
Instructions

1) Get acquainted with the computer algebra system SageMath and its up-to-date development

standards.

2) Survey the library available in SageMath related to combinatorics on words (finite and infinite words,

morphisms). Perform a time and space complexity analysis of selected non-trivial algorithms in the

library.

3) Design and implement changes and new functions/methods in the library. Focus on algorithms for

detection of morphisms which are "pushy", "unboundedly repetitive", injective, and injective on

language; focus on testing whether a factor is a factor of the given language generated by a

morphism; or other convenient non-trivial additions.

4) Implement the changes in accordance with SageMath developer standards, and start the

integration process of your changes of at least one non-trivial change/addition.

 
K. Klouda, Š. Starosta, An Algorithm Enumerating All Infinite Repetitions in a D0L-System, Journal of

Discrete Algorithms 33 (2015), 130–138, DOI: 10.1016/j.jda.2015.03.006

K. Klouda, Š. Starosta, Characterization of circular D0L-systems, Theoretical Computer Science (2019),

131-137, DOI:10.1016/j.tcs.2019.04.021

K. Klouda: Bispecial factors in circular non-pushy D0L languages, Theoretical Computer Science, 445

(2012), 63-74; DOI: 10.1016/j.tcs.2012.05.007

Electronically approved by doc. Ing. Jan Janoušek, Ph.D. on 28 October 2020 in Prague.

Assignment of master’s thesis

Title: Algorithms for Combinatorics on Words

Student: Martin Rejmon

Supervisor: doc. Ing. Štěpán Starosta, Ph.D.

Study program: Informatics

Branch / specialization: Computer Science

Department: Department of Theoretical Computer Science

Validity: until the end of summer semester 2021/2022

Master’s thesis

Algorithms for Combinatorics on Words

Bc. Martin Rejmon

Department of Theoretical Computer Science

Supervisor: doc. Ing. Štěpán Starosta, Ph.D.

May 6, 2021

Acknowledgements

I would like to thank my supervisor doc. Ing. Štěpán Starosta, Ph.D. for his
guidance and patience.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated
by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accordance
with Article 46 (6) of the Act, I hereby grant a nonexclusive authorization
(license) to utilize this thesis, including any and all computer programs in-
corporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity. However,
all persons that makes use of the above license shall be obliged to grant a
license at least in the same scope as defined above with respect to each and
every work that is created (wholly or in part) based on the Work, by modi-
fying the Work, by combining the Work with another work, by including the
Work in a collection of works or by adapting the Work (including translation),
and at the same time make available the source code of such work at least in a
way and scope that are comparable to the way and scope in which the source
code of the Work is made available.

In Prague on May 6, 2021

Czech Technical University in Prague

Faculty of Information Technology

© 2021 Martin Rejmon. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Rejmon, Martin. Algorithms for Combinatorics on Words. Master’s thesis.
Czech Technical University in Prague, Faculty of Information Technology,
2021.

Abstrakt

V této práci je podrobně popsáno několik algoritmů řešících problémy z ma-
tematického oboru kombinatorika na slovech. Součástí práce je i jejich imple-
mentace v svobodném a otevřeném počítačovém algebraickém systému Sage-
Math za účelem jejich integrace do téhož systému. Mezi zkoumané algoritmy
patří: klasifikace rostoucích písmenek morfismu, rozhodování se, zda morfismus
je prostý, hledání zjednodušení morfismu, hledání všech nekonečných opako-
vání v D0L systému a hledání všech podřetězců (kratší než zadaná délka) slov
jazyka PD0L systému. Dále je v práci diskutován problém rozhodování se,
zda morfimus D0L systému je prostý na množině podřetězců slov jazyka toho
systému. Není obecně známo, zda tento problém jde rozhodnout, což v této
práci není vyřešeno, ale je zde uvedeno, proč je to netriviální problém a kde
některé z možných způsobů jeho řešení selžou.

Klíčová slova rostoucí písmenka morfismu, prosté morfismy, opakující se
D0L systémy, morfismy prosté na jazyku

vii

Abstract

In this thesis, several algorithms for problems from the mathematical field
combinatorics on words are thoroughly explained. The algorithms are also
implemented in the free and open-source mathematics software system Sage-
Math with the goal of their eventual integration into the same system. The
algorithms include: classifying mortal and bounded letters of a morphism, de-
ciding whether a morphism is injective, finding a simplification of a morphism,
finding all infinite repetitions in a D0L system, and finding all factors (up to
a certain length) of words of the language of a PD0L system. Furthermore,
the problem of deciding whether a morphism of a D0L system is injective on
the set of factors of words of the language of the system is discussed. The
decidability of this problem is an open question, which is not answered in
this thesis, but it is shown why it is nontrivial and where some approaches to
solving this problem fail.

Keywords growing letters of a morphism, injective morphisms, repetitive
D0L systems, morphisms injective on language

viii

Contents

Introduction 1

1 Preliminaries 5
1.1 Finite words . 5
1.2 Infinite words . 6
1.3 D0L systems . 8
1.4 Chomsky hierarchy . 8
1.5 Graphs . 8
1.6 Note on pseudocode & time complexity analysis 9

2 Repetitiveness of D0L languages 13
2.1 Mortal and bounded letters . 15

2.1.1 Mortal letters . 16
2.1.2 Bounded letters . 19

2.2 Injective morphisms . 25
2.3 Simplifiable morphisms . 32

2.3.1 Noninjective simplifiable morphisms 32
2.3.2 Injective simplifiable morphisms 39
2.3.3 Injective simplifications 43

2.4 Infinite periodic factors . 45
2.4.1 Bounded infinite periodic factors 46
2.4.2 Unbounded infinite periodic factors 51

3 Implementation 57
3.1 SageMath . 58
3.2 sage.combinatorics.words 59
3.3 Differences between pseudocode and implementation 64
3.4 Testing . 68

ix

4 Injective D0L systems 71
4.1 “Factorship” problem for PD0L systems 73
4.2 The obvious approach . 75
4.3 A different approach . 79

Conclusion 91

Bibliography 93

A Contents of enclosed CD 97

B Fractal plant 99

x

List of Figures

1.1 Fractal plant-like structure generated using an L-system. 4

2.1 Linked lists used in MortalLetters. 18
2.2 Gall graph. 20
2.3 Periodic D0L sequence. 21
2.4 Gsingle graph. 24
2.5 Tails. 28
2.6 Auxiliary diagrams for a proof. 30
2.7 Pushy D0L system. 46
2.8 Graphs of unbounded letters. 48

3.1 SageMath’s logo. 58
3.2 Simplified file and class diagram of sage.combinatorics.words. . 61

4.1 Message on a circle. 72
4.2 Auxiliary diagrams for a proof. 77
4.3 D0L system used in a proof. 78
4.4 Graph of tails. 81
4.5 Finite automaton for a language of conflicts. 82
4.6 Finite automaton for minimal words with indistinct images. 82
4.7 EOL system generating the set of all prefixes of an E0L language. 87
4.8 EOL system generating the set of all factors of an E0L language. . 88

xi

List of Tables

3.1 Overview of possible combinations of word classes. 62
3.2 Map between algorithms and methods. 64

xiii

List of Algorithms

1.1 Reach . 10

2.1 MortalLetters . 17
2.2 MortalLetters (improved) 19
2.3 BoundedLetters . 23
2.4 FindCycles . 26
2.5 IsInjective . 29
2.6 SimplifyErasing . 33
2.7 SimplifyNoninjective . 38
2.8 SimplifyInjective . 40
2.9 SimplifyInjective (improved) 42
2.10 InjectiveSimplification . 44
2.11 BoundedInfinitePeriodicFactors 50
2.12 UnboundedInfinitePeriodicFactors 54

4.1 FactorLanguage . 73
4.2 FactorLanguage (improved) 76

xv

Introduction

Combinatorics on words straddles the border of discrete mathematics and
theoretical computer science. It studies the combinatorial properties of words
– finite or infinite sequences of symbols (letters) from some set (alphabet).
Here is an example of a simple problem from combinatorics on words: If we
have two finite words x and y such that x× y = y × x (where × denotes the
(non-commutative) operation of concatenation), then there must be another
word z and two positive integers i and j such that x = zi and y = zj [1]
(Proposition 1.3.2).

This thesis focuses on selected properties of Lindenmayer systems (abbreviated
as L-systems), described by Aristid Lindenmayer in his paper published in
1968 [2]. Loosely speaking, they could be seen as a counterpart to formal
grammars from formal language theory, with two notable differences:

• The rewriting rules are all carried out in parallel, instead of sequentially.

• There is no distinction between terminal and nonterminal symbols.

On the one hand, the first difference gives L-systems interesting generative
capabilities. For example, it can be shown that the language {a2i | i ≥ 0} is
context-sensitive but is not context-free, however, it can be easily generated
with the deterministic context-free L-system defined by the rewriting rule
a 7→ aa and the starting word a.

Moreover, we can study with deterministic L-systems not only the languages
(sets of words) they generate but also the sequences of words they gener-
ate. For example, take the deterministic context-free L-system defined by the
rewriting rules a 7→ b and b 7→ ab and the starting word b. The first few

1

Introduction

words in the sequence of words it generates are: b, a, ab, bab, abbab, bababbab,
. . . . It can be shown that the lengths of the words in this sequence form the
well-known Fibonacci sequence: 1, 1, 2, 3, 5, 8,

On the other hand, the second difference significantly restricts the genera-
tive power of L-systems. For example, it can be shown that there exists no
context-free L-system generating the finite language {a, aaa}. The reasoning
for having only a single alphabet for both terminals and nonterminals is that
L-systems were not conceived by A. Lindenmayer as a parallel counterpart to
formal grammars, but as a mathematical formalism for the description of sim-
ple multicelullar organisms in biology, where the rewriting rules represent cell
division, which can happen in multiple cells of an organism at once. As such, it
does not make much sense to differentiate between terminal and nonterminal
cells.

However, the lack of terminal letters makes it difficult to compare the gen-
erative power of parallel rewriting and sequential rewriting. That is why, as
L-systems started to be picked up by formal language theorists, numerous
extensions regarding terminal letters were devised. One of these extensions
will be described much later in this thesis, however, the vast majority of the
time only nonextended deterministic context-free systems (abbreviated as D0L
systems) will be discussed.

D0L systems are notable in the context of combinatorics on words, as their
rewriting rules can be described using (endo)morphisms on words. It should
be noted that most areas of combinatorics on words are closely related to
various concepts in abstract algebra [3]. However, these connections will not
be explored much in this thesis. What will be explored in this thesis are the
following two problems: deciding whether the language generated by a D0L
system is repetitive and deciding whether a D0L system is injective.

A language is repetitive if for each positive integer k there is some word in
the language, such that it has a factor (contiguous subsequence), which is a
k-power (= is of the form vk for some nonempty word v). The problem of
deciding this was studied, for example, by Andrzej Ehrenfeucht and Grze-
gorz Rozenberg in their paper published in 1983 [4], by Yuji Kobayashi and
Friedrich Otto in their paper published in 2000 [5] and by Karel Klouda and
Štěpán Starosta in their paper published in 2015 [6].

The algorithm introduced by K. Klouda and Š. Starosta is described in this
thesis in great detail 1. Furthermore, the main output of this thesis (other

1It should be noted, that deciding a D0L language’s repetitiveness is only a secondary
purpose of this algorithm, as will be explained later.

2

than this text) is an implementation of this algorithm using the free and
open-source mathematics software system SageMath [7] (and its consequen-
tial integration into the same system). The implementation contains not only
the main algorithm itself but also a significant number of various other non-
trivial algorithms, upon which the main algorithm depends. Each of these
supplemental algorithms is also described in this thesis, together with detailed
pseudocode. The list is as follows:

• Algorithms for classifying mortal and bounded letters of a morphism.
These are slightly improved versions of the algorithms by Y. Kobayashi
and F. Otto [5].

• Algorithm for deciding whether a morphism is injective. This is the
algorithm informally described by R. G. Gallager [8] and formally by
S. Even [9] for the equivalent problem of deciding whether a code is
uniquely decodable.

• Algorithm for finding a simplification of a morphism. This algorithm is
patched together from the works of A. Ehrenfeucht and G. Rozenberg
[10], T. Harju and J. Karhumäki [11] , and Y. Kobayashi and F. Otto
[5].

An emphasis was placed on analysing time and memory complexity, and as a
result, a tighter bound on time complexity was obtained (from polynomial to
linear) for the problems of classifying mortal and bounded letters, and for the
problem of deciding whether a D0L system is pushy.

Moving on to the second studied problem. A D0L system is injective if all
words, which are a factor of some word of the language of the system, are
distinct from each other when they are rewritten once by the system. This
subclass of D0L systems was mentioned, for example, by Julien Cassaigne
in his paper published in 1994 [12] and by K. Klouda and Š. Starosta in
their paper published in 2019 [13]. It is not known whether this problem
is decidable. This thesis explains why this problem is nontrivial by showing
where two ways of tackling this problem fall short. The first one generates all
the factors of words of the language of the system up to a certain length, and
the second one tries to approach it as a problem from formal language theory.
In particular, it is shown that:

• There exists a sequence of D0L systems that grows linearly in size, but
the length of the smallest pair of distinct factors, which are the same
when rewritten by the system, grows exponentially.

3

Introduction

Figure 1.1: Fractal plant-like structure generated using an L-system. See
Appendix B for more information.

• The language of pairs of distinct words (but not necessarily factors)
arranged in a particular fashion, which are the same when rewritten by
the system, is regular.

• The set of all factors of all words in an E0L language is an E0L language.

The motivation for studying these two problems is their connection to the
concepts of factor complexity and pattern avoidance, which are prominent
concepts in combinatorics on words [14] [12].

Finally, while it is not entirely related to this thesis, it would be amiss to in-
troduce L-systems and not to mention their popular application in generating
graphical images depicting various fractal and/or natural (mainly plant-like)
patterns. An example can be seen in Figure 1.1.

In Chapter 1, some basic definitions are mentioned. In Chapter 2, K. Klouda’s
and Š. Starosta’s algorithm for deciding the repetitiveness of a language gen-
erated by a D0L system is explained, together with the various auxiliary al-
gorithms. In Chapter 3, the implementation of these algorithms is described
in the context of SageMath’s combinatorics on words module. In Chapter 4,
the problem of deciding whether a D0L system is injective is discussed.

4

Chapter 1
Preliminaries

The definitions in the first two sections can be found, for example, in the book
Algebraic Combinatorics on Words [3] by Monsieur Lothaire. The definitions
in the third section can be found, for example, in the book The Mathematical
Theory of L Systems [15] by G. Rozenberg and Arto Salomaa. The definitions
in the fourth section can be found, for example, in the book Introduction to
Automata Theory, Languages and Computation by John Edward Hopcroft
and Jeffrey David Ullman [16]. The definitions in the fifth section can be
found, for example, in the book Graph Theory by Reinhard Diestel [17].

1.1 Finite words

An alphabet A is a finite set, whose elements are called letters. A word w is a
finite sequence of letters (indexed from 1). The length of a word w is denoted
by |w|. The empty word is denoted by ε. The set of all words over an alphabet
A is denoted by A∗ and the set of all nonempty words over an alphabet A is
denoted by A+.

As usual, commas delineating individual letters in words are omitted (that is,
u = u1u2u3 instead of u = u1, u2, u3) and letters and single-letter words are
treated more or less interchangeably. Similarly, the operation of concatenation
is denoted by juxtaposition instead of a symbol (that is, w = uv instead of
w = u× v).

A word v is a factor of a word w, if w = xvy for some words x and y. If x
is empty, then v is a prefix of w. Similarly, if y is empty, then v is a suffix of
w. A factor/prefix/suffix v of a word w is called proper if |v| < |w|. A word
u is a conjugate of a word v if u = xy and v = yx for some words x and y,
that is, u is a “cyclic rotation” of v. For example, u = aaba is a conjugate of

5

1. Preliminaries

v = aaab, where x = aab and y = a.

A word w is a k-power for some integer k ≥ 0 if there exists a word v such that
w is equal to v repeated k times, this is denoted by w = vk, and the word v is
called the primitive root of w. Specifically, x0 = ε for any word x. If a word
w is a k-power for only k = 1, then w is primitive, otherwise it is periodic. A
2-power is called a square. Similarly, a 3-power is called a cube.

1.2 Infinite words
An infinite word is an infinite sequence of letters. Before moving on to addi-
tional definitions, let me give a nontrivial example of an infinite word defined
on the binary alphabet {0, 1} by the following informal algorithm:

1. Start with 0.

2. Take what you already have, flip 0s and 1s, and append this to what
you already have.

3. Repeat the previous step ad infinitum.

Adhering to these instructions, we get the following sequence of words:

t0 = 0
t1 = 01
t2 = 0110
t3 = 01101001
t4 = 0110100110010110...

The limit limn→∞ tn is equal to the well-known Thue-Morse word. It has
several interesting properties (for example none of its factors are cubes) and
crops up in a few unrelated places in mathematics [18].

There are several general “frameworks” used for defining infinite words. A
simple one is obtained by naturally expanding the concept of a k-power to
infinity. An infinite word w is periodic if w = vvv · · · = limn→∞ v

n = vω

for some word v, otherwise it is aperiodic. However, this does not help us to
define, for example, the Thue-Morse word, as it is aperiodic.

A better framework can be obtained by using morphisms. Let A and B be
alphabets. A mapping φ from A∗ to B∗ is a morphism if for all words a in A∗
and all words b in B∗, we have φ(xy) = φ(x)φ(y).

6

1.2. Infinite words

It can be shown that we can fully define morphisms just by defining the
images for all the letters of A (the operation of defining an image y for a
letter x is denoted by x 7→ y). The image of a word from A∗ is then obtained
by concatenation. For example, let ψ : {1, 2, 3}∗ → {a, b, c}∗ be a morphism
defined by the images 1 7→ ab, 2 7→ c, and 3 7→ ε. Then ψ(1231) = abcab. As
the alphabets can be figured out from the context, I will refrain from explicitly
mentioning them and the morphisms will be denoted by grouping images of
letters inside braces (such as ψ = {1 7→ ab, 2 7→ c, 3 7→ ε} for the above
example).

Usually, we want B to be equal to (or at least a subset of) A, as this allows
us to use φ on some word w multiple times in a row, denoted by φk(w) for k
repeats, with φ0(w) = w. This will also be assumed in the most of this thesis.

Now, a letter a is prolongable on a morphism φ, if φ(a) = av for some
nonempty word v. Therefore, by repeatedly applying φ to a, we get:

φ0(a) = a

φ1(a) = av

φ2(a) = avφ(v)
φ3(a) = avφ(v)φ2(v)
φ3(a) = avφ(v)φ2(v)φ3(v)...
φω(a) = lim

n→∞
φn = avφ(v)φ2(v)φ3(v) . . .

If2 |φω(v)| > 0, then w = φω(a) defines an infinite word. Such words are called
purely morphic. Furthermore, a word p is called a fixed point of a morphism φ
if φ(p) = p (a word whose image is itself). It follows that all purely morphic
words are fixed points of their respective morphisms (and there cannot be
another fixed point starting with the same letter).

Putting all this together, let T = {0 7→ 01, 1 7→ 10} be a morphism. When we
repeatedly apply it to 0, we get the sequence of words depicted above (1.2)
and the Thue-Morse word is equal to Tω(0), therefore it is a purely morphic
word and a fixed point of T starting at 0.

Let me use two shorthands to simplify further wording: by letters of a mor-
phism I mean the letters from the alphabet of its domain, and by images of
a morphism I mean the images of its letters. Finally, a morphism is erasing
if it has at least one empty image. These kinds of morphisms are notable, as
they usually cause quite a bit of trouble when trying to prove things for an
arbitrary morphism.

2That is, if v is immortal, as will be defined later.

7

1. Preliminaries

Lastly, the composition of morphisms φ and ψ is denoted by ψ ◦ φ and it
carries its usual meaning.

1.3 D0L systems
While more a part of formal language theory than combinatorics on words,
D0L systems are closely linked to purely morphic words, as they can be seen
as their generalization.

A deterministic context-free Lindenmayer system (abbreviated as a D0L sys-
tem, where the second letter is a zero, not O) G is a triplet (A,φ, s), where
A is an alphabet, φ : A∗ → A∗ is a morphism and s is a word from A∗, also
called the axiom of G. A language is a set of words. The language of G is
the set {φn(s) | n ≥ 0}, denoted by L(G). Due to the way the language is
created, we can similarly define the sequence of G as the sequence (φn(s))n≥0,
denoted by S(G). We also have that a language L is a D0L language if there
exists some D0L system G such that L = L(G).

Since the alphabet can again be inferred from the context, I will denote D0L
systems with just (φ, s). For example, let H = ({a 7→ c, b 7→ cda, c 7→ a, d 7→
abc}, bd) be a D0L system. Then the first few words of S(H) are:

bd, cdaabc, aabccdaa, cccdaaabccc, . . .

I will also use the shorthands L(φ, s) and S(φ, s) instead of L((φ, s)) and
S((φ, s)).

1.4 Chomsky hierarchy
A language is regular if it is accepted by a finite automaton. A language is
context-free if it is accepted by a pushdown automaton. A language is context-
sensitive if it is accepted by a linear bounded automaton. A language is
recursively enumerable if it is accepted by a Turing machine. A language (resp.
a decision problem) is recursive (resp. decidable), if it and its complement are
recursively enumerable.

The definitions of the corresponding automatons are omitted for brevity.

1.5 Graphs
A graph G is a pair (V , E), where V is a set, whose elements are called
vertices, and E is a set of unordered pairs of distinct vertices, whose elements

8

1.6. Note on pseudocode & time complexity analysis

are called edges. The vertices of an edge are its endpoints. A directed graph
is a graph whose edges are ordered. A graph with self-loops is a graph, where
the endpoints of an edge need not be distinct. Sometimes, edges of a graph
have various weights and labels assigned to them.

The degree of a vertex is the number of edges of whose it is an endpoint. In
a directed graph, the outdegree (resp. indegree) of an vertex is the number of
edges of whose it is the first (resp. second) endpoint.

A path is a sequence of distinct vertices v1, v2, . . . , vn such that for each integer
1 ≤ i ≤ n− 1 there exists an edge (vi, vi+1). A cycle is a sequence of vertices
v1, v2, . . . , vn such that v1, v2 . . . vn−1 is a path, v1 = vn and there exists the
edge (vn−1, vn). A conjugate of a cycle is defined analogously to the conjugate
of a word.

A subgraph of a graph G is a graph whose vertices and edges are subsets of
the vertices and edges of G. A component of a graph G is a subgraph of G
such that for each pair of distinct vertices u and v there is a path from u to
v and no additional vertex or edge from G can be added. For directed graphs
components are instead called strongly connected components and a weakly
connected component of a directed graph G is a subgraph of G, which would
be a component of G if G was not directed.

