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Abstract

In malware behavioral analysis, the list of accessed and created files is very often a strong

predictive feature for classification whether the examined file is malicious or benign. How-

ever, malware authors are trying to avoid detection by generating random filenames,

and/or modifying existing filenames with new versions of the malware. These changes

represent real-world adversarial examples against the detection classifier. The goal of

this work is to learn latent representations of character sequences, generate realistic ad-

versarial examples, and improve the classifier’s robustness against adversarial attacks.

To obtain fixed-size vector representations of character sequences, we developed a recur-

rent autoencoder architecture that achieves high sample reconstruction accuracy. Using

gradient-based adversarial attacks in the latent representation space, we were able to gen-

erate realistic adversarial examples in the input space, and use these adversarial examples

to improve the classifier’s robustness. Additionally, we showed that latent representations

obtained using variational autoencoders improve adversarial robustness without the need

for adversarial training.



Abstrakt

V analýze správania malwaru je zoznam vytvorených alebo otvorených súborov často

silný pŕıznak pre klasifikačný problém, v ktorom sa rozhoduje či je daný súbor bezpečný

alebo nebezpečný. Autori malwaru sa snažia uniknúť odhaleniu s pomocou generovania

náhodných názvov súborov, alebo modifikovańım existujúcich názvov súborov v nových

verziách malwaru. Tieto zmeny predstavujú adversariálne útoky na detekčný klasifikátor.

Ciělom tejto práce je učenie sa latentných reprezentácíı znakových reťazcov, generovanie

adversariálnych vstupov, a zlepšenie robustnosti klasifikátora voči adversariálnym útokom.

Pre učenie sa vektorových reprezentácíı znakových reťazcov sme vyvinuli rekurentnú au-

toenkóder architektúru, ktorá dosahuje vysokú rekonštrukčnú kvalitu. S použit́ım per-

turbácíı latentných reprezentácíı, ktoré sú založené na znalosti gradientu, sme potom boli

schopńı generovať adversariálne vstupy a použǐt tieto adversariálne vstupy na zlepšenie

robustnosti klasifikátora. Taktiež sme ukázali, že latentné reprezentácie źıskané pomocou

variačných autoenkóderov zlepšujú adversariálnu robustnosť bez potreby adversariálneho

učenia.
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Chapter 1

Introduction

Automated malware detection is an integral part of today’s commercial computer security

software. Within this domain, the list of accessed and created files is often a strong feature

for classifying whether an examined file is malicious or benign. Malware authors are aware

of this fact and are trying to avoid detection by generating random filenames and/or mod-

ifying existing filenames with new versions of the malware. As these changes are designed

to maximize the chance of classifying malicious code as benign, they represent real-world

adversarial examples against the detection classifier. How successful attacks using these

adversarial examples are depends primarily on how much knowledge the adversary has

about the target classifier, and on the robustness of the classifier against adversarial ex-

amples. In this work, we focus on the latter part and aim to develop methods for training

string classifiers that are robust against adversarial examples.

Figure 1.1: Desired adversarial perturbation

Adversarial perturbations were first introduced by Szegedy et al. [1] and later explored

by Goodfellow et al. [2] in the domain of computer vision. They describe perturbations

of input images that are imperceptible by humans but cause the image classifier to assign

an incorrect label for the perturbed input. More importantly, different models trained on

different subsets of data can misclassify the same adversarial example. This suggests that it

is possible to generate adversarial examples using a surrogate model to which the attacker
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Chapter 1. Introduction

has full access, and then use these adversarial examples to attack an unknown model of

interest. Computer vision is not the only domain in which adversarial examples exist.

They were also explored, among others, in the field of natural language processing, which

is relevant to ours because it operates on string inputs. Main approaches for adversarial

attacks in the natural language processing domain can be categorized as sentence-level

attacks [3, 4], word-level attacks [5, 6, 7], and character-level attacks [8, 9]. Sentence-level

and word-level attacks seem to exploit high-level semantic information, and often make use

of synonyms or sentences with the same meaning as adversarial perturbations. Arguably,

file paths lack the same level of semantic richness, and therefore it makes more sense

to focus on character-level adversarial perturbations. Another important consideration

is the level of information an attacker has about the target model. Generally we can

categorize adversarial attacks as white-box, gray-box and black-box. White-box attacks

assume that the attacker has full access to model parameters, and can compute gradients

of the output w.r.t. the input. Knowledge of gradients is very useful because it can be

used to directly optimize the adversarial perturbation. Gray-box attack represents a more

restrictive approach and assumes that only the model’s decisions or output probabilities

are known. While not as useful as gradients, model outputs can be used to train an

approximation of the target model, which can then be used to attack using the white-box

method. Black-box method is the most restrictive one and assumes no knowledge about

the target model.

We are interested in a minimal sequence of perturbations that results in a given set of

strings being misclassified (Figure 1.1). Unlike in the image domain, any change in the set

of strings will be perceptible by humans, and therefore we are interested in perturbations

that produce adversarial strings which are close to the original strings. Theoretically, we

are guaranteed to find a minimal sequence of adversarial perturbations using combinatorial

search algorithms, but these methods do not work well in practice due to the cardinality

of the search space. Additionally, strings are discrete inputs and thus we cannot directly

use the model’s gradients to find an adversarial perturbation. To make adversarial sample

generation practically feasible in the domain of character sequences, we instead focus on

adversarial perturbations in the continuous latent representation space. As we have full

access to the model, we can leverage its gradients to compute an adversarial perturbation

of the latent representation which we can then use to directly generate an adversarial

string. The ability to generate realistic adversarial examples very quickly compared to

combinatorial search methods allows us to perform adversarial training of our classifier.

We augment the training dataset with adversarial examples and use it to further train our

detection classifier and improve its robustness against adversarial attacks.

Text classification is a well-studied problem in the field of natural language process-

ing. Common tasks include sentiment classification, topic labeling, intent classification,

language detection, etc. In this work, we are interested in classifying sets of strings,

specifically file paths, as either malicious or benign. In order to use standard classifica-

tion methods such as logistic regression, support vector machines, or neural networks on

sets of strings, we first represent individual strings in the set as fixed-size vectors and
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Chapter 1. Introduction

then transform the set of string representations to a fixed-size vector. This fixed-size vec-

tor is then used as input features to one of the aforementioned classifiers. Traditional

techniques for representing strings as vectors include one-hot encoding, n-gram counts,

TF-IDF features, or more recently Word2Vec [10], recurrent neural networks [11], and

transformers [12, 13, 14]. We also want to generate adversarial strings from perturbed

latent representations which further constraints our choice to recurrent neural networks or

transformers. While transformers achieve state-of-the-art results in the natural language

domain, they are not very suitable for our use-case as their latent representation is a

variable-length sequence of latent vectors, not a fixed-size vector. Therefore, we choose to

use the recurrent neural network architecture to encode strings to fixed-size vectors and

to decode fixed-size vectors to strings. Inputs to the recurrent neural network are charac-

ter embeddings and outputs of the recurrent neural network are probability distributions

over characters. Using character-level representation instead of token-level representation

is beneficial because we aim to generate character-level adversarial perturbations, and

because our domain contains a large number of unique tokens.

1.1 Structure of the Thesis

Chapter 2 presents an overview of existing algorithms and neural network architectures

that are relevant to our work.

In Chapter 3 we describe the main contributions of this work. We start by presenting

our solution to learning latent representations of character sequences in an unsupervised

fashion (Section 3.1). Section 3.2 then describes methods for regularizing the latent rep-

resentation space in order to generate new examples from it. In Section 3.3 we outline

multiple instance classification and propose learnable bag aggregator, which is a novel

instance aggregation function based on the transformer architecture. Finally, Section 3.4

proposes generating adversarial examples by perturbing latent representations, and Sec-

tion 3.5 describes methods for training robust classifiers.

In Chapter 4 we provide details of our experimental setup and report achieved results.
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Chapter 2

Background

This chapter provides an overview of relevant algorithms and architectures used through-

out this work. Given the sequential nature of our data, we focus on using recurrent neural

networks to encode strings as fixed-size vectors and to decode vector representations to

strings. We learn both the encoder and the decoder functions in an unsupervised fashion

by leveraging the autoencoder architecture. Additionally, we use 1D convolutional neural

networks to reduce the temporal dimension of input sequences which substantially im-

proves sample reconstruction quality. 1D convolution kernel also learns implicit n-gram

representations which are advantageous over explicit n-gram input representation because

our data contains a large number of unique n-grams. Using latent representations of strings

as features, we train a multiple instance classifier to classify sets of strings as malicious or

benign. Gradient-based adversarial attack methods are used to compute perturbations of

latent representations, which are then used to generate adversarial strings and improve the

classifier’s robustness against adversarial examples. We also explore methods for regular-

izing the latent representation space in order to improve the quality of adversarial strings

generated from perturbed latent representations.

