
both bounds is shown in Algorithm 1.
Algorithm 1: Point-based update(b) of V Γ

LB and V Υ
UB

1 αa,o ← arg maxα∈Γ
∑
s′∈S τ(b, a, o)(s′)α(s′) for all a ∈ A, o ∈ O

2 αa(s)← R(s, a) + γ
∑
o,s′ T (o, s′ | s, a)αa,o(s′) for all s ∈ S, a ∈ A

3 Γ← Γ ∪ {arg maxαa
∑
s∈S b(s)αa(s)}

4 va ←
∑
s∈S b(s)R(s, a) + γ

∑
o∈O Pb[o | a]V Υ

UB(τ(b, a, o))
5 Υ← Υ ∪ {(b,maxa∈A va)}
The point-based update is also demonstrated in Figure 3.2.

b

V

Before point-based update

b

After point-based update

Figure 3.2: Point-based update of V Γ
LB and V Υ

UB

3.3.3 Excess gap

For given belief s and action a, we can combine the definition of QV (b, a)
from Equation (3.9) with the definition of width from Equation (3.14) and
get

width(QV (b, a)) = γ
∑
o∈O

Pb[o | a]width(V (τ(b, a, o)) . (3.23)

We can see that after an update, the width at b is γ-times the sum of
probability-weighted widths at child nodes. Because of this, the termination
condition for exploration depends on the depth of the currently explored
belief b. The deeper we dive into the search tree, the more can we loosen the
requirement on width. We use the inverse of the discount factor γ to loosen
the requirement on the gap each time we progress further in the search tree.
We can express this concept by an excess gap in belief state b at depth t:

excess(b, t) = width(V (b))− εγ−t . (3.24)

In the initial belief b0 at depth t = 0, this is simply the difference between
the current width and the desired precision:

excess(b0, 0) = width(V (b0))− ε . (3.25)

21

3. HSVI for POMDPs
We restart the exploration when the excess gap in the currently explored

belief b is smaller than or equal to zero:

excess(b, t) ≤ 0 , (3.26)

or equivalently

width(V (b)) ≤ εγ−t . (3.27)

3.3.4 Exploration

As we already said, the algorithm recursively explores one path of the search
tree. It does so starting from the initial belief state s0. The nodes to explore
are selected by a heuristic. The heuristic selects an optimal action a∗ and
observation o∗ with an attempt to close the gap between V Γ

LB(b0) and V Υ
UB(b0)

in the initial belief state b0 as fast as possible. When the exploration reaches
a point, where the condition on the width of the gap between the lower bound
and the upper bound is met, it restarts the search from the initial belief s0.

The value of HV Υ
UB(b) is determined by the maximum of QV Υ

UB(b, a) over
a ∈ A. Similarly, the value of HV Γ

LB(b) is determined by the maximum of
QV

Γ
LB (b, a) over a ∈ A. By point-based update, the lower bound can only grow,

and the value of the upper bound can only decrease. It is thus reasonable to
choose as action a∗ the action with maximal QV Υ

UB (b, a).
If we instead choose a suboptimal action a∗ for which QV Γ

LB (b, a) is maximal,
the value of QV Γ

LB (b, a) could only grow. This would make us select the same
action a∗ again the next time we found ourselves in the belief b, never finding
out its suboptimality. On the other hand, choosing a suboptimal action
a∗ = arg maxaQV

Υ
UB(b, a) does not suffer from this problem. The value of

QV
Υ
UB (b, a) will decrease, eventually making us discover the suboptimality of

a∗.
Similar to Equation (3.23), the excess gap can also be rewritten in terms

of the excess gaps of child nodes:

excess(b, t) ≤
∑
o∈O

Pb[o | a∗]excess(τ(b, a∗, o), t+ 1) . (3.28)

To shrink the excess gap at b as fast as possible, we can choose as o∗ the
observation that contributes the most to this sum.

The choice of a∗ and o∗ can be summarized as

a∗ ← arg max
a∈A

[∑
s∈S

b(s)R(s, a) + γ
∑
o∈O

Pb[o | a]V Υ
UB(τ(b, a, o))

]
o∗ ← arg max

o∈O
Pb[o | a∗]excess(τ(b, a∗, o), t+ 1) .

(3.29)

22

.. 3.3. HSVI

3.3.5 Algorithm

We can now summarize the whole HSVI algorithm. The algorithm starts by
initializing the bounds. We repeatedly call the recursive explore procedure
in the initial belief b0. At each depth, we update the bounds using the update
procedure. We also find the optimal action a∗ and observation o∗ with the
exploration heuristic. The algorithm then proceeds with a recursive call to
explore with updated belief τ(b, a∗, o∗). The exploration terminates when
the condition on the excess gap at depth t is met. When the algorithm returns
from the recursive call and folds the exploration, it calls the update procedure
again. The whole algorithm terminates when the excess gap condition is met
in the initial belief b0 at depth 0.
Algorithm 2: HSVI for POMDPs

1 Initialize V Γ
LB and V Υ

UB

2 while excess(b0, 0) > 0 do explore(b0, ε, 0)
3 Procedure explore(b, ε, t)
4 if excess(b, t) ≤ 0 then return
5 update(b)
6 a∗ ←

arg maxa∈A
[∑

s∈S b(s)R(s, a) + γ
∑
o∈O Pb[o | a]V Υ

UB(τ(b, a, o))
]

7 o∗ ← arg maxo∈O Pb[o | a∗]excess(τ(b, a∗, o), t+ 1)
8 explore(τ(b, a∗, o∗), ε, t+ 1)
9 update(b)

23

24

Chapter 4
HSVI for OS-POSGs

As we mentioned, HSVI for OS-POSGs is heavily based on the POMDP
variant. This is possible because we can think of partially observable stochastic
games (POSGs) as a multiagent generalization of POMDPs. We will focus
specifically on one-sided POSGs (OS-POSGs), which are two-player games
where only one side has full information about the game’s current state.

This chapter describes HSVI for OS-POSGs algorithm, which was intro-
duced in [HBP17, HBKK20].

4.1 OS-POSGs

We start by defining the OS-POSGSs and comparing them with the POMDPs.
Definition 4.1 (One-sided partially observable stochastic game [HBKK20]). A
one-sided partially observable stochastic game is a tuple
G = (S,A1, A2, O, T,R) where:. S is a finite set of states;. A1 and A2 are finite set of actions of player 1 and player 2, respectively;. O is a finite set of observations player 1 can observe;. T : S × A1 × A2 × O × S 7→ [0, 1] is a transition probability function,

where T (o, s′ | s, a1, a2) is the probability of transitioning from state s to
state s′ by actions a1 and a2 of player 1 and player 2, respectively, while
observing observation o;. R : S ×A1 ×A2 7→ R is a reward function of player 1, where R(s, a1, a2)
is an immediate reward for taking action a1 in state s while player 2
takes action a2.

Similarly, as with POMDPs, the game starts in an initial state s0 that
is sampled from the initial belief state b0. However, in each stage of the
game, both players choose their actions and play them simultaneously. The
following state, along with the observation, is sampled from the transition
probability function T .

25

4. HSVI for OS-POSGs
If we look at OS-POSGs from the side of player 1, the one which has

imperfect information, we can see the similarities they share with POMDPs.
Player 1 does not know the true state of the game. Instead, he uses a belief
state b, a probability distribution over states s ∈ S, to reason about the game.
He chooses an action in each stage of the game a1 ∈ A1, plays it, and obtains
a reward rt. We will also discount this reward obtained at depth t by γt.
After the game progresses to the next stage, he observes only an observation
o ∈ O and uses this information to update his belief state.

On the other hand, player 2 knows the true state of the game and his
own action a2 ∈ A2 in addition to the information player 1 has. Because we
consider zero-sum games, player 2’s goal is to minimize the reward of player
1.

4.2 HSVI

Because there are now two players, instead of simply choosing the optimal
action as in POMDPs, we will have to solve a two-player game in each stage.
We will now introduce the necessary concepts that are needed for solving a
stage game.

4.2.1 Strategies

For reasoning about actions in a stage game of OS-POSGs, we will use the
same concept of strategy as we introduced for normal-form games in Section
2.1.2. Even though we use π to denote a stage strategy, it is a bit different
concept than policy in POMDPs. While the policy π in POMDPs maps
from belief to a single action, in OS-POSGS, the stage strategy π is a mixed
strategy for a two-player stage game.

The stage strategy of player 1 is a distribution over all his available actions
π1 ∈ Π(A1). Because player 2 knows the true state, his stage strategy is a
mapping from state to a distribution over his actions π2 : S 7→ Π(A2). Due to
the strategy of player 2 being a conditional probability, we will use π2(a2 | s)
notation for it. We can denote Π1 and Π2 the sets of all strategies of player 1
and player 2, respectively.

Using the strategies of both players, the belief state b and the transition
probability function T , we can derive probabilities of different events. We
can express what is the probability of a stage being in state s, players playing
actions a1 and a2, and proceeding to next state s′ while observing o:

Pb,π1,π2 [s, a1, a2, o, s
′] = b(s)π1(a1)π2(a2 | s)T (o, s′ | s, a1, a2) . (4.1)

By marginalizing this probability, we can obtain the probability of player 1
playing action a1 and observing o:

Pb,π1,π2 [a1, o] =
∑

(s,a2,s′)∈S×A2×S
Pb,π1,π2 [s, a1, a2, o, s

′] . (4.2)

26

.. 4.2. HSVI

4.2.2 Belief update

During the exploration phase of HSVI algorithm, we will need to be able to
deduce the new belief in a subsequent stage. Player 1 has the information
about the current belief state b, strategies π1, π2 of both players, his action
a1 and outcome in the form of an observation o. Using this knowledge, the
next belief can be deduced in the following way:

τ(b, π1, π2, a1, o)(s′) = Pb,π1,π2 [s′ | a1, o]

= 1
Pb,π1,π2 [a1, o]

∑
(s,a2)∈S×A2

Pb,π1,π2 [s, a1, a2, o, s
′] . (4.3)

4.2.3 Stage game

Solving a stage game in OS-POSGs is the equivalent of Bellman update H in
POMDPs. Each stage game can be thought of as a separate zero-sum game.
Because of this, we can use the minimax or maximin value introduced in
Section 2.2 to solve them.

