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Abstrakt / Abstract

V posledních letech se elektrická
vozidla stala významnou alternativou
k tradičním dopravním prostředkům
využívajícím spalovací motor. Navzdory
tomu, osvojení elektromobility širokou
veřejností stále čelí výzvám, spjatým
s omezenou dojezdovou vzdáleností
a relativně pomalým nabíjením. Ve
snaze usnadnit přechod firemních flotil
na elektrická vozidla, formulujeme pro-
blém optimálního rozmístění a škálování
nabíjecí infrastruktury jako celočíselný
lineární program s deterministickým
modelem nabíjecí poptávky, vytvo-
řeným z historických dat o pohybu
daných flotil. Omezený finanční roz-
počet a změny nabíjecí poptávky v
čase, např. vlivem dopravních špiček,
jsou v předkládaném modelu taktéž
zohledněny. Praktické a výpočetní vlivy
zjednodušení některých omezení, která
jsou v modelu vyjádřena, jsou zkou-
mány a různé varianty řešení jsou
navrženy pro případy, kdy zachování
kompletní formulace problému, včetně
složitých omezení, je nezbytné. Efekti-
vitu různých přístupů srovnáváme na
praktickém příkladu firemní flotily. Sta-
vění menšího počtu nabíjecích lokací s
větším množstvím nabíječek na každou
lokaci, kdy je brán ohled na pevně da-
nou maximální přijatelnou vzdálenost
mezi poptávkou a stanicemi, se ukazuje
být nadmíru výhodné vzhledem k maxi-
málnímu uspokojení poptávky, zvláště
pro omezené finanční rozpočty, a záro-
veň dostatečně robustní vůči předem
neznámým změnám poptávky.

Klíčová slova: nabíjecí stanice, na-
bíjecí infrastruktura, elektrická vozidla,
elektromobilita, problém s umístěním
zařízení, celočíselné lineární programo-
vání

Překlad titulu: Optimální rozmístění
nabíjecích bodů pro firemní flotily

In recent years, electric vehicles
became an ever-increasingly promi-
nent alternative to more traditional,
combustion-engine based means of
transportation. However, the adop-
tion of electric vehicles is still faced
with challenges, especially due to lim-
ited driving range and slow charging
times. To help facilitate electrification
of business vehicle fleets, the problem of
finding optimal charging infrastructure
sizing and siting is formulated as an in-
teger linear program with deterministic
charging demand based on historical
combustion-engine vehicle fleet driv-
ing data. Limited financial budget, as
well as the effect of dynamic changes
to charging demand caused by peak
hours, is reflected in the model. Prac-
tical and computational implications of
relaxation of different constraints are
discussed, and alternative solution ap-
proaches are proposed for instances of
problems where the preservation of the
complex constraints is mandatory. The
effectiveness of the proposed solutions
is evaluated on the basis of a case study.
For limited financial budgets, building
less charging stations and supplying
each station with more chargers, with
respect to an upper limit on acceptable
distance to station, stands out in terms
of charging demand satisfaction, as
well as robustness to unseen charging
demand data.

Keywords: charging station, charg-
ing infrastructure, electric vehicle, elec-
tromobility, facility location problem,
integer linear programming
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Chapter 1
Introduction

In recent years, ever-growing worldwide interest in lowering negative environmental
impact caused by human activity, such as greenhouse gas emissions and excessive air
pollution, among other things, is evident. For example, the objective of the European
Union is to reduce greenhouse gas emissions by 80 to 95% by 2050 compared to the level
in 1990; the reduction in transport sector being 54 to 67% [1]. The transport sector
specifically currently represents about a quarter of Europe’s greenhouse gas emissions
and is the main cause of air pollution in European cities [2].

With this in mind, battery electric vehicles (further referred to as EVs) are a promis-
ing alternative to regular combustion-engine vehicles in terms of reducing dependency
on fossil fuels and lowering carbon dioxide emissions. However, the level of adoption
of EVs is still very low, range anxiety being one of the reasons, caused by perceived
limited driving range due to various reasons such as limited battery capacity and long
charging times [3].

Charging station (further referred to as CS) infrastructure, among other things, is a
key area with potential for improvement in order to allow for positive perception and
subsequent adoption of EVs by the general public. For private companies, this means
not only satisfactory infrastructure in cities, along highway corridors, et cetera, but
also the ability to provide convenient charging solutions to their employees within the
company’s own premises. This has to be cost-effective, but without compromise on
accessibility and convenience of use.

With the introduction of EVs to a corporate vehicle fleet, the following properties of
the new charging station infrastructure are to be optimized:

1. CS building & maintenance expenses
2. Driver satisfaction
3. Charging demand coverage

Given the first point, when electrifying a corporate vehicle fleet, we are most likely
limited to CS building within corporate premises, however large they may be. Therefore,
a downside might be that driving schedules containing trips with sections that are longer
than EV driving range and entirely outside of corporate premises cannot be accounted
for, although this is not necessarily a breaking point given existing outer infrastructure.
On the upside, greater level of focus can be applied to the unique needs and behavior
of the particular vehicle fleet in question. For example, corporate scenarios are likely
to exhibit a great degree of periodically repeating, routine driving patterns. Thus, a
unique approach, more directed towards the individual needs of the fleet, can be taken,
as opposed to working with large-scale public places.

To further elaborate on driver satisfaction, it is preferable that EV drivers are not
required to change their driving habits due to the new necessity to charge periodically.
In other words, they should neither be required to park further away from their destina-
tions than they used to, nor charge at other times or for longer than what their original
driving schedules would have comfortably allowed. Furthermore, drivers might be un-

1



1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
able or unwilling to charge their corporate EVs at home, for example due to related
personal expenses, which also contributes to the charging demand in the workplace.

For these reasons, we study an optimization model for siting (finding optimal loca-
tions) and sizing (finding optimal capacities — the number of chargers at each location)
of CSs based on existing (combustion-engine based) vehicle fleet driving data. The aim
is to be able to optimize the three aforementioned properties of the new infrastructure,
in order to allow for faster and easier EV adoption by private companies. Less than
ideal conditions, such as limited financial budget, are also considered — the optimiza-
tion potential is studied for all budgets.

1.1 Informal Problem Statement
We represent a feasible solution to both CS siting and sizing via a distribution of
chargers among all potential CS locations — the numbers of chargers assigned to each
location, such that the total number of built chargers fits within allowed budget. All
potential CS locations that are assigned zero chargers by a charger distribution are
assumed to be unused (the corresponding stations are not built; therefore without
financial expense). Hence, not only sizing, but also the subset of locations at which a
station is built is represented in the charger distribution.

Charging demand is represented deterministically as a set of individual charging
requests, where each request is a vehicle demanding transfer of some amount of energy
at a given location and given time. The closer a charging station is to the location of
the vehicle, the more we assume the vehicle to be willing to drive to the station and
attempt obtaining a charger there. In addition, drivers are assumed to be unwilling to
charge at stations that are too distant. Given the fact that EV charging is often a long
process, upon arrival at a fully occupied station, drivers are assumed to be more willing
to relocate to a different charging station, instead of waiting for a charger; however,
vehicles arriving at fully occupied stations should be an uncommon occurrence in the
first place.

For a given charger distribution, the decisions of the individual instances of charging
demand can be evaluated (taking the aforementioned assumptions on driver behavior
into consideration), determining how many chargers are occupied at any given station
in any given point in time, as well as which vehicles were able or unable to obtain
a charger, given the station capacities. Based on this, a satisfaction metric, such as
the amount of satisfied charging requests or the total amount of transferred energy, is
evaluated. The aim is to obtain a charger distribution that maximizes the metric.

1.2 Thesis Structure
In Chapter 2, existing literature is reviewed and comparisons to this work are drawn.
Chapter 3 contains the general problem formulation. In Chapter 4, various solutions
to the problem formulation are proposed. The effectiveness of the proposed solutions
is evaluated in a case study in Chapter 5. Chapter 6 is the conclusion.

2



Chapter 2
Literature Review

The first publication on the topic of EV charging infrastructure appeared as early as
1986 [4]; however, the topic gained major traction in 2012, as recognized by a 2019
review, which found 163 total publications with a modeling approach for CS siting
and/or sizing [5].

For the purposes of this thesis, related existing publications were mainly compared
based on chosen optimization criteria and constraints. Most works either establish
financial cost as one of its optimization criteria, or operate with financial cost in the
form of a constraint. This is an important distinction because it often reflects whether
a model requires fully satisfied demand or allows relaxing such requirement if useful.

2.1 Works Requiring Complete Charging Demand
Fulfillment

Some optimization models minimize either CS building and operation costs or the cost
of access to the CSs. This requires authors of such models to constrain in such a way
that the resulting CS locations and sizing always fully satisfy given/expected demand
[6–9]. However, relaxing such requirement could allow for better understanding of its
significance, as the unfulfilled demand caused by additional financial savings may be
marginal in some instances.

In [6], total cost is minimized and spatial coverage is maximized (by minimizing the
average distance between every pair of charging stations adjacent on the same road). A
fixed requirement is that the sum of the capacities of all CSs in the studied area must
be greater than or equal to the total charging demand in the area, estimated based on
average trip distance, average maximum EV driving distance for a single full charge,
average EV battery capacity and the total number of EVs in the area.

The goal of [7] is to minimize CS construction costs and the cost of travelling (walk-
ing) from a CS to the destination for a given round-trip in a graph representation of
a city region. The number of chargers in a given node is required to be no less than
the total number of EVs expected to charge at the node for a given solution — the
representation of vehicles charging at non-overlapping times is missing in the model.

In [8], the demand is represented statistically through a scalar value for each vertex
in a road network graph. The CS construction and operation costs, as well as the cost
of transferring the demand to the closest CS is minimized. However, as in the works
mentioned above, the total charging demand is required to be accounted for by the
infrastructure.

Similarly, the model in [9] minimizes both the construction costs of fast CSs and the
travel distance between demand (which is assumed to occur at fixed nodes of a traffic
network graph) and CSs. However, the paper introduces a unique second step to the
model, where the number of chargers at each CS is minimized and queuing theory is used
in order to specify an upper limit on queuing length. This means that the requirement

3



2. Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
to be able to fully satisfy expected demand has been relaxed through users’ ability to
wait, although the demand is still expected to be fully satisfiable within given waiting
time. This approach is mostly useful for fast charging solutions due to the simple fact
that waiting in line for a regular (slow) EV charger is infeasible in practice, given that
the expected waiting time under such circumstances is simply too long.

2.2 Works Allowing Incomplete Charging Demand
Satisfaction

Other models, similarly to ours, described below in Chapter 3, do allow for partial
demand satisfaction through the use of a budget constraint. Most of them maximize
the rate of satisfied charging demand in some way, often also having some form of an
upper limit on distance between demand and closest CS [10–14].

Optimization with regard to the amount of successfully completed round-trips for a
given budget constraint is done in [10–11]. Charging station sizing is not considered.
Specifically, [11] builds the demand model from GPS data of regular combustion-engine
vehicles, from which said round-trips are modeled, including dwell times between two
consecutive trips. Trips’ end locations are considered as stops. Varying EV charger
speeds are taken into consideration. Every driver is assumed to have access to a charger
at home.

In [12], a charging demand model is built from parking data. Demand transference
through successive trips made between different parking locations is considered, as well
as the effect of peak hours on the solution by splitting the day into time intervals. It is
assumed that every EV charges the entire time it is parked, and also that the expected
number of times an EV charges in one day is constant, which yields a simple equation
for the probability that a vehicle charges at a certain location ( 𝑇 𝑚

𝑗
∑𝑗 𝑇 𝑚

𝑗
, where 𝑇 𝑚

𝑗 is time
spent parking by an EV 𝑚 at a given stop 𝑗). The model does not consider varying EV
charger speeds.

Lack of available information on EV driver behavior is recognized in [14]. Therefore,
a unique approach is proposed. Estimates of daily traffic volumes are considered by the
authors to often be the best available information about traffic, and are therefore used
to approximate the minimum spatial station density required in order for the demand
to be satisfiable. In addition, graph based models are intentionally avoided in the
paper due to the fact that they tend to over-simplify the problem by assuming specific
rules that the charging demand conforms to. The paper is meant to propose a method
which gives solutions despite uncertain input data. The output of the optimization
model is optimal density guidelines rather than exact CS locations and sizing, leaving
the final decision, which is expected to be subject to considerations that are hard to
model, to the user. The total distance from charging demand to charging stations is
minimized, subject to a budget constraint. However, the optimization is done along
highway corridors, which indicates a difference in the class of problems studied by
the model as opposed to this thesis, which studies charging demand in areas with a
relatively higher density of points of interest.