2.1 Recurrent Neural Networks

Figure 2.1: Unrolled Recurrent Neural Network [15]

Recurrent neural networks (RNN) are a class of artificial neural networks that allow

outputs at step t to be used as inputs at step t+ 1. They usually do this by maintaining

a hidden state h that is passed between steps (Equation 2.1). The hidden state acts as

a memory that summarizes inputs to the recurrent neural network up until step t. It is

updated using a recurrence relation described by Equation 2.2, where ht−1 is the previous

6



Chapter 2. Background

hidden state, xt is the current input, Wh, Wx, bh are trainable parameters and σ is a

nonlinear activation function. The main advantage of recurrent networks is their ability

to process inputs of variable length without changing the number of model parameters.

ŷt, ht = rnn(xt, ht−1) (2.1)

ht = σ(Whht−1 +Wxxt + bh) (2.2)

ŷt = σ(Wyht + by) (2.3)

However, there is a number of challenges with vanilla recurrent neural networks as

described by equations (2.1) - (2.3), namely, forgetting and vanishing/exploding gradi-

ent. Because the information stored in the hidden state ht can be easily changed, vanilla

recurrent neural networks have issues accessing information from a long time ago. Opti-

mization of such models is also difficult because backpropagating gradient through time

can cause it to exponentially increase/decrease with respect to the input sequence length.

Long short-term memory cell [16], and its later simplification Gated recurrent unit cell

[17] were designed to alleviate these issues, and made recurrent neural networks usable in

practice.

(a) LSTM (b) GRU

Figure 2.2: Recurrent neural network cells [15]

2.1.1 Long Short-Term Memory Cell

Long short-term memory (LSTM) cell proposed by Hochreiter and Schmidhuber in [16]

addresses forgetting and vanishing/exploding gradients by introducing a series of multi-

plicative gates ft, it and ot (Equation 2.4, 2.5, 2.8). The input gate it and the forget gate

ft are used to decide when to keep or override information stored in memory. Similarly, the

output gate ot is used to decide when information stored in memory should be accessed.

Parameters of all gates are jointly optimized during the training of the network.

ft = σ(Wf · [ht−1, xt] + bf ) (2.4)

it = σ(Wi · [ht−1, xt] + bi) (2.5)
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Chapter 2. Background

c̃t = tanh(Wc · [ht−1, xt] + bc) (2.6)

ct = ft � ct−1 + it � c̃t (2.7)

ot = σ(Wo · [ht−1, xt] + bo) (2.8)

ht = ot � tanh(ct) (2.9)

Forget gate ft, input gate it, and candidate cell state c̃t are computed as affine projec-

tions of previous hidden state ht−1 and current input xt (Equation 2.4, 2.5, 2.6). Nonlinear

activation functions σ and tanh are applied to the affine projection to bound the output.

New cell state ct is then computed according to Equation 2.7, where � is an element-wise

multiplication. Output ht is again a gated version of updated cell state ct, where gating

values ot are computed in the same way as forget and input gates (Equation 2.8).

2.1.2 Gated Recurrent Unit Cell

Gated recurrent unit (GRU) cell proposed by Cho et al. [17] simplifies the LSTM cell

by combining input and forget gates into a single update gate zt (Equation 2.10). It also

removes the cell state and uses only the hidden state to maintain information between

steps. A reset gate rt is used to selectively access information stored in the previous

hidden state ht−1 (Equation 2.11).

zt = σ(Wz · [ht−1, xt]) (2.10)

rt = σ(Wr · [ht−1, xt]) (2.11)

h̃t = tanh(Wh · [rt � ht−1, xt]) (2.12)

ht = (1− zt)� ht−1 + zt � h̃t (2.13)

Update gate zt and reset gate rt are computed as linear projections of previous hidden

state ht−1 and current input xt with nonlinear activation σ (Equation 2.10, 2.11). Can-

didate hidden state h̃t is then computed as a linear projection of gated previous hidden

state ht−1 and current input xt with nonlinear activation tanh (Equation 2.12). Finally,

cell output ht is a linear interpolation between previous hidden state ht−1 and candidate

hidden state h̃t, where � is an element-wise multiplication (Equation 2.13).

2.2 Convolutional Neural Networks

Convolutional neural networks (CNN) are primarily used in the field of computer vision

as translation invariant feature extractors. Unlike fully connected neural networks which

connect all input values to all output values, convolutional neural networks apply the same

kernel to map parts of input to respective parts of output (Figure 2.3). Formally, this is

written as Equation 2.14, where X is the input, W is the convolution kernel, and ∗ is the

convolution operator.

Y = X ∗W (2.14)
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Chapter 2. Background

Figure 2.3: 2D Convolution [18]

2.2.1 1D Convolution

1D convolutions apply the kernel along only one of the input dimensions. Therefore, 1D

convolutions are a suitable architecture for sequence modeling tasks. Some of their uses

include text classification [19], neural machine translation [20], and audio generation [21].

In this work, we use 1D convolutions to learn position invariant n-gram representations.

2.3 Autoencoder

Autoencoder is a neural network architecture for unsupervised representation learning.

Autoencoder architecture has generally two parts, namely an encoder and a decoder. The

encoder F takes a high dimensional input x ∈ Rm and outputs a low dimensional repre-

sentation z ∈ Rn, where n << m. The decoder G then takes z as its input and attempts

to reconstruct the original, high dimensional input x. This encoding-decoding scheme

creates a bottleneck for the data and ensures that the low dimensional representation z

contains only important information necessary to reconstruct the original input. Param-

eters of both the encoder and the decoder networks are jointly optimized by minimizing

a reconstruction objective L(x,G(F (x)) using gradient descent. A nice property of this

framework is its generality. We can choose the encoder to be any differentiable function

F : Rm → Rn, and similarly the decoder can be any differentiable function G : Rn → Rm.

A major drawback of this approach is the lack of regularity in the representation

space. What this means is that samples that are close in the input domain can have their

latent representations far apart. Vice versa, latent representations that are close can have

their respective decoded samples far apart in the input domain. It is also not possible to

randomly sample a point from the latent representation space, and expect the decoded

output to come from the data distribution.

2.4 Variational Autoencoder

Similar to the autoencoder architecture described in Section 2.3, variational autoencoder

[22] is a neural network architecture for unsupervised representation learning and con-
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Chapter 2. Background

tent generation. It addresses the irregularity of the latent space by representing it as a

distribution over latent vectors rather than a point-like estimate. This allows the regular-

ization of the latent space to be expressed in terms of Kullback-Leibler divergence between

the encoder distribution and a standard Gaussian distribution N (0, I). Kullback-Leibler

divergence is then minimized jointly with the reconstruction objective.

p(z|x) =
p(x|z)p(z)
p(x)

(2.15)

The optimization objective can be derived using a probabilistic framework. We assume

a prior distribution p(z) ≡ N (0, I). The decoder can then be represented as p(x|z), which

describes a conditional distribution of data x given latent variable z. Similarly, the encoder

can be represented as p(z|x), which describes a conditional distribution of latent variable

z given data x. From Bayes theorem we see that p(z|x) is assumed to follow a prior

distribution p(z) (Equation 2.15).

qx(z) ≡ N (F θµ(x), Fωσ2(x)). (2.16)

Using variational inference [23], we can approximate the posterior distribution p(z|x)

with qx(z) defined in Equation 2.16. Function F θµ : Rm → Rn is a mapping from input x

to the mean of a Gaussian distribution µ parametrized by θ. Function Fωσ2 : Rm → Rn is

a mapping from input x to the diagonal of a Gaussian covariance matrix σ2 parametrized

by ω. Optimal parameters θ∗ ∈ Θ and ω∗ ∈ Ω are found according to Equation 2.17.

