
Instructions

The task is to develop planning techniques for warehouse logistics. We assume a warehouse with a

group of mobile robots that move across the warehouse. A typical task for a robot is to transport an

item from its storage location to a packing location. The significant challenge in the context of a

warehouse is to plan for multiple robots so they fulfil a stream of tasks arriving online. Specifically, the

problem is how to respond to priority tasks. The robots must not conflict with each other. Tasks for the

student are as follows:

1. Study relevant literature on warehouse planning and logistics with an emphasis on coordination of

multiple robots fulfilling stream of tasks and tasks with priorities.

2. Modify an existing method or develop a new method for coordination of warehouse robots that can

handle priorities effectively.

3. Implement the new method as a software prototype and compare it with a relevant alternative

algorithm. Analyze the results.

 
[1] Minghua Liu, Hang Ma, Jiaoyang Li, Sven Koenig: Task and Path Planning for Multi-Agent Pickup and

Delivery. AAMAS 2019: 1152-1160

[2] John Enright, Peter R. Wurman: Optimization and Coordinated Autonomy in Mobile Fulfillment

Systems. Automated Action Planning for Autonomous Mobile Robots 2011

[3] Felix Weidinger, Nils Boysen, Dirk Briskorn: Storage Assignment with Rack-Moving Mobile Robots in

KIVA Warehouses. Transp. Sci. 52(6): 1479-1495 (2018)

[4] Pavel Surynek: Unifying Search-based and Compilation-based Approaches to Multi-agent Path

Finding through Satisfiability Modulo Theories. IJCAI 2019: 1177-1183

Electronically approved by doc. Ing. Jan Janoušek, Ph.D. on 29 November 2020 in Prague.

Assignment of master’s thesis

Title: Automated Planning for Warehouse Logistics

Student: Bc. Klára Dvořáková

Supervisor: doc. RNDr. Pavel Surynek, Ph.D.

Study program: Informatics

Branch / specialization: Computer Science

Department: Department of Theoretical Computer Science

Validity: until the end of summer semester 2021/2022

Master’s thesis

Automated Planning for Warehouse
Logistics

Bc. Klára Dvořáková

Department of Theoretical Computer Science
Supervisor: doc. RNDr. Pavel Surynek, Ph.D.

April 30, 2021

Acknowledgements

I would like to thank my supervisor doc. RNDr. Pavel Surynek, Ph.D. for
valuable advice and help with problems that I faced while writing my thesis.
I would also like to thank to my family and friends who supported me during
my studies.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on April 30, 2021

Czech Technical University in Prague
Faculty of Information Technology
© 2021 Klára Dvořáková. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Dvořáková, Klára. Automated Planning for Warehouse Logistics. Master’s
thesis. Czech Technical University in Prague, Faculty of Information Technol-
ogy, 2021.

Abstrakt

Tato práce se zabývá automatickou skladovou logistikou. Práce se zaměřuje
na pohyb robot̊u ve skladu tak, aby nedocházelo ke koliźım a roboti efektivně
plnili své úkoly. Typickým úkolem je přesun položky z mı́sta uskladněńı na
mı́sto výdejńı. Hlavńım ćılem práce je zanalyzovat a vyvinout modifikaci exis-
tuj́ıćıch metod se zaměřeńım na úkoly s r̊uznými prioritami. Literárńı rešerše
se zabývá problémem hledáńı cest pro v́ıce agent̊u a popisem existuj́ıćıch
algoritmů řeš́ıćıch tento problém. Praktická část práce navazuje analýzou a
implementaćı vylepšeńı Windowed CBS algoritmu tak, aby efektivně zpra-
covával úkoly s r̊uznými prioritami. Závěrečná část práce je věnována ex-
periment̊um na r̊uzných mapách s r̊uzným počtem agent̊u a analýze jejich
výsledk̊u. Výsledkem práce je softwarový prototyp Windowed Priority CBS,
který přij́ımá úkoly s r̊uznými prioritami a tyto priority bere v potaz při jejich
řešeńı.

Kĺıčová slova MAPF, lifelong MAPD, CBS, prioritizace, automatický sklad

vii

Abstract

This thesis describes automated warehouse logistics. The paper focuses on
the coordination of the robot in a warehouse so there are no collisions and
the robots fulfil their tasks effectively. A typical task is to move an item from
its storage location to its delivery location. The main goal of the thesis is
to analyze and develop a modification of existing algorithms with a focus on
tasks with different priorities. The theoretical part of this paper deals with a
multi-agent pathfinding problem and a description of existing algorithms that
solve this problem. The practical part of the paper follows up with the anal-
ysis and implementation of Windowed CBS improvements so the algorithm
would process tasks with different priorities effectively. Finally, experiments
are run on several maps with a various number of agents, and the results are
evaluated and analyzed. The outcome of the thesis is a software prototype of
Windowed Priority CBS that accepts tasks with different priorities and takes
said priorities into account when searching for the solution.

Keywords MAPD, lifelong MAPD, CBS, prioritization, automated ware-
house

viii

Contents

Introduction 1

1 Background 3
1.1 Multi-Agent Pathfinding . 3

1.1.1 MAPF Formal Definition 3
1.1.2 MAPF Solution Evaluation 5
1.1.3 MAPF Algorithms . 6

1.2 Lifelong MAPD . 12
1.2.1 MAPD Definition . 12
1.2.2 MAPD Solution Evaluation 15
1.2.3 Lifelong MAPD Algorithms 15

1.3 Prioritization . 16
1.3.1 Approaches to prioritization 17

2 Analysis and design 19
2.1 Priority MAPD Definition . 19
2.2 Data Structure . 20
2.3 Windowed Priority CBS . 21

2.3.1 Windowed Approach . 21
2.3.2 Analysis of the Priorities 24
2.3.3 Idle Approaches . 34
2.3.4 Algorithm Properties . 34

3 Experimental Evaluation 39
3.1 Setting Parameter w . 40
3.2 Priority Queue s Setting . 42
3.3 Warehouse-style Corridors Map 43
3.4 Centralized Pickups Map . 48
3.5 Maze Map . 51
3.6 Stripe Map . 54

ix

3.7 Experiments Summary . 56

Conclusion 59

Bibliography 61

A Windowed Priority CBS 65
A.1 Program input . 65
A.2 Data storage classes . 66
A.3 Windowed CBS . 67
A.4 Constraint Tree . 69
A.5 CBS Low Level . 71
A.6 Solution properties . 74

B Acronyms 75

C Contents of enclosed CD 77

x

List of Figures

0.1 Example of an automated warehouse (resource: MAX 3D De-
sign/Shutterstock.com) . 2

1.1 Edge conflict . 4
1.2 Vertex conflict . 5
1.3 MAPF problem example . 6
1.4 MAPF Problem example with two agents 9
1.5 Constraint tree for problem 1.4 . 10
1.6 Possible conflict solutions for more than 2 agents 11
1.7 Well-formed instance . 13
1.8 Instance violates condition number 3 14
1.9 Instance violates condition number 2 14

2.1 Example of a warehouse-style map represented as a 4-connected grid 20
2.2 Example of a warehouse-style map to demonstrate windowed CBS 22
2.3 Example of CBS prioritization . 25
2.4 Example 2 of CBS prioritization 26
2.5 Example path of CBS prioritization, p1 = 2, p2 = 1 27
2.6 Example path of CBS prioritization, p1 = 4, p2 = 1 27
2.7 Example map for reassigning tasks 30
2.8 Reassging tasks example - path without reassigning tasks 30
2.9 Reassging tasks example - path withreassigning tasks 31
2.10 Replan tasks example map . 32
2.11 Optimality example map . 35
2.12 Optimal path . 36
2.13 Non-optimal path . 36

3.1 Experimental Map 1 - Warehouse-style corridors 40
3.2 Total number of timesteps for different w settings 41
3.3 Running time of the program for different w settings 41
3.4 Running time of the program for different w settings 42

xi

3.5 Waiting time . 43
3.6 Waiting time for instances with 2 agents in warehouse-style corri-

dors map . 44
3.7 Running time for instances with 2 agents in warehouse-style corri-

dors map . 45
3.8 Waiting time for instances with 4 agents in warehouse-style corri-

dors map . 45
3.9 Sum of costs for instances with 4 agents in warehouse-style corri-

dors map . 46
3.10 Waiting time for instances with 8 agents in warehouse-style corri-

dors map . 47
3.11 Sum of costs for instances with 8 agents in warehouse-style corri-

dors map . 47
3.12 Running time of the program for warehouse-style corridors map . . 48
3.13 Experimental map 2 - Centralized pickups map 49
3.14 Waiting time for instances in centralized pickups map 50
3.15 Sum of the costs for instances in centralized pickups map 50
3.16 Running time of the program for centralized pickups map 51
3.17 Experimental map 3 - maze map 52
3.18 Waiting time for maze map in timesteps 53
3.19 Sum of costs for maze map in timesteps 53
3.20 Experimental map 4 - stripe map 54
3.21 Waiting time for stripe map in timesteps 55
3.22 Sum of costs for stripe map in timesteps 55
3.23 Summary of waiting times in timesteps 56
3.24 Summary of running times in timesteps 57
3.25 Summary of sum of costs in timesteps 58
3.26 Summary of running time of the program in milliseconds 58

xii

List of Tables

A.1 Finished tasks table . 73

xiii

Introduction

During the past years, the number of people using e-shops to buy goods has
increased. As a response to the higher demand, online shops need to enlarge
their warehouses and speed up the logistics processes inside their them. One
way to make warehouse logistics more efficient is to engage robots in the
process and make the warehouse automated as we can see in picture 0.1.

The highest increase in the customer demand arose last year, mainly as
a consequence of the closing of many retail stores due to the covid-19 pan-
demic. The demand grew substantially, and some stores are having troubles
shipping all the orders in a reasonable time. Furthermore, some items need
to be shipped faster than others, or some members need to have their orders
delivered fast. Here is where priorities come into play. With an automated
warehouse, we can incorporate different priorities of orders and have them
shipped as fast as needed.

This thesis focuses on warehouse logistics. We specifically focus on lifelong
multi-agent pathfinding with priorities. We will analyze different approaches
to priorities and build a software prototype to coordinate warehouse robots
that can handle priorities effectively.

In the theoretical part, we will focus on describing the multi-agent pathfind-
ing problem (MAPF) and the multi-agent pickup and delivery problem (MAPD).
We will discuss different algorithms to solve these two problems, emphasizing
the constraint-based search (CBS) algorithm. Next, we will define the MAPD
problem with task priorities. We will focus on different algorithm modifi-
cations to make our new algorithm modification solve tasks with priorities
effectively.

In the practical part, we will gather information from the priority analysis,
and we will implement various algorithm modifications of the Windowed CBS
algorithm. We will test the implemented modifications on various warehouse

1

Introduction

maps on several instances and with a varied number of robots. Finally, we
will evaluate the experimental results and discuss what modifications handle
priorities effectively.

Figure 0.1: Example of an automated warehouse (resource: MAX 3D De-
sign/Shutterstock.com)

2

Chapter 1
Background

1.1 Multi-Agent Pathfinding

Multi-agent pathfinding (MAPF) is the problem that focuses on finding paths
for multiple agents so that every agent reaches its goal and agents do not
collide. We can see multiple real-world applications of this problem in different
areas, such as warehouse logistics [1], robotics [2], digital entertainment [3],
autonomous vehicles [4] and even some focused on real-time computer games
[5], [6] or [7].

In this chapter, we will focus on the offline version of this problem. Of-
fline MAPF means that all tasks that will be processed are known from the
very beginning of the solution, and no new tasks are added throughout the
computation of the solution. In the following sections, we will discuss MAPF
problem definitions, solution evaluation, and we will look at some algorithms
that solve offline MAPF problems. [8]

1.1.1 MAPF Formal Definition

MAPF problem can be defined in more ways. In this paper, we will focus on
the classical definition of the problem.

