

Master’s thesis

User-friendly metadata and dataflow
extensions in the MANTA project

Bc. Yauheniy Buldyk

Department of Software Engineering
Supervisor: Ing. Michal Valenta, Ph.D.

May 6, 2021

Acknowledgements

I would like to thank the supervisor of my work, Ing. Michal Valenta, Ph.D.,
for the possibility to process the chosen topic. I would also like to thank
the members of the MANTA team who helped me design and implement the
practical part of this work. Last but not least, I want to thank my girlfriend
for her incredible support throughout the whole writing process.

Declaration

I hereby declare that I have authored this thesis independently, and that all
sources used are declared in accordance with the “Metodický pokyn o etické
př́ıpravě vysokoškolských závěrečných praćı”.

I acknowledge that my thesis (work) is subject to the rights and obliga-
tions arising from Act No. 121/2000 Coll., on Copyright and Rights Related
to Copyright and on Amendments to Certain Laws (the Copyright Act), as
amended, (hereinafter as the “Copyright Act”), in particular § 35, and § 60
of the Copyright Act governing the school work.

With respect to the computer programs that are part of my thesis (work)
and with respect to all documentation related to the computer programs
(“software”), in accordance with Article 2373 of the Act No. 89/2012 Coll.,
the Civil Code, I hereby grant a nonexclusive and irrevocable authorisation
(license) to use this software, to any and all persons that wish to use the soft-
ware. Such persons are entitled to use the software in any way without any
limitations (including use for-profit purposes). This license is not limited in
terms of time, location and quantity, is granted free of charge, and also cov-
ers the right to alter or modify the software, combine it with another work,
and/or include the software in a collective work.

In Prague on May 6, 2021

Czech Technical University in Prague
Faculty of Information Technology
© 2021 Yauheniy Buldyk. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Buldyk, Yauheniy. User-friendly metadata and dataflow extensions in the
MANTA project. Master’s thesis. Czech Technical University in Prague, Fac-
ulty of Information Technology, 2021.

Abstrakt

Tato práce si klade za ćıl navrhnout a implementovat funkčńı prototyp webové
aplikace pro software Manta Flow. Aplikace umožńı rozš́ı̌reńı existuj́ıćıho da-
taflow grafu o nová data, jako jsou assety a datové toky. Aplikace je navržena
jako vylepšeńı stávaj́ıćıho řešeńı, které spoč́ıvá v manuálńım vytvářeńı speci-
fických soubor̊u CSV.

Obsahem práce je sběr požadavk̊u, analýza, návrh a implementace proto-
typu webové aplikace. Vytvořený prototyp bude zahrnut do existuj́ıćıho soft-
waru MANTA Flow jako daľśı modul v aplikaci Admin GUI.

Kĺıčová slova webová aplikace, uživatelské rozhrańı, datové toky, MANTA
Flow, Java, JavaScript, React

vii

Abstract

This work aims to design and implement a functional prototype of a web
application for Manta Flow software. The application will allow extending the
existing data lineage with new data such as assets and flows. The application is
intended to upgrade an existing solution, which consists of manually creating
specific CSV files.

The basis of the thesis is the collection of requirements, analysis, design,
and implementation of a prototype web application. The created prototype
will be included in the existing MANTA Flow software as another module in
the Admin GUI application.

Keywords web application, user interface, data flows, MANTA Flow, Java,
JavaScript, React

ix

Contents

Introduction 1
Goals of the Thesis . 1
Structure of the Thesis . 2

1 Basic concepts 3
1.1 Web application . 3
1.2 Manta and Manta Flow . 3
1.3 Data Lineage . 3
1.4 MANTA Admin GUI . 4

2 Technologies used 7
2.1 Backend specific technologies 7

2.1.1 Java . 7
2.1.2 Spring . 7
2.1.3 JavaDoc . 8
2.1.4 Apache Subversion . 8

2.2 Frontend specific technologies 8
2.2.1 JavaScript . 8
2.2.2 React . 8
2.2.3 Redux . 8
2.2.4 Redux-Saga and axios 8
2.2.5 JSDoc . 9
2.2.6 Git . 9

2.3 Other technologies . 9
2.3.1 IntelliJ IDEA . 9
2.3.2 Pencil . 9
2.3.3 draw.io . 9

3 Requirements 11
3.1 Introduction to the issue . 11

xi

3.2 Existing solution - Custom Metadata 11
3.3 Open MANTA Extensions requirements 13

3.3.1 Scope . 13
3.3.2 Functional requirements 14
3.3.3 Technical requirements 15

4 Analysis and Design 17
4.1 Use cases . 17
4.2 Wireframes . 19

4.2.1 Main page . 19
4.2.2 Preview page . 22

4.3 High-Level architecture . 24
4.3.1 Component diagram . 24
4.3.2 Sequence diagrams . 25

5 Implementation 29
5.1 Phase 1 - Repository tree . 29

5.1.1 Backend . 29
5.1.2 Frontend . 30

5.2 Phase 2 - Create, edit, and remove operations 32
5.2.1 Backend . 33
5.2.2 Frontend . 33

5.3 Next Phases . 36

Conclusion 39

Bibliography 41

A Acronyms 43

B Open MANTA Extensions use case diagrams 45

C Contents of enclosed CD 51

xii

List of Figures

1.1 Example of dataflow visualization for Excel in the MANTA Flow [4] 4
1.2 Log management in the MANTA Admin GUI [5] 5

3.1 Repository Page of the MANTA Flow Viewer 12

4.1 Main Page of the Open MANTA Extensions UI 21
4.2 Preview Page of the Open MANTA Extensions UI 23
4.3 Open MANTA Extensions component diagram 24
4.4 Repository tree processes sequence diagram 25
4.5 Create/Edit/Remove processes sequence diagram 27

5.1 Open MANTA Extensions resources retrieving sequence diagram . 34
5.2 Open MANTA Extensions resources saving sequence diagram . . . 35
5.3 Open MANTA Extensions prototype demonstration 37

B.1 Open MANTA Extensions use case diagram for the repository . . 46
B.2 Open MANTA Extensions use case diagram for layers and

resources . 47
B.3 Open MANTA Extensions use case diagram for assets 48
B.4 Open MANTA Extensions use case diagram for saving changes . . 49

xiii

List of Tables

4.1 Open MANTA Extensions use cases 17

xv

Introduction

The amount of data on our planet is growing exponentially every year, as is
their importance. The larger the company, the more data it collects and the
more valuable the data are, but analyzing such large volumes of data can be
challenging. MANTA Flow software is designed to solve these problems. It
can analyze either SQL scripts or a BI tool report and automatically build a
dataflow graph based on it. With such a graph, it is simple to trace the origin
of data and view its lifecycle stages, saving analysts up to several workdays.

