
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of control engineering

Hierarchical models of network traffic

Vojtěch Kozel

Supervisor: doc. Ing. Tomáš Pevný, Ph.D.
Field of study: Cybernetics and Robotics
May 2021

ii

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

481891Personal ID number:Kozel VojtěchStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Control Engineering

Cybernetics and RoboticsStudy program:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Hierarchical models of network traffic

Bachelor’s thesis title in Czech:

Hierarchické modely síťové komunikace

Guidelines:
1.Study prior art on automatic analysis of network traffic.
2.Capture network traffic of malware from public sources.
3.Learn the hierarchical multiple instance learning framework.
4.Analyse captured malware / cleanware using HMill.
5.Using Mill, identify the artefacts corresponding to different malware strain.

Bibliography / sources:
[1] Mandlík Šimon: Modelling Entity Interactions in Complex Heterogeneous Networks (Master’s thesis), Prague, 2020
[2] Tomáš Pevný, Marek Dědič: Nested Multiple Instance Learning in Modelling of HTTP network traffic, Prague, 2020
[3] Tomáš Pevný, Petr Somol: Using Neural Network Formalism to Solve Multiple-Instance Problems, Prague, 2017
[4] A. Tibo, M. Jaeger, P. Frasconi: Learning and Interpreting Multi-Multi-Instance Learning Networks, October 6, 2020
[5] Gueltoum Bendiab et al.: IoT Malware Network Traffic Classification using Visual Representation and Deep Learning,
Ghent, 2020

Name and workplace of bachelor’s thesis supervisor:

doc. Ing. Tomáš Pevný, Ph.D., Artificial Intelligence Center, FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 21.05.2021Date of bachelor’s thesis assignment: 28.01.2021

Assignment valid until:
by the end of summer semester 2021/2022

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Michael Šebek, DrSc.

Head of department’s signature
doc. Ing. Tomáš Pevný, Ph.D.

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

iv

Acknowledgements

I would like to thank my supervisor
doc. Ing. Tomáš Pevný, Ph.D. for his pa-
tience, guidance and help. But most of
all, I thank him for the knowledge and
experience he gave me.

Declaration

I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

Prague, 20. May 2021

v

Abstract

The spread of malware is constantly grow-
ing, and along with the transformation of
the world into digital form, this problem
is an increasingly essential and discussed
topic. There are various ways to detect
it: analyzing a suspicious file, analyzing
processes and activities inside the com-
puter, or analyzing network communica-
tion. This work aims to compare com-
pletely different approaches to the clas-
sification of network communication of
malware. The research is about the three
approaches: the use of computer vision
methods, examining network communi-
cation as a time series, and focusing on
the hierarchical structure of communica-
tion. The hierarchical approach in this
research gives the best results, as it allows
to build a computational graph reflecting
the structure of the problem.

Keywords: cybersecurity, computer
vision, ResNet, LSTM, multiple-instance
learning, network traffic

Supervisor:
doc. Ing. Tomáš Pevný, Ph.D.
Artificial Intelligence Center, FEE

Abstrakt

Šíření malwaru neustále roste a spolu s
transformací světa do digitální podoby je
tento problém stále důležitějším a diskuto-
vaným tématem. Existují různé způsoby,
jak jej detekovat: analýza podezřelého sou-
boru, analyzování procesů a aktivit uvnitř
počítače nebo analyzování síťové komuni-
kace. Tato práce si klade za cíl porovnat
zcela odlišné přístupy ke klasifikaci síťové
komunikace malwaru. Jedná se o tyto tři
přístupy: využití metod z oblasti počítačo-
vého vidění, zkoumání síťové komunikace
v podobě časové řady a zaměření se na hi-
erarchickou strukturu komunikace. Hierar-
chický přístup v tomto výzkumu podává
nejlepší výsledky, jelikož umožňuje vybu-
dovat výpočetní graf reflektující strukturu
problému.

Klíčová slova: kybernetická bezpečnost,
počítačové vidění, ResNet, LSTM, multi
instanční učení, síťová komunikace

Překlad názvu: Hierarchické modely
síťové komunikace

vi

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Problem statement 2

Part I
Compared approaches

2 Prior art 9

2.1 Visual representation classification 9

2.2 Classification of sequences 11

3 Proposed approaches 13

3.1 Proposed approaches in visual
representation 13

3.1.1 k-NN . 13

3.1.2 Neural networks 14

3.2 Proposed approach in classification
of sequences . 15

3.3 Multiple instance learning and
hierarchical concept of network
communication 16

3.3.1 MIL overview 16

3.3.2 HMill overview 20

3.3.3 Proposed hierarchical models 22

Part II
Results and conclusion

4 Experimental results and
conclusions 29

4.1 Results . 29

4.1.1 Visual representation 29

4.1.2 Classification of sequences . . . 31

4.1.3 HMill . 32

4.1.4 Summary 32

4.2 Interpretations 33

4.2.1 Interpretation of visual
representation 33

4.2.2 Interpretation of sequences
classification 34

4.2.3 Interpretation of HMill results 34

5 Conclusion 37

vii

Appendices

A Background on tools 41

A.1 Binvis . 41

A.2 k-NN classifier 42

A.3 CNN, ResNet 42

A.3.1 Convolutional neural networks 42

A.3.2 Residual neural networks . . . 43

A.4 CAM, Grad-CAM, Score-CAM. 44

A.5 SHAP . 46

A.6 LSTM . 46

B Dataset 49

C Bibliography 51

viii

Figures

1.1 Packets histograms 2

a Size of flow. . . . 2

b Size of packet. . . 2

2.1 Examples of Binvis images of
malwares. 10

2.2 Marín et al. network. 12

2.3 Thapa and Duraipandian
network. 12

3.1 Proposed network with LSTM. . 15

3.2 A transformation of JSON into a
HMill sample. 21

3.3 Communication representation. . 23

3.4 L-HMill schema. 24

4.1 k-NN: accuracy. 30

4.2 ResNets epochs. 30

4.3 CNN-LSTM combined architecture
epochs. 31

4.4 HMill epochs. 32

4.5 Grad-CAM heatmaps 33

4.6 Example of Score-CAM
interpretation. 34

a Adware: input . . 34

b Adware: heatmap. 34

4.7 Malware dataset IPs heatmap. . 35

4.8 Malware dataset heatmap of IPs
targeted by the S-HMill model. . . 35

A.1 Diagram of CAM-network. 44

A.2 LSTM chain. 46

ix

Chapter 1

Introduction

1.1 Motivation

Malware is software designed to damage a target system, steal information,
blackmail or in other ways harm users. With the amount of new perpetually
generated malwares, it would be difficult to use manual methods for detection.
An automatic analysis provide the only one possible solution, which is useful
for mass usage. Automatic detecting of such software is a task solvable
in different ways and approaches depending on the type and structure of
available data. Possible ways are finding specific and pre-known signatures
such as URLs, IP addresses, file paths or comparing fingerprints of suspicious
files to known hashes in databases. In analyzing computer behavior, one
of the detection options is at the level of internal-computer processes (for
example, registry entries, DLL’s usage, user interface accesses, and peripheral
devices). The second option is the network behaviour analysis - examining
the external communication of the computer - the movement of data over the
network. This thesis deals with the topic of detection of infected computers
based on the network communication behaviour of malware.

This thesis aims to explore the existence of a common concept of malware
communication. The prerequisite for the above idea is the existence of a
specific infrastructure of cybercrime [1]. Cybercrime has a hierarchical social
structure with a small group of highly skilled actors at the top. The highly
skilled group products the most of malwares in order to profit from its sale
to wider communities of less qualified actors. After that, the malwares
are adjusted to the final form and distributed to the targets. A narrow

1

1. Introduction
group or groups of major producers only develop “semi-finished products” of
malwares, tools for attacks on vulnerabilities in computer systems. However,
especially these developers create the concept of communication infrastructure
of malwares with command and control (C&C) servers. Given the above, it
can be assumed that malwares collected simultaneously could have a similar
network communication concept.

1.2 Problem statement

The network communication records represent a time-ordered flows of blocks of
information transmitted in a computer network. These blocks of information,
packets, contain information (can be hierarchically structured) about the
recipient, the sender and the type of the block itself. Processing such data
using machine learning methods then represents a more demanding task due
to a more complex input data structure. The complexity of the input data of
the solved problem lies in the following.

(a) : Size of flow. (b) : Size of packet.

Figure 1.1: Packets histograms

. At first, each computer, depending on the running processes, emits
different amount of packets and communicate with different count of
servers. According to the histogram of flow lengths 1.1a, it can be seen
that the distribution of the packets count in flows is very uneven in the
examined dataset (appendix B).. At second, over the computer network are sent packets of defferent types
(protocols) and each packet can be of different length. According to
the attached histogram of packet lengths 1.1b in the used dataset, it is
evident that packets of up to approximately two thousand bytes have

2

.................................. 1.2. Problem statement

the most significant representation. The proportion of packets larger
than five thousand bytes is declining considerably.. At third, it is not clear how to structure the data: whether to sort them as
a time series, or whether to group them according to the communicating
servers.