Given stage game strategies π1 and π2, we can construct the Bellman
equation for belief b by summing the expected immediate reward and the
discounted future reward:

Vπ1,π2(b) = Eb,π1,π2 [R(s, a1, a2)] + γ
∑

(a1,o)∈A1×O
Pb,π1,π2 [a1, o]V (τ(b, π1, π2, a1, o)) ,

(4.4)
where

Eb,π1,π2 [R(s, a1, a2)] =
∑

(s,a1,a2)∈S×A1×A2

b(s)π1(a1)π2(a2 | s)R(s, a1, a2) . (4.5)

Finding the minimax or maximin value of this Bellman equation over all
strategies π1, π2 solves the game:

HV (b) = max
π1∈Π1

min
π2∈Π2

Vπ1,π2(b)

= min
π2∈Π2

max
π1∈Π1

Vπ1,π2(b).
(4.6)

If the value function V is represented by α-vectors, the Bellman update H
can be solved by a linear program:

27

4. HSVI for OS-POSGs

max
V,π1,α̂,λ̂

∑
s∈S

b(s)V (s) (4.7a)

s.t. V (s) ≤
∑
a1∈A1

π1(a1)R(s, a1, a2) + γ
∑

(a,o,s′)∈A1×O×S
T (o, s′ | s, a1, a2)α̂a1,o(s′)

∀(s, a2) ∈ S ×A2 (4.7b)

α̂a1,o(s′) =
|Γ|∑
i=1

λ̂a1,o
i αi(s′) ∀(a1, o, s

′) ∈ A1 ×O × S (4.7c)

|Γ|∑
i=1

λ̂a1,o
i = π1(a1) ∀(a1, o) ∈ A1 ×O (4.7d)∑

a1∈A1

π1(a1) = 1 (4.7e)

π1(a1) ≥ 0 ∀a1 ∈ A1 (4.7f)
λ̂a1,o
i ≥ 0 ∀(a1, o) ∈ A1 ×O, 1 ≤ i ≤ |Γ| (4.7g)

The dual formulation of this linear program is

min
V,π2,V̂ ,τ̂

V (4.8a)

s.t. V ≥
∑

(s,a2)∈S×A2

π2(s ∧ a2)R(s, a1, a2) + γ
∑
o∈O

V̂ (a1, o)

∀a1 (4.8b)
V̂ (a1, o) ≥

∑
s′∈S

τ̂(b, π1, π2, a1, o)(s′)αi(s′)

∀(a1, o), 1 ≤ i ≤ |Υ| (4.8c)
τ̂(b, π1, π2, a1, o)(s′) =

∑
(s,a2)∈S×A2

T (o, s′ | s, a1, a2)π2(s ∧ a2)

∀(a1, o, s
′) (4.8d)∑

a2∈A2

π2(s ∧ a2) = b(s) ∀s (4.8e)

π2(s ∧ a2) ≥ 0 ∀(s, a2) (4.8f)

To improve the readability of the dual formulation, the strategy of player
2 is used in the form of joint probability. The conditional probability can be
obtained like this:

π2(a2 | s) = π2(s ∧ a2)
b(s) . (4.9)

These versions of linear programs are fine for the α-vector representation
of the value function. For the representation by a set Υ of points, we have to
replace the constraint (4.8c) in the dual formulation, which is responsible for
the value of subgame, by these equations:

28

.. 4.2. HSVI

V̂ (a1, o) =
|Υ|∑
i=1

λa1,o
i vi + δ

∑
s′∈S

∆s′
a1,o ∀(a1, o) ∈ A1 ×O (4.10a)

|Υ|∑
i=1

λa1,o
i bi(s′) = b′a1,o(s

′) ∀(a1, o, s
′) ∈ A1 ×O × S (4.10b)

∆s′
a1,o ≥ b

′
a1,o(s

′)− τ̂(b, π1, π2, a1, o)(s′)
∀(a1, o, s

′) ∈ A1 ×O × S (4.10c)
∆s′
a1,o ≥ τ̂(b, π1, π2, a1, o)(s′)− b′a1,o(s

′)
∀(a1, o, s

′) ∈ A1 ×O × S (4.10d)
|Υ|∑
i=1

λa1,o
i =

∑
s′∈S

τ̂(b, π1, π2, a1, o)(s′) ∀(a1, o) ∈ A1 ×O (4.10e)

λa1,o
i ≥ 0 ∀(a1, o) ∈ A1 ×O, 1 ≤ i ≤ |Υ| (4.10f)

These equations are based on the linear program for computing the value of
the upper bound function (Equation (3.13)). Here, δ := (U − L)/2 denotes a
Lipschitz constant, which makes sure that V Υ

UB is δ-Lipschitz continuous (both
V Γ
LB and V Υ

UB are required to be δ-Lipschitz continuous for the correctness of
the algorithm).

4.2.4 Bounds initialization

Same as with POMDPs, the lower bound V Γ
LB is represented by a finite set

Γ of α-vectors. The upper bound V Υ
UB is represented by a finite set Υ of

belief-value pairs (b, v).
The bounds can be initialized similarly as in the POMDP variant of the

algorithm. Easy, but not very good, initialization is to use the discounted
sum of minimal and maximal immediate rewards L and U for the lower bound
and the upper bound, respectively:

Rmin = min
(s,a1,a2)∈S×A1×A2

R(s, a1, a2) (4.11)

Rmax = max
(s,a1,a2)∈S×A1×A2

R(s, a1, a2) (4.12)

L =
∞∑
t=1

γtRmin = Rmin
1− γ (4.13)

U =
∞∑
t=1

γtRmax = Rmax
1− γ . (4.14)

Better initialization for the upper bound is to solve the perfect information
variant of the game. The lower bound can be initialized by playing a uniform
strategy (i.e., all actions with the same probability) by player 1.

29

4. HSVI for OS-POSGs
4.2.5 Excess gap

We also have to change the way how the excess gap is computed, because of
the influence of player 2:

ρ(0) = ε (4.15)

ρ(t+ 1) = ρ(t)− 2δD
γ

(4.16)

excess(b, t) = width(V (b))− ρ(t) , (4.17)

where D ∈ (0, (1−γ)ε
2δ) is a neighborhood parameter. The role of D is

to ensure that the sequence of widths ρ(t) is monotonically increasing and
unbounded.

4.2.6 Exploration

The exploration heuristic that drives the algorithm through the search tree is
also very similar to the POMDP variant. One difference is that the Bellman
update H cannot select the optimal action a∗ for us. It only selects the
equilibrium strategies πUB1 and πLB2 . We thus select the optimal action a∗
and observation o∗ as the pair that contributes the most to the excess gap at
the initial belief b0:

(a∗1, o∗)← arg max
(a1,o)∈A1×O

Pb,πUB1 ,πLB2
[a1, o]excesst+1(τ(b, πUB1 , πLB2 , a1, o)) . (4.18)

If the excess gap at next belief excesst+1(τ(b, πUB1 , πLB2 , a∗1, o
∗)) is smaller

or equal to zero, we restart the exploration.

4.2.7 Algorithm

The linear programs (4.7) and (4.8) (with (4.10) replacement) solve the stage
game at lines 4 and 5 in the Algorithm 3. They give us the equilibrium
strategy for player 1 πUB1 , the equilibrium strategy for player 2 πLB2 , and
at the same time compute the new α-vector and pair (b, v) for the bounds’
update. The V (s) in the primal (4.7) gives us the values for the new α-
vector and the V in the dual (4.8) is the value v in new pair. The update(b)
procedure adds those values to Γ and Υ, respectively.

When we return from the recursive call to explore, the point-based update
is done once more. Because of this, we must compute new α-vector and pair
(b, v) for the update procedure using the linear programs. This time, however,
we are not interested in the strategies.

30

.. 4.2. HSVI

The whole algorithm is summarized below.
Algorithm 3: HSVI for OS-POSGs [HBKK20]

1 Initialize V Γ
LB and V Υ

UB

2 while excess(b0, 0) > 0 do explore(b0, ε, 0)
3 Procedure explore(b, ε, t)
4 (πLB1 , πLB2)← equilibrium strategy profile in HV Γ

LB(b)
5 (πUB1 , πUB2)← equilibrium strategy profile in HV Υ

UB(b)
6 update(b)
7 (a∗, o∗)← select according to forward exploration heuristic
8 if Pb,πUB1 ,πLB2

[a∗1, o∗] · excesst+1(τ(b, πUB1 , πLB2 , a∗1, o
∗)) > 0 then

9 explore(τ(b, πUB1 , πLB2 , a∗1, o
∗), ε, t+ 1)

10 update(b)

The algorithm has guaranteed convergence:
Theorem 4.2 ([HBKK20]). For any ε > 0 and 0 < D < (1−γ)ε/2δ, Algorithm
3 terminates with V Υ

UB(b0)− V Γ
LB(b0) ≤ ε.

4.2.8 Partitions

Although player 1 does not have perfect information about the game’s current
state, he generally has some sort of limited information. For example, in
pursuit-evasion games we consider, the player always knows his position.
Because of this, it is unnecessary to represent the uncertainty about his
position in the belief state.

This allows us to split the states into disjoint information sets called
partitions. These partitions group together states that player 1 cannot
distinguish. Because he knows the current partition, we can replace the global
belief state b, a probability distribution over all states s ∈ S, with smaller
belief states for each partition. If we are in partition p, belief b ∈ ∆(Sp) is a
probability distribution only over the states of partition p, denoted Sp. We
can also deduce the next partition p′ = T (p, a1, o) using only player 1’s action
a1 and observation o.

This representation significantly improves the performance of the algorithm.
It allows us to split the computation of the optimal value function V to
individual partitions. Each partition holds its own representation of the lower
bound and the upper bound in the form of sets Γ and Υ, respectively.

When computing the linear programs, we do not need to go through all game
states. We can focus only on the immediate rewards of the current partition
and the values in the partitions we might end up in. This dramatically reduces
the size of the linear programs. The quantifications s ∈ S can be replaced
by s ∈ Sp, where Sp is set of states of the current partition p. Furthermore,
since we can deduce the next partition from a1 and o, we can replace the
quantifications (a1, o, s

′) ∈ A1 × O × S by (a1, o, s
′) ∈ A1 × O × Sp′ , where

Sp′ is the set of states of next partition p′ = T (p, a1, o).

31

32

Chapter 5
Approximation methods

Performance and scalability are the main drawbacks of HSVI for OS-POSGs
algorithm. In its current state, the algorithm is inefficient and cannot be
applied to larger games. This chapter introduces two main contributions of
our work that try to solve the performance issue: approximate computation
of the upper bound value function using neural networks and approximate
stage game solution using quantal response equilibrium.

The neural network substitutes the linear program for computing the value
of V Υ

UB and the quantal response equilibrium is used inplace of the minimax
and maximin linear programs that solve the stage games of HSVI. Together
these changes completely eliminate the usage of linear programming from the
exploration phase of the algorithm (it might still be used for bounds initial-
ization). Constructing and solving these linear programs is a computationally
heavy task that slows the original algorithm.

5.1 Upper bound approximation

We start with the approximate computation of the upper bound value func-
tion V Υ

UB. The computation and querying of V Υ
UB is the main performance

bottleneck of HSVI algorithm.

5.1.1 Original representation

As described in Section 3.3.1, the upper bound is represented by a finite set
Υ of belief-value pairs (b, v). The upper bound value in an arbitrary belief
b is computed as a projection onto the lower part of Υ’s convex hull. This
requires solving a linear program corresponding to Equation (3.13). The size
of this linear program depends on the dimensionality of the belief space (i.e.,
number of states) and also on the number of (b, v) pairs in set Υ.

The querying of V Υ
UB(b) is very frequent in the algorithm. It is not computed

directly using the linear program from Equation (3.13). Instead, it is part of
a larger linear program - the dual formulation for solving a stage game using
values from V Υ

UB (Equation (4.8) with replacement from Equation (4.10)).
Stage game is being solved two times at each depth - first, on the way down
the search tree and once more on the way up.