1.6 Note on pseudocode & time complexity
analysis

The algorithms discussed in the second chapter are accompanied by their de-
scription in pseudocode. This is done partly for clarity, but also to make time
complexity analysis easier. The time complexity analysis itself is conducted
in the “usual way” – for example, as is described in the book Introduction
to Algorithms by Thomas H. Cormen, Charles Eric Leiserson, Ronald Linn
Rivest and Clifford Seth Stein [19].

To elaborate, since I am interested in the difference between, for example,
linear and quadratic time and not just between polynomial and nonpolynomial
time, the analysis is conducted using a sequential random-access machine,
where accessing a memory cell with an arbitrary index takes O (1) time in the
worst-case. From now on, whenever a bound is mentioned, it will be implicitly
in the worst-case, unless specified otherwise. Usually a lower bound can also
be derived, but I will only mention the upper bounds for simplicity’s sake.

Furthermore, it is assumed without any perceived loss of generality that the
morphism on input has an integer alphabet from 1 to n, and that it is rep-

9

1. Preliminaries

resented as an array of pointers to arrays, where the i-th pointer points to
the array representing the image of the letter i. It is also assumed that the
operation of checking the length of an array takes O (1) time, and that input
is not to be modified (it is read-only). Axiom, if any, is also an array.

The size of the morphism will be measured using the following: Let n denote
the number of letters of the morphism, m the sum of the lengths of all images
of the morphism, and l the length of the maximal image. In addition, let empty
images have length one when counting m, so that for example O (n+m) can
be simplified to O (m).

Finally, memory complexity is generally not mentioned, unless it grows su-
perlinearly (even if the optimal value is constant), since in practice linear
memory complexity is usually not problematic. However, superlinear memory
complexity is noted, since then the time complexity also becomes superlinear
due to having to allocate the memory.

Let me give an example of a simple algorithm, which will also be useful later.
It has as an input a D0L system and returns which of its letters are reachable.
Let letters of a D0L system mean the letters of its corresponding morphism. A
letter of a D0L system is reachable if it occurs in any word in the language of
the system, otherwise it is unreachable. For example, let H = ({1 7→ 123, 2 7→
34, 3 7→ ε, 4 7→ 2, 5 7→ 1}, 232) be a D0L system, then L(H) = {232, 3434, 22}
and the letters 2, 3, and 4 are reachable and the letters 1 and 5 are unreachable.
The pseudocode is available in Algorithm 1.1.

Algorithm 1.1 Reach
Input: D0L system G (morphism φ with letters 1 . . . n and axiom s)
Output: array R, marking which letters of G are reachable

1: R← the resulting array, by default all values are set to false
2: todo ← an empty stack
3: for i← 1 to |s| do
4: if R[s[i]] = false then
5: R[s[i]]← true
6: push s[i] onto todo
7: while todo is not empty do
8: a← pop from todo
9: for i← 1 to |φ[a]| do

10: b← φ[a][i]
11: if R[b] = false then
12: R[b]← true
13: push b onto todo
14: return R

10

1.6. Note on pseudocode & time complexity analysis

Each letter is pushed onto the stack at most once, and O (l) time is spent on
each letter when it is popped. At the start we also spend O(|s|) time on the
axiom, thus the total time complexity is O (|s|+ nl). However, when we take
into account the whole run of the algorithm, it can be seen that this is too
pessimistic (each letter looks at its own image). Therefore we obtain a slightly
tighter bound O (|s|+ n+m) = O (|s|+m), which is linear with regards to
the size of the input.

11

Chapter 2
Repetitiveness of D0L languages

We shall require some factor-oriented notation.

Definition. Let L be a language. A word v is a factor of L, if there exists
some word w in L such that v is a factor of w. The set of all factors of L is
denoted by F (L).

For example, see the D0L system H = ({a 7→ aa, b 7→ bb, c 7→ cc}, abc), where
L(H) = {a2n

b2n
c2n | n ≥ 0} and it can be seen that

F (L(H)) = {ε} ∪ {ai | i ≥ 1} ∪ {bj | j ≥ 1} ∪ {ck | k ≥ 1}
∪ {aibj | i ≥ 1 ∧ j ≥ 1} ∪ {bjck | j ≥ 1 ∧ k ≥ 1}

∪ {aib2j
ck | i ≥ 1 ∧ j ≥ 0 ∧ k ≥ 1 ∧ i ≤ 2j ∧ 2j ≥ k}.

The shorthand FL(G) will be used instead of F (L(G)) in the rest of this thesis.

The following two definitions are crucial in the context of this chapter. They
were put forward by G. Rozenberg and A. Ehrenfeucht in their paper published
in 1983 [4].

Definition. Language L is repetitive if for each integer k ≥ 1 there is some
nonempty word w such that the word wk is a factor in L.

Language L is strongly repetitive if there is some nonempty word w such that
for each integer k ≥ 1 the word wk is a factor in L.

It is clear that strong repetitiveness implies repetitiveness. Conversely, let me
give an example of a language that is repetitive but not strongly repetitive.

13

2. Repetitiveness of D0L languages

Recall from the previous chapter, that T = {0 7→ 01, 1 7→ 10} is the Thue-
Morse morphism and that for all integers i ≥ 0 the (i+ 1)-th word in S(T, 0)
is denoted by ti. Then, the language {(ti2)i | i ≥ 1} is a repetitive but not
a strongly repetitive language. For clarity, here are the three smallest words
from this language:

012
0110201102

011010012011010012011010012

Informal proof: For all integers i ≥ 0 the words ti are prefixes of the Thue-
Morse word. The Thue-Morse word is cube-free, hence it and also all its
prefixes must also be k-power free for all integers k > 3. There also cannot be
any cubes created on the boundaries of neighbouring tis, since they are delim-
ited by 2s, which occur nowhere else. Thus the higher powers are generated
only by the explicit power operator in the definition.

Note that this language is also context-sensitive (it can be seen that its defini-
tion can be checked with a linearly bounded automaton). However, if we limit
our expressive power more, it becomes quite hard to generate such an exam-
ple. For example, from the well-known pumping lemma for regular languages
it can be seen that a regular language is infinite if and only it is strongly
repetitive, and since repetitiveness implies infiniteness, it can be seen that a
regular language is repetitive if and only if it is strongly repetitive. For analo-
gous the analysis is analogous thanks to the pumping lemma for context-free
languages.

However, for D0L languages the situation is different, as there is no equivalent
of the pumping lemma for D0L languages. When a D0L language is infinite,
it does not have to be repetitive. For example, see L(T, 0). Nonetheless, in
the same paper G. Rozenberg and A. Ehrenfeucht managed to prove that the
situation is the same after all (and hence also the language above is not D0L):

Theorem 2.1 (G. Rozenberg and A. Ehrenfeucht [4] – Theorem 2). A D0L
language is repetitive if and only if it is strongly repetitive.

This means that to find a factor in a D0L language, which is an arbitrarily
large power, we can focus on finding a word satisfying the definition of strong
repetitiveness. G. Rozenberg and A. Ehrenfeucht used similar thinking to also
prove the following:

Theorem 2.2 (G. Rozenberg and A. Ehrenfeucht [4] – Theorem 1). It is de-
cidable whether a language generated by an arbitrary D0L system is repetitive.

14

2.1. Mortal and bounded letters

However, the algorithm associated with their proof is quite complicated and
has uncertain time complexity. A different algorithm was devised by Y.
Kobayashi and F. Otto in their paper published in 2000 [5]. If the size of
the alphabet of the morphism of the D0L system is taken to be a constant,
then the algorithm runs in polynomial time. A third algorithm, introduced by
K. Klouda and Š. Starosta in their paper published in 2015 [6], has the same
time complexity considerations, however, instead of returning only a boolean
answer, it returns a “description” of all the words satisfying the definition of
strong repetitiveness of the studied D0L system.

The rest of this chapter will be spent describing the algorithm by K. Klouda
and Š. Starosta. However, before we can move on to that, we also have to
describe several other problems and their corresponding algorithms, which the
main algorithm makes use of. These include: classifying mortal and bounded
letters of a morphism, deciding whether a morphism is injective, and finding
a simplification of a morphism.

2.1 Mortal and bounded letters
Let us begin with definitions.

Definition. Let φ be a morphism and a its letter. Then the letter a is mortal
if ε is in L(φ, a), otherwise it is immortal. Similarly, the letter a is bounded if
L(φ, a) is finite, otherwise it is unbounded.

For example, see the morphism ψ = {1 7→ ε, 2 7→ 2, 3 7→ 33}. The letter
1 is mortal and bounded, since L(ψ, 1) = {ε}. The letter 2 is immortal but
bounded, since L(ψ, 2) = {2}. Finally, the letter 3 is immortal and unbounded,
since L(ψ, 3) = {32k | k ≥ 0}.

(Im)mortal and (un)bounded words are defined analogously.

The nomenclature for these terms is not exactly set in stone in the surrounding
literature. While K. Klouda and Š. Starosta use the names above [6], for
example P. M. B. Vitányi calls immortal letters vital [20], A. Ehrenfeucht and
G. Rozenberg call immortal letters alive and bounded as having rank zero
[4], B. Lando calls bounded letters finite and unbounded infinite [21] and J.
Cassaigne and F. Nicolas call unbounded letters growing [14].

There already is an algorithm for finding bounded letters in SageMath. It was
implemented by Š. Starosta and it is based upon linear algebra and cyclotomic
polynomials. However, the algorithm described will be based upon a different

15

2. Repetitiveness of D0L languages

algorithm by Y. Kobayashi and F. Otto, which they devised in the proof of
the following proposition:

Proposition 2.3 (Y. Kobayashi and F. Otto [5] – Proposition 2.6). It is
decidable in polynomial time whether a letter of a morphism is bounded.

I will show that their algorithm can be modified to run in linear time with
regards to the size of the morphism. Contrary to this, the algorithm based
upon linear algebra requires turning the morphism into a certain matrix of
size n × n, which takes O

(
n2 +m

)
time, and then manipulating it further.

For example, it requires the computation of the characteristic polynomial of
the matrix, which has time complexity O

(
n3)

.

2.1.1 Mortal letters
Since it is the easier task of the two, let us start with classifying mortal letters.
The following lemma characterizes morphisms with mortal letters:

Lemma 2.4. Let φ be a morphism. φ has at least one mortal letter ⇐⇒ φ
is erasing.

Proof. ⇐= : The mortal letter is the letter with the empty image.

=⇒ : Let a be the mortal letter of the morphism. Then there must be an
integer n ≥ 1 such that φn(a) = ε. Let n0 be the smallest such integer. If
n0 = 1, then φ(a) = ε and the implication holds, thus let us assume n0 > 1.
Then there exists a nonempty word w such that φn0−1(a) = w and φ(w) = ε,
hence the letters from which w is made of must have empty images.

We can easily find all the letters in a morphism with an empty image. Let
us denote the set of these letters as M1. However, M1 is not equal to the set
of mortal letters. We also have to find letters (let us denote their set M2),
whose image contains only letters from M1, and not only that, we also have
to find letters (M3), whose image contains only letters from M1 or M2, and so
forth. Let φ : A∗ → A∗ be a morphism. Y. Kobayashi and F. Otto formally
described these sets like this:

M1 = {a ∈ A | φ(a) = ε}
i ≥ 2: Mi = Mi−1 ∪ {a ∈ A \Mi−1 | φ(a) ∈M+

i−1}

It can be seen, that if Mi = Mi+1, then Mi =
∪

j≥iMj . Furthermore, since
by Lemma 2.4 there is no other way for a letter to become mortal, it follows
that the set of mortal letters (let us denote it by M) is equal to M|A|. From

16

2.1. Mortal and bounded letters

this Y. Kobayashi and F. Otto conclude, that the set M can be found in time
polynomial with regards to the size of the morphism.

I will expand slightly upon their statement. We can find the set M using
the following algorithm: Repeatedly remove letters with empty images and
all their occurrences in the images of other letters from the morphism until
there is nothing left to remove. The removed letters are mortal, the rest are
immortal.

Algorithm 2.1 MortalLetters
Input: morphism φinput with letters 1 . . . n
Output: array M , marking which letters of φ are mortal

1: φ← a copy φinput, so that we can modify it
2: M ← the resulting array, by default all values are set to false
3: done ← false
4: while done = false do
5: done ← true
6: for a← 1 to n do
7: if M [a] = true then
8: continue
9: if φ[a] is empty then

10: M [a]← true
11: remove all occurencess of a in images of φ
12: done ← false
13: break
14: return M

The algorithm is described in pseudocode in Algorithm 2.1. The while loop
on line 4 is repeated only when a letter is removed, thus it is executed at
most n times. To remove a letter we must first find a letter with an empty
image (takes O (n) time), mark it as mortal (line 10, takes O (1) time) and
we also have to remove all its occurences from the images of the morphism
(line 11, takes O(m) time). In total we get time complexity O (n× (n+m))
= O

(
n2 + nm

)
= O (nm).

We can achieve better time complexity by optimizing the amount of time
spent in line 11. We will do this with some preprocessing. First, we change
the images in the morphism from arrays to (doubly) linked lists. This allows
us to remove an occurrence in O (1) time if we have a pointer to it. Then we
create another (singly) linked list for each letter, whose elements point to all
the occurrences of these letters in the images of other letters. Let us call the
array containing these linked lists occ. Figure 2.1 shows an example.

With these linked lists, we can remove all occurrences of a letter in all images

17

2. Repetitiveness of D0L languages

ψ

1→ 123 2→ 33 3→ ε

Figure 2.1: Linked lists used in MortalLetters. Descriptions of the fields
are omitted on most nodes for clarity.

in time linear with regards to the number of these occurrences. This means,
when we take into account the whole run of the algorithm, executing line 11
takes at most O (m) time. This preprocessing can be accomplished in O(m)
time. This gives us total time complexity O

(
n2 +m

)
.

Another possibility for an asymptotic improvement is hidden in the fact, that
we restart the search for an empty image after the removal of each letter.
Instead, we could search through all the letters only once, and put the prob-
lematic letters (the ones with an empty image) in a stack (or a queue, the
order after popping is not important). Then we pop a letter from the stack,
start removing its occurrences, and after each removed occurrence we check
whether the image we just modified is empty, and if so, we push the preimage
of this image into the stack (that is why we save the preimages in the nodes of
the linked lists of occ). We repeat this until the stack is empty. This merges
the work of finding empty letters with the work done in line 11. The initial
search takes O(n) time, and each letter is put into the stack (removed from
the morphism) at most once. In total, there are O (n) letters popped from the
stack. On the whole, we achieve linear time complexity (O(n+m) = O (m)).

The ideas from the last two paragraphs are described more concretely in pseu-
docode in Algorithm 2.2.

18

2.1. Mortal and bounded letters

Algorithm 2.2 MortalLetters (improved)
Input: morphism φinput with letters 1 . . . n
Output: array M marking which letters of φ are mortal

1: φ and occ ← arrays with the linked lists described in the text
2: M ← the resulting array, by default all values are set to false
3: stack ← an empty stack
4: for a← 1 to n do
5: if φ[a] is empty then
6: push a onto stack
7: while stack is not empty do
8: a← pop from stack
9: M [a]← true

10: for each occurrence in occ[a] do
11: remove the occurrence from the image and
12: if this was its last letter, push the preimage to stack
13: return M

2.1.2 Bounded letters
Now, we can move on to the main part Y. Kobayashi’s and F. Otto’s proof
of Proposition 2.3. It is put together from two auxiliary lemmas. The first of
these follows:

Lemma 2.5. Let φ be a morphism and let φ be the morphism created from
φ by removing all mortal letters of φ (and their occurrences in the images of
other letters) and let a be a letter of φ. Then a is a bounded letter of φ if and
only if a is a bounded letter of φ.

For the purposes of the second lemma they define the following directed graph
(with self-loops) with weighted edges for a morphism φ (let us denote it by
Gall

φ for a morphism φ), where vertices are letters of φ and there is an edge
from a vertex a to a vertex b with a weight k if the letter b occurs in the image
of the letter a and the image of the letter a is of length k. For example, see
Figure 2.2. Now, the second lemma follows:

Lemma 2.6. Let φ be a morphism without mortal letters and a its letter.
Then a is unbounded if and only if in the graph Gall

φ a cycle containing an
edge of weight larger than one can be reached from the vertex a.

Y. Kobayashi and F. Otto then conclude their proof of Proposition 2.3 by say-
ing that this is checkable in polynomial time. In the rest of this section, I will
describe a modified version of their algorithm. For the sake of completeness,
its correctness will be proven from the ground up.

19

2. Repetitiveness of D0L languages

ψ

a 7→ b b 7→ c c 7→ a
d 7→ bc e 7→ de f 7→ dg
g 7→ hi h 7→ g i 7→ i

Figure 2.2: Gall graph.

Let a single-letter word be a shorthand for a word of length one. The following
lemma shares certain similarities with Lemma 2.4:

Lemma 2.7. Let φ be a morphism. If φ has at least one bounded letter, then
at least one letter in φ has an empty or a single-letter image.

Proof. Let us prove the contraposition: if each letter in φ has an image of
length at least two, then φ has no bounded letters. With such a morphism,
the image of any word is always strictly longer than the word itself. Thus, for
any letter a from φ, each word in S(φ, a) is unique, and hence L(φ, a) must
be infinite.

Unfortunately, unlike Lemma 2.4, the converse is not true. For example, the
morphism ψ = {1 7→ 11, 2 7→ 1} has one single letter image, but no bounded
letters (L(ψ, 1) = {12k | k ≥ 0}, L(ψ, 2) = L(ψ, 1)∪{2}) . At least the lemma
tells us, that we should focus on empty and single letter images. The following
lemma is a good start:

Lemma 2.8. Let a be a letter of a morphism φ. If a is mortal, then a is
bounded.

20

2.1. Mortal and bounded letters

ψ

1 7→ 24 2 7→ 35 3 7→ 16
4 7→ 5 5 7→ 6 6 7→ ε
7 7→ 8 8 7→ 27 9 7→ 41

S(ψ, 9) = 9, 41, 524, 6355, 1666, 24, 355, 1666, . . .

Figure 2.3: Periodic D0L sequence.

Proof. If a is mortal, then there is an integer n0 ≥ 0 such that φn0(a) = ε.
Then for all integers n ≥ n0 we have φn(a) = ε, hence L(φ, a) must be
finite.

And the following lemma gives us insight into finding the rest of the bounded
letters.

Lemma 2.9. Let a be a letter of a morphism φ. L(φ, a) is finite ⇐⇒ S(φ, a)
is eventually periodic.

Proof. ⇐= : S(φ, a) being eventually periodic means that there exists an
integer s ≥ 0 and an integer t ≥ 1 such that for all integers i ≥ s we have
(S(φ, a))i = (S(φ, a))i+t, hence L(φ, a) = {φn(a) | n ≤ s+ t}, which is a finite
set.

=⇒ : Even if L(φ, a) is finite, S(φ, a) is still infinite, so a word has to eventu-
ally appear twice (for example ε), and due to determinism the sequence will
from that point onward start repeating (become periodic).

For example, see Figure 2.3. To identify bounded letters, we need to identify
images that create these repeating sequences of words. This leads us to the
following definition:

Definition. A sequence of letters (a1, a2, . . . , ak) of a morphism φ is a loop
in φ, if for all integers i in {1, . . . , k} there exist words ni and mi in M∗ such
that φ(ai) = nia(i mod k)+1mi, whereM is the set of mortal letters, as defined
in the previous subsection.

For example, the letters 1, 2 and 3 form a loop in the morphism in Figure 2.3.
The following lemma tells us why these loops are interesting to us:

21

2. Repetitiveness of D0L languages

Lemma 2.10. Let a be a letter of a morphism φ. If a is part of a loop in φ,
then a is bounded.

Proof. Let (a1, a2, . . . , ak) be a loop of φ. Let a be an arbitrary letter from
this loop. Then there exist words n and m from M∗ such that φk(a) = nam.
The words n and m are mortal, hence they are bounded (by Lemma 2.8) and
L(φ, n) and L(φ,m) are finite. Clearly, L(φk, n) and L(φk,m) must also be
finite and it can be seen that L(φk, nam) is a subset of of the finite language
{xay | x ∈ L(φk, n) ∧ y ∈ L(φk,m)} and thus it is also finite. Therefore
also L(φk, a) = {a} ∪ L(φk, nam) must be finite. Finally, it can be seen that
L(φk, a) being finite means L(φ, a) must also be finite, which concludes the
proof.

Finally, we can put together a characterization of morphisms with bounded
letters.

Theorem 2.11. Let φ be a morphism. φ has at least one bounded letter ⇐⇒
at least one of the following is true:

(1) φ is erasing,

(2) φ has a loop.

Proof. ⇐= : If (1) is satisfied, then there is at least one mortal letter (by
Lemma 2.4) and thus at least one bounded letter (by Lemma 2.8). If (2) is
satisfied, then there is also at least one bounded letter (by Lemma 2.10).

=⇒ : If φ has an empty image, then (1) is satisfied, so let us assume there
are no empty images. Then we must “make the boundedness happen” with
single-letter images, since by the contraposition of Lemma 2.7, without empty
and single-letter images there are no bounded letters. However, our options
are rather limited. Let a and b be letters of φ such that a 6= b. Single-letter
images can be either of the “type” a 7→ a or of the type a 7→ b. Images of the
type a 7→ a create a loop, thus satisfying (2), so let us assume there are also no
images of the type a 7→ a. Now, images of the type a 7→ b only make a “inherit
the boundedness” of b, but on their own they can not create a repetition in
S(φ, a), except for the very specific case, when they are combined with other
single letter images into a loop, thus satisfying (2).

Now, we have almost everything we need to describe the algorithm. Let us
denote by T the set of all letters (of some morphism φ : A∗ → A∗) in some

22

2.1. Mortal and bounded letters

loop and let us call a letter a of φ loopy if a is in T . From definitions of M
and T , it follows, that M and T are disjoint.

Even though by Theorem 2.11 for φ with bounded letters the set M ∪ T is
necessarily nonempty, it does not mean that the set of bounded letters is equal
to M ∪ T . Indeed, there is one last set of letters (also disjoint with M and
T) interesting to us, let us denote it by V1. It contains letters whose image
contains only mortal and loopy letters and at least one loopy letter (otherwise
the preimage would belong to M). Similarly as for mortal letters, we also
have V2, V3, . . . :

V1 = {a ∈ A | φ(a) ∈ (M ∪ T)∗ ∧ ∃b ∈ f(a) : b ∈ T}
i ≥ 2: Vi = Vi−1 ∪ {a ∈ A \ Vi−1 | φ(a) ∈ (M ∪ T ∪ Vi−1)∗ ∧ ∃b ∈ f(a) : b ∈ Vi−1}

That is, V = V|A| are the letters who are not part of a loop themselves, but by
iterating on them a loop (or multiple ones) is entered. For example, for the
morphism in Figure 2.3 we haveM = {4, 5, 6}, T = {1, 2, 3} and V = {9} (and
letters 7 and 8 are unbounded). The fact that all the letters in the images of
V1 are bounded combined with the following lemma tells us that every letter
in V is bounded:

Lemma 2.12. Let a be a letter from a morphism φ. a is bounded ⇐⇒ φ(a)
is bounded.

