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Abstract

This work proposes and demonstrates new advances in algebraic cryptanalysis
of small scale derivatives of the Advanced Encryption Standard (AES). We
model the AES as a system of polynomial equations over GF(2), which involves
only the variables of the initial key, and we subsequently attempt to solve
such a system. We show, for example, that one of the attacks can recover the
secret key for one round of the AES-128 under one minute on a contemporary
CPU. This attack requires only two known plaintexts and their corresponding
ciphertexts.

Keywords small scale variants of the AES, algebraic cryptanalysis, Gröbner
bases
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Abstrakt

Tato práce navrhuje a demonstruje nové postupy v algebraické kryptoanalýze
zmenšených verźı šifry s názvem Advanced Encryption Standard (AES). Tuto
šifru modelujeme jako systém polynomiálńıch rovnic nad GF(2), který za-
hrnuje pouze proměnné počátečńıho kĺıče, a následně se pokouš́ıme takový
systém vyřešit. Ukážeme např́ıklad, že jeden z útok̊u může na současném CPU
obnovit tajný kĺıč pro jedno kolo AES-128 za méně než jednu minutu. Tento
útok vyžaduje pouze dva známé otevřené texty a jejich odpov́ıdaj́ıćı šifrové
texty.

Kĺıčová slova AES a jej́ı zmenšené verze, algebraická kryptoanalýza, Gröbne-
rovy báze
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Introduction

Gaius Julius Caesar, the Roman dictator and one of the very first cryptog-
raphers, was assassinated by his peers and stabbed to death. Alan Mathison
Turing, a successful cryptanalyst of the Enigma cipher, died of cyanide poi-
soning caused by his own hand. The study of cryptography and cryptanalysis
is up to us now.

We will begin our work by discussing the elementary algebraic struc-
tures and gradually progress towards Gröbner bases. We will then show how
Gröbner bases can be used to solve systems of multivariate polynomial equa-
tions.

In the second chapter, we will describe the AES, its small scale variants,
and we will discuss some algebraic properties of this cipher. We will then
derive polynomial systems over GF(2) for the small scale versions of the AES.
As we will show, a solution to a polynomial system describing the cipher will
in fact represent the secret key for the cipher. We will see that besides solving
the polynomial systems, Gröbner bases are also useful for modeling the cipher
so that the resulting equations contain only the variables of the initial secret
key.

Since we will be leveraging the algebraic properties of the cipher to model
it as a system of equations, and we will be using algebraic techniques to obtain
the solutions of the system, we are referring to this form of analyzing the cipher
as algebraic cryptanalysis.

The last chapter discusses the results of our experiments. We will demon-
strate the current capabilities of Gröbner bases in solving the polynomial
systems from the second chapter, and we will compare their performance to
a SAT solver. We will also present some techniques for reducing the polyno-
mial systems before solving them, and we will discuss the progress of diffusion
within the reduced versions of the AES.
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Chapter 1
Algebraic essentials

It is almost impossible for me to read contemporary
mathematicians who, instead of saying “Petya washed his hands,”
write simply: “There is a t1 < 0 such that the image of t1 under
the natural mapping t1 7→ Petya(t1) belongs to the set of dirty
hands, and a t2, t1 < t2 ≤ 0, such that the image of t2 under the
above-mentioned mapping belongs to the complement of the set
defined in the preceding sentence.”

Vladimir Igorevich Arnol’d [1, p. 30]

The goal of this chapter is to provide an introduction into the theory of
Gröbner bases for ideals in polynomial rings. This theory was introduced
by Bruno Buchberger [2], who named the concept in honor of his advisor
Wolfgang Gröbner (1899–1980). Buchberger also developed the fundamental
algorithm for the computation of a Gröbner basis known as Buchberger’s al-
gorithm. A similar concept for ideals in power series rings was introduced by
Heisuke Hironaka [3], [4].

Gröbner bases are nowadays discussed in multiple books including [5] and
[6]. We will follow these books along the way as we gradually unveil the ele-
gance and power of Gröbner bases in solving systems of polynomial equations.
Further information can be also found in [7] and [8].

As we progress, we will also define necessary algebraic structures and ob-
jects that will allow us to model the AES as a system of multivariate polyno-
mial equations involving only the variables of the initial key.

1.1 Fields, Polynomial Rings, Ideals and Varietes

Let us introduce the rudiments of abstract algebra that will allow us to
progress towards the application of Gröbner bases in algebraic cryptanaly-
sis and towards the algebraic description of the AES.

3



1. Algebraic essentials

Definition 1.1.1. Let A1, . . . , An be sets. Then the Cartesian product
A1 × · · · × An is the set of all ordered n-tuples (a1, . . . , an) such that ai ∈ Ai
for 1 ≤ i ≤ n.

Definition 1.1.2. Let A and B be sets. A map is a set ϕ ⊆ A×B such that
for each a ∈ A there is exactly one b ∈ B with (a, b) ∈ ϕ.

Definition 1.1.3. Let A be a set. A binary operation is a map from A×A
to A.

Let us use the definition of a group in order to define the structures we
are going to operate with throughout the rest of our work — rings, ideals,
and fields. Such an approach should make the definitions of these structures
shorter and emphasize their relations.

We first start with the definition of a simpler structure than a group:

Definition 1.1.4. A monoid is a set M with a binary operation (a, b) 7→ a◦b
such that the following two axioms hold:

(i) (a ◦ b) ◦ c = a ◦ (b ◦ c) for all a, b, c ∈M ,

(ii) there is e ∈M such that e ◦ a = a ◦ e = a for all a ∈M .

A monoid is called a commutative monoid if, in addition to (i) and (ii),
the following axiom also holds:

(iii) a ◦ b = b ◦ a for all a, b ∈M .

Note that since ◦ is a binary operation, the resulting element, a◦b is always
in M for all a, b ∈M . We say that M is closed under ◦ or that ◦ is closed on
M . Also note that the first axiom is the associative property. The element e
is called the identity element or simply the identity. For simplicity, we will
refer to the set M as the monoid with the associated operation being implicit.
We will also use this convention for all the subsequent algebraic structures,
even when there will be multiple operations associated with the structure.

Definition 1.1.5. A group G is a monoid in which for all a ∈ G, there is
b ∈ G with a ◦ b = b ◦ a = e. A group G is an Abelian group if it is also a
commutative monoid.

The element b in the definition above is called the inverse of a. Note that
Abelian groups are commutative groups.

Definition 1.1.6. A ring is a set R with two binary operations (a, b) 7→ a+b
and (a, b) 7→ a · b, referred to as addition and multiplication, such that the
following axioms hold:

(i) the set R is an Abelian group under addition with the additive identity
0,

4



1.1. Fields, Polynomial Rings, Ideals and Varietes

(ii) the set R is a monoid under multiplication with the multiplicative
identity 1,

(iii) a · (b+ c) = a · b+ a · c and (a+ b) · c = a · c+ b · c for all a, b, c ∈ R.

A ring is a commutative ring if, under multiplication, R is a commutative
monoid.

The inverse under addition in a ring is called the additive inverse, and
the inverse under multiplication is the multiplicative inverse. Note that
the axiom (iii) describes the left and right distributive laws. We will usually
omit the symbol for multiplication, and instead of a · b, we will write ab. Also
note that subtraction in a ring can be thought of as addition of the additive
inverse.

Example 1.1.7.

(i) The sets Z, Q, R, and C are rings with their standard addition and
multiplication.

(ii) The natural numbers do not form a ring since not all elements have their
additive inverse in this set.

(iii) The set of integers modulo n ∈ Z, denoted Zn, is a ring.

Definition 1.1.8. Let R be a ring and ∅ 6= I ⊆ R. Then I is an ideal of R
if:

(i) a+ b ∈ I for all a, b ∈ I, and

(ii) ar ∈ I for all a ∈ I and r ∈ R.

The ideal I is proper if I 6= R.

Note that an ideal I of a ring R is closed under addition. It is also closed
under multiplication by any r ∈ R.

Proposition 1.1.9. Let I be an ideal of a commutative ring R, then:

(i) a · 0 = 0 · a = 0 for all a ∈ R.

(ii) 0 ∈ I, and

(iii) if 1 ∈ I then I is not proper.
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1. Algebraic essentials

Proof.

(i) Suppose a ∈ R. Then

a+ a · 0 = a · 1 + a · 0
= a (1 + 0)
= a · 1
= a.

Adding the additive inverse of a on both sides gives a · 0 = 0. Since R
is commutative, 0 · a = 0 also holds.

(ii) Considering the previous proof, by (i) of Definition 1.1.6, we know that
0 ∈ R and by (ii) of Definition 1.1.8, we get 0 · a = 0 ∈ I for any a ∈ I.

(iii) Since 1 is the multiplicative identity, we have 1 · r = r ∈ I for all r ∈ R
and thus I = R.

Remark 1.1.10. There is an analogy from modular arithmetic that illustrates
an intuitive view of ideals — they can be regarded as a generalization of a
zero in a number set such as the integers. Consider the ring Zn of integers
modulo a given integer n ∈ Z. The exact set of integers that we identify with
0 in Zn is the set nZ = {nm | m ∈ Z}. This set meets the criteria for being
an ideal ((i) and (ii) of Definition 1.1.8) of Z and its elements “behave” like 0
in Z: adding two elements of nZ yields another element of nZ and multiplying
any element of nZ again yields an element of nZ.

Considering our definition of rings, note that an ideal might not be a ring
itself. For example, consider the ring of integers and its ideal consisting of
even numbers. This ideal is not a ring since it has no multiplicative identity.

Definition 1.1.11. Let I be an ideal of a ring R. The coset of I defined by
a ∈ R is the set {b+ a | b ∈ I} and denoted I + a or [a].

Let us define the addition of cosets by (I + a)+(I + a′) = I+(a+ a′) and
multiplication by (I + a) (I + a′) = I + aa′. It can be shown that the set of
all cosets forms a ring under these operations. The proof can be found in [9,
Chapter 7.3]. This ring is denoted R/I and called the quotient ring.

Definition 1.1.12. A field F is a ring where the set F \ {0} is an Abelian
group under multiplication with the multiplicative identity 1.

Fields with a finite number of elements are finite fields and are often
denoted Fq or GF(q) (in honor of Évariste Galois, 1811–1832), where the
number of elements q is the order of the field. Since we will not encounter
any rings that are not commutative, we will adopt the convention that by a
ring, we will mean a commutative ring. Then, the only difference between rings
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1.1. Fields, Polynomial Rings, Ideals and Varietes

and fields is that in a field, every element other than 0 has its multiplicative
inverse. Note that every field is a ring as well.

Example 1.1.13.

(i) The sets Q, R, and C are fields with their standard addition and multi-
plication.

(ii) The integers do not form a field since not all elements have their multi-
plicative inverse in this set.

(iii) The set of integers modulo p ∈ Z, denoted Zp, is a field whenever p
is prime. The primality of p ensures that each non-zero element has
its multiplicative inverse. We can find the inverses by leveraging the
extended Euclidean algorithm.

Remark 1.1.14. We will often work with the finite field Z2, which merits
a short comment. We will denote this field F2 or GF(2). The additive and
multiplicative identities are 0 and 1, respectively. The additive inverse of 0
is 0. The element 1 is also its additive and multiplicative inverse. Note that
addition in this field corresponds to the exclusive or operation denoted XOR
or ⊕. Also note that subtraction is identical to addition. Owing to these nice
properties, we will model single bits (binary digits) as elements of F2.

Definition 1.1.15. If F is a subfield of a field E, then we call E an extension
field of F.

For example, GF(22) is an extension field of GF(2). We give a more
detailed way of constructing extension fields in the proof of Proposition 1.3.6.

Definition 1.1.16. Let α = (α1, . . . , αn) ∈ Nn0 be an n-tuple of non-negative
integers. A monomial in x1, . . . , xn is a product of the form

n∏
i=1

xαii = xα1
1 · x

α2
2 · · ·x

αn
n .

Let us simplify the notation by setting

xα =
n∏
i=1

xαii .

The total degree or degree of a monomial xα is the sum∑n
i=1 αi.We simplify

the notation again an let |xα| denote the total degree of xα. We will call the
symbols x1, . . . , xn variables. Note that xα = 1 when α = (0, . . . , 0) and also
when |xα| = 0. Also note that any monomial is fully determined by α.

Definition 1.1.17. Let xα be a monomial and let F be a field. A term with
a non-zero coefficient cα ∈ F is the product cαxα.
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1. Algebraic essentials

Definition 1.1.18. A polynomial f with coefficients in a field F is a finite
sum of terms in the form

f =
∑
α

cα · xα, cα ∈ F.

The zero polynomial will be denoted 0.

The standard addition and multiplication of polynomials can be defined
in the following way.

Definition 1.1.19. Let

f =
∑
α∈Nn0

cαx
α and g =

∑
α∈Nn0

dαx
α

be two polynomials.

(i) Their sum is defined as

f + g =
∑
α∈Nn0

(cα + dα)xα,

(ii) and their product as

f · g =
∑
γ∈Nn0

 ∑
α+β=γ

cαdβ

xγ .
Note that addition consists of adding the coefficients of like powers of x.
The set of all polynomials in x1, . . . , xn with coefficients in a field F will be

denoted F[x1, . . . , xn]. When the particular variables are of no relevance, we
will denote the set by F[x] for short. We will also employ the standard letters
x, y and z instead of x1, x2 and x3 when we discuss illustrative polynomials.
Polynomials of one variable, called univariate polynomials, will be denoted by
f(x) ∈ F[x].

Definition 1.1.20. Let f = ∑
cαx

α 6= 0 ∈ F[x] be a non-zero polynomial.
The total degree or degree of f , denoted deg(f), is the maximum |xα| such
that the corresponding coefficient cα is nonzero. The degree of 0 is undefined.

Let f, g ∈ F[x] be polynomials. We say that f divides g and write f | g if
g = fh for some polynomial h ∈ F[x]. One can show that the set F[x] satisfies
all of the ring axioms under standard polynomial addition and multiplication.
We will therefore refer to F[x] as a polynomial ring. Not all polynomials in this
ring have their multiplicative inverses, e.g., even the elementary polynomial
x1 does not have its multiplicative inverse and so F[x] does not form a field. A
proof that F[x] forms a ring can be found in [5, Chapher 2], the authors also
provide a broader outlook on polynomials by defining them in a more abstract
way.
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1.1. Fields, Polynomial Rings, Ideals and Varietes

Definition 1.1.21. Let f(x) ∈ F[x] be a univariate polynomial of positive
degree. The polynomial f(x) is irreducible over F[x] if there is no factor-
ization of the form f(x) = p(x) q(x), where p(x) and q(x) are also univariate
polynomials of positive degree in F[x].

Definition 1.1.22. Let {f1, . . . , fs} ⊂ F[x] be a set of polynomials. Then we
set

〈f1, . . . , fs〉 =
{

s∑
i=1

hifi

∣∣∣∣ h1, . . . , hs ∈ F[x]
}
.

Lemma 1.1.23. If {f1, . . . , fs} ⊂ F[x] is a set of polynomials, then 〈f1, . . . , fs〉
is an ideal of F[x].