2.3 Other Works
There is a variety of works which focuses on finding optimal CS locations and sizing
with the aim to mitigate negative impact of CSs on electricity distribution systems

4



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4 Review Summary

[15–16, 6, 17–19, 13]. This is because higher peak load caused by EVs increases power
losses and voltage deviations, while also posing a potential risk of causing thermal limit
violations of transformers and lines [15]. Optimal use of different types of chargers
with varying charging speeds is studied in [15]. The consideration of the effect of CS
locations on distribution systems is out of the scope of this thesis.

2.4 Review Summary
To conclude the review of existing literature, it appears that existing models are mostly
directed towards the problem of CS siting, as opposed to sizing, possibly due to large-
scale applications being in the centre of collective focus. In addition, the question of
operating under a limited budget has received modest attention thus far, as a significant
portion of existing literature overlooks solutions with partially satisfied demand, making
applications with suboptimal budgets infeasible. The difference in utilization of CS
infrastructure in different hours also appears to be represented only in a portion of
existing literature on CS sizing. All aforementioned concerns are recognized by this
thesis.

5



Chapter 3
Problem Formulation

We will now introduce a formalization of the problem statement from Section 1.1. The
aim is to find a subset of charging stations to build from a set of potential charging
station locations, as well as a distribution of the total amount of chargers (the total
financial budget) among the stations, such that the rate of served charging demand is
maximized.

Given (continuous) location space 𝕃, timestamp space 𝕋 and a set of all vehicles 𝑉,
let (𝑣, 𝑙, 𝑡𝑎, 𝑧) ∈ 𝑉 ×𝕃×𝕋×ℝ+ be a single instance of a vehicle 𝑣 in need of charging at a
given location 𝑙 and arrival timestamp 𝑡𝑎, requesting the transfer of energy of quantity
𝑧 (of an arbitrary unit). Let 𝐸 ⊂ 𝑉 × 𝕃 × 𝕋 × ℝ+ be a finite set of all such instances
(within a studied time period), i.e. the charging demand.

Let 𝑆 ⊂ 𝕃 be a finite, discrete set of viable charging station locations. Let 𝑀 ⊆ 𝐸×𝑆
be a set of viable assignments of instances of charging demand to charging stations. 𝑀
is determined by the charging demand itself, where each vehicle at a certain location is
only willing to be charged at some, not all, charging station locations (for example, a
driver may only be willing to request charging at a location 𝑠 ∈ 𝑆 ⊂ 𝕃 if it is no further
from their location 𝑙 ∈ 𝕃 than a given distance limit).

Let 𝑡𝑑: 𝐸 × 𝑆 → 𝕋 be a departure timestamp mapping, such that 𝑡𝑑 (𝑒, 𝑠) ∈ 𝕋 is the
departure timestamp of an instance of charging demand 𝑒 ∈ 𝐸 if it is being charged
at a station 𝑠 ∈ 𝑆. The departure timestamp value is most likely determined by the
arrival timestamp 𝑡𝑎 of 𝑒, the requested energy 𝑧 of 𝑒 and the station 𝑠 (the charging
speed of chargers at 𝑠). If the charging speed (and consequently also the departure of a
vehicle) is independent from the choice of a charging station, then the departure of each
instance of charging demand can be specified in the charging demand set 𝐸 directly,
using the following definition: 𝐸 ⊂ 𝑉 × 𝕃 × 𝕋2, where for each instance of charging
demand (𝑣, 𝑙, 𝑡𝑎, 𝑡𝑑) ∈ 𝐸, 𝑡𝑑 represents the departure time. In such case, the mapping,
as well as the requested energy 𝑧, is not needed in our charging demand representation.

Let 𝐵 ∈ ℝ+ be the total financial budget. Let 𝑓: 𝑆 × ℕ0 → ℝ+
0 be the cost function,

where 𝑓 (𝑠, 𝑛) is the financial cost of building 𝑛 chargers at charging station location
𝑠 ∈ 𝑆. It holds 𝑓 (𝑠, 𝑛) = 0 ⟺ 𝑛 = 0 for any 𝑠 ∈ 𝑆, meaning that with zero chargers,
a charging station location is considered to be unused and free of any cost.

Let us define a charger distribution (i.e. a feasible solution) as a mapping 𝑏: 𝑆 → ℕ+
0 ,

which determines how many chargers should be built at each of the candidate charging
station locations. A charger distribution 𝑏 exactly determines the set 𝑆𝑏 ⊆ 𝑆 of built
charging stations: 𝑆𝑏 = {𝑠 ∣ 𝑠 ∈ 𝑆, 𝑏 (𝑠) ≥ 1} = {𝑠 ∣ 𝑠 ∈ 𝑆, 𝑓 (𝑠, 𝑏 (𝑠)) > 0}. A charging
station is only built if its building cost is greater than 0, which is when there is at least
one charger assigned to 𝑠 by the charger distribution 𝑏.

Let 𝑔𝐸,𝑀,𝑏: 𝐸 → 𝑆 ∪{None} be a charging demand assignment function for a charger
distribution 𝑏, where 𝑔𝐸,𝑀,𝑏(𝑒) = 𝑠 ∈ 𝑆 if and only if the instance of charging demand
𝑒 ∈ 𝐸 is charged at station 𝑠, and 𝑔𝐸,𝑀,𝑏(𝑒) = None if and only if 𝑒 is not served
charging at any charging station, both assuming that CSs are built in accordance with
the distribution 𝑏: 𝑆 → ℕ0. Please note that the value of 𝑔𝐸,𝑀,𝑏(𝑒) for an instance
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of charging demand 𝑒 is not only determined by 𝑏, but also by the whole set 𝐸, the
set of viable demand to station assignments 𝑀, as well as additional charging demand
behavior constraints/assumptions, which will be introduced in Section 3.1. For example,
if a station 𝑠 ∈ 𝑆 has all chargers occupied (this is determined by the arrival and
departure timestamps of the charging demand at 𝑠) in the time of arrival 𝑡𝑎 of 𝑒 ∈ 𝐸,
then 𝑔𝐸,𝑀,𝑏(𝑒) ≠ 𝑠.

The aim is to find an optimal charger distribution 𝑏*, maximizing demand satisfac-
tion, as outlined in Equation (3.1).

𝑏* = arg max
𝑏: 𝑆→ℕ0

𝑋𝐸,𝑀 (𝑏) (3. 1)

For given 𝐸, 𝑆 and 𝑀 ⊆ 𝐸 × 𝑆, we define a charger distribution objective function
𝑋𝐸,𝑀: (𝑆 → ℕ0) → ℝ+

0 , where 𝑋𝐸,𝑀(𝑏) is the value of the objective function for a
charger distribution 𝑏. 𝑋𝐸,𝑀 is defined as shown in Equation (3.2), using an objective
function 𝑥 for a single instance of charging demand.

𝑋𝐸,𝑀(𝑏) ≔ ∑
𝑒∈𝐸

𝑥(𝑒, 𝑔𝐸,𝑀,𝑏(𝑒)) (3. 2)

Function 𝑥 uses values of 𝑔𝐸,𝑀,𝑏 and the definition of 𝑥 determines the optimization
criterion. Equation (3.3) must hold for any definition of 𝑥.

𝑥(𝑒, 𝑠) ≥ 𝑥(𝑒, None) ∀𝑒 ∈ 𝐸, 𝑠 ∈ 𝑆 (3. 3)

The total number of satisfied charging requests is maximized when the definition in
Equation (3.4) is used for 𝑥.

𝑥 (𝑒, 𝑔𝐸,𝑀,𝑏(𝑒)) ≔ {
1 if 𝑔𝐸,𝑀,𝑏(𝑒) ∈ 𝑆,
0 if 𝑔𝐸,𝑀,𝑏(𝑒) = None. (3. 4)

Alternatively, 𝑥 may be defined as the amount of transferred energy by the value
of 𝑔𝐸,𝑀,𝑏 (either energy transfer by a station 𝑠, or no energy transfer). Given such
definition, 𝑏* would maximize the total collective transferred energy.

The optimization is done subject to a budget constraint, as well as other charging
demand constraints.

∑
𝑠∈𝑆

𝑓 (𝑠, 𝑏 (𝑠)) ≤ 𝐵 (3. 5)

Inequality (3.5) is the budget constraint. It establishes that the total financial build-
ing cost of the charger distribution 𝑏 is less than or equal to the total financial budget
𝐵.

3.1 Charging Demand Constraints
The assumptions and/or constraints on charging demand determine 𝑀, the function
𝑔𝐸,𝑀,𝑏 and consequently also the values of the charger distribution objective function
𝑋𝐸,𝑀. Therefore, used constraints affect whether the problem formulation matches the
objective of finding optimal CS siting and sizing.

A first come, first served constraint, together with a station preference constraint, are
sufficient for the assignment of charging demand to stations 𝑔𝐸,𝑀,𝑏 to be deterministic
(please note that the complete charging demand 𝐸 is known when using 𝑔𝐸,𝑀,𝑏). If
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either of the constraints is omitted, the assignment function 𝑔𝐸,𝑀,𝑏 becomes arbitrary.
Both constraints are defined below.

In addition, a no-retry constraint will be defined in order to ensure proper focus
on CS siting by disallowing potentially undesirable cases of charging demand transfer
across modeled CS locations.

If any of the constraints is omitted, the optimal objective value is an upper bound
on the objective function for problem formulations with all the constraints present.

3.1.1 First Come, First Served

The FCFS constraint establishes that an instance of charging demand is always ac-
cepted for charging by a station upon the arrival of a vehicle if at least one charger is
unoccupied at the station at that moment — the vehicle immediately begins charging
at an unoccupied charger and cannot be rejected by the station for any other reason
(such as potential benefit of doing so). The opposite implication that if no unoccupied
chargers exist at a CS, then the vehicle cannot charge at the CS, holds regardless of
the FCFS constraint.

If the constraint is omitted, the optimal definition of (now non-deterministic) 𝑔𝐸,𝑀,𝑏
may be found among the possible definitions, with respect to the objective function.
In such case, the decision whether a charging request is fulfilled is not only based on
the immediate ability of a vehicle to obtain a charger, but also on overall expediency
with respect to future traffic. In other words, the omission of FCFS models situations in
which future traffic is known a priori and taken into consideration, such as via the use of
a scheduler. The term ‘scheduler’ refers to any form of a dynamic system employed in
real-time that introduces a registration step for vehicles prior to their charging in order
to optimize their allocation to chargers and/or stations for most effective charging.

While the employment of such systems may provide a range of benefits, the intent
of this thesis is not to require them. Therefore, the FCFS constraint is mostly used.

3.1.2 Station Subset Assignment and Station Preference

Charging demand should be constrained such that each instance can only be served
charging at a subset of CS locations — not at all of them. Any such constraint is
reflected in the set of allowed assignments 𝑀. In addition, the preference of charging
station locations by each instance of charging demand must be known, in order to be
able to determine which station a vehicle drives to if presented with a choice (such
that multiple stations were built close to the vehicle). Without such preference being
present, values of 𝑔𝐸,𝑀,𝑏 become non-deterministic.

In order to appropriately represent siting in the model, we will be using an upper limit
on allowed distance between the original position of a vehicle and a station location.
Preference of stations will be determined such that the closer a station is to the original
location of a vehicle, the higher preference it receives from the vehicle. Let us refer to
this as vehicle-based station assignment.

Alternatively, we may define each follow-up charging attempt to be located at the
station that is closest to the station location in the previous attempt, as opposed to
the original vehicle location. This determines the allowed assignments, as well as the
station preference, provided that an upper limit on distance is set. If siting were pre-
determined, this would represent a vehicle driving to the closest station location, and
driving to the next closest station upon rejection by the original station. However,
given the fact that neither siting, nor sizing is pre-determined, the practical use of this
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station assignment approach is low. Therefore, we will only be using it for comparison.
Let us refer to this approach as attempt-based station assignment.

In addition, an upper limit on the size of the subset of allowed stations per each
instance of charging demand may be defined. Such constraint simplifies the charging
demand model.

3.1.3 No-Retry
Demand transfer among CS locations is represented in the model via different charg-
ing attempts of each instance of charging demand, which are ordered based on the
preference of stations by the instance. There are two practical meanings applicable
to follow-up charging attempts. CS siting is represented in the model via follow-up
charging attempts caused by zero chargers at the previous location, meaning that if
the previous station was not built, an instance of charging demand is transferred to an-
other station. In addition, a follow-up charging attempt may occur due to all chargers
being occupied at the previous station in the given moment — this either represents
willingness of drivers to relocate and retry at different locations, or is an undesirable
side effect of the model. “No-retry” refers to a constraint that disallows the latter type
of charging attempts. This constraint cannot be represented in 𝑀 due to the subset of
built charging stations being unknown a priori.

3.2 Obtaining Charging Demand
EV charging demand data is needed in order to use the problem formulation as outlined.
Having said that, real EV charging demand data cannot be expected to be available.