Proof. This is due L(φ, a) = {a} ∪ L(φ,φ(a)).

It follow from Theorem 2.11 and Lemma 2.12 that the set of bounded letters
is equal to M ∪ T ∪ V . The algorithm for finding bounded letters is therefore
based upon finding these sets. In fact it can be described using the following
simple steps:

Algorithm 2.3 BoundedLetters
1: Find and remove mortal letters from the morphism.
2: Do the same for loopy letters.
3: Do the same for mortal letters again.
4: The remaining letters are unbounded.

The third step is the same as the first step, since when we remove mortal and
loopy letters from the morphism, the definition of letters in V degenerates to
the definition of letters in M . Thus, the algorithm is correct.

We already know from the previous subsection how to find mortal letters, and
even how to efficiently remove them using linked lists in time O(m). We can

23

2. Repetitiveness of D0L languages

ψ

a 7→ b b 7→ c c 7→ ad d 7→ d
e 7→ f f 7→ g g 7→ e h 7→ hh
i 7→ g j 7→ i k 7→ j l 7→ j

Figure 2.4: Gsingle graph.

efficiently remove loopy letters in the same way, therefore all that needs to be
shown now is how to find loopy letters.

First, we can assume the morphism has no mortal letters, since we remove
them in the first step, and since loopy letters are immortal, this leaves all
of them intact. We start by making a directed graph (with self-loops) (let
us denote it Gsingle

φ for some morphism φ), where vertices are letters of φ,
and there is an edge from vertex a to vertex b if the letter a has a single-
letter image equal to the letter b. Thanks to determinism, each vertex has
an outdegree of at most one. Graphs with this property are sometimes called
directed pseudoforests [22]. For example, see Figure 2.4.

It is easy to see, that cycles in Gsingle
φ correspond to loops in φ.

We can use an algorithm that returns all cycles (without conjugates) in Gsingle
φ

to find all loops in φ and thus also all loopy letters. Finding all cycles in an
arbitrary directed graph is a nontrivial task, but directed pseudoforests have
just a low enough number of cycles and a simple enough structure, that this
task can be accomplished easily, as is shown by the following lemma:

Lemma 2.13. Each weakly connected component (from now on just a com-
ponent) of a directed pseudoforest has at most one cycle.

More specifically, if each vertex in a component has an outdegree of 1, then

24

2.2. Injective morphisms

the component has exactly one cycle, and if at least one vertex in a component
has an outdegree of 0, then there can be at most one such vertex and the
component has zero cycles.

Proof. The intuitive but informal proof is that if we start walking on some
path in the component we can never encounter a fork, we can only encounter
another path converging with ours, thus even though there can be multiple
starting points in a component, there is exactly one endpoint. This endpoint
can be either a vertex with outdegree zero or a cycle.

The proof of the lemma gives us the algorithm: We repeatedly pick an arbi-
trary unvisited vertex, and start walking along its path, while also marking
visited vertices. We must eventually either find a dead end (which means
we are in a component without a cycle) or a vertex we have already visited
on some previous path (which means if there is a cycle in this component,
we already found it) or a vertex we have already visited on the current path
(which means we just found a cycle). We can discern between the second and
the third case by keeping a stack of vertices visited on the current path, and
when we find a visited vertex, we check if it is in the stack. If it is, we have
the third case, otherwise, we have the second case. We can also use the stack
for printing the cycle. Since it is impossible for a path to leave a cycle before
it gets “stuck” in it, this algorithm is correct and finds all cycles.

The algorithm is described in pseudocode in Algorithm 2.4. Because each
vertex is visited only once, and the backtracking to discern between the second
and the third case happens only once in each iteration, the algorithm runs in
linear time with regards to the size of the graph (O(n)). All things considered,
this means we have obtained an algorithm for finding bounded letters in linear
time (O(n+m) = O (m)).

Finally, directed pseudoforests, where each vertex has outdegree of exactly
one, are sometimes called functional graphs. The algorithm for finding all
cycles in a functional graph is almost exactly the same as Algorithm 2.4,
except we can remove lines 10 and 11. The problem of finding all cycles in
functional graphs will reappear in later sections.

2.2 Injective morphisms
Injectivity is a well-known concept in mathematics.

Definition. A morphism φ : A∗ → B∗ is injective if for all words u and v in
A∗, if φ(u) = φ(v), then u = v.

25

2. Repetitiveness of D0L languages

Algorithm 2.4 FindCycles
Input: directed pseudoforest g with vertices 1 . . . n, represented by an array

of size n, which contains in its i-th position the outgoing neighbor of i or
0, if no such neighbor exists

Output: printout of all cycles (without conjugates) in g
1: visited ← array marking which letters were visited, by default all values

are set to false
2: for a← 1 to n do
3: if visited[a] = true then
4: continue
5: history ← an empty stack
6: while true do
7: visited[a]← true
8: push a onto history
9: b← g[a]

10: if b = 0 then
11: break ◃ Case 1
12: if visited[b] = true then
13: cycle ← an empty stack
14: while history is not empty do
15: c← pop from history
16: push c onto cycle
17: if c = b then
18: print(cycle)
19: break ◃ Case 3
20: break ◃ Case 2
21: a← b

However, the negation of this definition will be more useful to us.

Definition. A morphism φ : A∗ → B∗ is noninjective if there exist words
u = u1u2 . . . um and v = v1v2 . . . vn in A∗ such that u1 6= v1, um 6= vn and
φ(u) = φ(v).

For example, the morphism ψ = {a 7→ 11, b 7→ 12, c 7→ 123, d 7→ 31112} is
noninjective, since ψ(bd) = ψ(cab) = 1231112.

The fact that the definition uses u1 6= v1 and um 6= vn instead of u 6= m allows
us to not have to repeatedly mention redundant cases in some places in the
remainder of this thesis. It does not lose us generality, since the matching
letters at the start or the end can be stripped away until we reach unequal
letters, which due to the inequality have to be there. It is also worth mention-

26

2.2. Injective morphisms

ing, that this is one of the few places in this thesis, where we do not require
for the alphabet B to be equal to (or a subset of) A.

The problem of morphism injectivity is equivalent to the older problem of
unique decodability of a variable-length code, which had plenty of algorith-
mic attention paid to it. The terminology is slightly different of course: the
morphism is called a code, its images are called codewords, concatenations of
codewords are called messages, and we are interested whether any message can
be uniquely decoded. However, I will still use the terminology of combinatorics
on words while describing the algorithms.

The only significant difference between morphisms and codes is that it does
not make sense for a code to have an empty code word. However, this will
not cause any issues to us, as erasing morphisms are trivially noninjective,
since for example φ(a) = ε = φ(aa). Therefore we can check whether any
image of φ is empty at the start of any of these algorithms, and return false
if so, only taking us O(n) time and O (1) memory, which is guaranteed to be
overshadowed by the complexities of the actual algorithm.

To start us off, the eponymous algorithm by August Albert Sardinas and
George W. Patterson [23], introduced in their paper published in 1953, is
the first and also the most well-known algorithm for deciding the problem
of unique decodability of a variable-length code. However, over time better
algorithms have emerged, so I will focus on them. Robert Gray Gallager
briefly mentioned an improved version of the aforementioned algorithm in an
exercise in his textbook on information theory published in 1968 [8]. It was
described in much more detail by Shimon Even in his textbook on graph
theory published in 1979 [9].

The description of the algorithm I will give here is based upon the informal
explanation by R. G. Gallager [8], the pseudocode and proofs by S. Even [9]
and the time complexity analysis by M. Rodeh [24]. The algorithm uses the
concept of tails (also called dangling suffixes). An example accompanying the
explanation of tails is depicted in Figure 2.5.

Let φ be a non-injective morphism and u = u1u2 . . . um and v = v1v2 . . . vn

words satisfying the definition of non-injectivity. Then either φ(u1) must be
a prefix of φ(v1) or vice versa. The remaining suffix of φ(v1) (or of φ(u1)) is
called a tail (t1 in Figure 2.5). This tail must also either be a prefix of some
image of φ, thus creating another tail (t2) with the suffix of the image, or have
some image of φ as a prefix (as is the case for t2), thus creating another tail
with its own suffix (t3). This holds true, until finally the last tail (t3) must be
equal to some image of φ.

27

2. Repetitiveness of D0L languages

ψ

a 7→ 11 b 7→ 12
c 7→ 123 d 7→ 31112

t1

1 2 3 1 1 1 2

t2

t3

ψ(b) ψ(d)

ψ(c) ψ(a) ψ(b)

Figure 2.5: Tails for ψ(bd) and ψ(cab).

Let us define the idea of a tail more formally with a definition by S. Even.

Definition. A nonempty word t is a tail of a morphism φ if there exist words
c = c1c2 . . . cm and d = d1d2 . . . dn such that φ(c)t = φ(d) and t is a proper
suffix of dn.

The algorithm lies in constructing the set of all tails of a morphism, and
checking whether this set contains an image of the morphism. The following
lemma by S. Even shows, that this algorithm is correct, and since the proof is
short and the concept of tails is relevant in the next section and Chapter 4, I
will reword the proof here.

Lemma 2.14 (S. Even [9] – Lemma 4.1). A morphism is noninjective ⇐⇒
at least one tail (of the morphism) is equal to an image (of the morphism).

Proof. ⇐= : Let a be the letter with an image equal to a tail t and let c and d
be the words satisfying the definition of t being a tail. Then the words u = ca
and v = d satisfy the definition of noninjectivity of the morphism.

=⇒ : Let u = u1u2 . . . um and v = v1v2 . . . vn be the words satisfying the
definition of noninjectivity of the morphism. Then either um is a proper suffix
of vn and therefore a tail, or vn is a proper suffix of um and therefore a tail.

The algorithm is described in pseudocode in Algorithm 2.5. As for correctness,
it can be seen that each tail is compared to all images (line 16), so the only
thing that remains to be shown is that the algorithm generates all possible
tails (if it does not end early). S. Even’s proof [9] of this is not as short, but
I will still reword it here for the sake of completeness.

28

2.2. Injective morphisms

Algorithm 2.5 IsInjective
Input: morphism φ with letters 1 . . . n
Output: boolean saying whether φ is injective

1: if IsErasing(φ) = true then
2: return false
3: todo ← an empty stack
4: tails ← an empty set
5: for a← 1 to n do
6: for b← a+ 1 to n do
7: if φ[a] = φ[b] then
8: return false
9: if φ[a] is a prefix of φ[b] OR φ[b] is a prefix of φ[a] then

10: s← the corresponding suffix
11: if s is not in tails then
12: add s to tails and todo
13: while todo is not empty do
14: t← pop from todo
15: for a← 1 to n do
16: if φ[a] = t then
17: return false
18: if φ[a] is a prefix of t OR t is a prefix of φ[a] then
19: s← the corresponding suffix
20: if s is not in tails then
21: add s to tails and todo
22: return true

Proof. Let φ be a morphism and for every tail t of φ let short(t) be the length
of the shortest φ(c) from all the words c and d satisfying the definition of a
tail. The proof uses induction on short(t).

Base case: The smallest possible short(t) happens when |c| = |d| = 1, and the
corresponding tail is then created on line 9.

Inductive case: Let us assume that all tails p with short(p) < short(t) have
been generated already. Let s be a word such that st = φ(dn). s is nonempty
since tails are proper suffixes. Then we have the following three possibilities
between relationships of s and φ(cm), also depicted in Figure 2.6:

1. s = φ(cm). Then φ(cm)t = φ(dn) and t is created on line 9.

2. s is a proper suffix of φ(cm). Then s is a tail, with short(s) < short(t),
hence by the inductive hypothesis it has already been generated and

29

2. Repetitiveness of D0L languages

s

tφ(cm)
φ(dn)

Case 1:

s

tφ(cm)
φ(dn)

Case 2:

s

tφ(cm)
φ(dn)

Case 3:

φ(dn−1)

φ(cm−1)

Figure 2.6: Auxiliary diagrams for a proof.

therefore t is created on line 18 with the tail s and the image φ(dn).

3. φ(cm) is a proper suffix of s. Then φ(cm)t is a proper suffix of φ(dn)
and thus a tail with short(φ(cm)t) < short(t), hence by the inductive
hypothesis it has already been generated and therefore t is created on
line 18 with the tail φ(cm)t and the image φ(cm).

As for time complexity, let us imagine that the set tails is implemented using a
trie, then searching and/or adding a word of length k takes O(k) time. Then,
the while loop on line 5 does O(n) iterations, and it can be seen that each
iteration takes O (n+m) = O (m) time, hence the first part of the algorithm
(lines from 5 to 12) takes O (n×m) time in total.

Similarly, each iteration of the for loop on line 13 also takes O (n+m) =
O (m) time and its number of iterations is bounded by the number of tails of
φ. This number is bounded by m. This is because each tail is also a suffix
of an image and since a word of length k has k different suffixes, a morphism
has at most m tails. Consequently, the time complexity of the second part of
the algorithm (lines from 13 to 21) is O

(
m2)

.

However, what was not considered by M. Rodeh while discussing this algo-
rithm, is the memory complexity. The stack todo contains at most all tails,
and since each tail is of length at most l, it has a memory complexity of O (lm).
However, we can achieve a memory complexity of O (m) if we also add back-
wards pointers into the trie tails, and in the stack we only keep pointers to

30

2.2. Injective morphisms

the end of the tails in the trie. As we only add tails into the stack whenever
we are also adding them to the trie, this should not be a problem.

As for the trie, it also contains at most all tails, and since each tail has size
at most l, and we need an array of size n for each letter to achieve linear
time searching/adding, the trie takes up O (lnm) memory. However, we can
also do better. For each tail representing an image there are l tails that are
its suffixes. Therefore, if we store the tails in reverse, they will become its
prefixes, and each tail representing an image and its l tails will only take up
l nodes. Since the tails being stored backwards does not detrimentally affect
the algorithm, we get a memory complexity of O (nm) (when we take into
account the whole morphism).

Time complexity is no longer affected, and hence the total run time of the
algorithm is O

(
n×m+m2)

= O
(
m2)

, but this should not stop us, as we
can still easily meaningfully improve the memory complexity by compressing
the trie. We should only allocate the whole array of size n if a node gains two
different successors, otherwise we keep a single pointer. If every image ends
on a different letter, there will be only one such array (at the start). If only
two images end on a same letter, we will need two such arrays, if three images
end on a same letter, we might need three, and so forth. It can be seen, that
we will never need more than n such arrays, henceforth we obtain a memory
complexity of O

(
n2 +m

)
.

There are several other algorithms that achieve better time complexityO (nm).
The first one was introduced by Michael Rodeh in a paper published in 1982
[24]. It was however quite complicated, hence two simpler algorithms were
described in papers published in 1984, the first of which was written by Al-
berto Apostolico and Raffaele Giancarlo [25] and the second of which was
written by Christoph M. Hoffman [26]. The latter is also notable for making
use of different concepts than the tails introduced by A. A. Sardinas and G.
W. Patterson. It is unknown whether there is an algorithm with better time
complexity than O (nm), but for example linear time complexity seems highly
unlikely.

I did not study these algorithms in detail, as I wanted to keep the implementa-
tion as simple as possible (to make it easier to integrate it into SageMath) and
the algorithm above is fast enough on “practically sized” inputs, especially as
the O

(
m2)

bound is quite pessimistic, since morphisms usually have far fewer
tails than m (not to mention that a speedup on practically sized inputs is not
guaranteed). It is unknown whether there is an algorithm with better time
complexity than O (nm), but for example linear time complexity seems highly
unlikely.

31

2. Repetitiveness of D0L languages

2.3 Simplifiable morphisms
A. Ehrenfeucht and G. Rozenberg introduced the notion of a simplification
of a morphism in a paper published in 1978 [10], where they used it to solve
few problems related to D0L systems. The informal description is as follows:
Sometimes it is the case, that the number of letters in a morphism can be
reduced, without disrupting the “structure” of the infinite words it generates.
The formal definition:

Definition. A morphism f : A∗ → A∗ is simplifiable if there exist morphisms
h : A∗ → B∗ and k : B∗ → A∗, such that f = k ◦ h and |B| < |A|, otherwise
it is elementary. Furthermore, the morphism g : B∗ → B∗ = h ◦ k is called a
simplification of f with respect to (h, k).

For example, see the morphism ψf = {a 7→ bca, b 7→ bcaa, c 7→ bcaaa} (taken
from [10]) and let B = {x, y}. Then ψf is simplifiable since there exist for
example ψk = {x 7→ bc, y 7→ a} and ψh = {a 7→ xy, b 7→ xyy, c 7→ xyyy}
fitting the definition above. The corresponding simplification is ψg = {x 7→
xyyxyyyy, y 7→ xy}. We can see that D0L systems based upon ψf and ψg gen-
erate words with very similar structures, except that the word bc is represented
by a single letter x.

2.3.1 Noninjective simplifiable morphisms
Now, how do we find such a simplification? Let us start with the simplest
case of an erasing morphism.

Lemma 2.15 (A. Ehrenfeucht & G. Rozenberg [4] – Theorem 1 (i)). If a
morphism is erasing, then it is simplifiable.

I will reword here a proof by Y. Kobayashi and F. Otto [5] (Proposition 3.5)
since it says how to find the corresponding morphisms h and k.

Proof. A simplification g : B∗ → B∗ of a morphism f : A∗ → A∗, which is
erasing, is simply the same morphism with the letters with empty images
removed from it (both from preimages and images). Let M1 denote the set of
letters with empty images (as in the previous section). Since B = A\M1, g has
a smaller alphabet, hence we only need to find the corresponding morphisms
h and k such that k ◦ h = f and h ◦ k = f .

We can take k : B → A such that for all letters b in B we have k(a) = f(a)
(that is f with letters fromM1 removed from preimages (but not from images))
and h : A → B such that for all letters b in B we have h(a) = b and for all

32

2.3. Simplifiable morphisms

lettersm1 inM1 we have h(m1) = ε (identity for letters from B and the empty
word for letters from M1).

Since k has the letters from M1 removed from preimages, by applying h we
also remove them from images, thus obtaining g. Similarly, by applying k to
h we get that for all letters b in B we have k(h(a)) = k(a) = f(a) and that
for all letters m1 in M1 we have k(h(a)) = k(ε) = ε = f(m1), thus obtaining
f .

For example, see the morphism ψf = {1 7→ 123, 2 7→ 33, 3 7→ ε}. Then we
have ψk = {1 7→ 123, 2 7→ 33}, ψh = {1 7→ 1, 2 7→ 2, 3 7→ ε} and finally
ψg = {1 7→ 12, 2 7→ ε}. As can be seen, the simplification can still be erasing.
It seems that it is not possible to find h and k such that the mortal letters are
simplified away all at the same time. Moving on, the algorithm is described
in pseudocode in Algorithm 2.6. The morphisms h and k are easily created in
linear time.

Algorithm 2.6 SimplifyErasing
Input: erasing morphism f with letters 1 . . . n
Output: morphisms h and k such that h ◦ k is a simplification of f

1: h← an array of words of size n
2: k ← an empty linked list of words
3: i← 1
4: for a← 1 to n do
5: if f [a] = ε then
6: h[a]← ε
7: else
8: h[a]← i
9: i← i+ 1

10: append a copy of f [a] as a node to k
11: k ← k transformed to an array of words
12: return h and k

To describe how to simplify arbitrary morphisms, it is convenient to introduce
the definition of a simplifiable multiset of words. This is almost exactly the
same notion as that of elementary languages introduced by G. Rozenberg and
A. Salomaa [15] (page 127). Let the underlying set of a multiset Q be denoted
by suppQ.

Definition. A multiset of words X is simplifiable if there exists a set of words
Z, such that suppX ⊂ Z∗ and |Z| < |X|. Z is called a simplified set of X.

That is the number of words in Z is smaller than the one in X, but all

33

2. Repetitiveness of D0L languages

the words in X can still be reconstructed by concatenating the words in Z.
Having the definition expanded to multisets (instead of only sets) allows us to
(sometimes) not have to repeatedly mention the trivial case when the images
of two letters of a morphism coincide.

Furthermore, let me use the multiset of images of a morphism as a shorthand
for the multiset containing a word w with multiplicity m if the morphism has
m letters with the image w. The following lemma tells us that we can talk
interchangeably about morphisms and their multisets:

Lemma 2.16. A morphism is simplifiable ⇐⇒ its multiset of images is
simplifiable.

Proof. =⇒ : Let f : A∗ → A∗ be a morphism, X its multiset of images and
g : B∗ → B∗ its simplification with respect to (h, k). If f is erasing, then the
set Z = suppX \ {ε} is clearly a simplified set of X.

Let us assume now that f is nonerasing. We will show that a simplified set
Z of X is the underlying set of the multiset of images of k. Since k is a
morphism from B∗ to A∗, we have that |Z| ≤ |B| < |A| = |X|. Now, we have
to show that suppX ⊂ Z∗. Since f is nonerasing, h must also be nonerasing,
otherwise we have f(a) 6= k(h(a))) = k(ε) = ε, where a is a letter with an
empty image under h, which is a contradiction with f = k ◦ h.

Now, let a be an arbitrary letter of f (or h), w its image under f and v its image
under h. We have that w = k(v), hence an arbitrary word from X is equal to
the concatenation of several words from Z and thus suppX ⊂ Z∗. Informally,
images of h give us the “description” of how images of f are “reconstructed”
from images of k.

⇐= : I will reword here some work of Y. Kobayashi and F. Otto [5] (under
Proposition 4.3). Let f be a morphism A∗ → A∗, X its multiset of images
and Z a simplified set of X. Then let B be an arbitrary alphabet such that
|B| = |Z| and k a morphism defined by an arbitrary injective mapping from
B to Z. We have that |B| = |Z| < |X| = |A|.

Since suppX ⊂ Z∗, for an arbitrary letter a of f and its image w there must
be at least one word v such that w = k(v). If we define h using a 7→ v, then
f = k◦h must hold and we are done. Let us in the future refer to creating h in
this way with the shorthand h = k−1 ◦ f , even though inversion of morphisms
is not formally defined in this thesis and k might not be injective (and hence
k−1 not a valid function).

34

2.3. Simplifiable morphisms

For example, see the morphism ψf = {a 7→ aca, b 7→ badc, c 7→ acab, d 7→ adc}
(taken from [6]). Then ψX = {aca, badc, acab, adc}, ψZ = {aca, adc, b}, ψk =
{x 7→ aca, y 7→ adc, z 7→ b}, ψh = {a 7→ x, b 7→ zy, c 7→ xz, d 7→ y} and finally
ψg = {x 7→ xxzx, y 7→ xyxz, z 7→ zy}.

