
Instructions

For the purposes of the MI-GEN course, design a simple register virtual machine reminiscent of the x86 

architecture (limited number of registers, stack, non-orthogonal instructions of different length) so 

that the virtual machine can be used as a target for a compiler backend exercising the topics covered 

in the MI-GEN course (register allocation, instruction scheduling & selection, various optimizations). 

Implement such virtual machine using the C++ language with attention to easy interface and show its 

validity by implementing a compiler for the tinyc language to the virtual machine.
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Abstrakt

Tato práce prezentuje tiny x86 architekturu a virtuální stroj, určené jako
pomocný nástroj studentům k porozumění technikám kompilování a jejich
dopad na výkon programu. V porovnání s již existujícími instrukčními sa-
dami je tiny x86 jednodušší na použití, protože oproti binárnímu kódování
nabízí aplikační rozhraní v jazyce C++ a nelimituje se na jeden návrh (jsou
podporovány prvky CISC i RISC architektury). Prezentovaný virtuální stroj
nabízí rozsáhle možnosti konfigurace, dovolující z(ne)výraznit různé návrhové
prvky (počet registrů, odezvu paměti, trvání instrukcí atd.). Virtuální stroj je
již nasazen v předmětu NI-GEN (generování kódu) na FIT ČVUT, kde jeho
jednoduchost dovoluje studentům během semestru psát kompletní kompilátor.

Klíčová slova VM, kompilátory, ISA, tiny x86, tinyverse
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Abstract

This thesis presents tiny x86 architecture and virtual machine designed to
help students understand various compiler techniques and their effect on the
program performance. Compared to existing instruction set architectures, tiny
x86 is simpler, easier to use as it comes with a C++ API as opposed to binary
encodings and does not limit itself to single design principles (both CISC and
RISC features are supported). The VM also offers extensive configuration
options, allowing it to (de-)emphasize various architecture features (register
pressure, memory latency, instruction timings, etc.). The VM is already used
in the NI-GEN (Code Generation) course at FIT CTU, where its simplicity
allows the students to write full compiler pipeline during the term.

Keywords VM, compilers, ISA, tiny x86, tinyverse
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Introduction

Most code programmers write today is in programming languages, that aim
for human readability and expressiveness. But processors do not understand
these higher languages, made for humans and our way of thinking. A proces-
sor understands only its lower level language - instructions, that humans tend
to find hard to read since their extreme level of detail and verbosity obscures
the algorithm itself.
This gap necessitates some sort of translation. This can be done either at
runtime (while the program is executed) using interpreters, or statically (be-
fore the program is executed) using compilers. Interpreters executes program
indirectly: they take the source program statement by statement, and call a
corresponding routine. This comes at a cost as the code cannot be optimized,
but an interpreter can start execution almost instantly. Code of interpreted
languages can be executed on any platform that has implementation of such
interpreter. Compilers on the other hand translate given code straight to the
native code of the target. This machine code can then be executed many
times without any additional cost. Such compiled programs, running directly
on processor, usually perform better than programs written in interpreted lan-
guages [1]. Compilers are usually separated into two parts - frontend, accom-
modating parsing of the source code, and backend, providing optimizations
and translation to the target language [2]. Depending on the target, different
translation and optimization approaches and techniques are used. Low-level,
platform specific, techniques like register allocation and instruction selection
are crucial for a compiler that produces performant machine code.
As a part of Systems programming program taught at FIT CTU a course
NI-GEN (Code Generation) focuses on compilers. Different techniques for
compilation of modern programming languages are practiced, with emphasis
on explaining how to write a compiler as a whole, not focusing on specific plat-
forms or languages. The course uses a simple programming language, tinyC, a
subset of C. tinyC was created to keep the interesting parts of C, like pointers,
arrays and structures, without having to worry about other technical details,
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Introduction

that are important for real world use, but irrelevant for educational purposes
(such as macros, multitude of integer datatypes, redundant control flow state-
ments, etc.).
Students implement their own optimizing compiler backend as their semestral
project, showcasing understanding of taught topics. Because multiple different
architectural designs are explored, if real architectures like x86, ARM, MIPS
or RISC-V would be used, students would have to switch from one to another
based on currently exercised technique. Students would also have to study
given targets specifics, interfaces and VMs, which by itself could be a stan-
dalone course. As an example, x86, one of the most common architectures,
has hundreds of instructions, with extremely complex instruction encoding.
It provides only handful of registers, some of which play specific roles in cer-
tain instructions. Being of CISC heritage, many of these instructions have
narrow use-case, performing very specific and complex tasks. Take the LEA
instruction as an example, whose purpose is to calculate a memory address
for a higher-language element. Knowing this instruction and being able to use
it in such cases can boost program performance by a lot. But other proces-
sor designs, such as RISC (ARM, MIPS) opt for more registers and simpler
instructions, more of which are necessary to provide the functionality similar
to that of the LEA instruction. The architecture selection thus plays a vital
role as some aspects of code compilation can only be experienced on certain
architectures.
Furthermore, as writing even a simple compiler is a complex undertaking, it
would be beneficial for students to be able to abstract from some of the more
complex issues to get a minimal viable compiler first, being able to run code
as soon as possible and the refine their design by making it work with more
and more realistic features. This is something hardly achievable with existing
architectures, that are made for hardware CPU implementations (for instance
it is almost impossible to write a proper compiler without register allocation
or complex instruction encoding schemes).
This creates a need for a virtual target, that can be run on any personal com-
puter for students to experiment with and use as target in their compilers.
Such target does not have to deal with problems that architectures running
on real processors have to, like efficient encoding, allowing greater freedom
in extending and changing the architecture. In this thesis, tiny x86 architec-
ture, based on widely adopted x86 architecture [3], is introduced. The goal
is to create single configurable target for educational purposes, that can be
used in during NI-GEN course as compilation target, practicing different con-
ditions and architecture features, while keeping simple, unified user-friendly
interface. It resembles x86 architecture in most basic aspects, but it combines
many other architectural designs, that can be configured to suit specific needs
exercising different techniques.
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Chapter overview

Chapter overview
The rest of this thesis is organized in the following sections:
Current solutions takes a look at current solutions and discusses their pos-
sible usage in NI-GEN course.
CPU design overview focuses on different CPU techniques, that are being
used.
Tiny x86 ISA presents designed architecture.
Tiny x86 VM introduces virtual machine implementing tiny x86 ISA.
Realization describes implementation details of tiny x86 VM and supporting
constructs.
Evaluation looks into output of this thesis and how it was validated.
Conclusion concludes the thesis and offers hints for future improvements.
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Chapter 1
Current solutions

In this chapter, some of existing virtual machines are presented. Their in-
tended use-case is analyzed and compared with needs of NI-GEN course and
possibly what alteration would be required to suit the use-case.

1.1 Selfie
Selfie is an educational project of the Computational Systems Group at the
Department of Computer Sciences of the University of Salzburg in Austria [4].
It provides RISC-U, an easy-to-teach subset of RISC-V, emulator and self-
compiling compiler to this architecture for subset of C called C* [5]. Inter-
estingly, Selfie is also written in C*, allowing full self hosting. This lead to
creation of self-hosted hypervisor, which enters the territory of writing oper-
ating systems.
Selfie provides performance counting, that can help students identify bottle-
necks and benchmarking tools.
Selfie and this thesis share one common goal - create educational project used
for teaching compilers, but it does not aim to showcase different techniques
used on different architectures, rather than self-hosting. Given Selfies matu-
rity and interesting use-cases, it now serves as much universal tool, a feat to
be desired by tiny x86.
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1. Current solutions

1.2 QEMU
QEMU, short for Quick EMUlator, is a generic and open source machine
emulator supporting multiple hardware platforms including x86, ARM, Pow-
erPC, MIPS and RISCV [6].
QEMU allows to easily run x86 programs by providing boot sector image con-
taining your program. This has few limitations - mainly to even begin with,
you have to prepare your VM by setting data segments etc., bringing addi-
tional complexity. Another limitation is the boot sector max size, which is
512 bytes. This might be enough for basic un-optimized programs, but when
translating more complicated programs, compiler producing size un-optimized
code could run out of space, causing parts of the code not being loaded.
Other ways how to run user program would be creating custom kernel, but
then you have to take care of multiple things, for example interrupts, multi-
processing, console input/output.
QEMU provides system configuration, but it is build around specific ISAs in
code, so changing these would require deep code knowledge and patching of
the source code. No standard way of performance counting and its processing
is built into QEMU, so this would also require extending the source code.
From this I conclude, that this project is suitable for production. Regard-
ing educational purposes, it could be useful if the study subject is either x86
specifically, or creating OS using some already existing compiler.