However, there are many different tools, and it is not possible to support
them all; some customers even use their private internal solutions. Therefore,
MANTA Flow also supports the ability to add data of various formats to
the lineage manually. The main disadvantage of the current solution is the
absence of a suitable tool; all data must be entered manually into a CSV
file in the exact format. The complexity and hostility of such an approach
can discourage potential customers, which is the main reason for this work.
The result is a functional prototype of a web application that allows creating
custom assets and dataflows through the user interface.

Goals of the Thesis

This work aims to design and implement a prototype module for the user-
defined extensions of metadata and dataflow in the MANTA project. The
module will have a graphical user interface and will be part of the MANTA
software.

The theoretical part intends to collect requirements, perform analysis, and
design a prototype. The practical part then focuses on implementing a func-
tional prototype as a web application with subsequent testing and documen-
tation of the code.

1

Introduction

Structure of the Thesis

This work consist of the following five chapters:

• Basic concepts The first chapter explains the main concepts necessary
for a general understanding of the work.

• Used technologies The second chapter provides an overview of the
most critical technologies and tools used during the prototype imple-
mentation.

• Requirements Chapter 3 is about the prototype requirements, which
describes the main functionalities.

• Analysis and Design This chapter describes the performed request
analysis, including the use cases. We will also take a look at the appli-
cation design creation, wireframes, and high-level architecture models.

• Implementation In the last chapter, we will focus on the implemen-
tation itself. We will describe the problems solved in the frontend and
backend parts and explain the main processes in more detail with ex-
amples.

2

Chapter 1
Basic concepts

1.1 Web application

A web application (or web app) is application software that runs on a web
server, unlike computer-based software programs that are run locally on the
operating system (OS) of the device. Web applications are accessed by the user
through a web browser with an active network connection. These applications
are programmed using a client–server modeled structure—the user (”client”) is
provided services through an off-site server that is hosted by a third-party. [1]

1.2 Manta and Manta Flow

MANTA, or officially Manta Tools, s.r.o., is a Czech startup company, which
was initially a project of Profinit, s.r.o. and developed in cooperation with
FIT CTU. The company’s main product is MANTA Flow software, which is
used today by large organizations in the Czech Republic and worldwide.

MANTA Flow is a tool enabling automatic analysis of databases and data
warehouses SQL scripts (e.g., Oracle, PostgreSQL, Teradata), BI tools (e.g.,
IBM Cognos, OBIEE, Microsoft SSRS), or programming languages (e.g., Java,
C#).

The software can build a clear map of dataflows across the BI environment,
the so-called Data Lineage, based on the performed analysis. In practice, this
is mainly used to optimize data warehouses, reduce software development costs
and perform impact analyzes. [2]

1.3 Data Lineage

Data lineage includes the data origin, what happens to it and where it moves
over time. Data lineage gives visibility while greatly simplifying the ability to
trace errors back to the root cause in a data analytics process. [3]

3

1. Basic concepts

Figure 1.1: Example of dataflow visualization for Excel in the MANTA
Flow [4]

The Manta Flow software visualizes data in the form of an oriented graph,
where nodes represent objects or data structures and edges are dataflows be-
tween them (the direction is always from the data source to the resulting
object). The following figure (1.1) illustrates one of the possible resulting
visualizations.

1.4 MANTA Admin GUI

MANTA Admin GUI is MANTA Flow’s utility web application that acts as
a graphical and programming interface for the installation, configuration, up-
date, and overall maintenance of MANTA Flow.

The application consists of several modules/tools.

• MANTA Installer installs MANTA applications (MANTA Flow,
MANTA Admin GUI)

• MANTA Updater updates MANTA Flow Server and MANTA Flow
CLI instances to newer versions

• MANTA Configurator configures the general behavior of MANTA
services

• MANTA Process Manager allows to define and execute MANTA
Workflows (sequence of processes such as metadata extraction and anal-
ysis)

4

1.4. MANTA Admin GUI

Figure 1.2: Log management in the MANTA Admin GUI [5]

• MANTA Log Viewer manages logs from the MANTA Flow Server
and a MANTA Flow CLI

A new module for metadata and dataflow extensions will be a part of the
Admin GUI.

5

Chapter 2
Technologies used

The chapter describes the primary technologies and tools used during the
thesis processing. Technologies are separated into three categories: backend,
frontend, and common.

2.1 Backend specific technologies

This section describes the tools used to create the backend part of the applica-
tion. The backend processes, stores, and uploads data; connects the frontend
to the filesystem and other parts of the MANTA software.

2.1.1 Java

Java is an object-oriented programming language and is currently one of the
most widely used in the world. Java is used to develop many applications in
various segments (both desktop and web), and MANTA is no exception. The
whole backend part is written in this language, and we assume that the reader
has a basic knowledge of Java.

2.1.2 Spring

Spring’s flexible and comprehensive set of extensions and third-party libraries
let developers build almost any application imaginable. At its core, Spring
Framework’s Inversion of Control (IoC) and Dependency Injection (DI) fea-
tures provide the foundation for a wide-ranging set of features and function-
ality. [6]

Spring allows us to simplify many things during implementation. We will
use Spring Beans to create singleton objects, which we will use in various
places in the code by Dependency Injection. We will also use the Spring MVC
a lot for communication between the individual components of the application.

