

Master’s thesis

SOM Virtual Machine Implementation

Bc. Rudolf Rovňák

Department of Theoretical Computer Science
Supervisor: Ing. Petr Máj

May 6, 2021

Acknowledgements

I would like to thank my supervisor for helping me patiently with this work.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on May 6, 2021

Czech Technical University in Prague
Faculty of Information Technology
© 2021 Rudolf Rovňák. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.

It has been submitted at Czech Technical University in Prague, Faculty of

Information Technology. The thesis is protected by the Copyright Act and its

usage without author’s permission is prohibited (with exceptions defined by the

Copyright Act).

Citation of this thesis

Rovňák, Rudolf. SOM Virtual Machine Implementation. Master’s thesis.
Czech Technical University in Prague, Faculty of Information Technology,
2021.

Abstrakt

Táto práca popisuje implementáciu virtuálneho stroja pre programovaćı jazyk
Simple Object Machine, založenom na Smalltalku. Takisto obsahuje analýzu
existujúcich riešeńı a analýzu vlastného riešenia. Práca prezentuje syntaktickú
analýzu, bajtkód s procesom kompilácie doň a prostredie pre spustenie pro-
gramov naṕısaných v programovacom jazyku SOM.

Kĺıčová slova behové prostredie, virtuány stroj, objektovo orientované pro-
gramovanie

Abstract

This work presents an implementation of a virtual machine for Simple Object
Machine programming language, based on Smalltalk. Additionally, it analyzes
existing implementations, along with an analysis of the provided solution.
Included is a design and implementation of a parser, bytecode with a compiler
and runtime environment with garbage collector to allow executing programs
written in SOM.

Keywords runtime, virtual machine, object oriented programming

vii

Contents

1 Introduction 1

2 Analysis and design 3

2.1 Existing implementations . 3
2.2 Class definition . 3

2.2.1 Variables . 4
2.2.1.1 Variable name scoping 5

2.2.2 Literals . 5
2.3 Primitives . 6
2.4 Methods and messages . 7
2.5 Blocks . 9

2.5.1 Non–local return and block scoping 9
2.6 Expressions . 15
2.7 Control structures . 16

2.7.1 Conditional branching 16
2.7.2 For loops . 17
2.7.3 While loops . 17
2.7.4 Class hierarchy . 18

2.8 Bytecode . 18
2.8.1 Program structure . 18
2.8.2 Program entities . 19
2.8.3 Instructions . 19

2.9 Garbage collection . 20
2.9.1 Mark and sweep . 21

3 Realisation 23

3.1 Program overview . 23
3.1.1 Build . 23

3.2 Source code parsing . 24

ix

3.3 Abstract Syntax Tree . 24
3.3.1 AST Nodes . 24

3.3.1.1 Expressions . 26
3.3.2 AST construction . 28

3.4 Bytecode . 30
3.4.1 Values . 30
3.4.2 Instructions . 30
3.4.3 Compilation . 30

3.4.3.1 Method compilation 31
3.5 Interpretation . 32

3.5.1 Garbage collection . 32
3.5.2 Program counter . 32
3.5.3 Execution stack . 33
3.5.4 Objects . 34

3.5.4.1 Object creation 35
3.5.5 Messages . 35

3.6 Core library . 36
3.6.1 Primitives . 36
3.6.2 Strings . 37
3.6.3 Booleans . 37
3.6.4 Array . 38
3.6.5 Nil . 38
3.6.6 Blocks . 38

3.7 Block evaluation . 39
3.7.1 Argument handling . 41
3.7.2 Block restart . 41

4 Performance 43

4.1 Fibonacci sequence . 43
4.2 While loop . 45
4.3 Non local returns . 47

Conclusion 49

Future work . 49

Bibliography 51

A Acronyms 53

B Contents of enclosed CD 55

x

List of Figures

2.1 Railroad diagram for classDefinition rule. 4
2.2 Example of a simple class defined in SOM. 4
2.3 Unary message example. 7
2.4 Binary message example. 7
2.5 Array example. 8
2.6 Demonstration of message precedence. 8
2.7 Demonstration of message sends order for one message type. . . . 8
2.8 Demonstration of mathemathical operators precedence rules. . . . 9
2.9 Example of blocks usage in SOM. 10
2.10 Example to demonstrate non local return. 11
2.11 Implementation of whileTrue: method in Block class. 11
2.12 Implementation of relevant boolean methods. 12
2.13 Created blocks and their home contexts. 13
2.14 Second example code for non local returns. 13
2.15 Output of the example code from figure 2.14 14
2.16 State of execution before return for example on figure 2.14. 14
2.17 Third example demonstrating non local returns. 15
2.18 Modification of the method from example 2.17. 15
2.19 ANTLR grammar snippet for expressions. 15
2.20 Example of messages functioning as if-control structures. 16
2.21 Example of simple for loops. 17
2.22 Examples of di�erent ways of iterating over an array. 17
2.23 Example of while loops. 18
2.24 Illustration of the object hierarchy before GC algorithm run. . . . 22
2.25 Traversal of the heap objects. 22
2.26 State of the heap after the GC run. 22

3.1 Interface of the program. 23
3.2 Example of some interesting lexer rules from SOM ANTLR grammar. 25
3.3 The syntax of class definition described by ANTR grammar. . . . 25

xi

3.4 The syntax of nested blocks. 26
3.5 Conceptual class diagram for SOM abstract syntax tree. 27
3.6 Example for AST construction. 28
3.7 Expression from example 3.6 as AST. 29
3.8 Conceptual class diagram for compilation environment. 31
3.9 Conceptual class diagram for interpretation environment. 33
3.10 Implementation of Nil class in core library. 38
3.11 Block implementation in SOM core library. 39
3.12 Example to demonstrate block evaluation process. 40
3.13 State of execution environment for execution of example 3.12. . . . 40