33

5. Approximation methods
Because the bounds are updated after each stage game, upper bound

changes very frequently in different belief states. It is thus not possible to
cache the computed values between individual stage games.

5.1.2 Available alternatives

All these issues mentioned in the previous section call for a faster approxi-
mative representation of the upper bound value function. Some alternatives
to the convex hull approach were introduced for POMDPs and can be also
applied to our problem.

The RTDP-Bel algorithm, presented in [GB98], tries to discretize the belief
space into regions with the same value. This makes the upper bound value
function behave like a piecewise constant function.

Another approach, presented in [Hau00, SS12a], approximates upper bound
using "sawtooth"-shaped function. This method approximates the convex hull
computation by computing a set of simpler convex hulls. For each interior
point (b, v) from Υ, the convex hull of this point and the points belonging to
the vertices of the belief simplex ∆(S) is added to the set. The upper bound
value in an arbitrary belief b is then computed as a minimal projection of b
onto this set.

b

V
Υ U
B

RTDP-Bel

b

convex hull

b

"sawtooth"

Figure 5.1: Comparison of upper bound value function representations

None of these methods seem like a suitable replacement for the convex hull
method. Although they are fast, they are not very accurate approximations.
The comparison of the original convex hull approach with the mentioned
alternatives can be seen in Figure 5.1.

One other approach, presented in [Ša19], is trying to solve the upper bound
approximation issue specifically for HSVI for OS-POSGs algorithm. It uses
the Approximate convex hull algorithm to identify extreme points (i.e., ones
that are crucial for the convex hull) of Υ. Once the subset of extreme points
is identified, the upper bound can be approximated using only this subset,
and nonextreme points can be pruned from Υ. However, this algorithm uses
quadratic programs to identify the extreme points, which is a computationally
demanding task. It has been shown that the performance gain from smaller
set Υ is not enough to compensate for this and the modification actually
worsens the performance of the algorithm.

34

.............................. 5.1. Upper bound approximation

5.1.3 Approximation using neural network

Because we are using partitions to divide the belief space, the domains of
individual partitions’ value functions are significantly smaller. The value
function can be simply seen as a real-valued function in a |Sp|-dimensional
space V : |Sp| 7→ R, where Sp is the set of partition p’s states. By definition,
it also has a convenient shape - it is a piecewise linear and convex (PWLC)
function. On top of that, it is also δ-Lipschitz continuous.

All these properties make the value function, and also its upper bound
V Υ
UB, easy to interpolate. To make the querying of the V Υ

UB fast and at the
same time reasonably precise, we will use an artificial neural network to
approximate its value, i.e., the lower convex hull of Υ. This shifts the primary
computation time from querying to updating because the neural network
will have to be retrained after each point-based update of upper bound. On
the other hand, the querying will be almost instant (only one pass of inputs
through the neural network).

Artificial neural networks are capable of solving large and complex problems
in various fields of artificial intelligence. However, we will use the term in
its purest form - as a simple approximation of a |Sp|-dimensional real-valued
function. Although specific neural network architectures exist that focus on
approximating convex functions (introduced for example in [AXK17]), there
was no need for them so far in our task. Nevertheless, they may considered
in future work as a room for improvement.

A simple neural network composed of densely connected layers, with two
or three hidden ones, and tens of units should be enough to approximate
the upper bound sufficiently. The neural network will be trained on the
belief-value pairs from Υ and will be capable of interpolating the points in
between them.

5.1.4 Pruning

The V Υ
UB is composed of belief-value pairs that represent the value in given

belief. New pairs are added to the set Υ after each update and the bound
improves. This means the size of Υ grows but not all of its elements are
contributing to the value of V Υ

UB. These elements are said to be dominated
and can be pruned from Υ.

Similarly, Γ also contains some dominated α-vectors. Pruning can be used,
in general, for both bounds to reduce the size of sets Γ and Υ and the improve
the performance of the algorithm. However, leaving dominated elements in
the sets does not spoil the correctness of the original HSVI algorithm.

On the other hand, the pruning of upper bound is crucial for the approxi-
mation using the neural network. If, for example, we would leave in Υ two
belief-value pairs with the same belief b but different values, an accurate ap-
proximation using the neural network would be impossible. In this situation,
the neural network would, in general, learn to return mean of the two values.
However, the correct value is the lower one from those two. This makes the
pruning of Υ a must for the neural network approximation.

35

5. Approximation methods
There are many ways how can we determine which points in Υ are domi-

nated and which are not. However, the pruning must not be computationally
demanding, otherwise the performance gain from the approximation would
be diminished. Therefore, we chose a simple method that, for each point
from Υ, prunes its neighborhood of a predefined size εprune induced by the
maximum norm ‖ · ‖∞ (i.e., a hypercube).

Before adding a new belief-value pair (b, v) into Υ, the εprune-neighborhood
of b is checked. If

∃(bi, vi) ∈ Υ : ‖bi − b‖∞ < εprune ∧ vi ≥ v , (5.1)

then the new pair (b, v) is not added to Υ. If, for some pair (bi, vi) ∈ Υ,
‖bi−b‖∞ < εprune but the new value is larger, then the new pair (b, v) is added
and the old one (bi, vi) is removed. If no point from Υ shares neighborhood
with the new one, it is also added. This procedure makes sure that the
situation of having two pairs with the same belief and different values cannot
occur.

5.1.5 Implementation details

Each partition p has its own neural network to approximate V Υ
UB in its belief

space ∆(Sp). This neural network is composed of densely connected layers
with a small number of units and a sigmoid nonlinear activation function σ.
The input layer has |Sp| units and it takes a belief b ∈ ∆(Sp) as an input. The
last dense layer functions as an output layer and consists only of one unit with
no activation function. The output of the neural network is approximation of
upper bound value in belief b, i.e., V Υ

UB(b).
The neural network is trained on batches sampled uniformly with replace-

ment from the set Υ. Beliefs from Υ are the training inputs and the values
are the gold data. Mean squared error (MSE) is used as a loss function, and
it is minimized by the Adam optimizer. We do not train for a fixed number
of epochs. Instead, the training continues until the MSE evaluated on the
Υ is lower than a predefined target loss. The training runs after the upper
bound initialization and also after each point-based update (assuming the Υ
has changed, see the previous Section 5.1.4).

Various hyperparameters’ settings are discussed and evaluated in the Ex-
perimental evaluation Chapter 6.

5.1.6 Method drawback

One main drawback of this approach is that the function learned by the
neural network does not have to be convex. If there are not enough points in
the Υ, the resulting approximation might not follow the convex hull precisely.
It may happen that the neural network will learn to include points that do
no longer belong to the convex hull of Υ but were not removed by the simple
pruning method.

36

......................... 5.2. Stage game equilibrium approximation

The situation is demonstrated in one-dimensional belief space in Figure
5.2. The convex hull of upper bound is shown in blue and its neural network
approximation is shown in orange. The individual beliefs of Υ are far away
from each other, so they do not share an εprune-neighborhood. This means
that no point is pruned from the Υ. The point in the middle is used for
the training of the neural network, even though it does not belong to the
convex hull of Υ (i.e., it is dominated). The gray area shows where the neural
network approximation deviates from the convex hull. The difference is most
noticeable just in the close neighborhood of the dominated point.

b

V
Υ U
B

Figure 5.2: Neural network approximating convex hull imprecisely

However, we do not believe that this issue would make this approximation
method unusable. It might slow the convergence, but it should not skew the
results of the algorithm. Given how the heuristic of HSVI algorithm works,
the exploration should be navigated to such problematic beliefs because they
will have, in general, a larger excess gap. This means that such concave
regions will be smoothed over time, and the shape of the approximation will
be corrected.

5.2 Stage game equilibrium approximation

Our second contribution and modification of HSVI algorithm is approximating
stage game solution using a bounded-rational equilibrium. The modification of
stage game solution goes hand-in-hand with the upper bound approximation
introduced in previous section. Integrating these changes together is easier
and might even give better results.

5.2.1 Problem of using neural network with minimax

Solving a stage game in the original HSVI for OS-POSGs (i.e., making a
Bellman update H) is done by finding the minimax and maximin strategies
introduced in Section 2.2. These strategies correspond to a Nash equilibrium

37

5. Approximation methods
and are found using linear programming (Section 4.2.3). Because these
strategies are computed as exact best responses, they might be a strict
optima for the given values of bounds.

By using a neural network to approximate the upper bound, the upper
bound is no longer guaranteed to have the properties of a value function. The
approximate value function obtained from the neural network is not piecewise
linear and convex, in general. Moreover, it does not have to be δ-Lipschitz
continuous. We must consider that, in general, value in an arbitrary belief is
imprecise by a nonnegligible value.

This prevents us from using exact Nash equilibrium computed using linear
programming because it relies on the bounds to be exact. A small imprecision
in the upper bound value approximation might cause great deviation of the
best-response strategies. Because of this, we will use a different approach
to stage game solving in HSVI, which will not be affected by the imprecise
approximation of the upper bound.

5.2.2 Stage game quantal response equilibrium

The solution to this problem is to use a solution concept with bounded
rationality for the stage games. We will use the quantal response equilibrium
introduced in Section 2.3. It is a solution concept that uses estimations of
utilities and strategies to find a bounded-rational equilibrium. Therefore, it
will work even with the imprecise upper bound approximation. The lower
bound stage game will be also solved by the QRE.

We will use the logit equilibrium parametric class, with σi : Xi 7→ Π(Ai)
defined as

σij(xi) = eλxij∑Ji
k=1 e

λxik
. (5.2)

This will allow us to control the outcome of stage game solution. The higher
λ we use, the closer to Nash equilibrium will be the found strategies. By
setting lower λ, we can make the resulting strategies more randomized. This
can help us to introduce some nondeterminism to the exploration heuristic.
This randomization can help the algorithm to unstuck from a dead end,
caused by the imprecision in approximation.

Furthermore, we will be able to control the convergence of QRE to a fixed
point by limiting the number of iterations or setting the desired convergence
precision. This can be used to make a trade-off between performance and
accuraccy.

5.2.3 Expected utility of an action

The implementation of logit equilibrium is not so straightforward in our case.
Two major obstacles make the adaptation of QRE to HSVI stage game a
harder task than applying it to normal-form game.

38

......................... 5.2. Stage game equilibrium approximation

First, the strategy of player 2 is conditioned by the true state (which player
2 knows). While player 1 has strategy π1 for the belief state b ∈ ∆(Sp), player
2 has a different strategy π2(· | s) for each state s ∈ Sp.

The second obstacle is that the computation of expected utility u of some
action given opponent’s strategy is much more complex. The expected utility
of an action is composed of the immediate reward and the discounted value
of subsequent beliefs. Both of these values must be further weighted by the
belief and the probability of opponent’s action. The subsequent values are
also weighted by the transition’s probability.

We will use u1,a1(π2) to denote the expected utility of player 1’s action a1
against player 2’s strategy π2. u2,a2(π1 | s) denotes the expected utility of
player 2 playing action a2 in state s against strategy π1 of player 1.