In a classical MAPF problem, we define k agents with a tuple 〈 G, i, g 〉,
where:

• G = (V, E) is an undirected graph with vertices V and edges E. Ver-
tices represent all the possible locations that agents can occupy. Edges
represent paths between locations; each edge represents one path from
one vertex to another without passing through any other vertex.

• i is a function that maps an agent to its initial position.

• g is a function that maps an agent to its goal (target location).

3

1. Background

Time is discretized into timesteps. Each agent performs one action in every
timestep. There are two types of actions:

• move: The agent is moving from its current location to another vertex
that is connected by an edge to the current position.

• wait: The agent stays in its current position for one timestep.

Single-agent solution can be defined as a sequence of actions πi = (a1, ...,an)
for agent i, where the first position of the agent is s(i) and the ending posi-
tion is g(i). Solution to the MAPF problem is then the joint single-agents
solutions of all k agents. This solution is not necessarily a valid solution. To
define a valid solution, we first need to discuss and define the two main types
of conflicts that can occur between agents.

These conflicts are:

• Vertex Conflict: This conflict happens when more than one agent
occupies a single vertex at the same timestep. Formally then: there is a
vertex conflict between agent i and agent j if there exists such a timestep
t, where πi[t] = πj [t]. Picture 1.2 demonstrates a vertex conflict.

• Edge Conflict: This conflict occurs if two agents are swapping their
locations and are using the same edge. Formally then: there is an edge
conflict between agent i and j if there exists timestep t, where πi[t+1] =
πj [t] and πj [t+ 1] = πi[t]. Picture 1.1 demonstrates an edge conflict.

There are more types of conflicts, such as different types of edge conflicts
(following agent) or circle conflicts (all agents follow others in a circle). To
properly define the MAPF problem, we need to define what conflicts are going
to be considered restrictions. The least of the restrictions is to forbid edge
conflict (swapping conflict). Most of the previous works also forbid vertex
conflicts.

Figure 1.1: Edge conflict

Now we can define a valid solution to the MAPF problem as a solution
that does not have any restricted conflicts.

4

1.1. Multi-Agent Pathfinding

Figure 1.2: Vertex conflict

1.1.2 MAPF Solution Evaluation

In the second part of the chapter, we will discuss different types of solution
evaluation. There are two most commonly used objective functions for solution
evaluation.

• Makespan: This function returns the number of timesteps from the ini-
tialization until the last step of the last agent. Formally then, makespan
for a solution π = (π1, ..., πk) is equal to max1≤i≤k|πi|.

• Sum of costs: This function returns the sum of all timesteps over all
the agents. Formally then the sum of costs for solution π is defined as∑

1≤i≤k |πi|.

[8]

MAPF Example

Let us take an example of a simple MAPF problem 1.3. The graph G =
(V,E) is here a four-connected grid map. Agents can move to their neighbour
locations, but they cannot cross to the corner connected locations in one
move. Black squares symbolise ”blocked” locations, meaning agents cannot
visit these locations. We can see that our problem instance has two agents
A = (a1, a2), where agents are defined as:

• a1 = (G, 5, 7)

• a2 = (G, 8, 5).

Intuitive shortest paths for agents are:

• π1 = {{M, 6}, {M, 7}}

• π2 = {{M, 7}, {M, 6}, {M, 5}}

M stands for action move and W stands for action wait.
Evaluation of the joint solution π = (π1, π2) is then:

5

1. Background

Figure 1.3: MAPF problem example

• makespan = max(|π1|, |π2|) = max(2, 3) = 3

• sumofcosts = |π1|+ |π2| = 2 + 3 = 5

We can see that there is a problem with the solution and that it is not
a valid solution. There is an edge conflict in the second timestep, where
π1[2] = π2[1] and π2[2] = π1[1]. To find a valid solution, we need to resolve
this conflict. There is an intuitive resolution of this conflict: if we move the
agent a1 from location 6 to location 2 instead of 7, we can avoid this conflict.
The improved path for agent a1 is now π1 = {{M, 6}, {M, 2}, {M, 6}, {M, 7}},
the path for agent a2 stays the same. Now we can see there are no more
conflicts, and this solution can be considered valid.

Let us evaluate the new solution. Only the path of agent a1 changed:

• |π1| = 4→ makespan = max(4, 3) = 4

• sumofcosts = 4 + 3 = 7.

We could, of course, change the path of the agent a2; this agent has no
more options to move from location 7 other than location 6, but going back to
location 8. Modifying agent a2 would lead to agent a2 waiting in its current
location. π2 = {{M, 7}, {W, 7}, {M, 6}, {M, 5}}. From this, we can see that
this move would result in a vertex conflict in location 6. It is evident, then,
that finding a valid solution by modifying agent a2 is, in this example, more
complicated.

1.1.3 MAPF Algorithms

Multi-agent pathfinding is a widely studied area; there are many algorithms
capable of solving this problem. We can divide these algorithms into differ-
ent categories based on different parameters and the way they are operating.
There are centralised methods that treat all agents as a single entity [9] and

6

1.1. Multi-Agent Pathfinding

decoupled methods that plan each agent independently and then search for
the conflicts [10] or [11]. These methods have different properties, and we can
divide algorithms based on their optimality, completeness and time and space
complexity.

Example of an fast algorithm is prioritized planning [12]. We consider an
algorithm to be a fast algorithm if the worst-case time complexity is polyno-
mial in the size of the graph G and exponential in the number of the agents
[8].

Prioritized planning is a simple algorithm that sorts tasks based on their
priority and then plans them one by one. It holds a table where all the
locations with the timesteps of all the planned agents are stored. Agents that
are being planned are using this table to avoid conflicts with the previously
planned agents. There are different ways to set tasks priorities discussed in
[13] and [14]. We can see that this algorithm is neither complete nor optimal.

Another example of a fast algorithm is MAPP [15]. This algorithm is not
optimal but is complete under some circumstances. Other examples are Push-
and-Swap [16], or Push-and-Rotate [17]. Even though these two algorithms
are complete, they are not optimal.

Optimal Algorithms

The optimal solvers can be classified as follows:

• Extensions of A*

• Increasing Cost Tree Search (ICTS)

• Constraint Programming

• Constraint-Based Search (CBS)

The first group of optimal algorithms is based on A*. This group includes
operator independence detection algorithm [18] or M* algorithm [19]. These
algorithms are extending an A* algorithm by time domain to search collision-
free paths.

The ICTS algorithm [20] divides the search into a high-level and low-level
search. The high-level is represented Increasing Cost Tree (ICT). In the first
step, it finds an optimal solution for all single agents (low-level search). The
path lengths (= costs) are then saved to the root of the ICT. The search
continues by adding increasing one of the costs in the node by one. The tree
is increasing the cost of the joint solution until the low-level search finds a
valid solution.

MAPF problem can also be solved by a general-purpose constraint solver.
The problem is usually modelled as a Constraint Satisfaction Problem or Con-
straint Optimization Problem. General-purpose constraint solver then assures
a collision-free path [21].

7

1. Background

CBS algorithm will be described more deeply since we will build our solu-
tion on this algorithm.

CBS

Conflict-based search (CBS) is a complete and optimal MAPF problem solver
for well-formed instances [22]. Its idea is to decompose the problem into
a single-agent pathfinding problem. In single-agent pathfinding, constraints
are used to guarantee the non-existence of conflicts with other agents. The
algorithm can be divided into two levels; the high and the low level. High-level
stores the constraint tree (CT), and the low level takes care of the single-agent
pathfinding.

A constraint is a tuple (ai, v, t) (resp. (ai, v1, v2, t)) that prohibits agent
ai to visit vertex v in time t (resp. prohibits agent ai to move from vertex
v1 to vertex v2 in time t), its purpose is to avoid vertex conflicts (resp. edge
”swapping” conflicts).

High Level

This level stores and searches a binary constraint tree (CT). Each node of the
CT consists of:

• Set of constraints

• Total cost (Makespan or Sum Of Costs may be used)

• Solution

In each node, first, the constraints are loaded, and then the low-level search
takes place. The low-level search returns the shortest path for each agent.
When all the single-agent solutions are returned from the low-level search to
the node, they are joined and validated. Validation is conducted through
timestep iteration and location matching of all the agents. If there is no
conflict, the joint solution is valid. A node is a goal node if the joint solution
is valid. If there is a conflict, the joint solution is invalid, and the conflict
needs to be resolved.

Conflicts are resolved using constraints. When a conflict is found in the
joint solution, then it is divided into two constraints. For conflict Cn =
(ai, aj , v, t),meaning agents ai and aj collide in vertex v in time t, there will
be two vertex constraints created: (ai, v, t) and (aj , v, t), similarly for an edge
conflict. One constraint is added to the node’s left child and the other one
to the node’s right child. Each node stores only one constraint (except for
the root, which has no constraints stored). The whole set of each node’s
constraints can be extracted by traversing the tree from the node to the root.

Since we only add one constraint in each node, we only need to update one
search for each node. This makes the solution-finding process more efficient.

8

1.1. Multi-Agent Pathfinding

Let us explain how the CT works on a simple example 1.4. There are
two agents for whom we need to find the fastest paths to their goals. Black
squares simulate obstacles. In CT 1.5 we can see that there is a collision
Cn = (a1, a2, 4, 1). As described before, constraints (a1, 4, 1) and (a2, 4, 1) are
saved to children nodes, respectively. Low-level search is invoked for the left
child (resp. right child), low-level searches for a new solution only for agent a1
(resp. agent a2). In the second level, both nodes found valid joint solutions.
Therefore, they are both considered goal nodes. As we use make of span as
the evaluation function, we see that the cost is the same in this example so
either of them can be used as the final joint solution.

Figure 1.4: MAPF Problem example with two agents

Some conflicts may occur between more than two agents, Cn = (a1, .., ak, v, t),
where k > 2. We have two possible solutions to resolve this conflict:

1. Create k children with k − 1 constraints.

2. Solve only the conflict of the first two agents.

If we follow the first approach and create k children, we will no longer have
a binary tree. Each of those k children will also have k−1 constraints instead
of one, which does not comply with saving only one constraint per node. The
second approach will result in having to solve the rest of the conflicts in the
deeper levels. If there is no duplication detection implemented, it will lead to
searching for the same path with the same constraints twice, as shown in the
picture 1.6. The first part of the picture shows method number one, where
k children are created with k − 1 constraints. The second part of the picture
shows the conflict’s partial solution, where each node solves only the first two
agents in the conflict. We can then see how it leads to a duplicate node.

We can observe the CBS high-level pseudocode in algorithm 1. The al-
gorithm takes a MAPF instance as an input. In lines 1-3, the root of the

9

1. Background

Constraints: {}, Cost: 10

Solution: {
A1 : 1, 4, 5, 6, 3;
A2: 7, 4, 5, 6, 9

 }

Constraints: {a1, 4, 1}, Cost: 11

Solution: {
A1 : 1, 1, 4, 5, 6, 3;
A2: 7, 4, 5, 6, 9

 }

Constraints: {a2, 4, 1}, Cost: 11

Solution: {
A1 : 1, 4, 5, 6, 3;
A2: 7, 7, 4, 5, 6, 9

 }

Figure 1.5: Constraint tree for problem 1.4

constraint tree is updated, a solution is found for every task, the cost is es-
timated, and the root is added to the open nodes’ queue. The rest of the
algorithm is a while cycle; the node with the lowest cost is processed first
(line 6). The processed node is then validated (line 7); if the node’s solution is
valid, it is returned as a goal node (line 8). If the solution is not valid, the first
conflict is found (line 10). A new node is created and added as a child of the
current node for each agent in the conflict. To each child, one new constraint
of agent ai is added (line 13), the child’s solution is taken from the current
node (line 14), only agent ai’s path is recomputed taking the new constraint
into account (line 15). Child’s cost is computed next (line 16). If the com-
puted cost is less than infinity, it means the solution is valid and therefore, it
is added to the queue (line 18).