Proof. Assume f = ∑s
i=1 pifi and g = ∑s

i=1 qifi are polynomials, and let
also h ∈ F[x] be a polynomial. Then the equations

f + g =
s∑
i=1

(pi + qi) fi and

hf =
s∑
i=1

(hpi) fi

show that 〈f1, . . . , fs〉 meets the criteria for being an ideal of F[x].

Definition 1.1.24. Let {f1, . . . , fs} ⊂ F[x] be a set of polynomials and let I
be an ideal such that I = 〈f1, . . . , fs〉. The set {f1, . . . , fs} is a basis of I.
We will also call 〈f1, . . . , fs〉 the ideal generated by {f1, . . . , fs}.

Remark 1.1.10 provides an intuitive view of ideals through modular arith-
metic. Another analogy comes from linear algebra where the definition of
subspaces can be likened to the definition of ideals of polynomial rings. Both
are closed under addition. Subspaces are closed under multiplication by scalars
while ideals of polynomial rings are closed under multiplication by polynomi-
als. An ideal generated by a set of polynomials also shares similar properties
with a span generated by a set of vectors, which is a structure similar to
subspaces as well.

Definition 1.1.25. Let F be a field and n a positive integer. The
n-dimensional affine space over F is the set

Fn = {(a1, . . . , an) | a1, . . . , an ∈ F}.

Remark 1.1.26. A polynomial f ∈ F[x1, . . . , xn] can be regarded as a func-
tion f : Fn 7→ F that takes in points in the affine space Fn and produces
elements of the field F.

Definition 1.1.27. Let Fn be an affine space and let f = f(x1, . . . , xn) ∈
F[x1, . . . , xn] be a polynomial. The zero point or root of f is a point a =
(a1, . . . , an) ∈ Fn such that f(a) = 0.
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1. Algebraic essentials

Definition 1.1.28. Let {f1, . . . , fs} ⊂ F[x1, . . . , xn] be a set of polynomi-
als and Fn an affine space. The affine variety V (f1, . . . , fs) defined by
{f1, . . . , fs} is the set

V (f1, . . . , fs) =
{

(a1, . . . , an) ∈ Fn
∣∣∣ fi(a1, . . . , an) = 0 for all 1 ≤ i ≤ s

}
of all zero points of all the polynomials in {f1, . . . , fs}.

Solving an equation that can be expressed as a polynomial in multiple vari-
ables can be seen as finding the zero points of the corresponding polynomial.
Affine varieties generalize this notion to systems of polynomial equations. Con-
sidering Remark 1.1.26, we may also see varieties as geometric objects, which
is briefly illustrated by the following example:

Example 1.1.29. Consider the real coordinate space R2 and the polynomial
f(x, y) = f

(
x2 + y2 − 1

)
. The variety V (f) is the unit circle centered at the

origin.

We will use the following lemma to show that a given ideal is contained in
another one. This is useful for proving the equality of two ideals in Example
1.1.31.

Lemma 1.1.30. Let I ⊆ F[x] be an ideal, and let {f1, . . . , fs} ⊂ F[x] be a set
of polynomials. Then 〈f1, . . . , fs〉 ⊆ I if and only if {f1, . . . , fs} ⊆ I.

Proof.
=⇒ Assume 〈f1, . . . , fs〉 ⊆ I. Each fi ∈ {f1, . . . , fs} can be constructed as

follows: fi = 0 · f1 + · · ·+ 1 · fi + · · ·+ 0 · fs, and hence {f1, . . . , fn} ⊆ I.

⇐= Assume {f1, . . . , fn} ⊆ I and choose any f ∈ 〈f1, . . . , fs〉 so that f =
h1f1 + · · ·+ hsfs where each hi ∈ F[x]. We see that f ∈ I since I is an
ideal and so 〈f1, . . . , fs〉 ⊆ I.

Example 1.1.31. Consider the ideals 〈x, y〉 and 〈x+ y, x− y〉 in the poly-
nomial ring Q[x, y]. We will show that these two ideals are equal so that
〈x, y〉 = 〈x+ y, x− y〉.

We see that x + y ∈ 〈x, y〉 and x − y ∈ 〈x, y〉, so by Lemma 1.1.30,
〈x+ y, x− y〉 ⊆ 〈x, y〉. Similarly, both x = 1

2(x+ y) + 1
2(x− y) and y =

1
2(x+ y) − 1

2(x− y) are in 〈x+ y, x− y〉 so that by Lemma 1.1.30, 〈x, y〉 ⊆
〈x+ y, x− y〉 and the equality follows.

Proposition 1.1.32. If {f1, . . . , fs} and {g1, . . . , gt} are two bases of the same
ideal in F[x1, . . . , xn], so that 〈f1, . . . , fs〉 = 〈g1, . . . , gt〉, then V (f1, . . . , fs) =
V (g1, . . . , gt).
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1.1. Fields, Polynomial Rings, Ideals and Varietes

Proof. Choose any (a1, . . . , an) ∈ V (f1, . . . , fs). We know that all poly-
nomials in {f1, . . . , fs} are equal to zero at (a1, . . . , an). Now choose any
g ∈ 〈g1, . . . , gt〉. Since 〈g1, . . . , gt〉 = 〈f1, . . . , fs〉, we can write g =∑s
i=1 hifi, hi ∈ F[x1, . . . , xn]. Then g(a1, . . . , an) = ∑s

i=1 hi(a1, . . . , an) ·
fi(a1, . . . , an) = 0, which shows that (a1, . . . , an) ∈ V (g1, . . . , gt), which means
that V (f1, . . . , fs) ⊆ V (g1, . . . , gt). The opposite inclusion can be proved in
the same way.

The following theorem shows that every ideal can be generated by a finite
basis.

Theorem 1.1.33 (Hilbert Basis Theorem). For every ideal I ⊆ F[x] we have
I = 〈g1, . . . , gm〉 for some g1, . . . , gm ∈ I.

Proof. See [6, p. 77].

So far, we were thinking of varietes as the sets of solutions of finite sets
of polynomial equations. The Hilbert Basis Theorem shows that we can also
think of varietes defined by ideals.

Definition 1.1.34. Let I ⊆ F[x1, . . . , xn] be an ideal. We denote by V (I) the
set

V (I) = {(a1, . . . , an) ∈ Fn | f(a1, . . . , an) = 0 for all f ∈ I}.

Proposition 1.1.35. V (I) is an affine variety. In particular, if I =
〈f1, . . . , fm〉, then V (I) = V (f1, . . . , fm).

Proof. See [6, p. 81].

Example 1.1.31 shows that an ideal may have multiple different bases while
propositions 1.1.32 and 1.1.35 reveal that a variety is actually determined by
the ideal generated by its basis and not by the basis itself. In combination with
the Hilbert Basis Theorem, Proposition 1.1.35 also shows that even though
we have infinitely many polynomials in a nonzero ideal, its variety V (I) can
still be defined by a finite set of polynomial equations. Proposition 1.1.35 is
in fact a generalization of Proposition 1.1.32.

A system of multivariate equations can be seen as an ideal basis. Proposi-
tions 1.1.32 and 1.1.35 then give us a potential ability to change the original
system to another one while keeping the exact same solution set. We will
model our cipher as system of polynomial equations and then we will trans-
form this system into a new one which will be solvable in linear time. We
will show that a specific Gröbner basis can be the new system and that the
transformation will be the most demanding part of the computation as regards
both time and memory.

Definition 1.1.36. Let V ⊆ Fn be an affine variety. We define

I(V ) = {f ∈ F[x1, . . . , xn] | f(a1, . . . , an) = 0 for all (a1, . . . , an) ∈ V }.

11



1. Algebraic essentials

Proposition 1.1.37. If V ⊆ Fn is an affine variety, then I(V ) ⊆ F[x1, . . . , xn]
is an ideal. We call I(V ) the ideal of V .

Proof. We have 0 ∈ I(V ) since the zero polynomial vanishes on all points
in Fn. Now let f, g ∈ I(V ), h ∈ F[x1, . . . , xn] and let (a1, . . . , an) be an
arbitrary point in V . We get f(a1, . . . , an) + g(a1, . . . , an) = 0 + 0 = 0 and
h(a1, . . . , an) f(a1, . . . , an) = h(a1, . . . , an) · 0 = 0, which shows that I(V ) is
an ideal.

We will use Proposition 1.1.37 in order to combine and subsequently reduce
our polynomial systems during the experiments. As we will see, this will allow
us to compute the solutions of larger systems, which we would be not able to
obtain otherwise.

1.2 Monomial Orders

A Gröbner basis always pertains to a particular order on monomials. Let us
therefore introduce the most fundamental ones.

Before we actually define a monomial order, let us start with a concise
discussion about binary relations so that it is convenient to prove that certain
orders are in fact monomial orders.

Definition 1.2.1. Let S be a non-empty set. A binary relation on S is a
subset r of S×S. The relation ∆(S) = {(a, a) | a ∈ S} is the diagonal of S.

We will use only binary relations in our work and so we will refer to them
simply as relations. In order to simplify the notation, we will also employ infix
notation to denote that two elements are in a relation, i.e., if r is a binary
relation on S and a, b ∈ S, then a r b will mean (a, b) ∈ r.

Definition 1.2.2. Let r and u be relations on S. The relation r−1 =
{(a, b) | (b, a) ∈ r} is the inverse of r. The strict part of r is the relation
rs = r \ r−1, and

u ◦ r = {(a, c) | there is b ∈ S such that (a, b) ∈ r and (b, c) ∈ u}

is the product of r and u.

Definition 1.2.3. Let r be a relation on S. Then r is

(i) transitive if r ◦ r ⊆ r,

(ii) antisymmetric if r ∩ r−1 ⊆ ∆(S),

(iii) connex if r ∪ r−1 = S × S,

(iv) a linear order on S if r is transitive, antisymmetric and connex.

12
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Definition 1.2.4. Let r be a relation on S with strict part rs and let R ⊆ S.
An element a ∈ R is minimal if there is no b ∈ R such that b rs a. A strictly
descending (or strictly decreasing) sequence in S is an infinite sequence
of elements an ∈ S such that an+1 rs an for all n ∈ N0. The relation r is
noetherian if every non-empty subset R of S has a minimal element. The
relation r is a well-order on S if it is a noetherian linear order on S.

A natural way to think about the strict part of a relation is to consider
the natural order on N0, which is a linear order, where for each m,n ∈ N0;
m > n means m ≥ n and m 6= n. The symbol > denotes the strict part of the
relation ≥. We will also denote our orders on monomials by �, the inverse
will be � and the strict parts will be denoted � and ≺.

We will denote byM(x1, . . . , xn),M(x) or simplyM, the set of all mono-
mials in the variables x1, . . . , xn. It turns out that M forms an Abelian
monoid under natural multiplication where we add corresponding exponents
of the variables. The multiplicative identity is the monomial 1. Note that we
can associate any monomial xα ∈M(x1, . . . , xn) with its n-tuple of exponents
α = (α1, . . . , αn) ∈ Nn0 in a one-to-one fashion. Thus, we can use the sets M
and Nn0 interchangeably.

Lemma 1.2.5. A linear order ≥ on S is a well-order if and only if there is
no strictly descending sequence in S.

Proof. Let us turn the lemma into its contrapositive form: ≥ is not a well-
order if and only if there is a strictly descending sequence in S; and prove this
version of the lemma.

=⇒ Suppose ≥ is not a well-order. Then there is a non-empty subset R ⊆ S
that has no minimal element. We can choose a ∈ R and since a is not
the minimal element, we can choose again b ∈ R such that a > b, which
leads to a strictly descending sequence.

⇐= Suppose there is a strictly descending sequence in S. The elements of
such a sequence form a non-empty subset R of S that has no minimal
element. Hence, ≥ is not a well-order.

Definition 1.2.6. A monomial order � is a well-order onM, which satisfies
the property of respecting multiplication: ifm1 � m2, then n·m1 � n·m2
for all m1,m2, n ∈M.

The purpose of the property of respecting multiplication is that the relative
ordering of monomials in a polynomial does not change when we multiply
the polynomial by a monomial. Such behavior is necessary for the division
algorithm described in the next section.
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Definition 1.2.7 (Lexicographic order). Let xα, xβ ∈ M(x1, . . . , xn) be
monomials. We say xα �lex xβ if α = β or if there is 1 ≤ i ≤ n such that
αj = βj for 1 ≤ j < i and αi > βi.

Note that �lex compares the exponent n-tuples α, β ∈ Nn0 so that xα �lex
xβ if the left-most non-zero component of the difference α−β ∈ Nn0 is positive.

Remark 1.2.8. Also note that the lexicographic order depends on how the
underlying variables x1, x2, . . . , xn are ordered. In general, there are n! ways
to order n variables and each of these orders has its respective lexicographic
order. We will only assume the standard order where x1 > x2 > · · · > xn, or
the alphabetical order where x > y > z.

Example 1.2.9.

(i) Let xy2z3 and xy3 be monomials in M(x, y, z). Then xy3 �lex xy2z3

since there is i = 2 and j = 1 such that αj = βj and αi > βi, where
α = (1, 3, 0) and β = (1, 2, 3). Also, the left-most non-zero component
of the difference β − α = (0, 1,−3) is positive.

(ii) Let x, y, z be monomials in M(x, y, z). Then considering Remark 1.2.8
and example (i), we get x �lex y �lex z.

(iii) In the lexicographic order, note that a monomial that contains the most
significant variable (as regards the underlying order) is greater than any
other monomial that does not contain such a variable. For example, if x
and y3z2 are monomials in M(x, y, z), then x �lex y3z2. The reasoning
is the same as in (i) and (ii).

The intuitive outlook on the lexicographic order is that it looks for the
most significant variable that appears in one of the monomials and then gives
preference to the monomial in which this variable has greater power.

Proposition 1.2.10. The lexicographic order �lex on M is a monomial or-
der.

Proof. Following the definition of the lexicographic order and the fact that
the regular numerical order on N0 is a linear order, it is straightforward to
show that for any monomials xα, xβ, xγ ∈ M(x1, . . . , xn) and α, β, γ ∈ Nn0 ,
the following conditions hold:

(transitivity) if xα �lex xβ and xβ �lex xγ , then xα �lex xγ ;

(antisymmetry) if xα �lex xβ and xα �lex xβ, then xα = xβ; and

(connexity) either xα �lex xβ or xα �lex xβ.
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These properties show that �lex is a linear order on M.
Let us prove the property of respecting multiplication explicitly. If xα �lex

xβ, then either α = β, or there is 1 ≤ i ≤ n such that αi−βi > 0 with αj = βj
for 1 ≤ j < i. Also, xα ·xγ = xα+γ and xβ ·xγ = xβ+γ . Comparing the results
gives us (α+ γ)− (β + γ) = α− β and we see that αi − βi > 0 with αj = βj
for 1 ≤ j < i again; or if α = β, then (α+ γ) = (β + γ). This shows that also
xα+γ �lex xβ+γ .

The last part to prove is to show that �lex is also noetherian, i.e a well-
order. We will prove this by the following contradiction:

By Lemma 1.2.5, if �lex is not a well-order, then there is a strictly de-
creasing sequence

xα(1) �lex xα(2) �lex · · ·
of elements inM(x1, . . . , xn), where each α(i) =

(
α

(i)
1 , . . . , α

(i)
n

)
∈ Nn0 . By the

definition of �lex, we also know that there exists a j such that all the first
components of the n-tuples α(k) with k ≥ j are equal. Continuing further,
there is an l ≥ j such that all the second components of the n-tuples α(m) with
m ≥ l are all equal. We see that there must be a p ≥ l, for which the whole
n-tuples α(p) = α(p+1) = · · · are all equal. This means that the sequence is
not strictly decreasing, which contradicts the lemma.