1.3 LLVM
LLVM is a collection of compiler and toolchain technologies. It began as a re-
search project at the University of Illinois as a compiler framework [7]. It has
grown since to house many subprojects like Clang (C/C++ compiler) [8] and
LLVM core library build around low-level code representation LLVM IR [9],
an intermediate representation used in target-independent optimizations and
code-generation for many CPUs[10].
LLVM focuses on many fields, but regarding targets, no part seems really vi-
able. LLVM IR is available, which can be executed separately, but does not
allow any further control over the architecture without deep codebase knowl-
edge and patching, working more like a scripting language. It also provides no
performance counting. Still, usage of LLVM might be something interesting,
especially trying to combine LLVM IR as backend with tiny x86 as target.
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Chapter 2
CPU design overview

This chapter focuses on different aspects of CPU design. Different instruction
set architecture designs are discussed and examples of existing ones are pre-
sented. Next, different processor techniques used to increase performance are
described.

2.1 ISA
Instruction set architecture describes CPU on an abstract level. It defines in-
structions, addressing modes, encoding and how many registers of what kind
CPU has. It can specify how memory is accessed, input and output model
and special register purposes.
Different CPU implementing this ISA should all be able to run the same ma-
chine code. Each of this CPUs can have different performance, efficiency or
cost, while producing the same results. This enables us users change proces-
sors of the same architecture without needing to change or recompile software
that ran on the old CPU.
ISA can be extended overtime, keeping backwards compatibility, but any
change to the old design would cause incompatibility. Careful design is re-
quired for long lasting ISA.
Many decisions have to be made during design ISA, such as defining more sim-
pler, but possibly less performative instructions, or very broad, rich instruction
set, that is hard to master. A lot of care has to be put into instruction encod-
ing, for both large enought different instruction encoding, and fast and precise
decoding.
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2. CPU design overview

2.1.1 x86
Intel’s x86 ISA originates from Intel 3086 processor released in 1978 [11]. Cur-
rent Intel and AMD processors use extended x86_64 ISA, but x86 is the main
focus of this section.
x86 is considered to be CISC design with variable length instructions [12, 13].
The fact, they are able to keep compatibility with processors released over 40
years shows, how much effort is put into its design. Intel’s engineers achieved
this by using several techniques, like instruction prefixes, altering following
instruction’s meaning.
But its historical compatibility brings few aspects, that might not make sense
in modern environment. Example of this is segmentation. This allows pro-
gram to set offset to all memory accesses - this was very useful when registers
very only 16bit and memory was larger than 65K. From modern stand point,
where modern x86 specifies 32bit registers and for x86_64 even 64bit ones,
this seems really unnecessary and creating another layer of complexity to writ-
ing x86 programs.
x86 provides only a handful of full 32-bit registers that can be broken down
to 16-bit or even 8-bit registers. Many of these registers also serve a specific
purpose in the ISA. Example of this would be register EAX, that often times
serves as the accumulator for instructions. Also, some instructions support
only specific addressing modes, which can force compilers into smart instruc-
tion selection.
In this architecture, many instructions with very specific use-cases are defined.
Understanding them requires deep knowledge, creating high barrier of entry
for new optimizing compiler writers.

2.1.2 ARM
ARM is a family of RISC processors introduced in 1985. Due to its reduced
cost, power consumption and thermal output it is used in battery-powered
devices like phones, watches or tablets, but is also used in personal computers
or servers. The fastest supercomputer at the moment, Fugaku, runs on ARM
architecture [14].
There have been several generations of ARM design and both 32-bit and
64-bit versions are available. In RISC fashion, it provides concise number
of instruction with limited addressing modes. Typical for this family of in-
structions, many operations explicitly specify destination register, for example
ADD R0 R1 1, meaning R0 := R1+1, is not available in architectures like x86.
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2.2. Scalar processors

2.2 Scalar processors
Scalar processors are the simplest class of processors. Every instruction is
executed strictly in order, in which it occurs. Some techniques can be deployed
to increase the throughput of such processor. Some of these techniques are
presented in following sections.

2.2.1 Pipelining
Pipelining utilizes that some of the steps in instruction execution can be done
in parallel for multiple instructions. For example when while one instruction
is being decoded, some other could write to memory. Pipeline, created from
several of these distinct stages, is created, processing several instructions at
once.
For MIPS32, a RISC processor, these stages are Instruction Fetch, Instruc-
tion Decode, Execute, Memory access and Write back [15]. Many other RISC
processor follow very similar partitioning.
These stages can work in parallel to each other and, given ideal conditions,
every tick each instruction advances to the next pipeline stage. Because ev-
ery tick an instruction would leave the pipeline, meaning its execution has
concluded, there is only one tick delay between previous instruction.

2.2.1.1 Hazards

Hazards identify situations in integrity of the execution could be disturbed.
In some of these causes, only solution is stalling progression of some pipeline
stages. All pipeline hazards must be detected and resolved in order for the
processor to correctly execute programs.
Data hazards occurs, when instruction dependencies can be violated. Typi-
cally these data hazards are recognized:

• Read after write (RAW)
• Write after read (WAR)
• Write after write (WAW)

9



2. CPU design overview

Control hazards can be viewed as a form of RAW hazard on PC caused
by branch instruction. If this is not resolved, incorrect instructions would be
executed.
Structural hazards occur, when the CPU has some limited resources, that
cannot be shared, and two or more instructions in the pipeline need this
resource.

2.2.2 Speculative execution

To avoid stalling in pipelining processor when branch instruction is met, CPU
starts speculatively execute following parts of the program, as if no branch
would happen. If branching happens, the CPU has to make sure, that no
side-effects of this speculative execution happen, clearing the affected parts of
pipeline and undo any other effects.
To achieve the best throughput, wrong speculation should be avoided, as they
are heavily penalized. This is where branch predictors come into a play.
These predict if branching happens and what will be destination. A lot of
research is done in this department, as it can greatly improve processors im-
provement [16]. Studies are being done on advanced branch prediction and
how they can be deployed [17].

2.2.3 Register Renaming

In processors, number of physical registers can be larger than number of log-
ical registers - those registers that ISA defines. Logical register than can be
mapped to those physical registers. CPU designers can use this fact to their
benefit as changing of this mapping, called register renaming, can eliminate
stall caused by fake data dependencies, that would otherwise be identified as
data hazards. When instruction is being decoded, the renaming takes place.
For each register, that need to be read, appropriate physical register is sub-
stituted and for register writes, an unused register is selected and noted for
future translations.

ADD R0 R1 R2 -> ADD PR2 PR3 PR1

Listing 2.1: Example of register renaming

To keep track of the mapping and used registers, register allocation table
is used. Depending on overall design, the complexity of this table varies,
but simplest implementation can be an array, where indexes represent logical
registers and the value of given element is physical register.
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2.3. Superscalar processors

Figure 2.1: Register allocation table and renaming

2.3 Superscalar processors

Superscalar processors can execute multiple instruction per clock cycle, using
different techniques. In this section, some of these techniques are described
with emphasis put on out-of-order execution paradigm.
Unlike vector processors, executing same instruction over multiple data items,
superscalar processors can execute different instructions. Simplest transition
from scalar to superscalar processor would be multiplying the pipeline.

Figure 2.2: Superscalar pipeline
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2. CPU design overview

2.3.1 The Classic Tomasulo Algorithm
Designed for IBM 360/91’s floating-point unit, Tomasulo’s algorithm was a
predecessor to modern superscalar processor design. One of the key features
this algorithm introduced was its register data flow techniques [18].
Tomasulo’s algorithm adds three new mechanisms to the original FPU design
- reservation stations, the common data bus and register tags. In original FPU
design, each functional unit could hold only one instruction inside its buffer on
input side. This meant issuing of instruction to busy unit would cause stalling.
To alleviate this bottlenect, reservation station were introduced, replacing the
single buffer on input side. From the point of view of FLOS, these stations are
viewed as virtual functional units, so as long there is a free reservation sta-
tion the FLOS can issue an instruction even if the actual functional unit the
station is connected to is busy. With the instruction of reservation stations
FLOS can now issue instruction even if all of their operands are not fetched.
The instruction will wait in the reservation station for all of their operands
and only after all of them are fetch instruction becomes ready for execution.
Common data bus (CBD) connects outputs of functional units to the reserva-
tion stations. Once functional unit produces a result, the result is broadcasted
into the CBD. Instructions in reservation stations needing these results as their
operands, latch in the data from CBD.
Register renaming is used to resolve RAW and WAR hazards, eliminating
pipeline stalls. To signal, that register is not prepared for reading, a busy flag
is introduced.