10

1.1. Multi-Agent Pathfinding

Constraints: {}

Constraints: {{a1, 1, 1}, {a2, 1, 1}} Constraints: {{a2, 1, 1}, {a3, 1, 1}} Constraints: {{a1, 1, 1}, {a3, 1, 1}}

Constraints: {}

Constraints: {a1, 1, 1} Constraints: {a2, 1, 1}

Constraints: {a3, 1, 1}Constraints: {a2, 1, 1} Constraints: {a1, 1, 1}Constraints: {a3, 1, 1}

Method number 1

Method number 2

Figure 1.6: Possible conflict solutions for more than 2 agents

Algorithm 1 CBS High Level
1: Root.constraints← {} . Root is the root of the constraint tree
2: Root.solution← low − levelsearchforalltheagents
3: Root.cost← getCost(Root.solution)
4: Q Open← insertRoot . Queue containing open constraint tree nodes
5: while Q Open is not empty do
6: tmp← getLowest(Q Open) . Returns node with the lowest cost
7: validate tmp.solution
8: if tmp is valid then return tmp.solution . tmp is a goal node, no

need to search for conflicts
9: end if

10: Cn← getF irstConflict(tmp.solution)
11: for each ai in Cn do
12: Create new node Child
13: Child.constraint← tmp.consraint+ (ai, v, t)
14: Child.solution← tmp.solution
15: Child.solution← low − levelsearchforagentai

16: Child.cost← getCost(Child.solution)
17: if A.cost < ∞ then . Solution found
18: Q open← Child
19: end if
20: end for
21: end while

11

1. Background

Low Level

The low level does the single-agent path searching part. This algorithm uses
an A* search to find the shortest paths.The A* works in a two-dimensional
space. In other words, it works with spatial and time dimensions. The low
level recieves a set of constraints for each agent from the high level; these
constraints are being checked during the search. If the search generates a state
that does not comply with the constraints, it is deleted immediately without
any expansion. The Manhattan distance from an agent’s goal location is used
as the basic heuristic for the search.

1.2 Lifelong MAPD

Lifelong Multi-agent pickup and delivery (MAPD) is an online version of the
previously described MAPF. Multi-agent pickup and delivery (MAPD) is a
specific version of MAPF that adds multiple goals to the agent paths (pickup
and delivery locations).

The difference between the lifelong and offline version of this problem is
that in the lifelong version the tasks are coming to the system throughout
time, meaning we do not know all the tasks initially when we start solving
the problem. In lifelong MAPD, agents are constantly being assigned new
incoming tasks as opposed to offline MAPF, where, usually, an agent reaches
its goal, and stays there untill the end of the program. This approach better
simulates real-world applications.

1.2.1 MAPD Definition

In the previous section, we defined the MAPF problem; the formal definition
for lifelong MAPD stays similar. The difference is that MAPD is adding a
starting position that can differ from the agent’s initial position. Instead of
defining agents as tuples G = (G, s, g), we need to define a set of agents and
tasks separately. Tasks are defined by their start (pickup) and goal (delivery)
locations. Since tasks can come to the system at any time, we cannot assign
them to the agents at the beginning of the program. A task can be assigned
to an agent throughout the program’s run; the agent then fulfils the task by
going first to the start location and then to the goal location. When a task is
assigned to an agent, it is taken away from the set of the tasks, and when the
agent achieves the goal location, the task is finished.

In this paper, we will work only with well-formed (solvable) instances of
the problems. Therefore we need to define rules to follow when creating an
instance to make sure it can be solved. Conditions for a well-formed instance
are as follows:

12

1.2. Lifelong MAPD

1. Agents can rest (”stay forever”) only in locations that are called end-
point, where they cannot block other agents.

2. There are task (pickup and delivery locations) and non-task endpoints
(rest locations); the number of non-task endpoints must be at least the
same as the number of agents.

3. For any two endpoints, there exists a way that does not traverse other
endpoints.

4. The number of tasks is finite.

Figure 1.7: Well-formed instance

Examples of MAPD instances can be seen in schemas 1.7, 1.8 and 1.9.
Schema 1.7 is an example of a well-formed instance. We can see there an
instance with two agents in their initial positions. The number of non-task
endpoints is the same as the number of agents, which complies with condition
number 2. None of the non-task endpoints is blocking any way between any
other of the endpoints.

The second schema 1.8 is not a well-formed instance. We can see that there
is a non-task endpoint that is blocking a task endpoint. Since agents can stay
in the non-task endpoints ”forever”, there is a possibility that a task could
not be executed because of an agent resting in this endpoint and blocking the
way to a task endpoint.

Third schema 1.9 is an example of a violation of the condition that there
has to be at least the same number of non-task endpoints as the number of

13

1. Background

Figure 1.8: Instance violates condition number 3

Figure 1.9: Instance violates condition number 2

agents. There are two agents in the schema, but only one non-task endpoint.
Non-task endpoints are important to get agents ”out of the way” of the agents
who are fulfiling their tasks and make sure the ”resting” agents are not block-
ing them. [23]

14

1.2. Lifelong MAPD

1.2.2 MAPD Solution Evaluation

There is a couple of different ways how to evaluate a MAPD solution. In the
previous chapter, we mentioned using makespan and Sum of costs to evaluate
the solution. We cannot use these functions here the same way since this is
a lifelong problem and it may not be possible to get all the data from the
beginning of the first task until the end of the last task. However, we can
modify these functions to evaluate the solution in our MAPD problem.

The objective is to finish each task as fast as possible, which means as-
signing the task to an agent as fast as possible and find the fastest path to
completion. The first evaluation option is to take the average number of
timesteps to finish a task after it has been added to the system. This is a
suitable evaluation method for the lifelong version since we cannot finish with
all the tasks at once. To evaluate the simulations, we can still use the Sum of
costs function described in the previous chapter.

1.2.3 Lifelong MAPD Algorithms

There are different approaches when it comes to lifelong versions of MAPF
algorithms. Most of the MAPF algorithms can be modified to run ”lifelong”.
The main types of modifications are:

1. Recomputing the whole solution after each timestep or when a new task
comes to the system.

2. Finding path only for the new incoming tasks.

3. Computing solution only for a certain amount of timesteps.

Replanning everything

Any MAPF algorithm can be used in this approach. The idea behind this
method is to run a MAPF algorithm every timestep. This leads to a decom-
position of the problem to a sequence of MAPF problems. In each timestep,
all agents are replanned. Even though it may be the easiest solution to im-
plement, the computational time is very high. We can also see that a great
part of the computed solution is useless since the agents will only perform one
action before having to recompute their paths again.

Planning only new tasks

The second approach only searches the path for the new tasks upon entering
the system. At the very beginning of the program, the algorithm searches
solution for the existing tasks and then when a new task comes, it only searches
the path for the new task using the existing solution as a base. This approach

15

1. Background

is faster than the first one, but it may not find a valid solution for the new
task.

An example of an algorithm can be the Token passing (TP) algorithm
[23]. This algorithm is similar to cooperative A*, where all the agents search
the path one after another. The TP algorithm contains a token, which is
a synchronized shared block of memory containing all the current paths of
all agents, task set and agents’ assignments. When a new task comes, it is
planned respecting the current paths in the token. This algorithm is very
similar to the COBRA algorithm [24], which is only constituted by one task
endpoint instead of two (pickup and delivery).

Windowed planning

The main idea of windowed planning is to plan the paths only for a certain
number of timesteps. The algorithm finds a solution to a MAPF problem
for the given number of timesteps; after those timesteps, it searches for the
paths again, including new tasks that came to the system during the previous
solution’s execution.

An example of such an algorithm is Windowed MAPF [25]. This algorithm
allows assigning a sequence of goal locations to an agent. Collisions are solved
only for a given number of timestep w. It defines h = (w ≥ h) as the number
of steps executed for each solution. Firstly the algorithm updates the start
position and counts the distance to the first goal position plus the distance
between the following goal locations. The total distance for each agent needs
to be at least h. When all agents have their tasks assigned, the planning for
the next w steps begins. Windowed MAPF is using Multi-label A* algorithm
[26] to find paths for single agents.

The advantage of this approach is that all agents are involved in the solu-
tion; throughput is increased. The generated plans are pliable and adapting
to incoming tasks. Computational time decreases compared to the first ap-
proach.

There are, of course, more methods on how to implement an online ver-
sion of a MAPF algorithm; these were the most common approaches. Each
approach has its pros and cons, and selection depends on its usage.

1.3 Prioritization

This section will introduce a task priority in a MAPD, meaning tasks can
have different priorities. Let us take an example of a warehouse; agents take
tasks as they come to the system, but not all the tasks have the same value.
For example, we can have an e-shop with an automated warehouse. This e-
shop has regular members (buyers) and premium members. The advantage

16

1.3. Prioritization

of being a premium member is to have their order delivered faster. The
automated warehouse needs to react accordingly and finish the task (order)
of the premium member first. Another example is a warehouse with food
storage; some items may need to be shipped as fast as possible. In this day
and age, where the supply chain has seen such a dramatic change, a warehouse
cannot afford to stick to the original logistics plan if optimization of resources
is in order.

1.3.1 Approaches to prioritization

Some algorithms are using some task prioritization, for example, Prioritized
planning. But these algorithms are usually neither complete nor optimal.
Therefore we need to focus on modifying other algorithms to achieve better
results.

Most MAPF settings do not assume prioritized tasks. During our research,
we encountered only one approach to prioritization that can be modified and
applied to our problem. We will now briefly describe algorithms that have
been proposed in research [27].

CBS-Pri

We already described the CBS algorithm in the previous section section 1.1.3.
The main change of this variation is introducing a new cost function. Travel
cost is weighted based on priority. This modification leads to CBS prioritizing
shorter paths of priority tasks.

CA*-Pri

Cooperative A* for MAPF with priority first sorts tasks by their priorities.
After sorting, it plans the tasks one by one using a reservation table (planned
tasks write their paths to the reservation table so no other task can use the
same location at the same time).

According to the aforementioned research [27], CBS-Pri needs more com-
putational time than CA*-Pri. The problem of CA*-Pri compared to CBS-Pri
is that the solution’s optimality is not guaranteed.

17

Chapter 2
Analysis and design

In this chapter, we will focus on the implemented algorithm, its modifications
and properties. The goal was to implement an algorithm that solves a lifelong
MAPD problem that has tasks with different priorities. As mentioned before,
tasks with different priorities are important for warehouse logistics and can
increase the productivity and profit of a business.

2.1 Priority MAPD Definition

To implement the algorithm, we need to formulate the priority MAPD prob-
lem. We already defined the MAPD problem in subsection 1.2.1. Now we
need to add prioritization to this definition.

Now we define priorities in a MAPD problem.

Definition 2.1.1 (Priority). We define n as the number of tasks throughout
the run of the program and array p = (p1, p2, ..., pn) as an array of priorities
of tasks t = (t1, t2, ..., tn).

• ∀i, where i ∈ p, i ∈ N

The higher the value of priority is, the higher priority the task has.

We can now establish a new definition for a task in a MAPD problem.

Definition 2.1.2 (Task with priority). A task is a tuple defined as t =
(s, g, init t, p), where:

• s, where s ∈ G, is start (pick-up) location,

• g, where g ∈ G, is goal (delivery) location

• init t, where init t ∈ N, is a timestep in which the task enters the system

19

2. Analysis and design

• p, where p ∈ N, is task’s priority

The definition of lifelong priority MAPD is already mentioned in the defi-
nition of lifelong MAPD with tasks with priorities. The lifelong version means
that we have all the tasks t that can come to the system in any timestep. In
other words, the system does not know the tasks in advance. It can only see
the tasks that have been already sent to the system. At the very beginning,
there are only tasks with timestep zero; all the other tasks enter the system
continuously.