Network communication takes place via various protocols according to the
ISO/OSI model. Different protocols have different forms, designations and
tasks. The Network layer (responsible for packet forwarding) includes, for
example, the Internet Protocol for transporting data on packet-switched net-
works. The Transport layer performs communication services for applications
over protocols such as UDP and TCP. Packets may also contain additional
information from the Application layer that allows applications to access
the communication system. This information includes, for example, a DNS
record or TLS/SSL cryptographic protocols. Communication can take place
via various packets containing various types of information. Within one com-
munication flow, there can be packets with completely different purpose and
headers (W. Richard Stevens in [2]). The data are thus very heterogeneous.
The comparison of TCP and UDP packet headers is in 1.1 and 1.2.

Bit 0 7 8 15 16 23 24 31
0 Source Port Destination Port
32 Sequence Number
64 Acknowledgment Number
96 Data Offset Res Flags Window Size
128 Header and Data Checksum Urgent Pointer
160 ... Options and Padding

Table 1.1: TCP header

Bit 0 7 8 15 16 23 24 31
0 Source Port Destination Port
32 Length Header and Data Checksum

Table 1.2: UDP header

As it is seen, the TCP protocol contains much more information in its header
than UDP. It is not clear which of this information is relevant to the clas-
sification of the communication and if primary data (provided by the UDP
header) are sufficient.

The goal of this thesis is to compare different machine learning approaches
and data representation in solving a given problem. In this thesis, three
approaches to solve a given problem are presented.

3

1. Introduction
The first approach is the application of computer vision. The method

converts packets flows into images and performs their classification. The ad-
vantage of this approach is the possibility of using various methods commonly
used in machine perception. In the field of machine learning, there is currently
a massive increase in surveillance such as face recognition or monitoring the
movement of people. Furthermore, in recent years there is the development
in mobile robotics. That causes the extensive development of methods for
processing information from sensors sensing the robot’s workspace and recog-
nition of objects in its vicinity. From the above mentioned reasons, computer
vision methods are well developed and popular in machine learning.

Another approach is to treat flow as a sequence, sequences are probably
the second most common topic in machine learning presently. They are
used, for example, in solutions of automatic translation, prediction and
autocorrection of words on a smartphone keyboard, processing of DNA
sequences or predicting market price developments. Depending on the needs,
the prediction, generation or classification are performed. The last of these is
the case of this research. There were used Long Short Term Memory recurrent
neural networks. It examines the classification as a time series of packets. The
advantage of this method is that the packet order information is maintained.
It is not clear, whether time dependence is important for the identification of
infected computers. If the packets’ orders were not significant, there would
be a great saving of computational time during neural network learning.

The third approach uses hierarchical multiple-instance learning. Thus, it
allows easily to propagate the data structure to the model. The neural network
architecture then reflects the form of network communication. Thanks to
this, it is possible to cope with heterogeneous, incomplete data, such as
packets. As mentioned above, the complexity of the task lies in the fact that
the problem has sequence effects, and at the same time, each item has its
hierarchical description. The ambiguity of the hierarchical approach is in the
problem of data structuring. Since the goal of the hierarchical approach is to
model interactions in a computer network, the following approach is offered.
The sample is modeled as a set of servers (identified by IP addresses) that
communicate with the monitored computer. Each of these servers has as its
hierarchically structured features packets that represent the communication
of the monitored computer with the server in question (introduced by Pevny
and Dedic in [3]).

The processing of large, especially heterogeneous, data places great demands
on hardware. The identification of the significian properties of the data
for classification can allow modification the network architecture, mainly
hierarchical models, to better focus on proper information. For hierarchical
multi-instance learning models, removing less significant instances will reduce

4

.................................. 1.2. Problem statement

the number of model parameters and ultimately saves computational time
during network learning. Therefore, this thesis aims to explain the decisions
of neural networks and identify a subset of samples or instances which are
considered crucial to the correct classification; and identify artefacts that
could characterize some malware strains.

If malware architects want to stay underdetected all time, they must con-
stantly improve, change and mask their products. Because of this, malwares
mutates and perpetually changes its characteristics. Due to this fact, more
malwares of the same strain, purpose and the infection target, produced with
a longer time interval, may have completely different attributes. This fact
creates extensive non-stationarity in the data from a long-term perspective
on the problem. For this reason, the instances that the model considers
essential for classification also change, and their values may be affected by
the particular dataset used.

This thesis is organized as follows. The Part I includes two chapters
(Prior art and Proposed approaches) in which are compared approaches
of classification. The Prior art chapter deals with the approaches from
the computer vision and sequences classification. The Proposed approaches
introduces new methods for approaches from the prior art. Next this chapter
describes the concept of multiple-instance learning and introduces the new
method of classification using hieararchical multiple-instance learning. The
Part II includes three chapters (Results, Interpretations and Conclusion),
which summarize the results and interpretations of the individual approaches.

5

6

Part I

Compared approaches

7

8

Chapter 2

Prior art

At the state of the art, malware communication is often classified using com-
puter vision methods or sequence processing methods. These methods have
in common that they convert packets flows of different lengths into samples
of constant dimensions. From the heterogeneous input data, homogeneous
samples must first be obtained by initial preprocessing.

2.1 Visual representation classification

The first approach to solve the introduced problem verifies the solution
presented by Bendiab et al. in [4] and [5] proposing a novel IoT malware
traffic analysis. The method consists of converting a complex problem into an
easier-to-solve problem in the field of computer vision or machine perception.
Hence, the first part of the research lies in malware network communication
classification through a visual representation (transformation into images)
of packets captured files. The method’s goal is to convert a problem of
hierarchically formatted (time dependent) data classification into a problem
focusing on classification of images in computer vision. The incoming pcap
(packet capture) files are converted into images by the Binvis tool (more
detail in appendix A.1) [6]. Binvis treats the network capture as a sequence
of bytes and convert this one-dimensional sequence to two-dimensional image
using space filling (hilbert) curves. Simultaneously with the mapping, bytes
that are close in packets are projected onto pixels close in the image. The
possible disadvantage of the method is the fact that the hierarchisation is
completely neglected here. If its unique communication structure typically

9

2. Prior art.......................................
characterises the malware, this fact is unlikely to be sufficiently highlighted
in the visual representation.

Figure 2.1: Examples of Binvis images of malwares.

The figure 2.1 shows the examples of the encoded communication of various
malwares. Malware traffic images include a predominance of black pixels (null
bytes) or blue (ASCII readable) in some images’ parts. Compared to this,
cleanware traffic images do not contain any clusters of monochromatic pixels
or any characteristic patterns. For example, Emotet (specifically malware
that generates a macros-using document) is similar to Scareware malware
in blue patterns. That is caused by a larger volume of downloaded human-
readable text data. This preprocessing enables to use plethora of methods
from the field of computer vision. The figure 2.1 shows, that these 2D
images of network traffic of different malwares can be easily recognizable by
naked eye. In machine learning is generally the most common application

10

...............................2.2. Classification of sequences

a computer vision, so this method has a tremendous advantage in accessing
many different libraries and architectures designed to process visual data.
Bendiab et al. states that the best accuracy is achieved by residual neural
networks. Bendiab et al. state that although ResNet50 accuracy is above
92% on binary classification, there was a problem with the convergence of
the training data during training.

2.2 Classification of sequences

The second approach of this thesis considers network connection as a time
flow of non-hierarchical data. This research’s primary goal is to verify if the
time dependencies in sequences of network communication plays a role in the
classification of infection. The secondary goal is to identify which part of the
packet (header or data body) is considered more important by the neural
network model.

A packet is a block of information written in bytes. Their flow can thus
be formally expressed as an ordered tuple of vectors whose items correspond
to bytes. The solution methods work with these ordered tuples of vectors.
The initial problem that had to be solved lies in the number of packets’
inhomogeneity and flows dimensions. Data inhomogeneity makes it difficult
to use convolutional neural networks (preprocessing such as interpolation
would be needed). Furthermore, too long a packet flow length would place
a significant burden on computing power when training recurrent neural
networks. The elimination of that problems lies in setting the threshold
hyperparameters for the input flows and packets. The first n packets of the
flow are considered as input data, and the rest will be truncated. Furthermore,
at the same time, setting a uniform fixed length for each packet (if the packet
is shorter than the set limit is zero-padded). The two steps mentioned above
give samples of fixed dimensions to which convolutional and Long Short Term
Memory recurrent neural networks can be applied without the need for further
preprocessing. At the same time, it can affect the computational demands
during training.