(θ∗, ω∗) = argmin
(θ,ω)∈Θ×Ω

KL(qx(z)||p(z|x))

= argmin
(θ,ω)∈Θ×Ω

∫
z
qx(z) log

qx(z)
p(x|z)p(z)
p(x)

= argmin
(θ,ω)∈Θ×Ω

∫
z
qx(z)

[
log qx(z)− log

p(x|z)p(z)
p(x)

]
= argmin

(θ,ω)∈Θ×Ω

∫
z
qx(z) [log qx(z)− log p(x|z)− log p(z) + log p(x)]

= argmin
(θ,ω)∈Θ×Ω

KL(qx(z)||p(z)) +

∫
z
qx(z) [− log p(x|z) + log p(x)]

= argmin
(θ,ω)∈Θ×Ω

KL(qx(z)||p(z))− Ez∼qx(z) log p(x|z)

(2.17)

Hence, optimal parameters θ∗ and ω∗ minimize Kullback-Leibler divergence between the

approximate posterior qx(z) and prior p(z), and maximize the log likelihood of generating

data x given a latent vector z.

2.5 Triplet Loss

Triplet loss is an optimization objective used for semi-supervised representation learning

[24, 25]. It can be used to regularize the latent representation space, such that the distance

between a pair related input examples is smaller than the distance between a pair of

10



Chapter 2. Background

unrelated input examples. A hyperparameter margin ∈ R is used to introduce a gap

between embeddings of related and unrelated examples. Given an encoder function F :

Rm → Rn and a triplet of input examples xai (anchor), xpi (positive) and xni (negative),

we want Equation 2.18 to hold true ∀(xai , x
p
i , x

n
i ) ∈ T .

||F (xai )− F (xpi )||
2
2 +margin < ||F (xai )− F (xni )||22 (2.18)

This directly translates to an objective function Ltriplet (Equation 2.19), which is jointly

minimized during autoencoder training to regularize the latent representation space.

Ltriplet =

|T |∑
i

max(||F (xai )− F (xpi )||
2
2 − ||F (xai )− F (xni )||22 +margin, 0) (2.19)

2.6 Adversarial Examples

Adversarial examples [1] can be described as perturbed data examples xadv = x+δ, where

δ ∈ ∆ is an adversarial perturbation, and ∆ is a set of allowable perturbations. The goal

of an adversary is to find a perturbation δ which changes the classifier’s prediction from

the correct label to an incorrect one.

Given a trained classifier fθ parametrized by θ, input example xi ∈ Rm, ground truth

label yi ∈ Z+ and a loss function `, we want to find an adversarial perturbation δ ∈ ∆

that maximizes `(fθ(xi + δ), yi).

δ∗ = argmax
δ∈∆

`(fθ(xi + δ), yi) (2.20)

A commonly used set of allowable perturbations ∆ is the `∞ ball (Equation 2.21), but

other norms can be used as well.

∆ = {δ : ||δ||∞ ≤ ε} (2.21)

The constrained optimization task (Equation 2.20) is an example of an untargeted adver-

sarial attack which simply attempts to change classifier’s prediction to an incorrect class.

It is also possible to perform a targeted attack, where we force the classifier to change its

prediction to a desired class ytarget (Equation 2.22).

δ∗ = argmax
δ∈∆

[`(fθ(xi + δ), yi)− `(fθ(xi + δ), ytarget)] (2.22)

2.6.1 Projected Gradient Descent

Projected gradient descent (PGD) is an iterative algorithm for solving the constrained op-

timization task defined in Equation 2.20. To find the adversarial perturbation δ, projected

gradient descent algorithm iteratively updates δ according to Equation 2.23 for T steps,

where δ0 = 0, α is the update step size, and P is a projection operator which ensures that

δt ∈ ∆;∀t = 1...T .
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δt+1 = P(δt + α∇δ`(fθ(x+ δt), y)) (2.23)

For the case where the allowable set of perturbations is ∆ = {δ : ||δ||∞ ≤ ε}, the projection

operator P simply clips the updated estimate of δ component-wise, such that it lies within

the range [−ε, ε]. Note that the algorithm is commonly known as projected gradient

descent but it actually performs gradient ascent on δ to maximize the loss `.

2.6.2 Fast Gradient Sign Method

Fast gradient sign method (FGSM) is a one-step algorithm for solving the constrained

optimization task described in Equation 2.20 proposed by Goodfellow et al. [2]. It assumes

that the set of allowable perturbations ∆ is `∞ ball as defined in Equation 2.21, and that

the response of classifier is linear.

δ∗ = εsgn(∇δ`(fθ(x+ δ), y)) (2.24)

Optimal adversarial perturbation δ∗ is then computed as ε-multiple of the sign function

applied to gradient of ` w.r.t. δ (Equation 2.24).

∇δ`(fθ(x+ δ), y) = ∇δθTy (δ)

= ∇δθTy x+∇δθTy δ

= θy

(2.25)

The linear response assumption can be written as `(fθ(x + δ), y) = θTy (x + δ) with

the gradient w.r.t δ derived in Equation 2.25. Given the constraint ||δ||∞ ≤ ε, the

classifier’s response to the adversarial example is maximized by setting δ = εsgn(θy) =

εsgn(∇δ`(fθ(x+ δ), y)).

2.7 Adversarial Training

The goal of adversarial training is to train a classifier that is robust to adversarial attacks.

It modifies the optimization objective from a simple minimization of the classification loss

function `(fθ(x), y) to a minimax objective (Equation 2.26).

θ∗ = argmin
θ

max
δ∈∆

`(fθ(x+ δ), y) (2.26)

The adversary tries to maximize the classifier’s loss on the perturbed input x+δ, while

the outer minimization tries to minimize it. We assume that the inner maximization has

full access to the classifier, and that it can leverage its gradients to generate adversarial

perturbations.

12
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2.8 Multiple Instance Learning

Multiple Instance Learning (MIL) formalism assumes that each sample is represented as

a bag of instances, where labels are available for the whole bag but not necessarily for

individual instances in the bag. Bags b ∈ B can be thought of as unordered sets that

contain arbitrarily many, possibly duplicated, instances x ∈ X (Equation 2.27). Instances

are usually represented by feature vectors which are outputs of some instance feature

extractor.

b = {xi ∈ X |i ∈ {1...|b|}}; b ∈ B (2.27)

Prior work describes three main paradigms for solving multiple instance learning prob-

lems, namely, instance-space paradigm, bag-space paradigm and embedding-space paradigm.

Approaches following instance-space paradigm [26, 27] assume that a classifier f : X →
{−1, 1} is trained on individual instances x ∈ X , and the label of the bag b is then de-

termined as ŷ = maxx∈b f(x). More general approaches do not assume that the instance

level classifier is available, and only consider labels on the bag level. Bag-space paradigm

[28, 29] defines a measure of distance between bags, and embedding-space paradigm [30, 31]

defines a transformation function from bags to fixed-size vectors.

13
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Methods

In this chapter, we describe in detail methods used to generate string adversarial samples

using perturbations in the latent representation space. We first describe our approach

for representing strings as fixed-size vectors, where we leverage recurrent autoencoders

with 1D convolutions. Next, we explore triplet loss and variational loss which we use to

regularize the latent space of the autoencoder in order to improve its content generation

capability. Because our input samples are bags of strings, we also describe our approach

to multiple instance classification and propose a novel attention-based bag aggregation

function. Finally, we use the classifier’s gradients to compute perturbations of latent rep-

resentations and generate adversarial strings from these perturbed latent representations.

3.1 Representation Learning

We aim to represent variable-length ASCII-encoded sequences of characters as fixed-size

vectors in Rd. While there exist many approaches for obtaining such representations

[19, 12], we focus specifically on using recurrent neural networks. Because we want to

generate adversarial strings from perturbed latent representations, we are also interested

in reconstructing the input sequence given its vector representation. Therefore, we use

the autoencoder architecture described in Section 2.3 to both encode the input sequence

to its latent representation, and subsequently decode this representation to a sequence of

characters.

3.1.1 Character Embedding

ASCII characters can be encoded as 256-dimensional one-hot vectors in a straightforward

way [19]. While simple, one-hot encoding of characters has several issues. First, it results

in unnecessarily large embeddings and second, the pair-wise distance between character

embeddings is the same for all characters. For example, we would like to embed alphabet-

ical characters closer to other alphabetical characters than to numerical characters. To

address these issues, we choose to represent ASCII characters as real-valued vectors in Re,
where e = 32 is the embedding size [32]. The mapping from one-hot vectors to real-valued

vectors is done via an embedding function EΘ : {0, ..., 255} → Re, where Θ is a learnable
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embedding matrix Θ ∈ R256×e. Using this formulation, the embedding for i-th character

is then computed as x = ei ·Θ, where ei ∈ R256 is the i-th canonical basis vector.