Figure 2.3: Tomasulo design
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2.3. Superscalar processors

2.3.2 Dynamic Execution Core

Figure 2.4: Dynamic execution core

Current state-of-the-art superscalar processors utilize out-of-order execu-
tion core put in between in-order front end, containing of fetch and dispatch
stages, and in-order back end, which completes and retires instructions in pro-
gram order. This technique resembles a refined Tomasulo’s algorithm [19].
Whole execution process can be split into 3 main stages - instruction dispatch-
ing, instruction execution and instruction completion.
Instruction dispatching stage consist of renaming of destination registers,
allocating reservation station and reorder buffer entries. If allocation is suc-
cessful, instruction is advanced from dispatch buffer to the reservation station.
Instruction execution stage provides following functionality - issuing ready
instructions, executing issued instructions and forwarding results. When in-
struction fist arrives into this stage, not all of its operands might be fetched.
It has to wait for all of its operands to be issued for execution. Similarly
as in Tomasulo’s design, instructions waiting for issuing listen on available
busses for specific tags of their operands, fetching them as they occur. Once
instruction is issued into functional unit, an instruction is executed and no
further stalls in this stage are expected. Once execution finished and result is
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2. CPU design overview

available, it is broadcasted to the forwarding bus alongside its identifier.
Instruction completion takes place in the reorder buffer. Reorder buffer
ensures that instructions are architecturally completed in correct order. It can
also take care of potential branch predictions misses by keeping track of what
branch caused the instruction to be executed and if that branch prediction
was miss not completing given instruction.

2.4 Other processor techniques
Many other techniques exist and are being deployed in modern processors,
but are really advanced and have limited benefit for use-case of this thesis,
yet worth mentioning.
VLIW (very long instruction word) defines such instructions, that perform
several predefined calculations in parallel. To utilize this parallelism, compil-
ers have to adjust to such architecture.
SIMD (singe instruction multiple data) is architecture, defining instructions
working with array of data at once. This can greatly improve performance for
certain workloads, like matrix manipulation. Modern GPUs implement such
architecture.
EPIC (explicitly parallel instruction computing) is computing paradigm, that
builds on VLIW, improving on several aspects and even creating so called in-
struction bundles, that define its dependencies and can be issued in parallel[20].
Again, most of the burden of parallelism is put on compilers.
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Chapter 3
Tiny x86 ISA

This chapter takes a loot at the ISA that was created for Tiny x86 target.
First few key design choices and their implications are discussed. Then I in-
troduce memory model, available registers and addressing modes, followed by
instruction descriptions.
Because this is supposed to be educational ISA, many things need to be config-
urable, to showcase what approaches are more suitable for different platforms.
This makes this ISA more fluid, that others usually are. What I define in
terms of possible registers, addressing modes and instructions is the superset
of available configurations.
Very important aspect of this ISA is that the resulting program does not have
to be stored into a file or any other binary representation. Also no linking will
be done, as only single compilation units of tinyC programs are compiled. It
is intended to be stored in memory the whole process in arbitrary represen-
tation, from input program compilation to the actual execution. This strips
the need for encoding instructions and its operands. But because instruction
length has influence on execution performance, each specific configuration can
allow different instruction length for each instruction and its operands.

3.1 Memory model

tiny x86 uses Harvard architecture, meaning instructions are separated from
data. Instructions accessing memory can only alter data and not program it
self.
Data is aligned to 64-bit blocks and addressable by index of such block. Any
finer addressing has to be done on program level.
Memory includes stack, growing down from the end, and loaded data from
program growing up beginning. No paging or other segmentation is defined.
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3.2 Registers
tiny x86 introduces few quite standard registers that can be found in most of
modern processors:

• PC - program counter, indicating position in program

• SP - stack pointer

• BP - base pointer, pointing to beginning of current function stack frame

• FLAGS - flags set by ALU operations

Except for base pointer, all of these register play very specific roles in instruc-
tion. Base pointer is an exception, because it server mostly compilers to work
with function stack frames.
Further more, tiny86 specifies other registers - these are fully general purpose,
their usage is fully determined by the compiler. tiny86 defines two types of
registers, integer and float registers. Both register types are 64bit long, al-
lowing easy value conversion and manipulation. I still decided to distinguish
integer and float registers for clarity of generated code and possibly prevent
bugs by not allowing interchangabilily.
Number of registers, both integer and float, is not fixed. It is expected to be
configurable, depending on VM. Integer registers are denoted as Ri, where i
is index of given register. Similarly, float registers are denoted as FRi. As is
programming tradition, registers are indexed from 0.
For simplicity, from now on if not stated otherwise in this thesis, when I use
the term register, integer register is meant. Also every previosly mentioned
special registers hold integer values and can be treated as integer registers.
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3.3 Addressing modes
Addressing modes specify, what kind of operands instructions can have. In
this section addressing modes are specified, with examples where appropriate.
Note that not every instruction has to work with given addressing mode. This
is specified by the instruction it self.
Immediate values:

• Integer immediate

• Float immediate

Register based:

• Register - R0

• Float register - FR0

• Register offset - R0 + 10

Some other register based modes are available, but not expected not to be
used like directly in instruction operands. They were created, because their
definition makes the memory accesses easier and they remain as a possibility
for future instructions. Memory accesses:

• Memory immediate - [10]

• Memory register - [R0]

• Memory register offset - [R0 + 10]

• Memory register and register - [R0 + R1]

• Memory scaled register - [R0 * 2]

• Memory register offset and register - [R0 + 10 + R1]

• Memory register and scaled register - [R0 + R1 * 2]

• Memory register offset and scaled register - [R0 + 10 + R1 * 2]

Some of these modes exist because of specific use-cases defined by standard
programming constructs. For example [R0 + R1 ∗ 4] could be used to access
array elements. R0 indicated starting address of the array, R1 represents the
index and is multiplyed by the size of stored element.
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3.4 Instructions
This section highlights different categories of instructions, that tiny x86 de-
fines, and what addressing modes they support. Full list of individual instruc-
tions with detailed description is included in Appendix C.
Moving - MOV instruction, that serves for moving data from and to regis-
ters and memory. Addressing modes available are registers, values and every
memory accessing. Moving between float and integer registers binary copies
value without any narrowing or extending.
Integer arithmetics and bit operations - instruction for standard math-
ematical operations, including bit manipulation, utilizing ALU. Both binary
and unary operations are present. These operations happen on register, and
if applicable, second operand can be either value, register or register offset.
RISC like version are available as well, for example ADD R0 R1 1.
Control flow category concists of conditional and unconditional jumps. Con-
ditional jumps decide based on FLAGS register and should be after CMP
instruction, comparing register to some selected operands. Jump destination
can be defined by address (immediate value) or register.
Functional are instruction enabling function calling - CALL and RET. CALL
can specify its target either by immediate value (an address) or by register,
allowing for higher-order functions using function pointers.
Stack manipulation is done using two quite standard instructions PUSH
and POP.
IO - defines PUTCHAR and GETCHAR, printing to the output of the VM.
This allows students to quickly see results of their programs that is otherwise
done using underlying operating system running given program.
Float arithmetics - basic float arithmetics are defined, with similar to inte-
ger based ones, with F prefix and set the same FLAGS register and can be
used as condition for conditional jumps. NRW for narrowing from float to
integer and EXT for extending integers to floats are defined.
VM manipulation - DBG and BREAK are defined for debugging purposes,
HALT for halting the VM, otherwise infinite execution of NOP (no operation)
happens. CLR for clearing flags is defined.
Others - LEA for obtaining address using advanced memory addressing modes
is included, as well as already mentioned CMP and its float variant FCMP
for comparing two values, usually followed by conditional jump instructions.
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Chapter 4
Tiny x86 VM

This chapter describes the designed virtual machine, implementing tiny x86
ISA. After reading this chapter, users of this VM should have notion of how
program is executed and how different situations can influence performace of
such program.
First, memory design is presented. Then CPU design and used processor
techniques are described.

4.1 RAM
Configurable random access memory with simple interface for use in tiny x86
VM is defined in this section.
Because tiny x86 ISA specifies, that Harvard architecture is used, we really
have to worry only about defining memory for the data. Instruction will be
stored separately managed by processor.
Total size is fully customizable, but some limits should be considered, espe-
cially if any function calls should take place. As defined by the ISA, data
accesses are aligned to 64-bit values. Size of RAM will be specified as number
of these 64-bit values, that can be stored, meaning if RAM of size 1024 is
defined, its actuall physical size will be 1024 ∗ 8 bytes.
Memory has also configurable number of read gates. Multiple gates can per-
form reads at the same time, but no reads should happen without assigned
gate. If multiple requests for single address are issued, only one gate is used.
Read from memory address that is being written to is undefined behavior,
forcing CPU to keep track of ongoing writes.
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4.2 CPU
This section describes design of processor implementing out-of-order execution
engine similar to the one described in subsection 2.3.2. To simulate the limits
of real used architectures, like minimizing dependencies between registers or
branching, tiny x86 CPU will implement pipelining with following 5 stages:

• IF Instruction Fetch

• ID Instruction Decode

• OF Operand Fetch

• EX Execution

• RET Retirement

Figure 4.1: Pipeline and reservation station for tiny x86 VM

Next, out-of-order execution will be used. This is achieved using reservation
station, based on the design of dynamic execution core, where last 3 stages
of the pipeline happen. Reservation station is made of entries, that facilitate
instructions, operands and other information required for operand fetching,
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executing and retirement. Reservation station also houses multiple ALUs,
that can be assigned to an entry if execution requires it.
Each entry has its state from following list:

• Preparing - operands fetching

• Ready - all operands are fetched and as soon as there is a free ALU
execution will begin

• Executing

• Retiring - waiting for retirement

Figure 4.2: Example of reservation station entries

Inclusion of out-of-order execution should serve as a demonstration of power
of dynamic scheduling, that can greatly improve compiled programs that did
not utilize instruction scheduling techniques.
Number of reservation station entries can be configured, where in-order exe-
cution can be easily simulated by setting only one reservation station entry.
Number of ALU (arithmetic logic unit) can be configured as well. All ALUs
are general purpose, meaning no separation for floating point arithmetic or
other specific use-cases is made.