Bernaille et al. in [7] performed network traffic classification with only the
first five packets of the flow. Lin et al. in [8] states that traffic classification
could be based on only headers of packets - packet payload may be completely
ignored. Gonzalo Marín, Pedro Casas Germ and Germán Capdehourat in
the [9] presented the method of solving detection using only convolution.

11

2. Prior art.......................................

Figure 2.2: Marín et al. network.

Marín et al. state that model with more convolution layers started to overfit
quickly. After the gradual reduction of parameters through removing model’s
layers, the final network 2.2 consists of a 1D convolution layer (processing
individual packets) followed by two fully connected layers. The model is
simple and needs a large dataset for its proper generalisation (Marín et al.
used a dataset of 67,000 samples). Requiring a large dataset is a significant
problem with this method.

Thapa and Duraipandian in the [10] presented the approach implementing
Long Short Term Memory recurrent neural networks. The feed-forward neural
networks can only very poorly detect the interdependencies between elements.
The long-term dependencies in series are thus lost. The Long Short-Term
Memory (LSTM) used instead of feed-forward neural network could solve that
problem (described in more detail in appendix A.6). Thapa and Duraipandian
proposed architecture with LSTM nodes and fully-connected layer.

Figure 2.3: Thapa and Duraipandian network.

In 2.3 the fixed sizes packets flow enters an embedding layer; then is
placed LSTM node (processing packets as features of timestamps) and a
fully-connected layer.

12

Chapter 3

Proposed approaches

3.1 Proposed approaches in visual representation

Due to the poor convergence of models with a high number of parameters
presented by Bendiab et al. this work proposes another classifiers. However,
the data for the proposed methods are preprocessed in the same way (conver-
sion of packet flows into images) as described in the prior art chapter. The
aim of the newly proposed methods is to perform the classification with a
model that has fewer parameters and thus avoid overfitting.

3.1.1 k-NN

The first approach was to perform the k-NN classifier, which is considered the
simplest classification method in machine learning and data mining (Asim and
Zakria [11]). The fundamental advantage of k-NN over other classification
methods and especially over neural networks lies in the fact that it is a lazy
learning because there is no need to build a model. The main problem is
how to define the metric between samples. The problem in choosing the
right metric for the k-NN classifier in machine perception is that for some
metrics (such as L2) only a tiny difference in the image’s pixels changes
the sample’s distance from the origo. Suppose a visually apparent anomaly
characterises a malware class in the image. However, the event occurs in a
different (temporal) part of the communication than in the training data. In

13

3. Proposed approaches
that case, the anomaly is also encoded in another part of the image. In this
situation, the nearest neighbour classifier may fail because other validation
data samples than those that are part of the training set become the proper
classification information’s bearer. A possible solution to this problem could
be to use maximum cross-correlation as a metric.

3.1.2 Neural networks

The second approach of classification was based on the usage of convolutional
residual neural networks. Convolutional neural networks are among the
most common ways to classify problems with images as inputs and recognise
specific patterns (such as face recognition) while preserving information about
their positions (described in more detail in appendix A.3.1). The choice of
residual neural networks A.3.2, introduced by He et al. in [12], was due to
they may solve the problem of vanishing gradients. In this approach were
compared two ResNet architectures that have significantly fewer parameters
than the proposed ResNets by Bendiab et al. The first network, ResNet18,
is an architecture with 11,188,941 parameters (11,180,999 trainable). The
second network, Resnet_s (“s” means “smaller”), is an architecture designed
because of the need to have a residual network with fewer parameters (467,661
parameters, 466,119 trainable) to prevent overfitting.

Experimental settings. The networks are built in Keras-TensorFlow with
usage of Classification models Zoo library [13]. Both networks has an input
image of shape (256, 256) and an output vector of four classes. Networks’
training was performed with Adam optimizer, which is one of the most
common optimizer algorithms used to update network weights parameters
based on a training dataset. The algorithm combines Adaptive Gradient
Algorithms (AdaGrad) and Root Mean Square Propagation (RMSProp). As
a loss function was used the Cross Entropy. It is a good and common used
loss function for classification problems, because it minimizes the distance
between two probability distributions - predicted and actual.

14

..................... 3.2. Proposed approach in classification of sequences

3.2 Proposed approach in classification of
sequences

Figure 3.1: Proposed network with LSTM.

In order to improve the accuracy of the classification even when training on a
small dataset, there was changed the concept of neural network architecture.
The idea was based on the architectures of the previous researches, but the
network was split into two streams, which handle the same input (CNN-LSTM
combined architecture). The streams (CNN and LSTMs) are connected to the
last decision-making layer. Given that two completely different methods are
processing the input information, the model has gained greater robustness.
The combined model returned better accuracy results than separate usage of
CNN and LSTMs models.

The first stream of the network contains a sequence of stacked recurrent
LSTM blocks and handles time dependencies between packets. The second
part of the network implements a sequence of 1D convolutions terminated by
global average pooling, thereby processing the packets’ contents. The streams
are concatenated and followed by a fully-connected layer with softmax.

15

3. Proposed approaches
Packet inhomogeneity and extent of their flow make the approach a signifi-

cant load in hardware memory requirements during training of the network.
For this reason, it was forced to select the sample only the first n packets
from each stream. At the same time it was decided to choose a threshold of
k bytes for each packet.

Experimental settings. The training was performed with Adam optimizer
with the preset learning rate 10−4 and Cross Entropy loss. According to
the histograms of packets and flows in the introduction problem statement
was choiced to set first hundred of packets as input data, which means that
the method only examines the effect of the type of infection on the infected
computer’s initial communication. Since, according to the packets histogram,
the largest representation is up to two thousand bytes in packet length, and
from five thousand bytes the packet frequency decreases significantly, the
bytes threshold was set to 4096.

3.3 Multiple instance learning and hierarchical
concept of network communication

Given that the presented problem can be formulated by a hierarchical struc-
ture, by generalizing multi-instance learning into hierarchical multiple-instance
learning, it is then possible to build neural networks that accurately reflect
the data structure of the problem. The leaves of such a graph then correspond
to the instances in hierarchical multiple-instance learning.

3.3.1 MIL overview

Solving problems that deal with real-world data is very difficult to describe by
fixed size numerical vectors or tensors. Problems can lie in the incompleteness
of available data or inhomogeneity (heterogeneous data can be represented
by vectors of different lengths). Most traditional approaches in machine
learning (such as convolutional neural networks) can not be easily used or
do not make sense in solving such a problem. That problem can be partially
or sometimes completely solved with the help of multiple-instance learning.
Multiple-instance learning (MIL) is a type of supervised learning. The first
concept of MIL, Learning with many irrelevant features, was introduced
by Dietterich et al. in 1991 [14]. Dietterich et al. also introduced MIL in

16

........ 3.3. Multiple instance learning and hierarchical concept of network communication

[15]. In the standard typical machine learning technics are input samples
represented by tensors or vectors of fixed dimensions; however, as opposed to
that, Multiple-instance learning samples are sets of tensors and vectors. In
the MIL terminology, these sets are called bags, and contained vectors are
called instances. There exist labels for each instance, but these instance-level
labels are not known, even during the training. The known labels (ground
truth information) are available only on the higher level of samples (bags).
Let b be a bag from a bag space B; let be y its label from a finite set C and
xi instances in the bag from come from instance space X , then

b = {xi ∈ X |i ∈ {1, ..., |b|}}. (3.1)

Based on the above terminology, in multi-instance learning, the model is
defined as mapping f : B(X) → C. There are three approaches of bag
classification: instance-space paradigm, bag-space paradigm and embedded-
space paradigm (Pevny and Somol in [16], Tibo et al. in [17]).

Instance-space paradigm

In the instance-space paradigm is the classification function trained on the
level of raw instances in the meaning f : X → C (Carbonneau et al. in [18]).
An aggregation function gives the result of classification:

f(b) = g({fI(~x)}~x∈b), (3.2)

where fI is a instance-level classifier. In the standard MIL assumption is the
aggregation function defined as a max function. This choice implies for a
binary classification that a positive bag contains at least one positive labelled
instance. The model is then designated as

f(b) = max
~x∈b

fI(~x). (3.3)

Frank and Xu [19] introduced a mean aggregation function that averages the
sum of probabilities of all classes determined by the instance-level classifier
by the number of instances in the bag.

g({fI(~x)}~x∈b) = 1
|b|

∑
~x∈b

fI(~x), (3.4)

where |·| denotes the cardinality of a set. This way, the average class belonging
to the bag is obtained.

Generalization leads to problem-solving when a bag class is identified by
mutual interactions of certain instances or accumulating several instances
(Foulds and Frank [20]).

