
Documentation for impl
Release unknown

unknown

May 04, 2021

CONTENTS

Bibliography 9

Index 11

i

ii

Documentation for impl, Release unknown

impl.growing_letters(self)
Return the list of growing letters.

See is_growing() for more information.

EXAMPLES:

sage: WordMorphism('0->01,1->10').growing_letters()
['0', '1']
sage: WordMorphism('0->01,1->1').growing_letters()
['0']
sage: WordMorphism('0->01,1->0,2->1',codomain=Words('012')).growing_letters()
['0', '1', '2']

TESTS:

Make sure that trac ticket #31454 is fixed:

sage: WordMorphism('a->a').growing_letters()
[]

impl.immortal_letters(self)
Return the set of immortal letters.

A letter 𝑎 is immortal for the morphism 𝑠 if the length of the iterates of |𝑠𝑛(𝑎)| is larger than zero as 𝑛 goes to
infinity.

Requires this morphism to be an endomorphism.

EXAMPLES:

sage: WordMorphism('a->abcd,b->cd,c->dd,d->').immortal_letters()
{'a'}

impl.infinite_repetitions(self, w=None)
Return the set of primitive infinite repetitions (up to conjugacy) from the language {𝑚𝑛(𝑤)|𝑛 ≥ 0}, where 𝑚
is this morphism and 𝑤 is a word inputted as a parameter.

Requires this morphism to be an endomorphism.

A non-empty word 𝑣 is an infinite repetition (also known as an infinite periodic factor) of a language if for each
positive integer 𝑘 the word 𝑣𝑘 is a factor of some word from the language.

If 𝑣 is an infinite repetition, then all its powers are also infinite repetitions, therefore this method returns only
the primitive ones. It turns out that a language created by iterating a morphism has a finite number of primitive
infinite repetitions.

Similarly, if 𝑣 is an infinite repetition, then all its conjugates are also infinite repetitions, therefore this method
returns only the lexicographically minimal one from each conjugacy class.

INPUT:

• w – finite iterable representing a word used to start the language, default is self.domain().
alphabet()

EXAMPLES:

sage: m = WordMorphism('a->aba,b->aba,c->cd,d->e,e->d')
sage: inf_reps = m.infinite_repetitions('ac')
sage: sorted(inf_reps)
[word: aab, word: de]

CONTENTS 1

https://trac.sagemath.org/31454

Documentation for impl, Release unknown

Incomplete check that these words are indeed infinite repetitions:

sage: SL = m._language_naive(10, Word('ac'))
sage: all(x in SL for x in inf_reps)
True
sage: all(x^2 in SL for x in inf_reps)
True
sage: all(x^3 in SL for x in inf_reps)
True

Larger example:

sage: m = WordMorphism('a->1b5,b->fcg,c->dae,d->432,e->678,f->f,g->g,1->2,2->3,3->
→˓4,4->1,5->6,6->7,7->8,8->5')
sage: sorted(m.infinite_repetitions('a'))
[word: 1432f2143f3214f4321f, word: 5678g8567g7856g6785g]

impl.infinite_repetitions_bounded(self, w=None)
Return the set of primitive infinite repetitions (up to conjugacy), which contain no growing letters, from the
language {𝑚𝑛(𝑤)|𝑛 ≥ 0}, where 𝑚 is this morphism and 𝑤 is a word inputted as a parameter.

Requires this morphism to be an endomorphism.

See infinite_repetitions() and is_growing().

INPUT:

• w – finite iterable representing a word used to start the language, default is self.domain().
alphabet()

ALGORITHM:

The algorithm used is described in detail in [KS2015].

EXAMPLES:

sage: m = WordMorphism('a->aba,b->aba,c->cd,d->e,e->d')
sage: sorted(m.infinite_repetitions_bounded())
[word: de]

sage: m = WordMorphism('c->d,d->c,e->fc,f->ed')
sage: sorted(m.infinite_repetitions_bounded())
[word: c, word: d]

TESTS:

sage: m = WordMorphism('a->Cab,b->1c1,c->E2bd5,d->BbaA,5->6,6->7,7->8,8->9,9->5,1-
→˓>2,2->1,A->B,B->C,C->D,D->E,E->')
sage: sorted(m.infinite_repetitions_bounded())
[word: 1, word: 1519181716, word: 2, word: 2529282726]

impl.infinite_repetitions_growing(self, w=None)
Return the set of primitive infinite repetitions (up to conjugacy), which contain at least one growing letter, from
the language {𝑚𝑛(𝑤)|𝑛 ≥ 0}, where 𝑚 is this morphism and 𝑤 is a word inputted as a parameter.