The immediate reward part of u can be computed as

uimm1,a1 (π2) =
∑

(s,a2)∈Sp×A2

b(s)π2(a2 | s)R(s, a1, a2) (5.3a)

uimm2,a2 (π1 | s) = −
∑
a1∈A1

π1(a1)R(s, a1, a2) . (5.3b)

The part of u with subsequent values is more complex. As mentioned
in Section 4.2.8, given a partition p, we can deduce the the next partition
p′ using action a1 and observation o: p′ = T (p, a1, o). Therefore, for each
possible (a1, o) pair, we compute the subsequent belief in partition p′ and its
value. Then we sum those values weighted by the probabilities that the game
progresses in corresponding partition:

usub1,a1(π2) =
∑
o∈O

Pb,a1,π2 [a1, o]V (τ(b, a1, π2, a1, o)) (5.4a)

usub2,a2(π1 | s) = −
∑

(a1,o)∈A1×O
Ps,π1,a2 [a1, o]V (τ(s, π1, a2, a1, o)) , (5.4b)

where

Pb,a1,π2 [a1, o] =
∑

(s,a2,s′)∈Sp×A2×Sp′

b(s)π2(a2 | s)T (o, s′ | s, a1, a2) (5.5a)

Ps,π1,a2 [a1, o] =
∑
s′∈Sp′

π1(a1)T (o, s′ | s, a1, a2) (5.5b)

and

τ(b, a1, π2, a1, o)(s′) =

= 1
Pb,a1,π2 [a1, o]

∑
(s,a2)∈Sp×A2

b(s)π2(a2 | s)T (o, s′ | s, a1, a2) (5.6a)

τ(s, π1, a2, a1, o)(s′) = 1
Ps,π1,a2 [a1, o]

π1(a1)T (o, s′ | s, a1, a2) . (5.6b)

39

5. Approximation methods
These equations are very similar to Equations (4.5), (4.2) and (4.3). How-

ever, the probabilities π1(a1) for player 1 and b(s)π2(a2 | s) for player 2 were
left out. This can be done because they are equal to 1 due to the fact that
we compute u1,a1(π2) for specific a1 and u2,s,a2(π1) for specific s and s2.

The expected utilities u are then simply

u1,a1(π2) = uimm1,a1 (π2) + γusub1,a1(π2) (5.7a)
u2,a2(π1 | s) = uimm2,a2 (π1 | s) + γusub2,a2(π1 | s) . (5.7b)

5.2.4 Implementation details

Having defined the expected utility u for OS-POSGs, we can compute stage
game QRE similarly to how we did for normal-form games in Section 2.3.5.

The major difference is that the computation of player 2’s strategy π2 in
the second step of the QRE iterative method must be done for each state
separately. This is due to the fact that π2 is a conditional probability and
π2(· | s) for each s ∈ Sp must be a probability distribution.

x
(t)
2,a2(s) = u2,a2(π(t−1)

1 | s) ∀s ∈ Sp (5.8a)

π
′(t)
2 (a2 | s) = e

λx
(t)
2,a2

(s)∑
a2∈A2 e

λx
(t)
2,a2

(s)
∀s ∈ Sp (5.8b)

π
(t)
2 (a2 | s) = t · π(t−1)

2 (a2 | s) + π
′(t)
2 (a2 | s)

t+ 1 ∀s ∈ Sp (5.8c)

The convergence to a fixed-point of strategies is tested using a small
precision constant εqre (e.g. 10−3). Strategies are considered equal if their
maximum norm ‖ · ‖∞ is smaller than εqre. The strategies of player 2 are
tested for each state separately.

This iterative method is used for both lower bound V Γ
LB and upper bound

V Υ
UB. For the upper bound point-based update, the value of stage game
HV Υ

UB(b) corresponding to the QRE strategies is computed using the Bellman
Equation (4.4). The computation of corresponding α-vector for lower bound
point-based update is based on the Bellman equation. Since the α-vector
is defined by its values in the vertices of the belief simplex ∆(Sp), we can
construct it by computing

Vπ1,π2(s) = Es,π1,π2 [R(s, a1, a2)] + γ
∑

(a1,o)∈A1×O
Ps,π1,π2 [a1, o]V (τ(s, π1, π2, a1, o))

(5.9)
for each state s ∈ Sp.

40

......................... 5.2. Stage game equilibrium approximation

5.2.5 Modification of exploration heuristic

The original algorithm has guaranteed convergence (see Theorem 4.2). Be-
cause of imprecision, caused both by upper bound approximation and stage
game equilibrium approximation, this guarantee no longer holds. The modi-
fied algorithm can (especially in advanced stages of the algorithm) reach a
point, where it stagnates and stops converging. In such situation, the explo-
ration heuristic navigates the algorithm in such a way that the explorations
made do not improve the bounds.

We believe that by introducing some nondeterminism to the exploration
heuristic, we can avoid such convergence plateaus. We do this by modifying
the original exploration heuristic from Equation (4.18). Instead of choosing
(a∗1, o∗) as the action and observation, for which the weighted excess gap at
next stage is the largest, we will exploit a property of QRE strategies.

The QRE strategies correspond to a bounded-rational equilibrium and
are computed as cumulative moving average, starting from uniform strategy.
Because of this, QRE strategy asssigns a nonzero probability to each action.
We use this to sample the action a∗1 randomly according to categorical
probability distribution induced by player 1’s QRE strategy πUB1 from upper
bound stage game. The observation o∗ is then selected according to the
weighted excess gap.

a∗1 ← p(a∗1 = a1) = πUB1 (a1) (5.10a)
o∗1 ← arg max

o∈O
Pb,πUB1 ,πLB2

[a∗1, o] · excesst+1(τ(b, πUB1 , πLB2 , a∗1, o)) (5.10b)

Using this modified exploration heuristic, each action has a nontrivial
probability of being selected for next stage.

41

42

Chapter 6
Experimental evaluation

We have described the original HSVI for OS-POSGs algorithm thoroughly
and also introduced our modifications of the algorithm. In this chapter, we
are going to compare the original algorithm with our modified version on
number of experimental games. The methods we used to modify the algorithm
require setting some number of parameters. Therefore, we will also try to
find out, which parameters work the best for the upper bound neural network
approximation and also the stage game quantal response equilibrium.

6.1 Games

The class of OS-POSGs can be used to model many real life security and
cybersecurity problems. Therefore, we will test and compare versions of the
HSVI algorithm on such problems. All games presented were taken from
[HBP17].

6.1.1 Representation

The games are defined using Definition 4.1 with some minor alterations. First,
for each state, a partition, to which the state belongs, is given. This allows
us to split the belief space into smaller parts and improve dramatically the
performance of the algorithm. Furthermore, each game has initial partition
p0 and initial belief b0 specified. Because we solve the games with infinite
horizon, we also need a discount factor γ ∈ (0, 1).

We also limit the available actions a player can take according to current
state of the game. For each state, we define a subset of actions available
to player 2. Player 1 has a subset of available actions specified for each
partition. This can be done by defining the transition function T only for
combinations of (s, a1, a2) that are possible given these subsets. Similarly,
the reward function R is specified only for possible combinations.

Each game can be described using number of states |S|, number of partitions
|P |, number of player 1’s actions |A1|, number of player 2’s actions |A2|,
number of observations |O|, number of transitions |T |, number of rewards |R|
and discount factor γ.

43

6. Experimental evaluation
6.1.2 Pursuit-evasion games

Our main set of games for evaluating the performance of the algorithm consists
of 6 pursuit-evasion games. In pursuit-evasion games, agents navigate in a
grid environment, being able to move into adjacent cells. However, moves are
not defined for every pair of adjacent cells.

A team of pursuers, controlled by player 1, is trying to find and capture
the single evader, which is controlled by player 2. The evader has a full
information about the state of the game, while the pursuers do not know the
location of the evader. The game ends when the evader is located on the same
cell as one of the pursuers (i.e., he is captured). In such case, player 1 receives
utility of 95 and player 2 corresponding penalty of -95. Other transitions
have zero utility for both players.

game |S| |P | |A1| |A2| |O| |T | |R| γ

peg03.posg 143 21 145 13 2 2 671 2 671 0.95
peg04.posg 363 37 290 18 2 8 123 8 123 0.95
peg05.posg 731 57 485 23 2 18 335 18 335 0.95
peg06.posg 1 299 82 730 28 2 34 807 34 807 0.95
peg07.posg 2 093 111 1 025 33 2 59 039 59 039 0.95
peg08.posg 3 171 145 1 370 38 2 92 531 92 531 0.95

Table 6.1: Set of pursuit-evasion games

The descriptions of the 6 pursuit-evasion games of gradually increasing
sizes are shown in Table 6.1. We consider only games where the team of
pursuers has 2 members. The number in the name of pursuit-evasion games
corresponds to the width of the grid. For all games presented, the grid is 3
cells high. An initial grid environment for the peg05.posg game is show in
Figure 6.1. Pursuers always start in bottom-left corner and the evader starts
in the top-right corner.

P

P

E

Figure 6.1: Initial state of the peg05.posg game

6.2 Implementation

The original HSVI for OS-POSGs algorithm from [HBP17] was written in
C++. The implementation was heavily optimized and very hard to extend
or modify. Furthermore, C++ does not have a suitable user-friendly machine

44

..................................... 6.3. Parameters

learning library that was needed for the upper bound approximation method.
Therefore, we decided to rewrite the algorithm on our own in more higher-level
language with better package ecosystem.

6.2.1 Julia

Julia [BEKS17] was chosen as the language of choice for our new implemen-
tation. Although Julia is relatively young language, it has great ecosystem of
packages and it is easy to work with, while still being highly performant.

First we have rewritten the original algorithm, including the minimax
and maximin linear programs for HSVI stage game, bounds representation,
exploration heuristic and the described bounds’ initialization methods. We
have also written our own parser for the game definition files.

Then we added our contributions to the module: the approximation of
upper bound using neural network and the approximation of HSVI stage
game using quantal response equilibrium.

6.2.2 Libraries

In our implementation, we utilized couple of libraries from the Julia package
ecosystem.

First, we needed a performant library that would be able to solve stage
game linear programs from the original algorithm. For this, we used JuMP
[DHL17], a modeling language for mathematical optimization that supports
many backend solvers. We chose the commercial CPLEX [IBM20] as the
solver of linear programs, which was tied together with JuMP using CPLEX.jl
wrapper package.

Furthermore, we needed a machine learning library capable of constructing
and training neural networks for upper bound approximation. Flux [ISF+18]
was used for this purpose. It provides all the machine learning tools we
needed.

6.3 Parameters

The original HSVI algorithm has several parameters that influence its behavior.
Both our modifications also introduced some new parameters that have impact
on the results. Some of them are required to be set to reasonably in order for
the algorithm to converge to correct results and do not have much impact on
the speed. Other parameters are used to make a trade-off between performance
and precision.

6.3.1 Shared parameters

Some parameters are shared by both the original HSVI and our modified
version. These come mostly from the original algorithm and methods used
for bounds initialization. We set them to the same value for all algorithm
configurations.