2.2 Data Structure

We follow the MAPD definition from subsection 1.2.1. Only well-formed in-
stances will be considered during the implementation and testing process.

We represent graph G as a four-connected grid. It has specified non-task
endpoints (resting locations), pickup and delivery locations, and locations that
cannot be visited (places where the items are stored). A G grid example can
be seen in the picture 2.1. We can see non-endpoint locations highlighted in
blue colour, pickup locations in yellow colour, and delivery locations in green
colour. Locations that cannot be visited are black.

Figure 2.1: Example of a warehouse-style map represented as a 4-connected
grid

We are going to use timesteps as a measuring time of one action; move or
wait. One timestep measures time to move from one location to its adjacent

20

2.3. Windowed Priority CBS

location. Neighbouring locations are always the same distance away from each
other. We do not consider waiting time in the pickup (resp. delivery) location;
the agent just needs to pass through the location to fulfil its task.

Mobile robots are represented by agents. All the robots move at the same
speed. We assume the environment to be static and deterministic.

The whole data structure is defined as follows:

• 4-connected grid G (map)

• non-task endpoints

• agents with their initial locations

• tasks including initial timesteps and priorities

2.3 Windowed Priority CBS

We implemented a new modification Windowed Priority CBS algorithm for
automatic warehouse logistics. As the name suggests, the base solution is the
CBS algorithm. The reasons we chose CBS are its optimality and completeness
for well-formed instances, as well as its performance.

According to CBS experimental results in [22], it has proved to be faster
than other optimal solvers. Although [22] shows that A* outperforms CBS
in open spaces, the results in the paper indicate that CBS performs better
than A* in bottleneck spaces. Since we are solving a problem for a warehouse,
we will need better performance in bottleneck spaces. There is usually not
much open space in a warehouse, as corridors between items tend to be small,
and we want our algorithm to perform well for a large number of robots that
need to be maneuvering around each other. The study also shows results on a
4-connected grid graph that we are using. CBS has performed the best for a
higher number of agents in the given graph compared to A* and ICTS. EPEA*
(Partial-Expansion A* with Selective Node Generation) [28] has outperformed
CBS in the number of generated nodes, but the CBS run time was still lower
than the EPEA* run time.

2.3.1 Windowed Approach

As described in section 1.2, there are several ways to implement a lifelong
version of a MAPF algorithm.

Replanning everything every single timestep is inefficient. Using this ap-
proach could lead to the algorithm being unusable in the real world.

21

2. Analysis and design

Planning only new tasks when they come is a nice idea, but it is less
useful for prioritising tasks. If a new task of a higher priority than the al-
ready planned tasks (planned only, not executed yet) comes, the algorithm
would have to replan everything again to satisfy the newly incoming task
first. This could lead to potentially having to replan everything almost every
single timestep.

We decided to use the windowed version because of its effectiveness for
our purposes. Let us demonstrate how windowed CBS works: We have a
specified number of timesteps w that we need to plan. At the beginning of
the planning, we assign tasks to the agents so that the distance between their
current location and their tasks goals is at least w, using Manhattan distance
to calculate the distances between locations. When tasks are assigned, we run
CBS on every single agent.

We had to modify CBS to accept multiple goals. Low-level A* search takes
a sorted array of goals that have to be visited in this order and searches the
solution accordingly. High-level CBS was modified to satisfy the windowed
approach by checking for collisions only for w timesteps. This leads to so-
lutions with timesteps higher than w possibly having collisions within each
other. These collisions will be resolved in the next window, which speeds up
the program.

Figure 2.2: Example of a warehouse-style map to demonstrate windowed CBS

Not resolving the possible collisions can cause the agents not to find the
optimal solution since there can be a conflict later. The potential conflict may

22

2.3. Windowed Priority CBS

have to be resolved with an agent having to go back and finding a different
path. This problem can occur mainly when the number w is small. We can see
an example of a non-optimal solution in picture 2.2. We have two agents and
their goal positions. No other tasks are coming to the system until these tasks
are finished. Let us first solve the problem as a whole. An optimal solution
is:

• a1 : (0,0) → (1,0) → (1,1) → (1,2) → (1,3) → (1,4) → (2,4)

• a2: (0,4) → (1,4) → (2,4) → (3,4) → (3,3) → (3,2) → (3,1) → (3,0) →
(2,0)

Solution evaluation:

• makespan = 8

• sumOfCosts = 6 + 8 = 14.

Now we will simulate a windowed approach with w = 2, meaning we will
replan the solution every two steps and only check for constraints in the first
two steps of each partial solution.

• t = 0

– a1: (0,0) → (1,0) → (1,1)
– a2: (0,4) → (1,4) → (1,3)

• t = 2

– a1: (1,1) → (1,2) → (1,3)
– a2: (1,3) → (1,4) → (2,4)

• t = 4

– a1: (1,3) → (1,4) → (2,4)
– a2: (2,4) → (3,4) → (3,3)

• t = 6

– a2: (3,3) → (3,2) → (3,1)

• t = 8

– a2: (3,1) → (3,0) → (2,0)

Solution evaluation:

• makespan = 10

23

2. Analysis and design

• sumOfCosts = 6 + 10 = 16

We can see that the second solution is not optimal. The agents are only
planned for the two successive timesteps, and agent a2 cannot see the future
conflict in the first run. This leads to the agent having to go back and having
to find another path.

Let us set w = 3 and simulate the program again:

• t = 0

– a1: (0,0) → (1,0) → (1,1) → (1,2)

– a2: (0,4) → (1,4) → (1,3) → (1,3)

Even from the first run, it is evident that this solution is even worse than
the solution found with w = 2.

We will set w = 4:

• t = 0

– a1: (0,0) → (1,0) → (1,1) → (1,2) → (1,3)

– a2: (0,4) → (1,4) → (2,4) → (3,4) → (3,3)

• t = 4

– a1: (1,3) → (1,4) → (2,4)

– a2: (3,3) → (3,2) → (3,1) → (3,0)

This is an optimal solution. Even though the windowed CBS will not
always find optimal solutions, we decided to use this approach based on its
effectiveness.

2.3.2 Analysis of the Priorities

In this section, we will focus on different approaches to prioritization. We
used these approaches to implement new modifications of the Windowed CBS
algorithm for warehouses. As it was mentioned before, each task that arrives
to the system has its priority. Tasks with higher priorities need to be pro-
cessed faster than tasks with lower priorities. We will now discuss possible
improvements of Windowed CBS to achieve this goal.

24

2.3. Windowed Priority CBS

CBS Prioritization

The first improvement is a modification of CBS low-level. We previously
defined one timestep as one action (move or wait). Without priorities, we
would use Manhattan distance as a heuristic for our A* search in the CBS
low-level. Every action of all the agents would cost the same. To achieve
better results for high priority tasks, each task’s heuristics is multiplied by
their priority. This leads to an increased cost of actions for higher priority
tasks.

We will demonstrate this prioritization approach in example 2.3. There
are two agents who need to get to their goal locations. The priority of the
task of agent a1 is 2, and the priority of the task of agent a2 is 1. The fastest
single-agent paths:

• a1: (2, 0) → (1,0) → (1,1) → (1,2) → (1,3) → (1,4) → (2,4)

• a2: (2, 4) → (1,4) → (1,3) → (1,2) → (1,1) → (1,0) → (2,0)

Figure 2.3: Example of CBS prioritization

When we put these two single-agent solutions together, it will result in a
collision in vertex (1, 2). To avoid the collision, one of the agents needs to
choose a longer path to its goal. If the tasks’ priorities are the same, either
agent can choose the longer route, and the joint result will be the same. Using
the priorities, a2 is forced to move out of the way of a1. We can see the updated
routes in picture 2.3. The routes are:

• a1: (2, 0) → (1,0) → (1,1) → (1,2) → (1,3) → (1,4) → (2,4)

• a2: (2, 4) → (1,4) → (1,3) → (0,3) → (0,2) → (0,1) → (0,0) → (1,0) →
(2,0)

25

2. Analysis and design

Solution evaluation:

• Path cost of a1 : 6 ∗ priority = 6 ∗ 2 = 12

• Path cost of a2 : 8 ∗ priority = 8 ∗ 1 = 8

• SumOfCosts = 12 + 8 = 20

If we decided to change the way of a1 the solution evaluation would look like:

• Path cost of a1: 8 * 2 = 16

• Path cost of a2: 6 * 1 = 6

• SumOfCosts = 16 + 6 = 22

The Sum of costs is higher when changing the way of the agent a1 due to
its higher priority. However, higher priority does not always mean the task
will be performed before another one with lower priority.

Let us look at our second example 2.4. We have two agents and their goals.
Priorities of the agents’ tasks are as follows p1 = 2 and p2 = 1. The resulting
path can be seen in picture 2.5. The picture shows that even though a1 has
higher priority than a2, it will still have to change its path to avoid collisions
with a1.

Figure 2.4: Example 2 of CBS prioritization

Solution evaluation:

• Path cost of a1 : 6 ∗ priority = 6 ∗ 2 = 12

• Path cost of a2 : 2 ∗ priority = 2 ∗ 1 = 2

26

2.3. Windowed Priority CBS

Figure 2.5: Example path of CBS prioritization, p1 = 2, p2 = 1

Figure 2.6: Example path of CBS prioritization, p1 = 4, p2 = 1

• SumOfCosts = 12 + 2 = 14

Solution evaluation if a2 changed its way to avoid a1 (path can be seen in
picture 2.6) :

• Path cost of a1 : 4 ∗ priority = 4 ∗ 2 = 8

• Path cost of a2 : 8 ∗ priority = 8 ∗ 1 = 8

• SumOfCosts = 8 + 8 = 16

We can see that even though the task of the agent a1 would finish faster,
the sum of costswould be higher than in the first solution. The joint solution
will change if we change the tasks’ priorities. We set p1 = 4 and p2 = 1. The
result can be seen in picture 2.6. Here the solution evaluation is:

27

2. Analysis and design

• Path cost of a1 : 4 ∗ priority = 4 ∗ 4 = 16

• Path cost of a2 : 8 ∗ priority = 8 ∗ 1 = 8

• SumOfCosts = 16 + 8 = 24

If we use the solution from picture 2.5 :

• Path cost of a1 : 6 ∗ priority = 6 ∗ 4 = 24

• Path cost of a2 : 8 ∗ priority = 2 ∗ 1 = 2

• SumOfCosts = 24 + 2 = 26

When using these priorities, we need to change the way of the agent a2.
These examples show how CBS works using weighted priorities for the path
cost.

Priority Queue for Assigning Tasks

We need to implement some strategy for assigning tasks to agents. We will
use a priority queue for these purposes. This queue will sort tasks based
on their priorities, meaning high priority tasks will be assigned before low
priority tasks. While this is a simple solution, it can lead to some tasks never
being executed. Since we are implementing a prototype of a lifelong MAPD;
there can be high priority tasks entering the system so the low priority ones
are skipped and never assigned. To avoid this problem, we need to set a
parameter s equal to a certain number of timesteps. When comparing tasks,
we will add the number of timesteps that the task has been already waiting
in the system divided by parameter s to the task’s priority.

As an example, we will compare a couple of tasks, where t init is the time
they entered the system:

• t1 : t init = 0, p = 1

• t2 : t init = 25, p = 2

• t3 : t init = 35, p = 4

• t4 : t init = 40, p = 2

Now we will to define parameter s = 20 and current timestep tc = 42. We
can compute the waiting by substracting the time a task entered the system
from the current time: (tc − t init). We will compute values for the priority
queue accordingly: b(tc − t init)/sc+ p.