Definition 1.2.11 (Reverse Colexicographic Order). Let xα, xβ ∈
M(x1, . . . , xn) be monomials. We say xα �rclex xβ if α = β or if there is
1 ≤ i ≤ n such that αj = βj for i < j ≤ n and αi < βi.

Observe that �rclex compares the exponent n-tuples α, β ∈ Nn0 so that
xα �rclex xβ if the right-most non-zero component of the difference α−β ∈ Nn0
is negative. Remark 1.2.8 also applies.

Example 1.2.12.

(i) Let xy2z3 and xy3 be monomials in M(x, y, z). Then xy3 �rclex xy2z3

as well as in Example 1.2.9 (i), but for a different reason. There is
i = 3 such that αi < βi, where α = (1, 3, 0) and β = (1, 2, 3). Also, the
right-most non-zero component of the difference β − α = (0, 1,−3) is
negative.

(ii) The lexicographic order coincides with the reverse colexicographic order
for monomials in one and two variables. These orders may differ for
monomials in three and more variables, as shown by the following ex-
ample: let xz and y2 be monomials in M(x, y, z). Then xz �lex y2, as
explained in Example 1.2.9 (i), but y2 �rclex xz, as explained in example
(i).

The intuitive outlook on the reverse colexicographic order is that it looks
for the least significant variable that appears in one of the monomials and
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then gives preference to the monomial in which this variable has lesser power.
It can be thought of as a double reversal of the lexicographic order — we first
reverse the underlying order of the variables and then their powers.

Equivalently to the lexicographic order, it is straightforward to show that
the reverse colexicographic order is a linear order as well. However, it is
not a well-order since it is possible to define the following strictly decreasing
sequence

x1x2 �rclex x1x
2
2 �rclex x1x

3
2 �rclex · · ·

of monomials inM(x1, x2). In this sequence, let xα = x(1,n) and xβ = x(1,n+1)

for n ∈ N>0. We see that it is always the case that xα �rclex xβ since α1 = β1
and α2 < β2, and we get a strictly decreasing sequence. Hence, by Lemma
1.2.5, �rclex is not a well-order and by Definition 1.2.6, �rclex cannot be a
monomial order either. For this reason, we will not use it to order monomials
on its own, but we will use it as a “sub-order” in the definition of the next
order, which will be a monomial order.

Examples 1.2.9 and 1.2.12 show that the lexicographic and reverse colexi-
cographic orders do not take into consideration the total degree of monomials.
Later in our work, we will see that in certain cases, it is desirable to order the
monomials in a polynomial according to their total degree. Let us therefore
introduce the following order, which allows for the total degree.

Definition 1.2.13 (Graded Reverse Lexicographic Order). Let xα, xβ ∈
M(x1, . . . , xn) be monomials. We say xα �grlex xβ if |xα| > |xβ|, or |xα| =
|xβ| and xα �rclex xβ.

Notice that despite its name, the graded reverse lexicographic order ac-
tually makes use of the reverse colexicographic order. There is a general
consensus on such a name, so we will follow it.

Example 1.2.14.

(i) Let x, y2, xz ∈ M(x, y) be monomials. Then y2 �grlex x since |y2| =
2 > |x| = 1; and y2 �grlex xz since |xz| = |y2| and y2 �rclex xz.

(ii) Let x, y, z ∈ M(x, yz) be monomials. Then x �grlex y �grlex z since
|x| = |y| = |z| and x �rclex y �rclex z.

Proposition 1.2.15. The graded reverse lexicographic order �grlex on M is
a monomial order.

Proof. Since �grlex first uses the usual well-order order on the total degree
of monomials |xα| ∈ N0 and when |xα| = |xβ|, it decides ties using the reverse
colexicographic order (which is a linear order), grlex is also linear.

It is also straightforward to show that �grlex is a well-order since we con-
sider only the strict part �grlex, which is solely the well-order on |xα| ∈ N0.
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In order to show that the property of respecting multiplication holds, con-
sider the monomials xα, xβ, xγ ∈M(x1, . . . , xn) with the n-tuples α, β, γ ∈ Nn0 .
Also, xα · xγ = xα+γ and xβ · xγ = xα+γ . Assume xα �grles xβ. If |xα| > |xβ|,
then xα+γ �grlex xβ+γ since |xα+γ | = |xα|+|xγ | > |xβ|+|xγ | = |xβ+γ |. Also, if
|xα| = |xβ|, we get |xα+γ | = |xβ+γ | by the same argument as above and we use
the reverse colexicographic order. So if |xα| = |xβ|, then xα �rclex xβ (since
we have assumed that xα �grlex xβ

)
, which means that either α = β, or there

is 1 ≤ i ≤ n such that αi− βi < 0 with αj = βj for i < j ≤ n. As in the proof
of Proposition 1.2.10, comparing the results gives us (α+ γ)−(β + γ) = α−β
and we see that αi − βi < 0 with αj = βj for i < j ≤ n again; or if α = β,
then (α+ γ) = (β + γ). This shows that xα+γ �grlex xβ+γ and completes the
proof.

Definition 1.2.16 (Block Order). Let xα, xA ∈M(x1, . . . , xn) and yβ, yB ∈
M(y1, . . . , ym) be monomials, �1 a monomial order on M(x1, . . . , xn) and
�2 a monomial order on M(y1, . . . , ym). We say xαyβ �1,2 xAyB on
M(x1, . . . , xn, y1, . . . , ym) if xα �1 xA, or xα = xA and yβ �2 yB.

Considering a block order from the definition above, note that xα �1,2 xA

implies xαyβ �1,2 xAyB. In combination with Gröbner bases, this observation
will allow us to eliminate the variables xi from a system of polynomials. We
will leverage this in order to express the output bits of an S-box only in terms
of the input bits.

1.3 Polynomial Division

Let us now present the algorithms for univariate and multivariate polynomial
division. Before we start, let us first introduce leading terms and related
objects which we will use in our further discussion — for example, in the
definition of Gröbner bases.

Definition 1.3.1. Let h = ∑
cαx

α ∈ F[x] \ {0} be a nonzero polynomial, F
a subset of F[x] \ {0} and let � be a monomial order on M(x).

(i) The multidegree of h is multideg(h) = max(α ∈ Nn0 | cα 6= 0). The
maximum is taken with respect to �.

(ii) The leading coefficient of h is LC(h) = cmultideg(h) ∈ F.

(iii) LC(F ) = {LC(f) | f ∈ F}.

(iv) The leading monomial of h is LM(h) = xmultideg(h).

(v) LM(F ) = {LM(f) | f ∈ F}.

(vi) The leading term of h is LT(h) = LC(h) · LM(h).
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(vii) LT(F ) = {LT(f) | f ∈ F}.

Furthermore, M(f) denotes the set of all monomials in f and

M(F ) =
⋃
f∈F

M(f)

denotes the set of all monomials contained in all f ∈ F .

Example 1.3.2. Let f = xy2z3 + xy3 ∈ F[x, y, z] be a polynomial and � a
lexicographic order. Then

(i) multideg(f) = (1, 3, 0),

(ii) LC(f) = 1,

(iii) LM(f) = xy3,

(iv) LT(f) = xy3 and

(v) M(f) = {xy2z3, xy3}.

Univariate Division and Construction of Finite Fields

Univariate division is more straightforward and provides an introduction to
multivariate division. We will also utilize univariate division in univariate
polynomial rings for construction of finite fields.

Theorem 1.3.3 (Univariate Division). Let g(x) ∈ F[x] be a univariate
polynomial. Then every f(x) in F[x] can be written as f(x) = q(x) g(x) +
r(x), where q(x) , r(x) ∈ F[x] are unique and either r(x) = 0 or deg(r(x)) <
deg(g(x)).

Proof. We can use Algorithm 1.3.1 for finding the polynomials q and r. The
proof of correctness and termination can be found in [6, p. 39].

Example 1.3.4. Let f(x) ∈ F[x] be a univariate polynomial of degree d
= deg(f(x)) and 〈f(x)〉 the ideal generated by f(x). The elements of the
quotient ring F[x] /〈f(x)〉 can be written as univariate polynomials

cd−1x
d−1 + . . .+ c1x+ c0

in F[x] of degree less than d. In this quotient ring, we can use addition from
Definition 1.1.19 (i). However, we define multiplication by applying Theorem
1.3.3 in the following way. Let us have two univariate polynomials g(x) , h(x) ∈
F(x). There must exist another two univariate polynomials q(x) , r(x) ∈ F(x)
such that g(x)h(x) = q(x) f(x) + r(x), where deg(r(x)) < deg(f(x)) = d. We
now take r(x) as the product of g(x) and h(x).

18



1.3. Polynomial Division

Algorithm 1.3.1 Univariate polynomial division
Input: univariate polynomials g, f ,
Output: univariate polynomials q, r

1: function univariate division(g, f)
2: q ← 0
3: r ← f
4: while r 6= 0 & LT(g) divides LT(r) do
5: q ← q + LT(r) / LT(g)
6: r ← r − (LT(r) / LT(g))g
7: return q, r

Proposition 1.3.5. Let F be a finite field of order q = pn and f(x) ∈ F[x]
a univariate polynomial of degree d. The quotient ring F[x] /〈f(x)〉, as con-
structed in Example 1.3.4, is a finite field of order qd = pnd if and only if f(x)
is irreducible over F[x].

Proof. The proof requires introducing further concepts and can be found in
[10, Chapter 1.3]. Let us provide an intuitive insight though. We can think of
irreducible polynomials as a generalization of primes. Recall Example 1.1.13
(iii), where the primality of the modulus ensured that each non-zero element
had its multiplicative inverse. The situation is similar in this case as well and
we can find the inverses by leveraging the extended Euclidean algorithm for
univariate polynomials, see e.g. [11, p. 81].

Proposition 1.3.6. Let f ∈ F[x] be irreducible over the field F. Then there
exists an extension of F with a root of f .

Proof. Consider the finite field E = F[x]/〈f〉. The elements of E are the
cosets [r] = r + 〈f〉 with r ∈ F[x]. For any a ∈ F, we can obtain a coset
[a] determined by the constant polynomial a. The mapping a 7→ [a] gives
an isomorphism from F onto a subfield F′ of E, so that F′ may be identified
with F. Particularly, E can be seen as an extension of F. Now, for every
r(x) = a0 + a1x+ · · ·+ amx

m ∈ F[x] we have [r] = [a0 + a1x+ · · ·+ amx
m] =

[a0] + [a1][x] + · · · + [am][x]m = a0 + a1[x] + · · · + am[x]m by the rules for
operating with cosets and the identification [ai] = ai. Hence, we can write
every element of E as a polynomial expression in [x] with coefficients in F.
We say that the extension field E is obtained by adjoining [x] and we denote
this field by F([x]). Note that if f(x) = b0 + b1x + · · · + bnx

n, then f([x]) =
b0 + b1[x] + · · · + bn[x]n = [b0 + b1x + · · · + bnx

n] = [f ] = [0], so that [x] is a
root of f .
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Multivariate Division

We will use the following theorem in the description of algorithms for com-
puting Gröbner bases.

Theorem 1.3.7 (Multivariate Division). Let � be a monomial order on
M(x) and let F = (f1, . . . , fm) be an ordered m-tuple of polynomials in F[x].
Then every f ∈ F[x] can be written as f = q1f1 + · · · + qmfm + r, where
qi, r ∈ F[x], and either r = 0 or r is a linear combination, with coefficients
in F, of monomials, none of which is divisible by any of LT(f1), . . . ,LT(fm).
We call r a remainder of f on division by F . Furthermore, if qifi 6= 0, then
LM(f) � LM(qifi).

Proof. We can use Algorithm 1.3.2 for finding the polynomials qi and r. The
proof of correctness and termination can be found in [6, p. 64].

Algorithm 1.3.2 Multivariate polynomial division
Input: polynomials f1, . . . , fm, f ,
Output: polynomials q1, . . . , qm, r

1: function multivariate division(f1, . . . , fm, f)
2: qi ← 0
3: r ← 0
4: p← f
5: while p 6= 0 do
6: i← 1
7: divisionoccured ← False
8: while i ≤ m & divisionoccured = False do
9: if LT(fi) | LT(p) then

10: qi ← qi + LT(p)/LT(fi)
11: p← p− (LT(p)/LT(fi))fi
12: divisionoccured ← True
13: else
14: i← i+ 1
15: if divisionoccured = False then
16: r ← r + LT(p)
17: p← p− LT (p)
18: return q1, . . . , qm, r

We will denote by fF the remainder on division of f by the ordered m-tuple
F = (f1, . . . , fm).
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1.4 Gröbner Bases and Systems of Equations

Let us now define Gröbner bases and show that they can be used for solving
systems of equations.

Definition 1.4.1. Let I ⊆ F[x] be an ideal different from {0}. We denote by
LT(I) = {LT(f) | f ∈ I} the set of leading terms of nonzero elements of I.
The ideal of leading terms of I, generated by LT(I), will be denoted by
〈LT(I)〉.

Definition 1.4.2. Fix a monomial order on M(x). A finite basis G ⊆ I of a
nonzero ideal I ⊆ F[x] is a Gröbner basis if

〈LT(G)〉 = 〈LT(I)〉.

The definition above says that a set {g1, . . . , gm} ⊆ I is a Gröbner basis
if and only if the leading term of any element of I is divisible by some of the
LT(gi).

Proposition 1.4.3. Fix a monomial order on M(x). Then every ideal I ⊆
F[x] has a Gröbner basis.

Proof. It can be shown that the proof can be seen as a corollary of Theorem
1.1.33. Further details can be found in [6, p. 78].

Definition 1.4.4. Let G ⊆ I be a Gröbner basis of I. We call G a reduced
Gröbner basis if for all g ∈ G:

(i) LC(g) = 1.

(ii) No monomial of g is in 〈LT(G \ {g})〉.

Most computer algebra systems actually compute reduced Gröbner bases
by default. It can be shown that any ideal has its reduced Gröbner basis and
this basis is unique. When the second condition of Definition 1.4.4 holds for
a polynomial g ∈ G, we say that g is fully reduced for G. We can obtain
the reduced Gröbner basis as follows. Given g ∈ G, let g′ = gG\{g} and let
G′ = (G\{g}) ∪ {g′}. Observe that g′ is fully reduced for G′. If we keep
applying this process to all elements of G until all of them are fully reduced,
we end up with the reduced Gröbner basis.

Definition 1.4.5. Let I = 〈f1, . . . , fm〉 ⊆ F[x1, . . . , xn] be an ideal. The
l-th elimination ideal Il is the ideal of F[xl+1, . . . , xn] given by Il = I ∩
F[xl+1, . . . , xn].