Requires this morphism to be an endomorphism.

See infinite_repetitions() and is_growing().

INPUT:

2 CONTENTS

Documentation for impl, Release unknown

• w – finite iterable representing a word used to start the language, default is self.domain().
alphabet()

ALGORITHM:

The algorithm used is described in detail in [KS2015].

EXAMPLES:

sage: m = WordMorphism('a->aba,b->aba,c->cd,d->e,e->d')
sage: sorted(m.infinite_repetitions_growing())
[word: aab]

sage: m = WordMorphism('a->bcb,b->ada,c->d,d->c')
sage: sorted(m.infinite_repetitions_growing())
[word: ad, word: bc]

sage: m = WordMorphism('b->c,c->bcb')
sage: sorted(m.infinite_repetitions_growing())
[word: bc]

sage: m = WordMorphism('a->abc,b->dab,c->abc,d->dab')
sage: sorted(m.infinite_repetitions_growing())
[word: ababcd]

impl.is_growing(self, letter=None)
Return True if letter is a growing letter.

A letter 𝑎 is growing for the morphism 𝑠 if the length of the iterates of |𝑠𝑛(𝑎)| tend to infinity as 𝑛 goes to
infinity.

INPUT:

• letter – None or a letter in the domain of self

Note: If letter is None, this returns True if self is everywhere growing, i.e., all letters are growing letters
(see [CassNic10]), and that self must be an endomorphism.

EXAMPLES:

sage: WordMorphism('0->01,1->1').is_growing('0')
True
sage: WordMorphism('0->01,1->1').is_growing('1')
False
sage: WordMorphism('0->01,1->10').is_growing()
True
sage: WordMorphism('0->1,1->2,2->01').is_growing()
True
sage: WordMorphism('0->01,1->1').is_growing()
False

The domain needs to be equal to the codomain:

sage: WordMorphism('0->01,1->0,2->1',codomain=Words('012')).is_growing()
True

Test of erasing morphisms:

CONTENTS 3

Documentation for impl, Release unknown

sage: WordMorphism('0->01,1->').is_growing('0')
False
sage: m = WordMorphism('a->bc,b->bcc,c->',codomain=Words('abc'))
sage: m.is_growing('a')
False
sage: m.is_growing('b')
False
sage: m.is_growing('c')
False

TESTS:

Make sure that trac ticket #31454 is fixed:

sage: WordMorphism('a->a').is_growing('a')
False

REFERENCES:

impl.is_injective(self)
Return whether this morphism is injective.

ALGORITHM:

Uses a version of Wikipedia article Sardinas–Patterson_algorithm. Time complexity is on average quadratic
with regards to the size of the morphism.

EXAMPLES:

sage: WordMorphism('a->0,b->10,c->110,d->111').is_injective()
True
sage: WordMorphism('a->00,b->01,c->012,d->20001').is_injective()
False

impl.is_pushy(self, w=None)
Return whether the language {𝑚𝑛(𝑤)|𝑛 ≥ 0} is pushy, where 𝑚 is this morphism and 𝑤 is a word inputted as
a parameter.

Requires this morphism to be an endomorphism.

A language created by iterating a morphism is pushy if its words contain an infinite number of factors containing
no growing letters. It turns out that this is equivalent to having at least one infinite repetition containing no
growing letters.

See infinite_repetitions() and is_growing().

INPUT:

• w – finite iterable representing a word used to start the language, default is self.domain().
alphabet()

EXAMPLES:

sage: WordMorphism('a->abca,b->bc,c->').is_pushy()
False
sage: WordMorphism('a->abc,b->,c->bcb').is_pushy()
True

impl.is_repetitive(self, w=None)
Return whether the language {𝑚𝑛(𝑤)|𝑛 ≥ 0} is repetitive, where 𝑚 is this morphism and 𝑤 is a word inputted
as a parameter.

4 CONTENTS

https://trac.sagemath.org/31454
https://en.wikipedia.org/wiki/Sardinas\T1\textendash {}Patterson_algorithm

Documentation for impl, Release unknown

Requires this morphism to be an endomorphism.

A language is repetitive if for each positive integer 𝑘 there exists a word 𝑢 such that 𝑢𝑘 is a factor of some word
of the language.

It turns that for languages created by iterating a morphism this is equivalent to having at least one infinite
repetition (this property is also known as strong repetitiveness).

See infinite_repetitions().