4.1 The program for Fibonacci sequence performance test in SOM. . . 44
4.2 The program for Fibonacci sequence performance test in C++. . . 44
4.3 The program for Fibonacci sequence performance test in Python. . 44
4.4 Execution times of Fibonacci sequence test. 45
4.5 Execution times of Fibonacci sequence test for various SOM im-

plementations. 46
4.6 SOM source code for second performance benchmark – while loop

evaluation. 46
4.7 Execution times for di�erent SOM implementations for code from

4.6. 47
4.8 Invokation of restart method in Java implementation of SOM

(taken from [1]). 47
4.9 SOM source code for third performance benchmark – non local

return evaluation. 48
4.10 Execution times for di�erent SOM implementations for code from

4.9. 48

xii

Chapter 1
Introduction

In the last decades, a trend of dynamic programming languages 1 has been
on the rise. As opposed to static programming languages (usually compiled)
dynamic ones o�er a higher level of abstraction and claim to allow faster and
less error-prone development, though validity of such claims is a subject to
many discussions. Dynamic languages move a lot of actions traditionally done
during compile-time to run-time. This creates the need for another layer, a

runtime environment.
Dynamic languages are often, but not always, dynamically typed. This is

just one aspect – this can be considered just an example of a process done
either before program execution (static type checking) or during runtime (dy-
namic type checking). Other principles that are genrally utilised heavily in
dynamic languages are late binding, reflection and more.

The goal of this diploma thesis is to implement a process virtual machine
for a programming language called SOM, or Simple Object Machine. It is a
dynamic, object-oriented programming language based on Smalltalk. It was
originally implemented at University of Århus in Denmark to teach object
oriented VMs [2]. There are several implementations in various programming
languages, ranging in speed, optimizations etc.

The main focus of this work will be the clarity of implementation over
performance. The solution will provide a basic implementation of a traditional
runtime VM that can be built upon in the future. This will include the process
of parsing, compiling the bytecode and then providing a runtime environment,
along with an implementation for most basic principles (flow control, basic
data types, loops).

1Not to be confused with dynamically typed programming languages.

1

Chapter 2
Analysis and design

Simple Object Machine (SOM) is a minimal Smalltalk dialect used primarily
for teaching construction of virtual machines. Key characteristics according
to o�cial website ([2]) are:

• clarity of implementation over performance,

• common language features such as: objects, classes, closures, non-local
returns,

• interpreter optimizations, threading, garbage collectors are di�erent across
various implementations.

2.1 Existing implementations

There are multiple existing implementations of SOM written in di�erent pro-
gramming languages, including: Java (SOM), C (CSOM) C++ (SOM++),
Python (PySOM) and many others. Some of these are bytecode based, oth-
ers utilize abstract syntax tree interpretation. They range in implemented
optimizations (CSOM o�ers no optimizations, while Tru�eSOM claims to be
highly optimised) [2].

Additionally, Read-Eval-Print loop implementation is available on the of-
ficial site of the project. The REPL accepts only simple expressions and does
not support class definitions. Standard library is available. [2]

2.2 Class definition

Syntax for class definition follows the o�cial SOM grammar. The language
supports single inheritance as apparent from the use of subclass token in the
grammar. Not every class has explicitly specified superclass, therefore the
actual identifier in the rule is optional.

3

2. Analysis and design

Figure 2.1: Railroad diagram for classDefinition rule.

SimpleHello = (
| name |

setName: aString (
name := aString

)

printGreeting (
(’Hello , ’, name) print

)
)

Figure 2.2: Example of a simple class defined in SOM.

Declaration of instance side fields follows, denoted by vertical bars. This
token itself can be empty. Instance side methods definitions are next. Further
details on methods and messages in SOM are discussed in 2.4. Same syntax
is used for class side fields and methods separated by a special token.

There are no access modifiers for class variables and methods. By default,
all the instance and class variables are accessible only from the given class (or
its instances) or its subclass. This corresponds to the behaviour of protected
access modifier in C++. Every method is invokable by a corresponding mes-
sage send to an object – this corresponds to public access modifier.

2.2.1 Variables

In Smalltalk, a variable is defined as “a dynamically modifiable association

(binding) of either a name or an index to a value. Each distinct variable has

exactly one name (or index)” [3].
A value of a named variable can be any object. Indexed variables are at

the core also just an object. They represent an ordered sequence of objects
as a single value. Example of those are arrays or Strings. Actual indices are
always strictly positive (greater than zero), meaning the first element of an
array corresponds to index of value one. This is standard in Smalltalk dialects,
although uncommon in C-like languages. Retrieving the values belonging to
an index is done via sending a message to the encapsualting object.

When creating a new variable, it is assigned a special value nil, meaning
the variable is empty. This special value can also be explicitly assigned to a

4

2.2. Class definition

variable at any point.
SOM is a dynamically typed programming language (as is Smalltalk). As

a result, there is no syntax to indicate a data type of a variable. One thing
worth pointing out is that in the context of Smalltalk, a data type is defined
di�erently than most programming languages. As stated in [3], a class is not
a type. A Smalltalk type is defined as “the power set of messages to which

an object can meaningfully respond” [3]. This is the definition I will be using
in the context of SOM. As a result of this, any number of SOM classes can
implement one data type.

2.2.1.1 Variable name scoping

Every variable has its scope, which determines the visibility of the variable.
SOM follows the rules of Smalltalk when it comes to scoping, as defined in [3]:

• Local variables are accessible within the method or code block in which
they are defined.

• Formal method arguments are accessible by the method wherein
they are defined.

• Formal block arguments are accessible by the block wherein they are
defined.

• Instance variables are accessible within all methods of a given object.
Each object has its own instances of these variables.

• Class variables are accessible by all objects that are instances of the
class or its subclasses. All the objects share the same instance of this
variable.