17

3. Proposed approaches
Bag-space paradigm

The bag-space paradigm is defining principle which assumes an existence of a
function measuring the similarity of samples. Based on their similarity, the
classifier makes the decision. This corresponds to mapping from bag space to
labels space f : B → C. For machine learning methods based on the existence
and meaningfulness of a normalization function (k-NN classifier or SVM) to
be used for bag classification, the distance between two elements (bags) must
be defined in the given space as a distance function dst : B×B → R+

0 . Unlike
the instance space, bag space is not very often expressed in Euclidean space.
Assuming that instance-space has metrics in place, the following relationships
can be used, for example, to calculate bag spacing.

Let bi be a bag of instances xij . Earth Mover’s Distance (EMD) is defined
as

dst(b1,b2) =
∑

~x1∈b1

∑
~x2∈b2 wx1,x2 ‖x1 − x2‖∑

~x1∈b1

∑
~x2∈b2 wx1,x2

, (3.5)

where the weights wx1,x2 are gained through an optimization process that
minimizes the introduced function (for example, using the simplex method).
The minimal Hausdorff distance is defined as a distance between the two
nearest instances of the two bags.

dst(b1,b2) = min
~x1∈b1, ~x2∈b2

‖ ~x1 − ~x2‖ (3.6)

Thanks to the metrics introduced in this way, the k-NN classifier or a
kernel-based classifier such as support-vector machines at the bag level can
be used (J. Amores in [21]).

Embedded-space paradigm

Unlike the Bag-space paradigm, which defines the distance between bags
according to the instances’ distances, the embedded-space paradigm performs
the explicit mapping from bag-space to the feature space in a way µ : B → Rn.
The feature vector carries information that is essential for the characterization
of the bag. Space to which the vector belongs is constructed as a Cartesian
product of partial mappings of the bag b ∈ B.

µ(b) = (µ1(b), ..., µm(b)) (3.7)

18

........ 3.3. Multiple instance learning and hierarchical concept of network communication

The selection of the information depends on the used mapping function. Lin
Dong [22] proposed the Simple MI method (also proposed by Bunescu and
Mooney [23]), that maps each bag as an average of its instances.

µ(b) = 1
|b|

∑
~x∈b

~x (3.8)

Gärtner et al. in [24] propose a max-min vector strategy

µ(b) = (µ1,1(b), ..., µ1,m(b), µ2,1(b), ..., µ2,m(b)), (3.9)

where

µ1,i(b) = min
~x∈b

xi (3.10)

and

µ2,i(b) = max
~x∈b

xi. (3.11)

The advantage of the above embeddings lies in their very low computational
complexity, but they do not always prove to be ideal for distinguishing bags
with differently structured instances. Vocabulary-based methods provide
solutions. They consist of determining predefined patterns of typical bags
and their structured instances. Instances are then compared to how well they
match their patterns. The degree of similarity can be calculated either as the
distance of instances from their patterns. That is the Distance-based method.
The partial mapping function is defined as

µi(b) = min
~x∈b
‖~x−Θi‖ , (3.12)

where the Θi is the corresponding pattern for instance ~x. Another way to
grasp the solution to the problem is histogram. When assembling it, the
distances of the instances from the corresponding patterns are not measured,
but the degree of similarity is measured based on some likelihood function.
The histogram is in a form ~v = (v1, ..., vn), where vi corresponds to the partial
mapping

vi = 1
z

∑
~x∈b

l(~x,Θi), (3.13)

where l is a likelihood function normalized by z constant (J. Amores in [21]).

Adapting neural networks to MIL

There were introduced multiple-instance learning approaches. Along with
this, the following have been introduced: a function for classifying individual

19

3. Proposed approaches
instances fI(~x,ΘI) (with parameters ΘI and input instance vector ~x), an
aggregation function g, which is a necessary part of a partial mapping in
the embedded-space paradigm, and a bag-level classifier fB(x̄,ΘB) with
parameters ΘB. Pevny and Somol introduced the MIL model in [16], in
which individual instances are first mapped at the lowest level. The obtained
intermediate results pass through the element-wise aggregation function. As
the last step, the information will be processed using the network as a bag-level
classifier. The formal expression of the process described above is:

x̃i = fI(~xi,ΘI)

x̄ = g({x̃i}|b|i=1,Θg)
y = fB(x̄,ΘB)

(3.14)

The main advantage of the method presented by Pevny and Somol is the op-
timization of the classifier at the same time as the optimization of embedding.
Their method performs the calculation recursively. It assigns instances to the
computational tree and then sequentially from leaves (instances) performs
calculations toward the root node.

3.3.2 HMill overview

As mentioned in the introduction, network communication is a set of hierarchi-
cal data; hence was used the HMill framework (Hierarchical multiple-instance
learning library; described by Simon Mandlik in 2020 [25]; created by Mandlik,
Pevny and Racinsky [26], [27]) to model them and generate a neural network.
HMill was created by generalizing the multiple-instance learning described
above. It accurately takes into account the hierarchical structure of the
problem, using the MIL paradigms. The input data can be organized into the
hierarchical structure, which is reflected by the model. The structure consists
of nodes, which together form a tree-type graph. The tree leaves process
input instances (low-level raw information). The middle part of the model
is is responsible for processing abstract intermediate results and the root of
the tree model corresponds to the model output. The evaluation takes place
gradually from leaves to roots - parents are waiting for the results processed
by their children. Thus, it is a tree-based computational graph, where each of
the partial functions is differentiable from its inputs (Pevny and Dedic [3]).

20

........ 3.3. Multiple instance learning and hierarchical concept of network communication

Figure 3.2: A transformation of JSON into a HMill sample.

The figure 3.2 shows an example of the transformation of hierarchically
structured data from JSON to HMill sample. All instances (leaves of the
computational graph) are mapped into array nodes an() with mapping hi

(n-gram histograms, one-hot encoding, identity mapping). Array nodes are
stored into product nodes pn(). Product nodes enable as inputs nodes of
different types. Bag nodes bn() enable as inputs only nodes of the same
type. Individual mappings between nodes may use different layers (or neural
networks) and different aggregation functions.

Array Node / Model

All low-level input information is stored in Array nodes. Input data can
be very variable - it can be boolean variables, text strings, numbers, arrays
or any other categorical variables. Various procedures are used to encode
inputs into a mathematically graspable vector form. Boolean is converted
as a binary value using one-hot encoding. Text strings are encoded using
n-gram histograms 1. Numerical vectors are themselves in Euclidean space
elements, and thus identity mapping is entirely sufficient for their conversion.
Categorical variables are processed using one-hot encoding. The above
methods transform the input instances into a numerically graspable form and
store them in an Array Node. The process of mapping to Euclidean space is
defined as the Array Model.

1An n-gram is defined as a sequence of n consecutive arbitrary items from a given series.

21

3. Proposed approaches
Bag Node / Model

Bag Node is an analogous concept of storing information to the concept of a
bag from multiple-instance learning. A Bag Node can contains various items
of exactly the same type. The count of items can be arbitrary (it can also
be an empty set). If all elements come from the instance space (these are
the tree model leaves), they are stored in array nodes. Elements that are
themselves trees are stored in bag nodes. The Bag Model bm(fI ,g,fB) is a
composition of Bag Node elements models (processed by fI), an aggregation
(element-wise) function g and bag mapping fB (transformation into the target
space). The Bag Model applies the same mapping to all its children.

Product Node / Model

Product Node (it is the Cartesian product) joins and combines heterogeneous
data from various sources - whether other Product Nodes, Array Nodes or
Bag Nodes. Product Node accumulates data (hierarchical trees) with different
structure, meaning and type. Product Model pm(f1, ..., fn, f) analogously
to Product Node contains submodels of various types. Unlike the Bag Model,
it can apply a unique mapping function fi to each submodel. The results of
these mappings are concatenated and transformed by the f function into the
target space.

3.3.3 Proposed hierarchical models

As mentioned above, HMill is a purely hierarchical approach to solving the
given problem. The disadvantage of this method is the loss of information
about the time sequence of packets. The pattern of network communication
in this method can be interpreted as a continuous graph without loops - a tree
whose root represents the monitored system or sandbox. Formally written:
let G(V,E) be a tree graph, V be a set of all vertices and E set of edges. Let
R be the root of the tree and W be the set of all its neighbours (W = V \R).
All vertices Wi of the graph G(V,E) represent the systems communicating
with the monitored sandbox. The degree of the vertex that is the root R of
such a graph is equal to the cardinality of the set of all communicating IP
addresses (figure 3.3).

22

........ 3.3. Multiple instance learning and hierarchical concept of network communication

Figure 3.3: Communication representation.

All vertices from the set V are uniquely identifiable by their IP address.
Each Wi vertex is a subroot of the tree subgraph, which carries information
about the communication between Wi and the main root R (packets content).
Depending on the available data and considering their hierarchical structure,
different models can be designed.