4.2.1 Instruction Fetch
Fetches next instruction. If fetched instruction was a branch instruction,
branch prediction is applied.
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4.2.2 Instruction Decode
Contrary to its name, there is no actual decoding being done in this stage, the
name was chosen to model real processors. Register renaming and memory
write registration is done at this stage.

4.2.3 Operand fetch
Fetches all of required operands. This stage, unlike previous stages, can take
multiple ticks depending on the execution context. This can be caused by
sever things. First one, and probably the most obvious one is reading from
memory. Memory has its latency, meaning reading from it can take several
ticks. Another possible stall in operand fetching can be dependency on pre-
cious instruction. Until that instruction finishes its execution, this operand
cannot be fetched. If instruction in this stage requires an ALU, it cannot
progress to the next stage, without available ALU.

4.2.4 Execution
In this stage, several things take place - computation using assigned ALU,
setting registers including program counter and flags, and setting memory
write address and value if required.

4.2.5 Instruction retirement
Presence of this stage and rule, that instruction can retire only, when there
are no previous instructions in non-retiring state, ensures, that instruction’s
side effects, that cannot be simply reversed, happen in order in which they
occur in the program. This stage is also important because of the speculative
execution, as branch misprediction could influence observable state of the VM.
In this stage, memory writes are initialized, branch decisions are processed,
possibly enforcing speculative execution unrolling when branch misprediction
happened, handling debug and break functions and halting the VM.
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4.2.6 Register renaming
To fully utilize out-of-order execution, elimination of false data dependencies
is crucial. Register renaming is used to eliminate these hazards and to make
tracking of actual hazards easier.
Every time instruction is being added to the reservation station after the
instruction decode phase, registers that are possibly affected by execution of
given instruction are renamed. This renaming maps logical registers (those,
that ISA presents, both integer and float) to some internal register. These
internal registers are called physical registers. There physical registers are not
addressable from the generated program, only through the translation from
logical register. CPU tracks for each physical register if it is ready - physical
register becomes ready after a value has been written to it until this physical
register is used for renaming again, then the register value becomes unavailable
again. By this, we can avoid reading invalid data before they are ready.
These mappings are stored in RAT - register allocation table. CPU has one
main and most updated RAT and each reservation station holds two copies of
RATs - one for register read translations, that was copied before any registers
were renamed, and one for register write translations, that was copied after
all affected registers were renamed. By this coping of RATs we do not have
to make difficult bookkeeping of what mapping should what entry use, even
though this potentially uses more memory, that would be needed, as both
RATs share most of the information.
When speculative execution unrolling happens, the write RAT of the entry
that caused the unrolling will be used as the new main CPU RAT. To be able
to determine what physical register should be selected for renaming, CPU
also counts how many reads/writes are subscribed/queued for given register.
Selected physical register has to satisfy these two conditions:

1. There are no subscribed reads/writes to this physical register.

2. There is no mapping to this register in the current RAT.

First condition ensures, that any instruction already added to reservation
station will not read or write this physical register. The second one then
ensure that all logical registers are mapped to something, in case read from
these registers will be required in future.
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4.2.7 Memory IO
Due to various aspects of this design, CPU has to manage its memory IO.
Again, we have to take care of potential data hazards, especially due to RAM’s
latency on reads and writes.
Most important thing CPU has to note are memory writes, both ongoing
and pending (future). Each of these writes has internal ID. ID is assigned in
chronological order, meaning writes with lower ID happened before (from the
architectural point of view) writes with higher ID.
Pending writes are writes, that have not yet started writing to RAM. They
can specify two things - address and value. If both values are specified, the
RAM write can commence during instruction retirement. When instruction
is being added to reservation station, CPU collects its future memory writes.
There write can already have address and value specified, but they most likely
lack some of these and they are specified in later stages of the pipeline.
Ongoing writes are those writes, that began writing to RAM, but are not
finished yet. Actual RAM write is started only during instruction retirement.
Because of how retirement order is designed, we don’t have to worry about
canceling or reverting memory write, keeping RAM in valid state at all times.
When instruction is added to the reservation station, its entry is assigned the
highest registered write ID. This is used during operand fetching.
When operand requires memory read, CPU first checks, if there is any ongoing
RAM read to same address and either forwards fetched value (in case the read
finished in this particular tick) or stall. If no such read is present, CPU
check for possible memory writes, that would prevent from reading RAM.
This is determined by both requested address and the aforementioned highest
memory write ID - lets call this max ID. We have to find memory write to
either unspecified address or address matching requested address with lower
or equal ID to max ID. If there is no such write, RAM read will be queued.
Otherwise we check if the target address matches requested address and if
the write value is specified. In that case, we can forward the value, else stall
occurs.
One crucial thing that current CPU design is missing is memory caching. Due
to time constraints it is not present and is part of future work.
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Figure 4.3: Memory IO

4.3 Reporting system
To give students feedback on their compiler, some reporting system has to be
created. Resulting reports will be used to measure how well optimized the
compiler is, as measuring by actual runtime on host machine has unwanted
aspect, as discussed in motivation.
As basis for most statistics calculation is counting how many ticks have hap-
pened before the VM halted and how many instruction were executed. Just
the first statistic alone can be sufficient for simple benchmarking, combined
with throughput, calculated as # of instuctions executed

# of ticks , we can start comparing
different compiler implementations. But to give students valuable feedback,
the reporting system should for each also track stalls, what caused them and
for how many ticks did it stall.
Tracked stall correspond to pipeline stall with extra detail of their cause. For
instruction fetch and instruction decode stalls happen when following stage
is full. For operand fetching, each operand fetch requirement is tracked sepa-
rately. Another stall for instruction in operand fetching might be unavailable
free ALU if given instruction requires it for its execution. In execution part, no
stall should happen. For instruction in retirement part, stalls happen, when
there are previous instruction that are not in retirement phase.
This tracking should be done for each instruction individually and once con-
solidated, they can be presented for each instruction signature. Instruction
signature consist of instruction type, for example MOV, and its operand ad-
dressing modes, for example Reg, Imm. Result of this report should give
the student basic tool to identify bottlenecks of the program their compiler
generates and compare different strategies of mitigating these stalls.
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Chapter 5
Realization

Tiny x86 is a part of tinyverse, project started by this thesis supervisor, Ing.
Petr Máj, written in C++. This project houses other components used in NI-
GEN course, especially tinyC specification and parser. It also provides basic
utility library for logging, printing, testing and configuration management.
Tiny x86 is first of possibly many other targets, that students could use,
study, modify or extend. This puts few constraints on the implementation.
To interconnect with the rest of the project, C++ is obvious choice. At FIT
CTU, C/C++ is taught in first year of bachelors study, therefore it is expected
for masters students to be able to understand and write C++ code. But still,
there is a question of different C++ standards and paradigms.
C++ is still actively in development, giving us new standard approximately
every 3 years, with varying delay for compiler vendors to implement new
features. At the time of writing this thesis, C++20 is the newest standard, but
many compilers do not support this standard fully. Next, mostly supported
standard is C++17, that had some time to mature, and its features starts to
show up in modern code bases. So C++17 was chosen, but because students
have to be kept in mind, only the most useful new features, for example
std::variant or std::optional from STL, were used. Also, hand to hand with
this is template usage. Templates in C++ are very powerful tool, but it
brings some obscurity to the codebase. Therefore minimal template usage
was decided, even if that meant more handwritten code.
Regarding programming paradigm, object oriented programming (OOP) was
chosen, as curriculum at FIT CTU contains OOP in several of its courses and
is generally considered to be the industry norm. Usage of OOP allows for
extensible code that most students should be able to pick up and explore.
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5.1 VM
The tiny x86 virtual machine consists of two logical parts, CPU and RAM.
First, CPU and RAM implementation is described, followed by explanation
of what does tick do. Finally, configuration of the VM is described.

5.1.1 CPU
CPU class combines many pieces together. It houses loaded program, regis-
ter allocation table, instruction fetch and instruction decode pipeline stages,
reservation station, branch predictor, branch predictions and physical regis-
ters. For ease of use it also houses RAM itself, even though it could be shared
between multiple objects.
Instruction fetch and instruction decode pipeline stages are made of instruc-
tion pointer and next program counter. The next program counter is obtained
by either branch predictor or incrementing current program counter and is
used to set PC register for given instruction, more on this later. If fetched
instruction is a jump instruction, checked by using C++ run-time type infor-
mation, the branch predictor is invoked. The branch predictor takes current
program counter and instruction reference. Currently, only naive branch pre-
dictor, always predicting, that the branch will be taken. This however has
only effect if the target of jump instruction is an absolute address, otherwise
PC increment is used.