• Global variables are accessible everywhere. These are primarily spe-
cial variables (such as nil). Users cannot define their own global vari-
ables. This functionality can be achieved using class variables.

There is some more details on variable scoping, especially when talking
about block closures. Further detail is discussed in 2.5.1.

2.2.2 Literals

Outside of variables, there is also a need to represent fixed values in a SOM
source code.

Integer literal specifies a value of a decimal whole number, positive or
negative. In provided implementation, every integer literal is a representation
of an object of class Integer. To achieve simple manipulation with integer
numbers, all integers are internally represented by a C++ data type int32_t

5

2. Analysis and design

– therefore 32 bit signed integer number. Overflow and underflow is not ad-
dressed in the implementation, therefore the behaviour copies that of the
underlying C++ type.

Floating point literal approximates a value of a real number. Syntac-
tically, it consists of a decimal, possibly negative, integer literal representing
the non-fractional part of the number. It is followed by a decimal point and
another decimal (non-negative) integer representing the fractional part of the
number. Precision is implicitly given and there is no way to change it. My
implementation uses double precision (as defined in C++). Edge cases (such
as rounding errors) are not addressed – the behaviour copies that of standard
C++ double data type.

String literal represents a sequence of characters. String literals are
objects of class String. Syntactically, they are delimited by single quotes (’).
To include a single quote in a string, it needs to be escaped by another single
quote.

In the provided implementation of SOM, String objects are not treated as
a collection. It is an encapsulated object and every String object is unmutable.
Every message, that somehow uses and modifies the value of its receiver creates
a new object. This behaviour corresponds with Smalltalk and other SOM
implementations.

Array literals specify a sequence of values encapsulated by a single object
(that is an instance of class Array). Syntactically, the values of an array are
surrouned by parentheses and preceeded by a hash sign. Note that because of
the dynamic typing, elements of an array do not have to be instances of the
same class.

Every Array literal results in an Array object instantiation. Arrays are
mutable, unlike Strings.

2.3 Primitives

Even though SOM is purely object oriented, in order to get any actual com-
putations done, there is a point where some virtual machine primitives must
be invoked. Following things are therefore implemented as primitives (among
others):

• memory allocation (new message),

• bitwise operations,

• integer arithmethics (+, -, = etc.),

• array accessing (at:, at:put:)

Primitives are implemented directly in the VM runtime, though not break-
ing the syntax or core principles of the language. Details on implementation
are in section 3.6.1.

6

2.4. Methods and messages

2.4 Methods and messages

As the SOM language is based on Smalltalk, the concept of messages (and the
link to methods) is crucial to understand. “The only way to invoke a method

is to send a message – which necessarily involves dynamic binding (by name)

of message to method at runtime (and never at compile time). The internals

of an object are not externally accessible, ever – the only way to access or

modify an object’s internal state is to send it a message” [3].
Execution of an invoked method ends with the execution of the last ex-

pression in it. Every method implicitly returns self (a reference to the object
on which the method is invoked). Explicit return of a value is done with a
special token ˆ. Execution of an expression preceeded by this token will exit
the method.

The [4] defines a helpful terminology for message passing:

• A message is composed of the message selector and the optional message
arguments.

• Every message must be sent to its receiver.

• Message and its receiver together will be referred to as message send.

There are three types of messages (as defined in other Smalltalk dialects,
Pharo as an example of one).

Unary messages are sent to an object without any additional information
(argument). In the following example, a unary message size is sent to a string
object.

’hello ’ size " Evaluates to 5"

Figure 2.3: Unary message example.

Binary messages are a special type of messages that require exactly one
argument. The selector of a binary message can only consist of a sequence of
one or more characters from the set: +, -, *, /, &, =, <, >, —, and @. A
simple example of usage of binary messsage are arithmetic operations.

3 + 4 " Evaluates to 7"

Figure 2.4: Binary message example.

Keyword messages require one or more arguments. From the syntactic
standpoint, they consist of multiple keywords, each ending in colon (:). When
sending a message, each keyword is followed by an argument. Note, that a
keyword message taking one argument is di�erent to a binary message.

7

2. Analysis and design

| numbers |
numbers := #(1 2 3 4 5). " Simple array"
" Sending a keyword message at:put: to an object of class Array "
numbers at: 1 put: 6 " numbers is now #(6 2 3 4 5)"

Figure 2.5: Array example.

When composing messages of various types, there are precedence rules (as
defined for Pharo in [4]):

• Unary messages are sent first, followed by binary messages. Keyword
messages are sent last.

• Messages in parentheses are sent before other messages.

• Messages of the same kind are evaluated from left to right.

These simple rules permit a very natural way of sending messages, as
demonstrated on the next example. First, a simple array is created. Then, a
unary message last is evaluated, returning the last element of the array. After
that, binary message + is evaluated (to 2 in this example). Finally, keyword
message at:put: is sent to an array, putting number 5 on the second position
in an array.

| numbers |
numbers := #(1 2 3 4 5).
numbers at: 1 + 1 put: numbers last.
" numbers at: (1 + 1) put: (numbers last)"

Figure 2.6: Demonstration of message precedence.

Next example demonstrates sending messages from left to right when all
of them are of the same type.

| numbers |
numbers := #(1 2 3 4 5)
numbers last asString print
"This is equivalent to the following message sends"
((numbers last) asString) print

Figure 2.7: Demonstration of message sends order for one message type.

There is a downfall to the simplicity of these rules. Arithmethic opera-
tions are all just a simple binary message sends, therefore to ensure proper
precedence, it is necessary to use parentheses.

8

2.5. Blocks

" Evaluated as (3 + 2) * 5
3 + 2 * 5
"Parentheses required to achieve mathemathical
operators precedence"
3 + (2 * 5)

Figure 2.8: Demonstration of mathemathical operators precedence rules.