Theorem 1.4.6 (The Elimination Theorem). Let G ⊆ I ⊆ F[x1, . . . , xn] be
a Gröbner basis of I so that x1 �lex x2 �lex · · · �lex xn. Then, for every
0 ≤ l < n, the set Gl = G ∩ F[xl+1, . . . , xn] is a Gröbner basis of the l-th
elimination ideal Il.
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Proof. We know that Gl ⊆ Il by construction, so we only need to show that
〈LT(Il)〉 = 〈LT(Gl)〉 for a fixed l between 0 and n. The inclusion 〈LT(Il)〉 ⊇
〈LT(Gl)〉 is evident and to prove 〈LT(Il)〉 ⊆ 〈LT(Gl)〉, we need to show that
LT(g) | LT(f) for an arbitrary f ∈ Il and some g ∈ Gl,.

We know that f is also in I, so LT(g) | LT(f) for some g ∈ G since G is
a Gröbner basis of I. Since f ∈ Il, LT(g) must consist only of xl+1, . . . , xn.
Now comes the crucial observation: since x1 �lex · · · �lex xn, any monomial
involving any x1, . . . , xl is greater than all monomials in F[xl+1, . . . , xn]. We
see that g ∈ Gl, which proves the theorem.

Let us present the power of the Elimination Theorem on the following
example.

Example 1.4.7. Consider a system of equations where f1 = f2 = f3 = 0 are
polynomials in R[x, y, z] with

f1 = −16x2 − 4xy2 + 4xz,
f2 = 4x2z + 2xy2z + z,

f3 = xy2 + 2y2z + 1.

If we compute the reduced Gröbner basis with z �lex y �lex x, we get the
following polynomials:

g1 = x+ 1
4y

2 − 1
4z,

g2 = y4 − z2 − 4,

g3 = y2z − 1
9z

2,

g4 = z3 + 81
20z.

We see that the last polynomial involves only the variable z and that its only
solution in R is z = 0. We can now substitute this solution into g3 and g2
and obtain two solutions, namely y = ±

√
2. We can proceed further and

get x = −1
2 . We see that the reduced Gröbner basis allowed us to solve the

system.

Definition 1.4.8. Let Fq[x1, . . . , xn] be a polynomial ring over the finite field
Fq with order q = pm where p ∈ P and m ∈ N>0. The field equations of Fq
are the polynomials xqi − xi for every xi ∈ {x1, . . . , xn}.

Theorem 1.4.9 (Finiteness Theorem). Let f1, . . . , fm ∈ F[x1, . . . , xn] be poly-
nomials. If we have 〈f1, . . . , fm〉∩F[xi] 6= 0 for all xi, then V (〈f1, . . . , fm〉) ⊆
Fn is finite.
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Proof. See [6, p. 251].

Considering the Finiteness Theorem above, adding the field equations into
our polynomial system ensures that the system will have finitely many solu-
tions.

Theorem 1.4.10 (Hilbert’s Weak Nullstellensatz). Let f1, . . . , fm ∈ F[x] be
polynomials. Then the following are equivalent:

(i) There exists an extension field E of F and a ∈ En such that for all fi we
have fi(a) = 0.

(ii) 1 /∈ 〈f1, . . . , fm〉.

Proof. See [5, p. 281].

Observe that whenever 1 belongs to any ideal I ⊆ F[x], we immediately
get I = F[x], as shown in the proof of Proposition 1.1.9.

It can be shown that if we have a finite field F and its extension E, all
elements from F satisfy all of the field equations of F and no element in
E \ F satisfies any of these equations. Therefore, if we add the field equations
into a polynomial system that consists of polynomials in F[x], we restrict our
solutions to the field F. Let us demonstrate this fact in combination with the
Hilbert’s Weak Nullstellensatz on the following two examples.

Example 1.4.11. Consider a system of equations where f1 = f2 = f3 = 0
are polynomials in GF(2) with

f1 = x+ y + z,

f2 = xy + xz + yz,

f3 = xyz + 1.

If we compute the reduced Gröbner basis with z �lex y �lex x, we get the
following polynomials:

g1 = x+ y + z,

g2 = y2 + yz + z2,

g3 = z3 + 1.

We see that the only solution to the last polynomial is z = 1. When we
substitute this solution into g2, we get g′2 = y2 + y + 1, which has no solution
in GF(2), and therefore the initial polynomial system has no solution in GF(2)
either. We note that g′2 is also irreducible over GF(2)[y]. Consider the proof
of Proposition 1.3.6, and let α be a root of g′2; that is, the coset y + 〈g′2〉
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in E = GF(2)[y]/〈g′2〉. We get the finite field GF(2)(α) ∼= GF(22) with the
elements 0, 1, α, α+1. If z = 1, the polynomial g2 has two solutions in GF(22),
namely y = α and y = α + 1, since (α + 1)2 = α. The polynomial g1 has
then also two solutions in GF(22), namely x = α and x = α+ 1. All of these
solutions also satisfy our initial system f1, f2, f3. We could also obtain further
solutions if we set z = α.

Example 1.4.12. Considering the previous example, if we add the field equa-
tions of F into the system, we get the following reduced Gröbner basis:

g1 = 1.

According to the Hilbert’s Weak Nullstellensatz, we can already see that the
initial polynomial system f1, f2, f3 has no solutions in GF(2).

1.5 Algorithms for Computing Gröbner Bases

This section discusses an educational version of the F4 algorithm for comput-
ing Gröbner bases. Such a version is described in [6, Chapter 10, §3] which
we will follow. The algorithm was introduced in [12] by Jean-Charles Faugère
in 1999. It was tailored for the degree reverse lexicographic order. The au-
thor recommends computing a Gröbner basis via F4 using this order and then
convert it to the lexicographic order by another algorithm, for example the
FGLM algorithm [13], in order to apply the Elimination Theorem afterwards.
We will also state the Buchberger’s criterion which is one of the main claims
about Gröbner bases.

Definition 1.5.1. Let f, g 6= 0 ∈ F[x] be polynomials. If multideg(f) = α
and multideg(g) = β, then let γ = (γ1, . . . , γn), where γi = max(αi, βi) for
each i. We call xγ the least common multiple of LM(f) and LM(g), and
we write xγ = lcm(LM(f),LM(g)). The S-polynomial of f and g is the
combination

S(f, g) = xγ

LT(f) · f −
xγ

LT(g) · g.

Example 1.5.2. Let f = x2y3 +x and g = 2xy5 +y be polynomials in R[x, y]
under �grlex. The least common multiple is x2y5 and

S(f, g) = x2y5

x2y3

(
x2y3 + x

)
− x2y5

2xy5

(
2xy5 + y

)
= x2y5 + xy2 − x2y5 − 1

2xy

= xy2 − 1
2xy.

Observe that the S-polynomial is designed so that the leading terms of f and
g cancel each other out. If both f and g consisted only of the leading terms,
S(f, g) would be 0.
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Theorem 1.5.3 (Buchberger’s Criterion). A basis G = {g1, . . . , gm} of an
ideal I is a Gröbner basis if and only if S(gi, gj)

G = 0 for all i 6= j.

Proof. See [6, p. 86].

The theorem above, introduced by Bruno Buchberger in [2], is one of
the key results about Gröbner bases. It allows us to test whether a given
basis is a Gröbner basis in polynomial time. It also naturally leads to an
algorithm, called the Buchberger’s algorithm, which constructs a Gröbner
basis for an ideal by adding nonzero remainders S(gi, gj)

G to G until the
Buchberger’s criterion eventually holds.

Definition 1.5.4. Let � be a monomial order on M(x) and let G =
{g1, . . . , gm} ⊆ F[x] be a set of polynomials. For any f ∈ F[x], we say that
f reduces to zero modulo G, and write f →G 0, if f has a standard
representation

f =
m∑
i=1

higi, hi ∈ F[x],

which means that whenever higi 6= 0, we have LM(f) � LM(higi).

We note that fG = 0 implies f →G 0, but the converse does not hold.

Proposition 1.5.5. A basis G = {g1, . . . , gm} of an ideal I is a Gröbner basis
if and only if S(gi, gj)→G 0 for all i 6= j.

Proof. This is a more general version of the Buchberger’s criterion. The proof
can be found in [6, p. 105].

Le us now describe Algorithm 1.5.1. The value of m records the cardinality
of G throughout the whole run of the algorithm. The set B represents an un-
ordered list of pairs of polynomials for which the corresponding S-polynomials
are not known to reduce to zero. Observe that we add further pairs into B
on line 17. The algorithm ends when all pairs in B have been processed. In
our case, the while loop starts by selecting all pairs with the minimal degree
in the set B. The degree of a pair {i, j} is defined as

deg {i, j} = deg(lcm(LM(fi),LM(fj))) ∈ N0.

This selection is called the normal selection strategy and it is recommended
by Faugère. Other strategies are possible too though. The value d is used
only for selecting the pairs with the minimal degree on line 7 and nowhere
else. We note that d is the same as the total degree of the leading monomial
of both halves

lcm(LM(fi), LM(fj))
LT(fi)

· fi and lcm(LM(fi), LM(fj))
LT(fj)

· fj (1.5.1)
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of the S-polynomial S(fi, fj). This value might not be the same as the total
degree of the S–polynomial itself — it can be smaller or greater or the same,
depending on the other terms in fi and fj and on the monomial order.

The Buchberger’s algorithm would now compute the remainders S(fi, fj)
G

for {i, j} ∈ B′ and add them to G so that the Buchberger’s criterion eventu-
ally holds. The F4 algorithm uses a generalized version of the Buchberger’s
criterion stated in Proposition 1.5.5 and computes S(fi, fj) defined by the
equation

S(fi, fj) = S(fi, fj)− c1x
α(1)fk1 − c2x

α(2)fk2 − · · · . (1.5.2)

When S(fi, fj) is included in G, we get a standard representation of S(fi, fj)
so that Proposition 1.5.5 holds.

Let us now show how S(fi, fj) is obtained. We start by creating the set
L which contains the two polynomials from (1.5.1) for each pair {i, j} ∈ B′.
Since {i, j} is unordered, both are included. Recall that the difference of
the two polynomials for the pair {i, j} gives S(fi, fj). The sets L and G are
then passed to the SymbolicPreprocessing function. This function returns
the matrix M representing a set of polynomials as described in the following
remark.

Remark 1.5.6. A tuple F of polynomials can be represented by a matrix A
and a vector v in the following way. Consider the set M�(F ) = {mn, . . . ,m0}
of all monomials in F under the monomial order �. Let v = (mn, . . . ,m0)T
be the vector containing all the monomials in F ordered in decreasing order,
and let A[i, j] contain the coefficient of the monomial mj ∈M�(F ) in fi ∈ F .
The rows of the product Av then represent the original polynomials in F . We
can think of v as being implicit and consider only the matrix A. The rows of
A then represent the polynomials in F as well.

Let us now discuss the function SymbolicPreprocessing that creates the
matrix M . The function is described in Algorithm 1.5.2. We see that M
actually represents the set H. This set has the following two properties:

(i) L ⊆ H, and

(ii) whenever xβ is a monomial in some f ∈ H and there exists some fk ∈ G
with LM(fk) | xβ, then H contains a product xαfk with LM(xαfk) = xβ.

The algorithm starts by including all polynomials from L into H. This
satisfies property (i). The algorithm then continues until all monomials in
H are processed. The processed monomials are put into the set done. The
monomials in both done and M�(H) are ordered in decreasing order according
to �. Note that when xβ is equal to the leading monomial of one of the
polynomials in L, property (ii) is satisfied, so we put all the leading monomials
in H into done before we start the while loop. The algorithm then repeatedly
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selects the largest monomial xβ ∈ M�(H). If there exists some fk ∈ G such
that LM(fk) | xβ, then we include xβ

LM(fk)fk into H so that property (ii)
is satisfied for xβ. When there are no further monomials to consider, the
algorithm returns the matrix M corresponding to H.

The next step in Algorithm 1.5.1 is to compute the row reduced echelon
form of M . It can be shown that this computation gives the equations of the
form (1.5.2). The reason for including the products xαfk into M was that
the monomials xβ cannot appear on the left-hand side of (1.5.2) and must
be canceled by something on the right-hand side. On line 12, we pick those
polynomials (rows) whose leading terms are not divisible by the leading terms
of any of the polynomials in M . These new polynomials correspond to the
S(fi, fj) in (1.5.2) and are included in G so that Proposition 1.5.5 eventually
holds.

For a better intuitive insight, consider again the matrixM which represents
the set H. Recall that L ⊆ H so M contains both halves of S(fi, fj) for any
{i, j} that is currently in B′. The S-polynomial S(fi, fj) is the difference of
the two halves so it can be represented as a linear combination of the rows of
M . The rows of N form a basis for the vector space spanned by the rows of
M . This means that S(fi, fj) can be also represented by a linear combination
of the rows of N . It can be shown that this gives S(fi, fj) →G 0 when we
include the new polynomials from N into G as described at the end of the
previous paragraph.
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Algorithm 1.5.1 F4 Algorithm
Input: a tuple of polynomials F = (f1, . . . , fm),
Output: a Gröbner basis G of I = 〈f1, . . . , fm〉

1: function F4(F )
2: G← F
3: m← |F |
4: B ← {{i, j} | 1 ≤ i < j ≤ m}
5: while B 6= ∅ do
6: d← min(deg({i, j}) ∈ N0 | {i, j} ∈ B)
7: B′ ← {{i, j} ∈ B | deg({i, j}) = d}
8: B ← B \ B′

9: L←
{ lcm(LM(fi), LM(fj))

LT(fi)
· fi

∣∣∣∣ {i, j} ∈ B′}
10: M ← SymbolicPreprocessing(L, G)
11: N ← row reduced echelon form of M
12: N+ ← {n ∈ rows(N) | LM(n) /∈ 〈LM(rows(M))〉}
13: for n ∈ N+ do
14: m← m+ 1
15: fm = polynomial form of n
16: G← G ∪ {fm}
17: B ← B ∪ {{i,m} | 1 ≤ i < m}
18: return G

Algorithm 1.5.2 Symbolic Preprocessing
Input: a set of polynomials L,

a set of polynomials G,
Output: a matrix M

1: function SymbolicPreprocessing(L, G)
2: H ← L
3: done ← LM(H)
4: while done 6= M�(H) do
5: xβ ← the largest monomial in (M�(H) \ done)
6: done ← done ∪ {xβ}
7: if there exists fk ∈ G such that LM(fk) | xβ then
8: select any one fk ∈ G such that LM(fk) | xβ

9: H ← H ∪
{

xβ

LM(fk)fk
}

10: return matrix of coefficients of H with respect to M�(H) with
11: columns in decreasing order according to �
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Chapter 2
The Advanced Encryption

Standard

Perfection is achieved, not when there is nothing more to add, but
when there is nothing left to take away.

Antoine de Saint-Exupéry,
Airman’s Odyssey

The Advanced Encryption Standard (referred to as the AES cipher or simply
the AES) is presently one of the most popular block cipher used for symmetric
encryption. The original name of the cipher is Rijndael, based on the names
of two cryptographers—Joan Daemen and Vincent Rijmen—who originally
designed the cipher. In 1997, the U.S. National Institute of Standards and
Technology (NIST) announced the development of the AES and subsequently
organized an open competition, which the Rijndael cipher won. NIST pub-
lished the cipher as the Federal Information Processing Standard (FIPS) 197
[14] in 2001. The AES effectively superseded the previous Data Encryption
Standard (DES).

2.1 The Structure of the AES

Let us now walk through the structure of the AES, which is thoroughly de-
scribed in [14]. Further information can be found in [15], a book written by
the original authors of Rijndael.