JoyHMill

In the first approach, there is the network traffic represented in the same
way as is provided by JOY tool [28]. The data contain information on the
total volume of bytes transferred between the monitored computer and the
communicating server, the total time of their mutual communication and the
number of packets. Packets are identified, by the unique number, in the flow
and are simultaneously written in the two variants of structures. The first
variant divides them into two groups according to the direction of their flow.
The second variant collects an array of all packets. There are assigned the
properties of the packets: data part bytes, direction, and the time within the
stream. The main difference between this approach and the following is that
Joy is numbering packets (in the following approaches, packets are only in
the form of an unordered set).

23

3. Proposed approaches
L-HMill

The second approach (Larger schema HMill) structured the data differently
from the first one - it assigned only a packet array to each communicating
node Wi. The 3.4 schema shows a modeled tree. The Wi vertex has got as
its children vertices the pakets sent between monitored root computer R and
Wi. Each packet, as its children, contains a set of properties that describe
itself (DNS record, UDP, TCP, IP). These properties have as children input
instances.

Figure 3.4: L-HMill schema.

In addition to packet length information and communicating ports, the
tree also contains the information provided by DNS servers in the form of a
DNS record. DNS records determine which services run on a given Internet
domain and the appropriate type activates the service and sets its parameters.
It can be used (among other) for the following purposes.

. Translating the domain to the specific IP address.. Specification which certification authority (CA) can issue the SSL cer-
tificate about domain. It ensures a response from the authoritative DNS

24

........ 3.3. Multiple instance learning and hierarchical concept of network communication

server and not from another server whose response could be fraudulently
pushed to the computer.. An indication of which domain server manages DNS records.. Specify information about available services on the domain.. Determining to which mail server is the domain routed.

S-HMill

The third approach (Smaller schema HMill) structured the data in the same
way as the L-HMill approach. The only difference is that this method does
not consider a DNS record and therefore it is a model with significantly fewer
parameters, which can save computing time.

Experimental settings. In all models there were used as instance-level
classifiers dense layers to process information from tree leaves inside the
array models. Also, bag models and product models have dense layers set
as classifiers with twenty neurons per layer and ReLU activation functions
(benefits of ReLU are sparsity and a reduced likelihood of vanishing gradient).
Furthermore, in order to increase the accuracy of the classification it was
experimentally tried to use a residual network and a neural network containing
a dropout instead of a single dense layer as product and bag models classifiers.
But this did not affect the accuracy and only slowed down convergence.
Mean-max (concatenation of mean and max) was chosen as the aggregation
function. The choice of mean-max is such as it is not clear whether one of
the most important instances of the bag is more important for classification,
or whether it is more appropriate to identify the global trend of the bag.
Cross Entropy (well used in classification problems) was chosen as the loss
function and Adam as the optimizer. The training was performed on 400
epochs, because the convergence was very slow.

25

26

Part II

Results and conclusion

27

28

Chapter 4

Experimental results and conclusions

4.1 Results

The training dataset consisted of 342 malware samples (the validation con-
sisted of 84 samples), and samples were split into four classes. The malware
dataset is described in more detail in the appendix B.

4.1.1 Visual representation

When verifying the use of computer vision, the first approach was a k-NN
classifier with metrics p-norm and maximum cross-correlation. The following
graph 4.1 shows that the best accuracy for validation is achieved by the k-NN
classifier for k = 5 using the euclidean distance - the best accuracy is 41.75%
(for comparison, the random choice classifier has got an accuracy of 25%).
The second approach was the application of residual neural networks. The
ResNet50 and ResNet34 networks have been (during replication of Bendiab
et al. approach) highly overfitted. Although networks with a smaller number
of parameters also had a problem with overfitting, they already achieved
better results. The ResNet18 has over validation dataset accuracy of 45.99%.
As is visible in the figure 4.2, the ResNet18 has a problem with overfitting.
The training accuracy is in thirty epochs, almost at 100%; however, the
validation accuracy oscillates all along. Very similar behaviour can also be
observed on the loss curves. During the fluctuation of the validation accuracy

29

4. Experimental results and conclusions
curve, the method gets into the local minima. In the process, the best result
has a minimum in the sixty-fifth epoch. ResNet_s converged significantly
better than ResNet18 but had significant problems exceeding the validation
accuracy of 45%. Because learning a neural network with an Adam optimizer
is a stochastic method, different pieces of training can produce different
results. After several repeated learning, the model converged to a point with
parameters that ensured a validation accuracy of 55.3%. As shown in the
figure 4.2, the training accuracy is forty-three epochs, almost 100%. Although
the training loss curve has only changed in the order of hundredths since then,
the validation loss is still slightly decreasing to a local low in the sixty-second
epoch.

Figure 4.1: k-NN: accuracy.

Figure 4.2: ResNets epochs.

30

....................................... 4.1. Results

4.1.2 Classification of sequences

In the first approach in classifying data sequences (replication the approach
designed by Marín et al.), the model did not converge at all (nor on training
data). The model could not distinguish the features of the instances from
the noise; this failure could be attributed to the defect of dataset (dataset
size or poorly collected data). Model processing data using LSTM and FC
layer could not exceed 36% validation accuracy. Although it is more accurate
than the random classifier, it is still significantly less than the accuracy of
the k-NN classifier used in the visual representation approach. The problem
is highly probably caused by the too small dataset.

Figure 4.3: CNN-LSTM combined architecture epochs.

The newly designed, CNN-LSTM combined architecture achieved in classi-
fying packet flows much better results. As can be seen from the chart 4.3, the
training accuracy converged relatively stably, but the validation data did not
exceed (even after repeated learning attempts) the accuracy of 53.25%. The
biggest problem with the classification was with Ransomware, which confused
the model with SMSMalware. From this, it can be concluded that the initial
phase of communication with this two malware is similar. Simultaneously,
according to the achieved results, it can be assumed that Scareware has a
typical initial communication for its class.

31

4. Experimental results and conclusions
4.1.3 HMill

The JoyHMill neural network (built according to the first approach based
on data from CiscoJoy) did not converge even on the training dataset. The
second and the third approaches to modelling hierarchical data (L-HMill and
S-HMill) showed better results on both the training and validation datasets.
Due to the slow learning of neural networks, training was stopped prematurely
after 400 epochs. The larger model (L-HMill) reached an accuracy of 100%
on the training data and 82.75% on the validation accuracy. The smaller of
the models (S-HMill) achieved a training accuracy of 96.67% and a validation
accuracy of 86.96%. Since the models differ only in the DNS part, it can be
concluded that the DNS record slightly negatively affects the classification.
Above all, however, it is a good knowledge that a model containing less
input information achieves sufficient results (more than three times better
accuracy than a random classifier) and thus computational time can be saved
considerably.

Figure 4.4: HMill epochs.

4.1.4 Summary

class accuracy

model Adware Ransomware Scareware SMSMalware average
accuracy

5-NN (L2) 0.25 0.77 0.24 0.41 0.42
ResNet18 0.55 0.50 0.43 0.36 0.46
ResNet_s 0.40 0.55 0.43 0.83 0.55
CNN-LSTM 0.67 0.19 0.77 0.5 0.53
S-HMill 0.67 0.89 1.00 0.92 0.87
L-HMill 0.56 1.00 0.87 0.88 0.83

Table 4.1: HMill: accuracy on validation dataset.

32

.................................... 4.2. Interpretations

4.2 Interpretations

4.2.1 Interpretation of visual representation

The task is to classify images. The visual explanation algorithms, such as Grad-
CAM or SHAP, will serve to create attention maps and gain knowledge which
parts or regions of images are essential for each class. The SHAP method’s
implementation did not show any significant focus of neural networks on the
features of entities. According to Grad-CAM (figure 4.5), ResNet18 focuses,
in addition to corners, on practically the entire image. That could indicate
that the model is too complex for the problem and dataset size. In contrast,
heatmaps for the ResNet_s model already show some differences. However,
the disadvantage, is that it is not easy to read from the heatmap which
parts of the network communication are essential for the attribution. The
transformation of the input data is performed to gain fixed-sized images so
that some bytes are skipped. Therefore, performing decoding of images back
to pcap (packet capture) files would not be possible. Thus it is impossible to
decide whether the infection types differ in the header of the packet or its
data part, nor if some IP addresses are typical for infection.

Input ResNet18 ResNet_s

Adware

Scareware

SMSMalware

Figure 4.5: Grad-CAM heatmaps

33

4. Experimental results and conclusions
4.2.2 Interpretation of sequences classification

The task is to classify inputs in byte format, so the samples could be screened
as grayscale images (figure 4.6). The results of the Score-CAM algorithm
show that the most important for the CNN-LSTM combined architecture are
headers (visible in the left part of explanation images) of all packets, as well
as complete packets with a large (above-average) data part. The headers of
packets can contain enough information for classification. That is the crucial
knowledge that can reduce the memory load of the input information. This
information could be also used in data preprocessing to build hierarchical
models.