45

6. Experimental evaluation
εtarget - target precision of the algorithm

The desired precision with which we would like to solve the game. It is
also used for the excess gap calculations. We used εtarget = 0.01 for all
experiments. Because we use normalization of utilities (see normalize utilities
below) for every game, the resulting values of those games are relatively low.
Therefore, the required precision of 0.01 seemed as a reasonable goal that
would be achievable for most of the games.

δpresolve - initialization convergence delta

Initialization methods of both upper bound and lower bound are iterative
algorithms. The initialization phase is terminated when change of value in
all states is smaller than δpresolve between following iteartions. The used
initialization methods are quite simple and fast. Because of this, we can use
rather small value for δpresolve. We used δpresolve = 0.0001 for both upper
bound and lower bound initialization.

Tpresolve - initialization time limit

The initialization phase might not convergence to the desired precision or
it might take a lot of iterations. Tpresolve is used to make sure that the
initialization of bounds does not last too long. We used time limit of 5 min
for both bounds individually. This is still reasonably small value compared
to the running time of the whole algorithm and the starting position plays
large role in the performance of the algorithm.

Rnorm - normalize utilities

The codomain of reward function R(s, a1, a2) is not constrained in any way.
This means that transitions can have arbitrary utility values. Therefore, we
normalized the utilities of all games so that they all fall into interval [0, 1].

D - neighborhood parameter

The neighborhood parameter D ensures that the sequence of widths ρ(t) is
monotonically increasing and unbounded. It is required to be between values
0 and (1−γ)ε

2δ , in order for the convergence guarantees of the original algorithm
to hold. The value of neighborhood parameter D is more or less given by its
definition. We set D = 10−6 for all games.

6.3.2 Neural network parameters

Our first modification to the original algorithm has five parameteres. They
define the shape of neural networks for upper bound approximation and also
the way we are training them.

46

..................................... 6.3. Parameters

Some of the parameters of the neural networks were set to the same values
across the different configurations. The choice of values for these parameters
was based on the values generally used in the machine learning community.

B - batch size

The size of the uniformly sampled set of Υ points on which the neural network
is trained during one epoch. We did not see much effect when changing values
of batch size and set it to 128 for all configurations.

η - learning rate

The learning rate used for the Adam optimizer during gradient descent. We
tried couple of values for the learning rate of Adam optimizer. For value of
0.01 the training of neural networks seemed to be faster than when using
Adam’s default value of 0.001.

Below is the rest of the neural network upper bound approximation param-
eters. These were used to create different configurations of the algorithm.

MSEtarget - target MSE loss

The target mean squared error loss of the neural network on Υ. We do
not train the neural networks for fixed number of epochs. Instead, we train
them until they reach the desired loss. Setting small target loss may extend
significantly the learning time and in some situations extremely small target
loss might not be achievable. We used 0.0001 as a default and also tried
values of 0.01 and 10−6.

NNlayers - neural network layers’ configuration

The number of neural network’s dense layers and their units. We used only
densely connected layers with sigmoid activation function σ. We tested two
configurations with two hidden layers and one with three hidden layers (32-16,
16-8 or 32-16-8). The 32-16 configuration was used as a default.

The belief space of partitions is not large. If we divide the number of
states by the number of partitions, we can see that the typical dimensionality
of partition’s belief space ranges roughly from 7 for peg03.posg to 22 for
peg08.posg. Therefore, the configuration of the neural network does not have
to be much complicated. Similarly to target loss, setting small number of
layers and units might make the neural network unable to learn the upper
bound shape.

εprune - upper bound pruning precision

Precision used during the upper bound pruning when searching for close beliefs.
The neighborhood is induced by the maximum norm, i.e., ‖ · ‖∞ < εprune. By
setting different values for the upper bound pruning neighborhood, we can

47

6. Experimental evaluation
control the precision of the approximation and also the size of Υ. Setting
higher values should prune Υ more dramatically. We started with default
value of 0.01 and also experimented with 0.1 and 0.001.

6.3.3 Quantal response equilibrium parameters

Our modification to the stage game solving phase of HSVI also has parameters
that affect its behavior. They control how close will be the bounded-rational
equilibrium to the strict Nash equilibrium.

λqre - logit equilibrium parameter

Logit equilibrium parameter that controls the level of error. The higher λ is
set, the closer is computed LQRE to the exact Nash equilibrium. However,
setting it to large values might cause the logit equilibrium computation to
overflow. We used value 100 as a default and also tried values of 10 and 500.

εqre and Tqre - quantal response equilibrium convergence
parameters

These parameters control how many iterations it takes to compute the quantal
response equilibrium. We change them together, because achieving better
precision takes more iterations. By setting these parameters we control the
trade-off between performance and precision of the equilibrium approximation.
We tried values 0.1, 0.01 and 0.001 for εqre and 10, 100 and 1000 for Tqre,
respectively. The εqre = 0.01 and corresponding limit of 100 iterations were
used as a default.

6.4 Experiments

In this section, we present the experiments we made to test our modifications
to the HSVI algorithm. First, we try to find values for the mentioned
parameters that work reasonably well. Then, we compare the performance
with both C++ and Julia implementations of the original algorithm. We also
test for robustness and scalability of the approximation methods.

6.4.1 Environment

Both implementations are single-threaded. Majority of experiments, with the
exception of C++ ones, were run on MetaCentrum computational grid on
nodes with Intel® Xeon® Gold 6130 CPU @ 2.10GHz. The C++ experiments
were run on our own machine utilizing AMD Ryzen™ 5 1600 (AF) @ 3.20GHz.

We use the C++ implementation only for reference and also to make sure
that our reimplementation of the original algorithm works correctly. Given
that the implementations are written in different languages and the C++ one
is heavily optimized, we do not make any conclusion from comparison of their
running times.

48

..................................... 6.4. Experiments

The convergence of the algorithm tends to slow down dramatically when
the gap between bounds approaches smaller values and single run might take
hours for larger games. Because of this, we run the individual experiments
with a limit of one hour. If the algorithm was not able to solve the game with
desired precision under one hour, we terminate it and record the achieved
gap.

6.4.2 Recorded values

To be able to compare the algorithms and their configurations, we record
several values as a result of each algorithm run. The most important values
are the values of lower bound and upper bound in initial belief, i.e., V Γ

LB(b0)
and V Υ

UB(b0). Together these values also give us the final excess gap in initial
belief width(V (b0)), which tells us if the algorithm reached desired precision
εtarget. We are also interested in the running time of the algorithm, which we
use to evaluate its performance. If the algorithm reaches the one-hour time
limit, we record the achieved excess gap after one hour.

Furthermore, we store sizes of sets Γ and Υ. Because we use partitions, the
sizes are computed for each partition individually and then summed. These
values can give us an comparison of algorithms in terms of computational
memory consumption. They also tell us how effective is the pruning method
we used. Smaller sets should yield faster algorithm, in general.

In addition to these final values recorded at the end of the run, we also store
interim results after each exploration. We are interested in the same values
as mentioned above, i.e., V Γ

LB(b0), V Υ
UB(b0), width(V (b0)), |Γ| and |Υ|. The

depth of the exploration is also added to those values, because together with
the total number of explorations it can be used to evaluate the exploration
heuristic. With each set of interim results, we also include the timestamp at
which the values were achieved. This can be used to see how the algorithm
behaves in time.

6.4.3 Parameters evaluation

Our modifications to the HSVI algorithm have several parameters that have
an impact on how the algorithm behaves. Because there is a larger number of
them, running a grid search above them and testing all possible combinations
is impossible. Therefore, we manually tested number of values for the pa-
rameters, observing the behavior of the algorithm, and defined a reasonable
default value for each parameter. For some parameters, we also defined a
set of possible alternative values. The choice of both default and alternative
values is described in Section 6.3.

We then ran the experiments on all 6 pursuit-evasion games, changing
values of these parameters one by one using the default parameters as a
starting point. This gave us 11 different configurations. The individual
configurations and the results of those experiments can be seen in Appendix
A. From these 11 configurations, we have chosen three for further detailed
evaluation, in which each configuration was tested multiple times on each

49

6. Experimental evaluation
game. The process of selecting the top three configurations is summarized
below.

Some configurations had negative results and therefore were not considered
for the detailed evaluation. They either converged much slower than other
configurations or arrived at incorrect results. One of them is the Hsvi1
configuration with λqre = 10, which had trouble converging even for the
small games and the resulting value of the game was very imprecise. Other
configuration that we dropped was Hsvi9 with MSEtarget = 0.01. This
configuration was fast, but unable to learn the correct value of upper bound
due to the small target loss. The Hsvi10 configuration with εqre = 0.1 and
Tqre = 10 also approximated the value imprecisely and therefore was not
selected. The smaller number of iterations and high convergence constant
made the QRE iterative method not convergence to reasonable strategies.

Setting the target loss MSEtarget to 10−6 in Hsvi3 configuration did not
make the approximation significantly more precision than other configurations.
For larger games, the configuration was not fast enough because it had to
train for a longer time to achieve the small target loss. Therefore, we did
not use it for the detailed evaluation either. Similarly, the Hsvi8 with one
added layer was a bit slower. Its value approximation, however, was not more
precise and so it was not used either. Increasing the λqre to 500 in Hsvi11
configuration made the resulting approximated value significantly higher than
the correct one in all games. For that reason, we did not include it in further
experiments.

All other configurations had good results. Some of them behaved very
similarly, so we choose only three of them for the detailed experimental
evaluation. The first variant, Hsvi6=A, is the one with default parameters.
The second variant, Hsvi2=B, has εqre = 0.001 and Tqre = 1000. It was
slower on all games compared to the default configuration. However, on
games, where it managed to converge in time limit, it approximated the
value of the game more precisely. The third and last variant we considered,
Hsvi7=C, has εprune set to 0.1. This makes the pruning of the upper bound
Υ more aggressive. As a result, |Υ| is smaller and the upper bound might be
approximated in a slightly different way.

6.4.4 Robustness, performance and scalability evaluation

Having defined a smaller set of configurations to run, we were able to test them
more thoroughly. Because the modifications we made are nondeterministic,
each run on the same game is different (assuming different seed for the random
number generator). Especially the modification of the exploration heuristic, in
which the action of player 1 for the next stage is sampled randomly according
to QRE strategy πUB1 , introduces a lot of randomization to the algorithm.

To evaluate the robustness of the modified algorithm, we have run each of
the three configurations 10 times for each game. The values reported in tables
below are then computed as a mean over these 10 runs. We also include
the standard error of the mean (SEM) for each value. The values acquired

50

..................................... 6.4. Experiments

from the original algorithm for both C++ and Julia implementation are also
shown in the results for comparison.

peg03.posg

The smallest of the pursuit-evasion games takes only tens of seconds to solve.
The first important observation to mention is that our reimplementation of
the original algorithm in Julia works correctly. Even though it takes more
time to reach the desired precision, the final computed values of bounds are
almost the same as for the C++ implementation. This also applies to larger
games, if the algorithm manages to converge under one hour.

time[s] V Γ
LB V Υ

UB width |Γ| |Υ| expl.