The AES is a symmetric block cipher. The block size is 128 bits. There
are three possible key sizes: 128, 192 and 256. The original Rijndael cipher
is more liberal as regards the block and keys sizes, as these values can be
independently set to any multiple of 32 bits within the range from 128 to
256 bits. This scale is the only difference between Rijndael and the AES. We
will focus our attention solely to the version with both the block and key size
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set to 128 bits, which is referred to as AES-128. This restriction will have
almost no impact on generality since the structure of all the ciphers remains
the same up to certain constants. We will also define an even more granular
and principally smaller structure of the cipher in the following section.

The input as well as the output of the cipher can be considered as a one-
dimensional array of 16 bytes. The cipher operates on a two-dimensional 4×4
array of 16 bytes called the state.

Remark 2.1.1. Bytes in the state can be considered as polynomials of the
form

7∑
i=0

bix
i,

where bi ∈ F2 are the individual bits, see Remark 1.1.14. These polynomials
are the elements of the quotient ring F2[x] /〈f(x)〉, where f(x) = x8 + x4 +
x3 + x + 1 ∈ F2[x] is an irreducible polynomial over F2[x], so the quotient
ring F2[x] /〈f(x)〉 is in fact a finite field — as described in Example 1.3.4 and
Proposition 1.3.5. We will also denote this finite field by GF(28).

Remark 2.1.2. Another way to describe a byte is by its hexadecimal value,
e.g. 6316 represents 011000112, or as described in the previous remark, 0316
represents the polynomial x + 1. Also note that a byte can be regarded as a
vector in an 8-dimensional vector space over GF(2). We will employ all these
views on bytes throughout this chapter. Moreover, a word consisting of four
bytes can also be regarded as a vector in an 4-dimensional vector space over
GF(28).

The overall structure of the cipher is described in Algorithm 2.1.1. At
the beginning, the initial key is expanded into 44 bytes, which are then used
throughout the encryption. This expansion is described in Algorithm 2.2.1
and Section 2.2. The plaintext is then copied into the state and the initial key
addition is performed. The cipher then performs a cycle with nine iterations.
We call these iterations rounds. The lines 10 and 11 comprise the tenth
round, with the exception of the MixColumns operation being omitted. This
omission is due to the design of the inverse cipher — it makes the structure of
the inverse cipher more consistent with the structure described in Algorithm
2.1.1. The inverse cipher is thoroughly described in [14]. Let us remark that all
the operations that manipulate the state have their inverted counterparts and
the inverse cipher can be implemented by applying these inverted operations
in reverse order where the key schedule is reversed as well.

Let us now go over the individual operations described in the following
sections. Note that a prime on a variable (e.g. c′) denotes the updated value
of the variable. Also note that each byte in the state has two indices: the row
index 0 ≤ r < 4 and the column index 0 ≤ c < 4, so that a specific byte in
the state can be denoted sr,c.
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Algorithm 2.1.1 High Level Overview of the AES
Input: plaintext — array of 16 bytes,

key — array of 16 bytes
Output: ciphertext state — array of 16 bytes

1: function AES(plaintext, key)
2: expKey ← ExpandKey(key)
3: state ← plaintext
4: state ← AddRoundKey(state, expKey[0 : 3])
5: for round ← 1 to 9 do
6: state ← MixColumns(ShiftRows(SubBytes(state)))
7: state ← AddRoundKey(state, expKey[4 ·round : 4 ·(round +1)−1])
8: state ← ShiftRows(SubBytes(state))
9: state ← AddRoundKey(state, expKey[40 : 43])

10: return state

SubBytes

This transformation operates on the individual bytes of the state and is de-
picted in Figure 2.1. We will refer to this operation by the term S-box. It is
a composition of the following two transformations:

(i) Take the multiplicative inverse in GF(28), the element 0016 is mapped
to itself.

(ii) Apply the following affine transformation over GF(28):

b′i = bi ⊕ b(i+4) mod 8 ⊕ b(i+5) mod 8 ⊕ b(i+6) mod 8 ⊕ b(i+7) mod 8 ⊕ ci,

for 0 ≤ i < 8, where c = 6316 and bi ∈ GF(2).

The affine transformation can be also expressed in matrix notation:

b′0
b′1
b′2
b′3
b′4
b′5
b′6
b′7


=



1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1





b0
b1
b2
b3
b4
b5
b6
b7


+



1
1
0
0
0
1
1
0


. (2.1.1)

The S-box actually represents a substitution and it is the only non-linear
transformation in the AES. It can be implement as a look-up table containing
the substitution values for each byte in GF(28).
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s0,0 s0,1 s0,2 s0,3
S-Box 's0,0

's0,1
's0,2

's0,3

' ' ' 's1,0

rs
s1,2

c

s1,3 s1,0 's
s1,2 s1,3

, r ,c
' ' ' 's2,0 s2,1 s2,2 s2,3 s2,0 s2,1 s2,2 s2,3

' ' ' 's3,0 s3,1 s3,2 s3,3 s3,0 s3,1 s3,2 s3,3

Figure 2.1: The SubBytes operation [14].

ShiftRows

This transformation operates on the individual rows of the state and is de-
picted in Figure 2.2. It is defined by the following expression:

s′r,c = sr,(r+c) mod 4 for 0 < r < 4 and 0 ≤ c < 4.

We can see that each row i of the state is cyclically rotated to the left by i
bytes, where 0 ≤ i < 4, so that the first row remains the same and the fourth
row is rotated by three bytes.

ShiftRows()

0,rs 1,rs 2,rs 3,rs
'
0,rs

'
2,rs

'
3,rs

'
1,rs

S S ’

s0,0 s0,1 s0,2 s0,3 s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3 s1,1 s1,2 s1,3 s1,0

s2,0 s2,1 s2,2 s2,3 s2,2 s2,3 s2,0 s2,1

s3,0 s3,1 s3,2 s3,3 s3,3 s3,0 s3,1 s3,2

Figure 2.2: The ShiftRows operation [14].

Let us now show that the ShiftRows operation is in fact a linear trans-
formation. A cyclic rotation by one position of a vector of length four can be
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represented by the matrix

R4 =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 . (2.1.2)

Rotations by more positions can be obtained by taking higher powers of R4.
If we let ri represent the ith row of the state, we can define the ShiftRows
operation by the following expression

r′0
r′1
r′2
r′3

 =


I 0 0 0
0 R4 0 0
0 0 R2

4 0
0 0 0 R3

4



r0
r1
r2
r3

 . (2.1.3)

MixColumns

This transformation operates on the individual columns of the state and is
depicted in Figure 2.3. Each column is considered as a four-term polynomial,
in which the coefficients are the four bytes constituting the column. These
bytes are considered as elements of GF(28). With this set-up, each column is
multiplied modulo x4 + 1 with the polynomial

a(x) = 0316x
3 + 0116x

2 + 0116x+ 0216 ∈ GF(28)[x].

The multiplication is performed as in Example 1.3.4.
The coefficients were chosen so that MixColumns is fast on 8-bit archi-

tectures. The constant 0116 requires no processing at all, polynomial mul-
tiplication by 0216 can be implemented by a shift and a conditional XOR.
Multiplication by 0316 can be implemented as multiplication by 0216 and an
additional XOR.

Note that the polynomial x4+1 is not irreducible over GF(28)[x] since x4+
1 =

(
x2 + 1

) (
x2 + 1

)
. This means that the quotient ring GF(28)[x] /〈x4+1〉 is

not a finite field, which means that not each element has its multiplicative in-
verse so that multiplication by a fixed polynomial is not necessarily invertible.
However, the polynomial a(x) has its multiplicative inverse, namely

a−1(x) = 0B16x
3 + 0D16x

2 + 0916x+ 0E16,

so that multiplication by this polynomial is invertible and therefore the
MixColumns operations remains invertible as well.
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0,0s 2,0s 3,0s
'

0,0s
' '

2,0s
'

3,0s

0,1s 2,1s 3,1s
'

0,1s
' '

2,1s
'

3,1s

0,2s 2,2s 3,2s
'

0,2s
' '

2,2s
'

3,2s

0,3s 2,3s 3,3s
'

0,3s
' '

2,3s
'

3,3s

MixColumns()

cs ,0

cs ,1

cs ,2

cs ,3

'
,0 cs

'
,1 cs

'
,2 cs

'
,3 cs

Figure 2.3: The MicColumns operation [14].

Remark 2.1.3. Let b(x) = b3x3 + b2x2 + b1x+ b0 and c(x) = c3x3 + c2x2 +
c1x+ c0 be two polynomials in GF(28)[x]. Addition of these two polynomials
consists of adding the coefficients of like powers of x. These coefficients are
the elements of GF(28), so addition of the coefficients effectively corresponds
to their XOR and will be denoted by ⊕:

b(x) + c(x) = (b3 ⊕ c3)x3 + (b2 ⊕ c2)x2 + (b1 ⊕ c1)x+ (b0 ⊕ c0) .

As in Example 1.3.4, multiplication modulo the polynomial m(x) = x4 + 1 is
performed in two stages. At first, we obtain the full product b(x)c(x) = d(x)
where

d(x) = d6x
6 + d5x

5 + d4x
4 + d3x

3 + d2x
2 + d1x+ d0

with

d0 = b0c0,

d1 = b1c0 ⊕ b0c1,

d2 = b2c0 ⊕ b1c1 ⊕ b0c2,

d3 = b3c0 ⊕ b2c1 ⊕ b1c2 ⊕ b0c3,

d4 = b3c1 ⊕ b2c2 ⊕ b1c3,

d5 = b3c2 ⊕ b2c3,

d6 = b3c3.

Now we divide d(x) by m(x) and obtain the quotient q(x) and remainder r(x):

d(x) = q(x)m(x) + r(x)
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where q(x) = d6x2 + d5x+ d4 and r(x) = r3x3 + r2x2 + r1x+ r0 with

r0 = b0c0 ⊕ b3c1 ⊕ b2c2 ⊕ b1c3,

r1 = b1c0 ⊕ b0c1 ⊕ b3c2 ⊕ b2c3,

r2 = b2c0 ⊕ b1c1 ⊕ b0c2 ⊕ b3c3,

r3 = b3c0 ⊕ b2c1 ⊕ b1c2 ⊕ b0c3.

Note that we may express the coefficients ri in matrix notation:
r0
r1
r2
r3

 =


b0 b3 b2 b1
b1 b0 b3 b2
b2 b1 b0 b3
b3 b2 b1 b0



c0
c1
c2
c3

 . (2.1.4)

We take the remainder r(x), as the actual result of the overall multiplication
of b(x) and c(x), so we can write

b(x)c(x) ≡ r(x) (mod m(x)).

Observe that we consider b(x) as a fixed polynomial and use its coefficients to
fill the matrix in expression (2.1.4).

The remark above shows that multiplication by a fixed polynomial modulo
another fixed polynomial can be regarded as a linear transformation, so that
the MixColumns operation can be seen as a linear transformation as well. As
shown in Remark 2.1.2, the coefficients 0316, 0216 and 0116 of the polynomial
a(x) ∈ GF(28)[x] can be written as the polynomials x+1, x and 1, respectively.
If we associate a(x) with the polynomial b(x) from the remark above, we get
the following expression

s′0,c
s′1,c
s′2,c
s′3,c

 =


x x+ 1 1 1
1 x x+ 1 1
1 1 x x+ 1

x+ 1 1 1 x



s0,c
s1,c
s2,c
s3,c

 (2.1.5)

for 0 ≤ c < 4, which indexes the columns. This expression fully describes the
MixColumns operation.

2.2 The Key Schedule

The AddRoundKey transformation takes in four words (16 bytes) of the ex-
panded key expKey and adds them to the state. Each word (4 bytes) is added
into a column of the state according to the following formula(

s′0,c, s
′
1,c, s

′
2,c, s

′
3,c
)T

= (s0,c, s1,c, s2,c, s3,c)T ⊕
(
expKey4·round+c

)T (2.2.1)
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for 0 ≤ c < 4. The value of round is 0 during the initial addition and 10 during
the last addition. Otherwise, the value is defined by the loop in Algorithm
2.1.1.

The values of the expanded key are defined by Algorithm 2.2.1. We can
see that the initial key is copied into the first four words of the resulting
expKey. Each following word is the sum of the previous word and the word
four positions earlier. For words that are in positions that are multiples of
four, a transformation is applied to the previous word before the sum. This
transformation is defined on line 11 of Algorithm 2.2.1 and described in the
following paragraph.

The RotWord operation takes a four-byte word (x0, x1, x2, x3)T , where xi
are individual bytes, and produces a cyclically rotated word (x1, x2, x3, x0)T .
The SubWord operation takes a four-byte word and applies the S-box to each
byte in the word. The round constant array Rcon[j] contains ten four-byte
words defined by

(
02j−1

16 , 0016, 0016, 0016
)T

, where the only effective part is
the first byte with 02j−1

16 ∈ GF(28) (or xj−1 ∈ GF(28)) being the powers of
0216 ∈ GF(28) (or x ∈ GF(28)).

Algorithm 2.2.1 Key Schedule for the AES
Input: key — array of 16 bytes
Output: key schedule expKey — array of 44 words (176 bytes)

1: function ExpandKey(key)
2: word expKey[44]
3: for i← 0 to 3 do
4: expKey[i]← word(key[4 · i], key[4 · i+ 1], key[4 · i+ 2], key[4 · i+ 3])
5: for i← 4 to 43 do
6: tmp ← expKey[i− 1]
7: if i ≡ 0 (mod 4) then
8: tmp ← SubWord(RotWord(tmp)) ⊕ Rcon[i/4]
9: expKey ← expKey[i− 4]⊕ tmp

10: return expKey

Figure 2.4 depicts four iterations of the loop defined on line 7 of Algorithm
2.2.1. Each vertical line in the figure represents a 4-byte word in the expKey
array. The box containing the transformation Fi is defined on line 11 of
Algorithm 2.2.1, which is described in the previous paragraph.
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Figure 2.4: A schematic depiction of the key schedule [16].

2.3 Small Scale Variants of the AES

Before we define the scaled-down derivatives of the AES, let us try to estimate
how long it would take to attack the full AES-128 by brute force. The actual
time complexity of guessing a key with 128 bits can be illustrated by a brief
thought experiment.

Suppose we are in possession of a computer cluster with ten billion nodes,
each of which runs at 3.3 GHz. Also suppose that one use of the AES-128
takes only one clock cycle on each node. Say that one year has around 3 · 107

seconds. Our cluster will then go through 3 · 107 · 3.3 · 109 · 1010 ≈ 1027 ≈ 290

keys in one year. This means that in the worst case, the total time required
to guess the correct key will be around 238 years, which is about 250 billion;
while the age of the universe is currently estimated to be around 13.8 billion
years.

Now suppose that the average consumption of each node is only 1 W and
that 1 kWh of energy costs only 0.01e (the average price of 1 kWh for Eu-
ropean household consumers is around 0.2e in 2020). This means that the
energy cost required for our attack is around 1010 · 0.001 · 0.01 · 24 · 365 · 238 ≈
1020e.