It has been mentioned that we model EV charging demand from existing driving
behavior data of the original, combustion-engine based, vehicle fleet. However, complex
approaches of doing so are out of the scope of this thesis. We have been using a relatively
simple modeling approach thus far, explained later in Chapter 5.

9



Chapter 4
Methodology

Based on the charging demand constraints used (i.e. viable assignments of charging
demand to stations, as well as the assumptions on EV driver behavior), the solution
complexity of a problem differs, as well as the approach for finding a solution.

We will be working with a single type of charger — a single charging speed. Therefore,
the departure timestamp is independent from the charging station and a simplified
definition of charging demand 𝐸 may be used: 𝐸 ⊂ 𝑉 × 𝕃 × 𝕋2, where (𝑣, 𝑙, 𝑡𝑎, 𝑡𝑑) ∈ 𝐸
is a single instance of a vehicle 𝑣 at location 𝑙 requesting charging from its arrival
timestamp 𝑡𝑎 until its departure timestamp 𝑡𝑑.

In addition, we will be using a simplified financial cost function 𝑓: 𝑆 × ℕ0 → ℝ+
0 ,

such that 𝑓(𝑠, 𝑛) ≔ 𝑛 ∀𝑠 ∈ 𝑆, 𝑛 ∈ ℕ0. In plain English, we will represent financial
budget as the number of installed chargers.

Prior to explaining different problem classes, a simple algorithm for the computation
of the charging demand assignment function 𝑔𝐸,𝑀,𝑏 for a given charger distribution 𝑏
is explained in Section 4.1 and our ability to split a problem into independent sub-
problems is explored in Section 4.2. Then, different classes of problems are studied, as
well as possible approaches for finding their solutions. Class of problems with hard-
assignment of charging demand to stations is studied in Section 4.3. Soft-assignment
class of problems is studied in Section 4.4. A two-stage approach, separating CS siting
and sizing stages of the problem, is explained in Section 4.5.

4.1 Charging Demand Assignment Evaluation
If the FCFS constraint is used and a preference of charging stations for each instance
of charging demand is known, the function 𝑔𝐸,𝑀,𝑏, assigning demand to CSs, is de-
terministic and can be computed for any given charger distribution 𝑏. This is needed
in order to evaluate any charger distribution objective function 𝑋𝐸,𝑀 as defined in
Equation (3.2) on p. 7.

In other words, if charging station preference of each instance of charging demand
is given and customers obtain charging simply based on their times of arrival (first-
come, first-served principle applies), the behavior of the entire charging demand can be
simulated deterministically for a given charger distribution with respect to the station
capacities, and the final assignment to stations is obtained.

The time complexity of the computation of 𝑔𝐸,𝑀,𝑏 is linear in the size of charging
demand. However, a slightly modified definition of charging demand is needed.

4.1.1 Expanded Charging Demand

Given charging demand 𝐸 and a set 𝑀 ⊆ 𝐸×𝑆 of viable assignments of CSs to charging
demand instances, let ̂𝐸 ⊂ 𝐸 × 𝑆 × 𝕋 × {−1, 1} be expanded charging demand, where

̂𝑒 = ((𝑣, 𝑙, 𝑡𝑎, 𝑡𝑑), 𝑠, 𝑡, 𝛼) ∈ ̂𝐸 is one event, where 𝑒 = (𝑣, 𝑙, 𝑡𝑎, 𝑡𝑑) ∈ 𝐸 is an instance of
charging demand and (𝑒, 𝑠) ∈ 𝑀.
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If 𝛼 = 1, then ̂𝑒 is an arrival event of 𝑒, where 𝑡 = 𝑡𝑎. If 𝛼 = −1, then ̂𝑒 is a departure
event of 𝑒, where 𝑡 = 𝑡𝑑. The value of 𝛼 will later be referred to as status.

Please note that an instance of charging demand 𝑒 ∈ 𝐸 has |𝑀𝑒| = |{𝑠 ∣ (𝑒, 𝑠) ∈ 𝑀}|
arrival events and |𝑀𝑒| departure events. Therefore, a single element 𝑒 ∈ 𝐸 has 2 |𝑀𝑒|
corresponding elements in ̂𝐸.

4.1.2 Ordering of Expanded Charging Demand

Assuming that there exists a preference of stations for each 𝑒 ∈ 𝐸, then ̂𝐸 can be
ordered lexicographically. The first ordering key is the timestamp 𝑡 (either arrival or
departure timestamp, depending on the event status — the value of 𝛼 ∈ {−1, 1}). The
second ordering key (used when there are values in ̂𝐸 that are incomparable using the
first key) is the status, where departures are ordered before arrivals for events occurring
at the same timestamp. The third ordering key (used when there are values in ̂𝐸 that
are incomparable using the first two keys) is the station preference.

The third ordering key is important because for a single instance of charging demand
𝑒 ∈ 𝐸, there may be an element (𝑒, 𝑠, 𝑡, 𝛼) present multiple times in ̂𝐸 for the same
values of 𝑡 and 𝛼, only the values 𝑠 ∈ 𝑆 being different. In such cases, the events must
be ordered by the station preference.

4.1.3 The Evaluation Algorithm

Given ordered expanded charging demand ̂𝐸 and a charger distribution 𝑏, we iterate over
ordered ̂𝐸 to compute the numbers of occupied chargers at each CS at each timestamp
𝑡. Based on these numbers, constrained by the charger distribution 𝑏, we determine if
and where each instance of charging demand is served. In other words, we simulate the
driver behavior. This gives us the values of 𝑔𝐸,𝑀,𝑏, as well as values of any objective
function based on 𝑔𝐸,𝑀,𝑏.

Algorithm 4.1 shows the pseudocode used to compute 𝑔𝐸,𝑀,𝑏. The algorithm works
as follows: If an encountered event ̂𝑒 is an arrival event, the corresponding 𝑒 ∈ 𝐸 has no
charging station assigned yet (i.e. the charging request is yet to be satisfied somewhere)
and there is currently at least one unoccupied charger at station 𝑠 where the event ̂𝑒 is
located, then 𝑔𝐸,𝑀,𝑏(𝑒) ≔ 𝑠 and the number of occupied chargers at 𝑠 is incremented.
If a departure event ̂𝑒 is encountered at station 𝑠 and the corresponding arrival event
(located at the same station) was previously satisfied (𝑔𝐸,𝑀,𝑏(𝑒) = 𝑠), then the number
of occupied chargers at 𝑠 is decremented (the vehicle departs the station). After the
event ̂𝑒 is processed, the algorithm proceeds onto the next event in ordered ̂𝐸.

Please note that constraints such as an attempt constraint or a distance constraint
are already reflected in 𝑀 and consequently also in ̂𝐸. Therefore, the algorithm does
not have to explicitly account for them.

4.2 Separability into Independent Sub-Problems
Before any solution algorithms and approaches are discussed, in order to allow for po-
tential computational time reductions, it is useful to investigate the ability to partition
a problem, as previously formulated, into independently solvable sub-problems. This
can be done by partitioning the set of potential station locations 𝑆 such that the sub-
sets are pairwise independent with respect to viable assignments of charging demand
to stations 𝑀. Independent subsets of station locations can be found via a station
dependency graph, as defined below.

11



4. Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

input: ̂𝐸, 𝑀, 𝑆, 𝑏

output: 𝑔𝐸,𝑀,𝑏(𝑒) ∀𝑒 ∈ 𝐸

init 𝑐𝑠 ≔ 0 ∀𝑠 ∈ 𝑆
init 𝑔𝐸,𝑀,𝑏(𝑒) ≔ None ∀𝑒 ∈ 𝐸
for all ̂𝑒 = ((𝑣, 𝑙, 𝑡𝑎, 𝑡𝑑) = 𝑒, 𝑠, 𝑡, 𝛼) in ordered ̂𝐸 do
if 𝛼 = 1 ∧ 𝑔𝐸,𝑀,𝑏(𝑒) = None ∧ 𝑐𝑠 < 𝑏(𝑠), then

𝑔𝐸,𝑀,𝑏(𝑒) ≔ 𝑠
𝑐𝑠 ≔ 𝑐𝑠 + 1

else if 𝛼 = −1 ∧ 𝑔𝐸,𝑀,𝑏(𝑒) = 𝑠, then
𝑐𝑠 ≔ 𝑐𝑠 − 1

end if
end for

Algorithm 4.1. Evaluation of assignment of charging demand to stations

4.2.1 Definition of Independent Sub-Problems
Given 𝐸, 𝑆, 𝑀 ⊆ 𝐸 × 𝑆, let us define (𝐸, 𝑆, 𝑀) as a problem. For a given
problem, we define a station dependency graph as follows: The set of nodes
is the set 𝑆 of potential station locations. The set of edges is the following:
{(𝑠1, 𝑠2) ∣ 𝑠1, 𝑠2 ∈ 𝑆, ∃𝑒 ∈ 𝐸: (𝑒, 𝑠1), (𝑒, 𝑠2) ∈ 𝑀}

Two station locations are directly dependent if there exists at least one instance
of charging demand that can be satisfied at either of the locations, as represented
in 𝑀 (i.e. there exists an edge between them in the graph). Two station locations are
dependent if there exists a path in the dependency graph that connects them. Otherwise,
station locations are independent.

We say that two disjoint subsets of stations 𝑆1 and 𝑆2 are dependent if there exist
𝑠1 ∈ 𝑆1, 𝑠2 ∈ 𝑆2 that are dependent. Otherwise, 𝑆1 and 𝑆2 are independent. Please note
that two sets of station locations must be disjoint in order for them to be independent.
However, disjointness of two station sets is not by itself sufficient for independence.

Based on these definitions, every two connected components of the dependency graph
are independent.

To proceed, 𝐸 and 𝑀 must be partitioned as well. Let 𝑆* = {𝑆1, 𝑆2, . . . , 𝑆𝑘} , 𝑆𝑖 ⊆
𝑆 ∀𝑖 ∈ {1, . . . , 𝑘} be a partition of 𝑆, such that each subset 𝑆𝑖 ∈ 𝑆* is a connected
component of stations in the station dependency graph. For a component 𝑆𝑖, we define
corresponding 𝐸𝑖 ⊆ 𝐸 and 𝑀𝑖 ⊆ 𝑀 as follows:

𝐸𝑖 = {𝑒 ∣ ∀(𝑒, 𝑠) ∈ 𝑀, 𝑠 ∈ 𝑆𝑖}
𝑀𝑖 = {(𝑒, 𝑠) ∣ ∀(𝑒, 𝑠) ∈ 𝑀, 𝑠 ∈ 𝑆𝑖}

(4. 1)

It can be easily shown that 𝐸* = {𝐸1, . . . , 𝐸𝑘} is a correctly constructed partition
of 𝐸 (i.e. it is pairwise disjoint): If there were such 𝑒 ∈ 𝐸 that 𝑒 ∈ 𝐸𝑖 ∧ 𝑒 ∈ 𝐸𝑗 for
some 𝑖 ≠ 𝑗, then, by definition of 𝐸𝑖 and 𝐸𝑗, there exist 𝑠1 ∈ 𝑆𝑖 and 𝑠2 ∈ 𝑆𝑗 such that
(𝑒, 𝑠1), (𝑒, 𝑠2) ∈ 𝑀. However, this is in conflict with the definition of 𝑆*, based on which
𝑠1 ∈ 𝑆𝑖 and 𝑠2 ∈ 𝑆𝑗 are independent. Therefore, 𝐸* is pairwise disjoint. Analogically,
𝑀* = {𝑀1, . . . , 𝑀𝑘} is also a partition of 𝑀.
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Any (𝐸𝑖, 𝑆𝑖, 𝑀𝑖) ∈ 𝐸∗×𝑆∗×𝑀∗ as defined above, where 𝑆𝑖 is a connected component
of the station dependency graph, is an irreducible sub-problem.

Let us define a sub-problem as the following:

. An irreducible sub-problem is a sub-problem.. Given two sub-problems 𝑃1 = (𝐸1, 𝑆1, 𝑀1) and 𝑃2 = (𝐸2, 𝑆2, 𝑀2), 𝑃1,2 = (𝐸1 ∪
𝐸2, 𝑆1 ∪ 𝑆2, 𝑀1 ∪ 𝑀2) is also a sub-problem.

Given two sub-problems 𝑃1 = (𝐸1, 𝑆1, 𝑀1), 𝑃2 = (𝐸2, 𝑆2, 𝑀2) ∈ 𝐸* × 𝑆* × 𝑀*, if
it holds that 𝑆1 and 𝑆2 are independent with respect to (𝐸, 𝑆, 𝑀), we say that the
sub-problems 𝑃1 and 𝑃2 are independent.

Any two non-equal irreducible sub-problems are independent by definition.
Next, we will show that optimal solutions to multiple independent sub-problems can

be found independently and merged back together to obtain the correct optimal solution
to the original problem.