3.1.2 Recurrent Autoencoder

Recurrent autoencoders (Figure 3.1) are a standard method for unsupervised representa-

tion learning of variable-length sequential data. The encoder F : RT×e → Rd is a recurrent

neural network that takes a sequence of embedded characters with length T as its input,

and produces a sequence of outputs ot; t = 1...T and cell states ht; t = 1...T . We are par-

ticularly interested in the last cell state hT , as it is the latent representation of the whole

input sequence. The decoder G : Rd → RT×d is also a recurrent neural network. However,

unlike the encoder, the decoder does not have access to the input sequence, but instead

uses its outputs at time t − 1 as inputs at time t. Hence, it autoregressively decodes the

output sequence ot; t = 1...T using only information encoded in the last encoder cell state

hT which is used as its initial cell state.

Figure 3.1: Recurrent sequence-to-sequence autoencoder

We project each decoder output ot ∈ Rd to õt ∈ ∆256, where ∆256 is a 256-dimensional

unit simplex. Every õt then represents a categorical probability distribution over ASCII

characters.

Lireconstruction = −
T∑
t=1

yit · log(õt
i) (3.1)

Considering the setup described above, we can jointly train both the encoder and

the decoder by minimizing piecewise cross-entropy between one-hot encoded inputs yt ∈
{0, ..., 255} and outputs õt. Minimizing Equation 3.1 in turn maximizes the reconstruction

quality of the autoencoder.

The main issue with vanilla sequence-to-sequence recurrent autoencoders is that their

reconstruction quality suffers for long sequences. This can be primarily attributed to

vanishing and exploding gradients when backpropagating through time during training,

and forgetting information in the cell state during sequence generation. Previous work

[33] tries to address this issue by introducing an attention mechanism. The attention

mechanism allows the decoder to selectively access all encoder outputs at each decoding

step, and therefore alleviates the need to rely solely on the information encoded in the
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last encoder state. However, we require the decoder to only access the last encoder state

in order to generate adversarial samples from its perturbed version, and therefore using

the attention mechanism does not work for us.

3.1.3 Convolutional Recurrent Autoencoder

Because we cannot introduce additional ways for information to flow from the encoder

to the decoder, we instead aim to reduce the length of the input to the recurrent neu-

ral network. There exist multiple approaches to achieve this, namely, changing the in-

put representation from characters to words or n-grams, using only top-k most common

words/n-grams, or applying 1D convolutions. We experimented with word level and n-

gram level representations and realized that this approach does not work for us. Unlike

natural language, where word level or n-gram level representations work well, file paths

contain a lot of randomly generated strings which are still valid as directory names or file

names. Representing such strings on the word level requires a very tall embedding matrix

with entries for words that may only occur a small number of times in the training set.

It also increases the size of decoder’s output probability distribution to the same size as

the number of rows in the embedding matrix which makes the optimization more difficult.

Another option is to use n-gram representation which requires precisely 256n entries in

the embedding matrix, and increases the size of decoder’s output probability distribution

to 256n. A common technique to reduce the number of entries in the embedding matrix

is to encode only the top-k most common words/n-grams in the training set. In our data,

we have very few common entries and a lot of unique entries which we still want to encode

and decode, and therefore reducing the number of entries does not work for us.

Figure 3.2: Convolutional Recurrent Sequence-to-Sequence Autoencoder

Instead of changing the input representation from characters to words or n-grams, we

apply a 1D convolution layer with kernelWidth = 5 and stride = 5 to the sequence of

character embeddings. Values of kernelWidth and stride were chosen empirically. The

convolution kernel learns an implicit representation of 5-grams, and stride = 5 effectively

reduces the sequence length by a factor of 5. Latent representations of 5-grams are then
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used as inputs to a recurrent autoencoder which has the same architecture as described in

Section 3.1.2 and outputs raw decoder vectors, not categorical probability distributions.

The recurrent decoder also decodes reduced-length sequences which need to be upsampled

by a factor of 5, so that they have the same length as input. The upsampling is done using

a 1D deconvolution layer with the same kernelWidth and stride as the aforementioned

convolution. Finally, we project the deconvolution layer outputs to categorical probability

distributions over ASCII characters, and minimize the piecewise cross-entropy (Equation

3.1).

3.2 Latent Space Regularization

In order to generate adversarial examples from perturbed latent representations, we need

the latent representation space to be regular. Specifically, we want to preserve metric

properties between the input domain and the latent domain for some input domain dis-

tance measure di, and some latent domain distance measure dl. For example, given strings

s1, s2, s3 for which there holds di(s1, s2) ≤ di(s1, s3), we want their respective latent rep-

resentations z1, z2, z3 to satisfy dl(z1, z2) ≤ dl(z1, z3). Vice versa, given latent represen-

tations z1, z2, z3 for which there holds dl(z1, z2) ≤ dl(z1, z3), we want their respective

decoded strings ŝ1, ŝ2, ŝ3 to satisfy di(ŝ1, ŝ2) ≤ di(ŝ1, ŝ3).

Minimizing only the reconstruction objective of the autoencoder does not provide any

guarantees on the regularity of the latent space. Therefore, we explore using additional

regularization objectives on the latent space to approximate the desired metric preserving

properties described above.

3.2.1 Triplet Loss

We experiment with a synthetically generated dataset, where triplets are constructed in

the following way: first we generate a random path (anchor), and then using one of the

perturbations described below we obtain positive and negative examples.

1. Change extension 1

• Positive: change extension within family

• Negative: change extension across families

2. Change extension 2

• Positive: different filename but same extension as original

• Negative: same filename but different extension (family) as original

3. Change path 1

• Positive: mutate path at depth < d,N >

• Negative: mutate path at depth < 0, d)
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File extensions are generated by first choosing an extension family at random, and then

choosing an extension from this family. We use extension families to approximate the fact

that filenames with extensions from the same family, e.g. picture.jpg and picture.png,

are more similar than filenames with extensions from different families, e.g. picture.jpg

and picture.exe. Extension families are randomly generated at the beginning, and remain

fixed during the course of training and testing. Mutation depth d is randomly sampled

from the range [1, depth(path)− 1], where depth(path) is the number of directories in the

path +1 for the filename.

3.2.2 Variational Autoencoder

We use an affine transformation to obtain parameters µ and σ2 of the encoder latent

distribution qx(z). Given a latent representation z̃i = Fθ(xi), where Fθ is a deterministic

encoder, we define µi = θTµ · z̃i + bµ and σ2
i = exp(θTσ · z̃i + bσ). Decoder input zi is then

sampled from a multivariate Gaussian distribution parametrized by µi and σ2
i (Equation

3.2).

zi ∼ N (µi, diag(σ2
i )) (3.2)

Because sampling from a distribution is not differentiable, we use the reparametrization

trick to obtain decoder input zi from µi and σ2
i . First, we sample qi ∼ N (0, I), and then

we reparametrize N (0, I) as zi = µi + qi �
√
σ2
i , where � is element-wise multiplication.

KL(qxi(z)||p(z)) =

∫
z
qxi(z) log

qxi(z)

p(z)

=

∫
z
qxi(z) log

 1

(2π)
n
2 |Σi|

1
2

exp
(
−1

2(z − µi)TΣ−1
i (z − µi)

)
1

(2π)
n
2

exp
(
−1

2z
T z
)


= Ez∼qxi (z)

[
−1

2
log |Σi| −

1

2
(z − µi)TΣ−1

i (z − µi) +
1

2
zT z

]
= −1

2
log |Σi| −

1

2
Ez∼qxi (z)

[
tr((z − µi)(z − µi)TΣ−1

i )
]

+
1

2
Ez∼qxi (z)

[
zT z

]
= −1

2
log |Σi| −

1

2
+

1

2
Ez∼qxi (z)

[
(z − µi + µi)

T (z − µi + µi)
]

= −1

2
log |Σi| −

1

2
+

1

2
Ez∼qxi (z)

[
(z − µi)T (z − µi) + 2(z − µi)Tµi + µTi µi

]
= −1

2
log |Σi| −

1

2
+

1

2
Ez∼qxi (z)

[
(z − µi)T (z − µi) + µTi µi

]
= −1

2
log |Σi| −

1

2
+

1

2

(
tr(Σi) + µTi µi

)
= −1

2

(
1 + log |Σi| − tr(Σi)− µTi µi

)
= −1

2

(
1 +

n∑
k=1

log σ2
i,k − σ2

i,k − µ2
i,k

)
= LiKL

(3.3)
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As derived in Section 2.4, the regularization objective that is minimized is the Kullback-

Leibler divergence KL(qxi(z)||p(z)). It can be written in a closed form [34] as Equation 3.3,

where Σi = diag(σ2
i ). The objective function that is minimized during training is then a

sum of the reconstruction loss Lreconstruction and the Kullback-Leibler regularization term

LKL (Equation 3.4).