Computed values of tasks for the priority queue are as follows:

28

2.3. Windowed Priority CBS

• t1 : b(42− 0)/20c+ 1 = 3

• t2 : b(42− 25)/20c+ 2 = 3

• t3 : b(42− 35)/20c+ 4 = 4

• t4 : b(42− 40)/20c+ 2 = 2

We can see that t1 and t2 have the same value. Here we can decide if we
prioritize the task that has entered the system earlier or the task with higher
priority. In this example, we will prioritize the task with higher priority. The
order of the tasks will then be: t3, t2, t1 and t4. We can, of course, change
the parameter s depending on how important it is to fulfill low priority tasks
in a reasonable time.

Reassigning Tasks

At the beginning of each window, tasks are assigned to the agents. In case
of not managing to fulfill all the tasks in one run, agents keep the rest of
the assigned tasks for the next window. An improvement is implemented for
reassigning previously assigned tasks. After each run, assigned tasks where
agents haven’t reached the pickup location are put back to our priority queue.
New tasks are then assigned based on their position in the priority queue.

A problem example is ilustrated in picture 2.7. We have two agents and
three tasks. The timesteps in which each task enters the system are as follows:
t init1 = 0, t init2 = 0 and t init3 = 2. The task priorities are: p1 = 1, p2 = 1
and p3 = 5. We set w = 3. First, let’s look at the solution without reassigning
the tasks after each run.

An example solution can be seen in picture 2.8.
Joint solution is:

• t = 0

– a1: (1,4) → (1,3) → (1,2) → (1,1)
– a2: (2,4) → (3,4) → (3,3) → (3,2)

• t = 3

– a1: (1,1) → (1,0) → (2,0) → (3,0)
– a2: (3,2) → (3,1) → (2,1) → (1,1)

• t = 6

– a1: (3,0) → (3,1) → (3,2) → (3,3)
– a2: (1,1) → (0,1) → (0,0)

29

2. Analysis and design

Figure 2.7: Example map for reassigning tasks

Figure 2.8: Reassging tasks example - path without reassigning tasks

• t = 9

– a1: (3,3) → (3,4) → (3,3) → (3,2)

• t = 12

– a1: (3,2) → (3,1) → (3,0) → (2,0)

30

2.3. Windowed Priority CBS

• t = 15

– a2: (2,0) → (1,0)

We can see that when first run finishes and t = 3, a1 is in location (1,1)
and a2 is in location (3,1). Since the heuristic of a1 to finish its first task is 2,
while the heuristic of a2 is bigger than 3, then the new task will be assigned
to agent a1.

Solution evaluation:

• Path Cost t1 = (waitingT ime+ runT ime) ∗ priority = (1 + 4) ∗ 1 = 5

• Path Cost t2 = (waitingT ime+ runT ime) ∗ priority = (4 + 4) ∗ 1 = 8

• Path Cost t3 = (waitingT ime+ runT ime) ∗ priority = (8 + 6) ∗ 5 = 70

• SumOfCosts = 5 + 8 + 70 = 83

Now we look at the solution with reassigning tasks. We can see in picture
2.9 that in t = 3 task 2 is reassigned to a1 and task 3 is assigned to a2.

Figure 2.9: Reassging tasks example - path withreassigning tasks

Evaluation of this solution is:

• Path Cost t1 = (waitingT ime+ runT ime) ∗ priority = (1 + 4) ∗ 1 = 5

• Path Cost t2 = (waitingT ime+ runT ime) ∗ priority = (7 + 4) ∗ 1 = 11

• Path Cost t3 = (waitingT ime+ runT ime) ∗ priority = (2 + 6) ∗ 5 = 40

31

2. Analysis and design

• SumOfCosts = 5 + 11 + 40 = 56

If we compare the SumOfCosts of these two solutions, the second one
performs better. Even if the priority of t3 was 1, the solution with task
reassigning bears better results.

Solution replanning

As we mentioned before, the solution is being replanned every w steps. We
can get into a situation where a high priority task enters the system and needs
to wait a long time before it can be planned. To react to this situation, we
can replan the solution earlier if a task with a high priority enters a system.

We will demonstrate this approach in example 2.10. We have two agents
and four tasks, we set w = 10. Properties of the tasks are as follows:

• Task 1 : t init = 0, p = 1

• Task 2: t init = 0, p = 1

• Task 3: t init = 0, p = 1

• Task 4: t init = 5, p = 10

Figure 2.10: Replan tasks example map

We will set pr = 10 to be the lowest priority to trigger immediate replan-
ning.

Solution with replanning is then:

32

2.3. Windowed Priority CBS

• t = 0

– a1: (0,3) → (0,2) → (0,1) → (0,0) → (1,0) → (2,0)
– a2: (1,3) → (0,3) → (0,2) → (0,1) → (0,0) → (1,0)

• t = 5

– a1: (2,0)→ (3,0)→ (2,0)→ (2,1)→ (2,2)→ (2,3)→ (3,3)→ (2,3)
→ (2,2) → (2,1) → (2,0)

– a2: (1,0)→ (1,0)→ (1,0)→ (2,0)→ (2,1)→ (2,0)→ (1,0)→ (0,0)

• t = 15

– a1: (2,0) → (3,0)

First, the tasks are assigned as follows (based on the distances from agents
locations):

• a1 : task 1

• a2: task 2 and 3

We can see that it is replanned in timestep 5 when the task enters the
system. When replanning, task 4 is assigned to a1 since this agent is closer to
the start location than agent a2. The agent a1 first needs to go to the delivery
location of its first task, then it continues to fulfill task 4.

Solution evaluation:

• Path cost t1 = (2 + 4) ∗ 1 = 6

• Path cost t2 = (2 + 3) ∗ 1 = 5

• Path cost t3 = (9 + 3) ∗ 1 = 12

• Path cost t4 = (6 + 5) ∗ 10 = 110

• SumOfCosts = 133

If we did not replan in timestep 5 and waited until timestep 10, the solution
evaluation would be:

• Path cost t1 = (2 + 4) ∗ 1 = 6

• Path cost t2 = (2 + 3) ∗ 1 = 5

• Path cost t3 = (7 + 3) ∗ 1 = 10

• Path cost t4 = (10 + 5) ∗ 10 = 150

• SumOfCosts = 171

33

2. Analysis and design

The path of the first two tasks stays the same; the waiting time of the third
task will decrease since task 4 is not assigned to agent a1 and agent a2 does
not have to wait for a1 to pass.

This was an example of how replanning can improve the results. Of course,
it is not always so useful, and it can lead to longer computational times. The
problem here is to set an adequate priority number when replanning takes
place. Another improvement could be waiting until a certain amount of high
priority tasks are present in the queue before replanning.

2.3.3 Idle Approaches

There are multiple approaches to what the agent should do when there are no
more tasks for them to process. In offline MAPF agents either ”disappear”
or stay in their positions until the end of the program. In online MAPF,
they cannot ”disappear” since we need to use them in the future. They can
stay in their current location until a new task enters the system, or they can
move to their non-task endpoint location. We decided to move agents to their
non-task endpoints so they would not occupy a delivery location in case some
other agent needed to go there.

2.3.4 Algorithm Properties

In this section, we will discuss the completeness and optimality of the imple-
mented solution. We implemented more versions of the algorithm, but these
properties are the same for all the implemented versions.

Optimality

First, we need to define the optimality of a lifelong MAPD with prioritization
to discuss the optimality of the implemented solution. First, we need to define
the solution cost used to determine an optimal solution.

We will use weighted cost as we used in the prioritization of CBS. The
cost is then SumOfCosts = sum(pathcost∗priority). Now we need to adapt
this parameter to a lifelong MAPD. We will count path cost as the difference
between the timestep a task entered the system and the timestep the task was
finished.

We know that CBS returns an optimal solution [22]. Using the cost func-
tion SumOfCosts = sum(pathcost∗priority) in prioritization CBS will result
in CBS returning optimal solutions even after adding priorities.

Now we will look at the lifelong approach.

Proposition 2.3.1. Windowed Priority CBS is optimal.

34

2.3. Windowed Priority CBS

Proof. Even though our priority CBS returns optimal solution, the task as-
signment cannot determine how to assign the tasks to produce an optimal
solution consistently. We will prove this using an example in picture 2.11. We
have one agent, and two tasks, the properties of the tasks are:

• Task 1: t = 0, p = 1

• Task 2: t = 2, p = 2

We set the parameter w = 2.

Figure 2.11: Optimality example map

The optimal solution can be seen in the picture 2.12. The shortest path
for task 2 is to go directly from the agent’s initial location to the task’s start
location. It will arrive there in time step 3, just one timestep after task 2
enters the system. After finishing task 2, the agent continues with task 1.

Evaluation of the optimal solution:

• Path cost t1 = 10

• Path cost t2 = 2

• SumOfCosts = 10 ∗ 1 + 2 ∗ 2 = 14

Now we will demonstrate the solution of the implemented algorithm 2.13.
It assigns task 1 to the agent in timestep 0. The agent performs two

actions:

• (0,2) → (0,1) → (0,0)

35

2. Analysis and design

Figure 2.12: Optimal path

Figure 2.13: Non-optimal path

Now the rest of the solution is replanned. Task 2 has entered the system,
but the agent has already reached the pickup location of task 1. It has to
finish task 1 first and then continue to task 2. The following path is:

• (0,0) → (1,0) → (2,0)

• (2,0) → (2,1) → (2,2)

• (2,2) → (2,1) → (2,0)

• (2,0) → (1,0) → (1,1)

Solution evaluation:

• Path cost t1 = 6

• Path cost t2 = 8

36

2.3. Windowed Priority CBS

• SumOfCosts = 6 ∗ 1 + 8 ∗ 2 = 24

We can see that the implemented algorithm will not return an optimal
solution. In a lifelong version of the MAPD problem, we cannot ensure the
optimality of the algorithm because we do not know what tasks enter and
when they enter the system to plan the path accordingly.

Completeness

We will now discuss the completeness of the Windowed Priority CBS. The
completeness of the CBS algorithm for well-formed problems is proved in [22].
Now we need to focus on the lifelong version of the algorithm. Tasks are
entering the system at any moment of the program’s run; for the algorithm to
be complete, we need to process them all eventually. This can be a problem
when the system is overwhelmed by tasks all the time and there are not enough
agents to fulfill these tasks. It can come to the point when some of the tasks
stay in the system ”forever”.

We will now prove that the algorithm is complete if all the tasks are even-
tually assigned.

Proposition 2.3.2. Windowed Priority CBS is complete if all the tasks are
eventually assigned and the number of tasks is finite.

Proof. CBS is complete for well-formed instances [22]. We assume all the
tasks will be assigned to agents. Windowed Priority CBS will run CBS for all
of the tasks. We also suppose the number of tasks is finite, so the number of
runs of CBS will be finite.

From the definition, CBS is complete; if we run it a finite amount of times,
the solution will always be found, and therefore, Windowed Priority CBS is
complete.

37

Chapter 3
Experimental Evaluation

This chapter discusses the testing results of our algorithm. We tested four
versions of the algorithm on four different maps. On each map, we tested five
instances, with 30, 40, 60, 75 and 100 tasks, where each of these instances was
tested for 2, 4 and 8 agents. The priorities of the tasks were set on a scale
from 1 to 10.

We tested Windowed CBS with no priority; then we ran the same experi-
ments with the following modifications:

• No priority - does not consider task priorities

• CBS - uses weighted cost based on the task priority and assigns tasks
using a priority queue, a modification of the no priority version

• Reassign tasks - can reassign already assigned task if the start location
has not been reached in the last run, a modification of the CBS version

• Replan - a modification of the version with reassigning tasks, replans
the path immediately if a task with priority 9 or 10 enters the system

All of the experiments were run on Dell Latitude 5490 with processor
Intel(R) Core(TM) i5-8350U and RAM 16GB.

Before performing the actual testing, we ran experiments to set the pa-
rameter w and to set parameters in the priority queue for assigning tasks.
These tests were performed on the first map, and the results were used for the
rest of the tests.