4.2.2 Objective Function of Combined Sub-Problems
Let us define a + operation on two budget distributions 𝑏1: 𝑆1 → ℕ0 and 𝑏2: 𝑆2 → ℕ0
as shown in Equation (4.2) below.

+: (𝑆1 → ℕ0) × (𝑆2 → ℕ0) → ((𝑆1 ∪ 𝑆2) → ℕ0)

(𝑏1 + 𝑏2)(𝑠) =
⎧{
⎨{⎩

𝑏1(𝑠) + 𝑏2(𝑠) if 𝑠 ∈ 𝑆1 and 𝑠 ∈ 𝑆2,
𝑏1(𝑠) if 𝑠 ∈ 𝑆1 and 𝑠 ∉ 𝑆2,
𝑏2(𝑠) otherwise.

(4. 2)

Given a problem (𝐸, 𝑆, 𝑀) and a charger distribution objective function 𝑋𝐸,𝑀, as
defined in Equation (3.2) on p. 7, let us assume that we have obtained two solutions
𝑏1: 𝑆1 → ℕ0 and 𝑏2: 𝑆2 → ℕ0 to the respective sub-problems 𝑃1 = (𝐸1, 𝑆1, 𝑀1), 𝑃2 =
(𝐸2, 𝑆2, 𝑀2) ∈ 𝐸* × 𝑆* × 𝑀*. Let 𝐵1 = ∑𝑠∈𝑆1

𝑏1(𝑠) and 𝐵2 = ∑𝑠∈𝑆2
𝑏2(𝑠). Charger

distribution 𝑏1,2 = 𝑏1 + 𝑏2 is a feasible1 solution to the sub-problem 𝑃1,2 = (𝐸1 ∪
𝐸2, 𝑆1 ∪ 𝑆2, 𝑀1 ∪ 𝑀2) for maximum allowed budget 𝐵1 + 𝐵2. If the sub-problems are
independent, Equation (4.3) holds.

𝑋𝐸,𝑀(𝑏1 + 𝑏2) = 𝑋𝐸,𝑀(𝑏1) + 𝑋𝐸,𝑀(𝑏2) (4. 3)

In order to better understand the intuition behind why Eq. (4.3) holds for inde-
pendent sub-problems, let us show the following toy example with exactly two station
locations 𝑠1 and 𝑠2:

For brevity, let us represent a charger distribution 𝑏 as a vector of two values: 𝑏 =
[𝑏(𝑠1), 𝑏(𝑠2)]. Let us consider three different charger distributions for some non-zero
values 𝑢, 𝑣 ∈ ℕ:

𝑏1 = [𝑢, 0]
𝑏2 = [0, 𝑣]

𝑏1 + 𝑏2 = 𝑏1,2 = [𝑢, 𝑣]

If 𝑠1 and 𝑠2 are independent with respect to some 𝐸 and 𝑀, Equation (4.3) holds.
Otherwise, only Equation (4.4) holds.

1 Please note that 𝑏1 + 𝑏2 is not necessarily optimal for maximum allowed budget 𝐵1 + 𝐵2 even if 𝑏1 and
𝑏2 are optimal for their respective maximum allowed budgets 𝐵1 and 𝐵2. More on this in Section 4.2.3.

13



4. Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

𝑋𝐸,𝑀(𝑏1 + 𝑏2) ≤ 𝑋𝐸,𝑀(𝑏1) + 𝑋𝐸,𝑀(𝑏2) (4. 4)

The reason for this is the following: If 𝑠1 and 𝑠2 are directly dependent, then there
exists non-empty 𝐸𝑠1,𝑠2

⊆ 𝐸 such that ∀𝑒 ∈ 𝐸𝑠1,𝑠2
: (𝑒, 𝑠1), (𝑒, 𝑠2) ∈ 𝑀. All 𝑒 ∈ 𝐸𝑠1,𝑠2

that prefer charging at 𝑠1 over 𝑠2 will charge at 𝑠1 (unless full) under distributions 𝑏1
and 𝑏1 + 𝑏2, but will charge at 𝑠2 (unless full) under distribution 𝑏2. Hence, Eq. (4.3)
cannot hold because that would require any 𝑒 ∈ 𝐸𝑠1,𝑠2

to be charged at both stations
𝑠1 and 𝑠2 at the same time under distribution 𝑏1 + 𝑏2. This is, however, impossible
because an instance of charging demand can only be satisfied at one station at most.
Therefore, for sub-problems that are not independent, only inequality (4.4) holds; a
strict inequality in this particular example.

If 𝑠1 and 𝑠2 are independent, Equation (4.3) does hold because the number of chargers
at station 𝑠1 does not affect the charging demand (and values of 𝑔𝐸,𝑀,𝑏) at 𝑠2, and vice
versa.

This example can be generalized to two independent subsets of stations 𝑆1 and 𝑆2
(instead of two individual stations) and the same principles would apply.

4.2.3 Optimal Solution to Combined Problem For Two
Sub-Problems

In practice, each 𝑖-th sub-problem has different optimal solutions (charger distributions)
given different budget constraints, based on the maximum allowed total budget (number
of chargers) 𝐵 ∈ {1, 2, . . . , 𝐵𝑖, . . .}. We must be able to obtain all such solutions to the
combined problem as well, while also preserving optimality.

Let 𝐵𝑖 be the minimum allowed total budget for which the entire charging demand
𝐸𝑖 ⊆ 𝐸 can be satisfied (100% demand satisfaction is achieved for 𝐸𝑖), as shown in
Equation (4.5). If 100% demand satisfaction is achieved for 𝐸𝑖 given some distribution
𝑏, 𝑋𝐸𝑖,𝑀𝑖

(𝑏) is the maximum possible value of 𝑋𝐸𝑖,𝑀𝑖
for 𝐸𝑖.

𝑔𝐸,𝑀,𝑏(𝑖)
𝐵𝑖

(𝑒) ≠ None ∀𝑒 ∈ 𝐸𝑖 (4. 5)

Given two sub-problems 𝑃1 = (𝐸1, 𝑆1, 𝑀1) and 𝑃2 = (𝐸2, 𝑆2, 𝑀2) of a problem
𝑃 = (𝐸, 𝑆, 𝑀), let 𝑂1 = {𝑏(1)

1 , . . . , 𝑏(1)
𝐵1

} and 𝑂2 = {𝑏(2)
1 , . . . , 𝑏(2)

𝐵2
} be two sets of optimal

charger distributions for 𝑃1 and 𝑃2 respectively, such that:

. 𝑏(1)
𝐵1

and 𝐵(2)
𝐵2

provide 100% demand satisfaction to their respective charging demands
𝐸1, 𝐸2 ⊂ 𝐸,. for each 𝐵 ∈ {1, 2, . . .}, the distributions 𝑏(1)

𝐵 ∈ 𝑂1 and 𝑏(2)
𝐵 ∈ 𝑂2 are optimal

wrt. 𝑋𝐸1,𝑀1
and 𝑋𝐸2,𝑀2

respectively, under the budget Constraint (4.6) for 𝐵.

∑
𝑠∈𝑆1

𝑏(1)
𝐵 (𝑠) ≤ 𝐵

∑
𝑠∈𝑆2

𝑏(2)
𝐵 (𝑠) ≤ 𝐵

(4. 6)

Each set 𝑂𝑖 contains optimal solutions to its respective sub-problem for any possible
maximum allowed total budget 𝐵 ∈ {1, 2, . . .}. Even though 𝑂𝑖 is finite and the set
of possible values of 𝐵 is infinite, the aforementioned is true because 𝑏(1)

𝐵1
and 𝑏(2)

𝐵2
are

optimal for any 𝐵 ≥ 𝐵1 and 𝐵 ≥ 𝐵2, respectively. The reason for this is that 𝑏(1)
𝐵1

and
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𝑏(2)
𝐵2

provide 100% charging demand satisfaction, therefore the values 𝑋𝐸1,𝑀1
(𝑏(1)

𝐵1
) and

𝑋𝐸2,𝑀2
(𝑏(2)

𝐵2
) are the maximum values of 𝑋𝐸1,𝑀1

and 𝑋𝐸2,𝑀2
, respectively.

Assuming that sub-problems 𝑃1 and 𝑃2 are independent, Equation (4.3) holds and
can be applied to maximum values as well, as shown in Equation (4.7).

max
𝑏1: 𝑆1→ℕ0

𝑋(𝑏1) + max
𝑏2: 𝑆2→ℕ0

𝑋(𝑏2) =

= 𝑋 [ arg max
𝑏1: 𝑆1→ℕ0

𝑋(𝑏1) + arg max
𝑏2: 𝑆2→ℕ0

𝑋(𝑏2)] = max
𝑏: 𝑆1∪𝑆2→ℕ0

𝑋(𝑏)
(4. 7)

Therefore, in order to obtain a single solution to the combined problem for maximum
allowed total budget 𝐵 ∈ {1, . . . , 𝐵1 + 𝐵2}, the optimal solution is the following:

𝑏(1,2)
𝐵 = arg max

𝑏
𝑋(𝑏),

such that
𝑏 ∈{(𝑏(1) + 𝑏(2)) ∣ 𝑏(1) ∈ 𝑂1, 𝑏(2) ∈ 𝑂2, ∑

𝑠∈𝑆1∪𝑆2

(𝑏(1) + 𝑏(2)) (𝑠) ≤ 𝐵}.

By first obtaining the optimal solution to the optimization problem for 𝐵 = 1 and
gradually incrementing 𝐵, we can rewrite the set of candidate solutions to 𝑏(1,2)

𝐵 as
follows:

𝑏(1,2)
𝐵 ∈{(𝑏(1) + 𝑏(2)) ∣ 𝑏(1) ∈ 𝑂1, 𝑏(2) ∈ 𝑂2, ∑

𝑠∈𝑆1∪𝑆2

(𝑏(1) + 𝑏(2)) (𝑠) = 𝐵}

∪{𝑏(1,2)
𝐵−1 , if 𝐵 − 1 ≥ 1}

Given that we have just 2 sub-problems, the solution to the combined problem can
be obtained by exhaustive comparison of all alternatives, which there are no more than
𝐵 + 2 of:

𝑏(1,2)
𝐵 ∈ {𝑏(2)

𝐵 , 𝑏(1)
1 + 𝑏(2)

𝐵−1, 𝑏(1)
2 + 𝑏(2)

𝐵−2, . . . , 𝑏(1)
𝐵−1 + 𝑏(2)

1 , 𝑏(1)
𝐵 } ∪ {𝑏(1,2)

𝐵−1 , if 𝐵 − 1 ≥ 1}

If min(𝐵1, 𝐵2) < 𝐵 ≤ (𝐵1 + 𝐵2), then

𝑏(1,2)
𝐵 ∈ {𝑏(1)

𝐵−min(𝐵2,𝐵) + 𝑏(2)
min(𝐵2,𝐵), 𝑏(1)

𝐵−min(𝐵2,𝐵)+1 + 𝑏(2)
min(𝐵2,𝐵)−1,

. . . , 𝑏(1)
min(𝐵1,𝐵)−1 + 𝑏(2)

𝐵−min(𝐵1,𝐵)+1, 𝑏(1)
min(𝐵1,𝐵) + 𝑏(2)

𝐵−min(𝐵1,𝐵)}

∪{𝑏(1,2)
𝐵−1 , if 𝐵 − 1 ≥ 1},

where we define
𝑏(1)

0 (𝑠) ≔ 0 ∀𝑠 ∈ 𝑆1, 𝑏(2)
0 (𝑠) ≔ 0 ∀𝑠 ∈ 𝑆2.

Using the above approach, an optimal solution 𝑏(1,2)
𝐵 to the combined problem can

be obtained for each 𝐵 ∈ {1, . . . , 𝐵1 + 𝐵2}. 𝑏(1,2)
𝐵1+𝐵2

provides 100% satisfaction to
the combined charging demand 𝐸 = 𝐸1 ∪ 𝐸2 because Equations (4.3) and (4.7) hold.
Therefore, the complete set of optimal charger distributions 𝑂1,2 = {𝑏(1,2)

1 , . . . , 𝑏(1,2)
𝐵1+𝐵2

}
for the combined problem and all possible budget constraints is obtained.
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4.2.4 Optimal Solution to Combined Problem For 𝑘 Sub-Problems

Let 𝑋𝐸,𝑀 be the charger distribution objective function. Given 𝑘 sub-problems
𝑃1, . . . , 𝑃𝑘, let 𝑂1, . . . , 𝑂𝑘 be their respective sets of optimal charger distributions, each
𝑂𝑖 containing optimal solutions for all possible upper limits on allowed total budget.
In order to continue, sub-problems 𝑃1, . . . , 𝑃𝑘 must be pairwise independent.

First, using the process described in Sec. 4.2.3 we merge 𝑂1 with 𝑂2 and obtain 𝑂1,2.
The combined sub-problem 𝑃1,2 is independent from 𝑃3; therefore, we can merge 𝑂1,2
with 𝑂3 using the very same process and obtain 𝑂1,2,3. We continue until we obtain
𝑂1,...,𝑘. This is the complete solution to the combined problem.