LV AE =
1

|T |

|T |∑
i=1

[
−

T∑
t=1

yit · log(õt
i)− 1

2

(
1 +

n∑
k=1

log σ2
i,k − σ2

i,k − µ2
i,k

)]
(3.4)

3.2.3 Beta-VAE

β-VAE [35] is an extension of the variational autoencoder architecture. It allows for more

control over the amount of regularization by introducing a hyperparameter β (Equation

3.5). Because the prior distribution of latent variables p(z) is a standard multivariate

Gaussian, setting β > 1 will produce more disentangled representations. Disentangled

representations are particularly nice because each component of the latent vector repre-

sents a singular feature of the input space and is invariant to other features.

Lβ−V AE = Lreconstruction + βLKL (3.5)

3.3 Multiple Instance Classification

Programs may access or create multiple files during their runtime, hence the data we

obtain from the analyzer contain sets (bags) of strings (instances), where each string

represents path of a file that the program accessed or created. Our approach follows the

embedding-space paradigm, and assumes that the labels are only available on the bag level.

We use a transformation function A : Rn×m → Rd, where n is the number of instances in

the bag, m is the size of vectors that represent instances, and d is the output size. The

aggregation function A should be permutation invariant, differentiable, should accept bags

with variable number of instances, and should output fixed-size vectors. Inputs to A are

latent representations of strings obtained using one of the methods described in previous

sections. Output of A is then used as features for a downstream classifier. Suitable

choices of A are for example: mean, max, mean + max or learnable bag aggregator which

is described in the next section.

3.3.1 Learnable Bag Aggregator

Learnable bag aggregator (LBA) is a differentiable, permutation invariant function that

accepts an arbitrary number of input vectors and outputs a single vector o ∈ Rk. LBA

input is represented as a matrix E ∈ Rn×m, where n is the number of instances and m

is the size of instance vectors. LBA has three trainable matrices: key projection matrix

WK ∈ Rm×d, value projection matrix WV ∈ Rm×d, and a query matrix WQ ∈ Rh×d, where

h is the number of attention heads [12] and d is the hidden size.
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K := EWK ∈ Rn×d (3.6)

V := EWV ∈ Rn×d (3.7)

W := WQK
T ∈ Rh×n (3.8)

wi =
exp(wi)∑n
j=1 exp(wj)

; i = 1...n (3.9)

Inputs E are first projected to keys and values as described by Equation 3.6 and

Equation 3.7. Multiplying keys with the query matrix WQ (Equation 3.8) gives us a matrix

of attention weights whose columns are then softmax normalized to unit sum (Equation

3.9). Finally, multiplying the normalized weights matrix W with the values matrix V

produces a matrix of convex combinations of value vectors for each head. This matrix is

then flattened to a vector of fixed dimension Rhd (Equation 3.10), which represents the

aggregated output.

o := vec(WV ) ∈ Rhd (3.10)

3.3.2 Classifier

We use a simple linear classifier to classify aggregated sets of vectors as benign or malicious.

The classifier can be written as Equation 3.11, where oi ∈ Rd is the bag vector and

θ ∈ Rd×2, b ∈ R2 are classifier parameters.

ŷi = fθ,b(oi) = softmax(θT oi + b) (3.11)

Classification loss is then the cross-entropy between one-hot encoded ground truth labels

yi ∈ {0, 1} and classifier predictions ŷi (Equation 3.12).

LCLF = − 1

|T |

|T |∑
i=1

yi · log(ŷi) (3.12)

3.4 Adversarial Sample Generation

As described in Section 2.6, the goal of adversarial sample generation is to find a per-

turbation δ ∈ ∆, where ∆ is the set of allowable perturbations, such that the perturbed

input x + δ is misclassified. In this work we focus on adversarial examples for character

sequences, hence the set of allowable perturbations includes adding, removing or chang-

ing individual characters. Finding a minimal sequence of perturbations that changes the

classification of a sample x is a combinatorial optimization problem, and can be solved

exactly using algorithms for combinatorial optimization. Unfortunately, exact solution is

often not feasible in practice as the size of the search space is ≈ 256l, where l is the length

of the string. It is also difficult do design a heuristic that would reduce the search space

enough to be practically feasible.

Instead of searching the space of perturbations in the input domain, we focus on
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perturbations of latent representations, and attempt to generate adversarial examples

using the decoder part of an autoencoder. Given a trained encoder F , decoder G and a

multiple instance classifier C, we generate adversarial samples in the following way. First,

using the encoder F we encode all instances S = {s1, ..., sn} in the bag to their respective

latent representations as E = {ei = F (si); ∀ei ∈ Rd, i ∈ {1, ..., n}}; E ∈ Rn×d, where

n is the number of instances and d is the latent representation size. Then, we use the

multiple instance classifier C to obtain a perturbation of these latent representations as

δ∗ = argmaxδ∈∆ `(C(E + δ), y); δ∗ ∈ Rn×d. Finally, we generate a set of adversarial

instances in the original (string) domain as Sadv = {sadvi = G(Ei + δ∗i ); i ∈ {1, ..., n}},
where Ei ∈ Rd and δ∗i ∈ Rd.

3.4.1 Projected Gradient Descent

Our implementation of the projected gradient descent algorithm (Algorithm 1) is a slight

modification of the method described in Section 2.6.1. The modifications are due to the

fact that the encoder F and the decoder G are not a perfect inverse of each other, i.e. it

does not necessarily hold true that F (G(z)) = z for some latent representation z ∈ Rd.
Because of this, projected gradient descent may find a perturbation δ∗ that is adversarial

in the latent representation space, i.e. C(z + δ∗) 6= y, but the bag generated from the

perturbed state z + δ is not adversarial, i.e. C(F (G(z + δ∗))) = y. Therefore, we modify

the projected gradient descent algorithm to generate an adversarial bag after each gradient

step, encode this generated bag to its respective latent representation, classify the latent

representation, and check if the label is different from the true label. Only misclassified

bags generated from perturbed latent states are considered to be successful adversarial

examples.

3.4.2 Normalized Gradient Ascent

Magnitude of the update δi = δi−1 +α∇δ is highly dependent on the norm of the gradient

∇δ. This is an issue because for ||∇δ||2 ≈ 0 the algorithm makes very little progress, and

for ||∇δ||2 >> 0 the algorithm takes a big step towards the boundary of the allowable set

of perturbations ∆. To address this issue, we normalize the gradient to unit norm and

use the normalized gradient to update δ. We also add γ ≈ 10−12 to the denominator for

numerical stability. This modification of the update rule ensures that δ is updated with a

constant step size, and makes it much easier to select hyper-parameters α and T .

3.4.3 Fast Gradient Sign Method

Modifications described in Section 3.4.1 are also used for the fast gradient sign method

algorithm (Algorithm 2). We additionally extend the one-step algorithm described in Sec-

tion 2.6.2 with an iterative search over the perturbation strength ε. The iterative approach

is beneficial because the perturbation strength ε required to generate an adversarial bag

is not constant, and we do not want to use an unnecessarily large ε which would generate

adversarial bags with too many perturbations.
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Algorithm 1: Projected Gradient Descent

Input: paths, y, α,P, T
Output: adversarialPaths

state← encode(paths);

δ0 ← zerosLike(state);

ŷ ← classify(state);

if ŷ 6= y then

return paths;

end

for i = 1...T do

∇δ ← ∇δ`(classify(state+ δi−1), y);

δi ← P(δi−1 + α ∇δ
||∇δ||2+γ );

adversarialPaths← decode(state+ δi);

adversarialState← encode(adversarialPaths);

ŷ ← classify(adversarialState);

if ŷ 6= y then

return adversarialPaths;

end

end

Algorithm 2: Fast Gradient Sign Method

Input: paths, y, ε, εmax, δε

Output: adversarialPaths

state← encode(paths);

ŷ ← classify(state);

if ŷ 6= y then

return paths;

end

∇state ← ∇state`(classify(state), y);

while ε ≤ εmax do

adversarialPaths← decode(state+ εsgn(∇state));
adversarialState← encode(adversarialPaths);

ŷ ← classify(adversarialState);

if ŷ 6= y then

return adversarialPaths;

end

ε← ε+ δε;

end
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3.5 Robust Classifier Training

To train a classifier that is robust to adversarial examples, we augment the training dataset

with adversarial examples generated using methods described in the previous section (Sec-

tion 3.4). Given a classifier function fθ with parameters θ, we modify the training pro-

cedure from a simple minimization of the classification loss `(fθ(x), y) to minimax opti-

mization (Equation 3.13). The outer minimization tries to minimize the classification loss

on the training set, while the inner maximization tries to maximize it by adversarially

perturbing the input.