A quick estimate like this immediately leads to the conclusion that the
feasibility of the classic brute-force approach is beyond reality. This striking
infeasibility of attacking the full AES-128 motivated researchers to come up
with scaled down versions of the cipher in order to provide manageable insight
into its internals. Carlos Cid et al. introduced such versions in [16] and [17].
The reductions emerge naturally and the new cipher can be described by the
following parameters:

(i) the number of rounds n, 1 ≤ n ≤ 10;

(ii) the number of rows r of the state, r = 1, 2, 4;
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(iii) the number of columns c of the state, c = 1, 2, 4;

(iv) the number of bits e of the elements of the state, e = 4, 8.

We will denote the scaled-down version of the AES by SR(n, r, c, e). This
notation is consistent with [16] and [17]. The standard AES-128 can be then
defined by SR(10, 4, 4, 8) with one subtle difference described in the following
paragraph:

As shown in Algorithm 2.1.1, the last round differs from the previous ones
inasmuch as the MixColumns operation is omitted in it. This omission is due
to the design of the inverse of the AES. The new SR(n, r, c, e) cipher keeps the
MixColumns operation in the last round. In section 2.1, we saw that this oper-
ation is a linear transformation, so the overall complexity of the cryptanalysis
of both ciphers remains the same, since a solution of a system of polynomial
equations for one cipher would provide a solution for the other cipher. This
omission is the only difference between the AES-128 and SR(10, 4, 4, 8).

Let us now go through the scaled-down versions of the actual encryption
operations used in SR(n, r, c, e). The cipher operates over the field GF(2e),
defined by the quotient ring F2[x] /〈f(x)〉 where f(x) = x4 +x+ 1 when e = 4
and f(x) = x8 + x4 + x3 + x+ 1 when e = 8. Note that the polynomial f(x)
is irreducible over F2[x] in both cases and when e = 8, it is identical to the
polynomial used in the original AES-128.

The SubBytes operation is also identical to the one used in the AES-128
when e = 8. When e = 4, the operation is a composition of the following two
transformations:

(i) Take the multiplicative inverse in GF(24), the element 016 is mapped to
itself.

(ii) Similarly to expression (2.1.1), apply the following affine transformation
over GF(24): 

b′0
b′1
b′2
b′3

 =


1 0 1 1
1 1 0 1
1 1 1 0
0 1 1 1



b0
b1
b2
b3

+


0
1
1
0

 . (2.3.1)

The ShiftRows operation cyclically rotates the row i of the state by i
positions, 0 ≤ i < r − 1. Notice that we index the rows from zero so that the
first row is always left intact. When r = 4, we can use the matrix R4 from
(2.1.2). When r = 2, the matrix to rotate a row becomes

R2 =
(

0 1
1 0

)
.
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When c = 4, we can use the matrix from expression (2.1.3) and alternatively
use R2 instead of R4 when r = 2. When c = 2, the expression simply becomes(

r′0
r′1

)
=
(
I 0
0 R

)(
r0
r1

)
(2.3.2)

where R is either R4 or R2 and I is the identity matrix of corresponding size.
When r = 1 or c = 1, the operation has no effect since either R2 becomes (1)
or the matrix from the expression above becomes I.

The MixColumns operation remains the same as in the AES-128 when r =
4. When r = 2, the operation is defined by the following linear transformation:(

s′0,j
s′1,j

)
=
(
x+ 1 x
x x+ 1

)(
s0,j
s1,j

)
(2.3.3)

for 0 ≤ j < 2, which indexes the columns, similarly to expression (2.1.5).
When r = 1, the matrix defining the MixColumns operation simply becomes
(1), so the operation has no effect.

When c = 4, the new cipher uses the same key schedule as in the AES-128.
For c = 2 and c = 1, the structure is naturally reduced and depicted in Figure
2.5 left and right respectively. Similarly to the AES-128, the AddRoundKey
operation takes in c words of length r. Each word contains the elements of
GF(2e). These elements are added to the state — each word is added to a
column of the state, as shown in formula (2.2.1). The RotWord and SubWord
operations take in r-tuples containing the elements of GF(2e). The round
constant array also contains r-tuples, in which the only non-zero element is
the first one, namely xj−1 ∈ GF(2e) being the powers of x ∈ GF(2e) where j
is the round number. Notice that the initial key has rce bits. Also recall that
this initial key is added to the plaintext before starting the encryption and
generating the subsequent sub-keys, just as in the AES-128.

Figure 2.5: A schematic depiction of the scaled-down key schedule [16].

2.4 The AES as a System of Equations

The AES (and its small scale derivatives) is a symmetric block cipher where
the block is represented by the state, which is further divided into sub-blocks.
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The AES is also an example of an iterated substitution-permutation network
where one iteration is split into three stages [18]. The first stage is a local
nonlinear transformation (substitution) of the sub-blocks of the state. This
transformation is performed by the SubBytes operation — the S-box is locally
applied to each sub-block in order to substitute its value, while the mutual
positions of the sub-blocks are left intact. This stage provides so-called con-
fusion. The next stage is a global linear transformation of the state. This
is performed by the ShiftRows and MixColumns operations, which are linear
transformations over GF(2e), and which also change the mutual positions of
the sub-blocks. This stage provides so-called diffusion and it tries to distribute
the output bits of the S-boxes in the current iteration to as many S-box inputs
as possible in the next iteration. The last stage is the addition of the key.

Let us now model the AES and its scaled-down variants as a system of
multivariate polynomial equations over GF(2). We will focus our attention
mainly to SR(n, 2, 2, 4) and derive a system of equations for this cipher.
A solution to this system will provide us with the encryption key. Other
scaled-down derivatives can be modeled in the same way, including the AES
itself. Note that we will use one ciphertext with its corresponding plaintext
for our model. Our method therefore comes under the known-plaintext type
of cryptanalysis.

Non-linear Equations

Let us start by considering the inversion part of the S-box. We know that
bc = 1, where b ∈ GF(2e) is the input and c ∈ GF(2e) is the output of the
S-box. This equation holds unless b = 0, in which case we have b = c = 0
and we will say that a 0-inversion has taken place. The probability of a
0-inversion occurring is quite low, namely 1

16 when e = 4 and 1
256 when e = 8,

so the probability of no 0-inversion occurring is 1− 1
16 = 15

16 and 1− 1
256 = 255

256 .
Notice however that these probabilities hold for a single application of the
S-box. In SR(n, 2, 2, 4), there are four applications of the S-box during the
encryption in one round, so the probability of no 0-inversions occurring during
the encryption is (15

16)4n. There are also two applications of the S-box during
the key schedule in one round, so the probability of no 0-inversions occurring
during the key schedule is (15

16)2n. We presume statistical independence of the
0-inversions.

The actual occurrence of a 0-inversion either during the encryption or key
schedule is deterministically given by the choice of the plaintext and initial
key. If we happen to hit a 0-inversion during the generation of the ciphertext,
we can simply disregard the current combination of the plaintext and key,
and pick another combination. The issue, as we will see later on, is that
one of the equations that model the S-box would have to change, and we
as the cryptanalyst, would not know which one it would have to be since
we do not know the key anymore. For this reason, we will assume that no
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0-inversions have occurred for the given plaintext/key combination when we
start generating the equations.

We may regard both b = ∑3
i=0 bix

i and c = ∑3
i=0 cix

i as polynomials in
GF(2)[x]. Considering Remark 2.1.3, the product bc modulo the polynomial
m(x) = x4 + x+ 1 is r(x) = r3x3 + r2x2 + r1x+ r0 where

r0 = b0c0 ⊕ b3c1 ⊕ b2c2 ⊕ b1c3,

r1 = b1c0 ⊕ b0c1 ⊕ b3c2 ⊕ b2c3 ⊕ b3c1 ⊕ b2c2 ⊕ b1c3,

r2 = b2c0 ⊕ b1c1 ⊕ b0c2 ⊕ b3c3 ⊕ b3c2 ⊕ b2c3,

r3 = b3c0 ⊕ b2c1 ⊕ b1c2 ⊕ b0c3 ⊕ b3c3.

(2.4.1)

It is important to note that in contradistinction to Remark 2.1.3, the coeffi-
cients bi and ci are the elements of GF(2). We have bc = r = 1. This gives
us four multivariate quadratic equations over GF(2): r0 = 1 and ri = 0 where
i = 1, 2, 3. These equations are bilinear in the bi and ci variables. For e = 8,
we would have got eight multivariate quadratic equations in the variables bi
and ci instead of four.

If there was a 0-inversion, either during the encryption or key schedule,
the first equation would change to r0 = 0. However as already mentioned,
we do not consider this case, since we can detect 0-inversions before we start
generating the equations and disregard the plaintext/key combinations that
produce them.

Along with these equations, it is possible to obtain further quadratic equa-
tions from the relation bc = 1. Notice that we also have bc2 = c and b2c = b.
Let us focus on the first relation and compute the resulting equations. The
equations for b2c = b can be produced in the same fashion. Since we work
over GF(2), we can write bc2 + c = 0. We have already computed the product
bc, so we could just multiply it by c and get the result. This computation
would require unnecessary steps as it would lead to many intermediate cubic
terms which we would have to cross out before obtaining the final coefficients.
We can instead compute the square of c and pre-multiply it by b. We are
working over a commutative structure, so the order in which we perform the
multiplication is of no relevance. In order to work out the square of c, we
can use the expression (2.4.1) and substitute c for b. We get the polynomial
d = c2 where d(x) = d3x3 + d2x2 + d1x+ d0 with

d0 = c0 ⊕ c2

d1 = c2

d2 = c1 ⊕ c3

d3 = c3.

We can now obtain the final result t = bd+c where t(x) = t3x3 +t2x2 +t1x+t0
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with

t0 = b0c0 ⊕ b0c2 ⊕ b3c2 ⊕ b2c1 ⊕ b2c3 ⊕ b1c3 ⊕ c1,

t1 = b1c0 ⊕ b1c2 ⊕ b0c2 ⊕ b3c1 ⊕ b3c3 ⊕ b3c2 ⊕ b2c1 ⊕ b1c3 ⊕ c1,

t2 = b2c0 ⊕ b2c2 ⊕ b1c2 ⊕ b0c1 ⊕ b0c3 ⊕ b3c1 ⊕ b2c3 ⊕ c2,

t3 = b3c0 ⊕ b3c2 ⊕ b2c2 ⊕ b1c1 ⊕ b1c3 ⊕ b0c3 ⊕ b3c3 ⊕ c3.

We know that t = 0, so we have four equations ti = 0 for 0 ≤ i < 4. Notice
that these equations are quadratic as well. We can obtain reciprocal equations
from b2c = b. All of these eight equations are biaffine in the bi and ci variables.

It is possible to obtain even more quadratic equations by considering the
relations bc4 = c3 and b4c = b3. As in the previous case, let us focus our
attention to the first one and rewrite it to bc4 + c3 = 0. We can square d to
obtain c4, so let f = d2 where f(x) = f3x3 + f2x2 + f1x+ f0 with

f0 = c0 ⊕ c1 ⊕ c2 ⊕ c3

f1 = c1 ⊕ c3

f2 = c2 ⊕ c3

f3 = c3.

The polynomial c3 can be obtained by multiplying d by c. We then get g = dc
where g(x) = g3x3 + g2x2 + g1x+ g0 with

g0 = c0 ⊕ c0c2 ⊕ c1c2 ⊕ c2c3

g1 = c3 ⊕ c0c1 ⊕ c0c2 ⊕ c2c3

g2 = c2 ⊕ c0c1 ⊕ c0c2 ⊕ c0c3 ⊕ c1c2 ⊕ c1c3 ⊕ c2c3

g3 = c1 ⊕ c2 ⊕ c3 ⊕ c1c3 ⊕ c2c3.

We are now in a position to obtain the result u = bf + g where u(x) =
u3x3 + u2x2 + u1x+ u0 with

u0 = b3c3 ⊕ b3c1 ⊕ b2c3 ⊕ b2c2 ⊕ b1c3 ⊕ b0c3 ⊕ b0c2 ⊕ b0c1

⊕ b0c0 ⊕ c3c1 ⊕ c2c1 ⊕ c2c0 ⊕ c0,

u1 = b3c2 ⊕ b3c1 ⊕ b2c2 ⊕ b1c2 ⊕ b1c1 ⊕ b1c0 ⊕ b0c3 ⊕ b0c1

⊕ c3c2 ⊕ c2c0 ⊕ c1c0 ⊕ c3,

u2 = b3c2 ⊕ b2c2 ⊕ b2c1 ⊕ b2c0 ⊕ b1c3 ⊕ b1c1 ⊕ b0c3 ⊕ b0c2

⊕ c3c2 ⊕ c3c1 ⊕ c3c0 ⊕ c2c1 ⊕ c2c0 ⊕ c1c0 ⊕ c2,

u3 = b3c2 ⊕ b3c1 ⊕ b3c0 ⊕ b2c3 ⊕ b2c1 ⊕ b1c3 ⊕ b1c2 ⊕ b0c3

⊕ c3c2 ⊕ c3c2 ⊕ c3c1 ⊕ c3 ⊕ c2 ⊕ c1.

We know that u = 0, so we have another four equations ui = 0 for 0 ≤ i < 4.
Observe that these equations are still quadratic. We can obtain reciprocal
equations from b4c = b3.
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So far, we have derived 20 multivariate quadratic equations from the rela-
tion bc = 1. A natural question arises whether we have identified all quadratic
equations in the bi and ci variables. Notice, for example, that we have skipped
the relation bc3 = c2. The reason is that it would produce equations with cubic
terms. Relations involving higher powers than c4 would also lead to equations
with higher than quadratic terms. In fact, the 20 equations we have derived
are all the quadratic equations over GF(2). A further discussion can be found
in [17, p. 77]. As also advised in [17, p. 77], we will focus on the first 12 bi-
linear and biaffine quadratic equations we have obtained and we will omit the
remaining eight ones. For e = 8, we would have got 40 multivariate quadratic
equations in the variables bi and ci instead of 20.

Linear Equations

The equations we have derived for the inversion part of the S-box account for
the only non-linear equations in the whole system that models the SR(n, 2, 2, 4)
cipher. Let us now derive the remaining linear equations.

The affine transformation of the S-box can be expressed directly by ex-
pression (2.3.1) where the input is the polynomial c(x) from the previous
subsection. This gives us four linear equations in the ci variables. These
equations together with the non-linear equations from the previous subsec-
tion fully describe a single S-box. Let Ls denote the matrix from expression
(2.3.1). In order to describe the whole SubBytes operation, we can extend the
matrix Ls to the whole state array of SR(n, 2, 2, 4), so we have the matrix

L =


Ls 0 0 0
0 Ls 0 0
0 0 Ls 0
0 0 0 Ls

 .

We can also extend the S-box constant vector (0, 1, 1, 0)T = 616 to the vector
6 = (616, 616, 616, 616), so that we cover the whole state array. We will use
b to denote the input vector of the SubBytes operation, and b−1 to denote
its output — the vector of the inverted elements in GF(24). Note that each
component in these vectors is made of the four coefficients of the polynomi-
als b(x) and c(x), respectively; so we have 12 non-linear equations for each
component.