INPUT:

• w – finite iterable representing a word used to start the language, default is self.domain().
alphabet()

EXAMPLES:

This method can be used to check whether a purely morphic word is NOT k-power free for all positive integers
k. For example, the language containing just the Thue-Morse word and its prefixes is not repetitive, since the
Thue-Morse word is cube-free:

sage: WordMorphism('a->ab,b->ba').is_repetitive('a')
False

Similarly, the Hanoi word is square-free:

sage: WordMorphism('a->aC,A->ac,b->cB,B->cb,c->bA,C->ba').is_repetitive('a')
False

However, this method solves a more general problem, as it can be called on any morphism 𝑚 and with any word
𝑤:

sage: WordMorphism('a->c,b->cda,c->a,d->abc').is_repetitive('bd')
True

impl.is_unboundedly_repetitive(self, w=None)
Return whether the language {𝑚𝑛(𝑤)|𝑛 ≥ 0} is unboundedly repetitive, where 𝑚 is this morphism and 𝑤 is a
word inputted as a parameter.

Requires this morphism to be an endomorphism.

A language created by iterating a morphism is unboundedly repetitive if it has at least one infinite repetition
containing at least one growing letter.

See infinite_repetitions() and is_growing().

INPUT:

• w – finite iterable representing a word used to start the language, default is self.domain().
alphabet()

EXAMPLES:

sage: WordMorphism('a->abca,b->bc,c->').is_unboundedly_repetitive()
True
sage: WordMorphism('a->abc,b->,c->bcb').is_unboundedly_repetitive()
False

impl.language_naive(self, n, u)
Return all words of length less than n by naive substitution.

The language of the substitution is the DOL language which consist of factors of 𝑠𝑛(𝑢).

CONTENTS 5

Documentation for impl, Release unknown

This method assumes this substitution is non-erasing.

INPUT:

• n – non-negative integer - length of the words in the language

• u – a word used as a seed

OUTPUT: a Python set

TESTS:

sage: s = WordMorphism({0: [0,1], 1:[0]})
sage: W = s.domain()
sage: sorted(s._language_naive(3, W([0])))
[word: 0, word: 00, word: 01, word: 1, word: 10]
sage: sorted(s._language_naive(3, W([1])))
[word: 0, word: 00, word: 01, word: 1, word: 10]

sage: s._language_naive(3, W())
set()
sage: W([1, 1]) in s._language_naive(3, W([1, 1]))
True

impl.minimal_conjugate(self)
Return the lexicographically minimal conjugate of this word (see Wikipedia article Lexicographi-
cally_minimal_string_rotation).

EXAMPLES:

sage: Word('213').minimal_conjugate()
word: 132
sage: Word('11').minimal_conjugate()
word: 11
sage: Word('12112').minimal_conjugate()
word: 11212
sage: Word('211').minimal_conjugate()
word: 112
sage: Word('211211211').minimal_conjugate()
word: 112112112

TESTS:

sage: Word().minimal_conjugate()
word:

impl.reach(self, w)
Return the set of letters which occur in words of {𝑚𝑛(𝑤)|𝑛 ≥ 0}, where 𝑚 is this morphism and 𝑤 is a word
(finite iterable is enough) inputted as a parameter.

Requires this morphism to be an endomorphism.

EXAMPLES:

sage: sorted(WordMorphism('a->ac,b->ce,c->bd,d->d,e->').reach('c'))
['b', 'c', 'd', 'e']

impl.simplify(self, Z=None)
If this morphism is simplifiable, return morphisms ℎ and 𝑘 such that this morphism is simplifiable with respect
to ℎ and 𝑘, otherwise raise ValueError.

6 CONTENTS

https://en.wikipedia.org/wiki/Lexicographically_minimal_string_rotation
https://en.wikipedia.org/wiki/Lexicographically_minimal_string_rotation

Documentation for impl, Release unknown

This method is quite fast if this morphism is non-injective, but very slow if it is injective.

Let 𝑓 : 𝑋* → 𝑌 * be a morphism. Then 𝑓 is simplifiable with respect to morphisms ℎ : 𝑋* → 𝑍* and
𝑘 : 𝑍* → 𝑌 *, if 𝑓 = 𝑘 ∘ ℎ and |𝑍| < |𝑋|. If also 𝑌 ⊆ 𝑋 , then the morphism 𝑔 : 𝑍* → 𝑍* = ℎ ∘ 𝑘 is a
simplification of 𝑓 (with respect to ℎ and 𝑘).

Loosely speaking a morphism is simplifiable if it contains “more letters than is needed”. Non-injectivity implies
simplifiability. Simplification preserves some properties of the original morphism (e.g. repetitiveness).

For more information see Section 3 in [KO2000].