7

2. Technologies used

2.1.3 JavaDoc

JavaDoc tool is a document generator tool in Java programming language
for generating standard documentation in HTML format. It generates API
documentation. It parses the declarations ad documentation in a set of source
file describing classes, methods, constructors, and fields. [7]

2.1.4 Apache Subversion

Subversion (SVN) is an open-source version control system that maintains a
history of source code changes and simplifies their control. We will use SVN
during the implementation of the backend part of the prototype.

2.2 Frontend specific technologies

In this section, we will look at the technologies used in the frontend part,
represented as the web application UI.

2.2.1 JavaScript

JavaScript is an interpreted object-oriented language best known as the script-
ing language for web pages, making them interactive. In our case, we will use
JavaScript and its frameworks to create the frontend part of the application.

2.2.2 React

React is a popular JavaScript library for creating user interfaces. It allows
developers to build large web applications with an object-oriented approach.
React splits the application into so-called components and can dynamically
re-render them without reloading the entire page.

2.2.3 Redux

Redux is a predictable state container for JavaScript apps. [8] It maintains
an entire application state in a single immutable tree object, which cannot be
changed directly. Redux helps the application behave consistently, makes it
easier to detect and fix errors, and reduces code size.

2.2.4 Redux-Saga and axios

Redux-Saga is a middleware library that allows the Redux store to communi-
cate with other services asynchronously. We will use Redux-Saga along with
the axios library, providing a promise-based HTTP client for JavaScript.

8

2.3. Other technologies

2.2.5 JSDoc

JSDoc is an API documentation generator for JavaScript code, similar to the
JavaDoc (see 2.1.3).

2.2.6 Git

Git is one of the best and most popular version control systems, similar to
Subversion (see 2.1.4). 1

2.3 Other technologies

2.3.1 IntelliJ IDEA

IntelliJ IDEA from JetBrains is one of the most used IDEs for developers.
It supports both Java and JavaScript languages, simplifies code writing and
formatting, and allows convenient code debugging and testing. IntelliJ also in-
creases productivity and code quality; it is used for both backend and frontend
parts.

2.3.2 Pencil

Pencil is a convenient open-source tool for creating application prototypes,
wireframes, or mockups. We will use it when designing the appearance of the
module.

2.3.3 draw.io

draw.io is a tool for creating diagrams and graphs. It has a large selection of
shapes and elements, which allows us to build all the necessary diagrams and
models during the analysis phase.

1Usually, only one version control system is used in one project, but MANTA is currently
switching from SVN to Git, so we use both.

9

Chapter 3
Requirements

The first phase of prototyping was the collection of requirements. Based on
the analysis of the existing solution and the user’s needs, the scope of changes
to the user interface was determined.

3.1 Introduction to the issue

One of the MANTA software modules is the MANTA Flow Viewer, which
is used to visualize dataflows and so-called assets (presented as nodes in the
graph). In addition to the visualizer itself, the Viewer also has a page for
selecting nodes and configuring the visualization - Repository Page (see 3.1).

On the left is the so-called Repository Tree, where the list of all nodes is
presented in a hierarchical form (for example, when analyzing the dataflow in
a database, such a hierarchy from parent to leaf may look like this: database
→ schema → table → column). To the right is the Details window, which
contains the asset’s basic parameters, and a list of its attributes, if any. Below
are visualization configuring tools that are not relevant to this work.

Typically, all assets are created automatically without user involvement
using special generators that analyze databases or BI tools and build dataflows
graph. However, MANTA only supports a part of many existing technologies,
so there are situations where the customer needs to add an unsupported or
even a custom tool to the graph. In these cases, MANTA allows adding assets
manually using so-called Custom Metadata.

3.2 Existing solution - Custom Metadata

The Custom Metadata is based on the use of the CSV file. The user defines
assets, their attributes, and other items in the appropriate files, loaded into
the server, and imported as new custom nodes and edges into the graph.

11

3. Requirements

Figure
3.1:

R
epository

Page
ofthe

M
A

N
TA

Flow
V

iewer

12

3.3. Open MANTA Extensions requirements

There are a total of six separate files.

• layer.csv contains information about the metadata layers. Each el-
ement belongs to a specific layer (e.g., tables and files belong to the
physical layer, business assets to the business layer). There could be
several layers at the same time; they are described by ID, name, and
type

• resource.csv contains information about resources. Resources are spe-
cific nodes representing individual technologies. They are always the
roots of subtrees and serve as containers for the assets of the technology.
Resource parameters are ID, name, type, description, layer ID

• node.csv describes the nodes in the graph, i.e., assets. Node information
includes its ID, ID of the parent node, name, type, and resource ID

• edge.csv contains edges for the graph. Edges represent dataflows be-
tween assets. A typical example is the ETL transformation between
database tables (in this case, the data lineage can look like this: source
table → ETL transformation → target table). Edges are described by
edge ID, ID of the source node, ID of the target node, type, and ID of
the nodes resource

• node attribute.csv contains further attributes of nodes, described by
node ID, name, and value

• edge attribute.csv contains further attributes of edges, described by
edge ID, name, and value

As we can see, CSV files work similarly to tables in relational databases -
we have a separate file for each object, and the relations are set using references
via ids. Such an approach is not user-friendly and increases the possibility of
making mistakes when manually filling these files. In addition, there are other
restrictions in some files that are not clear without reading the documentation.
Therefore, it is necessary to extend the existing solution with a convenient tool
- Open MANTA Extensions UI.

3.3 Open MANTA Extensions requirements

3.3.1 Scope

The goal is to provide the UI as part of the Admin GUI with the ability to

• create entirely new custom assets, resources, and layers

• create new assets within existing ones (e.g., add a new table to already
scanned database)

13

3. Requirements

• update already existing assets by adding attributes

• create new flows between existing assets

• save changes to the CSV files, so they can be used later to import data
to the server.