The aforementioned approach is a principle used in dynamic programming (DP). For
example, a well-known solution algorithm for the 0-1 knapsack problem is based on a
similar concept [20].

4.2.5 Time Complexity
The time complexity of merging solutions of two sub-problems for a single value of 𝐵 is
linear, as long as the optimal solution for 𝐵 − 1 is already known. Then, at most 𝐵 + 2
values must be compared (as shown in Sec. 4.2.3); that is 𝐵 + 1 comparison operations.
For 𝐵 = 1, only one comparison operation is needed.

Merging solutions of two sub-problems for all values 𝐵 ∈ {1, . . . , 𝐵max} requires at
most 1 + ∑𝐵max

𝐵=2 (𝐵 + 1) = 1 + 1
2 (𝐵max − 1)(𝐵max + 4) = 𝑂(𝐵2

max) operations.
The time complexity of merging 𝑘 independent sub-problem solutions for all possible

total budgets requires the aforementioned to be performed 𝑘 − 1 times. The worst-case
time complexity in such case is therefore as shown in Equation (4.8), where 𝐵max =
max{𝐵1, . . . , 𝐵𝑘}.

𝑂(𝑘𝐵2
max) (4. 8)

4.3 Hard-Assignment Model
The simplest version of the model assumes one charging attempt per vehicle and sim-
plifies the problem by hard-assigning each instance of charging demand 𝑒 ∈ 𝐸 to the
CS location that is closest to 𝑒.

Note that the hard-assignment model, as is, is significantly limited, especially in terms
of siting, as it does not allow any charging demand transfer between different charging
stations. Using this model, in order to achieve full charging demand satisfaction, a CS
must be built at all locations {𝑠 ∣ 𝑠 ∈ 𝑆, ∃𝑒 ∈ 𝐸: (𝑒, 𝑠) ∈ 𝑀} or, in plain English, each
CS that has at least one instance of charging demand assigned must be built. Therefore,
siting is only pre-determined by the subset of potential charging station locations 𝑆.

The advantage of this model is that obtaining the optimal solution for any budget is
a simple task.

4.3.1 Solution Algorithm
The hard-assignment condition means that there is no 𝑒 ∈ 𝐸, 𝑠1, 𝑠2 ∈ 𝑆 such that
𝑠1 ≠ 𝑠2, (𝑒, 𝑠1), (𝑒, 𝑠2) ∈ 𝑀. Therefore, any two station locations are independent and
the set of edges of the station dependence graph is empty.

First, we discard all unused CS locations by only considering a subset of CS locations
𝑆′ ⊆ 𝑆, 𝑆′ = {𝑠 ∣ 𝑠 ∈ 𝑆, ∃𝑒 ∈ 𝐸: (𝑒, 𝑠) ∈ 𝑀}. Next, we use a partition of 𝑆′, where
each subset is a single station: 𝑆* = {{𝑠} ∣ 𝑠 ∈ 𝑆′}. For each 𝑆𝑖 = {𝑠𝑖} ∈ 𝑆*, a
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corresponding sub-problem to solve is (𝐸𝑖, 𝑆𝑖, 𝑀𝑖), where 𝐸𝑖 and 𝑀𝑖 are defined as in
Equation (4.1) on page 12.

Given that each sub-problem only contains one CS location, the task of finding
the optimal solution 𝑏(𝑖)

𝐵 (wrt. 𝑋𝐸,𝑀) to a sub-problem (𝐸𝑖, {𝑠𝑖}, 𝑀𝑖) for any possible
maximum allowed total budget 𝐵 ∈ {1, 2, . . .} is trivial: we either assign 𝐵 chargers
to the single station 𝑠𝑖, or less if the value of the objective function does not decrease
by doing so. In addition, there exists a value 𝐵(𝑖)

Full for which all instances of charging
demand assigned to station 𝑠𝑖 are satisfied; therefore, for any 𝐵 > 𝐵(𝑖)

Full, assigning 𝐵(𝑖)
Full

chargers to the station is sufficient for optimality.
The optimal charger distribution for a sub-problem (𝐸𝑖, {𝑠𝑖}, 𝑀𝑖) and maximum

allowed total budget 𝐵 ∈ {1, 2, . . .} can be written as follows:

𝑏(𝑖)
𝐵 (𝑠) =

⎧
{
⎨
{
⎩

0 if 𝑠 ≠ 𝑠𝑖 ∨ 𝐵 = 0,
𝑏(𝑖)

𝐵−1(𝑠𝑖) if 𝑠 = 𝑠𝑖 ∧ 𝐵 ≥ 2 ∧ 𝑋𝐸,𝑀 ( 𝛽(𝑖)
𝐵 ) = 𝑋𝐸,𝑀 ( 𝑏(𝑖)

𝐵−1 ),
𝐵 if 𝑠 = 𝑠𝑖 ∧ (𝐵 = 1 ∨ 𝑋𝐸,𝑀 ( 𝛽(𝑖)

𝐵 ) > 𝑋𝐸,𝑀 ( 𝑏(𝑖)
𝐵−1 )),

where
𝛽(𝑖)

𝐵 (𝑠) = { 𝐵 if 𝑠 = 𝑠𝑖,
0 otherwise.

Due to the hard-assignment condition, the given sub-problems are pairwise indepen-
dent; thus, the trivially obtained sub-problem solutions can be merged using the DP
method described in Section 4.2.4 and the solution to the original problem (𝐸, 𝑆, 𝑀)
is obtained.

4.3.2 Time Complexity
𝑂(| ̂𝐸𝑖|) is the time complexity of obtaining the values of 𝑔�̂�𝑖,𝑀𝑖,𝑏 for a single sub-problem
𝑃𝑖 and a charger distribution 𝑏.

When obtaining a solution for all possible total budgets to a single station 𝑠𝑖 (a sin-
gle sub-problem 𝑃𝑖), 𝐵𝑖 evaluations of the function 𝑔�̂�𝑖,𝑀𝑖,𝑏 must be performed (for 𝐵𝑖
different charger distributions 𝑏), where 𝐵𝑖 is the minimum budget needed for 100% sat-
isfaction of demand ̂𝐸𝑖. The worst-case time complexity of this is therefore 𝑂(𝐵𝑖 | ̂𝐸𝑖|).
When this is performed for all 𝑘 charging stations, the worst-case time complexity is
𝑂(𝑘𝐵max | ̂𝐸max|), where 𝐵max = max{𝐵1, . . . , 𝐵𝑘} and | ̂𝐸max| = max𝑘

𝑖=1 | ̂𝐸𝑖|.
The worst-case time complexity of the optimization step of merging individual solu-

tions, using the DP approach described in Sec. 4.2.4, is 𝑂(𝑘𝐵2
max) for 𝑘 sub-problems,

where 𝐵max = max{𝐵1, . . . , 𝐵𝑘}. In the case of hard-assignment, 𝑘 equals to the num-
ber of used charging station locations |𝑆′|.

The combined worst-case time complexity is therefore as per Equation (4.9).

𝑂(𝑘𝐵max | ̂𝐸max| + 𝑘𝐵2
max) = 𝑂(𝑘𝐵2

max | ̂𝐸max|) (4. 9)

4.4 Soft-Assignment Model
In order to represent the task of CS siting in the model, as opposed to only modeling CS
sizing, we assume more than one charging attempt per vehicle, meaning that there exist
values 𝑒 ∈ 𝐸 such that |{𝑠 ∣ ∀𝑠 ∈ 𝑆, (𝑒, 𝑠) ∈ 𝑀}| ≥ 2. In such case, it is also sometimes
possible to partition the problem into irreducible sub-problems. However, an irreducible
sub-problem may contain more than one station location. In fact, some problems
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themselves may already be irreducible, with the station dependency graph being one
large connected component. Therefore, while we may still be able to partition the
original problem into independent irreducible sub-problems and merge their individual
results, the sub-problems themselves may have non-trivial solutions. For this reason,
we formulate each irreducible sub-problem as an integer linear program (ILP). We will
first introduce an integer program (IP) and then replace non-linear constraints with
their linear counterparts.

4.4.1 IP Formulation

𝑉 Set of vehicles
𝑆 Set of CS locations

̂𝐸 Ordered expanded charging demand
𝑖 ∈ {1, . . . , | ̂𝐸|} Indices of elements in ordered ̂𝐸

̂𝑒𝑖 = (𝑒𝑖 = (𝑣𝑖, 𝑙𝑖, . . .), 𝑠𝑖, 𝑡𝑖, 𝛼𝑖) ∈ ̂𝐸 A single event in ̂𝐸
̂𝐸𝐴 = { ̂𝑒𝑖 ∈ ̂𝐸 ∣ 𝛼𝑖 = 1} Arrival events in ̂𝐸

̂𝐸𝐷 = { ̂𝑒𝑖 ∈ ̂𝐸 ∣ 𝛼𝑖 = −1} Departure events in ̂𝐸
𝐵 Total budget

𝑏𝑠 ∈ ℕ0 ∀𝑠 ∈ 𝑆 Amount of chargers assigned to station 𝑠
(an integer variable)

𝑥𝑖 ∈ {0, 1} ∀ ̂𝑒𝑖 ∈ ̂𝐸 Whether event ̂𝑒𝑖 is satisfied (a boolean
variable)

Table 4.1. IP and ILP soft-assignment model parameters and variables

We will formulate parameters, variables, the objective function and all constraints.
Constraint sets marked with an asterisk may be omitted, as explained below.

Table 4.1 shows all parameters and optimization variables used in the IP (and the
ILP) soft-assignment problem formulation.

The objective function and constraints are as follows:

arg max
𝑥𝑖 ∀ ̂𝑒𝑖∈�̂�, 𝑏𝑠 ∀𝑠∈𝑆

∑
̂𝑒𝑖∈�̂�𝐴

𝑥𝑖 (4. 10)

∑
𝑠∈𝑆

𝑏𝑠 ≤ 𝐵 ∀𝑠 ∈ 𝑆 (4. 11)

𝑥𝑖 = 𝑥𝑗
∀ ̂𝑒𝑖 = (𝑒, 𝑠, 𝑡𝑖, 𝛼𝑖) ∈ ̂𝐸,

̂𝑒𝑗 = (𝑒, 𝑠, 𝑡𝑗, 𝛼𝑗) ∈ ̂𝐸
(4. 12)

∑
̂𝑒𝑗∈𝑅

𝑥𝑗 ≤ 1
∀𝑒 ∈ 𝐸,

𝑅 = { ̂𝑒𝑗 = (𝑒𝑗, . . .)

∈ ̂𝐸𝐴 ∣ 𝑒𝑗 = 𝑒}
(4. 13)

𝑖−1
∑
𝑗=1

𝑥𝑗𝛼𝑗⟦𝑠𝑗 = 𝑠𝑖⟧ < 𝑏𝑠𝑖
⇒ ∑

̂𝑒𝑗∈𝑅,
𝑗≤𝑖

𝑥𝑗 = 1
∀ ̂𝑒𝑖 = (𝑒𝑖, 𝑠𝑖, 𝑡𝑖, 1) ∈ ̂𝐸𝐴

𝑅 = { ̂𝑒𝑗 = (𝑒𝑗, . . .)

∈ ̂𝐸𝐴 ∣ 𝑒𝑗 = 𝑒}

*(4. 14)

𝑖−1
∑
𝑗=1

𝑥𝑗𝛼𝑗⟦𝑠𝑗 = 𝑠𝑖⟧ < 𝑏𝑠𝑖
⇐ 𝑥𝑖 = 1 ∀ ̂𝑒𝑖 = (𝑒𝑖, 𝑠𝑖, 𝑡𝑖, 1) ∈ ̂𝐸𝐴 (4. 15)
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𝑏𝑠𝑖
≥ 1 ⇒ 𝑥𝑗 = 0

∀ ̂𝑒𝑖 = (𝑒, 𝑠𝑖, . . .) ∈ ̂𝐸,

̂𝑒𝑗 = (𝑒, 𝑠𝑗 . . .) ∈ ̂𝐸,
𝑖 < 𝑗

*(4. 16)

𝑥𝑖 ∈ {0, 1} ∀ ̂𝑒𝑖 ∈ ̂𝐸 (4. 17)
𝑏𝑠 ≥ 0 ∀𝑠 ∈ 𝑆 (4. 18)

The objective function (4.10) is the number of satisfied arrival events, which, given
other constraints, is equal to the number of satisfied instances of charging demand.
This objective function is equivalent to the use of function 𝑥 as defined in the original
problem formulation in Eq. (3.4) on p. 7.

Constraint (4.11) is the budget constraint.
Constraint set (4.12) establishes that all arrival/departure event pairs corresponding

to the same instance of charging demand and the same station must be either both
rejected or both satisfied. In other words, if and only if an arrival event is satisfied, its
corresponding departure event at the same station 𝑠 is also satisfied.