The first map is a warehouse-style corridor map 3.1. On the right side
(pink locations), there are non-task endpoints; on the left side (blue areas),
there are delivery locations. The black locations indicate obstacles, and the
green locations are the pick-up locations.

39

3. Experimental Evaluation

Figure 3.1: Experimental Map 1 - Warehouse-style corridors

3.1 Setting Parameter w

Before we test the modifications, we need to specify the w parameter that we
will use for the experiment. We used our warehouse-style corridors map to
test how to set parameter w so the program would run relatively fast and the
program would return a solution with good evaluation. In this test, we did
not use priorities; we ran a simple Windowed CBS. The tasks were assigned
to the agents based on the timestep in which they entered the system. We
measured the total number of the timesteps for which the algorithm ran. The
results can be seen in the graph 3.2. Results for each instance highly depend
on the order in which the tasks enter the system. Because of this, we ran
the test on five different instances for three different number of agents, and
summed up the total number of timesteps for all the instances with a specific
amount of agents. As we can see, the results of each instance highly depend
on the order of the tasks that are entering the system. For that reason, we
ran the test on five different instances for each number of agents. We can see
that, on average, w = 10 performed the best for all tested numbers of agents.

The second parameter we measured was time. We can see the results in
the graph 3.3. For four agents, the summed up results for the five instances
was the lowest for w = 10. For eight agents, the program ran the fastest for
w = 6. Finally,we created a special graph for two agents 3.4, finding that the
fastest setting for two agents was w = 16.

40

3.1. Setting Parameter w

Figure 3.2: Total number of timesteps for different w settings

Figure 3.3: Running time of the program for different w settings

Based on these results, we decided to set the parameter w = 16 for in-
stances with two agents. As previously stated, program ran the fastest, and

41

3. Experimental Evaluation

Figure 3.4: Running time of the program for different w settings

the total number of timesteps was just slightly higher than for other w set-
tings. For instances with four and eight agents, we decided to to set the
parameter w = 10. This setting was the best setting for instances with four
agents. It was also the best in the total number of timesteps and second in
the running time for eight agents. As said in the previous paragraph, we will
use this setting for the rest of the experiments.

3.2 Priority Queue s Setting

As we described in the Analysis and Design chapter, the priority queue sorts
tasks by their priorities. We need to define parameter s (parameter previously
defined in section section 2.3.2), so the tasks with low priorities are not in the
system until the end of the experiment.

We ran our experiments on the warehouse-style corridors map 3.1 on five
instances with four agents. We focused on measuring waiting time for each
priority to see how long it takes for tasks to be assigned. We define waiting
time as a number of timesteps counted since the task entered the system until
the pickup point of the task was reached. We can see the results in graph
3.5. The number of timesteps spent by waiting are summed up for the five
instances.

42

3.3. Warehouse-style Corridors Map

Figure 3.5: Waiting time

We can see that the lower we set parameter s, the better it performs for
lower priorities. If we set parameter s = 10, the low priorities perform way
better than for the rest of s settings, but the high priorities perform worse
than the rest of the settings. We decided to set parameter s to be equal to
25 because it performs better for low priorities and performs well for high
priorities, such as 9 or 10.

3.3 Warehouse-style Corridors Map

Now that we have set the parameters, we need to run the experiment, and
we can start with testing the different modifications of the algorithm. We
will begin with warehouse-style corridors map 3.1. This map is a typical
warehouse-style map, given that it has a couple of areas where the items are
stored with rows in between. We ran the experiments for 30, 40, 60, 75 and
100 tasks in an instance. Each instance ran for 2, 4 and 8 agents. We now
present the results per the number of agents.

In graph 3.6 we can see the waiting time in timesteps for each priority. The
waiting time is summed up from all the instances. When we look at the version
without priorities, the waiting time is similar for all the priorities. The rest
of the lines show our modifications, and we can see a decrease in the waiting
time for higher priorities. For this experiment, CBS version with weighted
cost proved better than the reassigning tasks and replan modifications. This
is caused by the times the tasks enter the system combined with the fact that
we only had 2 agents.

43

3. Experimental Evaluation

Figure 3.6: Waiting time for instances with 2 agents in warehouse-style corri-
dors map

For example, if an agent has a task with priority 9 assigned but does not
reach the pickup location by the end of the window and a task with priority
10 has entered the system in the meantime, the agent may get the task with
the priority 10 assigned. The previous task stays in the priority queue or is
assigned to a different agent, which can be further from the pickup location.
This can cause prolonged waiting time, even for higher priorities.

Next, we will look at the graph 3.7 which shows us summed up running
times for each priority. We can see that the results are very similar for all the
modifications of the algorithm. However, the only significant difference is the
algorithm with no priorities compared to all the other algorithms. The running
time is influenced by the timestep a task starts being executed, obstacles in
its way and its priority. Since there are only two agents, they do not have to
modify their paths much to avoid collisions with the other agents. The main
factor here is the timestep in which a task starts being executed.

Now we will look at the graphs where we had four agents executing the
tasks. The summed up waiting time is showed in graph 3.8. We can see that
CBS was performing the best for almost all the higher priorities. There is
barely any difference between the reassign and the replan modification. These
two modifications performed slightly better than CBS only for priority 10.

44

3.3. Warehouse-style Corridors Map

Figure 3.7: Running time for instances with 2 agents in warehouse-style cor-
ridors map

Figure 3.8: Waiting time for instances with 4 agents in warehouse-style corri-
dors map

We then present the sum of costs in graph 3.9. Its reasults are very similar
to the results in the graph with waiting times; there were barely any differences
between the running times of the tasks. In the sum of costs graph, only

45

3. Experimental Evaluation

the reassign version performed better than CBS for priority 10. In both of
these graphs, we can see that the reassign and the replan version performance
improves for higher number of agents compared to the CBS version.

Figure 3.9: Sum of costs for instances with 4 agents in warehouse-style corri-
dors map

Now, let us have a look at the solution evaluation for instances with eight
agents. First, we will discuss a graph with summed up average waiting times
3.10. This time, we can see that the reassign and replan version outperformed
the CBS version for priorities higher than seven. Replan performed the best
for priorities nine and ten. The sum of costs graph 3.11 is similar to the
graph with waiting times. This means the running times did not change much
between versions.

We saw that the higher the number of the agents is, the better some
modifications perform. It is caused by having more agents to assign a task
to, and therefore when a task is reassigned or a whole solution is replanned,
the number of timesteps to process high priority tasks decreases. Suppose
there are just two or four agents. In that case, the reassignment can be
counterproductive in the sense of assigning a higher priority task when the
agent is already on the way to the pickup location of a lower priority task.
This increases the time of the lower priority tasks since there may not be
enough agents to assign them in the same timestep.

46

3.3. Warehouse-style Corridors Map

Figure 3.10: Waiting time for instances with 8 agents in warehouse-style cor-
ridors map

Figure 3.11: Sum of costs for instances with 8 agents in warehouse-style cor-
ridors map

At the end of this section, we will discuss the running time of the program.
The graph 3.12 shows average running time per instance. Each instance ran

47

3. Experimental Evaluation

three times, with two, four and eight agents. We can see that the version
without any priorities was the fastest for most of the instances, followed by the
CBS version; reassign and replan running time varied. Replan version running
time is higher due to the higher number of low-level searches. Reassign version
can run for a longer time since it can assign high priority tasks even when
another task was assigned to an agent and the agent already started moving
to the pickup point. For this reason, the low-level search is called more times,
and that prolongs the running time. The running time also highly depends
on how the tasks are sorted and on the w size.

Figure 3.12: Running time of the program for warehouse-style corridors map

3.4 Centralized Pickups Map

In this section, we will test our program on a map with the items centralized
in the middle of the map. We can see the floor plan in the picture 3.13. There
is a big obstacle in the centre of the map, and the pickup locations are around
this obstacle. Delivery locations are around three edges of the map, and non-
task endpoints are in the right corner of the map. The colouring scheme in
the picture is the same as in the previous map.

We already explained the impact of a different number of agents on the
solution evaluation in the previous section, so in this section, we will show only
summarized experimental results. The results are summed up for all instances
and all agents and divided by three (= instance is run for two, four and eight

48

3.4. Centralized Pickups Map

Figure 3.13: Experimental map 2 - Centralized pickups map

agents). The presented results then show the average summed up result for
all instances for a specific configuration of number of agents.

The waiting time is shown in this graph 3.14. We can see that, on average,
replan version has the best results when it comes to high priorities. This
means the improvement for a higher number of agents overweighted a slight
deterioration in the quality of the solution for lower number of agents. All the
implemented modifications performed better for higher priorities than the no
priority version.

Let us look at the sum of costs in graph 3.15. We can see here the sum
of the waiting and running time. The graph is similar to the graph with
waiting times. Once again, all the newly implemented versions overperformed
no priority version for higher priorities.

49

3. Experimental Evaluation

Figure 3.14: Waiting time for instances in centralized pickups map

Figure 3.15: Sum of the costs for instances in centralized pickups map

We will discuss program running time now; the graph 3.16 represents the
running time of the program the same way as we did for map one. When

50

3.5. Maze Map

we compare the running times to the previous map, the program ran longer
for instances in this map. This is caused by using Manhattan distance as a
heuristic in the CBS low-level search instead of the actual distance. Since the
this map had a significant obstacle in the middle of the map, it took more
time for the algorithm to find the solution.

The running times differ a lot between each version. The reassign version
bears the best results; the rest varies greatly. As in the warehous-style corri-
dors map, the time depends a lot on the order in which the tasks are being
assigned.

Figure 3.16: Running time of the program for centralized pickups map

3.5 Maze Map

The maze map 3.17 represents randomly distributed obstacles around which
are the pickup locations. The non-task endpoints are in the top-left and
bottom-left corner. The delivery locations are along the right edge. We will
run the test the same way we did for the previous maps.

We can see the comparison of waiting times for the maze map in graph
3.18. The results of the version with no priorities does not change much based
on the priority. The results of the rest of the versions are pretty similar. The
CBS version performs the best until priority 7, versions reassign and replan
outperform the CBS version for priorities 9 and 10. This is caused by the

51

3. Experimental Evaluation

Figure 3.17: Experimental map 3 - maze map

immediate replanning in the replan version, and the task reassignment in the
reassign version.

If we look at graph 3.19, we can see that the differences between the
versions in the sum of costs are very similar to the differences between the
waiting times. This means the running time for all the versions was almost the
same. This can be caused by using the priority queue in all the modifications
(but for the no priority version). Since the tasks are assigned based on their
priorities, it does not happen often; there would be tasks with very different
priorities running simultaneously. For this reason, the CBS weighted cost does
not change the result significantly.

The actual running time of the program differs a lot for each instance and
each version; we will discuss it in the experiments’ summary.

52

3.5. Maze Map

Figure 3.18: Waiting time for maze map in timesteps

Figure 3.19: Sum of costs for maze map in timesteps

53

3. Experimental Evaluation

3.6 Stripe Map

The last map 3.20 represents a warehouse as a long stripe with an obstacle
on the left side of the map, items pickup locations around it and delivery
locations along the right edge. We will run the test the same way we did for
the previous maps.

Figure 3.20: Experimental map 4 - stripe map

We will first look at the graph with waiting times 3.21. The replan version
performed the best for priorities 6 and higher, followed by the reassign version
for priorities 8 to 10. The CBS version performed the best for all the priority
modifications for low priorities up to 5. No priority version performed similarly
for all the priorities.

Now, let us present the graph with the sum of costs 3.22. It is very similar
to the graph with waiting times, meaning the running times in timesteps were
similar for all the versions.

The results from this map correspond with the results from the previous
map. The replan version works well in this type of map in the sense of re-

54

3.6. Stripe Map

planning immediately the path when a high priority (9 or 10) task enters the
system. Task reassigning also helps to slightly improve the solution.