(a) : Adware: input

(b) : Adware: heatmap.

Figure 4.6: Example of Score-CAM interpretation.

4.2.3 Interpretation of HMill results

The best accuracy on validation data was achieved by the S-HMill model.
For this reason, it was examined which artefacts are targeted by that model.
According to the results of the explainer based on Shapley values, the neural
network focuses on IP addresses. The proper classification probably depends
on the combination of particular IP-ranges or may-be even depends on a
combination of particular IP addresses. This finding is consistent with the
results of the CNN-LSTM network, which considered packet headers to be
essential. The following figures 4.7 and 4.8 show heatmaps of the geographical
affiliation of IP addresses according to the whois service.

34

.................................... 4.2. Interpretations

The United States has the most frequent representation, both among all
IP addresses in the dataset (63%) and among IP addresses focused by the
model (55%). This is most likely due to the fact that approximately 35.9%
of all IP addresses in the world are located in the United States [29]. Servers
in the USA run a large number of ordinary (clean) services. Nevertheless,
precisely, for this reason, it is effortless for an attacker to hide among them,
and the effectiveness of state control decreases, of course. The fact that C&C
malware servers are hidden under cloud hosting services proves that 48% of
targeted addresses are related to servers belonging to Google, Microsoft and
Amazon.

In addition, China, Russia, Canada and Japan were frequently represented
countries, but orders of magnitude less than the USA. The differences in the
frequency of country representation within the different malware classes were
not significant.

Figure 4.7: Malware dataset IPs heatmap.

Figure 4.8: Malware dataset heatmap of IPs targeted by the S-HMill model.

35

36

Chapter 5

Conclusion

This thesis introduced one approach of malware network communication clas-
sification and compared it to two others. The visual representation approach
proposed a non-hierarchical method to solve malware detection’s hierarchical
(time-dependent) problem. The method has less memory requirements for the
hardware but at the cost of losing information while preprocessing. Classifying
flows of packets as time sequences required such high demands on hardware
that it was necessary to reduce the largeness of packets’ flow significantly.
Therefore, the time sequences method cannot be considered appropriate. The
approach of hierarchical modelling neural networks that precisely reflects the
input data structure yielded the best results. The significant advantages of
this approach lie in that it simultaneously optimizes the classifier and the
embedding. Building a computational graph enables to the solution precisely
filter significant instances from the others. Given that HMill models targeted
mainly IP addresses, it can be said that IP addresses are the main carrier of
information for the classification of malware communication.

Extending HMill with the ability to process hierarchical structures as a
time sequence would significantly increase the hardware requirements for
neural network training. A much more interesting future direction for the
research is applying HMill to a fragments of the Internet - modelling a general
graph with loops (not a network with a star topology). The model could then
not only be able to classify the infection on a separate computer but would
also be able to detect suspicious structures within a part of the computer
network.

37

38

Appendices

39

40

Appendix A

Background on tools

A.1 Binvis

Binvis is a toll for images representation of binary files. It samples the
pcap (packet capture) files’ content at regular intervals and translates each
sampled byte into the output image’s pixel. In the basic version, it compresses
the content of packet capture files into the four classes. By ASCII value
of a sample, the black colour corresponds to 0x00 (null), white to 0xFF
(non-breaking spaces), the blue colour represents printable characters, and
the extended ASCII bytes are assigned a red colour. The advanced version
produces RGB images by clustering a 3D colour cube by Hilbert curve sets.
There are three methods of arranging pixels (and sampling the original input
file) in that tool. The first one is the Zig-zag, which lay the pixels row by
row. This method has a low complexity (so it is quick); however, there is
a problem with small scale features (the method tends to skip them). The
second method, Z-order, partially avoids the previous problem. It is not the
optimal solution, but the advantage (calculation speed) remains the same as
in the first solution. The third offered way, the Hilbert curve, is as good as
possible to get locality preservation at the cost of more complex calculations.

The following equation applies to the Hilbert curve that

s = 2p·n, (A.1)

where s is a count of sampled points, p is an order of the curve and n is a
dimension of the curve. In this research are used squared (two dimensional)
images of size 256x256 pixels, so the needed order of curve (p) is 8.

41

A. Background on tools
A.2 k-NN classifier

A necessary condition for using k-NN is the existence of a norm function over a
given data space. The class is assigned to the instance based on its distance to
other neighbouring instances from the previous (training) dataset. In contrast
with model-based learning algorithms, instead of model parameters, are all
training data kept in memory. That is why it is crucial to have a balanced
dataset of training samples for the classification’s correct functionality.

The method with the k-NN classifier tested the application of the metrics
below.

. The Manhattan metric is defined as: ‖~x‖1 =
∑n

i=1 |xi|.. The standard euclidean metric is defined as:
‖~x‖2 =

√
x2

1 + ...+ x2
n =
√
~xT~x.. The uniform norm also called as Chebyshev metric is defined as:

‖~x‖∞ = limp→∞ ‖~x‖p = max{|x1| , ..., |xn|}.. The maximum cross-correlation metric is defined as:
max((f ? g)[n]) = max(

∑∞
m=−∞ f [m]g[m+ n]).

A.3 CNN, ResNet

A.3.1 Convolutional neural networks

Convolutional neural networks are primarily used in computer vision applica-
tions such as segmentation, captions recognition, classification, and image
anomalies detection. It is a sequence of many layers which architecture
depends on the purpose of usage. The main components of convolutional
network architecture are bellow:

.Convolutional layer applies a kernel mask (convolutional matrix) on

42

.................................... A.3. CNN, ResNet

an input matrix in a way (2D convolution):

g(x, y) = bias(x, y) +
a∑

dx=1

b∑
dy=1

µ(dx, dy) · f(x+ dx, y + dy), (A.2)

where f(x, y) is an input feature map, µ(x, y) is a kernel mask of sizes
(a, b)..Activation function is a threshold that adds a non-linearity into the
network; it checks if the input is higher than a critical value..Pooling layer is an operation that slides a filter over the feature map
channels and selects a valid value (by predefined rule - max / min /
average) from the covered region. Pooling layer reduces the dimensions of
the feature map; that implies reducing the count of parameters to learn,
and the amount of computation. In contrast with convolution, pooling
does not consider the exact position of the feature in the map. Thanks
to, the model is more robust and resistant to minor input changes.

There are two main problems in learning during the backpropagation for
convolutional neural networks without any skip-connections. There is a need
to compute a partial derivative of the error function. Due to the chain
rule, multiplying many (according to the count of layers) small numbers will
become zero. In the case derivative of the loss function is a high number,
multiplying many high numbers leads to infinity. The first problem is the
vanishing of gradients, the second one the gradient explosion. If the gradient
becomes too small and almost zero, it does not occur to update the early
layers. It leads to a state when algorithm is only learning the last layers of
the network - parameters (of the last few layers) are adapting to the training
data.

A.3.2 Residual neural networks

The residual neural network is one of the architectures of convolutional net-
works. To solve the problems described above residual neural networks include
skip-connections, which skip one or more layers in the network architecture;
that provides alternative paths for a gradient in backpropagation, but there
is a possible uncertainty with a convergence of learning. In ResNet are skip-
connections performed by more possible approaches. The first one, identity
mapping, is defined as

y = Φ(x,Wi) + x, (A.3)

43

A. Background on tools
where Φ(x,Wi) represents layers to be learned. In case there are chained more
convolutional bocks, there are inserted between them activation functions (in
ResNet ReLU) as

Φ(x,Wi) = Wi2σ(Wi1x), (A.4)

where σ is an activation function. The skip-connection itself is an element-
wise addition of input without any additional changes, but it requires the
same dimensions on the block’s input and output. When dimensions increase,
it can be solved by zeros padding. This principle adds neither an extra
parameter nor computational complexity or time-consuming learning. The
second approach performs a linear projection by the skip-connection.

y = Φ(x,Wi) + Θ(x,Ws), (A.5)

where Θ is a convolution with parameters Ws. This process can change
dimensions but at the cost of increasing the number of parameters.

A.4 CAM, Grad-CAM, Score-CAM

The CAM method (Class Activation Mapping) modifies the original network
by replacing fully-connected layers with a global-average-pooling layer and
a single dense layer before softmax (Zhou et al. [30]). Product nodes of
this modified network are output features maps. The class activation map
is computed as a linear combination of each feature map (equation below
express CAM heatmap for the class k).

Figure A.1: Diagram of CAM-network.