Y. Kobayashi and F. Otto also stated that if f is noninjective, then its multiset
of images must be simplifiable (hence f is simplifiable). They did this by
invoking a theorem from abstract algebra, but they did not show how to
find such a simplifiable set, and the proof of the theorem in [1] (Theorem
1.2.5) does not necessarily show it either. A. Ehrenfeucht and G. Rozenberg
also proved that noninjective morphisms are simplifiable [10] (Theorem 1 (ii))
using a distinct proof, but their proof is also nonconstructive.

However, Tero Harju and Juhani Karhumäki gave a procedure for finding it
(but without time complexity analysis) in their paper published in 1986 [11]
(Section 4). Nonetheless, they also employ a lot of terminology from abstract
algebra, and so to avoid having to introduce a nontrivial number of definitions,
I will rather give a distinct proof, whilst also explaining the algorithm. First,
we need the following definition and a subsequent lemma.

Definition. A set of words is prefix-free if no word in it is a prefix of another
word in it.

Lemma 2.17. If a multiset of words is simplifiable, then at least one of its
simplified sets is prefix-free.

Proof. Let X be a multiset of words and Z its arbitrary simplified set. If Z
is prefix-free we are done, so let us assume it is not. Then we will employ
the following algorithm to create a prefix-free set Z such that |Z| ≤ |Z| and
Z ⊂ Z∗, hence Z is also a simplified set of X.

Let Z0 = Z. Now, we iteratively obtain the set Zi+1 from the set Zi like this:
If there are two different words u and w in Zi such that w = uv for some word
v (that is one word in Zi is a prefix of another word in Zi), then we arbitrarily
pick one such a pair of words u and w and do Zi+1 = Zi \ {w} ∪ {v}. There
must be some integer j ≥ 0 such that there is no longer such pair of words u
and w. Then the set Z = Zj is clearly prefix-free. Now, let us prove |Z| ≤ |Z|
and Z ⊂ Z∗ by induction.

Base case: Z0 = Z. Clearly, |Z| = |Z| and Z ⊂ Z∗.

Inductive case: Let us assume |Zi| ≤ |Z| and Z ⊂ (Zi)∗. Then to create
Zi+1 we remove the word w and add the word v, as described above. Since
w was definitely present in Zi, we get |Zi+1| ≤ |Z| and since the word w can

35

2. Repetitiveness of D0L languages

be “reconstructed” from the concatenation of words u and v, we get Zi ⊂
(Zi+1)∗.

With this algorithm in hand, we can move on to the next theorem.

Theorem 2.18 (A. Ehrenfeucht and G. Rozenberg [10] – Theorem 1 (ii)). If
a morphism is noninjective, then it is simplifiable.

Proof. If the morphism is erasing, then by Lemma 2.15 it is simplifiable, so
let us assume it is nonerasing.

Let f be a noninjective nonerasing morphism, X its multiset of images and
Z the result we get by running the algorithm from the proof of the previous
lemma on suppX. Then clearly |Z| ≤ |X| and suppX ⊂ Z∗. We just need
to show that |Z| < |X| if f was noninjective. Let B be an arbitrary alphabet
such that |B| = |Z|, k a morphism defined by an arbitrary injective mapping
from B to Z and h = k−1 ◦ f .

First, since no image of k is a prefix of another image of k, k has no tails (as
described in the algorithm for checking the injectivity of a morphism from the
previous section), hence no tail of k is equal to an image of k and therefore
by Lemma 2.14 k is injective.

Secondly, we show that if at least two images in h end on the same letter,
then |Z| < |X|. If two letters a and b of f (or h) have the same image under
f , then |Z| ≤ | suppX| < |X| and they must also have the same image under
h, since otherwise h(a) 6= h(b) but k(h(a)) = k(h(b)) (from f = k ◦ h), which
is a contradiction with k being injective. Hence at least two images in h end
on the same letter and the implication holds.

Let us therefore assume that | suppX| = |X|. The rest of the proof of this
implication is informal. Let q be a function from A to B defined by q(a) = b,
where k(b) is a suffix created during the algorithm from the proof of the
previous lemma from f(a) by having its various prefixes removed. If for some
two letters a1 and a2 of f we have a1 6= a2 and q(a1) = q(a2), then at some
point during the algorithm the suffix added to the set must have already
been in the set, thus the size of the set decreased. It can be seen, that
since the images of h are “descriptions” of how corresponding images of f
are “reconstructed” from images of k, that the function q is equal to the
function returning the last letter of h(a), thus the implication holds.

Finally, as a proof by contradiction let f be noninjective and u and v two
words satisfying the definition of noninjectivity of f but |Z| = |X|. Since u

36

2.3. Simplifiable morphisms

and v end on a different letter and |Z| = |X|, h(a) and h(b) also end on a
different letter, hence h(a) 6= h(b). However, since f(a) = f(b) and f = k ◦ h,
we also need for k(h(a)) = k(h(b)) to hold, but because we have h(a) 6= h(b),
this is a contradiction with k being injective.

The algorithm is described in pseudocode in Algorithm 2.7. The images of the
morphism are implemented as a sequence and not as a multiset, however, this
does not meaningfully change the algorithm. The important part, that is the
removal of prefixes, is contained on lines 1-25. A stack todo is used to keep
track of letters, whose images have to be compared with all the other images
(“both” ways). We also need a boolean array new, for the sole purpose of
checking whether a letter is already in todo, so that we do not push the same
letter multiple times.

One iteration of the while loop on line 6 takes O(m) time (we compare an
image both ways with all the other images). todo start with a size n and a
letter is pushed onto it only if an image gets its prefix removed, and since the
number of prefixes over all images is bounded by m, the while loop on line 6
goes through O (n+m) = O (m) iterations, therefore its time complexity is
O

(
m2)

.

The lines 26-30 only remove all the empty images to put k in the required
format, this is done in O(n) time.

Construction of h is taken care of by the lines 31-41. Since k is not only
injective, but also its set of the images is prefix-free, we have that not only
has k−1 ◦ f exactly one solution, but we also do not need to use any sort of
backtracking to find it.

The for loop on line 36 has time complexity O (m) since we again compare
an image with all the other images (this time only one way). Combined with
the loops on lines 32 and 35 the time complexity is O (nlm). However, when
the whole run of the algorithm is taken into account, the for loop on line 36
is entered O (m) times, thus the time complexity of the three loops is also
O

(
m2)

.

In total, we get time complexity O
(
m2)

. It is quite possible that similar to the
algorithm for deciding injectivity, this can be reduced further, but reaching
linear time complexity again seems unlikely.

37

38 2. Repetitiveness of D0L languages

Algorithm 2.7 SimplifyNoninjective
Input: nonerasing noninjective morphism f with letters 1 . . . n
Output: morphisms h and k such that h ◦ k is a simplification of f

◃ Create k.
1: kwip ← a copy of f
2: todo ← an empty stack
3: new ← an array of size n, by default all values are set to true
4: for a← 1 to n do
5: push a onto todo
6: while todo is not empty do
7: a← pop from todo
8: new[a]← false
9: if kwip[a] = ε then

10: continue
11: for b← 1 to n do
12: if kwip[b] = ε then
13: continue
14: if kwip[a] = kwip[b] then
15: kwip[b]← ε
16: else if kwip[a]s = kwip[b] for some word s then
17: kwip[b]← s
18: if new[b] = false then
19: push b onto todo
20: new[b]← true
21: else if kwip[a] = kwip[b]s for some word s then
22: kwip[a]← s
23: push a onto todo
24: new[a]← true
25: break

◃ Clean up k.
26: k ← an empty linked list
27: for a← 1 to n do
28: if kwip[a] 6= ε then
29: append kwip[a] as a node to k
30: k and N ← k as an array and its size

◃ Create h.
31: h← an array of size n
32: for a← 1 to n do
33: image ← a copy of f [a]
34: h[a]← an empty linked list
35: while image 6= ε do
36: for b← 1 to N do
37: if image = k[b]s for some word s then
38: append b as a node to h[a]
39: image ← s
40: break
41: h[a]← h[a] as an array
42: return h and k

2.3. Simplifiable morphisms

2.3.2 Injective simplifiable morphisms
Now, let us move on to simplifying injective morphisms. The contraposition
of Theorem 2.18 tells us, that if a morphism is elementary, then it is injec-
tive. The converse of this statement is not true, as we have seen with the
first example morphism in this section, which was injective and simplifiable,
and the simplification can be found even with the algorithm for noninjective
morphisms.

For example of an injective simplifiable morphism which is not simplifiable
using the algorithm for noninjective morphisms, see the morphism ψ = {a 7→
abcc, b 7→ abcd, c 7→ abdc, d 7→ abdd}, where ψZ = {ab, c, d}, but no image is a
prefix of each other.

The proof of the following theorem tells us how to simplify even injective
morphisms:

Theorem 2.19 (A. Ehrenfeucht and R. Rozenberg [10] – Theorem 2 (ii)). The
problem of deciding whether an arbitrary morphism is elementary is decidable.

Proof. Let f be a morphism and X its multiset of images. By Lemma 2.16
we can focus on X. The size of a simplified set of X is bounded by |X| − 1.
Clearly, if there exists a simplified set Z ofX, then there also exists a simplified
set Z of X such that each its word is bounded by the length of the longest
word in X (and also is nonempty), since otherwise the words do not help us
in any way in reconstructing words from X and can be removed. Therefore
we can simply iterate through the finite number of combinations of possible
sets until we find one fitting the definition of a simplified set of X (and if no
combination fits the definition, then the morphism is elementary).

The algorithm is described in pseudocode in Algorithm 2.8. It can be seen
that the number of combinations of possible sets is reduced by only focusing
on those whose elements are factors of words in X. Clearly, this does not
harm correctness (though the number of combinations is still very large, as
will be discussed later). The combinations that are not prefix-free are rejected
on lines 7-8. By Lemma 2.17, this also does not harm correctness and allows
us to again create h without backtracking, thus simplifying the algorithm.

The pseudocode omits some details when compared to the previous algorithms,
such as how to enumerate all the combinations. This is because the algorithm
is very slow, so these details are not as relevant. The rest of the pseudocode in
this chapter will be the same way, as all the remaining algorithms have nontriv-
ial time complexity analysis. However, before discussing the time complexity

39

2. Repetitiveness of D0L languages

Algorithm 2.8 SimplifyInjective
Input: injective morphism f with letters 1 . . . n
Output: morphisms h and k such that h ◦ k is a simplification of f or report

of failure if such a simplification does not exist
1: factors ← an empty set of words
2: for a← 1 to n do
3: for each nonempty factor factor of f [a] do
4: add PrimitiveRoot(f(a)) to factors
5: for i← 1 to n− 1 do
6: for each combination comb of words of size i from factors do
7: if any word in comb is a prefix of another word from comb then
8: continue
9: k ← an arbitrary injective mapping from 1 . . . i to comb

10: if h← k−1 ◦ f has a solution then
11: h← k−1 ◦ f
12: return h, k ◃ f is simplifiable
13: report failure ◃ f is elementary

of this algorithm I would like to mention two modifications, which further cut
down on the number of required combinations.

The first modification is to only add such factors into the set of factors, which
are primitive words. This is because if there exists a simplified set Z with
periodic words, then clearly the same set with the periodic words exchanged
with their primitive roots will also satisfy the definition of a simplified set and
hence we only need to check combinations of primitive words.

It can be seen that deciding whether a word w is primitive or even finding its
primitive root can be done for example by checking whether w = vm for some
integer m ≥ 1, where for v we try the prefixes of w in ascending sizes. This
could lead to a quadratic run time, for example with w = a . . . ab. There is also
a more sophisticated algorithm, which has linear time complexity, however,
as it is nontrivial and not pertinent to my thesis I will skip it here and leave
only references to Lothaire [1] (Problem 1.3.4 & Problem 1.1.3).

The second modification is to only check combinations of size n−1. However,
when combined with checking only combinations that are prefix-free and with
checking only combinations whose elements are factors of words in X, this
could cause us to miss out on a solution. For example, see the morphism
ψf = {a 7→ aa, b 7→ ab, c 7→ ba, d 7→ bb}, where ψX = {aa, ab, ba, bb} and the
largest prefix-free simplified set made up of only factors of words in ψX is {
a, b}, which is of size n− 2.

40

2.3. Simplifiable morphisms

On the other hand, this morphism is quite anomalous, as the letters c and
d do not occur in words of X. This could be formally denoted by saying
that ψf is a morphism from A∗ to C∗, where A = {a, b, c, d} and C = {a, b}.
However, for this we need to expand the definition of simplifiable morphisms
to morphisms where A 6= B. This is fortunately quite easy:

Definition. A morphism f : A∗ → C∗ is simplifiable if there exist morphisms
h : A∗ → B∗ and k : B∗ → C∗, such that f = k ◦ h and |B| < |A|, otherwise
it is elementary.

It can be seen, that if C is not a subset of A, we can no longer create a
simplification g = h ◦ k. However, this does not have to bother us, as our
algorithm only returns the morphisms h and k.

The reason for expanding the definition is the fact that if |C| < |A| (as was
noted by G. Rozenberg and A. Salomaa [15] (page 17)), then it can be seen that
the morphism f is trivially simplifiable, with B being an arbitrary alphabet of
size |C|, k being an arbitrary injective mapping from B to C and h = k−1 ◦ f .
The following lemma also pertains to our situation:

Lemma 2.20. Let f : A∗ → C∗ be a morphism and X its multiset of words
(and all letters from C occur in words of X). If there is a prefix-free simplified
set Z1 of X, whose elements are factors of words of X, that is of size smaller
than |X| − 1 and there is no set Z2 with the same conditions that is of size
|X| − 1, then |C| < |A| − 1.

Proof. Let us prove it by contradiction by saying that |C| ≥ |A| − 1. Let
i = |C| − |Z1| and j = |A| − 1− |Z1|. Since i ≥ j, we can create Z2 by adding
j different letters from C, which do not occur as first letters of words in Z1,
as single-letter words to Z1. The set Z2 is then still prefix-free, simplified, its
elements are still factors of words of X and it is of size |A| − 1 = |X| − 1.

The lemma tells us that if we first check whether |C| < |A| and accordingly
return the trivial simplification, then we can search only combinations of size
n − 1 without losing correctness. The two modifications are described more
concretely in pseudocode in Algorithm 2.9.

Now, on to time complexity. A word of length k has O
(
k2)

factors (k positions
for both the starting and ending indices). Hence, we can say that the number
of factors of the multiset of images of a morphism, and also the cardinality of
the set factors, is O

(
n× l2

)
. It should be noted, that this is on average prob-

ably a pessimistic estimate, as it ignores the facts that l and the average size

41

2. Repetitiveness of D0L languages

Algorithm 2.9 SimplifyInjective (improved)
Input: injective morphism f with letters 1 . . . n
Output: morphisms h and k such that h ◦ k is a simplification of f or report

of failure if such a simplification does not exist
1: C ← an empty set
2: for a← 1 to n do
3: for i← 1 to |f [a]| do
4: add f [a][i] to C
5: if |C| < n then
6: k ← an arbitrary injective mapping from 1 . . . |C| to C
7: h← k−1 ◦ f
8: return h, k ◃ f is trivially simplifiable
9: factors ← an empty set

10: for a← 1 to n do
11: for each nonempty factor factor of f [a] do
12: add PrimitiveRoot(factor) to factors
13: for each combination comb of words of size n− 1 from factors do
14: if any word in comb is a prefix of another word from comb then
15: continue
16: k ← an arbitrary injective mapping from 1 . . . (n− 1) to comb
17: if h← k−1 ◦ f has a solution then
18: h← k−1 ◦ f
19: return h, k ◃ f is simplifiable
20: report failure ◃ f is elementary

of images of the morphism might be disproportionate, that images probably
share common factors , and that we only care about primitive factors.

The number of checked combinations is then O
((n×l2

n−1
))
. We have seen in the

previous algorithm that if the set of images of k is prefix-free, then computing
h = k−1◦f takes O

(
m2)

time. It can be seen, that enhancing this procedure to
also report failure if it does not have a solution should not have an impact on
the time complexity, and that the time required to generate one combination
should be inconsequential compared to the time spent on checking its validity.
Similarly, the time required to create the set factors should be inconsequential
when compared to the time spent on the rest of the algorithm. Overall, we
get time complexity O

((n×l2

n−1
)
×m2

)
.

This time complexity is not very illustrative. Let us at least show, that this
is acceptable only for morphisms with very small values of l. For example,
if l2 = O (1), then we have O

((n
n−1

)
×m2

)
= O

(
nm2)

, but if l2 = O (n),

42

2.3. Simplifiable morphisms

then we haveO
((n2

n−1
)
×m2

)
=O

((n2

n

)
×m2

)
=O

(
(1/(2π))(en)n−1/2 ×m2

)
= O

(
nn−1/2 ×m2

)
. The second asymptotic equality can be shown using

Stirling’s approximation [27].

2.3.3 Injective simplifications

The last topic I will discuss in this section is that of the so-called injective
simplifications. It is important to note that a simplification does not have to
be elementary or even injective. For example, see the morphism ψf = {a 7→
abc, b 7→ a, c 7→ bc}, where ψZ = {a, bc} corresponds to the simplification ψg =
{x 7→ xy, y 7→ xy} (with respect to morphisms ψh = {a 7→ xy, b 7→ x, c 7→ y}
and ψk = {x 7→ a, y 7→ bc}), which is clearly still simplifiable.

However, we can repeatedly call the algorithm for simplifying noninjective
morphisms until we get an injective one (we remove at least one letter in each
use of the algorithm, so this approach has to be finite). The following is a
formal definition:

Definition. Let (f0, f1, f2, . . . , ft), (h1, h2, . . . , ht) and (k1, k2, . . . , kt) be
three sequences of morphisms such that ft is injective and for all integers i in
{1, . . . , t} it holds that fi is a simplification of fi−1 with respect to (hi, ki).
Let f = f0, g = ft, h = h1 ◦ h2 ◦ · · · ◦ ht and k = kt ◦ · · · ◦ k2 ◦ k1. Then g is
an injective simplification of f with respect to (h, k, t).

Before giving the algorithm for obtaining an injective simplification, let me
highlight here a small but notable difference between simplifications and in-
jective simplifications, which is that the equalities f = h ◦ k and g = k ◦ h no
longer hold and instead we have the equalities given by this lemma.

Lemma 2.21 (Y. Kobayashi and F. Otto [5] – Lemma 4.4). Let g be an
injective simplification of f with respect to (h, k, t). Then f t = h ◦ k and
gt = k ◦ h.

An algorithm for obtaining an injective simplification of a morphism is de-
scribed in pseudocode in Algorithm 2.10. It mostly follows the definition,
except for the fact that if the morphism on input is already injective, a trivial
output is returned, for the sake of user-friendliness. When it comes to time
complexity, it seems that it would be simply equal to O

(
nm2)

, due to the al-
gorithm for simplifying a noninjective morphism (which has time complexity
O

(
m2)

) being called at most n times. However, such an analysis ignores the
fact that a simplification of a morphism can be larger than the morphism.

43

2. Repetitiveness of D0L languages

Algorithm 2.10 InjectiveSimplification
Input: morphism f with letters 1 . . . n
Output: if f is noninjective, returns morphisms g, h and k and an integer

t such that g is an injective simplification of f with respect to (h, k, t),
if f is injective, returns (f , I, I, 0), where I is the identity morphism on
1 . . . n

1: g ← f
2: h← k ← the identity morphism on 1 . . . n
3: t← 0
4: while IsInjective(g) = false do
5: if IsErasing(g) = true then
6: hnew, knew ← SimplifyErasing(g)
7: else
8: hnew, knew ← SimplifyNoninjective(g)
9: g ← hnew ◦ knew

10: h← hnew ◦ h
11: k ← k ◦ knew

12: t← t+ 1
13: return g, h, k, t

Let φm denote the sum of lengths of all images of a morphism φ. It can
be seen, that if we have two morphisms x and y, then for their composition
z = y ◦x we have that zm is at most xm×ym (the worst case happens with for
example ψx = {a 7→ aa} and ψy = {a 7→ aaa}) and that it can constructed in
O (xm × ym) time.

It can also be seen, that all the algorithms for simplifying a morphism re-
turn h and k such that hm ≤ fm and km ≤ fm. Nonetheless, as g is a
composition of h and k, we have that gm ≤ (fm)2. Since when creating
an injective simplification we do at most n − 1 simplifications, we have that
gm ≤ (fm)2n−1 and hence the time complexity of finding an injective simpli-
fication is O

(
m2n−1

)
. For the corresponding morphisms h and k we have a

similar bound of hm = km ≤ fm×(fm)2×(fm)4× · · ·×(fm)2n−2 = (fm)2n−1−1.

These bounds are possibly too pessimistic, as clearly the morphisms of type
{a 7→ aa} are not simplifiable, and intuitively simplifications should not be
larger than the objects they are simplifying. It might be possible to prove
that for each noninjective morphisms there exists an injective simplification
which has a size for example at most polynomial with regards to the size of
the morphism. Nonetheless, Lemma 2.21 seems to hint that the corresponding
morphisms h and k could still “give us trouble”.

44

2.4. Infinite periodic factors

2.4 Infinite periodic factors
This is the first section in which we have to consider D0L systems and not
just morphisms. For example see the morphism ψ = {0 7→ 00, 1 7→ 1}. Then
L(φ, 0) is repetitive, but L(φ, 1) is not. However, these D0L systems are quite
anomalous, in that they do not “make use” of all the letters of the morphism.
To make describing the algorithm more convenient, K. Klouda and Š. Starosta
only consider the so-called reduced D0L systems.

Definition. A D0L system is reduced if all the letters of its morphism are
factors of its language.

It is clear that for an arbitrary D0L system there exists a reduced D0L system
that generates the same language, and that the reduced D0L system can be
found using Algorithm 1.1 in time linear with regards to the size of the D0L
system, so there is no loss of generality.

K. Klouda and Š. Starosta begin the description of the algorithm by giving
the following two definitions:

Definition. Let G be a D0L system. The infinite periodic word vω is an
infinite periodic factor of G, if v is nonempty and for all integers k ≥ 1 the
word vk is a factor of L(G).

The infinite periodic factors vω and uω of G are equivalent if the primitive root
of u is a conjugate of the primitive root of v. The equivalence class containing
vω is denoted by [v]ω.

It is clear that the language generated by a D0L system is (strongly) repetitive
if and only if the system contains at least one infinite periodic factor. The
following also holds:

Corollary 2.22 (K. Klouda and Š. Starosta [6] – Corollary 2). Let G be a
D0L system. Then the number of primitive words v, such that vω is an infinite
periodic factor of G, is finite.

Their algorithm returns the set of all such primitive words. It is split into
two parts: the first part takes care of all infinite periodic factors vω, where v
contains only bounded letters, and the second part finds the remaining ones
(where v contains at least one unbounded letter). Hence, let me refer to
the first ones with the shorthand bounded infinite periodic factors and to the
second ones with the shorthand unbounded infinite periodic factors.