Constraint set (4.13) specifies that every instance of charging demand will not be
satisfied more than once, allowing at most one arrival event to be satisfied per instance
of charging demand.

The left hand side of constraint sets (4.14) and (4.15) is a cumulative sum of 𝛼
values of the ordered expanded charging demand ̂𝐸, where only events that are satisfied
(𝑥𝑗 = 1), occur at the same station as and earlier than ̂𝑒𝑖, are selected. In other words,
the left hand side value is equal to the number of occupied chargers at station 𝑠𝑖 just
prior to the occurrence of the event ̂𝑒𝑖. Here, let ⟦𝑐⟧ be defined for a condition 𝑐 as 1
if 𝑐 is true, 0 otherwise. Optional constraint set (4.14) establishes the FCFS condition:
if there are unoccupied chargers at station 𝑠𝑖 upon the arrival event ̂𝑒𝑖, the event must
be satisfied there, unless the corresponding instance of charging demand was already
satisfied at a different station in an earlier attempt. Constraint set (4.15) establishes
that an arrival event at station 𝑠𝑖 cannot be satisfied if all chargers at 𝑠𝑖 are occupied.
In other words, the number of occupied chargers at any location 𝑠𝑖 cannot at any point
in time 𝑖 surpass the number of chargers that are assigned to 𝑠𝑖.

Optional constraint set (4.16) is the no-retry condition, dictating that follow-up
charging attempts are only modeled in order to represent siting, but not to model
drivers re-trying at different stations if the station of their previous attempt had all
chargers occupied. In other words, the constraint ensures that all instances of charg-
ing demand attempt charging only once, but they do so at a station with at least one
charger (i.e. a station that is actually built). The constraint works as follows: if a
charging station 𝑠 has at least one charger installed, all attempts (at any station) that
follow attempts at station 𝑠 (for the same instances of charging demand) are disallowed.

Constraint sets (4.17) and (4.18) are variable domains.
The result of the optimization of this IP is not only a charger distribution 𝑏, where

𝑏(𝑠) = 𝑏𝑠 ∀𝑠 ∈ 𝑆, but also 𝑔𝐸,𝑀,𝑏 from the values of 𝑥𝑖, where 𝑔𝐸,𝑀,𝑏(𝑒) = 𝑠 if exists
̂𝑒𝑖 = (𝑒, 𝑠, . . .) such that 𝑥𝑖 = 1 (remember that for each 𝑒 ∈ 𝐸, there cannot be more

than one such value 𝑠), and 𝑔𝐸,𝑀,𝑏(𝑒) = None otherwise.

4.4.2 ILP Formulation

Non-linear constraints in sets (4.14), (4.15) and (4.16) (two of which are optional) must
be replaced with linear counterparts.
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For constraint sets (4.14) and (4.15), this involves adding new additional optimization

variables 𝑔𝑖 ∈ {0, 1} ∀ ̂𝑒𝑖 ∈ ̂𝐸. Constraint sets (4.19) and (4.20) are together the linear
replacement for both aforementioned constraint sets.

𝑔𝑖 ≤ 𝛾𝑖 ≤ 𝐵𝑔𝑖

∀ ̂𝑒𝑖 = (𝑒𝑖, 𝑠𝑖, 𝑡𝑖, 1) ∈ ̂𝐸𝐴

𝛾𝑖 = 𝑏𝑠 −
𝑖−1
∑
𝑗=1

𝑥𝑗𝛼𝑗⟦𝑠𝑗 = 𝑠⟧
(4. 19)

𝑥𝑖 ≤ 𝑔𝑖 ≤ ∑
̂𝑒𝑗∈𝑅, 𝑗≤𝑖

𝑥𝑗

∀ ̂𝑒𝑖 = (𝑒𝑖, 𝑠𝑖, 𝑡𝑖, 1) ∈ ̂𝐸𝐴,

𝑅 = { ̂𝑒𝑗 ∈ ̂𝐸𝐴 ∣ 𝑒𝑗 = 𝑒𝑖}
(4. 20)

Given that 𝑔𝑖 ∈ {0, 1}, constraint set (4.19) specifies that 𝑔𝑖 = sign(𝛾𝑖). This means
that 𝑔𝑖 = 1 if there is at least one unoccupied charger at station 𝑠𝑖 just before arrival
event ̂𝑒𝑖, 𝑔𝑖 = 0 otherwise. The left inequality of constraint set (4.20) ensures that if
𝑔𝑖 = 𝛾𝑖 = 0, meaning that there are no available chargers at 𝑠𝑖 just before arrival event

̂𝑒𝑖, then ̂𝑒𝑖 must be rejected, but previous charging attempts of the same instance of
charging demand are unrestricted. This is a linear replacement for constraint set (4.15).
The right inequality establishes that if 𝑔𝑖 = 1, meaning that there is at least one avail-
able charger at 𝑠𝑖, then either ̂𝑒𝑖 or one of the previous attempts of the corresponding
instance of charging demand must be satisfied ( ̂𝑒𝑖 by itself is unrestricted), which is a
linear replacement for the FCFS constraint set (4.14).

If the FCFS constraint set (4.14) is unused, a simpler linear replacement exists for the
(compulsory) constraint set (4.15). In such case, no additional variables 𝑔𝑖 are needed.
Constraint set (4.21) is the replacement.

𝑖
∑
𝑗=1

𝑥𝑗𝛼𝑗⟦𝑠𝑗 = 𝑠𝑖⟧ ≤ 𝑏𝑠𝑖
∀ ̂𝑒𝑖 = (𝑒𝑖, 𝑠𝑖, 𝑡𝑖, 1) ∈ ̂𝐸𝐴 (4. 21)

The linear replacement for the no-retry constraint set (4.16) (optional) requires new
additional optimization variables ℎ𝑠 ∈ {0, 1} ∀𝑠 ∈ 𝑆. Constraint set (4.22) establishes
that ℎ𝑠 = sign(𝑏𝑠) and constraint set (4.23) is the linear replacement.

ℎ𝑠 ≤ 𝑏𝑠 ≤ 𝐵ℎ𝑠 ∀𝑠 ∈ 𝑆 (4. 22)

𝑥𝑗 ≤ 1 − ℎ𝑠𝑖

∀ ̂𝑒𝑖 = (𝑒, 𝑠𝑖, . . .) ∈ ̂𝐸,

̂𝑒𝑗 = (𝑒, 𝑠𝑗 . . .) ∈ ̂𝐸,
𝑖 < 𝑗

(4. 23)

4.4.3 Time Complexity
Let us consider a relaxation of the soft-assignment model, where all arrival times of all
instances of charging demand are assumed equal to the start of the entire measured
period, and all departure times are assumed equal to the end of the entire measured
period. For such relaxation to be meaningful, we must either:

. consider only a subset of the original charging demand that concerns only a suffi-
ciently short time period,. or discard the sizing aspect of the model entirely and only focus on siting.
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In the latter case, if we discard the sizing aspect of the model by defining each
budget variable 𝑏𝑠 as a binary variable, merely representing whether a station is built,
but not constraining its capacity, we obtain a problem definition equivalent to the
uncapacitated facility location problem (UFLP), also known as the simple plant location
problem (SPLP), which is NP-hard [21–22]. In the case where sizing is also considered,
the problem definition is similar to the capacitated facility location problem (CFLP),
which is a version of UFLP with additional constraints [23]; however, CFLP defines
location capacities as constants, whereas our soft-assignment model defines their sum
to be constant.

As elaborated on later in Chapter 5, the soft-assignment ILP with FCFS is very
difficult to solve even for the state-of-the-art commercial solver Gurobi, unless the
charging demand set is very small. Convergence is significantly faster when the FCFS
condition is relaxed; although, at times, such ILPs may still be computationally difficult
to solve. To the best of authors’ knowledge, no efficient algorithms have been developed
for solving the soft-assignment IP model with FCFS optimally. A possible approach
may be via a tailored branch-and-bound algorithm utilizing the FCFS condition to
its advantage by proceeding chronologically (as opposed to universal ILP branch-and-
bound algorithms used in state-of-the-art solvers); however, this is mere speculation.

4.5 Two-Stage Approach
A combined approach may be used, where the siting and sizing stages of the problem
are resolved independently: the first stage is the siting stage, where the smallest subset
of CS locations that can satisfy the entire demand is found. In the second stage, a hard-
assignment problem is solved, where each instance of charging demand is hard-assigned
to the closest station in the subset of stations from the first stage.

Of course, this approach does not provide an optimal solution to the soft-assignment
problem as formulated in Section 4.4; however, it does provide a good compromise
between computational complexity and versatility of the problem formulation.

4.5.1 Minimal Complete Charging Station Subset Using ILP
The first stage of the approach is finding the smallest subset of charging station locations
to build, such that all instances of charging demand can still be satisfied by it, given
enough chargers. In this stage, charging station sizing and budget is not considered.

We will be using the ILP formulation from Section 4.4.1 as a baseline, and we will
modify the formulation for the purposes of this stage accordingly.

All parameters and optimization variables as previously defined in Table 4.1 will be
used, with the exception of variables 𝑏𝑠, which will be redefined as boolean variables
denoting whether a CS location 𝑠 is contained in the minimum subset of CS locations.

A different objective function must be used: a subset of charging stations will be
found such that the total number of stations is minimized and the whole charging
demand is satisfiable (with respect to a distance constraint, as represented in 𝑀).
Equation (4.24) specifies the objective function.

arg min
𝑏𝑠 ∀𝑠∈𝑆

∑
𝑠∈𝑆

𝑏𝑠 (4. 24)

Multiple optimal solutions may exist for this optimization criterion when used alone.
To combat this, a secondary objective function may be defined, such that the sum of
euclidean distances between instances of charging demand and their assigned stations is
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minimized. For this, values 𝑑𝑒,𝑠 ∀(𝑒, 𝑠) ∈ 𝑀, representing euclidean distances between
all possible pairs of charging demand instances and CS locations, must be available. If
they are, the secondary criterion may be defined as shown in Equation (4.25).

arg min
𝑥𝑖 ∀ ̂𝑒𝑖∈�̂�, 𝑏𝑠 ∀𝑠∈𝑆

∑
̂𝑒𝑖∈�̂�

𝑥𝑖𝑑𝑒𝑖,𝑠𝑖
,

where ̂𝑒𝑖 = (𝑒𝑖, 𝑠𝑖, . . .)
(4. 25)

Constraint sets (4.12), (4.13) and (4.17) are the only constraint sets from the original
soft-assignment ILP definition to be used. The variable domain of variables 𝑏𝑠 is defined
in constraint set (4.26).

𝑏𝑠 ∈ {0, 1} ∀𝑠 ∈ 𝑆 (4. 26)

The state-of-the-art commercial solver Gurobi is able to obtain the optimal solution
to this ILP within seconds or minutes on a consumer-grade laptop, even for charging
demands of large sizes.

4.5.2 Minimal Complete Charging Station Subset Iteratively
A satisfactory solution to the first stage may also be obtained using a greedy, iterative
approach: we start with the complete set of CS locations 𝑆 and iteratively remove a
station such that the maximum distance between an instance of charging demand and
the new CS closest to it is minimized.
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Chapter 5
Case Study

To illustrate the use of the proposed models and to evaluate and compare the compu-
tational performance of the solution methods, as well as the quality of their results, we
will apply the models to a case of a business vehicle fleet operating within premises of
approx. 3,6 km2.

Floating car data (FCD) of a combustion-engine based business vehicle fleet was
provided to us by a Czech automobile manufacturer. The data contains anonymized
timestamped GPS coordinates of 4 476 various vehicles owned by the company, captured
between March and September 2019, with intervals between consecutive captures rang-
ing from 1 to 25 seconds in 89,9% of cases, the majority being 5 seconds apart. There
are longer intervals between consecutive captures not only due to vehicle inactivity, but
also due to the fact that personal trips were not tracked by the company.

The task was to find optimal charging station locations among pre-determined suit-
able locations, as well as their sizing, given varying financial budget. All 33 suitable
CS locations were pre-selected by the company executives and are all located within
company-owned premises. The locations are shown on Figure 5.1.

5.1 Charging Demand Model

In order to model the charging demand of a future electric vehicle fleet, pairs of con-
secutive GPS captures were used as instances of charging demand. A pair was only
considered as an instance of charging demand if the captures were within 5 metres of
distance (to account for GPS error) and if the interval between captures was at least
15 minutes long, as all such captures appear to be due to parking. Such model of
charging demand is in line with the attempt to provide charging seamlessly without
affecting drivers’ original schedules, as they are assumed to be charging during their
original parking times. Charging/parking intervals were capped at 8 hours if longer.
Battery capacities of EVs were not modeled, and thus are not reflected in the charging
demand model.