θ∗ = argmin
θ

1

|T |

|T |∑
i=1

max
δ∈∆

`(fθ(xi + δ), yi) (3.13)

The update rule for classifier’s parameters θ is then defined as Equation 3.14.

θ := θ − α∇θ max
δ∈∆

`(fθ(x+ δ), y) (3.14)

To compute gradient of the inner maximization we make use of the Danskin’s Theorem

[36], which states that the gradient of the max operator is equal to the gradient of the

inner function evaluated at the maximum point (Equation 3.15).

∇θ max
δ∈∆

`(fθ(x+ δ), y) = ∇θ`(fθ(x+ δ∗), y) (3.15)

However, this result only applies for the case where we can compute the maximum exactly

and that maximum is unique, neither of which can be guaranteed for our case as we

are only able to solve the maximization approximately. Nevertheless, the stronger the

adversarial attack is, the better approximation of the true maximum we get, and thus we

also get a better approximation of the gradient.

Algorithm 3: Adversarial Training

for B ∈ T do

∇θ ← 0;

for (x, y) ∈ B do

∇θ ← ∇θ +∇θ`(fθ(x), y);

if fθ(x) = y then

δ∗ ← argmaxδ∈∆ `(fθ(x+ δ), y);

∇θ ← ∇θ +∇θ`(fθ(x+ δ∗), y);

end

end

θ ← θ − α
|B|∇θ;

end
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Experiments

This chapter provides details of the experimental setup and results obtained using meth-

ods described in Chapter 3. We split the model training into two distinct parts. First,

we train an autoencoder to represent character sequences as fixed-size vectors in an un-

supervised way. Then we freeze the autoencoder’s parameters and use its encoder as an

instance feature extractor to a train multiple instance classifier. Given the trained autoen-

coder and classifier, we use the classifier’s gradients to compute perturbations of latent

representations and generate adversarial strings using the autoencoder’s decoder. We also

experiment with adversarial classifier training using both latent perturbations only, as well

as character perturbations.

4.1 Representation Learning

To obtain vector representations of variable-length character sequences, we train an au-

toencoder to encode the input sequence to a latent vector representation, and subsequently

decode this vector representation to a sequence of characters. Parameters of the autoen-

coder are obtained by minimizing the position-wise cross-entropy between the input se-

quence and the decoded sequence.

(a) Vanilla RNN (b) Convolutional RNN

Figure 4.1: Reconstruction accuracy

Figure 4.1a depicts a learning curve of the vanilla recurrent autoencoder. As de-

scribed in Section 3.1.2, the reconstruction quality of this architecture decreases for longer

sequences. Overall, it achieves 96.3% reconstruction accuracy on the test set. By intro-

ducing convolution and deconvolution layers as described in Section 3.1.3, we reduce the
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length of the input to the recurrent layer, and greatly improve the reconstruction accuracy.

The learning curve of the convolutional recurrent autoencoder is depicted in Figure 4.1b.

Overall, it achieves 99.36% reconstruction accuracy on the same test set.

Note that the learning curves show test reconstruction accuracy (orange) to be higher

than train reconstruction accuracy (blue). This is a result of splitting the dataset into

training and testing subsets based on time, rather than randomly. The reason behind the

temporal split is that malware authors keep developing new versions of their malware,

and thus, the temporal split is a better approximation of the data distribution at the time

of deployment. Additionally, the temporal split allows us to compare our approach with

existing methods developed for our dataset.

4.2 Triplet Loss

We train a regular autoencoder, and an autoencoder with the triplet loss on a synthetically

generated paths dataset. Positive and negative inputs are derived from the randomly

generated path using rules described in Section 3.2.1. Figures (4.2) - (4.4) show histograms

of the euclidean distance between latent representations of anchor and positive inputs

(blue), and between the latent representations of anchor and negative inputs (orange).

For the Change extension 1 mutation, median of the autoencoder’s anchor-positive

distance is ≈ 0.0174 and median of the anchor-negative distance is ≈ 0.0244 (Figure 4.2a).

For the autoencoder trained with the triplet loss (Figure 4.2b), median of the anchor-

positive distance is ≈ 0.0143 and median of the anchor-negative distance is ≈ 0.0684. The

Jensen-Shannon divergence between anchor-positive distance and anchor-negative distance

distributions is ≈ 0.1987 for the autoencoder, and ≈ 0.6931 for the autoencoder with the

triplet loss.

(a) Autoencoder (b) Autoencoder + Triplet Loss

Figure 4.2: Mutation: Change extension 1

For the Change extension 2 mutation, median of the autoencoder’s anchor-positive

distance is ≈ 0.1535 and median of the anchor-negative distance is ≈ 0.0244 (Figure 4.3a).

For the autoencoder trained with the triplet loss (Figure 4.3b), median of the anchor-

positive distance is ≈ 0.0537 and median of the anchor-negative distance is ≈ 0.0684.

The Jensen-Shannon divergence between anchor-positive distance and anchor-negative

distance distributions is ≈ 0.6103 for the autoencoder, and ≈ 0.4848 for the autoencoder
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with the triplet loss. In this case, the Jensen-Shannon divergence is greater for the regular

autoencoder, however, it also encodes negative instances closer than positive instances.

(a) Autoencoder (b) Autoencoder + Triplet Loss

Figure 4.3: Mutation: Change extension 2

For the Change path 1 mutation, median of the autoencoder’s anchor-positive dis-

tance is ≈ 0.1990 and median of the anchor-negative distance is ≈ 0.2589 (Figure 4.4a).

For the autoencoder trained with the triplet loss (Figure 4.4b), median of the anchor-

positive distance is ≈ 0.0565 and median of the anchor-negative distance is ≈ 0.1939. The

Jensen-Shannon divergence between anchor-positive distance and anchor-negative distance

distributions is ≈ 0.1120 for the autoencoder, and ≈ 0.4975 for the autoencoder with the

triplet loss.

(a) Autoencoder (b) Autoencoder + Triplet Loss

Figure 4.4: Mutation: Change path 1

Greater distance between latent representations implies that the autoencoder trained

with the triplet loss learns to preserve an arbitrary distance metric defined in the input

space.

4.3 Variational Autoencoder

Regularizing the latent representation space using the Kullback-Leibler objective does not

explicitly preserve any distance measure defined in the input space. Instead, it maps inputs

to a distribution over latent vectors which makes it possible to generate new examples by

sampling from this distribution. Paths generated from randomly sampled latent vectors

can be seen in Appendix A.
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Additionally, using variational autoencoder representations improves the classifier’s

robustness against adversarial examples. We conjecture that this is due to the fact that

variational autoencoders attempt to learn disentangled representations (Section 3.2.3),

which are more strongly correlated with the label [37]. We empirically verify this claim by

training multiple variational autoencoders with increasing regularization strength β and

observing the adversarial attack success rate. Table 4.1 shows average standard accuracy

and average attack success rate for different values of β, where the attack method used

is projected gradient descent with `∞ projection. Increasing the regularization strength β

has little effect on standard accuracy, but significantly reduces adversarial attack success

rate.

Accuracy Attack Success Rate

β = 0 93.45 ± 0.04 61.28 ± 4.62
β = 1 93.22 ± 0.20 46.10 ± 1.40
β = 2 93.22 ± 0.14 44.96 ± 5.86

Table 4.1: Adversarial robustness of β variational autoencoders

4.4 Classifier

We experiment with mean+max and learnable bag aggregator aggregation functions for

multiple instance classification. Using representations from both autoencoder and vari-

ational autoencoder, we train 5 classifiers for each embedding model and aggregation

method. We additionally experiment with setting the number of attention heads to

2, 4, 8, 16, 32, 64. Average classification accuracy and standard deviation are reported in

Table 4.2.