45

2. Repetitiveness of D0L languages

H = (ψ, a)
ψ

a 7→ Cab b 7→ 1c1 c 7→ E2bd5 d 7→ BbaA
A 7→ B B 7→ C C 7→ D D 7→ E E 7→ ε
5 7→ 6 6 7→ 7 7 7→ 8 8 7→ 9 9 7→ 5
1 7→ 2 2 7→ 1

S(H) = a, Cab, DCab1c1, EDCab1c12E2bd52,
EDCab1c12E2bd52111c1BbaA61, . . .

Figure 2.7: Pushy D0L system.

2.4.1 Bounded infinite periodic factors
The following definition was introduced by G. Rozenberg and A. Ehrenfeucht
to isolate anomalous types of D0L systems:

Definition. Let G = (φ, s) be a D0L system and B the set of bounded letters
of the morphism φ. The D0L system G is pushy if the set FL(G) ∩ B∗ is
infinite.

In other words, a D0L system is pushy, if its language contains infinitely many
factors containing only bounded letters. They also show the following:

Lemma 2.23 (G. Rozenberg and A. Ehrenfeucht [4] – Lemma 2.1 (1)). It is
decidable whether a D0L system is pushy.

The lemma itself is not very relevant to us, but a notion they define during its
proof, which they also use to give a different characterization of pushy D0L
systems, is crucial:

Lemma 2.24 (G. Rozenberg and A. Ehrenfeucht [4]). A D0L system with a
morphism φ is pushy if and only if it satisfies the edge condition, that is if
there is a reachable letter a, an integer k ≥ 1, any word v and a bounded but
immortal word u such that φk(a) = uav or φk(a) = vau.

An example is in order. This subsection will be illustrated on the D0L system
H in Figure 2.7. It can be seen that it satisfies the edge condition with for
example a = a, k = 4, v = EDCab1c12E2bd52111c1Bb and u = A61, since
ψ4(a) = EDCab1c12E2bd52111c1BbaA61.

How we can use the edge condition to obtain a bounded infinite periodic factor
was described in more detail by K. Klouda and Š. Starosta. Let u still be the

46

2.4. Infinite periodic factors

bounded and immortal word from the definition of an edge condition, and let
us say for now it was the suffix. It can be seen, that by iterating φk on a an
arbitrary number of times the resulting word will have the following suffix

uφk(u)φ2k(u)φ3k(u) · · · .

Thanks to u being bounded, if k = 1, it can be seen that the suffix will be
eventually periodic (see Lemma 2.9), that is there are integers s1 ≥ 0 and
t1 ≥ 1 such that φs1(u) = φs1+t1(u). Fortunately, K. Klouda and Š. Starosta
have proven that the suffix will be eventually periodic if k is any integer
≥ 1 [6] (Lemma 4), that is there are integers sk ≥ 0 and tk ≥ 1 such that
φsk×k(u) = φ(sk+tk)×k(u).

Knowing this, we get that the eventually periodic word (and therefore also
the bounded infinite periodic factor) is as follows:

xvω = uφk(u) · · ·φ(sk−1)×k(u)
(
φsk×k(u) · · ·φ(sk+tk−1)×k(u)

)ω
.

If u is a prefix instead, the analysis will be analoguous, except the eventually
periodic word will be reversed:

ωvx =
ω(
φ(sk+tk−1)×k(u) · · ·φsk×k(u)

)
φ(sk−1)×k(u) · · ·φk(u)u.

When implementing this programmatically, since we know some possible val-
ues of sk and tk must exist, we can find the smallest possible ones by iterating
φk on u, saving the intermediary results (along with their order) in some set,
and ending the search when we get a word we have already seen before.

Again, an example is in order. Let us use the u we had in the last example
with H, that is u = A61 and k = 4. Iterating with ψ4 on u we get: A61 17→
E51 27→ 91 37→ 81 47→ 71 57→ 61 67→ 51 77→ 91. We see that sk = 2 and tk = 5, and
that we have found a bounded periodic factor vω = (9181716151)ω.

Therefore if a D0L system satisfies the edge condition, then a D0L system
has at least one bounded infinite periodic factor. Together with Lemma 2.24
and the obvious fact, that if a D0L system has at least one bounded infinite
periodic factor, then it is pushy, we obtain the following:

Lemma 2.25. The following three statements are equivalent:

(1) A D0L system is pushy.

(2) A D0L system satisfies the edge condition.

47

2. Repetitiveness of D0L languages

Figure 2.8: Graphs of unbounded letters for the D0L system from Figure 2.7.

(3) A D0L system has a bounded infinite periodic factor.

As a corollary, there is no other way to “generate” a bounded infinite periodic
factor, than the one described above.

Now, we need to take a step back, as we still need a way to find all the words
u from the definition of the edge condition. For this reason, K. Klouda and Š.
Starosta expanded the notion of the edge condition into the so-called graphs
of unbounded letters.

Definition. Let G be a (reduced) D0L system with a morphism φ. The graph
of unbounded letters of G to the right, denoted URG, is the labeled directed
graph, where vertices are unbounded letters, and there is an edge from the
vertex a to the vertex b with the label u, if φ(a) = vbu, where v is any word
and u is a bounded (but not necessarily immortal) word.

The graph of unbounded letters of G to the left, denoted ULG, is defined
analoguously, except that the position of u and v in the definition is switched.

For example, see Figure 2.8. From the definition of the graphs of unbounded
letters it can be seen that the edge condition is satisfied if and only if one of
the graphs of unbounded letters contains a cycle including an edge with an
immortal label. Furthemore, let u1, u2, . . . , uk be the labels of one such a cycle.
Then the corresponding word u from the definition of the edge condition is
equal to:

ukφ(uk−1) · · ·φk−2(u2)φk−1(u1),

48

2.4. Infinite periodic factors

if the cycle was from UR. If the cycle was instead from UL, then u is again
reversed:

φk−1(u1)φk−2(u2) · · ·φ(uk−1)uk.

Coming back to our example, in URH we have one cycle of size 4 created from
the letters a, b, c, and d. When we start from the letter a, we get u = A61 and
find vω = (9181716151)ω, from b we get u = B72 and find vω = (5292827262)ω,
from c we get u = 1C8 and find vω = (171615191817)ω, from d we get u = 52D
and find vω = (9282726252)ω. In ULH we have a cycle of size 1 created from
only a, and another cycle of size 2 created from b and c. When we start from
a we get u = C, which is immortal, so we find no bounded infinite periodic
factor. When we start from b we get u = 1E1 and find vω = (11)ω, when we
start from c we get u = 22 and find vω = (22)ω. We see that cycles that are
conjugates of each other can generate bounded periodic factors that are not
equivalent.

Since by Lemma 2.25 this is the only way to generate a bounded infinite
periodic factor, we must have generated at least one representative vω from
each class of bounded infinite periodic factors [vω]. To return the set of the
primitive words v, such that vω is a bounded infinite periodic factor, we start
by taking an empty set and all the words v found using the algorithm (in the
example above 9181716151, 5292827262, 171615191817, 9282726252, 11 and
22), then we make sure to turn all the periodic ones (11 and 22) into primitive
ones (1 and 2) by finding their primitive roots, then we add all of them into
the set, and finally iterate over each of them and add all of their conjugates
to the set ({1, 1519181716, 1615191817 . . . }).

The vertices of the described graphs are only the unbounded letters since the
bounded ones can not satisfy the edge condition (if they could, they would
cease being bounded). Thus the image of each vertex contains at least one
unbounded letter, and since we can always differentiate the right-most (or
left-most) one, the outdegree of each vertex is exactly one. Therefore graphs
of unbounded letters are functional graphs, which were described at the end
of Subsection 2.1.2, where we have also seen an algorithm for finding all cycles
(without conjugates) in a functional graph. We can easily use the output of
this algorithm to find all cycles with conjugates.

The algorithm is described in pseudocode in Algorithm 2.11. This is the first
algorithm in this thesis in which morphisms are used on multi-letter words,
this is denoted in pseudocode by using parentheses instead of brackets.

The time complexity is uncertain, as similar to the algorithm for finding an
injective simplification, the algorithm takes significant powers of the morphism
(or uses the morphism repeatedly on the same word, which suffers from the

49

50 2. Repetitiveness of D0L languages

Algorithm 2.11 BoundedInfinitePeriodicFactors
Input: D0L system G (morphism φ with letters 1 . . . n and axiom s)
Output: set V , containing all the primitive words v such that vω is a bounded

infinite periodic factor of G
1: φ← Reduce(φ, s)
2: V ← an empty set of words
3: M ←MortalLetters(φ, s)
4: UR← the graph of unbounded letters to the right of φ
5: for cycle in FindCycles(UR) do
6: if each label in cycle is mortal then
7: continue
8: φk ← φ|cycle|

9: for each conjugation cycle of cycle do
◃ Create u.

10: u← an empty word
11: for for each label label in cycle do
12: u← Concatenate(label, φ(u))

◃ Compute sk and tk.
13: history ← an empty associative map of pairs (word, integer)
14: uk ← u
15: i← 0
16: while uk is not in history do
17: add the pair (uk, i) to history
18: uk ← φk(uk)
19: i← i+ 1
20: sk ← history[uk]
21: tk ← i− sk

◃ Create v.
22: uk ← φk×sk(u)
23: v ← uk

24: for _← 1 to (tk − 1) do
25: uk ← φk(uk)
26: v ← Concatenate(v, uk)
27: for for each conjugate c of v do
28: add c to V
29: UL ← the graph of unbounded letters to the left of φ
30: do the same steps with UL as with UR above, except the order of the

arguments in both calls to the Concatenate function is swapped
31: return V

2.4. Infinite periodic factors

same blowup), which have the same problems (and by definition they even are
the same) as compositions of morphisms. That is, the time complexity could
be approximated by O

(
x×m2y)

, where x is the number of bounded infinite
periodic factors and y an unknown function dependant upon the morphism.
It might be possible that this time bound is again too pessimistic since we
are using the morphism only on bounded words, therefore we can restrict the
domain of the morphism to only bounded words, and such morphisms should
intuitively not increase in size as much when we take their power.

However, it can be seen that if we only want to decide whether a D0L system
is pushy, we only have to find a cycle containing an edge with an immor-
tal label (and therefore we can also ignore conjugate cycles). As reducing a
D0L system takes O (n+m+ |s|) time (Algorithm 1.1), finding all the un-
bounded letters takes O (n+m) time (Algorithm 2.3), creating the graphs
of unbounded letters can be easily done in O (n+m) time, finding in them
all cycles (without conjugates) takes O (n) time (Algorithm 2.4) and finally
deciding whether a label of size k is immortal takes O (k) time using the array
M from Algorithm 2.2 (which runs in O (n+m) time), we have that deciding
whether a D0L system is pushy takes time linear with regards to the size of
the D0L system.

2.4.2 Unbounded infinite periodic factors

To easily describe how unbounded infinite periodic factors can be found we
need yet another definition.

Definition. Let φ be a morphism, then a word w is a periodic point of φ
(with a period k), if there exists an integer k ≥ 1 such that φk(w) = w.

Let φ : A∗ → A∗ be a morphism. Usually, we are interested in infinite periodic
points, and more specifically, those that can be “started” from a single letter,
that is periodic points w with a period k such that there exists an unbounded
letter a of φ so that φk×ω(a) = w (let us denote these as periodic points with
origin in an unbounded letter).

Similar to purely morphic words, to find these types of periodic points we just
have to find all unbounded letters a such that φk(a) = av for any word v
(since a is unbounded v has to be immortal) and an integer 1 ≤ k ≤ |A|.

This in turn can be found easily using the so-called graphs of first letters – as
the name suggests it is a directed graph where vertices are the letters of the
morphism φ and there is an edge from vertex a to vertex b if φ(a) = bx for
any word x.

51

2. Repetitiveness of D0L languages

Since each vertex has an outdegree of at most one, these graphs are directed
pseudoforests – finding all cycles in them is easy. After we find a cycle, we
also have to check that its vertices are unbounded letters, which is also easy.
In fact, it suffices to check only any one of its vertices, since a bounded letter
can not have an unbounded letter as its first (or any) letter, thus it can not
be in a cycle with one.

How are periodic points related to unbounded infinite periodic factors? If
a D0L language has a periodic point w as a factor, and w is also an infinite
periodic word (that is, w = vω, let us denote these as periodic periodic points),
then it is not hard to see that it also has an unbounded infinite periodic factor
vω.

Let us restrict ourselves to D0L systems with an injective morphism for a
bit (at the end of the section it will be shown, that this restriction does not
matter). K. Klouda and Š. Starosta proved that for D0L systems with an
injective morphism the converse of the above also holds:

Theorem 2.26 (K. Klouda and Š. Starosta [6] – Theorem 15). If a D0L
system with an injective morphism has an unbounded infinite periodic factor
vω, then it also has a periodic periodic point uω with an origin in an unbounded
letter, where u ∈ [v].

That is, in D0L systems with injective morphisms there is a 1-to-1 correspon-
dence between equivalence classes of unbounded infinite periodic factors and
periodic periodic points with origin in an unbounded letter. To check that
a periodic point w (of an injective morphism φ : A∗ → A∗) with period p
and with an origin in an unbounded letter a is a periodic infinite word, K.
Klouda and Š. Starosta employed the following algorithm by Barbara Lando
described in her paper published in 1986 [21] (end of Section 3), which can
be succinctly described like this: If φp×k(a) = azax, where k ≤ |A|, x is any
word and z is a word containing no occurrences of a (and by [21] (Proposition
3.3) at most one occurrence of each other unbounded letter), then w = (az)ω

if φp(az) = (az)e with e ≥ 2.

Let me also show a small example: Let H = (ψ, 1) be a D0L system with the
injective morphism ψ = {0 7→ 101, 1 7→ 0}. Since ψ2 = {0 7→ 01010, 1 7→ 101},
it can be seen that ψ has two periodic points with period 2 with origins
in unbounded letters, namely in both 0 and 1, and since H is reduced, these
periodic points are also in FL(H). Applying Lando’s algorithm to the periodic
point with origin in 0 we get that k = 1, az = 01, ax = 010 and ψ2(01) =
01010101 = (01)4, hence (01)ω is an unbounded infinite periodic factor of H.
Applying Lando’s algorithm to the periodic point with origin in 1 we get that

52

2.4. Infinite periodic factors

k = 1, az = 10, ax = 1 and ψ2(10) = 10101010 = (10)4, hence (10)ω is an
unbounded infinite periodic factor of H.

Since by Theorem 2.26 this is the only way to generate an unbounded infinite
periodic factor, we must have generated at least one representative vω from
each class of unbounded infinite periodic factors [vω]. Therefore we can pro-
ceed in almost the same way as in the previous subsection, except we do not
have to find primitive roots, since the word az in Lando’s algorithm is already
primitive.

Finally, the fact that the above theorem holds only for D0L systems with
injective morphisms does not have to bother us thanks to the following lemma
by K. Klouda and Š. Starosta based on the work with injective simplifications
by Y. Kobayashi and F. Otto [5]:

Lemma 2.27 (K. Klouda and Š. Starosta [6] – Corollary 5). Let G be a D0L
system and let G′ be its injective simplification with respect to (h, k, i). Then
vω is an infinite periodic factor of L(G) if and only if uω is an infinite periodic
factor of L(G′) such that h(u)ω ∈ [v]ω.

Thus to find for an arbitrary D0L system G the set of primitive words v,
such that vω are unbounded infinite periodic factors in G, we can find all
such words in the corresponding injective simplification and use k on them.
However, since it is possible for k to create periodic words from primitive ones,
we need to find their primitive roots and moreover, we also have to again add
them into another set and find all their conjugates. Due to this, we can save
ourselves some work if we only look for the conjugates once we have used k.

The pseudocode describing this whole subsection is available in Algorithm 2.12.
The time complexity is again uncertain since the morphism is iterated a non-
constant number of times. The positive difference is that in this case we know
that it cannot be iterated more than n times, the negative difference is that
in this case we also have to consider unbounded letters.

In the previous subsection, we have seen that a D0L system is pushy if its lan-
guage contains at least one bounded infinite periodic factor. As a counterpart
to that, K. Klouda and Š. Starosta introduced the following definition [13]:

Definition. A D0L system is unboundedly repetitive if its language contains
at least one unbounded infinite periodic factor.

Now, we can say that a D0L system is (strongly) repetitive if and only if it
is pushy or unboundedly repetitive. Based on the pseudocode in this and the

53

Algorithm 2.12 UnboundedInfinitePeriodicFactors
Input: D0L system G (morphism φ with letters 1 . . . n and axiom s)
Output: set V , containing all the primitive words v such that vω is an un-

bounded infinite periodic factor of G
1: φ← Reduce(φ, s)
2: φ,_, k,_← InjectiveSimplification(φ)
3: V ← an empty set of words
4: U ← UnboundedLetters(φ)
5: G← functional graph of first letters of φ
6: for cycle in FindCycles(G) do
7: if U [the first letter of cycle] = false then
8: continue
9: φq ← φ|cycle|

10: for each letter a of cycle do
◃ Is the periodic point with origin in a a periodic infinite word?

11: occurred ← an array of size n, by default all values are set to false
12: occurred[a[i]]← true
13: end ← 1
14: for _← 1 to n do
15: prev ← |a|
16: a← φq(a)
17: for i← (prev + 1) to |a| do
18: if U [a[i]] = true then
19: if occurred[a[i]] = true then
20: end ← i
21: break
22: occurred[a[i]]← true
23: if end 6= 1 then
24: break
25: if a[end] 6= a[0] then
26: break
27: v ← substring of a from 1 to (end − 1)
28: vq ← φq(v)
29: same ← true
30: for i← 1 to |vq| do
31: if vq[i] 6= v[i mod |v|] then
32: same ← false
33: break
34: if same = false then
35: break
36: v ← k(v)
37: v ← PrimitiveRoot(v)
38: for for each conjugate c of v do
39: add c to V
40: return V

2.4. Infinite periodic factors

previous subsection, it can be seen that while checking for pushiness (linear
time complexity) is easier than finding at least one bounded infinite periodic
factor (uncertain time complexity), checking for unbounded repetitiveness is
complete only when we finalize the finding of at least one unbounded infinite
periodic factor (uncertain time complexity).

One last note regarding the pseudocode: K. Klouda and Š. Starosta proved
that if we have an injective morphism φ and an infinite word w such that φ(w)
is periodic, then w is eventually periodic [6] (Lemma 4). Hence if one letter
in a cycle of the graph of first letters is not an origin of a periodic periodic
point, then neither are all the other letters in the same cycle and therefore we
can use a break statement instead of a continue statement on lines 26 and 35.

55

Chapter 3
Implementation

The implementation of the algorithms from the previous chapter is split into
two patches for SageMath’s codebase. The corresponding tickets on Sage-
Math’s ticketing system can be found here [28] and here [29] 3. The Python
code can be then viewed by clicking on one of the links in the “Branch” field.

Trying this code out before it is merged in SageMath and before the next minor
version of SageMath is released requires one to compile their own version of
SageMath. However, Python allows one to easily “monkey patch” the code
into the current stable version of Sage during runtime. Therefore I have also
included with this thesis a Python file impl.py containing a slightly modified
version of the implementation, which can be loaded into SageMath using the
command load(“/path/to/the/file/impl.py”) 4. How to use the methods
themselves should be clear from the examples in the documentation (doc.pdf)
for users with at least passing knowledge of SageMath.

The rest of this chapter is structured as follows: first, SageMath is briefly
introduced, then some concepts behind its combinatorics on words module
are described in more detail, after which a few key differences between the
pseudocode and the implementation are highlighted, and finally, the testing
methodology is recounted.

3It is possible that in the future the larger of these will be split into even more smaller
ones to ease up the reviewing process

4There is also a text file sagecell.txt, which contains a link to a website allowing one
to try the methods without even installing SageMath.

57

3. Implementation

Figure 3.1: SageMath’s logo. The graph-like symbol has no special meaning
[33].

3.1 SageMath

SageMath, previously known as Sage, is a free and open-source mathematics
software system [7]. It is licensed under the GPL v3, and runs on Windows,
Linux, and OSX. It can also be accessed online on the SageMathCell [30]
and CoCalc [31] websites. Some of its more well-known alternatives include
Wolfram Mathematica and MATLAB.

SageMath provides a unified interface to many mathematically-minded open-
source projects, such as SciPy, Sympy, Maxima, GAP, FLINT, R, and others.
Since the release of SageMath’s first version in 2005, almost 300 packages
have been integrated and over 2.2 million lines of code have been written from
scratch [32].

SageMath is primarily written in Python (3), but Cython is also used often,
mainly in performance hot spots and for interfacing with the aforementioned
libraries. Python is also used as the interface for SageMath itself, though
there is a simple preprocessing step involved, which I will describe here for
posterity:

• All floating-point constants are wrapped in the RealNumber object – to
work around the floating-point precision problems.

• All integer constants are wrapped in the Integer object – to support
faster infinite precision integers than standard Python and to have di-
vision between integers return Rational objects instead of floats.

• The symbol ∧ (xor operator in Python) is replaced (except for in string
constants) with ** (power operator in Python), as ∧ is conventionally
used for the process of taking power of something when writing math
on a keyboard, and xor is not as useful in mathematics (it can still be
accessed with ∧∧ since that is replaced with ∧).

58

3.2. sage.combinatorics.words

Now, I will briefly summarise SageMath’s development process. SageMath
uses git for version control and Trac for tracking issues/tickets and for hosting
the git repository (there is also a mirror on GitHub). Informally speaking,
one needs to follow these three easy steps to contribute to SageMath (similar
as for other open-source projects):

0. Create an account on SageMath’s Trac server (the easiest way is by
logging through an existing GitHub account).

1. Either create a new Trac ticket or choose an existing one.

2. Push a git branch containing the changed code to the git repository and
attach it to the ticket, also set the ticket’s status to needs-review.

3. The changes will be reviewed (after some indeterminate amount of time)
and some objections will probably be raised, which will have to be re-
solved, but if all goes well, after few such iterations the new code should
be merged into the next minor version of SageMath.

3.2 sage.combinatorics.words

The part of SageMath that concerns itself with combinatorics on words is
called (in Python package naming convention) sage.combinatorics.words.
The newest version of the source code can be viewed online, for example, at the
GitHub mirror [34] of the git repository, and the documentation is available
on the SageMath website [35].

All of SageMath makes heavy use of object-oriented design. There are two
issues that might crop up when one tries to model words as objects. The
first of these is that infinite words require quite different treatment than finite
words. That is why SageMath differences between:

• Finite words – these should only use methods that work on finite words.

• Infinite words – these should only use methods that work on infinite
words.

• Words of unknown length – these should only use methods that work on
both finite and infinite words.

In actuality there are no methods (at least for now) that work on infinite
words but do not work on finite ones, so the list can be reworded as such:

59

3. Implementation

• Finite words – these can use all methods.

• Infinite words and words of unknown length – these can only use methods
that do not require finite length.

The second issue, orthogonal (theoretically) to the first one, concerns itself
with how the word is created, or more precisely, how the word stores and
manipulates its own data. SageMath gives us the following options regarding
the word’s data type:

• Python string.