5.1.1.1 Register allocation table

Register allocation table it self is mainly a wrapper for the mapping from
logical registers to physical registers. Class copy constructors and destructors
play huge role in keeping track of how many times a physical register is mapped
to. Every time a RAT is copied, it reports the CPU what physical registers
it maps to. In same fashion, destruction informs the CPU that it no longer
maps to those registers. And for renaming/remapping of some logical register,
first the old mapped register is unsubscribed and the newly mapped to is
subscribed.
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5.1.1.2 Reservation station

Reservation station handles its entries and available ALU count. Entries are
stored in a linked list to keep the program order. Reference to hosting CPU is
stored as well, used for obtaining operands and distributed to each entry for
later use.
When instruction, along side next PC, is added to the RS, read RAT is created
by copying the current CPU RAT and every product is extracted from instruc-
tion and processed. For register writes, renaming on CPU RAT happens, and
for memory writes a write is registered. Also, each instruction changes the
PC, so PC is renamed for each instruction, even if it does not influence PC
by its execution 1. Next a entry is created with previously copied read RAT,
newly copied write RAT, registered memory write IDs and max memory write
ID.
During operand fetching, a reservation station iterates through every entry
in preparing state, checking if any operand of such entry is available to be
supplied.
For execution, every executing entry’s remaining execution ticks is decre-
mented. If it hits zero, execute function is invoked on stored instruction and
retiring state is set.
When retiring phase happens, the entry list begin is checked if ready for re-
tirement. If so, retirement happens by invoking retire method on contained
instruction. If the list begin is in non-retiring state, every subsequent entry
waiting for retirement logs retirement stall. Reservation station entries store
the instruction pointer, operands, read and write RATs and registered mem-
ory writes. Operands are copied from the instruction and modified during
fetching. They are also used in instruction execution and retirement, more on
this in section discussing instruction implementation. Entries provides meth-
ods for reading and writing registers, abstracting RAT translations from end
user.

5.1.1.3 Operands

Operands are implemented using std::variant of all possible addressing modes.
Base operand is integer or float value. Next, logical registers are just wrap-
pers around register index. Iteratively, by combining defined operand, more
complicated operands can be build, until all specified possible operands are
built.
The operand class it self provides methods for checking and getting specific
types. For easier manipulation, twin methods requires and supply are pro-
vided. Method requires returns a requirement object. Requirement is again
internally represented as an std::variant and can be either register fetch or
memory read. Once required value is obtained, supply with that value is

1This has to happen before copying the read RAT
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called. This internally transforms the operand to a different type, based of
current type. Operand is considered fetched once it a either float or integer
value.
Operand also implements type getter. This type is used to create instruction
signature as is represented as an enum.

5.1.1.4 Instructions

Thanks to the OOP design, individual instructions inherit from base instruc-
tion class, specifying method, which each instruction should implement. Such
methods are:

• length() returning length of the instruction in bytes

• type() returning enum value of different instruction types (MOV, ADD
etc.)

• signatureOperands() returning vector of instruction operands that should
be displayed in instruction signature

• operands() returning vector of instruction operands - this contains operands,
that are implicit for given instruction type, for example JNZ requires
FLAGS register to determine if branch should be taken

• validate() validating its operands, for example ADD PC 2 is not allowed
by the ISA

• produces() returning vector of products/side-effects that this instruction
execution creates

• execute(ReservationStation::Entry) that is called once execution of given
instruction ends

• retire(ReservationStation::Entry) that is called during instruction retire-
ment

•

By implementing these methods, instruction set can be extended quite easily
for testing purposes by the students, where many of these methods can return
dummy values.
Execute method uses entry to obtain and access fetched operands, set write
address and value, and set registers. Similarly, in retirement method, entry
provides a bridge to operands, memory writes and CPU.
Internally, instructions usually store the general operand object, so that re-
stricting or extending available addressing modes for instructions boils down
to whether a construction with that address mode is defined.
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To eliminate repetition, some instruction subtypes, sharing common imple-
mentation, were defined, such as JumpInstruction, used to define branch in-
structions such as JMP and others. For even less code duplication, macros
were used, especially for BinaryArithInstruction, UnaryArithInstruction and
ConditionalJumpInstruction derived instructions, that differ only by different
ALU function call or by a condition.

5.1.1.5 Speculation unrolling

When branch triggers speculation unrolling, the whole pipeline is cleared,
pending writes are removed and write RAT from the triggering entry is set
as new main CPU RAT. Speculation unrolling is also triggered when DBG
or BREAK handlers are invoked, to put the CPU in predictable state and to
guarantee any change would propagate correctly to next instructions.

5.1.2 RAM

RAM here servers not only as data storage, but also to emulate the latency
real communication with RAM would have.
The data is stored in array of unsigned 64bit integers. During this class in-
stantiation along side gate count a size is passed in parameter, allocating array
of appropriate size and each field is set to zero. Each access is checked, so in
case of out-ouf-bounds access an exception will be thrown.
Ongoing reads are stored in a map from address to a structure made of the
value, that was stored at the time of request, and remaining ticks to be fin-
ished. By this, the read latency is simulated. Similarly, the ongoing writes
are stored in a map from address to a structure, made of value to be written,
write ID returned when write is requested to be able to track specific write,
and remaining time to be finished.
If write is requested, an unique write ID is returned, write is added to ongoing
writes and the value is already stored. This can be done, as the ISA specifies
reading memory address, that is being written to, as undefined behavior. Us-
ing the write ID, the RAM can be asked, if given write has finished already,
checking if ongoing write with such ID is stored.
Reading from an address returns std::optional. std::nullopt signals either RAM
being busy, read started or read to that address is in progress. If read finished
this tick, value of it is returned. When tick occurs, ongoing IO’s remaining
time is decremented. If remaining time goes to zero, it is marked for deletion
at the beginning of next tick.
For debugging purposes, method for instantaneous setting and getting value
to/from address, so that the change propagates for the next instructions.
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5.1.3 Tick
CPU tick consists of multiple steps with intention of maximal throughput,
but with behavior as close as possible to a read hardware. Unlike hardware,
where during the tick multiple things interact with each other at once, this
implementation has to sequentialize this process.
First, RAM tick is invoked, followed by executing and retiring phase in RS.
Next up is operand fetching phase. Here, values resulting from execution of
previous instruction can be used, hence this order. Entries, that were in the
ready state (all operands are fetched) at the beginning of the tick, are now
dispatched if possible - depending on ALU needs and availability.
After all pipeline stages happening in RS, instruction in instruction decode
stage is forwarded to RS, setting created entry’s state to preparing. If RS
is full, stall happens, influencing instruction fetch stage as well, that would
otherwise forwards its instruction to instruction decode stage and load a new
instruction.
This order of steps is deliberately chosen to enforces minimum of 1 tick in each
of the pipeline stages. The less apparent enforced tick is for operand fetching
stage - when instruction is added to RS, operand fetching already happened,
being marked as in operand fetching state even if no operand fetching is re-
quired. It might as well seem, that instruction retirement happens in the same
tick as last instruction execution tick for given entry, but actually, when the
entry is leaving preparing state, it is counted as first execution tick, so in the
seemingly last instruction tick, only result forwarding happens. This also ex-
plains, why only entries, that were in ready state at the start of the tick, are
processed, and not even those, that just entered this state by finished operand
fetching. Note, that ready does not correspond to any pipeline stage, so if no
stall happens, due to no ALU required or it being available, entry can be in
this state only temporarily.
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5.1.4 Configuration
As a part of the tinyverse project, basic configuration parsing from command
line is implemented. This sort of a configuration does not allow fine configu-
ration, but for basic VM parameters this is sufficient. For finer configuration
we could use some JSON config file, or transparently set these values inside
code, with easy way of changing these values.
For setting VM related parameters - register, ALU and reservation station
entries counts, RAM size and gate counts are configurable through program
arguments. Each of these has its own default value and switch for setting value.
For example to set that CPU has 10 logical registers, ”-registerCnt=10” would
be added to the program arguments. All of these configuration strings can
be found in this thesis attachment. These configurations are accessible dur-
ing generating code for students to implement optimizations based on them
using ”Cpu::Config” singleton proving getters for each parameter specified by
program arguments. Default values for unspecified parameters are set during
initialization of mentioned singleton object.
For finer setting, a .cpp file implementing getters of such parameters is pro-
vided. By this method, you can specify RAM latency, instruction lengths,
how long they execute and what operands do they take.
If such configuration file would be missing, linking of final executable would
end with error, requesting supplying these methods. The envisioned use-case
is that for different tasks a teacher could distribute such file with predeter-
mined values. Such approach does require compilation of the distributed file
and linking with the rest of the project, but this way no extra library for
parsing configuration files is needed, leaving less discrepancies between stu-
dent environments created by different ways of obtaining such library, and
keeping the codebase concise without need of creating and maintaining own
implementation or someone elses right inside the project.