HsviC++ 5 0.8319 0.8410 0.0092 189 322 22
HsviJulia 33 0.8317 0.8404 0.0087 529 651 12

HsviA
37 0.8254 0.8316 0.0062 356 300 10
±2 ±0.0008 ±0.0012 ±0.0010 ±32 ±14 ±2

HsviB
55 0.8298 0.8363 0.0065 337 284 12
±3 ±0.0010 ±0.0016 ±0.0011 ±27 ±12 ±2

HsviC
38 0.8249 0.8322 0.0073 394 249 41
±2 ±0.0011 ±0.0014 ±0.0007 ±78 ±11 ±29

Table 6.2: peg03.posg results

After the initialization of bounds, the neural networks of individual parti-
tions have to learn the shape of the upper bound. For smaller game, such
as peg03.posg, this stage may took larger part of the whole running time
of the algorithm. This means that the original algorithm, which starts the
explorations right after the initialization, has a slight head start over the
modified algorithm. This may be the reason why the original algorithm
converges faster for this small game.

We can see that all three variants of our modified algorithm returned values
very close to the ones of the original algorithm. It is important to mention
that the exact value of the game can be anywhere in the interval determined
by the bounds of the original HSVI. Variant HsviB took little more time to
arrive at the target precision, but also produced better results than the other
alternatives. This is probably given by the fact that the QRE computation for
individual stage games takes more iterations to converge, but produces better
values and strategies. Also, the standard error of value for both bounds is
relatively small for all variants. This means that the modifications are robust
enough for this small game.

The larger number of explorations and also larger SEM of exploration count
for variant HsviC is caused by one single run that took 302 explorations
to converge. It got stuck at small gap size of roughly 0.013 because of
imprecision in the upper bound approximation. The algorithm was waiting
for the randomized exploration heuristic to pick an action with small assigned
probability to unstuck the upper bound approximation and progress further.

51

6. Experimental evaluation
The size of Υ did not increase dramatically in those explorations because of
the pruning method. On the other hand, we do not use pruning for Γ, so it
accumulated 1020 α-vectors, which in turn caused the larger SEM in Γ.

peg04.posg

For slightly larger game, we can already see the speed up from our modi-
fications. Even the slowest from the three variants is faster than the Julia
implementation. The returned values of bounds in initial belief are again very
close to the correct ones and standard error is also relatively small.

time[s] V Γ
LB V Υ

UB width |Γ| |Υ| expl.

HsviC++ 30 0.7769 0.7868 0.0099 2 348 2 551 150
HsviJulia 318 0.7768 0.7867 0.0098 5 131 5 457 66

HsviA
146 0.7712 0.7787 0.0075 1 448 988 64
±13 ±0.0006 ±0.0011 ±0.0009 ±218 ±69 ±29

HsviB
213 0.7778 0.7829 0.0051 797 728 16
±9 ±0.0009 ±0.0016 ±0.0014 ±77 ±36 ±2

HsviC
140 0.7703 0.7774 0.0071 1 478 890 54
±11 ±0.0005 ±0.0010 ±0.0008 ±163 ±35 ±16

Table 6.3: peg04.posg results

Similarly as with the smaller game, variant HsviB has the most precise
results, but takes a bit longer to converge. It also makes smaller number of
explorations compared to the other variants and as a result it also has smaller
sets Γ and Υ. The small number of explorations is probably caused by the
fact that the QRE computation for variant HsviB is more precise, because of
the smaller εqre. This makes this variant shrink the gap by a larger value in
each exploration compared to the alternatives (even if they take longer to
compute). Therefore, less explorations is needed, in general, to converge.

The larger SEM for both the size of Υ and the number of explorations in
variants HsviA and HsviC is again caused by one single run that deviated
from the rest and took more explorations to converge.

peg05.posg

Here we can observe the impact of pruning on the sizes of Γ and Υ. The
C++ implementation includes pruning methods for both lower bound and
upper bound. We can see that even if it has almost three times the number of
explorations compared to the Julia implementation, the sizes of lower bound
and upper bound sets are almost half in size. This impacts dramatically the
performance of the Julia implementation and it takes almost half an hour for
it to converge. All our three variants are significantly faster compared to the
Julia implementation of the original algorithm.

The results for variants HsviA and HsviC are again close to the correct
one and the intervals even overlap a bit. Variant HsviB with εqre = 0.001

52

..................................... 6.4. Experiments

time[s] V Γ
LB V Υ

UB width |Γ| |Υ| expl.

HsviC++ 153 0.7190 0.7289 0.0100 7 845 9 735 424
HsviJulia 1 740 0.7188 0.7288 0.0100 15 604 16 278 155

HsviA
309 0.7144 0.7220 0.0076 2 828 1 982 86
±21 ±0.0005 ±0.0011 ±0.0006 ±272 ±93 ±24

HsviB
641 0.7214 0.7277 0.0064 2 104 1 674 57
±56 ±0.0014 ±0.0012 ±0.0008 ±216 ±84 ±15

HsviC
315 0.7142 0.7224 0.0083 2 932 1 813 84
±23 ±0.0007 ±0.0005 ±0.0005 ±187 ±47 ±13

Table 6.4: peg05.posg results

has very precise result. It took more than twice as long for it to converge
compared to the alternative variants, but the whole interval returned fits
completely into the one from C++ implementation.

Small SEM values for each method show again that the modifications are
very robust.

peg06.posg

For this size of game, the Julia implementation failed to converge under one
hour. It managed to get to gap of roughly 0.03. We can see that the value of
lower bound is roughly the same as for the C++ implementation. So it is the
upper bound, which did not fall fast enough, and caused the larger gap.

time[s] V Γ
LB V Υ

UB width |Γ| |Υ| expl.

HsviC++ 1 130 0.6574 0.6674 0.0100 27 303 33 005 1 566
HsviJulia 3 617 0.6564 0.6859 0.0295 24 351 25 568 209

HsviA
1 293 0.6674 0.6771 0.0098 10 616 5 457 438
±271 ±0.0006 ±0.0016 ±0.0017 ±1 992 ±503 ±185

HsviB
2 117 0.6739 0.6813 0.0075 6 087 3 940 174
±175 ±0.0006 ±0.0009 ±0.0007 ±522 ±187 ±29

HsviC
1 548 0.6692 0.6794 0.0102 13 536 4 669 646
±285 ±0.0008 ±0.0014 ±0.0013 ±1 931 ±257 ±179

Table 6.5: peg06.posg results

Variant HsviA is close to the correct results as its lower bound has the
same value as the upper bound of C++ implementation. Variant HsviC
performs slightly worse. We can see that the εprune = 0.1 of variant HsviC,
indeed, prunes the upper bound more aggressively. Compared to variant
HsviA, variant HsviB has higher number of explorations and as an effect also
larger |Γ|, but the size of Υ is smaller.

As opposed to smaller games, variant HsviB has the most imprecise result.
This trend continues also for larger games. This is an important observation.
It looks like the variant HsviB returns larger value of the game, in general,

53

6. Experimental evaluation
compared to variants HsviA and HsviB. We found out, that for smaller
games, the modified algorithm tends to underestimate the value of the game
and it caused the variant HsviB to be the most precise. For peg05.posg its
result was, on average, almost the same as the correct one. However, for
larger games, the trend reverses and the modified version underestimates
the true value of the game. This causes variant HsviB to perform worse
compared to the alternatives.

Both variants HsviA and HsviC had a single run that did not converge
for peg06.posg. For variant HsviA, the run was terminated after one hour at
gap of roughly 0.025. For variant HsviC, the run arrived at gap of roughly
0.02 in one hour.

The standard error of the running times of the modified algorithm is
significantly larger compared to the smaller games. The fastest run among
the variants of the modified algorithm was for variant HsviC and managed to
converge in about 560 seconds. The fastest runs for both variants HsviA and
HsviB took roughly 660 seconds to converge. This means that some of the
runs of the modified algorithm were even faster than the C++ implementation
of the original algorithm.

102.4 102.6 102.8 103 103.2 103.4
0

0.2

0.4

0.6

Time[s]

w
id
th

(V
(b

0)
)

Julia
A
B
C

Figure 6.2: peg06.posg gap convergence graph

The convergence graph for peg06.posg is shown in Figure 6.2. The individual
runs of the modified algorithm have different number of explorations and
also record the exploration data at different timestamps. To be able to
visualize the progress of gap in time, we had to combine them somehow.
We interpolated the original time series to the same range and time steps
using cubic splines. For runs of different lengths, the missing values after the
convergence were padded by 0.01 (i.e., εtarget). While the convergence graph
of the original algorithm is monotonically decreasing, this does not hold for
the modified version. The retraining of the neural networks can cause the
upper bound value to increase between following explorations.

We also do not show the convergence graph of C++ implementation. Its

54

..................................... 6.4. Experiments

bounds’ initialization phase is much faster than the one of the Julia imple-
mentation. The largest part of the gap is reduced in the early explorations
and because we use logarithmic scale for the time axis, the interesting part
of the C++ graph is shifted towards zero by a large amount and does not
provide much insight.

We can see that the original algorithm has smaller gap in the early stages
of the algorithm. However, the convergence slows down dramatically towards
the end. The convergence of the modified algorithm also slows down, but not
so fast. Variants HsviA and HsviC got ahead of the Julia implementation of
the original algorithm at around 400 seconds, on average.

We can also observe the impact of more precise QRE computation in
variant HsviB. It is behind the other variants in terms of convergence speed
throughout the whole run. It got ahead of the original algorithm at around
1000 seconds, on average.

peg07.posg

Increasing the size of the game even further makes even the C++ implementa-
tion of the original algorithm not converge in time. Nevertheless, it managed
to get very close to the target gap. The implementation of the original
algorithm in Julia had final gap after one hour comparable to peg06.posg.

time[s] V Γ
LB V Υ

UB width |Γ| |Υ| expl.

HsviC++ 3 602 0.6141 0.6253 0.0111 42 846 70 478 2 706
HsviJulia 3 613 0.6122 0.6443 0.0321 23 694 25 676 181

HsviA
1 977 0.6268 0.6367 0.0099 13 953 8 334 282
±214 ±0.0005 ±0.0017 ±0.0015 ±1 101 ±422 ±41

HsviB
3 606 0.6302 0.6518 0.0217 8 281 5 891 149
±2 ±0.0008 ±0.0020 ±0.0020 ±392 ±161 ±16

HsviC
3 441 0.6273 0.6426 0.0153 22 909 7 698 648
±110 ±0.0003 ±0.0020 ±0.0021 ±509 ±73 ±27

Table 6.6: peg07.posg results

For a game of this size, all runs of variant HsviC and most runs of variant
HsviB did not converge under one hour. This also causes the larger standard
error of the final upper bound value. However, the gap achieved by those
variants was smaller, in general, than the gap of original algorithm written in
Julia and is still relatively close to the gap produced by C++ implementation.

9 out of 10 runs of variant HsviA converged in time. The fastest took only
1250 seconds. In general, they returned values very close to the true values
produced by C++ implementation.

As with previous game, we can observe the effect of the larger value of
εprune parameter in variant HsviC. It has smaller size of Υ than variant
HsviA even though it has more than two times the number of explorations
and also larger |Γ|.

55

6. Experimental evaluation
peg08.posg

For the largest game, no run managed to converge under one hour. The C++
implementation reached gap of roughly 0.03. The Julia implementation of
the original algorithm and also all variant of the modified algorithms reached
much larger gaps.

time[s] V Γ
LB V Υ

UB width |Γ| |Υ| expl.