Autoencoder Variational Autoencoder
Train Test Train Test

Mean + Max 91.44% ± 0.05% 93.84% ± 0.05% 90.43% ± 0.04% 93.38% ± 0.04%
LBA(heads=2) 89.45% ± 0.04% 92.65% ± 0.04% 89.11% ± 0.10% 92.65% ± 0.10%
LBA(heads=4) 90.24% ± 0.03% 93.14% ± 0.03% 89.72% ± 0.08% 93.08% ± 0.08%
LBA(heads=8) 90.94% ± 0.06% 93.52% ± 0.06% 90.30% ± 0.05% 93.23% ± 0.05%
LBA(heads=16) 91.50% ± 0.07% 93.85% ± 0.07% 90.73% ± 0.04% 93.48% ± 0.04%
LBA(heads=32) 92.04% ± 0.05% 93.92% ± 0.05% 91.13% ± 0.04% 93.65% ± 0.04%
LBA(heads=64) 92.51% ± 0.03% 94.04% ± 0.03% 91.48% ± 0.06% 93.71% ± 0.06%

Table 4.2: Comparison of bag aggregation methods

Learnable bag aggregator with 64 heads achieves the best test classification accuracy

of 94.04% using autoencoder representations, and 93.71% using variational autoencoder

representations. Test accuracy is higher than train accuracy due to the same reason as

described in Section 4.1.
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(a) Autoencoder (b) Variational Autoencoder

Figure 4.5: Test accuracy curves

4.5 Adversarial Attacks

Now that we have a trained autoencoder and a trained classifier, we can generate ad-

versarial samples using methods described in Section 3.4. Text 4.1 shows examples of

successfully generated adversarial paths. Additional examples can be found in Appendix

B. We also train the classifier adversarially using latent representations from the vanilla

autoencoder as features (Section 3.5).

Input:

C:\Documents and Settings\Administrator\Application Data\Yandex\ui

Adversarial input:

C:\Documents and Settings\Administrator\Application Data\Yandex\ote.exi

Input:

C:\WINDOWS\Temp\GUM896.tmp\goopdateres_uk.dll

Adversarial input:

C:\WINDOWS\Temp\GUM896.tmp\goopdateres_rk.dll

Input:

C:\Program Files\GUMA36C.tmp\goopdateres_en-GB.dll

Adversarial input:

C:\Program Files\EUMA36C.tmp\goopdateres_en-d1.ddl.exe

Input:

C:\WINDOWS\Temp\7F4987FB1A6E43d69E3E94B29EB75926\seed.txt

Adversarial input:

C:\WINDOWS\Temp\7F4987FB1A6E43d69E3E6BB29EB72926\poog.e9et.ele

Text 4.1: Examples of adversarial perturbations

28



Chapter 4. Experiments

Table 4.3 shows standard classification accuracy on the test set for each of the mod-

els used in this section. Latent space adversarial training only searches for adversarial

perturbations in the latent space and uses perturbed latent vectors as adversarial inputs

to the classifier. String space adversarial training first generates adversarial strings from

perturbed latent representations, then encodes them using the encoder part of the au-

toencoder, and finally uses the encoded latent representation as adversarial inputs to the

classifier. The motivation behind string space adversarial training is explained in Section

3.4.1.

Model Classification accuracy

Autoencoder 93.49%
Autoencoder + latent space adversarial training 91.51%
Autoencoder + string space adversarial training 91.13%
Variational autoencoder (β = 1) 93.34%

Table 4.3: Classification accuracy

Tables (4.4) - (4.7) show adversarial attack success rate and frequency of adversarial

classes for all models and attack methods.

Attack Method Success Rate Class 0 Class 1

FGSM(delta: 0.01, max eps: 1.00, sign: False) 3.77% 38.20% 61.80%
FGSM(delta: 0.01, max eps: 1.00, sign: True) 57.35% 37.04% 62.96%
FGSM(delta: 0.10, max eps: 10.00, sign: False) 58.57% 39.30% 60.70%
FGSM(delta: 0.10, max eps: 10.00, sign: True) 85.09% 56.33% 43.67%
PGD(alpha: 1.00, eps: 10.00, projection: l2) 54.37% 43.45% 56.55%
PGD(alpha: 1.00, eps: 10.00, projection: linf) 70.25% 48.98% 51.02%

Table 4.4: Autoencoder

Attack Method Success Rate Class 0 Class 1

FGSM(delta: 0.01, max eps: 1.00, sign: False) 1.81% 57.73% 42.27%
FGSM(delta: 0.01, max eps: 1.00, sign: True) 18.97% 54.20% 45.80%
FGSM(delta: 0.10, max eps: 10.00, sign: False) 30.16% 64.07% 35.93%
FGSM(delta: 0.10, max eps: 10.00, sign: True) 98.57% 63.05% 36.95%
PGD(alpha: 1.00, eps: 10.00, projection: l2) 31.56% 53.50% 46.50%
PGD(alpha: 1.00, eps: 10.00, projection: linf) 51.11% 47.69% 52.31%

Table 4.5: Autoencoder + latent space adversarial training
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Attack Method Success Rate Class 0 Class 1

FGSM(delta: 0.01, max eps: 1.00, sign: False) 1.13% 46.38% 53.62%
FGSM(delta: 0.01, max eps: 1.00, sign: True) 16.89% 54.86% 45.14%
FGSM(delta: 0.10, max eps: 10.00, sign: False) 13.14% 56.62% 43.38%
FGSM(delta: 0.10, max eps: 10.00, sign: True) 87.34% 59.95% 40.05%
PGD(alpha: 1.00, eps: 10.00, projection: l2) 9.43% 39.92% 60.08%
PGD(alpha: 1.00, eps: 10.00, projection: linf) 16.69% 48.74% 51.26%

Table 4.6: Autoencoder + string space adversarial training

Attack Method Success Rate Class 0 Class 1

FGSM(delta: 0.01, max eps: 1.00, sign: False) 5.46% 32.03% 67.97%
FGSM(delta: 0.01, max eps: 1.00, sign: True) 76.39% 51.98% 48.02%
FGSM(delta: 0.10, max eps: 10.00, sign: False) 30.83% 47.11% 52.89%
FGSM(delta: 0.10, max eps: 10.00, sign: True) 98.19% 62.56% 37.44%
PGD(alpha: 1.00, eps: 10.00, projection: l2) 20.00% 32.57% 67.43%
PGD(alpha: 1.00, eps: 10.00, projection: linf) 40.75% 30.10% 69.90%

Table 4.7: Variational autoencoder (β = 1)

4.5.1 Adversarial Sample Similarity

Figures (4.6) - (4.9) show how similar generated adversarial examples are to their respective

input examples. The x-axis shows the maximum Levenshtein distance, and the y-axis

shows the percentage of examples that have their Levenshtein distance between the original

input and the adversarial input less than or equal to the threshold. Tables (4.4) - (4.7) show

that FGSM(delta: 0.10, max eps: 10.00, sign: True) is the most successful adversarial

attack method, but it also generates adversarial inputs that are least similar to the original

input.

Figure 4.6: Autoencoder
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Figure 4.7: Autoencoder + latent space adversarial training

Figure 4.8: Autoencoder + string space adversarial training

Figure 4.9: Variational autoencoder (β = 1)

31



Chapter 4. Experiments

4.5.2 Reconstructed Sample Similarity

Figures (4.10) - (4.13) show how similar paths generated from unperturbed latent repre-

sentations are to their respective input examples. Similar to Section 4.5.1, the x-axis shows

the maximum Levenshtein distance, and the y-axis shows the percentage of examples that

have their Levenshtein distance between the original input and the reconstructed input

less than or equal to the threshold. Additionally, we only consider examples for which the

adversarial search found an adversarial input.

Note that FGSM(delta: 0.01, max eps: 1.00, sign: False) is the least successful ad-

versarial attack method overall and that its reconstruction quality is the lowest among all

attack methods. This fact suggests that when this method finds an adversarial example,

this example is already from a low-density region of the latent space, and thus it is easily

perturbed and misclassified.

Figure 4.10: Autoencoder

Figure 4.11: Autoencoder + latent space adversarial training
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Figure 4.12: Autoencoder + string space adversarial training

Figure 4.13: Variational autoencoder (β = 1)

4.5.3 Cross Attack

Finally, we look at how successful adversarial examples generated with one model-method

combination are at attacking other models. Each of the figures (4.14) - (4.17) represents a

target model, where columns are attack models and rows are attack methods. All models

were trained on the same training set, and adversarial examples were generated from the

same testing set.