CAMi =
∑

k

wk
i Fk, (A.6)

where wk
i is a weight connecting the k-th feature map with the i-th class, and

Fk is the global-average-pooled output defined by

Fk = 1
Z
∑
m

∑
n

Ak
ij , (A.7)

44

.............................A.4. CAM, Grad-CAM, Score-CAM

where Ak is the k-th feature map at location (m,n). The possible problem
related to the CAM computation is that there might be a loss of spatial
information.

The Grad-CAM method uses gradient information flowing into the last
convolutional layer (between the last convolutional layer and softmax, there
can be any network). In contrast with CAM, where features maps com-
bination depends on weights of a single fully-connected layer, Grad-CAM
computes weights (parameters of the linear combination of features maps)
from gradient information (Selvaraju et al. [31]). The algorith has three steps
(implementation from [32] by Isaac Castro).

Algorithm 1 Grad-CAM algorithm

Input: neural network model, input image or tensor), label.
Output: heatmap according to the label...1. Let be yi output for the i-th class. The gradient for the feature map Ak

will be

∂yi

∂Ak
. (A.8)..2. The outputs of the global-average-polling will be

αi
k = 1

Z
∑
m

∑
n

∂yi

∂Ak
. (A.9)..3. The heatmap Hi for the i-th class is defined as

Hi = ReLU(
∑

k

αi
kAk). (A.10)

The improvement of the previous method is Score-CAM. In this method,
each activation map is used as a convolutional mask on the original input. The
acquired instances forward-pass the network model and create score-based
weights relative to classes. The Score-CAM result is a linear combination of
activation maps and score-based weights (Wang et. al [33]). Implementation
from [34].

45

A. Background on tools
A.5 SHAP

The SHapley Additive exPlanation (SHAP) method using Shapley values
assumes fairly distributing the prediction contribution among each feature
value of the instance (Strumbelj and Kononenko in [35]). The task is in how
each feature affects the prediction of the model.

Let S be a feature subset S ⊆ F , where F is the set of all features. The
fS∪{i} is a model trained with the i-th feature and the model fS is trained
with the feature withheld. The xs represents features values in the set S.
The Shapley value weight over all possible differences for the i-th feature is
defined by

Φi =
∑

S⊆F\{i}

|S|!(|F | − |S| − 1)!
|F |! [fS∪{i}(xS∪{i})− fs(xs)]. (A.11)

A.6 LSTM

The Long short-term memory (LSTM) is a type of recurrent neural network
with the ability to train and remember long addictions of information se-
quences. LSTM neural network is built with many chained repeating cells, as
is visible in the figure A.2 reprinted from [36].

Figure A.2: LSTM chain.

The LSTM cell has three entry instances: previous internal cell state vector
~Ct−1, previous output vector ~ht−1 and actual input vector ~xt. There are two
resulting instances: current internal cell state vector ~Ct and current output
vector ~ht.

46

....................................... A.6. LSTM

The first sigmoid from the left in the cell diagram A.2 is called the forget
gate layer, which decides how the previous internal state will be treated in
the current cell. The second sigmoid from the left and the hyperbolic tangent
block represent the input gate layer through which the internal state of the
cell is updated. The right part of the cell with the last sigmoid acts as an
output gate layer for calculating the output vector ~ht. The result depends on
the modified cell internal state vector and on the previous inputs (Fathi M.
Salem [37]).

Let be

~z = W i

(
~ht−1
~xt

)
+~bi, (A.12)

where ~bi is a bias and W i is a weights matrix. Then outputs are defined as

~ct = ~ct−1 � σ(~z) + tanh(~z)� σ(~z),
~ht = tanh(~ct)� σ(~z),

(A.13)

where � is a element-wise (Hadamard) product.

47

48

Appendix B

Dataset

The dataset comes from the Canadian Institute for Cybersecurity from 2017
[38], [39]. There are captured malware samples infecting smartphones with
the Android operating system. The dataset consists of many malware families
divided into four classes; a total of 429 samples B.1.

Malware label Total captured Family

Adware 104
Dowgin, Ewind, Gooligan,

Kemoge, koodous, Mobidash,
Selfmite, Shuanet, Youmi

Ransomware 101

Charger, Jisut, Koler,
LockerPin, Simplocker, Pletor,

PornDroid, RansomBO,
Svpeng, WannaLocker

Scareware 112

AndroidDefender, AndroidSpy.277,
AV for Android, AVpass, FakeApp,

FakeApp.AL, FakeAV,
FakeJobOffer, FakeTaoBao,

Penetho, VirusShield

SMSMalware 112
BeanBot, Biige, FakeInst, FakeMart,

FakeNotify, Jifake, Mazarbox,
Plankton, SMSsniffer, Zsone

Table B.1: Dataset division.

Arash Habibi Lashkari et al. performed capturing samples behaviour in
three steps to overcome the inconspicuousness and strategic behaviour of
more complex malware. The first one lasts 15 seconds after the smartphone’s

49

B. Dataset
first interaction with the malware (installing the application, downloading
the file, opening the link). The second part takes 15 minutes to reboot the
system. In the third part, the behaviour is captured after rebooting for 15
minutes.

The included classes:

.Adware is the software most often included in free ad-supported soft-
wares. It manifests itself in the form of automatically pop-up windows
and advertising accessories in the phone. In the case of a more compli-
cated infection, it can establish a connection with the Command and
Control servers, and in this way, more harmful malware can enter the
infected phone.. Scareware tries to gain the average user’s trust quickly or scare him in
shock about the threat to the device. It is typical in that it shows the
user a fictitious warning and offers a solution in a paid service. Scareware
bets its attack on human psychology, where panic behaviour leads to a
short-lived mistake on which the malware’s creator makes money..Ransomware blocks users or some files from users, requiring money to
unlock them.. SMSMalware uses a short message service containing a link to interact
with the user. This type of malware is one of the initial infections when
the infected device is allowed to communicate with the C&C server and
downloading suspicious files to the device (for example one of the above
types of malware).

50

Appendix C

Bibliography

[1] B. Collier, R. Clayton, A. Hutchings, and D. Thomas, “Cybercrime is
(often) boring: maintaining the infrastructure of cybercrime economies.”
[Online]. Available: https://www.repository.cam.ac.uk/handle/1810/
306682

[2] W. Stevens, TCP/IP illustrated. Reading, Mass: Addison-Wesley Pub.
Co, 1994.

[3] T. Pevny and M. Dedic, “Nested multiple instance learning
in modelling of http network traffic,” 2020. [Online]. Available:
https://arxiv.org/abs/2002.04059

[4] G. Bendiab, S. Shiaeles, A. Alruban, and N. Kolokotronis, “Iot
malware network traffic classification using visual representation
and deep learning,” 2020 6th IEEE Conference on Network
Softwarization (NetSoft), Jun 2020. [Online]. Available: http:
//dx.doi.org/10.1109/NetSoft48620.2020.9165381

[5] R. Shire, S. Shiaeles, K. Bendiab, B. Ghita, and N. Kolokotronis, “Mal-
ware squid: A novel iot malware traffic analysis framework using convo-
lutional neural network and binary visualisation,” pp. 65–76, 2019.

[6] A. Cortesi, “binvis.io,” Visualizing Binaries With Space-Filling Curves:
binvis.io. [Online]. Available: https://binvis.io/#/

[7] L. Bernaille, R. Teixeira, I. Akodkenou, A. Soule, and K. Salamatian,
“Traffic classification on the fly,” Computer Communication Review,
vol. 36, pp. 23–26, 04 2006.

[8] Y.-D. Lin, C.-N. Lu, Y.-C. Lai, W.-H. Peng, and P.-C. Lin, “Application
classification using packet size distribution and port association,”

51

https://www.repository.cam.ac.uk/handle/1810/306682
https://www.repository.cam.ac.uk/handle/1810/306682
https://arxiv.org/abs/2002.04059
http://dx.doi.org/10.1109/NetSoft48620.2020.9165381
http://dx.doi.org/10.1109/NetSoft48620.2020.9165381
https://binvis.io/#/

C. Bibliography
Journal of Network and Computer Applications, vol. 32, no. 5, pp.
1023–1030, 2009, next Generation Content Networks. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1084804509000484

[9] G. Marín, P. Casas, and G. Capdehourat, “Deepmal – deep learning
models for malware traffic detection and classification,” 2020. [Online].
Available: https://arxiv.org/abs/2003.04079

[10] K. N. K. Thapa and N. Duraipandian, “Malicious traffic classification
using long short-term memory (lstm) model,” Wireless Personal
Communications, 2021. [Online]. Available: https://doi.org/10.1007/
s11277-021-08359-6

[11] M. Asim and M. Zakria, “Advanced knn: A mature machine learning
series,” 2020. [Online]. Available: https://arxiv.org/abs/2003.00415

[12] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” 2015. [Online]. Available: https://arxiv.org/abs/1512.03385

[13] P. Yakubovskiy, F. Camargo, and G. Anand, “Classification models
zoo - keras (and tensorflow keras),” GitHub repository, 2019. [Online].
Available: https://github.com/qubvel/classification_models

[14] H. Almuallim and T. G. Dietterich, “Learning with many irrelevant
features,” in Proc. of the 9th National Conf. on Artificial Intelligence,
vol. 2, 1991, pp. 547–552.