33



5. Realization

5.2 Program and program building
Program consists of two separate segments - instructions and data. This
models the Harvard architecture. Because instruction encoding end decoding
is intentionally omitted, von Neumann architecture would be very hard to
achieve.
Program builder class was created, to support program creation. It allows se-
quential program creation, data insertion and jump instruction patching. For
easier operand definition, helper functions utilizing overloading are defined,
allowing intuitive notation.
When instruction is added, a label, representing address in program, is re-
turned, so that the instruction can be referenced as jump or call destination
later in program. If forward jump is required, meaning that the destination
address is unknown at the time of instruction addition, Label::empty() can be
used as temporary value, that can be replaced later by calling patch method
on program builder with the label of instruction, that requires patching, and
the new target address.
Adding data will return a data label, representing address in memory, that
will contain that data, once program is loaded. CPU stores data from data
segment into the main memory, starting at address 0. Helper method for
adding c-style string constant is provided, but it stores the string in simple,
but highly space inefficient way. Students are welcome to implement their
own extension for adding packed data.
using namespace tiny::t86;
ProgramBuilder pb;

DataLabel str =
pb.addData("Hello world\n");

pb.add(MOV{Reg(0), str});
pb.add(MOV{Reg(1), 0});

Label loop =
pb.add(MOV{Reg(2), Mem(Reg(0) + Reg(1))});
pb.add(CMP{Reg(2), '\0'});

Label jumpToBody =
pb.add(JNE(Label::empty()));
pb.add(HALT{});

Label body =
pb.add(PUTCHAR(Reg(2)));
pb.add(INC{Reg(1)});
pb.add(JMP{loop});

pb.patch(jumpToBody, body);

Listing 5.1: Hello world program building example
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5.3 Performance counters
To give effective feedback on compiled program, performance counting takes
place. It consists of two phases - collection and processing.
Collection happens during the CPU execution, where individual components
report state of the machine and causes of stalls. This creates very simplified
snapshots of the CPU, used later for processing and displaying result infor-
mation. Each pipeline stage reports its status to StatsLogger singleton object.
For precise tracking inside reservation station, each entry is assigned its unique
logging ID and provides helper methods for logging events using its assigned
ID. Whenever operand requirement is not available, it is reported. For regis-
ter fetching, a small trick here is deployed to provide as much information. If
register fetch stall occurs, a fake dummy value is supplied to a separate copy
of this operand and tested, if another register fetch is required, to log possible
stall of this second register. This happens only is specific cases, limited by
specified possible addressing modes. Better general implementation could be
done by creating dependency graph for each operand, only having to check
leave dependencies.
Processing happens after the CPU has halted. In this stage, lifetime of each
instruction is reconstructed. All of these can be combined for average lifetime
or grouped by instruction signatures for more detailed report. This can be
outputted in text format, printed to console or stored in file for later in-depth
analysis.
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Chapter 6
Evaluation

This chapter describes validation compiler, showcases benefits of performance
counting in benchmarking two different compiler techniques and discussed
ongoing semester feedback.

6.1 Validation
Because students will use this virtual machine as target of their compiler
backend as semestral work, similar compiler was implemented as validation of
capability and usability of tiny x86.
A simple non-optimizing compiler targeting tiny x86 was created. Same envi-
ronment as current student have was used, including provided parser for tinyC.
Every construct of input language was successfully translated, including loops,
structs, arrays and functions and is a part of included implementation.

6.2 Performance counting
To showcase output of performance counter, simple tinyC program snippet
was translated using two different translation techniques. First technique
stores every variables on stack, loading it every time on access and storing on
modification. Second uses register allocation principles to minimize memory
accesses.

void foo() {
int x = 0;
for (int i = 1; i <= 10; ++i) {

x += i;
}

}

Listing 6.1: Sample tinyC code
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6. Evaluation

PUSH Bp // Save old function frame
MOV Bp Sp // Create new function frame
SUB Sp 2 // Allocating two local variables
MOV [Bp - 1] 0 // x = 0

// For loop
MOV [Bp - 2] 1 // i = 1

loop:
MOV R1 [Bp - 2] // Load i
CMP R1 10 // Comparing i to 10
JG ret // If i is greater, jump to end of the loop

MOV R0 [Bp - 1] // Load x
MOV R1 [Bp - 2] // Load i
ADD R0 R1 // x += i
MOV [Bp - 1] R0 // Store updated x
MOV R1 [Bp - 2] // Load i
INC R1 // ++i
MOV [Bp - 2] R1 // Update i
JMP loop

ret:
MOV Sp Bp // Deallocate local variables
POP Bp // Restore old function frame
RET

Listing 6.2: Generated code n. 1

PUSH Bp // Save old function frame
MOV Bp Sp // Create new function frame
MOV R0 0 // x = 0;

// For loop
MOV R1 1 // i = 1;

loop:
CMP R1 10 // Compare i with 10
JG ret // If i is greater, jump to end of the loop

ADD R0 R1 // x += i
INC R1 // ++i
JMP loop

ret:
POP Bp // Restore old function frame
RET

Listing 6.3: Generated code n. 2

Selected code sample 6.1 is only for demonstrational purposes, it most
likely has no real use and good optimizing compiler would optimize it just to
RET as it has no observable side-effect and no return value, but that is not
the point of this demonstration.
Listing 6.2 is a text representation of generated code2 using the first mentioned
technique, listing 6.3 using the second technique. For a skilled assembly pro-
grammer it might be obvious, that first technique requires much more memory
accesses, but this is a code, that is expected for students to produce at some
point and they might not be skilled enough to immediately recognize this or
they might have some doubts regarding specific parts. This is where processed
statistics from performance counting might help find and identify bottlenecks.

2with added comments
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6.3. Semester feedback

Total ticks: 551
Total instructions executed: 124
Throughput: 0.225045 instructions per tick
Average instruction latency: 4.44355 ticks
Global averages:

Average instruction lifetime: 21.2823 ticks
Average fetch stalls: 2.94355 ticks
Average decode stalls: 3.20161 ticks
Average operand fetching stalls: 8.12097 ticks

Average register fetch stalls: 6.16129 ticks
Average memory read stalls: 2.52419 ticks

Average waiting for ALU: 0 ticks
Average executing: 3 ticks
Average waiting for retirement: 1.09677 ticks
Average retirement: 1 ticks

Listing 6.4: Performace counter output for program 6.2

Total ticks: 207
Total instructions executed: 63
Throughput: 0.304348 instructions per tick
Average instruction latency: 3.28571 ticks
Global averages:

Average instruction lifetime: 9.88889 ticks
Average fetch stalls: 1.11111 ticks
Average decode stalls: 1.28571 ticks
Average operand fetching stalls: 1.57143 ticks

Average register fetch stalls: 1.4127 ticks
Average memory read stalls: 0.15873 ticks

Average waiting for ALU: 0 ticks
Average executing: 2.96825 ticks
Average waiting for retirement: 0.142857 ticks
Average retirement: 1 ticks

Listing 6.5: Performace counter output for program 6.3

Listing 6.4 shows performance counter output for the program 6.2 where RAM
has read and write latency of 5 ticks. Listing 6.5 show output for program 6.3
on the same VM configuration. Both outputs can be compared, where the
second technique shows better performance, as is expected. But even if we
did not have the second program for comparison, student can see where stalls
happens. Even more detailed output can be produced, displaying stats for
individual instruction signatures.

6.3 Semester feedback
Due to still ongoing semester, no official feedback was collected, but from
limited interaction with students, few observation were made. These obser-
vations are purely anecdotal and need confirmation, but show at least some
sentiment.
Some students want to have a visual representation of what is happening in-
side the VM. This lead to them adding their own print statements, accessing
internal state of the CPU. The design of the CPU does support debug inter-
faces, but they should be used in very specific conditions, that instructions
like DBG or BREAK guarantee. Pointing them to using these instructions
immediately solved this.
As a part of the compiling process, optimizations should be performed. Some
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6. Evaluation

of these optimization can be done on already generated target code. In cur-
rent design, this brings some problems, especially when trying to modify that
program. New program has to be created, as current program builder does
not support modifications of already added instructions, with the exception
of patching jump instructions.
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Conclusion

In this thesis, needs of the NI-GEN course were presented and based on them
tiny x86, configurable architecture for educational purposes was designed.
Alongside tiny x86 ISA, a virtual machine realizing this architecture was de-
signed and implemented. For validation, simple non-optimizing compiler for
tinyC programming language to this target was implemented as well.
At the time of publishing of this thesis, the tiny x86 is being used in ongoing
NI-GEN course as target for compiler backend created by students as their
semestral work.