The actual state array is depicted in Figure 2.6. We will represent it as
the vector (s0, s1, s2, s3)T . The ShiftRows operation can be then described
by the matrix

R =


I4 0 0 0
0 0 0 I4
0 0 I4 0
0 I4 0 0
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s0 s2

s1 s3

Figure 2.6: The state array of the SR(n, 2, 2, e) cipher.

where I4 is the identity matrix of size four. Before we describe the MixColumns
operation, let us rewrite the expression (2.4.1) into matrix form:

r0
r1
r2
r3

 =


b0 b3 b2 b1
b1 b0 ⊕ b3 b3 ⊕ b2 b2 ⊕ b1
b2 b1 b0 ⊕ b3 b3 ⊕ b2
b3 b2 b1 b0 ⊕ b3



c0
c1
c2
c3

 .
If we substitute the binary values of the coefficients of the polynomials x+ 1
and x into the matrix in the expression above, we get the matrices

Mx+1 =


1 0 0 1
1 1 0 1
0 1 1 0
0 0 1 1

 and Mx =


0 0 0 1
1 0 0 1
0 1 0 0
0 0 1 0

 .
These matrices represent the multiplication by the polynomials x + 1 and x
modulo the polynomial x4 +x+ 1. The MixColumns operation, defined by the
expression (2.3.3), can then be expressed by the matrix

M =


Mx+1 Mx 0 0
Mx Mx+1 0 0
0 0 Mx+1 Mx

0 0 Mx Mx+1

 .
We can now describe one round of SR(n, 2, 2, 4) by the expression

bi = MR(Lb−1
i−1 + 6) + ki for i < 0 ≤ n

where ki is a vector containing 16 binary variables of the round key described
in the following subsection and i is the round number. The vector b−1

i−1 con-
tains four components — the outputs from the S-boxes — each of which has
four binary variables. It is straightforward to check that R6 = M6 = 6. We
can then write

bi = MRLb−1
i−1 + ki + 6 for i < 0 ≤ n.

The relation above gives 16 linear equations, which represent one round of
SR(n, 2, 2, 4). In addition, we have 12 non-linear equations for each compo-
nent in b−1

i−1, so in total, we have 16 + 4 · 12 = 64 equations describing one
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round of encryption in the SR(n, 2, 2, 4) cipher. When i = n, we have

ct = MRLb−1
n−1 + kn + 6

where ct is the known ciphertext, which is a vector of 16 binary values. We
obtain b0 by adding the initial unknown key k0 to the known plaintext pt,
so we have

b0 = pt + k0.

This addition gives us further 16 initial equations where pt is a vector of 16
binary values and k0 is a vector of 16 binary variables. Our goal is to actually
compute the values of k0 since this is the user’s key. All other variables are
auxiliary.

Key Schedule

The generation of round keys for SR(n, r, c, e) is thoroughly described in Ap-
pendix A of [16]. Let us now describe the equations for SR(n, 2, 2, 4). Let
ki = (ki,0, ki,1, ki,2, ki,3, )T ∈ GF (24)4 be the round key of round i. The round
key can be then defined by(

ki,2q
ki,2q+1

)
=
(
Lk−1

i−1,3
Lk−1

i−1,2

)
+
(

616
616

)
+
(
xi−1

0

)
+

q∑
t=0

(
ki−1,2t
ki−1,2t+1

)

for 0 ≤ q < 2 where xi−1 is an element of GF(24). This expression gives 16
linear equations for each ki. Note that k0 is not provided by the user — it
is a vector of 16 binary variables that we, as the cryptanalyst, are trying to
compute. We also get 2·12 = 24 non-linear equations since the computation of
each ki requires two applications of the S-box. One round of the key schedule
in SR(n, 2, 2, 4) is then described by 40 equations.

Equations without auxiliary variables

We can also derive equations that contain only the variables of the initial
key. In order to obtain such a system, we can eliminate the auxiliary vari-
ables by a gradual substitution of the initial key variables since we know
that the cipher starts by adding the initial key to the known plaintext. It
is straightforward to perform this substitution for the linear equations. For
the non-linear equations, which model the S-box, we can leverage Gröbner
bases. Consider the four polynomials r0, . . . , r3 from (2.4.1) as polynomials in
F[c0, . . . , c3, b0, . . . , b3]. We see that it is not straightforward to express the out-
put bits ci in terms of the input bits bi by ordinary manipulation techniques.
If we impose, for example, a block order �grlex,grlex on F[c0, . . . , c3, b0, . . . , b3]
with �grlex on both F[c0, . . . , c3] and F[b0, . . . , b3], and compute the reduced
Gröbner basis, we get the following polynomial system:
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f1 = c0⊕ b2b1b0 ⊕ b3b2b1 ⊕ b2b0 ⊕ b2b1 ⊕ b0 ⊕ b1 ⊕ b2 ⊕ b3,

f2 = c1⊕ b3b1b0 ⊕ b1b0 ⊕ b2b0 ⊕ b2b1 ⊕ b3b1 ⊕ b3,

f3 = c2⊕ b3b2b0 ⊕ b1b0 ⊕ b2b0 ⊕ b3b0 ⊕ b2 ⊕ b3,

f4 = c3⊕ b3b2b1 ⊕ b3b0 ⊕ b3b1 ⊕ b3b2 ⊕ b1 ⊕ b2 ⊕ b3,

f5 = b3b2b1b0 ⊕ b2b1b0 ⊕ b3b1b0 ⊕ b3b2b0 ⊕ b3b2b1 ⊕ b1b0 ⊕ b2b0 ⊕ b2b1 ⊕ b3b0

⊕ b3b1 ⊕ b3b2 ⊕ b0 ⊕ b1 ⊕ b2 ⊕ b3 ⊕ 1

We see that the last polynomial f5 involves only the variables bi. Notice
that this polynomial is not satisfied only if all bi = 0 and it holds whenever
we have at least one bi = 1. Recall that we do not consider 0-inversions. This
polynomial is therefore always satisfied and we can omit it from the system.
We also see that in the remaining polynomials, the output variables c0, . . . , c3
are expressed solely by the input variables bi. This allows us to perform the
gradual substitution of the unknown variables of the initial key k0 throughout
the whole polynomial system. Notice that we obtain |k0| = 16 polynomials
after we finish the substitution. We note that the size of the polynomials is
close to 2|k0|−1 at full diffusion of the cipher. The diffusion grows rapidly with
each round. For example, as our experiments will reveal, the cipher SR(n, 2,
2, 4) reaches its full diffusion at round n = 3. This way of generating the
polynomials is therefore suitable only for low values of n. A different method
for obtaining polynomials without auxiliary variables is described in [19].

Yet another way of obtaining polynomials involving only the variables of
the initial key k0 is to regard the cipher as a set of boolean functions of k0,
one function per one bit of k0. We can then convert such functions into an
Algebraic Normal Form (ANF) in order to obtain the polynomials. Such a
conversion can be found in [20]. However, the complexity of this approach
requires at least |k0|2|k0| encryptions even if we consider only one round of
the cipher. For this reason, we will not examine this method any further.
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Chapter 3
Experiments

I feel I am nibbling on the edges of this world when I am capable of
getting what Picasso means when he says to me — perfectly
straight-facedly — later of the enormous new mechanical brains or
calculating machines: “But they are useless. They can only give
you answers.”

William Fifield, Pablo Picasso: A Composite Interview,
The Paris Review 32

The experiments were carried out on GNU/Linux 5.4 running on on two Intel®
Xeon® Gold 6136 processors with 768 GB DDR4 memory evenly split up into
12 modules. The baseboard was Supermicro X11DPi-NT. The initial polyno-
mial systems containing auxiliary variables were generated by utilizing Martin
Albrecht’s implementation of the small scale variants of the AES in SageMath
9.1 [21] which also uses Python 3.7.3 and PolyBoRi [22]. The systems were
solved in Magma V2.25-5 [23] and CryptoMiniSat [24]. The source code for
the experiments can be found at https://gitlab.com/marek.onl/masters-
thesis. The generation and preprocessing of the polynomial systems was
implemented in parallel utilizing all 24 available cores. Magma, however, was
able to solve one system on one core only, so in order to keep the comparison
even, we explicitly restricted CryptoMiniSat to one core only as well.

As stated in Definition 1.1.24, we may regard a system of polynomials as
a basis of an ideal I. We can then compute the reduced Gröbner basis of I
under the lexicographic order, and by applying the Elimination Theorem, we
can easily obtain the solution. We have demonstrated the use of this theorem
in examples 1.4.7 and 1.4.11, and as we have discussed in Section 2.4, the
solution represents the secret key.

Table 3.1 shows the results of initial experiments with systems of equations
containing auxiliary variables. We generated the systems in SageMath for
various versions of SR(n, r, c, e), and we subsequently attempted to solve these
systems by the F4 algorithm implemented in Magma and by CryptoMiniSat.
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Since we work over GF(2), the polynomials can be seen as logical formulas
in algebraic normal form (ANF). SageMath supports a conversion from ANF
to CNF (conjunctive normal form). Formulas in CNF can be passed to Cryp-
toMiniSat and the initial key can be then easily recovered from the solution.
We have included the SAT solver so that we can compare it to the performance
of the F4 algorithm and we can see in the table that the solver performs much
better. The SAT solver also takes a negligible amount of memory, so this
value is not stated in the table.

The average number of monomials per polynomial is between 6 and 8
when e = 4 and between 18 and 20 when e = 8. Both the average and highest
degrees of monomials are equal to two, so all polynomials are quadratic or
linear, as the case may be. In our experiments, we do not consider the ciphers
with r < 2 or c < 2 as these have the matrices for the operations MixColumns
and ShiftRows reduced to (1). Recall that the dimensions of the state array
r and c are restricted to the values 1, 2 and 4; the exponent e can be either 4
or 8; and for the number of rounds n, we have 1 ≤ n ≤ 10.

The column named Vars contains the number of variables in the whole
polynomial system and the column named Polys contains the number of poly-
nomials in the system. We measured the runtime and memory consumption
only during the solving of the polynomials since the preparation of the system
takes only a fraction of the resources relative to solving it.

Recall that the key size for SR(n, r, c, e) is given by the product rce. No-
tice that we were not able to compute the solution for even one round of
SR(n, 4, 4, 8), the key size of which is 128 bits. On the other hand, the SAT
solver could quickly compute the solution for all ten round of SR(n, 2, 2, 4).
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Table 3.1: Initial experiments with systems containing auxiliary variables.

Cipher Key
bits Vars Polys F4 SAT

Time Mem. Time
SR(1, 2, 2, 4) 16 72 120 1 s 33 MB 2 s
SR(2, 2, 2, 4) 16 128 224 19 s 848 MB 12 s
SR(3, 2, 2, 4) 16 184 328 4 h 76 GB 17 s
SR(4, 2, 2, 4) 16 240 432 — — 27 s
SR(10, 2, 2, 4) 16 576 1056 — — 50 s
SR(1, 4, 2, 4) 32 144 240 48 s 981 MB 9 s
SR(2, 4, 2, 4) 32 256 448 — — 1.5 m
SR(3, 4, 2, 4) 32 368 656 — — 63 h
SR(1, 2, 4, 4) 32 136 216 3 s 67 MB 11 s
SR(2, 2, 4, 4) 32 240 400 — — 33 s
SR(3, 2, 4, 4) 32 344 584 — — 15.5 m
SR(4, 2, 4, 4) 32 448 768 — — 34 h
SR(1, 4, 4, 4) 64 272 432 — — 2.5 m
SR(1, 2, 2, 8) 32 144 240 1 m 2.2 GB 22 s
SR(2, 2, 2, 8) 32 256 448 — — 11.5 m
SR(1, 4, 2, 8) 64 288 480 — — 41.5 m
SR(1, 2, 4, 8) 64 272 432 — — 4 m
SR(1, 4, 4, 8) 128 544 864 — — —

Table 3.2 contains the results of experiments with systems that contain
only the variables of the initial secret key. We eliminated the auxiliary vari-
ables by a gradual substitution of the variables of the initial key through the
system, starting by adding the known plaintext bits and ending by adding the
known ciphertext bits. The time required for this substitution is stated in the
column named PT. This system always contains k polynomials in k variables
where k is the number of the key bits. Since k is the number of variables and
we work over GF(2), k is also the maximal limit of the total degree of the
polynomials.

All further experiments will be carried out with systems of polynomials
involving only the variables of the initial key. In systems with auxiliary vari-
ables, the structure of the polynomial systems derived from different plaintexts
remains unchanged. Only the initial and final polynomials that add the bits
of the plaintext and ciphertext differ by this bitwise addition. Since we have
eliminated the auxiliary variables by a gradual substitution of the initial key
bits starting from the initial plaintext addition, each of the k polynomials now
depends on the choice of plaintext and its corresponding ciphertext. Since the
structure of each polynomial system is now different, the time and memory
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required for obtaining the solution started to differ as well, especially the time
required by the SAT solver. For this reason, all the following tables contain
average results of five different runs for each experiment. We can still see that
the results for the SAT solver differ across tables for the same experiment, so
even more than five runs would be required for further investigation. Never-
theless, we restricted ourselves to such number due to limited time resources.

The column named AMP contains the average number of monomials per
polynomial in the whole system. We can see that this number grows fast as n
increases. The maximal limit of the number of monomials in one polynomial
is 2k − 1. When n = 1 and e = 4, the average degree of monomials is 2 and
the highest degree is 3. When n = 2, the average and highest degrees are 5
and 9, respectively. Note that the average degree has its maximum at k

2 . We
were not able to generate systems with n > 2 and r, c > 2 for e = 4. For
n = 1 and e = 8, the average degree is 4 and the maximal degree is 7. We
were not able to generate systems with e = 8 and n > 1 (recall that we do
not consider the cases when r < 2 or c < 2). We can see in the table that the
overall performance is worse compared to the previous table and that the SAT
solver still outperforms the F4 algorithm. Moreover, we were able to solve less
systems than in the previous experiments.

Table 3.2: Experiments with systems with no auxiliary variables.

Cipher Key
bits PT a AMP b F4 SAT

Time Mem. Time
SR(1, 2, 2, 4) 16 1 s 20 1 s 33 MB 1 s
SR(2, 2, 2, 4) 16 1 s 2475 2.5 m 4.8 GB 1 m
SR(3, 2, 2, 4) 16 8 s 32784 8.5 m 18.5 GB 13 m
SR(10, 2, 2, 4) 16 2.5 m 32814 9 m 19.5 GB 14 m
SR(1, 4, 2, 4) 32 1 s 37 55 s 1.2 GB 1 s
SR(1, 2, 4, 4) 32 1 s 23 13 s 671 MB 1 s
SR(1, 4, 4, 4) 64 4 s 40 — — 2 m
SR(1, 2, 2, 8) 32 8 s 314 — — 1.5 m
SR(1, 4, 2, 8) 64 18 s 567 — — 33 m
SR(1, 2, 4, 8) 64 14 s 348 — — 1.5 h

a Preprocessing Time — the time required to obtain the system
b Average number of Monomials per Polynomial

In the table above, we can see that the the AMP value and the solving time
and memory are almost the same for SR(3, 2, 2, 4) and SR(10, 2, 2, 4). This
means that the maximal diffusion for SR(n, 2, 2, 4) is reached in the third round
of the cipher and the subsequent rounds do not provide any further security
as regards the algebraic cryptanalysis, except for a longer time required for
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the generation of the polynomial system. This observation seems to be in
line with the statements made in [25]. The following table provides a deeper
insight into the distribution of monomials in SR(3, 2, 2, 4). At full diffusion,
the expected degree of monomials should be equal to 1

2
(k
d

)
where k is the

number of variables and d is the degree. Since we have SR(3, 2, 2, 4), we get
k = 2 · 2 · 4 = 16, recall that we also have k polynomials in the whole system.
In Table 3.3, the expected value is stated in the last row. We see that all the
polynomials follow this value very closely, meaning that it is not possible to get
much closer to the expected value in the subsequent rounds. For this reason,
we do not consider the rounds between the third and tenth one. The table also
shows that the average monomial degree is 8 for each polynomial, which is half
of the maximal degree, and that no polynomial significantly differs from the
expected values for monomial degrees. The second last row shows the average
value for all of the polynomials — the average of the whole column above.