An upper limit on acceptable distance between an instance of charging demand and a
considered station location was set to 300m. All instances of charging demand for which
there are no potential CS locations in the 300m radius, were discarded (there exists no
feasible solution where any of such instances can be satisfied within the distance limit).
The resulting model contains 269 585 instances of charging demand made by 2 873
different vehicles. Figure 5.2 shows the spatial distribution of the charging demand, as
well as their spatial relation to the suitable CS locations.

Figure 5.3 shows 5-day rolling mean of daily volumes of traffic (total instances of
charging demand) for the resulting model of charging demand; workdays and weekends
marked separately. In addition, three specific days were highlighted for future reference.
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Figure 5.1. Suitable charging station loca-
tions

Figure 5.2. Spatial heatmap of charging
demand
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Figure 5.3. Daily volumes of traffic of modeled charging demand (5-day rolling mean)

5.2 Computational Performance
Tests were performed on a 4-core consumer grade Intel i7-7700HQ laptop CPU from
2017 for computationally efficient tasks, and on a high performance computing cluster1

for more demanding tasks. All used code is available on GitHub2.
Practical results show that the convergence of the branch-and-bound program used in

the state-of-the-art commercial solver Gurobi3 is significantly handicapped by the FCFS
condition4, and dependant on the size of charging demand and the interconnection of
charging stations in terms of their dependence wrt. the charging demand.

5.2.1 Problem Decomposability
In order to find an optimal charger distribution with respect to CS siting and sizing,
such that any vehicle is assumed to drive to the charging station closest to it (if there
is any within the 300m radius), we must define viable assignments of charging demand
to stations using the vehicle-based approach, as specified earlier in Section 3.1.2: all
stations within the 300m radius from the original vehicle location must be considered
as charging attempts, with order based on increasing distance from the original vehicle
location. Figure 5.4 shows that the charging station dependence graph (as formally
1 The access to the computational infrastructure of the OP VVV funded project

CZ.02.1.01/0.0/0.0/16_019/0000765 “Research Center for Informatics” is gratefully acknowledged.
2 https://github.com/neumannjan/charging-station-siting-sizing
3 https://www.gurobi.com/
4 All ILP problems were solved without the no-retry constraint (4.16) (or its linear counterpart (4.23))

due to the constraint not being formulated at the time of testing.
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Figure 5.4. Station dependence graph for
vehicle-based station assignment

Figure 5.5. Station dependence graph for
vehicle-based station assignment (max. 2)

Figure 5.6. Station dependence graph for
attempt-based station assignment (max. 3)

Figure 5.7. Station dependence graph for
attempt-based station assignment (max. 2)

defined in Section 4.2.1) for vehicle-based station assignment with 300m upper limit
on distance is a single large connected component of stations, which means that such
problem cannot be decomposed into smaller, independent sub-problems. Figure 5.5
shows the same station dependence graph when additional maximum limit of 2 CS
locations per instance of charging demand is imposed. Imposing such limit results in
loss of optimality for the problem of CS siting and sizing. Even so, such limit still does
not allow us to decompose the currently studied problem into sub-problems.

An alternate station assignment approach was previously referred to as attempt-
based: the closest potential station location is considered as the first attempt of each
vehicle, with each additional attempt based on distance from the location of the station
in the previous attempt, as opposed to the original vehicle location. Figures 5.6 and 5.7
show station dependence graphs for attempt-based station assignment for the maximum
limit of 3 and 2 CS locations per instance of charging demand, respectively. Such
problem definitions are decomposable into many small, independently solvable sub-
problems. However, please note that such demand-station assignment approach breaks
optimality in terms of the original problem formulation. Therefore, it is useful purely
for studying computational performance of solving the ILPs.

5.2.2 FCFS ILP Performance
For groups of 1, 2, even 3 stations, the solution is trivially obtainable via comparison
of all possible charger distributions for given total budget. With growing number of
charging stations, the number of possible charger distributions grows with factorial
complexity. However, for the Gurobi program, even in some cases of sub-problems of 3
stations (especially for large enough charging demands), the convergence can still be
extremely slow if the FCFS constraint is used (although may not always be, depending
on the complexity of constraints for the particular charging demand).

As an example of a very difficult 3 station sub-problem to solve, for charging demand
based on a month of data with 5 270 unique instances of charging demand and 10 540
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(Sub-)problem Execution Optimal solutions
Time period |𝑆| |𝐸| |𝑀| time cap Obtained Total %

1 day 5 382 727 02:07:19 88 88 100,00
1 month 3 1356 4068 03:54:30 25 25 100,00
1 month 4 2289 5208 3 days 29 49 59,18
1 month 5 1973 5626 1 day 22 45 48,89
1 day 8 460 1380 1 day 32 98 32,65
1 day 8 572 1485 1 day 40 145 27,59
1 month 3 5270 10540 3 days 16 71 22,54
1 month 4 7018 17968 1 day 7 84 8,33
1 day 33 1425 4616 1 day 0 ? 0.00
1 month 6 12437 27821 1 day 0 ? 0,00
1 month 33 37444 122799 1 day 0 ? 0,00

Table 5.1. Performance statistics for selected FCFS ILP sub-problems. |𝑆| — number of
stations in the sub-problem. |𝐸| — total instances of charging demand. |𝑀| — total
considered charging attempts (i.e. total modeled arrival events). ‘Total solutions’ is equiv-
alent to the number of different values of max. allowed budget, for which a different optimal

solution exists.

different charging attempts total, the solver converged to an optimal solution for total
budget of 52 chargers after 7 hours, 37 minutes and 24 seconds of execution on the
cluster. In this example, the optimal solution was given to Gurobi as the starter solu-
tion; however, from the very start of the execution of the branch-and-bound program,
the difference between best known upper bound on objective value and the best known
value itself was 36 instances of charging demand, and this gap was first lowered after 7
hours, 31 minutes and 49 seconds.

Overall, for FCFS ILPs, results are obtainable within reasonable time of execution for
toy examples only. Table 5.1 shows percentages of completion for selected FCFS sub-
problems of various sizes, when executed on the cluster for all possible total budgets,
with execution time limit up to 3 days. Results for all total budgets were obtainable
within 24 hours of execution for sub-problems with 5 stations or less and for charging
demand data collected in a single day only (up to approx. 400 unique instances of
charging demand and approx. 700 different charging attempts total). One exception was
a sub-problem of 3 stations with charging demand dataset collected over 1 month, with
1 356 unique instances of charging demand and 4 068 different charging attempts total,
where the solution for all possible total budgets was obtained in 3 hours, 54 minutes
and 30 seconds, as shown in the second row of Table 5.1. However, again, such problem
is solvable trivially via brute-force comparison of all possible charger distributions.

Results were usually obtainable within 24 hours for at least some values of total
budget unless either the set of CS locations or the charging demand set was too large;
although this is also individual based on the charging demand. For the “ideal” problem
formulations (highlighted in bold), the program did not finish within 24 hours for a
single value of total budget.

5.2.3 Non-FCFS ILP Performance
When the FCFS constraint is omitted, the ILP solutions are obtained significantly
faster. For almost all (sub-)problems, all results were obtained within minutes to hours
of execution. The only exception were problems with vehicle-based station assignment
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(Sub-)problem Execution Optimal solutions
Time period |𝑆| |𝐸| |𝑀| time cap Obtained Total %

1 month 10 15625 51407 15:50:04 176 176 100,00
1 month 14 16115 48345 07:48:37 219 219 100,00
1 month 9 12190 35909 03:28:06 190 190 100,00
1 month 4 7018 17968 00:18:24 84 84 100,00
1 day 33 1425 4616 00:09:51 320 320 100,00
1 month 33 28504 93143 2 days 133 412 32,28
1 month 33 28504 104942 2 days 105 407 25,80
1 month 33 37444 122799 2 days 78 427 18,27
1 month 33 37444 139892 2 days 52 420 12,38

Table 5.2. Performance statistics for selected ILP sub-problems without FCFS. |𝑆| — num-
ber of stations in the sub-problem. |𝐸| — total instances of charging demand. |𝑀| —
total considered charging attempts (i.e. total modeled arrival events). ‘Total solutions’ is
equivalent to the number of different values of max. allowed budget, for which a different

optimal solution exists.

and charging demand based on one month of data or more, for which the program did
not finish within 48 hours of execution, as shown in Table 5.2.

5.3 Objective Values
Resulting objective values were studied for hard-assignment, two-stage and no-FCFS
ILP methods. The no-FCFS ILP method was included in order to provide an upper
bound on objective values of the other methods, all of which assume the FCFS condi-
tion, as well as to illustrate potential benefits resulting from using scheduling for the
assignment of chargers to EVs.

The maximized objective function is the total amount of satisfied instances of charg-
ing demand.

For methods with soft-assignment of demand to stations (ILP and first stage of the
two-stage method), the viable station assignments of each instance of charging demand
were specified using the vehicle-based approach, where stations are prioritized based
on their distance from the original vehicle location, with an upper limit of 300m. Such
assignment models CS siting fully and is in line with the objective to encourage vehicles
obtaining chargers upon their first arrival at a station, i.e. discourage the need for retries
at different stations.

Furthermore, the no-FCFS ILP method was also executed with additional upper
limits of 3 stations and 1 station per each instance of charging demand. The latter is
essentially hard-assignment without FCFS, allowing “smart rejection” of vehicles with
respect to future traffic and the objective function.

Lastly, both variants of the station subset stage of the two-stage method, ILP-based
and iterative, were compared.

5.3.1 Effect of Charging Demand Conditions

Objective values for different solution methods differ mainly due to different assump-
tions on charging demand behavior. Figure 5.8 shows the objective values for the
different solution methods, utilizing different charging demand assumptions, used on
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Figure 5.8. Objective values of different solution methods
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Figure 5.9. Objective value increase for ILP no-FCFS soft-assignment solutions
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Figure 5.10. Objective value increase for ILP no-FCFS hard-assignment solution

training data based on 1 day and 1 month of measuring. In the case of the March
dataset, results for the ILP method are available only for a subset of all possible upper
budgets, due to computational limits.

Figure 5.9 shows in greater detail that the no-FCFS ILP solutions produce sig-
nificantly greater objective values in comparison to other solutions, satisfying up to
24,7% of additional demand in the soft-assignment case as opposed to the plain hard-
assignment solution, with 17,7% average over all budgets (for the day dataset, where
complete data is available). In the hard-assignment case (max. 1 station location con-
sidered per each instance of charging demand), the difference from the plain hard-
assignment solution (with FCFS) was as high as 15% and approx. 6% on average per
budget for the month dataset, as shown in Fig. 5.10.
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There are three reasons for this:

. station soft assignment (not in effect in the case of hard-assignment ILP),. relaxation of the no-retry condition (not in effect in the case of hard-assignment ILP),. relaxation of the FCFS condition.

Firstly, in all hard-assignment solutions (i.e. plain hard-assignment, two-stage, hard-
assignment no-FCFS ILP), customers are only satisfiable at their originally assigned
station locations. However, if we consider all charging station locations, for 90,8% of
vehicles there are two or more locations in the 300m radius, three or more for 82%.
Hard-assignment solutions are unable to take advantage of this: a customer “drives”
to their originally assigned station location even if the station is not built at all (has
zero assigned chargers) and the request is therefore automatically rejected; whereas
in practice, a customer would not drive to a non-existent station but instead to any
built station within the 300m radius. The two-stage solution is merely an attempt
to mitigate the effect of this limitation of the hard-assignment model via reduction of
options that a vehicle may choose from.

Secondly, any solution with hard assignment of demand to stations implicitly assumes
the no-retry condition, stating that a driver must first arrive at a station to know if there
are any unoccupied chargers, and if there are none, the driver does not retry elsewhere.
However, even for the minimal subset of all charging station locations used in two-stage
solutions, there are two or more locations in proximity for 63,7% of vehicles, three or
more for 21,2%, and it is likely that only some of the stations have all chargers occupied.
The no-FCFS ILP solutions are modeled without the no-retry condition, which can be
interpreted as the drivers knowing which stations have unoccupied chargers prior to
them arriving at the stations (this is achievable in practice for example by monitoring
stations and providing vacancy information on a website). An alternate interpretation
is that each driver is willing to attempt charging at all nearby stations.

Thirdly (and this is the only factor causing the 6% average increase in the hard-
assignment case), the omission of the FCFS condition can be interpreted as follows: a
real-time reservation system (scheduler) is used, capable of rejecting users with overly
high demands entirely, with respect to the objective function and future traffic. Pro-
vided that the objective function is the total number of satisfied requests, the model
may reject a single request even if there are unoccupied chargers available if such deci-
sion allows a large number of other requests (expected to arrive at a later time) to be
satisfied.