Overall, models are most successful at attacking themselves, which is expected. A

more interesting result is that adversarial inputs generated using the vanilla autoencoder

seem to be the least successful at attacking other models, especially using the strongest

attack method FGSM(delta: 0.10, max eps: 10.00, sign: True). This is likely caused

by the fact that the vanilla autoencoder is not explicitly optimized to be robust against

adversarial examples, and therefore adversarial examples generated using this model are

not very strong.
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Figure 4.14: Target model: Autoencoder

Figure 4.15: Target model: Autoencoder + latent space adversarial training

Figure 4.16: Target model: Autoencoder + string space adversarial training
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Figure 4.17: Target model: Variational autoencoder (β = 1)

Table 4.8 shows the most successful attack model for each target model (column) and

each attack method (row), excluding the target model itself.

AE VAE

FGSM(delta: 0.01, max eps: 1.00, sign: False) VAE Adv. AE (Full)
FGSM(delta: 0.01, max eps: 1.00, sign: True) Adv. AE (Latent) Adv. AE (Full)
FGSM(delta: 0.10, max eps: 10.00, sign: False) Adv. AE (Latent) Adv. AE (Full)
FGSM(delta: 0.10, max eps: 10.00, sign: True) Adv. AE (Latent) Adv. AE (Full)
PGD(alpha: 1.00, eps: 10.00, projection: l2) Adv. AE (Latent) AE
PGD(alpha: 1.00, eps: 10.00, projection: linf) Adv. AE (Latent) Adv. AE (Full)

Adv. AE (Latent) Adv. AE (Full)

FGSM(delta: 0.01, max eps: 1.00, sign: False) VAE VAE
FGSM(delta: 0.01, max eps: 1.00, sign: True) VAE VAE
FGSM(delta: 0.10, max eps: 10.00, sign: False) AE VAE
FGSM(delta: 0.10, max eps: 10.00, sign: True) Adv. AE (Full) VAE
PGD(alpha: 1.00, eps: 10.00, projection: l2) AE AE
PGD(alpha: 1.00, eps: 10.00, projection: linf) VAE VAE

Table 4.8: Most successful cross attack models
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Summary

This work focused on three main topics: learning latent representations of strings, gener-

ating adversarial strings using perturbations in the latent space, and improving classifier’s

robustness by training on adversarial examples.

We used autoencoders with recurrent encoder-decoder layers to learn latent repre-

sentations of strings. By introducing a convolutional layer that learns implicit n-gram

representations, we significantly improved the reconstruction quality of the autoencoder,

especially on long and highly irregular/random strings. Additionally, we explored meth-

ods for learning latent representations that preserve metric properties between the space

of strings, and the space of latent representations.

Section 3.3.1 introduced learnable bag aggregator, an attention-based bag aggregation

function which we used as a replacement for the traditionally used mean+max function.

Learnable bag aggregator improves classification accuracy for representations produced by

both autoencoders and variational autoencoders.

We showed that it is possible to generate realistic adversarial examples using gradient-

based perturbations of latent representations. This required us to develop modified ver-

sions of projected gradient descent and fast gradient sign method algorithms which account

for the fact that encoder and decoder are not a perfect inverse of each other.

Training classifiers on adversarial examples improved their robustness against adver-

sarial attacks. We experimented with adversarial training using both latent perturbations

only, as well as string perturbations. Training on string perturbations produced the most

robust classifier across multiple attack methods. However, increased adversarial robust-

ness decreased standard classification accuracy on the temporally split test set. This fact

suggests that training on generated realistic adversarial examples is not sufficient to ob-

tain a model that is robust against future real-world adversarial inputs. Additionally, we

showed that training the classifier on latent representations obtained using the variational

autoencoder improved its robustness without any additional adversarial training. We pro-

posed a possible explanation for this fact and provided an empirical verification of our

conjecture.
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Appendix A

Generated Paths

C:\Program Files\GoMgleE.tmp\poopdgtetatepridmpgd.tsi

c:\arkgr.exe

C:\WINDOwS\system32\gIegyeT.exp

C:\aikguoseXy

c:\4psfe.exe

C:\ProDram\Filps\MUCA368.t1p\2oudam_da-d_l1.d.l

C:\WINdOWS\Tystem\VEXE

C:\Program\Filps\Goog74\Temp\GUMSE47.tmp\psmschin4.dll

c:\5cmaki.exe

C:\WINDOWS\Temp\is-5GMIE.tmp\Pmas\ets\\amesep.en.

C:\arogrwm feme\fsybAAB..ttmpnntorele-dittou.rube.lu-httubu.embe.tui

c:\0rthrl.tem

C:\Windows\System\yznqvaf.exe

C:\WINDOWS\Temp\ISP896~1MpmaHuse.Re

C:\WINDOWS\Temp\isi47FF6.tmp

C:\WIndows\System\WVWOJqj.exe

c:\3akomwc.exe

C:\WINDOWS\Temp\iNiO4S6P.tmp\ieiril

D:\gsndew.eSystemQ2byReteeT.exuIeckgmasee.enfe.esfe.exfe.esie.esf

C:\WINDOWS\Temp\inH17749233692ilgsherenoaheole

C:\WINDOWS\Temp\j\WEWEORQ.gxe

C:\Program Files\Google\Temp\GUMA287.tmp\goopdateres_ee.dlu

C:\WINDOWS\Temp\is-6QADM.tmb\wmpmmuct_statld.dml

c:\drkgmo.exe

C:\WINDOWS\systeG3D MoSSSreMSteoe er.exe

C:\WINDOWS\Temp\Wr__rmc160mO\LENEE2exer.e

c:\nxfnhnf.exe

C:\Windows\System\flwITZe.exe

C:\WINDOWS\Temp\Windojs XP leIcs.exe

C:\WINDOWS\Syspem\2hZOnRj.exe
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Adversarial Inputs

Input:

C:\Documents and Settings\Administrator\Application Data\Yandex\ui

Adversarial input:

C:\Documents and Settings\Administrator\Application Data\Yandex\ote.exi

Input:

C:\WINDOWS\Temp\GUM896.tmp\goopdateres_uk.dll

Adversarial input:

C:\WINDOWS\Temp\GUM896.tmp\goopdateres_rk.dll

Input:

C:\Program Files\GUMA36C.tmp\goopdateres_en-GB.dll

Adversarial input:

C:\Program Files\EUMA36C.tmp\goopdateres_en-d1.ddl.exe

Input:

C:\WINDOWS\Temp\oCFVhbs.ini

Adversarial input:

C:\WINDOWS\Temp\UCBstos.eni

Input:

C:\WINDOWS\Temp\nsb7261.tmp\UAC.dll

Adversarial input:

C:\WINDOWS\Temp\nsc6531.tmp\UAC.dll

Input:

C:\WINDOWS\Temp\BgRh53b.ini

Adversarial input:

C:\WINDOWS\Temp\1OnDoebF.bae
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Appendix B. Adversarial Inputs

Input:

C:\WINDOWS\Temp\nsk6C58.tmp\UAC.dll

Adversarial input:

C:\WINDOWS\Temp\nsk6C58.tmp

Input:

C:\WINDOWS\Temp\i4j_nlog_2

Adversarial input:

C:\WINDOWS\Temp\i4j_nlogdllgodb.g.dxe

Input:

C:\WINDOWS\Temp\GUM896.tmp\goopdateres_zh-TW.dll

Adversarial input:

C:\WINDOWS\Temp\GUM896.tmp\goopdateres_zh-TR.dll

Input:

C:\WINDOWS\Temp\lkpYxWW.ini

Adversarial input:

C:\WINDOWS\Temp\wLpYIzC.eni

Input:

C:\WINDOWS\Temp\nsg28B0.tmp\System.dll

Adversarial input:

C:\WINDOWS\Temp\nsg68F0.tmp\System.dll

Input:

C:\WINDOWS\Temp\7F4987FB1A6E43d69E3E94B29EB75926\seed.txt

Adversarial input:

C:\WINDOWS\Temp\7F4987FB1A6E43d69E3E6BB29EB72926\poog.e9et.ele

Input:

C:\WINDOWS\Temp\nsb9DBA.tmp\modern-header.bmp

Adversarial input:

C:\WINDOWS\Temp\nsu48FD.tmp\modern-header.bmp

Input:

C:\WINDOWS\Temp\Opera Installer\elpmas.exe

Adversarial input:

C:\WINDOWS\Temp\GiertoInstailereenomas.txe
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