3.3.2 Functional requirements

Based on the existing solution, the following application requirements were
determined. 2

• Ability to create new assets within existing ones. The user will be able
to

• view all existing assets from the server
• define new Layers through the UI
• define new Resources through the UI
• define new assets with attributes
• view all newly created assets during the edit session
• remove new (not yet saved) assets during the edit session

• Ability to update already existing assets. The user will be able to

• view all existing assets from the server
• change every parameter or attribute on an existing asset
• add new parameters or attributes to an existing asset
• view all changed/added parameters during the edit session
• remove new (not yet saved) parameters during the edit session

• Ability to create new flows between existing assets (including newly
created custom ones). The user will be able to

• define new flows of different types with attributes between assets.
• create new links using ”drag-and-drop”
• connect higher levels (e.g., after adding a link between two

schemas/tables, all columns will be connected automatically)
• view all newly added links during the edit session

2Note that the requirements provided relate to the final version of the application only.
This work aims to create a functional prototype, which will meet only part of the require-
ments due to the enormous scope and complexity of used tools and the implementation
itself.

14

3.3. Open MANTA Extensions requirements

• remove new (not yet published) links during the edit session

• Ability to save made changes

• All changes can be saved under some name (the name will be used
for a container folder for CSV files)

• There can be several saved changes, and the user will be able to
switch between them. When multiple changes are selected, all as-
sets will have a property that determines which changes they come
from

• Different saves will be stored in the corresponding folders under
the ”import” directory (MANTA Flow uses it by default to store
Custom Metadata CSVs)

3.3.3 Technical requirements

• New Open MANTA Extension UI will be a part of the Admin GUI and
will use appropriate styles

• The UI will communicate with the server (e.g., for receiving information
about assets)

• The UI will use existing Custom Metadata CSV files for saving changes
to the filesystem

• Only users with administrator rights will have access to the UI

15

Chapter 4
Analysis and Design

This chapter describes the phases preceding the implementation. We will
create a list of use cases defining the possibilities of future application during
analysis. As part of the design, we will build several diagrams and models
illustrating the architecture and behavior of the module.

4.1 Use cases

The next phase of the work is the creation of use cases based on written
requirements. The results describe the user’s needs and how they will be
implemented in the application. For greater clarity, we will collect the use
cases in a table 4.1. We have also created use case diagrams; they can be
found in appendix B.

Table 4.1: Open MANTA Extensions use cases
Begin of Table

Use Case Description Scenario

View exist-
ing reposi-
tory

The user is able
to view the whole
repository with the
last revision

There is the Repository tree on the
main page that loads nodes from the
server. As the tree expands, the
assets gradually load (so-called lazy
loading). The application reads un-
saved changes from the database and
saved changes from CSV files.

Create new
layer

The user is able to
create a new layer in
the Repository tree

There is a button in the layer selec-
tion menu to create a new layer

Edit layer
The user is able to
edit the name of the
created layer

New layers names can be changed
”on-the-fly” in the selection menu

17

4. Analysis and Design

Continuation of Table 4.1
Use Case Description Scenario

Remove
layer

The user is able to
remove the created
layer

Next to each added layer in the se-
lection menu is a button to remove
this layer.

Create new
resource

The user is able to
create a new re-
source in the Repos-
itory tree

There is a button in the Repository
tree to create a new resource.

Edit re-
source

The user is able to
edit the parameters
of the created re-
source

New resource names can be changed
”on-the-fly” in the tree. Additional
parameters can be edited in the De-
tails window.

Remove re-
source

The user is able to
remove the created
resource

Next to each added resource in the
Repository tree is a button to re-
move this resource.

Create new
asset

The user is able to
create a new asset in
the repository tree

Next to each node in the Repository
tree is a button to create a new child
asset.

Edit asset
The user is able to
edit the parameters
of the created asset

New asset names can be changed
”on-the-fly” in the tree. Additional
parameters can be edited in the De-
tails window.

Remove as-
set

The user is able to
remove the created
asset

Next to each added asset in the
Repository tree is a button to re-
move this asset.

Add new at-
tribute

The user is able to
add a new attribute
to an asset

There is a button in the Details win-
dow to add a new attribute.

Edit at-
tribute

The user is able
to edit the name
and the value of the
added attribute

New attribute names and values can
be changed ”on-the-fly” in the De-
tails window

Remove at-
tribute

The user is able to
remove the added at-
tribute

Next to each added attribute in the
Details window is a button to re-
move this attribute.

Add new
flow

The user is able to
add a new flow be-
tween assets

New flows can be added with drag-
and-drop in the Repository tree or
with a button in the Details window.

Edit flow
The user is able to
edit the parameters
of the added flow

Source, target, and flow type can be
changed in the Details window

18

4.2. Wireframes

Continuation of Table 4.1
Use Case Description Scenario

Remove flow
The user is able to
remove the added
flow

Next to each added flow in the De-
tails window is a button to remove
this flow.

Save changes
The user is able
to save the made
changes

There is a button on the main page
to save changes.

Preview
changes

The user is able to
view all the changes
on a single page

There is a preview page where the
user can view all made changes, go
back and make additional changes or
publish them.

As we can see, the use cases are pretty simple and straightforward, which
was also our primary intention - to replace the complicated filling of several
CSV files with a user-friendly clicking on buttons on a single page. Such a
UI can significantly reduce errors and typos in CSV files, speed up creating
custom assets and flows, and make the user experience more enjoyable overall.

4.2 Wireframes

After gathering the requirement and determining the use cases, we already
have enough data for the first phase of the design - wireframes.

Not dissimilar to an architectural blueprint, a wireframe is a two-dimen-
sional skeletal outline of a webpage or app. Wireframes provide a clear
overview of the page structure, layout, information architecture, user flow,
functionality, and intended behaviors. As a wireframe usually represents the
initial product concept, styling, color, and graphics are kept to a minimum.
Wireframes can be drawn by hand or created digitally, depending on how
much detail is required. [9]

Thanks to the wireframe model, we can accurately show the appearance of
the application and its functionality. Wireframes allow solving some business
and UX design problems even before starting the implementation. Further-
more, they are also used as an example of what the final application might
look like.