2.5 Blocks

Blocks provide a mechanism to defer the execution of expressions [4]. Blocks
can be treated as an object – they can be assigned to variables and passed as
arguments.

Blocks can also accept parameters – they are denoted with a leading colon.
Parameters are separated from the body of the block by a vertical bar. Local
variables can also be declared inside a block. Those are accessible only inside
the block and are initialized each time a block is evaluated.

Block is executed by sending it a message value. However, this is a unary
message and there is no way to pass parameters to a block. To solve this
problem, a keyword message value: is implemented. So far, this gives a user
ability to pass only one parameter to a block. To mitigate this issue, there are
two posibilities. The first one is to implement a keyword message for every
number of parameters (for example value:value:, value:value:value:).
While this approach is simple, readable and relatively easy to implement for
low numbers of parameters, it is impossible for this solution to be exhaustive
and the code using very long keyword messages would be bloated.

Another approach would be to implement a keyword message value: with
an argument of array type. This would permit to use arbitrary number of
arguments, though it would require to create arrays of objects before passing
them to a block, which could impact readability and clarity of the code. In
order to combine pros and cons of these two approaches, th solution follows the
implementation in Pharo according to [4, p. 65]. There are keyword methods
implemented for up to three parameters (value:, value:value:). For more
than four parameters, a special keyword message valueWithArguments: is
implemented, where an array of parameters is expected.

2.5.1 Non–local return and block scoping

Block closures are an essential feature to SOM. They allow the implementation
of conditionals and loops as messages rather then them being baked in the
language syntax. Blocks however bring some dynamic runtime semantics that
is not straightforward. When used to the extreme, blocks can introduce some
confusion and generally ugly code. However when used correctly, they o�er

9

2. Analysis and design

Figure 2.9: Example of blocks usage in SOM.

| b0 b1 b2 b3 |
b0 := [1 + 2].
b1 := [:x | x * x].
b2 := [:x :y | x * y].
b3 := [:x :y :z | x + y + z].
" Evaluating the blocks "
b0 value. " Returns 3"
b1 value: 3. " Returns 9"
b2 value: 2 value: 8. " Returns 16"
" Message valueWithArguments : can be used with
any number of parameters "
b3 valueWithArguments: #(1 2 3). " Returns 6"
"The next expression is functionally
identical to the previous one"
b3 value: 1 value: 2 value: 3.

great way to improve readability and reusability of the code.
Every method has its defined context – a set of variables and objects acces-

sible from the method at given point in an execution. Variables accessible by
blocks are bound during runtime, in the context of where the block is defined,
rather than executed. This is reflected in creation and handling of frames
(which can be considered a representation of the context of given method).
This also ties in to how returns from blocks function.

The context in which the block is created (and evaluated) is commonly
called as home context of the block. The block home context is basically a
representation of a particular point in the program execution. When a return
statement is executed, the execution steps out of the current context and
returns to the caller. This can be an implicit return (every method or block
implicitly returns the receiver of the message). User can decide to return a
di�erent value, denoted by explicit return statement, (ˆ token).

The behaviour of explicit return in blocks is where the term non–local
return comes in. Non local return returns to the sender of the block home

context, i.e., to the method execution point that called the one that created the

block [5]. The important thing is that the home context is tied to the creation
of the block, not its evaluation. The pitfall here is there can be a situation
where home context of a block being evaluated could end before the block
attempts a return to it. This will result in runtime error.

Consider the example on figure 2.10.
In the run method, a local variable x is created, than assigned an Integer

of value 0. Then a loop is executed. To better understand the example, figure
2.11 shows the implementation of method whileTrue: in the Block class.

As apparent from the two examples, there are multiple blocks used and

10

2.5. Blocks

NLReturn = (
run = (

| x |
x := 0.
[x < 5] whileTrue: [

x printLn.
x := x + 1.

]
)

)

Figure 2.10: Example to demonstrate non local return.

Block = (
whileTrue: aBlock = (

self value ifFalse: [ø nil].
block value.
self restart.

)
)

Figure 2.11: Implementation of whileTrue: method in Block class.

non local returns are crucial to achieve the functionality of the loop (as im-
plemented). The method restart is a primitive block method. It could be
considered a jump – it jumps to the begining of the current context. The
details of this method are not relevant to non local returns, therefore it will
be discussed elsewhere.

Taking a look at the example, the loop consists of the following:

• Local variable x is defined and assigned a value 0.

• A block [x < 5]] is created. The home context of this block is the
context of run method. The block is therefore able to access the local
variable of the method (variable x in this example).

• Before the actual message send, the argument is created. This results
in another block being created with the same home context. Again, the
block has access to the x variable each time it is evaluated.

• The message whileTrue: is sent to the first block, with the second one
as an argument.

For reference, the implementation of relevant boolean methods used in the
example are provided on figure 2.12.

The execution then continues in the corresponding method:

11

2. Analysis and design

True = (
ifFalse: aBlock = (ø nil)

)

False = (
ifFalse: aBlock = (øaBlock value)

)

Figure 2.12: Implementation of relevant boolean methods.

• A block [x < 5] (self) is evaluated, returning the value true.

• The instance of true is sent a message ifFalse:. This returns the nil
value.

• Execution continues by evaluating the argument block. This prints out
the current value of x and increments its value by one. Note that even
though the block is evaluated from the context of method whileTrue:, it
is actually evaluated in its home context and still has access to the locals
of the home context. The closure captures the variable upon creation,
not upon evaluation.

• The restart message is then sent to the first block, starting the execu-
tion of the method again.

This gets executed until the variable x holds a value 5. By then, the self
value expression returns false, therefore ifFalse: is sent to a di�erent
object. The argument is the block type, its home context is the whileTrue:
method context.

State of the execution environment upon this ifFalse: message send is
depicted on figure 2.13.