Figure 3.21: Waiting time for stripe map in timesteps

Figure 3.22: Sum of costs for stripe map in timesteps

55

3. Experimental Evaluation

3.7 Experiments Summary

In this section, we will present graphs that summarize the results for all of
the experiments. First, we will look at the graph of the waiting time mea-
sured in timesteps 3.23. We can see that the no priority version performs
the best for the first half of the priorities. From priority 6 onwards, all the
other modifications have better results than the no priority version. The CBS
modification performed the best for priorities 6 to 8. The reassign version
performed slightly worse than the replan version for all the priorities. This is
caused by the replan version being an improvement of the reassign version.

Figure 3.23: Summary of waiting times in timesteps

Now we will focus on the running time of the tasks in timesteps. In the
graph 3.24, there are only slight differences between the number of timesteps
within each priority. Nevertheless, we can see that the version with no prior-
ities performed slightly worse for tasks with higher priorities.

Let us discuss the sum of costs which includes both running and waiting
times. In graph 3.25, we can see the sum of costs in timesteps for all the
versions and priorities. If we look at the higher half of the priorities, we can
see that CBS modification performs the best for priorities 6 to 8. The replan
and reassign versions both outperform the CBS version in priority 9, and the
replan modification performs the best for priorities 9 and 10. This result
complies with the setting of immediate recomputing of the path when a task
with priority 9 or 10 enters the system.

56

3.7. Experiments Summary

Figure 3.24: Summary of running times in timesteps

Finally, we will discuss the running time of the program. We can see
the average time in milliseconds for each instance 3.26. The graph shows an
average time to run a certain number of tasks (30, 40, 60, 75 and 100) on
different maps with a different number of agents (two, four and eight). We
can see that the priority modifications performed better than the no priority
version for instances with 30 and 40 tasks. For the following instances, the
time fluctuates greatly. The time change is caused mainly by the different
order of the tasks that are being assigned to the agents. A different order
can cause more conflicts between the agents or longer paths, both of which
contribute to prolonging the running time of the program. We can see that
the replan version was underperforming for the instances with 100 tasks. This
can be caused by a higher amount of solution plannings compared to the other
algorithms since this version replans the solution anytime a high priority (9
or 10) enters the system. Overall, we did not find high dependency on the
version and the program’s running time other than in the replan version.

This chapter presented the main results of the conducted experiments, all
the results and measured data can be found in the enclosed CD.

57

3. Experimental Evaluation

Figure 3.25: Summary of sum of costs in timesteps

Figure 3.26: Summary of running time of the program in milliseconds

58

Conclusion

The primary purpose of this thesis was to develop techniques for warehouse
logistics. Specifically, to analyze modifications of an existing MAPF algorithm
that would handle priorities effectively. Another goal was to design and imple-
ment these improvements of a MAPF algorithm. The last goal was to analyze
the results. The first part of testing focused on setting parameters, such as
parameter w to determine running periods in the lifelong algorithm, while the
second part of the experiments focused on running different algorithm mod-
ifications in several warehouse-style maps on various instances with multiple
robots.

We managed to accomplish all the goals of the thesis. To achieve them,
we researched logistics in automated warehouses with a focus on MAPF and
MAPD problems. We focused on MAPF algorithms and lifelong approaches
to modify these algorithms, as well as possible improvements for a Windowed
CBS algorithm to consider task priorities.

We designed and implemented three different Windowed Priority CBS
algorithm modifications. The first modification included CBS low-level A*
search using a weighted cost based on the priority of the task and using a pri-
ority queue for assigning tasks based on their priority. The second modification
included CBS weighted cost and priority queue modifications; in addition to
that, we implemented task reassignment for the robots. After each run, if
a robot has not reached the start location of an already assigned task and
there was a higher priority task in the priority queue, the robot would return
the assigned task to the priority queue and be assigned the task with a higher
priority. The third modification added immediate replanning if a high priority
task enters the system.

We compared Windowed Priority CBS modifications experimental results
to a Windowed CBS algorithm and within each other. We discovered that
the modifications’ quality of the solutions depends on the number of robots

59

Conclusion

processing the tasks. The higher the number of robots was, the more effec-
tive task reassigning and immediate replanning was. For a lower amount of
robots, modification with CBS weighted cost and priority queue performed
the best. If we compare our algorithm modifications to Windowed CBS, all
of the modifications performed better for the higher half of the priorities on
average. When talking about the program’s running time, the version with
immediate replanning had the highest running time on average. For the rest
of the modifications and the Windowed CBS, the running time depends on
the tasks’ order the most.

In the future, we can build upon this algorithm by adding other important
features for warehouse logistics, such as humans walking in the warehouse or
changing the task priority after it already entered the system. We built a solid
software prototype for handling task priorities in automated warehouses, and
our experimental results can be later used for further research on this topic.

60

Bibliography

[1] Wurman, P.; D’Andrea, R.; et al. Coordinating hundreds of cooperative,
autonomous vehicles in warehouses. AI Mag. 29(1), 9 2008.

[2] Veloso, M.; Biswas, J.; et al. CoBots: robust symbiotic autonomous mo-
bile service robots. IJCAI, 2015: p. 4423.

[3] Ma, H.; Yang, J.; et al. Feasibility study: moving non-homogeneous teams
in congested video game environments. In Conference on Artificial Intelli-
gence and Interactive Digital Entertainment (AIIDE), 2017, pp. 270–272.

[4] Bounini, F.; Gingras, D.; et al. Online Trajectory Planning With a Modi-
fied Potential Field Method on Distributed Architectures for Autonomous
Vehicles. ITS World Congress 2017 Montreal, 2017, [cit. 2021-03-08].
Available from: https://blob.opal-rt.com/medias/L00161_1010.pdf

[5] Silver, D. Cooperative Pathfinding. Aiide, volume 1, 2005: pp. 117–122.

[6] Buro, M.; Furtak, T. M. RTS games and real-time AI research. In Pro-
ceedings of the Behavior Representation in Modeling and Simulation Con-
ference (BRIMS), volume 6370, 2004.

[7] Botea, A.; Müller, M.; et al. Using Abstraction for Planning in Sokoban.
In Computers and Games, edited by J. Schaeffer; M. Müller; Y. Björns-
son, Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 360–375.

[8] Stern, R. Multi-agent path finding–an overview. Artificial Intelligence,
2019: pp. 96–115.

[9] Barraquand, J.; Latombe, J.-C. Robot motion planning: A distributed
representation approach. The International Journal of Robotics Research,
volume 10, no. 6, 1991: pp. 628–649.

61

https://blob.opal-rt.com/medias/L00161_1010.pdf

Bibliography

[10] LaValle, S. M.; Hutchinson, S. A. Optimal motion planning for multiple
robots having independent goals. IEEE Transactions on Robotics and
Automation, volume 14, no. 6, 1998: pp. 912–925.

[11] Erdmann, M.; Lozano-Perez, T. On multiple moving objects. Algorith-
mica, volume 2, no. 1, 1987: pp. 477–521.

[12] Latombe, J.-C. Introduction and Overview. Boston, MA: Springer US,
1991, ISBN 978-1-4615-4022-9, pp. 1–57, doi:10.1007/978-1-4615-4022-
9 1. Available from: https://doi.org/10.1007/978-1-4615-4022-9_1

[13] Andreychuk, A.; Yakovlev, K. Two techniques that enhance the
performance of multi-robot prioritized path planning. arXiv preprint
arXiv:1805.01270, 2018.

[14] Bnaya, Z.; Felner, A. Conflict-Oriented Windowed Hierarchical Cooper-
ative A*. In 2014 IEEE International Conference on Robotics and Au-
tomation (ICRA), 2014, pp. 3743–3748, doi:10.1109/ICRA.2014.6907401.

[15] Wang, K. C.; Botea, A. MAPP: a Scalable Multi-Agent Path Planning Al-
gorithm with Tractability and Completeness Guarantees. CoRR, volume
abs/1401.3905, 2014, 1401.3905. Available from: http://arxiv.org/
abs/1401.3905

[16] Luna, R.; Bekris, K. E. Push and swap: Fast cooperative path-finding
with completeness guarantees. In IJCAI, 2011, pp. 294–300.

[17] de Wilde, B.; ter Mors, A. W.; et al. Push and rotate: cooperative multi-
agent path planning. In Proceedings of the 2013 international conference
on Autonomous agents and multi-agent systems, 2013, pp. 87–94.

[18] Standley, T. Finding optimal solutions to cooperative pathfinding prob-
lems. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 24, 2010.

[19] Wagner, G.; Choset, H. Subdimensional expansion for multirobot
path planning. Artificial Intelligence, volume 219, 2015: pp. 1–24,
ISSN 0004-3702, doi:https://doi.org/10.1016/j.artint.2014.11.001. Avail-
able from: https://www.sciencedirect.com/science/article/pii/
S0004370214001271

[20] Sharon, G.; Stern, R.; et al. The increasing cost tree search for
optimal multi-agent pathfinding. Artificial Intelligence, volume 195,
2013: pp. 470–495, ISSN 0004-3702, doi:https://doi.org/10.1016/
j.artint.2012.11.006. Available from: https://www.sciencedirect.com/
science/article/pii/S0004370212001543

62

https://doi.org/10.1007/978-1-4615-4022-9_1
1401.3905
http://arxiv.org/abs/1401.3905
http://arxiv.org/abs/1401.3905
https://www.sciencedirect.com/science/article/pii/S0004370214001271
https://www.sciencedirect.com/science/article/pii/S0004370214001271
https://www.sciencedirect.com/science/article/pii/S0004370212001543
https://www.sciencedirect.com/science/article/pii/S0004370212001543

Bibliography

[21] Surynek, P. Makespan Optimal Solving of Cooperative Path-Finding via
Reductions to Propositional Satisfiability. CoRR, volume abs/1610.05452,
2016, 1610.05452. Available from: http://arxiv.org/abs/1610.05452

[22] Sharon, G.; Stern, R.; et al. Conflict-based search for optimal multi-
agent pathfinding. Artificial Intelligence, volume 219, 2015: pp. 40–66,
ISSN 0004-3702, doi:https://doi.org/10.1016/j.artint.2014.11.006. Avail-
able from: https://www.sciencedirect.com/science/article/pii/
S0004370214001386

[23] Ma, H.; Li, J.; et al. Lifelong Multi-Agent Path Finding for Online Pickup
and Delivery Tasks. CoRR, volume abs/1705.10868, 2017, 1705.10868.
Available from: http://arxiv.org/abs/1705.10868

[24] Cáp, M.; Vokŕınek, J.; et al. Complete Decentralized Method for On-Line
Multi-Robot Trajectory Planning in Valid Infrastructures. ArXiv, volume
abs/1501.07704, 2015.

[25] Li, J.; Tinka, A.; et al. Lifelong Multi-Agent Path Finding in Large-Scale
Warehouses. 2021, 2005.07371.

[26] Grenouilleau, F.; van Hoeve, W.-J.; et al. A multi-label A* algorithm for
multi-agent pathfinding. In Proceedings of the International Conference
on Automated Planning and Scheduling, volume 29, 2019, pp. 181–185.

[27] Okoso, A.; Otaki, K.; et al. Multi-Agent Path Finding with Priority
for Cooperative Automated Valet Parking. 10 2019, pp. 2135–2140, doi:
10.1109/ITSC.2019.8917112.

[28] Felner, A.; Goldenberg, M.; et al. Partial-Expansion A* with Selec-
tive Node Generation. Proceedings of the AAAI Conference on Artifi-
cial Intelligence, volume 26, no. 1, Jul. 2012. Available from: https:
//ojs.aaai.org/index.php/AAAI/article/view/8137

63

1610.05452
http://arxiv.org/abs/1610.05452
https://www.sciencedirect.com/science/article/pii/S0004370214001386
https://www.sciencedirect.com/science/article/pii/S0004370214001386
1705.10868
http://arxiv.org/abs/1705.10868
2005.07371
https://ojs.aaai.org/index.php/AAAI/article/view/8137
https://ojs.aaai.org/index.php/AAAI/article/view/8137

Appendix A
Windowed Priority CBS

We decided to implement the algorithm in Java based on this language general
usage. The project has been built in NetBeans, and the source code is available
in the enclosed CD.