4.2.1 Main page

The main advantage of wireframes is that their creation is relatively fast and
cheap; actually, it is enough to use paper with a pencil. However, we will use
the Pencil tool, whose specific goal is to create wireframes and mockups. It
has a set of pre-prepared forms, supports drag-and-drop operations, and can
generate an interactive web page or PDF file from a wireframe.

19

4. Analysis and Design

This section describes the main page of the future application and details
its parts and their behavior. 3

Figure 4.1 shows the wireframe of the main screen of the Open MANTA
Extensions UI. Like the Repository Page Viewer (see 3.1), it consists of two
parts: the Repository Tree and the Details window.

On the left part, there are Repository trees (we need two of them to enable
drag-and-drop edge creation), which display the current list of nodes from the
server and the flows between them. Up here, we see the layer selection menu,
where the user can choose the layer to work with. All created resources and
nodes will be automatically added to the selected layer, so the user does not
have to deal with any ID or even know it exists. The user can add a new layer
or remove a layer already added directly in this menu.

In the tree itself, we then have a button to create a resource; after clicking,
it adds the default resource, and the user will be able to change its parameters
in the Details window. Adding new nodes works similarly: after selecting a
node (or resource), a button will appear below. The button adds a new node,
and then the user can edit it in the Details window. Both resources and nodes
can be later removed using the button that appears next to the node when
it is selected. Therefore, users get a simple and intuitive way to add a new
resource or node. They do not even have to solve the difference between them
- the application does everything automatically and saves the changes to the
corresponding files.

To the right is the Details window, where the user can view the node
parameters, such as name and type, the list of node attributes, and the list of
incoming and outgoing flows of the node. The user can add attributes to each
node and, if the node is newly created, can also modify its parameters. Below
is the Flows section where incoming and outgoing flows are defined. Here the
user can add new flows using the button, or it is also possible to create new
flows directly between the Repository trees using the ”drag-and-drop” feature.

3Note that only a part of the wireframes is described in this chapter, the whole set of
wireframes can be found in the enclosed CD.

20

4.2. Wireframes

Fi
gu

re
4.

1:
M

ai
n

Pa
ge

of
th

e
O

pe
n

M
A

N
TA

Ex
te

ns
io

ns
U

I

21

4. Analysis and Design

4.2.2 Preview page

Another page we will discuss here is the Preview page. The user is redirected
to this page after clicking on the ”Save Changes” button. Here we can view
all the made changes split into five groups:

• New Layers - all the newly created layers

• New Resources - all the newly created resources

• New Assets - only the newly created assets

• Changed assets - assets with some changes (attributes added)

• New Flows - all the newly created flows

Next to each item is an edit button that redirects the user back to the
Repository page to make further changes if needed. All described items are
shown in Figure 4.2.

Overall, thanks to the Open MANTA Extensions UI, the user will be able
to intuitively create new layers, resources, assets and their attributes, and
flows. It will be possible to summarize all the changes and save everything
with a single button. This way, the user no longer has to deal with unique
IDs and relations between CSV files and does not have to study the documen-
tation. Saving to files is done automatically, and additional input validations
significantly reduce the chance of making errors.

22

4.2. Wireframes

Fi
gu

re
4.

2:
Pr

ev
ie

w
Pa

ge
of

th
e

O
pe

n
M

A
N

TA
Ex

te
ns

io
ns

U
I

23

4. Analysis and Design

Figure 4.3: Open MANTA Extensions component diagram

4.3 High-Level architecture

The last part of the design consists of creating diagrams describing the model
and behavior of the application. Such diagrams help to understand the whole
structure of the program and its parts; they also will be used as a hint for the
implementation itself.

4.3.1 Component diagram

The first step is to create a component diagram that describes the parts of
the application and how they communicate with each other.

As we can see in Figure 4.3, the Open MANTA Extensions will be part
of the Admin GUI and communicate with three other components. First -
the MANTA Flow server - is needed to retrieve the repository information.
For example, we can obtain information about resources and nodes through
the Repository API to fill up our Repository trees. The second part is the
filesystem, where we will store the changes as CSV files, which will be uploaded
to the server later. The last component is the internal database for storing
temporary changes and some other information about the application state.

24

4.3. High-Level architecture

Figure 4.4: Repository tree processes sequence diagram

4.3.2 Sequence diagrams

The second step is to create a sequence diagram describing the application
behavior and its communication with other components.

Figure 4.4 shows the processes of the Repository tree and what happens
behind the user actions.

When the user opens the main page, the application starts retrieving data
from the other components. It gets information about resources from the
server through the Repository API; then it receives already saved changes
from the CSV files on the filesystem; finally, the app loads temporary changes
and other data from the database. Based on this data, it can build the basis
of the Repository tree. The rest of the tree is loaded dynamically as the user
dives deeper (server storage can be enormous and contain thousands of nodes,
so we cannot afford to load the entire tree at once). The application sends a
request to the server to obtain child nodes of the selected one and adds the
received nodes to the tree.

The second diagram (see figure 4.5) describes creating, editing, and delet-
ing an element. All actions look similar and continuously update the database

25

4. Analysis and Design

state. Finally, pressing the ”Save Changes” button opens a preview page and
saves all data to the CSV files on the filesystem after approval.

26

4.3. High-Level architecture

Figure 4.5: Create/Edit/Remove processes sequence diagram

27

Chapter 5
Implementation

After completing all analyzes and design preparations, we can start the imple-
mentation itself. In this chapter, we will look at the structure, the main logic,
and the individual classes of the module. The whole development process was
divided into 5 phases, and we will describe each of them (both backend and
frontend).