The argument of the method ifFalse: contains a return statement. This
is the non local return. When the block is evaluated, the execution jumps

out of the block’s home context. This means the execution ends up in the run
method, returning the value nil.

The contexts can be represented by stack frames. When performing local
return from a current context, the execution returns to the point that created
it – that means one frame is removed. In non local return, the execution can
jump any numbers of contexts – the home context does not even have to exist
anymore.

The concept of non local returns can get confusing when dealing with
blocks assigned to variable, mainly instance variables. The context in which
the block is created and evaluated can be far apart. Consider the example at
figure 2.14, where two blocks are assigned as instance variables – one with a
non local return, one without it.

12

2.5. Blocks

Figure 2.13: Created blocks and their home contexts.

NLReturn2 = (
| lBlock nlBlock |

run = (
lBlock := [’Local return block ’ printLn].
nlBlock := [ø’Non local return block ’ printLn].
1 to: 10 do: [:index |

index = 3
ifTrue: [nlBlock value]
ifFalse: [lBlock value]

].
’Run method is exiting ’ printLn

)
)

Figure 2.14: Second example code for non local returns.

The code assigns the instance variables block objects. Then blocks are
evaluated in the loop, depending on the value of the index of the iteration. If
the index is equal to three, block with non local return is evaluated. Then the
program prints out exiting message. The output of the program is on figure
2.15.

As is evident from the program output, the execution stops after the third
step of the iteration. The expression following the iteration block is also not
executed. When taking a look at the block contexts, it is clear why it is so.

There are multiple methods being called before the block is executed. With

13

2. Analysis and design

Local return block
Local return block
Non local return block

Figure 2.15: Output of the example code from figure 2.14

Figure 2.16: State of execution before return for example on figure 2.14.

block in variable lBlock, the block’s home context plays little role – after
the block is executed, simple return is performed (from the method value).
With nlBlock, non local return is performed after evaluation – meaning the
execution jumps out of the home context of the block – which means the end
of execution of the program.

As stated earlier, the non local returns o�er a great way to write more
compact and readable code. There are some pitfalls to be aware of. The
nature of the non local returns means that it is not always obvious where the
execution ends up.

The last example serves to demonstrate how a created block can attempt
to exit a context that no longer exists.

Execution of this program will result in a runtime error. Both of the
blocks are created in the context belonging to the method createBlocks.
While it may seem, that at least block1 could be executed as the evaluation
of that block returns to the main method. However, none of the blocks can
be evaluated in this case and the reason becomes more clear with a slight
modification to the createBlocks method, as seen on figure 2.18.

This modification to the method is completely valid – both block are cre-
ated within the method’s context and thus can access its local variables. How-
ever, after the return from this method, its context is discarded. By the time
blocks are evaluated, variable mssg does not exist.

14

2.6. Expressions

NLReturn3 = (
| block1 block2 |
run = (

self createBlocks.
block1 value.
block2 value

)

createBlocks = (
block1 := [’Local return ’ printLn].
block2 := [ø’Non local return ’ printLn]

)
)

Figure 2.17: Third example demonstrating non local returns.

createBlocks = (
| mssg |
mssg := ’Block evaluation ’.
block1 := [mssg printLn].
block2 := [ømssg printLn]

)

Figure 2.18: Modification of the method from example 2.17.

2.6 Expressions

According to [3], an expression is a segment of code in a body of executable code

that can be evaluated to yield a value as a result of its execution. Expressions
can contain another expressions.

expression: assignation | evaluation;
assignation: assignments evaluation;
assignments: assignment+;
assignment: variable ASSIGN;
evaluation: primary messages?;
primary: variable | nestedTerm | nestedBlock | literal;
messages:

unaryMessage+ binaryMessage* keywordMessage?
| binaryMessage+ keywordMessage?
| keywordMessage;

Figure 2.19: ANTLR grammar snippet for expressions.

15

2. Analysis and design

Syntactically, an expression can consist of [3]:

• literal,

• variable/constant reference,

• message send,

• nested expression.

2.7 Control structures

In Smalltalk, there are no built-in control structures, unlike for example C++
or Java. SOM follows this principle from Smalltalk, therefore there are no
grammatical rules for branching or loops.

The way controlling the flow of program works in SOM is, again, by send-
ing messages. One big advantage of this approach is that the programmer
can define their own control structures, simply by implementing classes and
methods as needed.

To make working with SOM easier and faster, my implementation pro-
vides multiple message implementations, corresponding to the most used con-
trol structures in other programming languages. Syntax of these messages
corresponds to other Smalltalk dialects.

2.7.1 Conditional branching

There are 3 messages that function as an if control structure. Selectors for
these messages are ifTrue:, ifFalse:, ifTrue:ifFalse:. As apparent, they
are keyword messages, the receiver is an instance of a Boolean class. All of
these messages take blocks as arguments, then evaluating or not evaluating
them based on the Boolean value. Figure 2.20 shows a simple example of
usage.

" Subtracts b from a only if a is greater then b"
a > b ifTrue: [a - b].
a <= b ifFalse: [a - b].
" Subtracts the smaller number from the bigger one"
a < b

ifTrue: [b - a]
ifFalse: [a - b]

Figure 2.20: Example of messages functioning as if-control structures.

16

2.7. Control structures

2.7.2 For loops

The simplest example of a for loop is iterating over a range of integers. There
are 2 messages, to:do: and to:by:do:. The receiver of the message is an
integer. The receiver of the message is the lower bound of the iteration, the
argument for to: keyword is the upper bound, by: specifies a step of iteration,
do: takes a block that is evaluated (note that the block has to have exactly
one parameter, so it is possible to capture the value of index in every step).