[15] T. Dietterich, R. Lathrop, and T. Lozano-Pérez, “Solving the multiple
instance problem with axis-parallel rectangles,” Artificial Intelligence,
vol. 89, pp. 31–71, 03 2001.

[16] T. Pevny and P. Somol, “Using neural network formalism
to solve multiple-instance problems,” 2017. [Online]. Available:
https://arxiv.org/abs/1609.07257

[17] A. Tibo, M. Jaeger, and P. Frasconi, “Learning and interpreting multi-
multi-instance learning networks,” 2020.

[18] M.-A. Carbonneau, V. Cheplygina, E. Granger, and G. Gagnon,
“Multiple instance learning: A survey of problem characteristics and
applications,” Pattern Recognition, vol. 77, p. 329–353, May 2018.
[Online]. Available: http://dx.doi.org/10.1016/j.patcog.2017.10.009

[19] E. Frank and X. Xu, “Applying propositional learning algorithms
to multi-instance data,” University of Waikato, Department of
Computer Science, Working Paper, Jun. 2003. [Online]. Available:
https://researchcommons.waikato.ac.nz/handle/10289/1006

[20] J. R. Foulds and E. Frank, “A review of multi-instance learning
assumptions.” Knowledge Eng. Review, vol. 25, no. 1, pp. 1–25,
2010. [Online]. Available: http://dblp.uni-trier.de/db/journals/ker/
ker25.html#FouldsF10

52

https://www.sciencedirect.com/science/article/pii/S1084804509000484
https://arxiv.org/abs/2003.04079
https://doi.org/10.1007/s11277-021-08359-6
https://doi.org/10.1007/s11277-021-08359-6
https://arxiv.org/abs/2003.00415
https://arxiv.org/abs/1512.03385
https://github.com/qubvel/classification_models
https://arxiv.org/abs/1609.07257
http://dx.doi.org/10.1016/j.patcog.2017.10.009
https://researchcommons.waikato.ac.nz/handle/10289/1006
http://dblp.uni-trier.de/db/journals/ker/ker25.html#FouldsF10
http://dblp.uni-trier.de/db/journals/ker/ker25.html#FouldsF10

..................................... C. Bibliography

[21] J. Amores, “Multiple instance classification: Review, taxonomy and
comparative study,” Artificial Intelligence, vol. 201, pp. 81–105, 2013.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0004370213000581

[22] L. Dong, “A Comparison of Multi-instance Learning Algorithms,”
Thesis, The University of Waikato, 2006. [Online]. Available:
https://researchcommons.waikato.ac.nz/handle/10289/2453

[23] R. C. Bunescu and R. J. Mooney, “Multiple instance learning for sparse
positive bags,” in Proceedings of the 24th International Conference on
Machine Learning, ser. ICML ’07. New York, NY, USA: Association
for Computing Machinery, 2007, p. 105–112. [Online]. Available:
https://doi.org/10.1145/1273496.1273510

[24] T. Gartner, P. Flach, A. Kowalczyk, and A. Smola, “Multi-instance ker-
nels,” Proceedings of 19th International Conference on Machine Learning,
11 2003.

[25] S. Mandlik, “Mapping the internet — modelling entity interactions in
complex heterogeneous networks,” CVUT DSpace, Jun 2020. [Online].
Available: https://dspace.cvut.cz/handle/10467/87851

[26] T. Pevny and M. Racinsky, “JsonGrinder.jl,” https://github.com/
CTUAvastLab/JsonGrinder.jl, 2019.

[27] T. Pevny and S. Mandlik, “Mill.jl framework: a flexible library for (hier-
archical) multi-instance learning,” https://github.com/CTUAvastLab/
Mill.jl, 2018.

[28] cisco, “Joy tool,” Nov. 2019. [Online]. Available: https://github.com/
cisco/joy

[29] “Ip address by country 2021.” [Online]. Available: https://
worldpopulationreview.com/country-rankings/ip-address-by-country

[30] B. Zhou, A. Khosla, À. Lapedriza, A. Oliva, and A. Torralba, “Learning
deep features for discriminative localization,” CoRR, vol. abs/1512.04150,
2015. [Online]. Available: http://arxiv.org/abs/1512.04150

[31] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh,
and D. Batra, “Grad-cam: Visual explanations from deep networks
via gradient-based localization,” International Journal of Computer
Vision, vol. 128, no. 2, p. 336–359, Oct 2019. [Online]. Available:
http://dx.doi.org/10.1007/s11263-019-01228-7

[32] I. Castro, “Gradcam-keras,” GitHub repository, 2019. [Online]. Available:
https://github.com/isaaccasm/GradCAM-keras

53

https://www.sciencedirect.com/science/article/pii/S0004370213000581
https://www.sciencedirect.com/science/article/pii/S0004370213000581
https://researchcommons.waikato.ac.nz/handle/10289/2453
https://doi.org/10.1145/1273496.1273510
https://dspace.cvut.cz/handle/10467/87851
https://github.com/CTUAvastLab/JsonGrinder.jl
https://github.com/CTUAvastLab/JsonGrinder.jl
https://github.com/CTUAvastLab/Mill.jl
https://github.com/CTUAvastLab/Mill.jl
https://github.com/cisco/joy
https://github.com/cisco/joy
https://worldpopulationreview.com/country-rankings/ip-address-by-country
https://worldpopulationreview.com/country-rankings/ip-address-by-country
http://arxiv.org/abs/1512.04150
http://dx.doi.org/10.1007/s11263-019-01228-7
https://github.com/isaaccasm/GradCAM-keras

C. Bibliography
[33] H. Wang, M. Du, F. Yang, and Z. Zhang, “Score-cam: Improved

visual explanations via score-weighted class activation mapping,”
CoRR, vol. abs/1910.01279, 2019. [Online]. Available: http:
//arxiv.org/abs/1910.01279

[34] tabayashi0117, “Score-cam,” GitHub repository, 2020. [Online]. Available:
https://github.com/tabayashi0117/Score-CAM

[35] E. Štrumbelj and I. Kononenko, “Explaining prediction models and
individual predictions with feature contributions,” Knowledge and
Information Systems, vol. 41, no. 3, pp. 647–665, 2014. [Online].
Available: https://doi.org/10.1007/s10115-013-0679-x

[36] C. Olah, “Understanding lstm networks,” Understanding LSTM
Networks – colah’s blog, Aug 2015. [Online]. Available: https:
//colah.github.io/posts/2015-08-Understanding-LSTMs/

[37] F. M. Salem, “Slim lstms,” 2018. [Online]. Available: https:
//arxiv.org/abs/1812.11391

[38] A. H. Lashkari, A. F. A. Kadir, L. Taheri, and A. A. Ghorbani, “Toward
developing a systematic approach to generate benchmark android
malware datasets and classification,” in 2018 International Carnahan
Conference on Security Technology (ICCST), 2018, pp. 1–7. [Online].
Available: https://ieeexplore.ieee.org/document/8585560?denied

[39] “Android malware dataset (cic-andmal2017).” [Online]. Available:
https://www.unb.ca/cic/datasets/andmal2017.html

54

http://arxiv.org/abs/1910.01279
http://arxiv.org/abs/1910.01279
https://github.com/tabayashi0117/Score-CAM
https://doi.org/10.1007/s10115-013-0679-x
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://arxiv.org/abs/1812.11391
https://arxiv.org/abs/1812.11391
https://ieeexplore.ieee.org/document/8585560?denied
https://www.unb.ca/cic/datasets/andmal2017.html

	Introduction
	Motivation
	Problem statement

	Compared approaches
	Prior art
	Visual representation classification
	Classification of sequences

	Proposed approaches
	Proposed approaches in visual representation
	k-NN
	Neural networks

	Proposed approach in classification of sequences
	Multiple instance learning and hierarchical concept of network communication
	MIL overview
	HMill overview
	Proposed hierarchical models

	Results and conclusion
	Experimental results and conclusions
	Results
	Visual representation
	Classification of sequences
	HMill
	Summary

	Interpretations
	Interpretation of visual representation
	Interpretation of sequences classification
	Interpretation of HMill results

	Conclusion

	Appendices
	Background on tools
	Binvis
	k-NN classifier
	CNN, ResNet
	Convolutional neural networks
	Residual neural networks

	CAM, Grad-CAM, Score-CAM
	SHAP
	LSTM

	Dataset
	Bibliography