• Python list.

• Python tuple.

• C array (the fastest way, but also the most limiting).

• Callable (a function or a functor).

• Callable, results of which are cached.

• Python iterator.

• Python iterator, results of which are cached.

Each item in the previous two lists is represented by a class in SageMath.
Classes in the first list implement the generic high-level functionality of vari-
ous algorithms, while classes in the second list implement the specific low-level
functionality of storing and viewing data. Finally, each word inherits exactly
one class from the first list and one class from the second list. Not every
combination is possible though, as is documented in Table 3.1. To summa-
rize what is in the referenced table: anything goes for finite words, infinite
words cannot be implemented with finite storage (list, tuple, string, array)
and words with unknown length can only be defined with an iterator since
callables without a specified length are presumed to be infinite.

There are also classes representing these following languages over some alpha-
bet (the alphabet is inputted by the user):

• Language of all finite words over some alphabet.

• Language of all infinite words over some alphabet.

• Language of all finite and infinite words over some alphabet.

60

3.2. sage.combinatorics.words 61

Figure 3.2: Simplified file and class diagram of sage.combinatorics.words
as of version 9.2.

3. Implementation

length →
data type ↓

Fin
ite

Infi
nit
e

Un
kn
ow
n

string X

list X

tuple X

array X

callable X X

callable (w/ cache) X X

iterator X X X

iterator (w/ cache) X X X

Table 3.1: Overview of possible combinations of word classes.

Each word belongs (has a pointer) to one of these languages, depending upon
its length. Where finite and infinite words belong is clear, the third language
is reserved for words of unknown length. Slightly interesting is that a finite
(resp. infinite) word never (directly) belongs to the language of finite and
infinite words. It can be sampled from it, but the act of sampling makes it
belong directly to the language of finite (resp. infinite) words. This concept
is known as facade in SageMath development.

These languages are a foundation for a framework that would allow one to
easily add more specific languages. However, it is only a foundation, as there
is currently no abstract base class Language which could be inherited to reduce
boilerplate when implementing new languages 5. There is work being done on
a large patch that would add such a class (and which would also refactor most
of the code in sage.combinatorics.words), however, as of today the patch
is not yet completed or more importantly merged into SageMath.

All in all, it is a standard practice in SageMath to have element-like classes
belong to parent-like classes and to keep a similar interface across all of Sage-
Math by making them inherit from the generic Element and Parent SageMath
classes. It should be noted that sage.combinatorics.words is currently not
entirely compliant in this regard (languages inherit from Parent, but words
do not inherit from Element), fixing this is a part of the rework mentioned in

5This is not entirely true, as there there is one class called AbstractLanguage, however,
it is depreciated and also not very useful.

62

3.2. sage.combinatorics.words

the previous paragraph.

How are the actual classes called and in what files they reside in can be seen
in the accompanying diagram in Figure 3.2. These are the files from which
the basic skeleton of sage.combinatorics.words is made of. There are a few
more files providing additional functionality built on top of this skeleton (most
important of these being word_generators.py and morphism.py). Lastly,
there are three rather small and specific files: __init__.py tells Python this
folder is a package, all.py specifies what should be imported by default in
SageMath and word_options.py manages how should the words be printed
into the console/file/notebook.

As can be seen in the previous diagram, one is expected to create words
either using the Word function, or by creating a language over some alphabet
using the Words function, and then sampling or even enumerating all (or only
of certain length) words from such a language. The words function (not to
be confused with the Words function) provides a shortcut for creating some
of the more well-known infinite words, such as the Thue-Morse word or the
Fibonacci word. Word morphisms are created with the class WordMorphism.
The morphisms can be applied to both finite and infinite words and also have a
few methods of their own, such as computing their fixed points or composition.

Finally, I will end this section with a (nonexhaustive) list of what one can do
with finite words in SageMath:

• Compute a power / period / exponent / border / primitive root.

• Find all (or only of certain length) prefixes / suffixes / conjugates /
subwords / factors / special factors.

• Match patterns in the word with the Boyer-Moore algorithm.

• Make a suffix tree/trie out of the word and then traverse it as needed.

• Use a surprising number of functions related to palindromes.

• Do a Lempel-Ziv decomposition.

• Check if it is a Lyndon word.

• Do a Burrows-Wheeler transformation.

63

3. Implementation

algorithm method

Reach (Alg. 1.1) reach

MortalLetters (Alg. 2.2) immortal_letters

BoundedLetters (Alg. 2.3) growing_letters

FindCycles (Alg. 2.4) –

IsInjective (Alg. 2.5) is_injective

SimplifyErasing (Alg. 2.6) simplify

SimplifyNoninjective (Alg. 2.7) simplify

SimplifyInjective (Alg. 2.9) simplify

InjectiveSimplification (Alg. 2.10) simplify_injective

BoundedInfinitePeriodicFactors (Alg. 2.11) infinite_repetitions_bounded

UnboundedInfinitePeriodicFactors (Alg. 2.12) infinite_repetitions_growing

– infinite_repetitions

– is_pushy

– is_unboundedly_repetitive

– is_repetitive

Table 3.2: Map between algorithms and methods.

3.3 Differences between pseudocode and
implementation

Let us start with the high-level differences. Table 3.2 shows the relationships
between the algorithms from the previous chapter and the names of the func-
tions they ended up in. As SageMath does not have a class representing D0L
systems, all the functions are methods of the WordMorphism class, with the
methods dealing with D0L systems having the axiom inputted as a parameter.

As can be seen, the name unbounded was replaced with the name growing,
as that was the already the convention in SageMath and the slightly shorter
name infinite repetition was used instead of infinite periodic factor. There is
also a slight discrepancy between the definitions in the documentation and
this thesis.

64

3.3. Differences between pseudocode and implementation

Moving on, SageMath already had a method for finding periodic points of a
morphism with an origin in an unbounded letter (WordMorphism.periodic_
points) using the same algorithm I described, which lead to a slightly simpler
UnboundedInfinitePeriodicFactors. Similarly, FindCycles was also
already implemented in SageMath (get_cycles in the morphism.py file) using
the same algorithm I described, which saved me some work while implementing
few of the algorithms.

However, as a result of it not accepting pseudoforests but only functional
graphs, the implementation of BoundedLetters is slightly “messier”. Speak-
ing of which, BoundedLetters was also already implemented in SageMath
(WordMorphism.growing_letters), as was mentioned in the previous chap-
ter. Nonetheless, as the algorithm described in this thesis is notably faster, I
still submitted its implementation (in a separate ticket).

The algorithms SimplifyErasing, SimplifyNoninjective and Simplify-
Injective were for the sake of simplicity merged into one method simplify.
Furthermore, in the pseudocode, the alphabet B of the simplification is always
simply a subset of A, but in the implementation, I also added an argument
that allows for B to be chosen on input. The alphabets A, C, and B are also
called X, Y , and Z instead.

I also added four small auxiliary methods. infinite_repetitions sim-
ply merges the results of infinite_repetitions_bounded and infinite_
repetitions_growing, while is_pushy/is_unboundedly_repetitive sim-
ply checks whether infinite_repetitions_bounded/infinite_repetitions_
growing has a nonempty output, and finally is_repetitive is simply a logical
disjunction of is_pushy and is_unboundedly_repetitive.

Now, the low-level differences. Some constructs were replaced to be more
pythonic, for example by using iterators instead of loop counters. The most
notable deviation is hidden in the assumption that the morphisms on input
have integer alphabets. However, a letter of a word in sage.combinatorics.
words can be any Python object (and WordMorphism itself is implemented
using the Python built-in container dict, which represents the abstract data
type of an associative map). Therefore I either had to start each method by
transforming the morphism to an integer alphabet (which would be “clumsy”),
or all the boolean arrays of size n indexed by letters I made use of in pseu-
docode had to be transformed into something different. The Python built-in
container set, which represents the abstract data type of, well, a set, was for
used for this purpose.

This includes the arrays R from Reach, M from MortalLetters and new
from SimplifyNoninjective (which was also combined with the stack todo,

65

3. Implementation

as sets also support the operation of popping an arbitrary element). Fur-
themore, both the linked list structures from MortalLetters were imple-
mented using sets, as we do not actually require order and multiplicity in the
algorithm.

This leads to some changes in the time complexity. The most popular Python
implementation, called CPython, implements sets using a hash table. There-
fore, a containment check has time complexity O (1) only in the average case
(and O (n) in the worst case), while checking the i-th index of an array has
time complexity O (1) in all the cases. This is however not a concern in prac-
tice, as the overhead of Python is large enough such that accessing a hash
table instead of accessing an array makes a negligible difference. Besides, us-
ing an array in Python (efficiently) requires calling C code, which is not done
in SageMath without good enough reason.

Finally, I will discuss some design considerations that went into the methods
for finding infinite periodic factors. In the bounded case an injective simplifi-
cation is also obtained to make sure I am working with an injective morphism,
even though this is not strictly necessary. However, it leads to some code be-
ing simplified: firstly, since in an injective morphism each letter is immortal,
the check of whether there is at least one immortal label in a cycle turns into
a check whether is at least one nonempty label in a cycle (this also allowed
me to put the algorithm for mortal letters in a separate ticket). Secondly, it
can be seen that without mortal letters each bounded word has the “delay”
before it starts repeating (s1) equal to zero, thus sk is also always zero, and
it can be ignored.

Another change from the pseudocode (for both the unbounded and bounded
case) is that instead of returning all the conjugates of each primitive word v,
such that vω is an infinite periodic factor, I only return the lexicographically
minimal primitive conjugate from each equivalency class [vω]. In other words
from each equivalency class [vω] I return one representative v, such that ∀uω ∈
[vω] : |v| ≤ |u| ∧ v ≤ u. It can be seen that such a word v must be unique. For
example instead of {abcd, bcda, cdab, dabc} only {abcd} is returned.

The reasoning for this is that this makes the output of these methods “cleaner”
(for example in examples in the documentation), and if the bigger set with
all the conjugates is desired, it can be computed from this smaller one more
efficiently then the smaller one can be computed from the bigger one. In the
pseudocode this could be accomplished by replacing the lines:

27: for for each conjugate c of v do
28: add c to V

66

3.3. Differences between pseudocode and implementation

with the line:

27: add MinimalConjugate(v) to V

The downside is that in SageMath there is not a method for finding the mini-
mal conjugate of a word, so I had to implement my own (minimal_conjugate).
The naive algorithm compares a word on input with all its conjugations, which
leads to quadratic time complexity. There are multiple more sophisticated
algorithms, which have linear time complexity. As they are nontrivial and
nonessential to this thesis, I will omit their description. I implemented the
one introduced by Jean Pierre Duval in his paper published in 1983 [36]. As the
majority of the work in the algorithm is done by the so-called Lyndon factor-
ization, which was already implemented in SageMath (FiniteWord.lyndon_
factorization), the resulting code is quite short.

The implementation of the is_pushy and is_unboundedly_repetitivemeth-
ods is not as efficient in the best-case as it could be, as we only need to find a
single (un)bounded infinite periodic factor (or even we only need to just con-
firm some exists) to ascertain their truthiness, but the underlying methods
only return after finding all of them.

This could be solved by providing a different implementation for these meth-
ods, which would only decide the existence of at least one infinite periodic
factor. This would be very helpful for pushiness (as mentioned in the pre-
vious chapter, it would have linear time complexity instead of an uncertain
one) and slightly helpful for unbounded repetitiveness. On the other hand,
it would cause a nontrivial amount of code redundancy. The code could be
deduplicated in a shared method, but methods that do not make much sense
“on its own” are not a very popular practice in SageMath. For this reason, I
decided to keep the less efficient version.

Before I started working on these methods I thought would solve this by
making the underlying methods return Python generators instead of Python
sets. Python generators are a sort of syntactic sugar that allows one to easily
write methods that lazily return a sequence of values, that is the work required
for returning the next value is deferred until the value is explicitly asked
for. Then the methods is_pushy and is_unboundedly_repetitive could
simply only ask for the first infinite periodic factor and never ask for the rest.
However, here are the reasons why I didn’t implement it like that in the end:

• The number of infinite periodic factors in “practical” morphisms is usu-
ally near zero, and everything is fast when it is small.

67

3. Implementation

• It does not fully solve the problem for pushiness (we only need to find
a cycle with an immortal label, not the corresponding bounded periodic
factor).

• We still need to keep a set around, to keep us from returning duplicates,
as the algorithms might find the same word multiple times.

• The main reason: It makes the implementation, documentation and
usage more complicated.

Moving on, in the pseudocode for the algorithms for finding infinite periodic
factors the axiom is only used at the beginning, and that is for reducing the
D0L system. Intuitively, this is because the axiom is finite, but we are looking
for infinite words. For a direct proof of the unimportance of the axiom see [5]
(Proposition 3.2). This means that since the methods were implemented in
the WordMorphism class, and not in a D0L system class, I could have omitted
the axiom parameter and just assumed the morphism belongs to a reduced
D0L system. However, I left the axiom parameter in, as I felt it can be useful,
and that it makes the methods easier to understand.

Finally, a slight annoyance is caused by the fact that in some methods I made
use of the is_endomorphism method from SageMath, which checks whether
the domain and codomain are equal. However, the implemented methods work
fine even if the codomain is a proper subset of the domain – this causes one
to sometimes have to manually specify the codomain’s alphabet. Nonetheless,
as this is the case even for some other methods in SageMath, I left it this way
for the time being.

3.4 Testing
The methods were tested not only with a few handpicked morphisms (such as
the ones from the examples in the documentation and/or the ones from the
examples in this text), but also with thousands of randomly generated ones.

The morphisms were randomly generated by first choosing the size of the
alphabet uniformly between two numbers (the particular values were different
for each method and will be omitted here for brevity), then choosing the sizes
of the images using a modified geometric distribution (with a maximal limit)
and finally by filling out the images with letters uniformly picked from the
alphabet.

The problem with randomly generated morphisms is that the wanted results
of the methods are unknown. That is why they either have to be checked
against different implementations or checked only incompletely (see below).

68

3.4. Testing

For reach I compared the results with a slower naive algorithm, which simply
iterates the axiom n times under the morphism (where n is the size of the
alphabet) – it can be seen that this must uncover all the reachable letters.

For growing_letters (and therefore also indirectly for mortal_letters) I
compared the results with the implementation already in SageMath.

For is_injective I compared the results with a modified version of the al-
gorithm, which in the case of noninjectivity also returned a pair of conflicting
words, which served as a certificate of noninjectivity. However, no such cer-
tificate was checked in the injective case.

If simplify returned a simplification, I tested that its definition holds. If it
did not, I at least tested that the morphism satisfies two necessary conditions
for elementary morphisms: injectivity and the one described here [15] (Theo-
rem 1.2). For simplify_injective I simply tested that the returned result
satisfies the definitions.

For infinite_repetitions I generated the set of factors of the language of
the system up to a certain length (20) and then checked that the primitive
roots of the found infinite repetitions and a limited number of their powers
are in this set.

Even though these tests are only partial (for example the last one does not
test in any way that these are indeed all the infinite repetitions), I still ended
up finding a few bugs with them, which would otherwise possibly not have
been uncovered.

I included in this thesis a file test.py containing these tests. It can be loaded
in the same way as the impl.py file and the tests can be then run with the
various test_* methods.

69

Chapter 4
Injective D0L systems

Definition. A D0L system G = (φ, s) is injective if for all words u and v from
FL(G) we have, if φ(u) = φ(v), then u = v.

In other words, a D0L system is injective, if its morphism is injective on (when
its domain is restricted to) the set of the factors of the language of the system.

Clearly, if a D0L system has an injective morphism, then it also must be
injective, but the converse is not true. For example (taken from [13]), see the
D0L system H = (ψ, a) with ψ = {a 7→ abca, b 7→ bca, c 7→ a}. We have
that ψ is noninjective, since ψ(a) = ψ(cb), but it can be seen that cb is not in
FL(H) and that H is injective.

As was mentioned previously, it is not known whether the problem of deciding
D0L system injectivity is decidable. The motivation behind the problem of
deciding D0L system injectivity comes from its close relation to the problem of
deciding D0L system circularity, which takes inspiration from coding theory.

Informally, a code is circular if any message written “on a circle” can be
uniquely decoded 6. For example, the code {a 7→ 01, b 7→ 10} is uniquely
decodable since no codeword is a prefix of each other. However, if we receive
a message on a circle (see Figure 4.1) containing codewords of only one source
symbol, then there are two possible decodings (aa . . . a and bb . . . b).

A D0L system is circular if any sufficiently large word from the set of factors of
the language of the system written on a circle “has at most one possible way a

6This informal definition is slightly misleading, as for example the code a 7→ 00 is not
circular – it also has to be known with certainty at what position on the circle to start the
decoding.

71

4. Injective D0L systems

Figure 4.1: Message on a circle.

preimage can be written on a circle”. I will omit here the formal definitions of
a circular code and a circular D0L system (which can be found, for example,
in [42] and [13]), as they are nontrivial and not particularly required for this
thesis.

Circular D0L systems form a useful subclass of D0L systems (they are used
for example in [12] and [37]), but it is also not known whether the problem of
deciding D0L system circularity is decidable. The following theorem proven
by K. Klouda and Š. Starosta in their paper published in 2019 [13] (strength-
ening a theorem proven by Filippo Mignosi and Patrice Séébold in their paper
published in 1993 [38]) gives a characterization of circular D0L systems:

Theorem 4.1 (K. Klouda and Š. Starosta [13] – Theorem 12). An injective
D0L system is circular if and only if it is not unboundedly repetitive.

This theorem, together with the fact that unbounded repetitiveness is decid-
able for D0L systems and that circularity for D0L systems is defined (mostly
[13]) only for injective D0L systems, tells us that if the problem of deciding in-
jectivity of a D0L system is decidable, then the problem of deciding circularity
of a D0L system is also decidable.

We can simplify our work slightly by considering the following definition:

Definition. A D0L system G = (φ, s) is propagating (denoted by PD0L) if φ
is non-erasing.

Same as in the problem of injectivity of a morphism, if a D0L system has a
(reachable) letter with an empty image, it is trivially noninjective. Since this
is easily checkable, we can restrict ourselves to PD0L systems.

The rest of this chapter is structured as follows: first, it is shown that checking
whether a word is a factor of the language of a PD0L system is doable in
polynomial time, then it is shown that there is no known bound for the size
of the “conflicting” factors, and finally, it is attempted to sidestep this issue
by formulating the problem using formal languages.

72

4.1. “Factorship” problem for PD0L systems

4.1 “Factorship” problem for PD0L systems
Y. Kobayashi and F. Otto have proved the following [5] (Proposition 2.3 (b)):

Proposition 4.2. Let G be a D0L system. Then FL(G) is a context-sensitive
language.

The algorithm in this section is a simpler rendition of the approach in their
proof. Nonetheless, thanks to it I have proved the following:

Theorem 4.3. Let G = (φ, s) be a PD0L system. Then deciding whether a
word x is in FL(G) can be done in polynomial time with regards to the size of
G and x.

Proof. Let the set of all the factors of L(G) of length equal to an integer
k ≥ 1 be denoted by FLk(G). The algorithm works by generating the set∪|x|

k=1 FLk(G) and then checking whether it contains x. The generation of
factors is described in pseudocode in Algorithm 4.1. First, we must prove the
algorithm’s correctness.

Algorithm 4.1 FactorLanguage
Input: PD0L system G (morphism φ with letters 1 . . . n and axiom s) and

an integer k ≥ 1
Output: set F , containing all the factors of L(G) of length less or equal to k

1: F ← an empty set
2: todo ← an empty stack
3: add the letter S (n+ 1) to the morphism, with its image equal to s
4: push S on top of todo
5: while todo is not empty do
6: u← pop from todo
7: v ← φ(u)
8: for for each factor f of v of length less or equal to k do
9: if f is not in F then

10: add f to F
11: push f on top of todo
12: return F

Lemma 4.4. With a PD0L system G and an integer k ≥ 1 on input, the
output of the algorithm in Algorithm 4.1 is the set ∪|x|

k=1 FLk(G).

Proof. We will prove it easily by induction on k.

73

4. Injective D0L systems

Base case: k = 1. Then the algorithm is equal to the algorithm in Algo-
rithm 1.1.

Inductive case: Let us say that the algorithm has already generated all the
factors of L(G) of length less or equal to k and we are proving whether an
arbitrary factor v of L(G) of length k+1 will also be generated. Clearly, since
v is a factor of L, there must be a factor u of L such that v is a factor of
φ(u). Since G is propagating, the shortest such u must have a length of at
most k + 1.

If it is of length less than k+ 1, v will be generated from u, when u is popped
from the stack, hence we are done, so let us say its length is equal to k + 1.
However, the word u must also have such a “predecessor”. Following this chain
of predecessors, we must either reach a factor of L(G) of length less or equal
to k + 1, or we must reach the axiom, which is the first image processed by
the algorithm, so v also has to be eventually generated.

Here is an example of why the D0L system must be propagating. Let H
= (ψ, s) be a D0L system with ψ = {s 7→ abc, a 7→ a, b 7→ ε, c 7→ c}.
Then L(H) = {s, abc, ac}, FL1(H) = {s, a, b, c}, FL2(H) = {ab, bc, ac} and
FL3(H) = {abc}, but the smallest factor u of L(H) such that the word ac is
a factor of φ(u) is the word abc.

Now, for the time complexity. On each popped word u we use φ once and
then search its image for yet unseen factors of L(G) of length less or equal
to k. Clearly, we can do that in polynomial time with regards to k, the size
of u, and the size of φ. This brings us to our last question, which is how
many factors of L(G) are there? This question was partially answered by A.
Ehrenfeucht, Kwok Pun Lee and G. Rozenberg in their paper published in
1975 [39]:

Theorem 4.5 (A. Ehrenfeucht, Kwok Pun Lee and G. Rozenberg [39] –
Theorem 2). Let G be a D0L system. The corresponding function 7 fG from
N+ to N, defined as fG(n) = |FLn(G)|, is in O

(
n2)

.

This theorem tells us that the size of the set ∪|x|
k=1 FLk(G) is polynomial with

regards to the size of x.

The algorithm is implemented in SageMath (WordMorphism._language_naive).
It should be noted that whilst the the algorithm is polynomial, it is quite slow

7Such a function is usually called the factor complexity function and its study is of high
importance in combinatorics on words (for an overview see [14].)

74

4.2. The obvious approach

even on “practically” sized morphisms, as the exponent of the polynom is
large. As a rough estimate, |∪|x|k=1 FLk(G)| = O

(
|x|3

)
, the size of an image

of a word u is O (|u|l) (recall from Chapter 1 that l is the size of the maxi-
mal image of φ), and a word v has O

(
|v|2

)
factors (there are |v| positions for

both their starting and their ending position), hence we have time complexity
O

(
|x|3 × (|x|l)2 + (|s|l)2 = |x|5 × l2 + |s|2 × l2

)
.