HsviC++ 3 602 0.5621 0.5909 0.0288 27 245 77 551 2 895
HsviJulia 3 629 0.5544 0.6315 0.0770 22 861 25 887 162

HsviA
3 612 0.5797 0.6655 0.0858 21 112 12 925 219
±2 ±0.0011 ±0.0101 ±0.0101 ±400 ±201 ±12

HsviB
3 617 0.5710 0.6560 0.0850 6 664 6 343 64
±3 ±0.0018 ±0.0063 ±0.0075 ±281 ±133 ±5

HsviC
3 610 0.5786 0.6486 0.0700 21 098 9 338 234
±1 ±0.0009 ±0.0050 ±0.0053 ±552 ±101 ±17

Table 6.7: peg08.posg results

The value intervals of all variants of the modified algorithm overlap with
the true interval of C++ implementation. However, because the algorithms
did not converge, this does not tell us much information about the precision
of the modifications for game of this size. Terminating the individual runs
before converging also caused larger standard error of the resulting values of
upper bound.

Similarly to smaller games, variant HsviB has notably smaller number of
explorations (and as a consequence also |Γ| and |Υ|) than variants HsviA and
HsviC. Nevertheless, it managed to achieve, on average, the same width of
gap as variant HsviA. Variant HsviC achieved the smallest gap, compared to
the alterative variants, and also slightly smaller than the Julia implementation
of the original algorithm.

Note that difference between the sizes of Υ for variants HsviA and HsviC is
not so significant, compared to the smaller games. What we are observing here
is probably the curse of dimensionality phenomenon. For larger games, the
dimensionality of belief space of individual partitions increases and pruning
using constant εprune does not have such an impact.

In Figure 6.3, we can see the convergence graph for peg08.posg. We can
see that here, similarly as with peg06.posg, the Julia implementation of the
original algorithm converges faster at the beginning, compared to the modified
variants. However, as it slows down, the variants of the modified version of
the algorithm eventually catch up. Variant HsviC even got to slightly smaller
gap towards the end.

Variant HsviB with higher number of QRE iterations converges slower at
beginning, compared to alternative variants HsviA and HsviC. Nevertheless,
after one hour, it achieves gap of similar width as variant HsviA.

56

..................................... 6.4. Experiments

102.6 102.8 103 103.2 103.4
0

0.2

0.4

0.6

Time[s]

w
id
th

(V
(b

0)
)

Julia
A
B
C

Figure 6.3: peg08.posg gap convergence graph

Scalability

The results presented above have told us a lot about the performance of the
original algorithm and its modifications on individual games. By observing
them, we can find out how fast and precise are the variants of the algorithm
and also how much do the results deviate between individual runs.

However, as we mentioned, the main problem of the original HSVI algorithm
is its application to larger games. It does not scale well enough. As the size of
the game increases, the convergence of the algorithm slows down dramatically.
To evaluate the scalability of our modifications, and compare them with the
original algorithm, we need to evaluate the performance on all games as a
whole sequence.

We show the evaluation in Figure 6.4. The figure contains both implemen-
tations of the original algorithm and also all three variants of our modified
version. The x axis of the figure contains the 6 pursuit-evasion games sorted
in order of increasing size of the game.

Upper part of the figure shows a plot of running time of the algorithm
on individual games in a semi-logarithmic scale. The running times of the
modified variants are computed as a mean over the 10 runs and the stripes
denote the confidence interval in the form of standard error of the mean.

The running time of the algorithm, however, is limited to one hour. To
be able to compare the variants even when this time limit is saturated, we
include the bottom part of the figure. It denotes the excess gap by which the
algorithm exceeded the desired precision of εprune = 0.01. For the variants
HsviA, HsviB and HsviC, the bars represent the mean over the 10 runs. The
errors bars indicate the standard error of the mean. We can see that for the
runs, where the algorithm managed to converged under one hour, the excess
gap is zero (i.e., width(V (b0)) ≤ 0.01).

The implementation of the original algorithm in Julia converged only for

57

6. Experimental evaluation
the first half of games. On the second half of games, it did not converge
and the bar plot shows the excess gap it managed to achieve. The C++
implementation converged on four smaller games. On the fifth game, it did
not converge under one hour, but the excess gap is very small. We can observe
that the lines, denoting their running times on the first three games, have
similar slope.

101

102

103

104

T
im

e[
s]

C++
Julia
A
B
C

peg0
3.po

sg

peg0
4.po

sg

peg0
5.po

sg

peg0
6.po

sg

peg0
7.po

sg

peg0
8.po

sg
0.01
0.04
0.07
0.1

Game size

W
id
th

Figure 6.4: Scalability of the algorithm variants

While the variant HsviA of the modified algorithm converged on five games,
the variants HsviB and HsviC converged only on the first four. However,
their excess gap for peg05.posg is smaller than the excess gap of the original
algorithm written in Julia. We can see that, for all the games where the time
limit of one hour was not exceeded, the HsviB was slower than the other two
variants.

The lines for all variants of the modified algorithm also have similar slope,
analogously to C++ and Julia implementations of the original algorithm.
Nevertheless, the slope is slightly smaller than for the original algorithm.
This means that the modified version of HSVI might scale better than the
original one with increasing size of the game.

58

Chapter 7
Conclusion

In this work, we have decided to study and improve the scalability of the
existing HSVI algorithm for OS-POSGs. The main bottleneck of the original
algorithm is the querying of the upper bound value, which is computed using
linear programming. Our goal was to use approximative methods that would
make the algorithm faster but still give reasonable results.

We chose to replace the upper bound computation method with neural
networks and used quantal response equilibrium in stage games to incorporate
this change into the original algorithm. By using those methods, we have
completely eliminated the usage of linear programming from the exploration
phase of the algorithm.

First, we introduced necessary concepts from game theory. Then we
explained how the HSVI algorithm solves POMDPs and how it can be
extended to solve OS-POSGs. After that, we introduced our two contributions.

Finally, we tested and evaluated the modifications on the set of pursuit-
evasion games. We tuned the parameters, observed the behavior of the
algorithm and found reasonable configurations of parameters that were used
for detailed experimental evaluation. In the detailed evaluation, we compared
the modified algorithm with the original one and tested its robustness and
scalability.

The results are, in general, encouraging. The modified algorithm is robust as
there is not much deviation to be seen between individual runs. Furthermore,
the computed value of the game returned by the modified algorithm is
relatively close to the true value, even for larger games. The speed of
the modified algorithm is also good. In general, it is faster than our own
implementation of the original algorithm. The trend seen when evaluating
the algorithm on a set of games of increasing sizes gives us hope that the
modifications made might make the algorithm scale better.

7.1 Future work

The performance of the modified algorithm could be further improved by
using fine-tuned parameters. A detailed study of some of the results could
bring valuable insight into the behavior of the algorithm and help us find a
better-suited set of parameters. The modifications could be further evalu-

59

7. Conclusion......................................
ated on different domains of OS-POSGs (e.g., patrolling games or blocking
games), which would also tell us new information about the workings of the
modifications.

We used only very simple neural networks for the upper bound approxima-
tion. One possible modification that could improve the performance of our
contributions would be to use specialized architectures of neural networks,
which specialize in approximating convex functions. This change could im-
prove the precision of the upper bound approximation and also bring back
some guarantees on the shape of the upper bound that we lost by using simple
neural networks.

Another possibility is to change the used upper bound pruning method.
We have chosen a very simple one because of the ease of implementation.
However, a more complex method could prune the upper bound in a better
way, which could help the neural network with learning the desired shape.
Pruning of lower bound could also improve the performance of the algorithm
even further.

60

Appendix A
Parameters evaluation

UB SG λqre εqre Tqre MSEtarget NNlayers εprune

Hsvi1 nn qre 10.0 0.01 100 0.0001 32-16 0.01
Hsvi2=B nn qre 100.0 0.001 1000 0.0001 32-16 0.01
Hsvi3 nn qre 100.0 0.01 100 1e-06 32-16 0.01
Hsvi4 nn qre 100.0 0.01 100 0.0001 16-8 0.01
Hsvi5 nn qre 100.0 0.01 100 0.0001 32-16 0.001
Hsvi6=A nn qre 100.0 0.01 100 0.0001 32-16 0.01
Hsvi7=C nn qre 100.0 0.01 100 0.0001 32-16 0.1
Hsvi8 nn qre 100.0 0.01 100 0.0001 32-16-8 0.01
Hsvi9 nn qre 100.0 0.01 100 0.01 32-16 0.01
Hsvi10 nn qre 100.0 0.1 10 0.0001 32-16 0.01
Hsvi11 nn qre 500.0 0.01 100 0.0001 32-16 0.01

Table A.1: Configurations

61

A. Parameters evaluation.................................
time[s] V Γ

LB V Υ
UB width |Γ| |Υ| expl.

HsviC++ 5 0.8319 0.8410 0.0092 189 322 22
HsviJulia 35 0.8317 0.8404 0.0087 529 651 12
Hsvi1 2 812 0.7718 0.7810 0.0093 42 815 8 626 2 710
Hsvi2=B 56 0.8292 0.8385 0.0092 303 265 18
Hsvi3 228 0.8280 0.8276 −0.0005 401 285 72
Hsvi4 33 0.8275 0.8351 0.0076 289 272 6
Hsvi5 41 0.8248 0.8347 0.0099 391 319 12
Hsvi6=A 35 0.8276 0.8374 0.0099 284 261 11
Hsvi7=C 39 0.8262 0.8295 0.0033 357 248 12
Hsvi8 45 0.8272 0.8357 0.0085 395 319 14
Hsvi9 26 0.7987 0.7753 −0.0234 172 217 3
Hsvi10 42 0.8129 0.8158 0.0029 617 411 22
Hsvi11 44 0.8409 0.8449 0.0040 322 278 13

Table A.2: peg03.posg parameters evaluation results

time[s] V Γ
LB V Υ

UB width |Γ| |Υ| expl.

HsviC++ 30 0.7769 0.7868 0.0099 2 348 2 551 150
HsviJulia 344 0.7768 0.7867 0.0098 5 131 5 457 66
Hsvi1 3 607 0.6848 0.7450 0.0602 45 906 19 623 651
Hsvi2=B 235 0.7774 0.7866 0.0092 891 773 16
Hsvi3 760 0.7730 0.7819 0.0090 2 712 1 232 673
Hsvi4 127 0.7678 0.7769 0.0091 1 237 946 24
Hsvi5 156 0.7723 0.7812 0.0089 1 490 1 063 33
Hsvi6=A 172 0.7724 0.7813 0.0089 1 780 1 155 65
Hsvi7=C 129 0.7745 0.7817 0.0073 1 038 775 25
Hsvi8 157 0.7717 0.7812 0.0095 1 427 977 54
Hsvi9 127 0.7245 0.7341 0.0095 1 542 1 097 21
Hsvi10 142 0.7609 0.7653 0.0044 4 244 2 164 163
Hsvi11 157 0.7891 0.7967 0.0076 1 087 818 106

Table A.3: peg04.posg parameters evaluation results

time[s] V Γ
LB V Υ

UB width |Γ| |Υ| expl.