" Prints all numbers from 1 to 10"
1 to: 10 do: [:index | index asString printLn].
" Prints all the even numbers between 1 and 100"
0 to: 100 by: 2 do: [:index | index asString printLn]

Figure 2.21: Example of simple for loops.

This way of looping is also usable when iterating over arrays (or any in-
dexable collection). As seen on figure 2.22, this method is not very concise,
therefore a message do: is implemented. Array class implements a method
corresponding to this message, iterating over every element of the array. It
takes a block as an argument. The block has to have one parameter – that is
the element of the array of the given step of the iteration.

| array |
array := #(1 2 3).
" Printing the elements by iterating over index"
1 to: array size do: [:index |

(array at: index) asString printLn].
" Printing the elements by iterating over array"
array do: [:element | element asString printLn]

Figure 2.22: Examples of di�erent ways of iterating over an array.

2.7.3 While loops

While loops are implemented as a keyword message sent to a block that re-
turns a boolean value. There are actually two messages, whileTrue: and
whileFalse:. The first one repeats the evaluation of an argument (a block)
as long as the receiver returns true. The second one, as the name suggests,
does the same thing if the receiver returns false value. Example in figure
2.23 shows printing numbers from 0 to 10 using whileTrue: message.

17

2. Analysis and design

| index |
index := 0.
[index < 10] whileTrue: [

index printLn.
index := index + 1

]

Figure 2.23: Example of while loops.

2.7.4 Class hierarchy

SOM supports single inheritance and it is a vital aspect of the language. As
a purely object-oriented programming language, it takes full advantage of
polymorphism.

Single inheritance permits only one superclass per class. The superclass
can be explicitly defined. If it is not defined, every class is a subclass of
special Object class. This therefore means that every object is an instance of
the Object class or its subclass.

Tied with inheritance is a principle of late binding. The method to invoke
is decided during runtime by name (the message selector). The method lookup
is simple – it follows the chain of inheritance, from the subclass to superclass
(always ending at Object class).

2.8 Bytecode

The solution uses a bytecode as an intermediary form to represent a program.
The bytecode is saved in a binary file that can be interpreted. The structure
of bytecode files and semantics and syntax of operation codes is described in
the following sections.

2.8.1 Program structure

SOM program has a very simple structure consisting of:

1. The constant pool: This is a list of all the entities of the program.
The choice of the word entity over object is intentional to avoid confusion
with what objects are in OOP languages. Each entity can be accessed
by its index.

2. Entry point: An index to a Method that is executed on program start.
There can only be one entry point to a program. It is a unary method
with selector run. It can be a member of any class of the program.

18

2.8. Bytecode

2.8.2 Program entities

All entities in the constant pool are one of these types:

1. Nil entity represents an undefined value.

2. Int entity represents a 32 bit signed integer number. It is used for LIT
instrucions.

3. Double entity represents a double-precision floating point number.

4. String entity represents a value of string of characters of arbitrary
length. It is used for constants in the program as well as to store all the
identifiers to classes, method selectors and variables.

5. Field entity represents a variable in an object. It consists of one index
to a string value that represents the name of the slot.

6. Method entity represents a method of an object. It holds and in-
dex to a string representing the selector, number of arguments (arity of
the corresponding message), number of local variables and an array of
instructions.

7. Primitive entity is a method that needs an implementation in the
VM. These are used to handle constructs that cannot be expressed in
the SOM language.

8. Block entity is a block of code. It holds the number of arguments and
an array of instructions (similar to a method).

9. Class entity represents the structure of objects. It consists of an array
of indices to all the fields of the object. Each one of these fields point
either to a Field entity or a Method entity.

2.8.3 Instructions

• LIT i retrieves a constant value from the constant pool at the index i
and pushes it on the stack. The item can be either integer, double or
string value.

• GET SLOT i pops a value from the operand stack, assuming it is an
object. Then it retrieves a value with index i from the constatns pool,
assuming it is a string. It then retrieves the value stored in the slot with
the name specified by the string and pushes it onto the stack.

• SET SLOT i pops a value from the stack. This value is then assigned to
an instance variable with identifier at index i in the constants pool.

19

2. Analysis and design

• SEND i n sends a message to an object, which in most cases results
in calling a method. A new frame is created on the execution stack,
arguments are pushed and the execution jumps to the first instruction
of the method.

• GET LOCAL i retrieves a local variable with an index i and pushes it to
the top of the stack.

• SET LOCAL i pops a value x from the top of the stack and then assignes
the x into a local variable with the index i.

• GET SELF retrieves the callee of executed method. The object is pushed
to the top of the stack.

• GET ARG i retrieves the i–th argument of the current message from the
stack and pushes it on top.

• BLOCK i creates a code block object. The argument i points to a block
value in the constant pool. The block object is instantiated on the heap
and pushed to the top of the stack.

• RET is used to return from a method call. The value from the top of the
stack is returned. The address to return to is retrieved from the current
frame, then the frame is popped and execution jumps to an instruction
after the CALL that invoked the method.

• RETNL i - non local return. The value at the top of the current frame
is used as the return value. Argument i specifies the type of non local
return.

2.9 Garbage collection

The process of garbage collection performed by garbage collector (GC) is the
process of allocating and freeing memory during application runtime. The
main advantage of this mechanics is to prevent memory leaks – parts of a pro-
gram that allocate memory without freeing it when it is not needed [6]. Most
modern high-level programming languages implement some form of garbage
collection.

There are multiple possible algorithms that solve this problem. I have
decided to implement a mark and sweep algorithm, due to its simplicity. The
expectation is that this algorithm will not be particularly fast, though it leaves
a lot of room for possible improvements and it can be used as a demonstration
of performance e�ects of a garbage collector.

20

2.9. Garbage collection

2.9.1 Mark and sweep

According to [7], the algorithm consists of two main phases:

• Mark phase – discovery of all the reachable objects.

• Sweep phase – clearing the heap of all unreachable objects.