A simple optimization opportunity is hidden in the fact, that we are when are
finding the factors of φ(u) for some factor u = u1u2 . . . un (where |u| ≥ 2), it
can be seen that we only have to take into account factors which have at least
one letter from φ(u1) and at least one letter from φ(un), all the other factors
of φ(u) will surely be found when we pop the various factors of u from the
stack – and all of these have to be popped at some point from the stack since
u is also a factor.

This modification is described in pseudocode in Algorithm 4.2. As we now only
have at most l possible positions for both the starting and ending positions
of factors, the time complexity is improved to O

(
|x|3 × l2 + |s|2

)
. After some

experimental testing, it was shown to be also notable in practice, hence the
modification was submitted as a patch to SageMath – here is the corresponding
ticket: [40].

4.2 The obvious approach
Now, that we have an algorithm for deciding whether a word x is in FL(G) for
some PD0L system G, it “should” be trivial to combine it with the algorithm
for deciding injectivity of a morphism. The resulting algorithm would still
have polynomial time complexity. However, we quickly run into a nontrivial
issue.

Let us illuminate it with some notation. Let φ be a noninjective morphism.
Then short(φ) denotes the minimal sum of the length of two words u and v,
such that u 6= v and φ(u) = φ(v). Let G = (φ, s) be a noninjective D0L
system. Then short(G) denotes short(φ), with the added restriction that u
and v are in FL(G).

We have the following lemma:

Lemma 4.6. Let φ be a non-injective morphism. Then short(φ) ≤ m.

Proof. We need the concept of tails from the algorithm for deciding the injec-
tivity of a morphism. We know that the number of tails in φ is bounded by
m. If we keep track of pairs of preimages instead of tails in the algorithm, it

75

4. Injective D0L systems

Algorithm 4.2 FactorLanguage (improved)
Input: PD0L system G (morphism φ with letters 1 . . . n and axiom s) and

an integer k ≥ 1
Output: set F , containing all the factors of L(G) of length less or equal to k

1: F ← an empty set
2: todo ← an empty stack
3: add the letter S (n+ 1) to the morphism, with its image equal to s
4: push S on top of todo
5: while todo is not empty do
6: u← pop from todo
7: v ← φ(u)
8: if |u| = 1 then
9: for i← 1 to |v| do

10: for j ← i to Min(i+ k − 1, |v|) do
11: f ← a factor of v from indices i to j (inclusive)
12: if f is not in F then
13: add f to F
14: push f on top of todo
15: else
16: left ← |φ[first letter of u]|
17: right ← |φ[last letter of u]|
18: mid ← |v| − left − right
19: q ← k −mid
20: for i←Max(1, left − q + 2) to left do
21: for j ← left + mid + 1 to left + mid + Min(q− left + i, right) do
22: f ← a factor of v from indices i to j (inclusive)
23: if f is not in F then
24: add f to F
25: push f on top of todo
26: return F

can be seen, that each letter added to either u or v creates a new tail (recall
Figure 2.5).

Furthermore, each new tail must be different from all the previous ones, oth-
erwise u and v would not be minimal. Proof by contradiction: Let u and v
be words “with a repeated tail” satisfying the definition of non-injectivity of
φ and short(φ) = |u|+ |v|.

That is formally let u1, u2, u3, v1, v2, v3, t be nonempty words such that φ(u1) =
φ(v1)t and φ(u1u2) = φ(v1v2)t (see Figure 4.2 (Case 1)) or φ(u1) = φ(v1)t
and φ(u1u2)t = φ(v1v2) (Case 2) or φ(u1)t = φ(v1) and φ(u1u2) = φ(v1v2)t

76

4.2. The obvious approach

Case 1: φ(u1)
φ(v1)

φ(u2)
φ(v2)

φ(u3)
φ(v3)

t t

φ(u1)
φ(v1)

t

φ(u2) φ(u3)
φ(v3)

t
φ(v2)

φ(u2)φ(u1)

t

φ(u3)
φ(v3)

t
φ(v2)φ(v1)

φ(v1)
φ(u1)

t
φ(v2) φ(v3)

φ(u3)
t

φ(u2)

Case 2:

Case 3:

Case 4:

Figure 4.2: Auxiliary diagrams for a proof.

(Case 3) or φ(u1)t = φ(v1) and φ(u1u2)t = φ(v1v2) (Case 4) and finally let
u = u1u2u3 and v = v1v2v3 be words such that u 6= v, φ(u) = φ(v) and
short(φ) = |u|+ |v|.

Then it can be seen that we can obtain strictly shorter words u′ = u1u3 and
v′ = v1v3 for Cases 1 & 4 and u′ = u1v3 and v′ = v1u3 for Cases 2 & 3, which
do not have a repeated tail but still satisfy the definition of noninjectivity of
φ, which is a contradiction with short(φ) = |u|+ |v|.

Since tails can not repeat, we have that short(φ) is bounded by the number
of tails in φ, that is m.

However, the above proof does not work for short(G) ≤ m, where G is a
noninjective D0L system, since u′ and v′ might not be in FL(G). See for
example H = (ψ, adbc) with ψ = a 7→ a, b 7→ ab, c 7→ b, d 7→ bb. The words u
and v are created as follows:

• ψ(b)/ψ() = ab/␣ – First tail is ab.

• ψ(b)/ψ(a) = ab/a␣ – Second tail is b, and c 7→ b, but we cannot append
c after a, since ac is not in FL(H). However, d 7→ bb and ad is in FL(H).

• ψ(b)/ψ(ad) = ab␣/abb – Third tail is again b, but here we can append
c after b, since bc is in FL(H).

77

4. Injective D0L systems

Hi = (ψ, a0d0c0b0d0)
a0 7→ a1 b0 7→ b1 c0 7→c1 d0 7→ d1d1

...
aj 7→ aj+1 bj 7→ bj+1 cj 7→cj+1 dj 7→ dj+1dj+1

...
ai 7→ a bi 7→ ab ci 7→ b di 7→ bb
a 7→ a b 7→ b

Figure 4.3: D0L system used in a proof.

• ψ(bc)/ψ(ad) = abb/abb – We found u = bc and v = ad.

It can be seen, that these two words are the only ones that satisfy the definition
of noninjectivity of H and whose sum of lengths is equal to short(H). Hence,
in D0L system injectivity it is sometimes required for a tail to repeat.

This gives rise to two issues:

1. In the algorithm for deciding injectivity we have to keep track of pairs of
preimages instead of tails. At this point, since the algorithm for deciding
whether x is in FL(G) already generates all the factors of length less
or equal to |x|, it is simpler to just expand the algorithm for deciding
whether x is in FL(G) to also check whether the images of all the factors
are unique.

2. And more importantly, without a bound for short(G), we do not know
when to stop the algorithm.

It might seem possible that short(G) ≤ m is still true, just that it has to
be proven in some other way. However, it turns out that not only is there a
D0L system H = (ψ, s) such that short(H) > m, but that also the following
theorem holds.

Theorem 4.7. There is an infinite sequence of D0L systems (Hi)n≥0, such
that their size grows linearly but short(Hi) grows exponentially.

Proof. The D0L system Hi is described in Figure 4.3. Whenever we increase
i by 1, we increase n by 4, m by 5 and l and |s| by 0. For the purposes of this
proof let the size of a D0L system G be denoted by |G| and computed with
the equation: n× l+ |s|. Then we have |Hi| = (6+4i)2+4 = 16+8i. Clearly,
|Hi| = O (i).

78

4.3. A different approach

Now, let us compute short(Hi). For starters, here is S(Hi):

φ0(s) = a0d0c0b0d0

φ1(s) = a1d1d1c1b1d1d1...
φi(s) = aid

2i

i cibid
2i

i

φi+1(s) =
(
ab2i+1+1

)2

φi+2(s) =
(
ab2i+1+1

)2

...

It can be seen, that the only pair of words (u, v) satisfying the definition of
noninjectivity of Hi is (aid

2i

i ci, bid
2i

i). Then we have short(Hi) = 3 + 2i+1.
Clearly, |Hi| = O

(
2i

)
.

As a corollary, the algorithm for deciding injectivity of some D0L system G,
that works by generating all the factors of L(G) shorter than short(G) and
checking the uniqueness of their images, will run in at least exponential time
with regards to the size of G.

4.3 A different approach
Let G = (A,φ, s) be a D0L system. In this section, it is attempted to find
an algorithm for deciding whether G is injective while avoiding the issue of
finding an upper bound for short(G), by representing the pairs of words (u, v)
satisfying the definition of non-injectivity of φ and the pairs of words (e, f)
from the language FL(G) as formal languages, and then checking whether
their intersection is nonempty.

We need some way to represent pairs of words (u, v) as one word w. Let
/ denote any one letter not in A, which will be used as a delimiter. For
example, the pair of words (u, v) can be represented as one word w by simply
concatenating them with a delimiter, that is w = u/v. Loosely speaking,
in this section it is shown that there exists a representation, such that the
language of pairs of words (u, v) satisfying the definition of non-injectivity φ
is regular, and that there exists a representation, such that the language of
pairs of words (e, f) from the language FL(G) is extended non-deterministic
Lindenmayer (abbreviated as E0L) (which will be defined later in the section).

This is notable because E0L languages are closed under intersection with
regular languages [15] (Theorem 1.8) and their emptiness is decidable [41]
(Theorem 19). However, the two representations mentioned in the previous

79

4. Injective D0L systems

paragraph are incompatible, thus this does not lead us to a successful algo-
rithm. Nonetheless, I found the propositions in this section interesting enough
to warrant their inclusion in this thesis.

Let us start with the pairs of words (u, v) satisfying the definition of non-
injectivity of φ. The representation will make use of the close relation between
u and v. Let me repeat what was said at the start of the proof of Lemma 4.6: If
the algorithm for deciding injectivity of a morphism tracks pairs of preimages
(u, v) instead of tails, it can be seen, that each letter added to either u or v
creates a new tail. Moreover, only the preimage with the currently smaller
image can have a letter added. Hence the pair of words (u, v) can be uniquely
represented by one word w without delimiters by mimicking the way that they
would have been processed by the algorithm for deciding the injectivity of a
morphism.

Let me show an example before the formal definition. Let ψ = {a 7→ 11, b 7→
12, c 7→ 123, d 7→ 31112} be a morphism (from Figure 2.5), with a pair of
words (u, v) = (cab, bd) satisfying the definition of noninjectivity of ψ. Let u
and v denote the already processed parts of u and v. Then we have:

• w = cb – We start with both the first letters of u and v to create the
first tail. Since |ψ(u = c)| > |ψ(v = b|), we continue with the second
letter of v.

• w = cbd – Since |ψ(u = c)| < |ψ(u = bd|), we continue with the second
letter of u.

• w = cbda – Since |ψ(u = ca)| < |ψ(u = bd|), we continue with the third
letter of u.

• w = cbdab – We are done.

Note that if the pair on input was (v, u) instead of (u, v), the result would
have been the same except for the first two letters being switched (w = bcdab).

Now, even though we do not need to use a delimiter, they still make the result
more readable. As such, let there be a delimiter / in the word w whenever
we switch between the letters of u and v. Then for the (u, v) above we have
w = c/bd/ab (and w = b/c/d/ab for (v, u)). The formal definition is as follows:

Definition. Let φ be a nonerasing morphism and let us during this definition
denote the operation of concatenation by multiplication. Then a word w =
w1/w2/ . . . /wn is a conflict of φ, if:

80

4.3. A different approach

a 7→ 1 b 7→ 011 c 7→ 01110 d 7→ 1110 e 7→ 10011

Figure 4.4: Graph of tails.

• there exist integers n ≥ 2 and m ≥ 2,

• a sequence of nonempty words w1, w2, . . . , wn (let us denote the j-th
letter of a word wi by wi,j)

• and a sequence of words t1, t2, . . . , tm such that:

• ∑n
i=1 |wi| = m, |w1| = 1, w1,1 6= w2,1, t1 = φ(w1), tm = ε,

• for each integer 1 ≤ j ≤ m− 1 we have tj 6= ε,

• for each integer 2 ≤ i ≤ n we have:

di/2e∏
k=1

w2k−1 × tq =
bi/2c∏
k=1

w2k, where q =
i∑

k=1
|wi| if i is even,

bi/2c∏
k=1

w2k × tq =
di/2e∏
k=1

w2k−1, where q =
i∑

k=1
|wi| if i is odd,

• and for each integer 2 ≤ i ≤ n and for each integer 1 ≤ j ≤ |wi| we have:

b(i−1)/2c∏
k=1

w2k ×
j∏

k=1
wi,k × tq =

di/2e∏
k=1

w2k−1, where q =
i−1∑
k=1
|wi|+ j if i is even,

d(i−1)/2e∏
k=1

w2k−1 ×
j∏

k=1
wi,k × tq =

bi/2c∏
k=1

w2k, where q =
i−1∑
k=1
|wi|+ j if i is odd.

Now, we can move on to the related proposition:

81

82 4. Injective D0L systems

a 7→ 1 b 7→ 011 c 7→ 01110 d 7→ 1110 e 7→ 10011

Figure 4.5: Finite automaton for a language of conflicts.

a 7→ 1 b 7→ 011 c 7→ 01110 d 7→ 1110 e 7→ 10011

Figure 4.6: Finite automaton for minimal words with indistinct images. The
duplicated states and transitions are represented by dashed lines.

4.3. A different approach

Proposition 4.8. Let φ be a nonerasing morphism. Then the language of
conflicts of φ is regular.

Proof. Let us begin by defining a graph of tails. A graph of tails of a morphism
φ is a directed graph (with self-loops) (with labeled edges), where vertices are
tails of φ and there is an edge from a vertex t1 to a vertex t2:

• with a label a, if t1 = φ(a)t2 for some letter a, or

• with a label a/, if t1φ(a) = t2 for some letter a.

For example, see Figure 4.4 (the morphism was taken from Wikipedia [23],
where it was based upon [42] (Example 2.3.1)). The delimiter / again signifies
when the order of the relative sizes of preimages is switched. In Section 2.2 it
was proven that the Algorithm 2.5 finds all tails (unless it ends early), and the
tails are even found using the same “rules” (line 18), which are used for the
definition of the edges of the above graph, hence the algorithm can be easily
modified to create this graph.

To turn this graph into a finite automaton recognizing conflicts, we only have
to add an appropriate start and accepting state. Again, we will inspire our-
selves using Algorithm 2.5. There is a transition from a state t to the accepting
state end with an input a if t = φ(a) for some letter a (line 16) and there is
a transition from the start state start to a state t:

• with an input a/b, if φ(a) = φ(b)t for some letters a and b, or

• with an input a/b/, if φ(a)t = φ(b) for some letters a and b (line 9).

For example, see Figure 4.5. For the sake of clarity, multi-letter labels are used
as a shorthand for sequences of nodes with single valid transitions and transi-
tions which are not described in the visualisation are invalid (they lead to an
omitted error state). As the Algorithm 2.5 is correct, automaton constructed
this way for an arbitrary nonerasing morphism also has to be correct.

We can use this proposition to prove two corollaries.

Corollary 4.9. Let φ be a morphism. Then the language of words u, such
that there exists a word v such that u 6= v and φ(u) = φ(v), is regular.

83

4. Injective D0L systems

Proof. If φ is erasing, then it can be seen that this language is equal to A∗,
where A is the alphabet of the domain of φ, which is clearly a regular language.
Let us therefore assume that φ is nonerasing.

First, let us describe how to obtain a subset of this language, where we also
require for the conditions φ(u1) 6= φ(v1) and φ(um) 6= φ(vn) to hold. To
obtain this subset it suffices to remove all parts of one word and all delimiters
from a conflict. This can be achieved by duplicating all the transitions and all
the states (except the start and accepting ones) – the original states represent
the first word and the duplicate states represent the second word.

Furthermore, all the transitions with inputs ending in a delimiter are changed
(except for the ones from the start state, see the next paragraph) – the de-
limiter is omitted from the input and the target is changed to instead be the
duplicate of the original target state (or the original, if the target was the
duplicate one). Finally, all the transitions starting from duplicate states have
their inputs changed to the empty words.

Special care is taken with the transitions from the start state. Transitions with
inputs a/b for some letters a and b have their input changed to a and their
target changed to the duplicate (as the conflict continues with the second
word) and transitions with inputs a/b/ for some letters a and b have their
inputs changed to a and their target unchanged (as the conflict continues
with the first word).

For example, see Figure 4.6. The correctness of this automaton can be seen
from the correctness of the last automaton. To also accept words where we
have u1 = v1 or vm = vn, we only have to add the option of having arbitrary
letters at the start or the end of the word – hence we just add a self-loop
transition to the start state and the accepting state with the input being any
letter.

Corollary 4.10. Let φ be a morphism. Then the language of words w, such
that there exist words u and v such that u 6= v and φ(u) = w = φ(v), is
regular.

Proof. We simply replace the inputs in the last automaton with their images.

Now, let us move on to the factors of a language of a D0L system. Y. Kobayashi
and O. Friedrich have proven the following proposition:

Proposition 4.11 (Y. Kobayashi and O. Friedrich [5] – Proposition 2.1).

84

4.3. A different approach

(1) Let L be a regular language. Then F (L) is a regular language.

(2) Let L be a context-free language. Then F (L) is a context-free language.

As we have seen in Proposition 4.2, with D0L systems we only have the much
weaker guarantee of context sensitivity. This is not very helpful, as many
problems surrounding context-sensitive languages are undecidable (for exam-
ple emptiness [41]). Hence, we need a step between context-free languages
and context-sensitive languages. For that, we need a few more definitions
regarding L-systems. These (and the examples too) are taken again from the
book Mathematical Theory of L-systems [15]:

Definition. Let Σ be an alphabet. Then a finite substitution σ on Σ is a
mapping from Σ to the set of subsets of Σ∗. Furthemore, if v = v1v2 . . . vn is
a word for some integer n ≥ 0, then:

σ(w) = {ε} if w = ε,
σ(w) = {w1w2 . . . wn|w1 ∈ σ(v1) ∧ w2 ∈ σ(v2) ∧ · · · ∧ wn ∈ σ(vn)} otherwise.

Finally, if L is a set of words, then σ(L) =
∪

w∈L σ(w).

For example, see Σ = {a} and σ defined by σ(a) = {ε, a2, a7}. Then σ(a2) =
{ε, a2, a4, a7, a9, a14}. Same as for morphisms, it is convenient to define finite
substitutions by specifying the individual rules with the symbol 7→, that is
the same finite substitution would be written as {a 7→ ε, a 7→ a2, a 7→ a7}.
Clearly, if |σ(a)| = 1 for all letters a from Σ, then it is equal to a morphism
on words.

Definition. A context-free Lindenmayer system (abbreviated as an 0L sys-
tem) is a triple G = (Σ, σ, ω), where Σ is an alphabet, σ is a finite substitution
on Σ and ω (referred to as the axiom) is an element of Σ∗. The language gen-
erated by an 0L system (denoted by L(G)) is equal to

L(G) = {ω} ∪ σ(ω) ∪ σ(σ(ω)) ∪ · · · =
∪
i≥0

σi(ω).

For example, see the 0L system G = ({a}, {a 7→ a, a 7→ aa}, a}. Then L(G) =
{an | n ≥ 1}.

Definition. An extended context-free Lindenmayer system (abbrevaited as
an EOL system) is a quadruple G = (Σ, σ, ω,∆), where U = (Σ, σ, ω) is the
underlying 0L system and ∆ (referred to as the terminal alphabet) is a subset
of Σ. The language generated by an E0L system (denoted by L(G)) is equal
to L(U(G)) ∩∆∗.

85

4. Injective D0L systems

For example, see the E0L system G = ({S, a, b}, {S 7→ a, S 7→ b, a 7→ a, a 7→
aa, b 7→ b, b 7→ bb}, {a, b}). Then L(G) = {an | n ≥ 1} ∪ {bn | n ≥ 1}.

Now, we can prove the following proposition:

Proposition 4.12. Let L be an E0L language. Then F (L) is an E0L language.

Proof. This will be proven by showing how to modify the E0L system gener-
ating L to make it generate F (L) instead.

Let G = (Σ, h, ω,∆) be an E0L system generating L. Let us first show how
to create an EOL system G′ = (Σ′, h′, ω′,∆′) accepting all prefixes of words in
L(G). We start by “copying” over the alphabets and the rules, that is Σ′ = Σ,
h′ = h and ∆′ = ∆. To simplify working with the axiom, we take some letter
s not in Σ, add it to Σ′ and add the rule s 7→ ω to h′. Then for each letter a
in Σ ∪ {s} we do the following:

• add the letter →a to Σ′, and if there is a rule a 7→ ε in h, we add the rule
→
a 7→ ε to h′

• and for each rule a 7→ v1v2 . . . vn (n ≥ 1) in h, where v1, v2, . . . , vn are
from Σ, we add the following rules to h′:

→
a 7→ v1v2 . . . vn−1

→
vn

→
a 7→ v1v2 . . . vn−1vn

→
a 7→ v1v2 . . .

→
vn−1

→
a 7→ v1v2 . . . vn−1...→
a 7→ v1

→
v2

→
a 7→ v1v2
→
a 7→ →

v1
→
a 7→ v1

Finally, we take another letter S not in Σ, add it to Σ′, add rules S 7→ ε,
S 7→ s, S 7→ →

s to h and set ω′ = S.

For example, see Figure 4.7. Any letter with a right arrow accent can omit an
arbitrary number of letters “from the right” in its rules, and at any time only
the rightmost letter can have a right arrow accent – hence it can be seen that
L(G′) is equal to the set of all prefixes of words in L(G).

86

4.3. A different approach

G = ({a, b, c}, h, abc, {a, b, c})
h = {a 7→ aa, b 7→ bb, c 7→ cc}
G′ = (Σ′, h′, S, {a, b, c})

Σ′ = {S, s,→s , a,→a , b,
→
b , c,

→
c }

h′

S 7→ ε S 7→ s S 7→ →
s

s 7→ abc a 7→ aa b 7→ bb c 7→ cc
→
s 7→ ab

→
c

→
s 7→ a

→
b

→
s 7→ →

a
→
s 7→ abc

→
s 7→ ab

→
s 7→ a

→
a 7→ a

→
a

→
a 7→ →

a
→
a 7→ aa

→
a 7→ a

→
b 7→ b

→
b

→
b 7→

→
b

→
b 7→ bb

→
b 7→ b

→
c 7→ c

→
c

→
c 7→ →

c
→
c 7→ cc

→
c 7→ c

Figure 4.7: EOL system generating the set of all prefixes of an E0L language.

To augment this approach to create an E0L system G′′ = (Σ′′, h′′, ω′′,∆′′)
accepting all factors of words in L(G), we have to create analogous letters
with left arrows accents, that can omit an arbitrary number of letters from
the left, and also slightly more powerful letters with bilateral arrow accents,
that can omit an arbitrary number of letters from both the left and the right.