Future work
This section describes 3 main categories of possible future work - architectural
extentions, supporting projects and potential ease of use changes.
Depending on needs of the NI-GEN course, more architectural designs can be
added, to better demonstrate and exercise more advanced compilar techniques
for diferent architectures without the need of full implementation of new tar-
get.
Similarly, VM design might be extended to accomodate more possible aspects
for students to account to when creating their compilers. Memory caching
is an area, that was not explored in depth in this thesis. Adding cache to
the processors design and implementing such feature would unlock plethora
of possible compiler techniques and optimizations that students could imple-
ment.
Many supporting sub-projects ehnancing the user experience could come out
of this thesis. Components like GUI debugger would help students to intu-
itively analyze possible problems within their compiler generated code. It
could also help extend the possible educational use-cases of this target - for
example in courses like BI-SAP or BI-APS, that dive into processor design.
Visual interactive statistics analyzer could help present output of the pro-
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Conclusion

cessed performance counter in greater detail and readability.
Once the current NI-GEN course is finished, feedback from students should
be collected and processed. Based on their feedback, improvements should be
made, as usability of tiny x86 is the most important goal of this thesis.
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Appendix A
Acronyms

CPU Central processing unit

ISA Instruction set architecture

VLIW Very long instruction word

VM Virtual machine

OS Operating system

CISC Complex instruction set computer

RISC Reduced instruction set computer

RS Reservation station

RAT Register allocation table

ALU Arithmetic logic unit

IO Input/output

RAM Random access memory
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Appendix B
Contents of enclosed CD

readme.txt.........................the file with CD contents description
src.........................................the directory of source codes

thesis...............the directory of LATEX source codes of the thesis
tinyverse .................. the directory of tiny x86 implementation

text............................................ the thesis text directory
thesis.pdf............................the thesis text in PDF format
thesis.ps...............................the thesis text in PS format
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Appendix C
ISA documentation

This is documentation provided to the student at the begining of the course
describing the ISA, its configuration and usage examples.
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ISA

Flags

There are these flags

OF - Overflow
SF - Sign, copy of highest bit of result
ZF - Zero, set if result is zero
CF - Carry

Special Registers

PC - Program counter
FLAGS - Flags register
SP - Stack pointer
BP - Base pointer

Legend

R{X}  indicates any register, X  is used to distinguish multiple registers
i{X}  indicates integer constant, X  is used to distinguish multiple constants
F{X}  indicates any float register, X  is used to distinguis multiple float registers
f{X}  indicates float constant, X  is used to distinguish multiple constants
[{X}]  indicates access to memory, X  indicates the address

Instructions details

General

Instruction Operands Description
Length

(B)
Cycle
time

MOV R1 , R2 R1 = R2

R1 , i R1 = i

R1 , [i] R1 = [1]

R1 , [R2] R1 = [R2]



Instruction Operands Description
Length

(B)
Cycle
time

R1 , [R2 + i] R1 = [R2 + i]

R1 , [R2 * i] R1 = [R2 * i]

R1 , [R2 +
R3]

R1 = [R2 + R3]

R1 , [R2 + R3
* i]

R1 = [R2 + R3 * i]

R1 , [R2 + i
+ R3]

R1 = [R2 + i + R3]

R1 , [R2 + i1
+ R3 * i2]

R1 = [R2 + i1 + R3 * i2]

R1 , F1
R1 = F1  (bit copy, use NRW  to

safely convert float to int)

F1 , f F1 = f

F1 , F2 F1 = F2

F1 , R1
F1 = R1  (bit copy, use EXT  to

safely convert int to float)

F1 , [i] F1 = [i]  (bit copy)

F1 , [R1] F1 = [R1]  (bit copy)

[i] , R1 [i] = R1

[i] , F1 [i] = F1  (bit copy)

[i1] , i2 [i1] = i2

[R1] , R2 [R1] = R2

[R1] , F1 [R1] = F1  (bit copy)

[R1] , i [R1] = i

[R1 + i] , R2 [R1 + i] = R2

[R1 + i] , F1 [R1 + i] = F1  (bit copy)



Instruction Operands Description
Length

(B)
Cycle
time

[R1 + i1] ,
i2

[R1 + i1] = i2

[R1 * i] , R2 [R1 * i] = R2

[R1 * i] , F1 [R1 * i] = F1  (bit copy)

[R1 * i1] ,
i2

[R1 * i1] = i2

[R1 + R2] , i [R1 + R2] = i

[R1 + R2] ,
R3

[R1 + R2] = R3

[R1 + R2] ,
F1

[R1 + R2] = F1  (bit copy)

[R1 + R2 *

i1] , i2
[R1 + R2 * i1] = i2

[R1 + R2 *

i] , R3
[R1 + R2 * i] = R3

[R1 + R2 *

i] , F1
[R1 + R2 * i] = F1  (bit copy)

[R1 + i1 +

R2] , i2
[R1 + i1 + R2] = i2

[R1 + i +

R2] , R3
[R1 + i + R2] = R3

[R1 + i +

R2] , F1
[R1 + i + R2] = F1  (bit copy)

[R1 + i1 + R2

* i2] , R3
[R1 + i1 + R2 * i2] = R3

[R1 + i1 + R2

* i2] , F1
[R1 + i1 + R2 * i2] = F1  (bit

copy)

[R1 + i1 + R2

* i2] , i3
[R1 + i1 + R2 * i2] = i3



NOP | | Do nothing

Arithmetics

Instruction Operands Description Length (B) Cycle time

ADD R1 , R2 R1 += R2

R1 , i R1 += i

R1 , R2 + i R1 += R2 + i

R1 , [i] R1 += [i]

R1 , [R2 + i] R1 += [R2 + i]

SUB R1 , R2 R1 -= R2

R1 , i R1 -= i

R1 , R2 + i R1 -= R2 + i

R1 , [i] R1 -= [i]

R1 , [R2 + i] R1 -= [R2 + i]

INC R1 R1++

DEC R1 R1--

NEG R1 R1 = -R1

MUL R1 , R2 R1 *= R2

R1 , i R1 *= i

R1 , R2 + i R1 *= R2 + i

R1 , [i] R1 *= [i]

R1 , [R2 + i] R1 *= [R2 + i]

DIV R1 , R2 R1 /= R2

R1 , i R1 /= i

R1 , R2 + i R1 /= R2 + i

R1 , [i] R1 /= [i]

R1 , [R2 + i] R1 /= [R2 + i]



Instruction Operands Description Length (B) Cycle time

IMUL R1 , R2 R1 *= R2 , signed

R1 , i R1 *= i , signed

R1 , R2 + i R1 *= R2 + i , signed

R1 , [i] R1 *= [i] , signed

R1 , [R2 + i] R1 *= [R2 + i] , signed

IDIV R1 , R2 R1 /= R2 , signed

R1 , i R1 /= i , signed

R1 , R2 + i R1 /= R2 + i , signed

R1 , [i] R1 /= [i] , signed

R1 , [R2 + i] R1 /= [R2 + i] , signed

Float arithmetics

Instruction Operands Description Length (B) Cycle time

FADD F1 , F2 F1 += F2

F1 , f F1 += f

FSUB F1 , F2 F1 -= F2

F1 , f F1 -= f

FMUL F1 , F2 F1 *= F2

F1 , f F1 *= f

FDIV F1 , F1 F1 /= F2

F1 , f F1 /= f

Bit operations

Instruction Operands Description Length (B) Cycle time

AND R1 , R2 R1 &= R2



Instruction Operands Description Length (B) Cycle time

R1 , i R1 &= i

R1 , R2 + i R1 &= R2 + i

R1 , [i] R1 &= [i]

R1 , [R2 + i] R1 &= [R2 + i]

OR R1 , R2 R1 |= R2

R1 , i R1 |= i

R1 , R2 + i R1 |= R2 + i

R1 , [i] R1 |= [i]

R1 , [R2 + i] R1 |= [R2 + i]

XOR R1 , R2 R1 ^= R2

R1 , i R1 ^= i

R1 , R2 + i R1 ^= R2 + i

R1 , [i] R1 ^= [i]

R1 , [R2 + i] R1 ^= [R2 + i]

NOT R1 R1 = ~ R1

LSH R1 , R2 R1 <<= R2

R1 , i R1 <<= i

R1 , R2 + i R1 <<= R2 + i

R1 , [i] R1 <<= [i]

R1 , [R2 + i] R1 <<= [R2 + i]

RSH R1 , R2 R1 >>= R2

R1 , i R1 >>= i

R1 , R2 + i R1 >>= R2 + i

R1 , [i] R1 >>= [i]

R1 , [R2 + i] R1 >>= [R2 + i]



Compare

Instruction Operands Description Detail
Length

(B)
Cycle
time

CMP R1 , R2
Compare R1
with R2

Sets flags the same
way SUB  would

R1 , i
Compare R1
with i

R1 , [i]
Compare R1
with [i]

R1 , [R2]
Compare R1
with [R2]