HsviC++ 153 0.7190 0.7289 0.0100 7 845 9 735 424
HsviJulia 1 823 0.7188 0.7288 0.0100 15 604 16 278 155
Hsvi1 3 601 0.5796 0.6874 0.1078 46 014 21 079 493
Hsvi2=B 976 0.7194 0.7248 0.0054 3 349 2 147 124
Hsvi3 3 600 0.7178 0.7300 0.0122 15 595 3 921 1 914
Hsvi4 352 0.7168 0.7212 0.0044 3 859 2 317 162
Hsvi5 386 0.7136 0.7224 0.0088 3 399 2 336 72
Hsvi6=A 449 0.7156 0.7220 0.0064 4 004 2 548 105
Hsvi7=C 405 0.7156 0.7234 0.0078 3 794 2 051 121
Hsvi8 494 0.7141 0.7213 0.0072 4 493 2 564 188
Hsvi9 475 0.6754 0.6654 −0.0100 4 337 2 751 76
Hsvi10 389 0.6987 0.7067 0.0080 9 647 4 917 238
Hsvi11 954 0.7302 0.7400 0.0098 6 142 1 953 1 171

Table A.4: peg05.posg parameters evaluation results

62

................................. A. Parameters evaluation

time[s] V Γ
LB V Υ

UB width |Γ| |Υ| expl.

HsviC++ 1 130 0.6574 0.6674 0.0100 27 303 33 005 1 566
HsviJulia 3 619 0.6563 0.6864 0.0301 23 182 24 399 198
Hsvi1 3 609 0.4851 0.6234 0.1383 47 885 22 490 435
Hsvi2=B 3 607 0.6738 0.6942 0.0204 10 353 5 179 443
Hsvi3 3 601 0.6718 0.7043 0.0325 7 969 4 690 227
Hsvi4 578 0.6655 0.6738 0.0083 4 958 3 614 82
Hsvi5 1 051 0.6647 0.6738 0.0091 9 427 5 611 275
Hsvi6=A 837 0.6658 0.6752 0.0094 6 934 4 452 144
Hsvi7=C 1 327 0.6694 0.6792 0.0097 11 362 4 577 358
Hsvi8 1 347 0.6746 0.6811 0.0066 11 778 6 290 342
Hsvi9 3 601 0.6099 0.6980 0.0881 22 827 7 812 523
Hsvi10 1 598 0.6531 0.6605 0.0074 31 925 14 874 701
Hsvi11 935 0.6899 0.6990 0.0091 4 607 3 008 245

Table A.5: peg06.posg parameters evaluation results

time[s] V Γ
LB V Υ

UB width |Γ| |Υ| expl.

HsviC++ 3 602 0.6141 0.6253 0.0111 42 846 70 478 2 706
HsviJulia 3 617 0.6119 0.6506 0.0387 22 515 24 497 170
Hsvi1 3 602 0.3950 0.5741 0.1791 44 054 21 058 357
Hsvi2=B 3 601 0.6328 0.6432 0.0105 7 613 5 646 118
Hsvi3 2 885 0.6216 0.6311 0.0095 6 714 5 145 307
Hsvi4 1 623 0.6228 0.6327 0.0100 11 968 7 670 175
Hsvi5 1 994 0.6274 0.6369 0.0095 14 032 8 613 293
Hsvi6=A 1 428 0.6256 0.6339 0.0083 9 610 6 516 165
Hsvi7=C 3 605 0.6280 0.6453 0.0173 22 633 7 596 688
Hsvi8 3 604 0.6295 0.6565 0.0271 21 168 11 394 453
Hsvi9 2 170 0.5856 0.5954 0.0098 12 956 7 575 145
Hsvi10 3 601 0.5994 0.6419 0.0425 50 979 23 796 894
Hsvi11 1 714 0.6450 0.6487 0.0037 6 945 4 876 278

Table A.6: peg07.posg parameters evaluation results

time[s] V Γ
LB V Υ

UB width |Γ| |Υ| expl.

HsviC++ 3 602 0.5621 0.5909 0.0288 27 245 77 551 2 895
HsviJulia 3 609 0.5474 0.6593 0.1119 20 757 23 783 142
Hsvi1 3 602 0.3102 0.5740 0.2638 41 051 20 670 298
Hsvi2=B 3 608 0.5696 0.6754 0.1058 6 248 6 155 55
Hsvi3 3 634 0.5661 0.6446 0.0785 7 998 6 945 157
Hsvi4 3 606 0.5785 0.6301 0.0516 21 946 13 398 253
Hsvi5 3 611 0.5835 0.6434 0.0599 20 318 12 808 217
Hsvi6=A 3 612 0.5816 0.6462 0.0646 21 033 12 974 220
Hsvi7=C 3 615 0.5832 0.6406 0.0574 20 766 9 279 223
Hsvi8 3 613 0.5820 0.6582 0.0762 20 130 12 677 217
Hsvi9 3 602 0.5447 0.5971 0.0524 16 800 10 917 153
Hsvi10 3 608 0.5610 0.6305 0.0695 49 314 25 662 523
Hsvi11 3 606 0.6145 0.6705 0.0560 12 282 8 725 145

Table A.7: peg08.posg parameters evaluation results

63

64

Appendix B
Attachment content structure

./
HSVIforOneSidedPOSGs/ - root folder of the module

games/
game-format.txt - specification of game files
pursuit-evasion/ - folder containing 6 pursuit-evasion games
peg{03..08}.posg

Project.toml - module description, defines dependencies
README.md - README file, contains detailed description of the
module, installation instructions and instructions on how to run
the module on attached game files
src/ - source code directory

HSVIforOneSidedPOSGs.jl - file defining the module
...

65

66

Appendix C
Bibliography

[AXK17] Brandon Amos, Lei Xu, and J. Zico Kolter, Input convex neural
networks, 2017.

[BEKS17] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B.
Shah, Julia: A fresh approach to numerical computing, SIAM
Review 59 (2017), no. 1, 65–98.

[DHL17] Iain Dunning, Joey Huchette, and Miles Lubin, Jump: A modeling
language for mathematical optimization, SIAM Review 59 (2017),
no. 2, 295–320.

[GB98] Héctor Geffner and Blai Bonet, Solving large pomdps using
real time dynamic programming, In Proc. AAAI Fall Symp. on
POMDPs, 1998.

[Hau00] M. Hauskrecht, Value-function approximations for partially ob-
servable markov decision processes, Journal of Artificial Intelli-
gence Research 13 (2000), 33–94.

[HBKK20] Karel Horák, Branislav Bošanský, Vojtěch Kovařík, and Christo-
pher Kiekintveld, Solving zero-sum one-sided partially observable
stochastic games, 2020.

[HBP17] Karel Horák, Branislav Bošanský, and Michal Pěchouček, Heuris-
tic search value iteration for one-sided partially observable stochas-
tic games, 2017.

[HBT+19] Karel Horák, Branislav Bošanský, Petr Tomášek, Christopher
Kiekintveld, and Charles Kamhoua, Optimizing honeypot strate-
gies against dynamic lateral movement using partially observable
stochastic games, Computers & Security 87 (2019), 101579.

[IBM20] IBM, V20.1.0: User’s manual for cplex, 2020.

[ISF+18] Michael Innes, Elliot Saba, Keno Fischer, Dhairya Gandhi,
Marco Concetto Rudilosso, Neethu Mariya Joy, Tejan Karmali,
Avik Pal, and Viral Shah, Fashionable modelling with flux, CoRR
abs/1811.01457 (2018).

67

C. Bibliography
[MP96] Richard D. McKelvey and Thomas R. Palfrey, Quantal response

equilibria for normal form games, 1996.

[Nas51] John Nash, Non-cooperative games, The Annals of Mathematics
54 (1951), no. 2, 286.

[RN09] Stuart Russell and Peter Norvig, Artificial intelligence: A modern
approach, 3rd ed., Prentice Hall Press, USA, 2009.

[SFA+18] Arunesh Sinha, Fei Fang, Bo An, Christopher Kiekintveld, and
Milind Tambe, Stackelberg security games: Looking beyond a
decade of success, Proceedings of the Twenty-Seventh International
Joint Conference on Artificial Intelligence, International Joint
Conferences on Artificial Intelligence Organization, July 2018.

[SLB08] Yoav Shoham and Kevin Leyton-Brown, Multiagent systems:
Algorithmic, game-theoretic, and logical foundations, Cambridge
University Press, 2008.

[SS12a] Trey Smith and Reid Simmons, Point-based pomdp algorithms:
Improved analysis and implementation, 2012.

[SS12b] Trey Smith and Reid G. Simmons, Heuristic search value iteration
for pomdps, CoRR abs/1207.4166 (2012).

[Tam09] Milind Tambe, Security and game theory, Cambridge University
Press, 2009.

[TBN20] Petr Tomášek, Branislav Bošanský, and Thanh H. Nguyen, Using
one-sided partially observable stochastic games for solving zero-
sum security games with sequential attacks, Decision and Game
Theory for Security (Cham) (Quanyan Zhu, John S. Baras, Radha
Poovendran, and Juntao Chen, eds.), Springer International Pub-
lishing, 2020, pp. 385–404.

[vN28] J. v. Neumann, Zur theorie der gesellschaftsspiele, Mathematische
Annalen 100 (1928), no. 1, 295–320.

[Ša19] Jaroslav Šafář, Approximation of bound functions in algorithms
for solving stochastic games, Bachelor’s thesis, CTU FEE, De-
partment of Cybernetics, 2019.

68

	Introduction
	Game Theory
	Normal-form games
	Zero-sum games
	Strategies
	Nash equilibrium

	Minimax
	Maximin and minimax strategies
	Minimax theorem

	Quantal response equilibrium
	Expected utility and error
	Definition
	Logit equilibrium
	Influence of parameter in logit equilibrium
	Iterative method

	HSVI for POMDPs
	MDPs
	Discount factor
	Policy
	Value Iteration

	POMDPs
	Policy
	Value Iteration
	Value function representation

	HSVI
	Bounds' representation
	Point-based updates
	Excess gap
	Exploration
	Algorithm

	HSVI for OS-POSGs
	OS-POSGs
	HSVI
	Strategies
	Belief update
	Stage game
	Bounds initialization
	Excess gap
	Exploration
	Algorithm
	Partitions

	Approximation methods
	Upper bound approximation
	Original representation
	Available alternatives
	Approximation using neural network
	Pruning
	Implementation details
	Method drawback

	Stage game equilibrium approximation
	Problem of using neural network with minimax
	Stage game quantal response equilibrium
	Expected utility of an action
	Implementation details
	Modification of exploration heuristic

	Experimental evaluation
	Games
	Representation
	Pursuit-evasion games

	Implementation
	Julia
	Libraries

	Parameters
	Shared parameters
	Neural network parameters
	Quantal response equilibrium parameters

	Experiments
	Environment
	Recorded values
	Parameters evaluation
	Robustness, performance and scalability evaluation

	Conclusion
	Future work

	Parameters evaluation
	Attachment content structure
	Bibliography