Therefore, when compared to the plain hard-assignment solution (which is signifi-
cantly limited siting-wise), we can approximate that a 10% average charging demand
satisfaction increase can be achieved by either providing users with information on sta-
tion vacancy, or by assuming that they are willing to attempt charging at all stations
in their proximity. Additional approx. 6% average increase is achievable by rejecting
overly demanding customers via a real-time reservation system. Both are especially
significant for lower total budgets. The two-stage solution is known to take advantage
of the former only partially via the reduction of options that each vehicle may have.

5.3.2 Available FCFS Solution Comparison

As shown in Fig. 5.11, any two-stage solution is generally better than the plain hard-
assignment solution for a given total budget. Intuitively, the reason for this is that
with lower total number of stations, the average number of chargers per station must
be greater given the same total budget, and an instance of charging demand generally
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Figure 5.11. Objective value difference for plain hard-assignment and two-stage solutions

has less stations to choose from within its allowed distance radius. Therefore, a station
is more likely to arrive at a station with unoccupied chargers.

From this perspective, the question of CS siting is a trade-off between budget and
user convenience — the less stations we build, the less chargers are needed in total
to fulfill the same demand, given sufficient upper limit on viable distance to station.
Therefore, in terms of user convenience, only for larger budgets it becomes better to
build more stations to decrease the average distance to the closest station. For lower
budgets, the use of more stations comes with the trade-off that a driver is less likely to
arrive at a station with vacant chargers, unless they know the vacancy a priori.

It is also worth noting that, for the two-stage solver, station subset stage done via
ILP generally, but not always, provides solutions with greater demand satisfaction than
via iterative reduction, as shown in Fig. 5.11. This is because the true optimality of the
station subset selection stage (as guaranteed by the ILP solver) does not necessarily
transfer to lower budget solutions found in the second stage, where the station subset
is fixed.

5.4 Solution Crossvalidation
We have compared the solution methods based on their objective values; however,
each solution method contains different assumptions, such as the first-come-first-served
assumption (or lack thereof), or the assumption that drivers are (or are not) willing to
retry at different stations upon rejection. Let us now compare the charger distributions
provided by the different methods in an identical setting: with identical assumptions, as
well as identical charging demand, different from any of the charging demands used in
optimization, so as to determine the robustness of the methods with respect to changing
conditions as well.
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We will assume the first-come-first-served condition, as well as either unwillingness of
each driver to retry at a different station, or willingness to try at as many as three dif-
ferent stations (i.e. each driver is willing to be rejected twice and still attempt charging
a third time). However, even under the assumption that drivers are unwilling to retry,
there will be no hard-assignment of charging demand to stations, meaning that any
vehicle will drive to the closest built charging station (provided that there is any within
the 300m radius), whichever it is for the given tested charger distribution (unlike in
the case of hard-assignment optimization, where the assignment was determined prior
to the subset of built stations being known).

Please note that in the case of three attempts per instance of charging demand, the
attempts are simulated using the attempt-based approach, but with the true subset of
built stations taken into consideration. In other words, a vehicle first drives to the
station closest to it, and upon rejection, drives to the next closest station from its
current location (at the first station), as opposed to driving to the next closest station
from its original location.

Validation data will be based on two halves of the full charging demand, separated
so that the total number of instances of charging demand for each half is equal: either
from March (incl.) to June (excl.), or from June (incl.) to 15th of September (excl.).
For each of the two validation datasets, charging distributions based on optimization
on a subset of the opposite dataset will be used. Training datasets of the extent of
1 day and 1 month will be used. As shown in Fig. 5.3, in the case of March-June data
being used for validation, there is an increase in daily charging demand, as opposed to
training data (subset of June-September data).

5.4.1 Single-Attempt Solution Comparison

For the assumption of max. 1 attempt per each instance of charging demand, results
show that two-stage solutions retain their slight advantage over all other solutions, as
shown in Figure 5.12 and in greater detail in Figure 5.13. In the case of the month-
long training datasets, the two-stage ILP subset solution is capable of charging up to
approx. 4% additional demand, with approx. 2,4% average, as opposed to the plain
hard-assignment solution. For day-long training datasets, the difference is up to ap-
prox. 7%, with approx. 3.6% average.

In terms of the effect of conditional shifts caused by the use of a different set of data,
we compared all solutions with the best known solution obtained via direct optimization
of each validation dataset (‘Baseline’ in Fig. 5.13). Here, the two-stage ILP subset
solution lost up to 1,26% (0,76% average) for the July training dataset, and up to
0,73% (0,36% average) for the March training dataset, in crossvalidation. Here, the
effect of an increase in daily charging demand from training to validation, as opposed
to a decrease, was only slightly noticeable.

Looking at the effect of the FCFS constraint in training, the hard-assignment so-
lutions produce similar results in FCFS crossvalidation regardless of whether FCFS
was assumed in training. The soft-assignment no-FCFS solutions, however, show a sig-
nificant loss in satisfied charging demand when the resulting budget distributions are
tested in FCFS simulations, especially when trained on the larger, 1 month datasets, as
shown in Fig. 5.12. This is unsurprising, considering that the solutions are tailored to
situations in which a scheduler is assumed to be employed. In other words, the no-FCFS
models appear to be too permissive for the FCFS simulations; therefore, the relaxation
of the FCFS constraint is not a satisfactory approach to obtaining good results for
FCFS problems.
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Figure 5.12. Crossvalidation demand satisfaction for simulation with 1 charging attempt

8

6

4

2

0

Sa
tis

fie
d 

de
m

an
d 

[%
]

(d
iff

er
en

ce
 fr

om
 b

es
t)

Train = 2019-05-28
Val = Jun-Sep

Train = March
Val = Jun-Sep

0 250 500 750
Budget

8

6

4

2

0

Sa
tis

fie
d 

de
m

an
d 

[%
]

(d
iff

er
en

ce
 fr

om
 b

es
t)

Train = 2019-08-07
Val = Mar-Jun

0 250 500 750
Budget

Train = July
Val = Mar-Jun

Budget distribution
Hard assignment
Two-stage (ILP subset)
Two-stage (iterative subset)
ILP (no FCFS, hard)
Baseline

Hard assignment
False
True

Figure 5.13. Crossvalidation difference from baseline for simulation with 1 charging at-
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5.4.2 Three-Attempt Solution Comparison
Figures 5.14 and 5.15 show results of crossvalidation in cases where max. 3 attempts per
each instance of charging demand are assumed. Here, the advantage of the two-stage
solution that we observed in the single-attempt case is not present; in fact, the hard-
assignment solution often provides better results than the two-stage solution. However,
all differences are within 1,6% for month-long training datasets, approx. 0,8% on aver-
age. Therefore, it can be said that the assumption that drivers are willing to attempt
charging up to three times per one instance of charging demand is permissive enough
to mitigate differences between charging distributions.

5.4.3 Effect of Training Dataset Size
Given the fact that using smaller training datasets is computationally advantageous, it
is useful to determine the effect of training dataset size on results in crossvalidation.
We compared solutions for day-long and month-long training datasets, such that for
any total budget, solutions that performed best on a validation dataset for either of
the training datasets are compared. For the Mar-Jun validation dataset, the median
losses caused by training on only one day of data (as opposed to one month of data)
for 1 and 3 max. charging attempts are 0,26% and 0,11%, respectively, as shown in
Fig. 5.16. For the Jun-Sep validation dataset, the median losses are 0,54% and 0,46%,
respectively, as shown in Fig. 5.17.

Please note that training on small datasets does not necessarily provide all results.
Charging demand subsets based on short time periods are often fully satisfiable for a
lower value of total budget than needed to fully satisfy the complete demand (unless the
subset contains all usage peaks). In our crossvalidation testing, a solution trained on a
single day of data was in some cases unable to charge more than 91% of the 3-month
validation dataset, whereas solutions trained on a month of data provided results for
greater total budgets as well, allowing to charge up to 99 to 100% of the validation
dataset, depending on the solution. On the other hand, the additional budget needed
to charge the upper 9% can be up to 400 additional chargers needed — not necessarily
a reasonable upgrade.

In addition to this, there are noticeable spikes in demand satisfaction loss for the
day-long dataset, up to 4,95%, as shown in Fig. 5.16.

In conclusion, for the studied solution methods, it appears that short training
datasets may be sufficient, as long as they are selected carefully enough.
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Figure 5.14. Crossvalidation demand satisfaction for simulation with 3 charging attempts
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Chapter 6
Conclusion

With the aim of aiding private companies in seamlessly upgrading existing business
vehicle fleets to electric mobility, the question of finding optimal charging station siting
and sizing, with respect to historical fleet operation data, as well as a restriction to
company-owned premises and fixed financial budget, was studied. As per the thesis
assignment, an overview of existing literature on optimal EV charging infrastructure
was conducted, evaluating the correspondence of existing approaches with the afore-
mentioned motivations.

The problem was formulated as an integer linear program with a deterministic charg-
ing demand model and a representation allowing for demand transfers among different
stations. The program is foundationally based in existing facility location (siting) prob-
lem formulations (UFLP and CFLP), with additional unique constraints; namely, the
representation of chronological occurrence of events, reflecting dynamically changing
demand, such as due to peak hours. To the best of authors’ knowledge, the formulation
of the constraint representing chronological order of events is uncommon enough that
the baseline problem formulation is difficult to solve via universal techniques used for
finding optimal solutions to more common ILPs.

Thus, the effect of various modifications to the problem formulation, such as via
different constraint relaxations, was studied on the basis of a case study, so as to de-
termine the consequences of obtaining solutions via less computationally demanding
approaches. Specifically, ILP formulations in which the constraint establishing the
chronological occurrence of events is relaxed, were found to produce solutions that are
inadequate for problems where the use of the constraint is well-founded. By contrast,
solutions minimizing the number of built charging stations with respect to an upper
limit on acceptable distance to station, stood out as very effective, especially for lower
budgets, as well as robust to unseen charging demand data. The benefit of building less
charging stations becomes insignificant either with large enough financial budget, or
by providing customers with real-time information on charger vacancy at all stations,
so that a customer is not required to drive to a station to know if there are unoccu-
pied chargers. Only under such conditions it becomes beneficial to minimize average
distance to station by building more stations. Lastly, advantages of the introduction
of a mandatory charger reservation stage, as opposed to offering charging infrastruc-
ture as-is, were studied, with results showing that additional non-negligible increase in
the number of total satisfied customers can be achieved by rejecting customers with
excessive demands.

In summary, companies were presented with a modeling approach that serves as an
aid in effective decision-making in terms of building EV charging station infrastructure.
A truly optimal solution per se to the model was not established; nonetheless, effective
solutions to the problem were provided, as backed by the results of the case study.

Future work may expand on this thesis by exploring effective algorithms for obtaining
mathematically optimal solutions to the proposed problem formulation. For example,
branch-and-bound algorithms, not too different from those commonly used for solving
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more standard ILPs, may potentially be utilized in a way that capitalizes on the non-
standard constraints, as opposed to being hindered by them. In addition, further case
studies may be conducted, e.g. to study optimal budget distributions with respect to
different charger speeds, given that the problem formulation is capable of such repre-
sentations (via different vehicle departure times based on the station assignment), or
simply to further evaluate scalability and robustness of the proposed solutions.
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Appendix A
Glossary

CFLP . Capacitated facility location problem
CS . Charging station
DP . Dynamic programming
EV . Electric vehicle
FCD . Floating car data
FCFS . First come, first served
ILP . Integer linear programming/program
IP . Integer programming/program
SPLP . Simple plant location problem
UFLP . Uncapacitated facility location problem
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Appendix B
Code Guide

The following is the structure of the attached code implementation of the models. In
order to comply with the data provider’s policy, charging demand input data, necessary
for successful execution, is not provided. Contact thesis supervisor Ing. Martin Schaefer
for information about the input data.

. lib — directory containing Python source files. cpp — directory containing C++ source files, built as a Python extension (using
pybind111) in order to increase the speed of selected algorithms (most notably Algo-
rithm 4.1 for simulating charging demand). station_distance_graphs.ipynb — Jupyter2 notebook containing source code for
producing station distance graphs used in the thesis. testing_pipeline.ipynb — Jupyter notebook containing source code for executing
all tests used in the thesis. model_run_iterative.py — Python executable file for running Gurobi op-
timization on ILPs (used on the computational cluster, input produced in
testing_pipeline.ipynb). run_crossval.py — Python executable file for running crossvalidation tests (used
on the computational cluster, input produced in testing_pipeline.ipynb). traffic_full.gz, charging_stations.gz, station_distances_mtx.gz — Data
files (unavailable in the .zip file). environment.yml — Python Conda3 environment file, containing information on
required Python dependencies. CMakeLists.txt, pyproject.toml, setup.py — files needed for compilation of the
Python extension written in C++

See also the GitHub repository4.

1 https://pybind11.readthedocs.io/en/stable/
2 https://jupyter.org/
3 https://docs.conda.io/en/latest/
4 https://github.com/neumannjan/charging-station-siting-sizing
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