Every object allocated on the heap holds a mark bit. This represents the
reachability of the object – 0 (false) for unreachable, 1 (true) for reachable.
Upon object creation, the mark bit is set to zero. In the sweep phase a simple
graph traversal algorithm can be used (such as DFS – Depth First Search) to
mark all the reachable objects. Every object can be considered a node and
variables serve as neighbour lists. Root nodes would be local variables and
fields that are directly accessible.

In the sweep phase, the whole heap can be traversed linearly and objects
with mark bit set to zero are deleted. As the [7] states, main advantages of
this algorithm are:

• algorithm handles cyclic references and therefore cannot end up in an
infinite loop,

• no additional overheard during the execution of the algorithm (such as
extra data structures etc.).

On the other hand, the simplicity of the algorithm means there are some
disadvantages:

• normal program execution is suspended during the garbage collection
process,

• the algorithm does not address memory fragmentation.

The problem of memory fragmentation means that after several runs of
the algorithm, the reachable objects will be separated by chunks of free mem-
ory. This can be solved by shu�ing the objects, though at a cost of further
performance degradation.

To demonstrate the execution of the algorithm, consider the following
object hierarchy allocated during a program execution. Each node represents
an object allocated on the heap, with marked bit set to false. Arrows represent
variable references from on object to another. In reality, there will be multiple
root objects – therefore the algorithm can run for every root object.

The heap is then traversed from the root object (figure 2.25). Each colour
represents one step of the traversal. This example represents breadth first
search.

After the run of the mark phase, all the objects reachable from the root
objects (or multiple root objects after a run for each one) are marked. One
linear traversal over objects can then remove all of the unmarked ones (figure
2.26).

21

2. Analysis and design

Figure 2.24: Illustration of the object hierarchy before GC algorithm run.

Figure 2.25: Traversal of the heap objects.

Figure 2.26: State of the heap after the GC run.

22

Chapter 3
Realisation

3.1 Program overview

The implemented program provides a way to compile SOM source code and
execute it.
<som_executable> [OPTION] [SOURCE]

Figure 3.1: Interface of the program.

The interface of the application is simple and consists of two user provided
arguments.

The argument OPTION can have two values and alters the mode the app
will function in:

• -c is compile mode. The argument SOURCE is a folder containing the
source code of the program. This folder is searched for SOM source files
– those are recognized by their file extension, which should be .som. The
folder is searched non recursively. Every SOM source file is compiled and
one binary file containing bytecode is created. The name of the file is
the same as the provided folder name.

• -r loads and runs a compiled bytecode. The SOURCE argument is a file
name of the compiled bytecode.

The SOM source files lookup uses standard C++ std::filesystem im-
plementation. This is the reason the compilation requires standard C++17
or newer.

3.1.1 Build

The project uses CMake to automate the building process. ANTLR executable
is needed, either available at the system’s PATH variable or with its path spec-

23

3. Realisation

ified in the root CMakeLists.txt file. The build process then handles the
following:

• downloads the ANTLR runtime from GitHub,

• uses the ANTLR executable to generate the parser and visitors from
grammar files,

• compiles and links the project into an executable.

3.2 Source code parsing

The first step of executing the source code is lexical and syntactical analysis.
There are multiple solutions to streamline the implementation of parsers. For
this project, ANTLR is used (ANother Tool for Language Recognition). It is
a tool that is able to generate a parser from a formal grammar defined for a
language.

Grammar for SOM is defined in two files – SOMLexer.g4 and SOMParser.g4.
These contain rules definitions for lexer and parser respectively. Every rule in
the grammar has its name and definition.

Lexer rule names always start with an uppercase letter. These are the
rules that form a foundation for the subsequent parser rules. Every lexer rule
represents a token of a language, such as keywords, special characters etc.

Figure 3.2 shows definitions of some of those lexer rules. The simplest rules
define one or multiple character tokens (rules like NewTerm or Primitive).
Comments are also defined here – the rule tells the lexer not to tokenize any
characters between quotation marks. Format of identifiers is also defined here
(for classes, variables, messages etc.). String and numerical values are also
defined here.

Parser rules are where the structure of the source code comes in. Parser
rules are defined in file SOMParser.g4. They help build the abstract syntax
tree (or at least reflect the strucutre of the AST to some degree) [8]. For
reference, excerpts of parser rules are demonstrated on figures 3.3 and 3.4.

3.3 Abstract Syntax Tree

After the parsing is complete, Abstract Syntax Tree (AST) is constructed.
AST is, by definition, stripped of many syntactic detail. It mainly represents
the structural and content-related aspects of the code.

The conceptual design of the AST is depicted on figure 3.5.

3.3.1 AST Nodes

Class node represents a class in the program, while the program itself is
basically an array of di�erent classes. A class holds its name, its member

24

3.3. Abstract Syntax Tree

NewTerm: ’(’;
EndTerm: ’)’;
Primitive: ’primitive’;

Comment: ’"’ ˜["]* ’"’ -> skip;
Identifier: [\p{Alpha}] [\p{Alpha}0-9_]*;
STString:

’\’’
(’\\t’

| ’\\b’
| ’\\n’
| ’\\r’
| ’\\f’
| ’\\0’
| ’\\\’’
| ’\\\\’
| ˜(’\’’| ’\\’)

)*
’\’’;

Integer: [0-9]+;
Double: [0-9]+ ’.’ [0-9]+;

Figure 3.2: Example of some interesting lexer rules from SOM ANTLR gram-
mar.

classdef:
Identifier Equal superclass
instanceFields method*
(Separator classFields classMethod*)?
EndTerm;

superclass: Identifier? NewTerm;
instanceFields: (Or variable* Or)?;
classFields: (Or variable* Or)?;
classMethod: method;

Figure 3.3: The syntax of class definition described by ANTR grammar.

fields (member variables in C++ terminology), instance-side methods (mem-
ber functions), class-side fields (static member variables) and class-side meth-
ods (static member functions).