INPUT:

• Z – iterable, whose elements are used as an alphabet for the simplification, default is self.domain().
alphabet()

EXAMPLES:

Example of a simplifiable (non-injective) morphism:

sage: f = WordMorphism('a->aca,b->badc,c->acab,d->adc')
sage: h, k = f.simplify('xyz'); h, k
(WordMorphism: a->x, b->zy, c->xz, d->y, WordMorphism: x->aca, y->adc, z->b)
sage: k * h == f
True
sage: g = h * k; g
WordMorphism: x->xxzx, y->xyxz, z->zy

Example of a simplifiable (injective) morphism:

sage: f = WordMorphism('a->abcc,b->abcd,c->abdc,d->abdd')
sage: h, k = f.simplify('xyz'); h, k
(WordMorphism: a->xyy, b->xyz, c->xzy, d->xzz, WordMorphism: x->ab, y->c, z->d)
sage: k * h == f
True
sage: g = h * k; g
WordMorphism: x->xyyxyz, y->xzy, z->xzz

Example of a non-simplifiable morphism:

sage: WordMorphism('a->aa').simplify()
Traceback (most recent call last):
...
ValueError: self (a->aa) is not simplifiable

Example of an erasing morphism:

sage: f = WordMorphism('a->abc,b->cc,c->')
sage: h, k = f.simplify(); h, k
(WordMorphism: a->a, b->b, c->, WordMorphism: a->abc, b->cc)
sage: k * h == f
True
sage: g = h * k; g
WordMorphism: a->ab, b->

Example of a morphism, that is not an endomorphism:

sage: f = WordMorphism('a->xx,b->xy,c->yx,d->yy')
sage: h, k = f.simplify(NN); h, k
(WordMorphism: a->00, b->01, c->10, d->11, WordMorphism: 0->x, 1->y)

(continues on next page)

CONTENTS 7

Documentation for impl, Release unknown

(continued from previous page)

sage: k * h == f
True
sage: len(k.domain().alphabet()) < len(f.domain().alphabet())
True

impl.simplify_injective(self)
Return a quadruplet (𝑔, ℎ, 𝑘, 𝑖), where 𝑔 is an injective simplification of this morphism with respect to ℎ, 𝑘 and
𝑖.

Requires this morphism to be an endomorphism.

This methods basically calls simplify() until the returned simplification is injective. If this morphism is
already injective, a quadruplet (𝑔, ℎ, 𝑘, 𝑖) is still returned, where 𝑔 is this morphism, ℎ and 𝑘 are the identity
morphisms and 𝑖 is 0.

Let 𝑓 : 𝑋* → 𝑌 * be a morphism and 𝑌 ⊆ 𝑋 . Then 𝑔 : 𝑍* → 𝑍* is an injective simplification of 𝑓 with
respect to morphisms ℎ : 𝑋* → 𝑍* and 𝑘 : 𝑍* → 𝑌 * and a positive integer 𝑖, if 𝑔 is injective, |𝑍| < |𝑋|,
𝑔𝑖 = ℎ ∘ 𝑘 and 𝑓 𝑖 = 𝑘 ∘ ℎ.

For more information see Section 4 in [KO2000].

EXAMPLES:

sage: f = WordMorphism('a->abc,b->a,c->bc')
sage: g, h, k, i = f.simplify_injective(); g, h, k, i
(WordMorphism: a->aa, WordMorphism: a->aa, b->a, c->a, WordMorphism: a->abc, 2)
sage: g.is_injective()
True
sage: g ** i == h * k
True
sage: f ** i == k * h
True

8 CONTENTS

BIBLIOGRAPHY

[CassNic10] Cassaigne J., Nicolas F. Factor complexity. Combinatorics, automata and number theory, 163–247, En-
cyclopedia Math. Appl., 135, Cambridge Univ. Press, Cambridge, 2010.

9

Documentation for impl, Release unknown

10 Bibliography

INDEX

G
growing_letters() (in module impl), 1

I
immortal_letters() (in module impl), 1
impl

module, 1
infinite_repetitions() (in module impl), 1
infinite_repetitions_bounded() (in module

impl), 2
infinite_repetitions_growing() (in module

impl), 2
is_growing() (in module impl), 3
is_injective() (in module impl), 4
is_pushy() (in module impl), 4
is_repetitive() (in module impl), 4
is_unboundedly_repetitive() (in module

impl), 5

L
language_naive() (in module impl), 5

M
minimal_conjugate() (in module impl), 6
module

impl, 1

R
reach() (in module impl), 6

S
simplify() (in module impl), 6
simplify_injective() (in module impl), 8

11

	Bibliography
	Index