5.1 Phase 1 - Repository tree

The first phase covers building the application skeleton and creation the
Repository tree logic, such as retrieving resources from the server and ren-
dering the tree structure on the page.

5.1.1 Backend

The backend of the application consists mainly of three parts:

• controller - includes controllers that create REST API and enable com-
munication between backend and frontend components. Receiving a
request and sending a response is guaranteed by Spring. Controllers
should not have any logic; their main goal is to collect data from various
services and send them to the frontend.

• service - part of the backend containing the main logic of the entire
application. For example, with the help of the service, we can receive
data from the MANTA Flow server using an HTTP client. Another
group of services is used to store data in an internal database. The last
one deals with saving data to the CSV files and retrieving data from
them.

• model - the model includes classes for storing the information about
the objects we work with. These are usually POJO objects, such as

29

5. Implementation

Node or Resource. Another type is DTO - special immutable classes
in which data are stored structured according to the needs of the front
end. Controller converses regular classes to DTO and vice versa with
the help of special converter classes. The last type is DAO, which allows
us to communicate with the internal database.

For the first phase, the backend part is pretty simple. There are two
model classes - Resource and Node; further, there are two corresponding DTO
files and a converter between them. These classes are used to store informa-
tion about the Repository tree items received from the server and to transfer
them to the frontend. To response to frontend requests, we have implemented
OpenMantaRepositoryTreeController with two endpoints:

• getResourceNodes returns a list of all resources from the server

• getChildNodes returns a list of child nodes of the given node

The frontend uses these endpoints to dynamically build the Repository tree
(see section 5.1.2 for details).

5.1.2 Frontend

The frontend part already has a more complex structure and uses many dif-
ferent frameworks to facilitate the work. The main parts of the module are

• interface - JavaScript is generally a dynamically typed language, and it
is unusual to use interfaces or classes here. However, because we use the
Flow library, which simulates static typing, we can define classes and
interfaces similar to the Java language. This package has the same role
as the backend model and should exactly match the backend DTO so
that all parameters can be mapped correctly.

• components - using React, we can build an HTML DOM from smaller
parts called components. We can then use the classic OOP approach
with components and treat them as classes. Thanks to React, the code
is much more readable and understandable, better structured, and easier
to support.

• actions - consists of one file representing a set of simple objects (they
have only two parameters - type and payload) - the so-called actions.
We can think of actions as events, we can invoke them anywhere in the
code, and redux or saga will respond to that.

• redux - the part of the application that holds it together and unites its
particular elements. It contains a state accessible from all places in the
code; for example, nodes for the Repository tree are stored here.

30

5.1. Phase 1 - Repository tree

• saga - middleware guaranteeing asynchronous communication between
frontend and backend.

In the first phase, the main goal was to implement the dynamic Repository
tree. It would be more straightforward to store data in a tree structure and
simply render it one-to-one. Unfortunately, the redux state is immutable,
and we must create a new state and replace the old one every time we need
to update it. With such an approach, it is complicated to maintain a tree
structure, and it will not allow making some modifications based just on the
node id. Therefore, we decided to use normalization and save the tree as a
node map. So we can find any node from the tree by id, and if we need its
children, then each node has a list of its children’s ids so we can easily find
them in the map. The resulting node map can look like this:
{

”1” : {
” id ” : 1 ,
”name ” : ”node1 ” ,
” type ” : ” Database ” ,
” resourceName ” : ” Oracle ” ,
” path ” : ”/ Oracle ” ,
” a t t r i b u t e s ” : [] ,
” chi ldNodes ” : [2] ,
” f l ows ” : []

} ,
” 2” : {

” id ” : 2 ,
”name ” : ”node2 ” ,
” type ” : ” Table ” ,
” resourceName ” : ” Oracle ” ,
” parentId ” : 1 ,
” path ” : ”/ Oracle /node1 ” ,
” a t t r i b u t e s ” : [] ,
” chi ldNodes ” : [3] ,
” f l ows ” : []

} ,
” 3” : {

” id ” : 3 ,
”name ” : ”node3 ” ,
” type ” : ”Column” ,
” resourceName ” : ” Oracle ” ,
” parentId ” : 2 ,
” path ” : ”/ Oracle /node1/node2 ” ,
” a t t r i b u t e s ” : [] ,
” chi ldNodes ” : [] ,

31

5. Implementation

” f l ows ” : []
}

}

We used the TreeView component from the Material-UI framework to cre-
ate the tree; it solves many things by itself, such as expanding and collapsing
nodes. The entire workflow of the Repository tree then looks like this:

1. We call the getResourceNodesRequest action during the initial ren-
dering of the tree component; it is caught and managed by the corre-
sponding saga. The saga then sends the requests to the backend, which
returns results from the Repository API already prepared for the fron-
tend purposes. Finally, the saga saves the received data to the redux,
the tree component re-rendering starts automatically and displays the
resource list on the page.

2. When we click on the node, it checks if the children have not already
been loaded; if not, the getChildNodesRequest action is invoked. The
saga catches it and sends a request to the backend, which returns the
necessary data in the same way as above. However, we cannot save the
received data directly to redux because the state is normalized, so we
need to perform a proper merge:
{

. . . s ta te ,
nodes : {

. . . s t a t e . nodes ,

. . . keyBy (ac t i on . payload . chi ldNodes , ’ id ’) ,
[a c t i on . payload . nodeId] : {

. . . s t a t e . nodes [a c t i on . payload . nodeId] ,
ch i ldNodes : a c t i on . payload . chi ldNodes
. map(chi ldNode => chi ldNode . id)

}
}

}

First, we need to copy the previous state and replace the nodes attribute
in it. For nodes, we must perform the same operation and add all
received nodes to the list. Finally, we need to add the node IDs to the
list of children in the parent node.

5.2 Phase 2 - Create, edit, and remove operations

In the second phase, we implemented creating, editing, and deleting the ap-
plication elements, such as nodes and their attributes, resources, layers, and
flows. All these operations have the same principle and look the same, with

32

5.2. Phase 2 - Create, edit, and remove operations

a few exceptions, so that we will discuss the implementation of these parts
using the resource processes as an example.