R1 , [R2
+ i]

Compare R1
with [R2 + i]

FCMP F1 , F2
Compare F1
with F2

Sets flags the same
way FSUB  would

F1 , f
Compare F1
with f

Jump

Instruction Operands Description
Detailed
condition

Length
(B)

Cycle
time

JMP R1 Jump to value of R1

i Jump to i

LOOP R1 , R2
Jump to value of R2  if
R1  != 0 and decrement
R1

R1 , i
Jump to i  if R1  != 0
and decrement R1

JZ R1
Jump to value of R1  if
zero

ZF == 1

i Jump to i  if zero



Instruction Operands Description
Detailed
condition

Length
(B)

Cycle
time

[i]
Jump to value of [i]  if
zero

[R1]
Jump to value of [R1]
if zero

[R1 + i]
Jump to value of [R1 +
i]  if zero

JNZ R1
Jump to value of R1  if
not zero

ZF == 0

i Jump to i  if not zero

[i]
Jump to value of [i]  if
not zero

[R1]
Jump to value of [R1]
if not zero

[R1 + i]
Jump to value of [R1 +
i]  if not zero

JE R1
Jump to value of R1  if
equal

ZF == 1

i Jump to i  if equal

[i]
Jump to value of [i]  if
equal

[R1]
Jump to value of [R1]
if equal

[R1 + i]
Jump to value of [R1 +
i]  if equal

JNE R1
Jump to value of R1  if
not equal

ZF != 1

i Jump to i  if not equal

[i]
Jump to value of [i]  if
not equal



Instruction Operands Description
Detailed
condition

Length
(B)

Cycle
time

[R1]
Jump to value of [R1]
if not equal

[R1 + i]
Jump to value of [R1 +
i]  if not equal

JG R1
Jump to value of R1  if
greater

ZF == 0

&& SF ==

OF

i Jump to i  if greater

[i]
Jump to value of [i]  if
greater

[R1]
Jump to value of [R1]
if greater

[R1 + i]
Jump to value of [R1 +
i]  if greater

JGE R1
Jump to value of R1  if
greater or equal

SF == OF

i
Jump to i  if greater or
equal

[i]
Jump to value of [i]  if
greater or equal

[R1]
Jump to value of [R1]
if greater or equal

[R1 + i]
Jump to value of [R1 +
i]  if greater or equal

JL R1
Jump to value of R1  if
less

SF != OF

i Jump to i  if less

[i]
Jump to value of [i]  if
less



Instruction Operands Description
Detailed
condition

Length
(B)

Cycle
time

[R1]
Jump to value of [R1]
if less

[R1 + i]
Jump to value of [R1 +
i]  if less

JLE R1
Jump to value of R1  if
less or equal

ZF == 1

&& SF !=

OF

i
Jump to i  if less or
equal

[i]
Jump to value of [i]  if
less or equal

[R1]
Jump to value of [R1]
if less or equal

[R1 + i]
Jump to value of [R1 +
i]  if less or equal

JA R1
Jump to value of R1  if
above

CF == 0

&& ZF ==

0

i Jump to i  if above

[i]
Jump to value of [i]  if
above

[R1]
Jump to value of [R1]
if above

[R1 + i]
Jump to value of [R1 +
i]  if above

JAE R1
Jump to value of R1  if
above or equal

CF == 0

i
Jump to i  if above or
equal



Instruction Operands Description
Detailed
condition

Length
(B)

Cycle
time

[i]
Jump to value of [i]  if
above or equal

[R1]
Jump to value of [R1]
if above or equal

[R1 + i]
Jump to value of [R1 +
i]  if above or equal

JB R1
Jump to value of R1  if
below

CF == 1

i Jump to i  if below

[i]
Jump to value of [i]  if
below

[R1]
Jump to value of [R1]
if below

[R1 + i]
Jump to value of [R1 +
i]  if below

JBE R1
Jump to value of R1  if
below or equal

CF == 1

|| ZF ==

1

i
Jump to i  if below or
equal

[i]
Jump to value of [i]  if
below or equal

[R1]
Jump to value of [R1]
if below or equal

[R1 + i]
Jump to value of [R1 +
i]  if below or equal

JO R1
Jump to value of R1  if
overflow

OF == 1

i Jump to i  if overflow



Instruction Operands Description
Detailed
condition

Length
(B)

Cycle
time

[i]
Jump to value of [i]  if
overflow

[R1]
Jump to value of [R1]
if overflow

[R1 + i]
Jump to value of [R1 +
i]  if overflow

JNO R1
Jump to value of R1  if
not everflow

OF == 0

i
Jump to i  if not
overflow

[i]
Jump to value of [i]  if
not overflow

[R1]
Jump to value of [R1]
if not overflow

[R1 + i]
Jump to value of [R1 +
i]  if not overflow

JS R1
Jump to value of R1  if
sign

SF == 1

i Jump to i  if sign

[i]
Jump to value of [i]  if
sign

[R1]
Jump to value of [R1]
if sign

[R1 + i]
Jump to value of [R1 +
i]  if sign

JNS R1
Jump to value of R1  if
not sign

SF == 0

i Jump to i  if not sign



Instruction Operands Description
Detailed
condition

Length
(B)

Cycle
time

[i]
Jump to value of [i]  if
not sign

[R1]
Jump to value of [R1]
if not sign

[R1 + i]
Jump to value of [R1 +
i]  if not sign

Call

Instruction Operands Description
Length

(B)
Cycle
time

CALL R1
Pushes current PC  and jumps to
value of R1

i Pushes current PC and jumps to i

RET
Jumps to top of stack and pops
stack

Stack

Instruction Operands Description
Length

(B)
Cycle
time

PUSH R1 Pushes R1  to stack

i Pushes i  to stack

FPUSH F1 Pushes F1  to stack

f Pushes f  to stack

POP R1
Stores top of stack to R1  and
pops stack

FPOP F1
Stores top of stack to F1  and
pops stack

I/O



Instruction Operands Description
Length

(B)
Cycle
time

PUTCHAR R1 Prints R1  as ASCII

GETCHAR R1
Loads char as ASCII from input
to R1

Float manipulation

Instruction Operands Description
Length

(B)
Cycle
time

EXT F1 , R1
extends value of R1  to double and
stores it into F1

NRW R1 , F1
narrows value of F1  to int and
stores it into R1

Other

Instruction Operands Description

DBG debug function executes debug function

BREAK executes handle function

HALT halts the CPU

VM

Note: All code examples expect you to use namespace tiny::t86 , it is not enforced on
you, it is omitted for better readability.

Configuration



You can configure your VM by adding arguments to the executed program 
To set register count, use -registerCnt=X  - default is 10 (you can use large number of
registers to begin with). 
To set float register count, use -floatRegisterCnt=X  - default is 5. 
To set number of ALUs, use -aluCnt=X  - default is 1. 
To set number of reservation station entries, use -reservationStationEntriesCnt=X  -
default is 2. 
To set RAM size, use -ram=X  - default is 1024 64bit values (so total size will be 8*X bytes). 
To set RAM gate count, use -ramGates=X  - default is 4.

Note: You can check config from like in this example:

Cpu::Config::instance().registerCnt();

Creating program

ProgramBuilder pb; 
pb.add(MOV{Reg(0), 42}); 
pb.add(MOV{Mem(Reg(0) + 27), 23}); 
pb.add(HALT{}); 

return pb.program(); 

Note: Do not forget to add HALT , otherwise your program will run forever executing only
NOP s.

Running program example

StatsLogger::instance().reset(); 
Cpu cpu; 

cpu.start(std::move(program)); 
while (!cpu.halted()) { 
    cpu.tick(); 
} 
StatsLogger::instance().processBasicStats(std::cerr);

Note: For more detailed stats you can add:

StatsLogger::instance().processDetailedStats(std::cerr);



Patching labels

ProgramBuilder pb; 
Label jumpToBody = pb.add(JMP{Label::empty()}); 
... 
Label body = pb.add(MOV{Reg(0), 0}); 
... 
pb.patch(jumpToBody, body);

Adding data

DataLabel str = pb.addData("Hello world\n"); 
pb.add(MOV{Reg(0), str});

Data will be stored starting on address 0 and further. Note: This string storing is very
wasteful, you can create your own packed data (I am sure you will be rewarded extra
points).

Accessing CPU registers

cpu.getRegister(Reg(0));

Accessing CPU memory

cpu.getMemory(Mem(0))

Note: Memory is addresable by 8bytes (64bit values)

Debug and handle function

Debug and handle functions have to have this function signature

void fn(Cpu&)

You can hook one handle function (executed on BREAK ) by

cpu.connectBreakHandler(&fn);



or using c++11 lambdas.  
Debug example:

pb.add(DBG{&fn});

Note that DBG will be added only if your ProgramBuilder  was not given true  argument
indicating release environment.

Other notes

There are some example is tests/targets/tiny86/programs.cpp . 
If you encounter any bug, please don't hesitate to report it.
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