A.1 Program input

The program takes a file as input. The file contains agents and tasks specifi-
cations, and a map. The file structure is following:

• Dimensions of the map

• Number of agents

• Initial locations of the agents

• Number of endpoints

• Locations of the endpoints

• Number of tasks

• Task specifications

– Priority
– Time
– Start location
– Finish location

• Map

– 1 - feasible location
– 0 - unfeasible location

65

A. Windowed Priority CBS

A.2 Data storage classes

Data class

The input file is processed in class Data. This class stores the data from the
input file; besides that, it contains methods to assign new tasks to agents and
update agents.

Read File

This method takes filename as a parameter and reads input data from the
input file. It saves the agents, endpoint locations, tasks and map data. All
the tasks are saved in an array, no matter at what time they enter the sys-
tem. Priority queue fetches them out of the array according to their specified
entering time.

Assign tasks

Parameters:

• Timestep number - number of the timestep for which the solution will
be planned (parameter w)

• Current timestep

Based on the current timestep, tasks from the task array are moved to
the priority queue. Tasks from the priority queue are assigned to the agents
based on agents’ distance from them, including the distance to fulfill preciously
assigned tasks. Tasks are assigned either until the priority queue is empty or
all agents have enough tasks for the next window.

Update agents

After each run (window), tasks in each agent are updated based on how many
tasks were finished during that run. Finished tasks are removed from agents.

Agent class

Class variables:

• Tasks → tasks assigned to the agent

• Initial location → location at the beginning of the run

• Final goal → last goal of the agent

• Heuristic → heuristic from initial location to the final goal through all
the task goals

66

A.3. Windowed CBS

• Label:

– 0 → start location of the first task has not been reached yet
– 1 → start location of the first task has been already reached

Add task

The method takes a task as a parameter. It adds the task to the tasks array,
updates the final goal and heuristics.

Remove task

The method takes the task’s position in the tasks array as a parameter. It
deletes the task from the array. If it was the last task of the array, the final
goal is set to the goal location of the previous task; if there are no tasks left,
it is set to be the initial location. The heuristic is updated by subtracting the
removed task from it.

Task class

This class is used to store information about tasks. Class variables:

• Priority → priority of the task

• Timestep init → timestep when task entered the system

• Start → pickup location

• Goal → delivery location

• Move to endpoint → boolean if the task is only to move the agent to its
non-task endpoint

• Timestep start → timestep when start location has been reached

Dimensions

The sole purpose of this class is to save and compare locations as one object.
It has two class variables: row and column.

A.3 Windowed CBS

There is one class that takes care of replanning the solution every w steps and
another class that supports the high-level CBS and calls A* search for specific
agents.

67

A. Windowed Priority CBS

CBS class

This class implements the high-level CBS together with the lifelong approach
of the program. It takes data class as an input. Parameter w is specified in
this class and can be reset from here. The constructor of the class is running
CBS for every w steps.

CBS first calls data to assign tasks to the agents, plans the tasks for all the
agents and adds the solution to the constraint tree. Nodes of the constraint
tree are stored in a priority queue based on the solution cost. While there are
nodes in the priority queue and the optimal valid solution has not been found
yet, agents are replanned.

At the beginning of each cycle, a node with the lowest cost is opened, and
the program searches for conflicts in the joint solution. If no conflicts are
found, the node contains the optimal valid solution, the program calls data to
update the agents, and we can terminate the cycle.

If a conflict is found, two new nodes are created. In each node, we replan
the tasks for an agent who has the conflict, count the joint solution cost and
add it to the constraint tree.

CBS is repeated until all the tasks are finished (until there are no more
tasks in the tasks array). In a real situation, the run would be lifelong.

Get Duplicate

This method search for vertex and edge conflicts in the joint solutions. Pa-
rameters:

• Number of agents

• Array of results → agents’ paths

• Maximum timestep → last timestep in which it should search for con-
flicts

Vertex conflicts are found by using structure set of Dimensions, which
returns false when we try to insert a value that has been inserted before. If
false is returned, we go through the previous agents to find the agent with
whom it conflicted.

Edge conflicts are computationally more challenging to find. We need to
compare each agent with all the other agents, which results in three nested
cycles; the first one to go through the agents, the second one to go through
the agent’s path and the third one to compare Dimensions of a single path
location with the rest of the agents.

68

A.4. Constraint Tree

When a conflict is found, two constraints are created; one for each agent
in the conflict. If there are more agents in the conflict, we only consider the
first two; the rest will be taken care of on a deeper level of the tree.

Plan Agents class

High-level CBS uses this class to call low-level CBS to get the plans of the
agents.

Plan All Agents

Parameters of this method are:

• Data → input data - for searching in map

• Constraints → array of Constraint object

• Agents → array of Agent objects

Method calls A* search for each agent using their constraints and returns
an array of results.

Plan Agent

It is a very similar method to plan all agents but only plans specific agent.

Get Constraints for Agent

The method takes an array of constraints and agent ID (position of the agent
in the agent array) as a parameter and returns an array of the constraints for
the specific agent.

A.4 Constraint Tree

The following classes are implementing the constraint tree and handling its
operations.

Constraint class

This class represents one constraint. Its class variables are:

• Agent Id → position of the agent in the agents’ array

• Node 1 → Dimensions of the constraint node

• Node 2 → Dimensions of the second node if it is an edge conflict

• Time → time of the constraint

69

A. Windowed Priority CBS

• Is node constraint → boolean that specifies whether it is a node or an
edge constraint

Collides

This method is the essential method of the constraint class. It takes Dimen-
sions of node (resp. nodes) and time as parameters and returns true if the
input collides with the constraint.

Node class

This class represents one node of the constraint tree. Its class variables are:

• Constraint → each node saves one constraint

• Results → path of the agents

• Left → Node object - left child

• Right → Node object - right child

• Parent → Node object- parent of the node

Get Cost

Since the node is not saving the cost directly, we need to get it from the
results. This method is using the results class to count the cost of the joint
solution.

Goal Node

This method returns true if the node contains a valid solution. The solution
is valid if the constraint is equal to null. The method returns false otherwise.

Constraint tree class

This class represents the constraint tree used for high-level CBS search. The
implemented methods are: add node and get constraints.

Add node

This method adds a new node to the constraint tree. Input parameters:

• Current node

• Constraint

• Results

70

A.5. CBS Low Level

The method creates a new node based on the input parameters. It sets its
parent to be the current node, sets the new node to be the left (resp. right)
child of the current node, and returns the newly created node.

Get constraints

This method takes a node as an input parameter. It returns all the constraints
in the path from the node to the root.

A.5 CBS Low Level

Low-level CBS takes care of the A* search. It searches for single-agent paths
using constraints from the high-level constraint tree.

Element class

An instance of this class represents one element (node) in an A* search queue.
The class variables are:

• Location → Dimensions of the element in the input map

• Path cost → cost to get to this location from the agent’s initial location

• Heuristic → distance to the agent’s final goal (including the passage
through all the goals in the way)

• Time → timestep in which the location is reached

• Label

– 0 → agent is going to the start location of the current task
– 1 → agent is going to the goal location of the current task

• Task number → number of the task that is being processed (position in
the agent’s tasks array)

• Path → path to get to this location from the agent’s initial location

The purpose of this class is to store essential data to be able to find the
optimal path with the A* search.

A* search class

This class implements an A* search on a single agent with multiple sorted
goals. We use manhattan distance as a heuristic multiplied by the priority of
the task.

71

A. Windowed Priority CBS

Element Comparator

This class was implemented to compare two elements between each other
based on their path cost and heuristic.

Get Heuristic for Element

This function counts the heuristic for the specified element. The heuristic is
calculated based on the task number and label in the element.

Dimensions Valid

This method checks if the newly generated dimensions are valid. If they
are still on the map and whether or not they are feasible. Returns true if
dimensions are valid, otherwise returns false.

Constraint Check

Method Constraint Check takes dimensions start and goal and time as an
input. It checks whether the agent can move from location start to location
goal in a timestep time or a there is a constraint that would forbid the agent
from performing said action.

Visited Element

This method checks whether an Element with the same location and time has
already been visited before. If yes, it checks for its path cost and heuristics
and compares the elements. If the path cost and heuristic of the input element
is lower than the one of the already visited element, the method returns false.
If the path cost and heuristic of the new element is higher than the previously
visited element, the method returns true.

Search

This method implements the A* search for a single agent. It takes an agent as
an input parameter. In the beginning, it creates a search queue for elements
and adds the first element to the queue, which is the initial location of the
agent in timestep zero. The label of the element is set according to the label
in the agent. The task number is zero, and the path is null.

While the search queue is not empty, A* is searching for the solution. The
element with the lowest path cost and heuristic is processed and removed from
the queue in each cycle.

First of all, we need to check whether or not the element’s location equals
the current goal. This is done by comparing the location to the element’s task

72

A.5. CBS Low Level

number start if the element’s label equals zero or to the goal if the element’s
label equals one. If a goal is found and the label is zero, a new element is
added to the search queue. The new element has the same properties as the
current element; the only difference being the label, which is set to one. If a
goal is found and the label is one, a new element is also added to the search
queue, but this time we increase the task number by one and set the label to
zero.

The cycle continues by creating discovering neighbouring locations of the
current element. Neighbouring locations are validated using methods dimensionsvalid,
constraintcheck and visitedelement. If the new elements pass the check, they
are added to the search queue.

When the final goal is reached, path, path cost and timesteps in which
each task was started and finished are saved into the results and returned.

Results class

Results class is used for storing the results of a single-agent search. The main
class variables are:

• Final path cost - the cost of the path

• Path - an array of Dimensions

• Finished tasks - table of integers

Finished tasks

The finished tasks table has two rows. The first row represents the start loca-
tion, and the second row represents the goal location. It stores the timestep
number in which each of the locations was reached in the path.

As an example, we can look at table A.1. We can see three tasks there, the
start location of the first task was reached in timestep 2, the goal in timestep
10, and so forth, for the second and the third task. The second task’s start
location was reached in timestep 12, and the goal location was reached in
timestep 16.

Table A.1: Finished tasks table
0 1 2

0 2 12 19
1 10 16 25

73

A. Windowed Priority CBS

A.6 Solution properties

In this section, we will discuss the implementation of the measurement of the
optimality of the solution. All the solution optimality data are stored in the
Result optimality class.

Result optimality class

This class is used to evaluate the returned solution. The class contains four
arrays:

• Average waiting time

• Average run time

• Number of finished tasks

• Sum of costs

Each position in an array represents one priority. For example, suppose we
want to know the solution evaluation of the tasks with priority 1. In that case,
we can look at position one of the array sum of costs or any other array of the
mentioned ones to give us more information on how the program performed
for this priority.

74

Appendix B
Acronyms

CA*-Pri Cooperative A* with priority

CBS Conflict-based search

CBS-Pri Conflict-based search with priority

COBRA Continuous Best-Response Approach

CT Constraint tree

EPEA* Partial-Expansion A* with Selective Node Generation

ICTS Increasing cost tree search

MAPF Multi-agent pathfinding

MAPD Multi-agent pickup and delivery

MAPP Multi-Agent Path Planning Algorithm

TP Token passing

75

Appendix C
Contents of enclosed CD

readme.txt the file with CD contents description
experimental results the directory with result tables and graphs
src.......................................the directory of source codes

doc the directory with javadoc of the source codes
example input files...the directory with example input files for the
program
thesis..............the directory of LATEX source codes of the thesis
windowed priority CBS.. the directory with Windowed Priority CBS
source code

text..the thesis text directory
DP Dvorakova Klara 2021.pdf the thesis text in PDF format

77