5.2.1 Backend

We will first discuss the way from the backend to the frontend. When the
OpenMantaRepositoryTreeController receives a request from the frontend,
it passes data to the RepositoryService, which resolves the connection to the
storage API server. Communication between the backend and the MANTA
Flow server is implemented using an HTTP client from the Spring frame-
work. It can connect to the desired endpoint and return data in JSON for-
mat, which is then easily mapped to a Java object using the Jackson frame-
work. This way, we get the data into our internal Resource representation,
but the frontend expects a slightly different structure. Therefore, we use the
ResourceNodeDTOConverter to convert a Resource object to a ResourceDTO
object. Now the data is fully prepared, and we will send it to the frontend the
same way using the Spring. The whole process is described in figure 5.1.

The reversed process starts when we press the ”Save Changes” button;
it should save the information about new resources to the appropriate file.
Because all data are sent at once, there is a special OpenMantaChanges con-
tainer, where the changes are stored. Once we convert the JSON object from
the request to the DTO and then to the backend model object, we can pass
it to the ChangesService, which contains the logic for storing the data in a
file. We have prepared specific classes describing one CSV line for each file
(for resources is the ResourceCsvConfigEntry). So we can convert objects to
CSV rows and vice versa, here we can also provide additional data validation
before saving or after loading. Figure 5.2 illustrates the whole process.

5.2.2 Frontend

On the frontend, operations for different elements also look similar; these are
creating new elements, editing existing or newly added elements, and deleting
new ones. As described earlier, all data from the backend are stored directly
in the redux state and then loaded into components as needed. However, we
will use a different approach to store new elements. To manage input forms,
we use the Formik library, which controls input data from the user and allows
us to validate them. It keeps all data in its own state, and we will use this
state to store all the new elements. Thanks to this solution, we do not have to
deal with updating data in the redux, and all changes are saved automatically.
In addition, after pressing the ”Save Changes” button, we get access to the
Formik state with all changes.

Let us take a closer look at the whole process on the example of a node
attribute. In the initial state, the node has no attributes, so the button to
add a new one appears in the list. When pressed, the application generates a

33

5. Implementation

Figure
5.1:

O
pen

M
A

N
TA

Extensions
resources

retrieving
sequence

diagram

34

5.2. Phase 2 - Create, edit, and remove operations

Fi
gu

re
5.

2:
O

pe
n

M
A

N
TA

Ex
te

ns
io

ns
re

so
ur

ce
s

sa
vi

ng
se

qu
en

ce
di

ag
ra

m

35

5. Implementation

new attribute with a unique id within the node and inserts it into the Formik
state. After rendering, we see the input forms for the attribute name and
value, which are already synchronized with the state. There is also a button
to remove the attribute that erases the record from the Formik state. After
pressing the ”Save Changes” button, all attributes are combined into one list
and sent to the server for further processing.

5.3 Next Phases

As the entire scope is too large, only the main parts of the module were
implemented in this work. The result is illustrated in Figure 5.3.

Although the prototype is already functional and meets most requirements,
many functions remain unimplemented. The following improvements are al-
ready planned:

• Adding the possibility to create flows directly between the Repository
trees by drag-and-drop. This feature makes it easier for the user to use
the application and speeds up his work.

• Adding the Preview Changes page that summarizes all the changes
made. Thanks to this page, the user will see all the changes in one
place and be confident that nothing was forgotten.

• Adding user input validation and other restrictions, such as creating
borders for leaf nodes only, unique resource names, and only defined
node types.

• Implementing a temporary data store in the internal database. This
feature allows to store unsaved changes on the fly and to prevent data
loss in the case of a connection failure.

• Implementing loading saved changes from the CSV files. The user will be
able to go back to the saved changes even after restarting the application.

• adding the ability to work on multiple changes at once. It allows the
user to save changes under unique names and work in multiple contexts
simultaneously. It will also be necessary to resolve conflicts between
multiple changes before saving.

• The last point is to use the Admin GUI style for the module. An unstyled
prototype is enough to demonstrate functionality, but users need to have
nice-looking software.

36

5.3. Next Phases

Fi
gu

re
5.

3:
O

pe
n

M
A

N
TA

Ex
te

ns
io

ns
pr

ot
ot

yp
e

de
m

on
st

ra
tio

n

37

Conclusion

The main goal of this work was to design and implement a functional proto-
type of a web application module for user-defined extensions of metadata and
data flow in the MANTA project. As part of the work, we collected the re-
quirements and then performed their analysis. We designed and implemented
a module that provides a user-friendly way to expand the data flow based
on the performed analysis. The resulting module is fully documented using
JavaDoc and JSDoc. In this way, we met all the primary and partial goals of
this work.

The created module has limited functionality because it is only a proto-
type, but it is ready for improvement. We plan to continue expanding it, add
the ability to create edges with drag-and-drop, implement an internal database
for continuous saving of changes, and much more. The module was created
with the assumption of subsequent integration into the MANTA Admin GUI
and uses all the necessary system resources from the beginning of the imple-
mentation. Therefore, we can soon put the prototype into production as a
demo version.

This work has become a great personal benefit because many different and
new tools have been used during the implementation, particularly JavaScript
and React. During the implementation of the prototype, I expanded my
knowledge of this language and its frameworks and gained a lot of experi-
ence with creating MVC web applications. I truly liked the whole process of
creating the module, and I would definitely continue to improve it and expand
it with other functions.

39

Bibliography

1. Wikipedia: The Free Encyclopedia. Web application [online]. 2021-
04 [visited on 2021-04-27]. Available from: https://en.wikipedia.org/
wiki/Web_application.

2. Manta Tools, s.r.o. Co je to Manta Flow? [Online]. 2018-01 [visited
on 2021-04-25]. [Internal resources of the company].