Formally: We set Σ′′ = Σ, h′′ = h and ∆′′ = ∆ and take some letter s not in
Σ, add it to Σ′′ and add a rule s 7→ ω to h′′. Then for each letter a in Σ∪ {s}
we do the following:

• add the letters ←a , →a and ↔a to Σ′′

• and if there is a rule a 7→ ε in h, we add the rules →a 7→ ε, ←a 7→ ε and
↔
a 7→ ε to h′′

• and for each rule a 7→ v1v2 . . . vn (n ≥ 1) in h, where v1, v2, . . . , vn are
from Σ, we do the following:

• for each integer 1 ≤ i ≤ n we add the following rules to h′′:
←
a 7→ ←

vivi+1 . . . vn

←
a 7→ vivi+1 . . . vn

→
a 7→ v1 . . . vi−1

→
vi

→
a 7→ v1 . . . vi−1vi

↔
a 7→ ↔

vi

↔
a 7→ vi

87

4. Injective D0L systems

G = ({a, b, c}, h, abc, {a, b, c})
h = {a 7→ aa, b 7→ bb, c 7→ cc}
G′′ = (Σ′′, h′′, S, {a, b, c})

Σ′′ = {S, s,←s ,→s ,↔s , a,←a ,→a ,↔a , b,
←
b ,
→
b ,
↔
b , c,

←
c ,
→
c ,
↔
c }

h′′

S 7→ ε

S 7→ s S 7→ ←
s S 7→ →

s S 7→ ↔
s

s 7→ abc a 7→ aa b 7→ bb c 7→ cc
←
s 7→ ←

abc
←
s 7→

←
b c

←
s 7→ ←

c
←
s 7→ abc

←
s 7→ bc

←
s 7→ c

→
s 7→ ab

→
c

→
s 7→ a

→
b

→
s 7→ →

a
→
s 7→ abc

→
s 7→ ab

→
s 7→ a

↔
s 7→ ←

ab
→
c

↔
s 7→ ←

a
→
b

↔
s 7→

←
b
→
c

↔
s 7→ ↔

a
↔
s 7→

↔
b

↔
s 7→ ↔

c
↔
s 7→ abc

↔
s 7→ ab

↔
s 7→ bc

↔
s 7→ a

↔
s 7→ b

↔
s 7→ c

←
a 7→ ←

aa
←
a 7→ ←

a
←
a 7→ aa

←
a 7→ a

→
a 7→ a

→
a

→
a 7→ →

a
→
a 7→ aa

→
a 7→ a

↔
a 7→ ←

a
→
a

↔
a 7→ ↔

a
↔
a 7→ aa

↔
a 7→ a

←
b 7→

←
b b

←
b 7→

←
b

←
b 7→ bb

←
b 7→ b

→
b 7→ b

→
b

→
b 7→

→
b

→
b 7→ bb

→
b 7→ b

→
b 7→

←
b
→
b

↔
b 7→

↔
b

↔
b 7→ bb

↔
b 7→ b

←
c 7→ ←

c c
←
c 7→ ←

c
←
c 7→ cc

←
c 7→ c

→
c 7→ c

→
c

→
c 7→ →

c
→
c 7→ cc

→
c 7→ c

↔
c 7→ ←

c
→
c

↔
c 7→ ↔

c
↔
c 7→ cc

↔
c 7→ c

Figure 4.8: EOL system generating the set of all factors of an E0L language.

• and for each integer 1 ≤ i ≤ n and for each integer i ≤ j ≤ n we add
the following rules to h′′:

↔
a 7→ ←

vivi+1 . . . vj−1
→
vj

↔
a 7→ vivi+1 . . . vj−1vj

Finally, we take another letter S not in Σ, add it to Σ′′, add rules S 7→ ε,
S 7→ s, S 7→ ←

s , S 7→ →
s and S 7→ ↔

s to h and set ω′′ = S.

For example, see Figure 4.8. Due to analogous reasons as for G′, it can be
seen that L(G′′) is equal to the set of all factors of L(G).

88

4.3. A different approach

Wielding this proposition, we can obtain a representation of pairs of factors
(e, f) by simply concatenating the language of factors with itself (and adding
a delimiter).

Corollary 4.13. Let L be a PD0L language. Then the language of words
w = e/f , where / is a delimiting symbol not in the alphabet of L and the
words e and f are factors of L, is an E0L language.

Proof. As PD0L languages are a subset of E0L languages, let G = (Σ, h, ω,∆)
be an E0L system generating L and G′′ = (Σ′′, h′′, S,∆′′) an E0L system
generating F (L) as per previous proposition. Then we simply add yet another
letter Z not in Σ with the rule Z 7→ S/S and set it as the axiom. The only
slight obstacle is caused by the fact, that each word from the pair might require
a different number of iterations. This can be overcome by also adding the rule
S 7→ S.

As was mentioned at the start of this section, E0L languages are closed un-
der intersection with regular languages and deciding (given an E0L system)
whether they generate the empty language is decidable. Unfortunately, it can
be seen, that to solve the problem of D0L system injectivity we cannot simply
intersect the languages from Proposition 4.8 and Corollary 4.13, as the former
has a large amount of “permeation” between the two words in a pair, while
the latter has none.

Furthermore, attempts to switch between these representations will also not
work, as the language of pairs of words (u, v) without permeation (that is,
represented as u/v) satisfying the definition of morphism noninjectivity is
clearly not regular, as the word v is highly dependant upon the word u, and
the language of pairs of factors (e, f) with permeation (that is, represented as
e0e1/f0f1f2/ . . .) is intuitively not E0L, as its parsing would require running
concurrently two “E0L automatons”.

Finally, intersecting the languages from Corollary 4.9 (or even Corollary 4.10)
and Proposition 4.12 will also not help us, as it tells us whether there is a
factor which has two possible preimages, but it does not tell us, whether both
of these preimages are also factors.

89

Conclusion

In the first part of this thesis, several sophisticated algorithms related to repet-
itive D0L systems were thoroughly explained, carefully analyzed, successfully
implemented (using SageMath’s combinatorics on words module), and me-
thodically tested. The implementation was written from the start with the
goal of contributing it into SageMath itself and it therefore follows SageMath’s
guidelines regarding coding practices and documentation writing.

This integration is at the time of writing an ongoing process. The additions
were split into three patches [28][29][40]. Of these, one was already accepted,
which means that it will be included in the next minor version of SageMath,
while the other two are still under the process of review. It is the hope of
the author that they will also be eventually accepted and moreover that these
changes will facilitate further research into various problems in combinatorics
on words, for example in the problem of finding bispecial factors in D0L sys-
tems [37] in the repetitive case.

In the second part of this thesis, a certain problem of unknown decidability
related to circular D0L systems was discussed. While its decidability was not
resolved, few nontrivial propositions were shown to be true, which the author
hopes will be helpful in eventually settling this problem.

During the effort of writing this thesis, the author also reported and fixed
several bugs in SageMath, some of which were trivial and some of which
were nontrivial. The full list of both is available here in this query [43] in
SageMath’s ticketing system.

91

Bibliography

1. LOTHAIRE, Monsieur. Combinatorics on Words. 2nd ed. Cambridge
University Press, 1997. Cambridge Mathematical Library. Available from
DOI: 10.1017/CBO9780511566097.

2. LINDENMAYER, Aristid. Mathematical models for cellular interactions
in development I. Filaments with one-sided inputs. Journal of Theoretical
Biology. 1968, vol. 18, no. 3, pp. 280–299. ISSN 0022-5193. Available from
DOI: 10.1016/0022-5193(68)90079-9.

3. LOTHAIRE, Monsieur. Algebraic Combinatorics on Words. Cambridge
University Press, 2002. Encyclopedia of Mathematics and its Applica-
tions. Available from DOI: 10.1017/CBO9781107326019.

4. EHRENFEUCHT, Andrzej; ROZENBERG, Grzegorz. Repetition of sub-
words in DOL languages. Information and Control. 1983, vol. 59, no.
1, pp. 13–35. ISSN 0019-9958. Available from DOI: 10.1016/S0019-
9958(83)80028-X.

5. KOBAYASHI, Yuji; OTTO, Friedrich. Repetitiveness of languages gen-
erated by morphisms. Theoretical Computer Science. 2000, vol. 240, no.
2, pp. 337–378. ISSN 0304-3975. Available from DOI: 10.1016/S0304-
3975(99)00238-8.

6. KLOUDA, Karel; STAROSTA, Štěpán. An algorithm for enumerating
all infinite repetitions in a D0L-system. Journal of Discrete Algorithms.
2015, vol. 33, pp. 130–138. ISSN 1570-8667. Available from DOI: 10.
1016/j.jda.2015.03.006.

7. SageMath [online] [visited on 2020-11-01]. Available from: https://www.
sagemath.org/.

8. GALLAGER, Robert Gray. Information Theory and Reliable Commu-
nication. Wiley, 1968. ISBN 9780471290483.

93

https://doi.org/10.1017/CBO9780511566097
https://doi.org/10.1016/0022-5193(68)90079-9
https://doi.org/10.1017/CBO9781107326019
https://doi.org/10.1016/S0019-9958(83)80028-X
https://doi.org/10.1016/S0019-9958(83)80028-X
https://doi.org/10.1016/S0304-3975(99)00238-8
https://doi.org/10.1016/S0304-3975(99)00238-8
https://doi.org/10.1016/j.jda.2015.03.006
https://doi.org/10.1016/j.jda.2015.03.006
https://www.sagemath.org/
https://www.sagemath.org/

Bibliography

9. EVEN, Shimon. Graph Algorithms. Computer Science Press, 1979. ISBN
9780914894216.

10. EHRENFEUCHT, Andrzej; ROZENBERG, Grzegorz. Simplifications of
homomorphisms. Information and Control. 1978, vol. 38, no. 3, pp. 298–
309. ISSN 0019-9958. Available from DOI: 10.1016/S0019-9958(78)
90095-5.

11. HARJU, Tero; KARHUMÄKI, Juhani. On the defect theorem and sim-
plifiability. Semigroup Forum. 1986, vol. 33, no. 1, pp. 199–217. ISSN
1432-2137. Available from DOI: 10.1007/BF02573193.

12. CASSAIGNE, Julien. An algorithm to test if a given circular HDOL-
language avoids a pattern. In: in: IFIP World Computer Congress’94.
Elsevier (North-Holland, 1994, pp. 459–464.

13. KLOUDA, Karel; STAROSTA, Štěpán. Characterization of circular D0L-
systems. Theoretical Computer Science. 2019, vol. 790, pp. 131–137. ISSN
0304-3975. Available from DOI: 10.1016/j.tcs.2019.04.021.

14. CASSAIGNE, Julien; NICOLAS, François. Factor complexity. In: Com-
binatorics, Automata and Number Theory. Ed. by BERTHÉ, Valérie;
RIGO, Michel. Cambridge University Press, 2010, pp. 163–247. Ency-
clopedia of Mathematics and its Applications. Available from DOI: 10.
1017/CBO9780511777653.005.

15. ROZENBERG, Grzegorz; ARTO, Salomaa. The Mathematical Theory of
L Systems. Academic Press, 1980. ISBN 9780080874067.

16. HOPCROFT, John Edward; ULLMAN, Jeffrey David. Introduction to
Automata Theory, Languages and Computation. 1st ed. Addison-Wesley,
1979. ISBN 9780201029888.

17. DIESTEL, Reinhard. Graph Theory. 5th ed. Springer, 2016. ISBN 9783662536216.
18. ALLOUCHE, Jean-Paul; SHALLIT, Jeffrey. The Ubiquitous Prouhet-

Thue-Morse Sequence. In: DING, C.; HELLESETH, T.; NIEDERRE-
ITER, H. (eds.). Sequences and their Applications. London: Springer
London, 1999, pp. 1–16. ISBN 978-1-4471-0551-0.

19. CORMEN, Thomas H.; LEISERSON, Charles Eric; RIVEST, Ronald
Linn; STEIN, Clifford Seth. Introduction to Algorithms. 3rd ed. MIT
Press, 2009. ISBN 9780262033848.

20. VITÁNYI, Paul M. B. On the size of D0L languages. In: L Systems.
Ed. by ROZENBERG, Grzegorz; SALOMAA, Arto. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1974, pp. 78–92. ISBN 978-3-540-37823-5.
Available from DOI: 10.1007/3-540-06867-8_6.

21. LANDO, Barbara. Periodicity and ultimate periodicity of D0L systems.
Theoretical Computer Science. 1991, vol. 82, no. 1, pp. 19–33. ISSN 0304-
3975. Available from DOI: 10.1016/0304-3975(91)90169-3.

94

https://doi.org/10.1016/S0019-9958(78)90095-5
https://doi.org/10.1016/S0019-9958(78)90095-5
https://doi.org/10.1007/BF02573193
https://doi.org/10.1016/j.tcs.2019.04.021
https://doi.org/10.1017/CBO9780511777653.005
https://doi.org/10.1017/CBO9780511777653.005
https://doi.org/10.1007/3-540-06867-8_6
https://doi.org/10.1016/0304-3975(91)90169-3

Bibliography

22. WIKIPEDIA CONTRIBUTORS. Pseudoforest — Wikipedia, The Free
Encyclopedia [https://en.wikipedia.org/w/index.php?title=
Pseudoforest&oldid=990853275]. 2021. [Online; accessed 17-March-
2021].

23. WIKIPEDIA CONTRIBUTORS. Sardinas–Patterson algorithm — Wikipedia,
The Free Encyclopedia. 2021. Available also from: https://en.wikipedia.
org/w/index.php?title=Sardinas%E2%80%93Patterson_algorithm&
oldid=1014158965 [Online; accessed 3-April-2021].

24. RODEH, Michael. A fast test for unique decipherability based on suffix
trees (Corresp.) IEEE Transactions on Information Theory. 1982, vol. 28,
no. 4, pp. 648–651. Available from DOI: 10.1109/TIT.1982.1056535.

25. APOSTOLICO, Alberto; GIANCARLO, Raffaele. Pattern Matching Ma-
chine Implementation of a Fast Test for Unique Decipherability. Inf. Pro-
cess. Lett. 1984, vol. 18, no. 3, pp. 155–158. ISSN 0020-0190. Available
from DOI: 10.1016/0020-0190(84)90020-6.

26. HOFFMANN, Christoph M. A Note on Unique Decipherability. In: Pro-
ceedings of the Mathematical Foundations of Computer Science 1984.
Berlin, Heidelberg: Springer-Verlag, 1984, pp. 50–63. ISBN 3540133720.
Available from DOI: 10.1007/BFb0030289.

27. OEIS FOUNDATION INC. The On-Line Encyclopedia of Integer Se-
quences [https://oeis.org/A014062]. 2021.

28. SageMath – Ticket #18119 [online] [visited on 2021-05-03]. Available
from: https://trac.sagemath.org/ticket/18119.

29. SageMath – Ticket #31684 [online] [visited on 2021-05-03]. Available
from: https://trac.sagemath.org/ticket/31684.

30. SageMathCell [online] [visited on 2020-11-20]. Available from: https:
//sagecell.sagemath.org/.

31. CoCalc [online] [visited on 2020-11-01]. Available from: https://cocalc.
com/.

32. A page on SageMath’s wiki [online] [visited on 2020-11-01]. Available
from: https://wiki.sagemath.org/days110.

33. A question on Ask Sage: Geometric name of sage logo? Existence of dual?
[online] [visited on 2020-11-28]. Available from: http://ask.sagemath.
org/question/7667/geometric-name-of-sage-logo-existence-of-
dual/.

34. Source code for the combinatorics on words module of SageMath (de-
velop branch) [online] [visited on 2020-11-28]. Available from: https:
//github.com/sagemath/sage/tree/develop/src/sage/combinat/
words.

95

https://en.wikipedia.org/w/index.php?title=Pseudoforest&oldid=990853275
https://en.wikipedia.org/w/index.php?title=Pseudoforest&oldid=990853275
https://en.wikipedia.org/w/index.php?title=Sardinas%E2%80%93Patterson_algorithm&oldid=1014158965
https://en.wikipedia.org/w/index.php?title=Sardinas%E2%80%93Patterson_algorithm&oldid=1014158965
https://en.wikipedia.org/w/index.php?title=Sardinas%E2%80%93Patterson_algorithm&oldid=1014158965
https://doi.org/10.1109/TIT.1982.1056535
https://doi.org/10.1016/0020-0190(84)90020-6
https://doi.org/10.1007/BFb0030289
https://oeis.org/A014062
https://trac.sagemath.org/ticket/18119
https://trac.sagemath.org/ticket/31684
https://sagecell.sagemath.org/
https://sagecell.sagemath.org/
https://cocalc.com/
https://cocalc.com/
https://wiki.sagemath.org/days110
http://ask.sagemath.org/question/7667/geometric-name-of-sage-logo-existence-of-dual/
http://ask.sagemath.org/question/7667/geometric-name-of-sage-logo-existence-of-dual/
http://ask.sagemath.org/question/7667/geometric-name-of-sage-logo-existence-of-dual/
https://github.com/sagemath/sage/tree/develop/src/sage/combinat/words
https://github.com/sagemath/sage/tree/develop/src/sage/combinat/words
https://github.com/sagemath/sage/tree/develop/src/sage/combinat/words

Bibliography

35. Documentation for the combinatorics on words module of SageMath [on-
line] [visited on 2020-11-28]. Available from: https://doc.sagemath.
org/html/en/reference/combinat/sage/combinat/words/__init_
_.html.

36. PIERRE DUVAL, Jean. Factorizing words over an ordered alphabet.
Journal of Algorithms. 1983, vol. 4, no. 4, pp. 363–381. ISSN 0196-6774.
Available from DOI: 10.1016/0196-6774(83)90017-2.

37. KLOUDA, Karel. Bispecial factors in circular non-pushy D0L languages.
Theoretical Computer Science. 2012, vol. 445, pp. 63–74. ISSN 0304-3975.
Available from DOI: https://doi.org/10.1016/j.tcs.2012.05.007.

38. MIGNOSI, Filippo; SÉÉBOLD, Patrice. If a DOL language is k-power
free then it is circular. In: LINGAS, Andrzej; KARLSSON, Rolf; CARLS-
SON, Svante (eds.). Automata, Languages and Programming. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 1993, pp. 507–518.

39. EHRENFEUCHT, Andrzej; LEE, Kwok Pun; ROZENBERG, Grzegorz.
Subword complexities of various classes of deterministic developmen-
tal languages without interactions. Theoretical Computer Science. 1975,
vol. 1, no. 1, pp. 59–75. ISSN 0304-3975. Available from DOI: 10.1016/
0304-3975(75)90012-2.

40. SageMath – Ticket #31760 [online] [visited on 2021-05-03]. Available
from: https://trac.sagemath.org/ticket/31760.

41. JONES, Neil D.; SKYUM, Sven. Complexity of some problems concern-
ing L systems. Theory of Computing Systems. 1979, vol. 13, pp. 29–43.
ISSN 1432-4350. Available from DOI: 10.1007/BF01744286.

42. BERSTEL, Jean; PERRIN, Dominique; REUTENAUER, Christophe.
Codes and Automata. Cambridge University Press, 2009. Encyclopedia
of Mathematics and its Applications. Available from DOI: 10.1017/
CBO9781139195768.

43. SageMath – Tickets containing ”Rejmon” in the author field [online]
[visited on 2021-05-03]. Available from: https://trac.sagemath.org/
query?author=~Rejmon.

44. WIKIPEDIA CONTRIBUTORS. L-system — Wikipedia, The Free En-
cyclopedia [https://en.wikipedia.org/w/index.php?title=L-
system&oldid=1018655516]. 2021. [Online; accessed 23-April-2021].

45. PRUSINKIEWICZ, Przemyslaw; LINDENMAYER, Aristid. The Algo-
rithmic Beauty of Plants. Springer, 1990. ISBN 9780387946764.

96

https://doc.sagemath.org/html/en/reference/combinat/sage/combinat/words/__init__.html
https://doc.sagemath.org/html/en/reference/combinat/sage/combinat/words/__init__.html
https://doc.sagemath.org/html/en/reference/combinat/sage/combinat/words/__init__.html
https://doi.org/10.1016/0196-6774(83)90017-2
https://doi.org/https://doi.org/10.1016/j.tcs.2012.05.007
https://doi.org/10.1016/0304-3975(75)90012-2
https://doi.org/10.1016/0304-3975(75)90012-2
https://trac.sagemath.org/ticket/31760
https://doi.org/10.1007/BF01744286
https://doi.org/10.1017/CBO9781139195768
https://doi.org/10.1017/CBO9781139195768
https://trac.sagemath.org/query?author=~Rejmon
https://trac.sagemath.org/query?author=~Rejmon
https://en.wikipedia.org/w/index.php?title=L-system&oldid=1018655516
https://en.wikipedia.org/w/index.php?title=L-system&oldid=1018655516

Appendix A
Contents of enclosed CD

root
docs.pdf.....documentation created from impl.py using SageMath’s
documentation builder (Sphinx)
impl.pyPython source for the implementation
latex/.....................................LATEX source for this text
test.py..................................Python source for the tests
thesis.pdf... this text

97

Appendix B
Fractal plant

While L-systems generate strings, these strings can be turned into images us-
ing the so-called turtle graphics – the images are made by following the path
of an imaginary turtle, which travels around a 2D plane (or in the more com-
plicated variations, even a 3D space). Individual symbols from the alphabet
of the string are given the meanings of movement commands and the turtle
then carries them out sequentially based on the input string. L-systems come
in by the way of being the natural vehicle for describing fractal-like imagery.

The particular image in the introduction was generated using the L-system
extension in the graphics software Inkscape with the following D0L system
(axiom = X) after 6 iterations:

X 7→ F+[[X]−X]−F[−FX]+X
F 7→ FF
+ 7→ +
− 7→ −
[7→ [
] 7→]

where “X” has no meaning for the turtle, “F” means move forward one unit,
“+” means turn left 25 degrees, “−” means turn right 25 degrees, “[” means
push the current position and angle on a stack and “]” means pop the position
and angle from the stack and restore it. This system was taken from the
Wikipedia article on L-systems [44] (Example 7), where it was not sourced.
The wikipedia article also contains more examples and even more information
can be found, for example, in the book The Algorithmic Beauty of Plants by
Przemyslaw Prusinkiewicz and A. Lindenmayer [45].

99

	Introduction
	Preliminaries
	Finite words
	Infinite words
	D0L systems
	Chomsky hierarchy
	Graphs
	Note on pseudocode & time complexity analysis

	Repetitiveness of D0L languages
	Mortal and bounded letters
	Mortal letters
	Bounded letters

	Injective morphisms
	Simplifiable morphisms
	Noninjective simplifiable morphisms
	Injective simplifiable morphisms
	Injective simplifications

	Infinite periodic factors
	Bounded infinite periodic factors
	Unbounded infinite periodic factors

	Implementation
	SageMath
	sage.combinatorics.words
	Differences between pseudocode and implementation
	Testing

	Injective D0L systems
	"Factorship" problem for PD0L systems
	The obvious approach
	A different approach

	Conclusion
	Bibliography
	Contents of enclosed CD
	Fractal plant