The last column contains the number of all monomials in the polynomial.
At full diffusion, this number should be equal to ∑16

d=0
1
2
(k
d

)
= 216

2 = 32768,
so that every polynomial contains half of all of the possible monomials. We
see that the number of monomials is close to the expected value for each of
the polynomials as well. We may also be interested in the frequency of the
variables in the polynomial system. Considering the full diffusion again, each
variable should be contained in half of the monomials in every polynomial, so
the expected value is 216

4 = 16384. In the actual system described in Table
3.3, the most frequent variable had 16446 occurrences and the least frequent
variable had 16393 occurrences, these are aggregated values.

Table 3.3: Distribution of monomials of a given degree in SR(3, 2, 2, 4).
Poly Number of monomials of the given degree

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 all
1 0 6 62 277 939 2177 3965 5820 6500 5769 4001 2201 893 262 55 9 1 32937
2 1 9 55 295 906 2154 3931 5780 6519 5790 3990 2212 902 279 51 4 0 32878
3 1 7 57 277 908 2199 4010 5653 6510 5685 3978 2232 912 277 60 7 0 32773
4 0 7 66 276 940 2159 3997 5759 6514 5737 3979 2260 939 268 59 13 0 32973
5 1 11 69 268 940 2244 4023 5701 6440 5738 4009 2142 892 262 69 6 1 32816
6 1 5 59 286 940 2169 4067 5692 6399 5830 4074 2152 917 269 59 8 1 32928
7 0 8 67 276 904 2236 3990 5634 6407 5764 4034 2164 914 259 58 2 1 32718
8 1 11 61 281 908 2201 4045 5637 6305 5775 3974 2208 919 285 53 7 1 32672
9 1 6 57 277 869 2202 4064 5775 6359 5676 4053 2182 925 302 58 8 1 32815
10 1 9 47 277 937 2185 4012 5718 6359 5713 4027 2191 907 260 56 10 1 32710
11 1 8 68 293 907 2226 3985 5698 6490 5747 4023 2139 903 287 57 6 0 32838
12 0 8 54 293 926 2167 3948 5693 6330 5665 4038 2172 935 294 62 10 0 32595
13 1 7 59 287 918 2230 4067 5804 6505 5700 4035 2208 879 267 58 11 1 33037
14 1 10 46 260 902 2173 3957 5789 6446 5739 4080 2237 885 270 65 10 1 32871
15 1 7 57 275 922 2189 4037 5793 6358 5721 3989 2224 880 294 61 3 0 32811
16 0 10 57 260 905 2174 4057 5741 6533 5824 3942 2180 939 264 76 7 1 32970

Avg. 0.7 8 59 279 917 2193 4010 5730 6436 5742 4014 2194 909 275 60 8 0.6 32834
Exp. 0.5 8 60 280 910 2184 4004 5720 6435 5720 4004 2184 910 280 60 8 0.5 32768

Let us see if we can obtain any better results than those in Table 3.2. Let k
be the initial key. By Proposition 1.1.37, we know that I(k) is an ideal. Now
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let {f1, . . . , fk} and {g1, . . . , gk} be two polynomial systems generated from
two different pairs of plaintext and ciphertext under the same key k. Since
each fi(k) = 0 and gj(k) = 0, we have I = 〈f1, . . . , fk, g1, . . . , gk〉 ⊆ I(k).
In general, in order to obtain the ideal I, we may combine any number of
polynomial systems instead of two. We can now compute the Gröbner basis
for I and we still get the initial key k. The ideal I represents an overdefined
system for which it could be easier to obtain the solution. We will call one
pair of plaintext and its corresponding ciphertext a PC pair. In our further
experiments, we assume that all PC pairs use the same key.

Table 3.4 summarizes the experimental results for two combined systems,
as described in the previous paragraph. We can see that the results are much
better compared to Table 3.2 and that the F4 algorithm often performs better
than the SAT solver. We can also see that we are able to solve more polynomial
systems and even the system for SR(1, 4, 4, 8) is solved in a few seconds.
Recall that we were unable to obtain this solution for systems with auxiliary
variables. This practically means that one round of the AES-128 provides
no security against this attack. We were not able to obtain any solution for
SR(n, 4, 4, e) with n > 1 though. Observe that we used two PC pairs in this
scenario. Further experiments with more than two pairs were carried out as
well, but did not provide any better results. After adding more than five
systems, the time required to obtain to solution started increasing.

We note that it would be not possible to combine the systems if we did not
eliminate the auxiliary variables. The reason is that the auxiliary variables
do not depend on the PC pair — when we use two different PC pairs, we get
the same equations, up to the initial additions of the plaintext and ciphertext.
On the other hand, when we express the equations only in the variables of the
initial key, we get a different system for each PC pair.
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Table 3.4: Experiments with two combined systems.

Cipher Key
bits PT a AMP b F4 SAT

Time Mem. Time
SR(1, 2, 2, 4) 16 1 s 21 1 s 33 MB 1 s
SR(2, 2, 2, 4) 16 2 s 2469 5 s 100 MB 1 m
SR(3, 2, 2, 4) 16 9 s 32798 13 m 19.8 GB 45.5 m
SR(10, 2, 2, 4) 16 3 m 32774 11 m 25.5 GB 31.5 m
SR(1, 4, 2, 4) 32 2 s 37 1 s 33 MB 1 s
SR(2, 4, 2, 4) 32 6 s 33360 — — —
SR(1, 2, 4, 4) 32 2 s 23 1 s 33 MB 1 s
SR(2, 2, 4, 4) 32 3 s 6701 — — —
SR(1, 4, 4, 4) 64 4 s 39 1 s 33 MB 2 s
SR(1, 2, 2, 8) 32 10 s 316 1 s 33 MB 8 s
SR(1, 4, 2, 8) 64 18 s 568 2 s 33 MB 17 s
SR(1, 2, 4, 8) 64 15 s 348 1 s 33 MB 17 s
SR(1, 4, 4, 8) 128 34 s 599 4 s 33 MB 35 s

a Preprocessing Time — the time required to obtain the system
b Average number of Monomials per Polynomial

The table above shows that the hardest systems to solve were the ones
with high AMP. Let us see if we can reduce this value.

Definition 3.0.1. Let f, g ∈ F[x1, . . . , xn] be two polynomials. We define
their similarity σ(f, g) as σ(f, g) = |M(f) ∩M(g)|, where M(h) is the set of
monomials in h.

Consider again a polynomial system F = {f1, . . . , fk} and a set of l poly-
nomial systems G = {g1, . . . , gm} where m = kl. We will refer to F as the
primal system and to G as the reduction set. Each polynomial system is gen-
erated from a different PC pair under the same key k. For each fi we find a
gj so that σ(fi, gj) is maximal and compute hi = fi + gj ∈ I(k). We get an
ideal I = 〈h1, . . . , hk〉 ⊆ I(k). Similarly to the previous experiments, we can
now compute the Gröbner basis and obtain the solution k. Since we work over
GF(2), if the polynomials fi and gj are similar enough, the alike monomials
cancel each other out and the resulting polynomials hi might be smaller than
fi. This might allow faster computation.

As already mentioned, we get a different system for each PC pair. How
much different depends on the degree of diffusion in the cipher. In Table
3.3, we have shown that the polynomials for SR(n, 2, 2, 4) with n ≥ 3 are
essentially random. This reflects in Table 3.5, which contains the results of
experiments with the reduced polynomials hi. The value l in the table is the
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size of the reduction set, as described in the paragraph above. We see that
for SR(3, 2, 2, 4), the Average number of Monomials per Polynomial after the
Reduction (AMPR) does not differ from the AMP value in the previous table.
On the other hand, for example, for SR(2, 4, 2, 4) and l = 5, AMPR is reduced
by 86 %. Unfortunately, we could still not compute the solution. For SR(2, 2,
4, 4) and l = 5, the reduction allowed us to solve the system, but for l = 2, it
did so only for the SAT solver. For SR(2, 2, 2, 4), the reduction shortened the
computation time. We note that we considered only the ciphers that required
more than five seconds to solve in the previous table. We can also see that
the number of polynomial systems for reduction l considerably lowered the
AMPR value only for SR(2, 2, 4, 4) and for other ciphers it had no, or very
subtle effect. We have also tried other values of l, all of which were ≤ 50 due
to limited time, with no significant effect either, even for SR(2, 2, 4, 4). The
column labeled PT now includes the time required for the reduction.

In order to increase the reduction, we have tried generating the plaintexts
in the PC pairs for the polynomial systems in G so that each of them would
differ only by one bit from the plaintext for F . It emerged that this approach
did not bring any significant improvement.

We suspect that the reduction technique proposed above might not be the
only one and that other techniques might provide better results.

Table 3.5: Experiments with reduced polynomial systems.

Cipher Key
bits PT a AMPR b l c F4 SAT

Time Mem. Time
SR(2, 2, 2, 4) 16 5 s 601 1 1 s 33 MB 29 s
SR(2, 2, 2, 4) 16 5 s 519 5 1 s 33 MB 24 s
SR(3, 2, 2, 4) 16 25 s 32592 1 16 m 17.9 GB 37.5 m
SR(3, 2, 2, 4) 16 40 s 32555 5 18 m 23.1 GB 41 m
SR(2, 4, 2, 4) 32 26 s 4938 1 — — —
SR(2, 4, 2, 4) 32 1 m 4563 5 — — —
SR(2, 2, 4, 4) 32 14 s 3410 1 — — 83 m
SR(2, 2, 4, 4) 32 18 s 1192 5 60 m 34.5 GB 50 m
a Preprocessing Time — the time required to obtain the system
b Average number of Monomials per Polynomial after Reduction
c Size of the reduction set

Since the F4 algorithm and the SAT solver run in a single thread, and we
had a parallel architecture at our disposal, we tried guessing some variables in
the reduced polynomial systems with l = 5. This means that we determined
the values of the guessed variables, we substituted these values into the system,
and then we attempted to solve the system. Observe that substituting concrete
values of some variables not only eliminates the variables, but also shortens the
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polynomials — for example, a 0 occurring in a monomial makes it vanish. On
the other hand, substituting a 1 can lead to two equal monomials which cancel
each other out. We used a brute-force approach for guessing the variables so
we got 2v different systems to solve where v is the number of guessed variables.
Instead of guessing random variables, we tried to guess the most frequent ones
in order to shorten the polynomials even further. The reason can be seen in
figures 3.1 and 3.2. These figures contain the frequencies of the variables for
five instances of SR(2, 2, 4, 4) and SR(2, 4, 2, 4). The variables are ordered
in a descending order, so their labels correspond to their relative positions in
the plot according to their frequency — the first variable is the most frequent
one. It can be seen that the frequencies differ significantly. Recall that, on
the other hand, the frequencies of the variables of SR(3, 2, 2, 4) are evenly
distributed as we already showed. We have tried guessing the eight most
frequent variables, so we had 28 = 256 parallel threads, one thread for each
guess. The results are in Table 3.6. We see that we were able to obtain the
solution for SR(2, 4, 2, 4) and that the solving time is reduced significantly for
the other two ciphers. Note that the F4 algorithm outperforms the SAT solver.
Also observe that the preprocessing time for SR(3, 2, 2, 4) is much longer.
This is caused by counting the frequencies since each of the 16 polynomials
has around 214 monomials. We have also tried guessing eight of the least
frequent variables and we were not able to obtain the solutions for SR(2, 4, 2,
4) and SR(2, 2, 4, 4) even though we solved the system for SR(2, 2, 4, 4) in
the previous table. This was due to memory limitations as each of the parallel
processes allocated dozens of gigabytes — we see in Table 3.5 that the F4
algorithm allocated on average 34.5 GB when solving SR(2, 2, 4, 4) with no
guessed variables. We note that each of the threads finished its computation in
a different time. The threads that provided no solution usually ended earlier.
This could be leveraged in further analysis since this observation also provides
information about the correct key. The times stated in the table are always
the overall wall times. Recall that each value in the table is the average for
five independent experiments. We have also tried guessing different numbers
of variables. Guessing more than eight variables produced even longer solving
times. This was caused by creating too many threads. On the other hand, we
were often unable to obtain the solutions for SR(2, 4, 2, 4) when we guessed
less than six variables.
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Figure 3.1: Frequencies of the key variables for five instances of SR(2, 2, 4, 4).
The variables are ordered according to their frequency.
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Figure 3.2: Frequencies of the key variables for five instances of SR(2, 4, 2, 4).
The variables are ordered according to their frequency.
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3.1. Conclusions

Table 3.6: Experiments with reduced polynomial sys-
tems and guessed variables.

Cipher Key
bits PT a F4 SAT

Time Mem. Time
SR(3, 2, 2, 4) 16 8 m 6 s 33 MB 35 s
SR(2, 4, 2, 4) 32 2.5 m 43 s 620 MB 9 m
SR(2, 2, 4, 4) 32 31 s 14 s 72 MB 5.5 m
a Preprocessing Time — the time required to obtain the system

3.1 Conclusions

In our experiments, we demonstrated the capabilities of solving systems of
polynomial equations by means of Gröbner bases and a SAT solver. Initially,
we generated systems that contain the auxiliary variables, and we saw that
the SAT solver significantly outperformed Gröbner bases. We subsequently
eliminated the auxiliary variables by a gradual substitution so that the sys-
tems contained only the variables of the initial secret key. We saw that the
results were even worse compared to the systems with the auxiliary variables.
However, when we combined at least two systems with no auxiliary variables,
we got much better results, especially for Gröbner bases. Note, for example,
that we were able to obtain the secret key for one round of the AES-128. We
also solved one round of all the other ciphers with the state array reduced.

We showed that a 16-bit version of the AES reaches its full diffusion after
its third round. We also saw that the polynomial system in the third round
has the same properties as the system in the tenth round. This might suggest
that the original AES has enough spare rounds as well.

We tried reducing the polynomial systems without auxiliary variables by
adding similar polynomials so that equal monomials would cancel each other
out, and we also tried guessing the most frequent variables. The combination
of these two approaches allowed us to obtain the solutions for some of the
systems that we could not solve otherwise.
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Appendix A
Abbreviations and Symbols

N0 = the set of natural numbers including zero

N>0 = the set of natural numbers excluding zero

Z = the set of integers

Q = the set of rational numbers (fractions)

R = the set of real numbers

C = the set of complex numbers

� indicates the end of a proof

AES Advanced Encryption Standard

ANF Algebraic Normal Form

CNF Conjunctive Normal Form

SAT SATISFIABILITY (Boolean satisfiability problem)

e.g. (Latin exempli gratia) for example

i.e. (Latin id est) that is

et al. (Latin et alii) and others
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