3. Wikipedia: The Free Encyclopedia. Data lineage [online]. 2021-02
[visited on 2021-04-26]. Available from: https://en.wikipedia.org/
wiki/Data_lineage.

4. Plskova, Katerina. Data Lineage from. . . Microsoft Excel?!? [Online].
2019-07 [visited on 2021-04-26]. Available from: https://getmanta.com/
blog/data-lineage-from-microsoft-excel.

5. Szczech, Zosia. MANTA 3.32: Google BigQuery, Microsoft SQL Server,
Docker, Admin UI Enhancements, and More! [Online]. 2021-04 [visited
on 2021-04-27]. Available from: https://getmanta.com/blog/manta-
3-32-google-bigquery-microsoft-sql-server-docker-admin-ui-
enhancements-and-more.

6. Why Spring? [Online]. © 2021 [visited on 2021-05-06]. Available from:
https://spring.io/why-spring.

7. Yash Maheshwari. What is JavaDoc tool and how to use it? [Online].
2020-11 [visited on 2021-05-01]. Available from: https://www.geeksforg
eeks.org/what-is-javadoc-tool-and-how-to-use-it.

8. Abramov, Dan. Getting Started with Redux [online]. © 2015–2021 [visited
on 2021-05-01]. Available from: https://redux.js.org/introduction/
getting-started.

9. Hannah, Jaye. What Exactly Is Wireframing? A Comprehensive Guide
[online]. 2021-04 [visited on 2021-05-03]. Available from: https://caree
rfoundry.com/en/blog/ux-design/what-is-a-wireframe-guide/#1-
what-is-a-wireframe-and-who-uses-them.

41

https://en.wikipedia.org/wiki/Web_application
https://en.wikipedia.org/wiki/Web_application
https://en.wikipedia.org/wiki/Data_lineage
https://en.wikipedia.org/wiki/Data_lineage
https://getmanta.com/blog/data-lineage-from-microsoft-excel
https://getmanta.com/blog/data-lineage-from-microsoft-excel
https://getmanta.com/blog/manta-3-32-google-bigquery-microsoft-sql-server-docker-admin-ui-enhancements-and-more
https://getmanta.com/blog/manta-3-32-google-bigquery-microsoft-sql-server-docker-admin-ui-enhancements-and-more
https://getmanta.com/blog/manta-3-32-google-bigquery-microsoft-sql-server-docker-admin-ui-enhancements-and-more
https://spring.io/why-spring
https://www.geeksforgeeks.org/what-is-javadoc-tool-and-how-to-use-it
https://www.geeksforgeeks.org/what-is-javadoc-tool-and-how-to-use-it
https://redux.js.org/introduction/getting-started
https://redux.js.org/introduction/getting-started
https://careerfoundry.com/en/blog/ux-design/what-is-a-wireframe-guide/#1-what-is-a-wireframe-and-who-uses-them
https://careerfoundry.com/en/blog/ux-design/what-is-a-wireframe-guide/#1-what-is-a-wireframe-and-who-uses-them
https://careerfoundry.com/en/blog/ux-design/what-is-a-wireframe-guide/#1-what-is-a-wireframe-and-who-uses-them

Bibliography

42

Appendix A
Acronyms

API Application Programming Interface.

BI Business Intelligence.

CLI Command Line Interface.

CSV Comma Separated Values.

CTU Czech Technical University in Prague.

DAO Data Access Object.

DI Dependency Injection.

DOM Document Object Model.

DTO Data Transfer Object.

ETL Extract, Transform, Load.

FIT Faculty of Information Technology.

GUI Graphical User Interface.

HTML Hypertext Markup Language.

HTTP Hypertext Transfer Protocol.

IBM International Business Machines.

IDE Integrated Development Environment.

IoC Inversion of Control.

43

Acronyms

JSON JavaScript Object Notation.

MVC Model, View, and Controller.

OBIEE Oracle Business Intelligence Enterprise Edition.

OOP Object-Oriented programming.

PDF Portable Document Format.

POJO Plain Old Java Object.

REST Representational State Transfer.

SQL Structured Query Language.

SSRS SQL Server Reporting Services.

UI User Interface.

UX User Experience.

44

Appendix B
Open MANTA Extensions use

case diagrams

45

B. Open MANTA Extensions use case diagrams

Figure B.1: Open MANTA Extensions use case diagram for the repository

46

Figure B.2: Open MANTA Extensions use case diagram for layers and
resources

47

B. Open MANTA Extensions use case diagrams

Figure B.3: Open MANTA Extensions use case diagram for assets

48

Figure B.4: Open MANTA Extensions use case diagram for saving changes

49

Appendix C
Contents of enclosed CD

readme.txt the file with CD contents description
src.......................................the directory of source codes

impl..implementation sources
thesis..............the directory of LATEX source codes of the thesis
wireframes the directory of wireframes

text..the thesis text directory
DP Buldyk Yauheniy 2021.pdf the thesis text in PDF format

51

	Introduction
	Goals of the Thesis
	Structure of the Thesis

	Basic concepts
	Web application
	Manta and Manta Flow
	Data Lineage
	MANTA Admin GUI

	Technologies used
	Backend specific technologies
	Java
	Spring
	JavaDoc
	Apache Subversion

	Frontend specific technologies
	JavaScript
	React
	Redux
	Redux-Saga and axios
	JSDoc
	Git

	Other technologies
	IntelliJ IDEA
	Pencil
	draw.io

	Requirements
	Introduction to the issue
	Existing solution - Custom Metadata
	Open MANTA Extensions requirements
	Scope
	Functional requirements
	Technical requirements

	Analysis and Design
	Use cases
	Wireframes
	Main page
	Preview page

	High-Level architecture
	Component diagram
	Sequence diagrams

	Implementation
	Phase 1 - Repository tree
	Backend
	Frontend

	Phase 2 - Create, edit, and remove operations
	Backend
	Frontend

	Next Phases

	Conclusion
	Bibliography
	Acronyms
	Open MANTA Extensions use case diagrams
	Contents of enclosed CD