Method node represents a method – instance or class side. It consists of
a pattern, local variable definitions and a block to be executed.

25

3. Realisation

nestedBlock: NewBlock blockPattern? blockContents? EndBlock;
blockPattern: blockArguments Or;
blockArguments: (Colon argument)+;

Figure 3.4: The syntax of nested blocks.

Pattern represents a message corresponding to the method. There are 3
types of messages in SOM, therefore there are 3 distinct types of patterns:

• The simplest one is unary pattern – consisting of only one identifier
as there are no arguments.

• Binary pattern is treated as a separate pattern. It consists of identifier
and exactly one argument. There are special requirments for binary
pattern identifier – there is a special set of characters permitted that
can form a binary pattern.

• Keyword pattern then consists of one or more keywords and same
number of arguments, each correpsonding to one keyword. Concatena-
tion of keywords form a selector of the method. Keywords holds the
string value of the keyword, always ending in colon (:).

Variable node represents instance/class side variables, arguments to mes-
sages or blocks. It holds the identifier of the variable as a string value.

Block represents a block of executable code with its own scope. The
simplest block consists of local variable definitions and an array of expressions
to be evaluated. While this is enough to represent a method block, other
uses may require more information, therefore there is another similar node
discussed later.

3.3.1.1 Expressions

Expression is an abstract term in the context of the AST - there are two
types. The common thing is they can be evaluated – therefore forming the
actual executable code of the program.

Evaluation is the first form of expression - it represents a message sends
to an object, thus returning a single value when evaluated. This node consists
of messages (optional) and a primary.

Primary is another abstract concept. In its core, a primary represents an
object, though there are multiple ways to reference an object in SOM. There
are four AST nodes that can be classified as a primary:

• Literal – a constant basic value (of integer, floating point, string or
array type). Each of these have their dedicated literal node holding the
value as seen on figure 3.5.

26

3.3. Abstract Syntax Tree

Figure 3.5: Conceptual class diagram for SOM abstract syntax tree. 27

3. Realisation

• Variable is self explanatory – a reference to an object accessed via the
identifier.

• Nested term is an expression that needs to be evaluated to retrieve
the reference to an object. Syntactically, the nested terms are enclosed
in parentheses.

• Nested block is a block of expressions returning the reference to an
object. It is enclosed in square brackets in the syntax. Nested blocks
consist of the same elements as block discussed with methods with ad-
dition of a block pattern – nested block can have their arguments.

The second part of the evaluation node is the message sends to the pri-
mary. There are three types corresponding to three types of messages in
SOM. UnaryMessage node is self explanatory – there are no arguments, only
the message selector. BinaryMessage holds its selector too with addition of
the argument. The argument of the binary message send can be a primary,
along with unary message sends (because unary message sends take prece-
dence). KeywordMessage is made up of the keywords (forming the selector)
and something called formulas. Formulas are binary (and also unary) message
sends, that take precedence over keyword messages.

Assignation is the second form of an expression. The name suggests this
node represents assigning a value into a variable. Therefore the node consists
of the Variable node to assign to and an Evaluation node returning the
value to assign.

Expression with an explicit return statement is encapsulated in an Result
node. The information about explicit return being used is needed to handle
non local returns.

Consider the following expressions:

" Expression 1"
receiver1 foo: x asString bar: (x + y toInteger)

Figure 3.6: Example for AST construction.

Expression 1 is a keyword message send to a variable receiver1, with
arguments as sub-expressions. The AST produced for this expression is on
figure 3.7.

3.3.2 AST construction

The AST is constructed by visiting over the ANTLR–generated parse tree.
The visitor is implemented in class CParseTreeConverter. This is a subclass
of SOMParserBaseVisitor, which is a base visitor implementation provided
by ANTLR that performs depth–first traversal over the parse tree. Some

28

3.3. Abstract Syntax Tree

Figure 3.7: Expression from example 3.6 as AST.

member functions in CParseTreeConverter are not overriden and make use
of this default behaviour (which is just iterating over child nodes and visiting
them).

ANTLR also provides an abstract class that defines the interface of a
visitor over a parse tree. Every member function of the visitor returns a
special value – antlr::Any. It is a special class defined to hold any data type.
The implementation therefore has to convert these values (to pointers to AST
nodes in this case).

29

3. Realisation

3.4 Bytecode

After constructing the AST it is compield into bytecode. The bytecode def-
initions are located in source files Bytecode.h/Bytecode.cpp. The actual
compilation is implemented as a depth–first traversal of the AST, therefore a
visitor pattern is used. There is an abstract class ASTVisitor that defines the
interface of any AST visitor. This can be used to further implement visuali-
sations of the AST or to add support for di�erent bytecode instructions sets,
for example Java bytecode to add support for running inside a Java runtime.

3.4.1 Values

Every constant value in the code is saved as a Value struct. Each value
contains the one byte tag and the actual value to hold. There are method
implementations to print every value into human readable format for better
visualisation of the compiled bytecode. Additionally, every instruction struct
is able to serialize itself – write the data needed in binary format to a file.

3.4.2 Instructions

Similar to values, every instruction is represented by a struct holding the rele-
vant information (such as operation codes and arguments). Every instruction
is capable of printing itself in human readable format and serialize itself to
binary format, the same as all the values.

3.4.3 Compilation

The process of compilation consists of a walk over the AST and constructing
the program represented by the Program class. This is the class that holds
the constants pool and all of the instructions. It also holds the information on
the entry point of the program (address of the first instruction to execute).

The AST visiting and compilation is handled by the class CBytecodeCompiler,
a subclass of abstract AST visitor. The process traverses every class definition
and visits all its children nodes. The compiler keeps track of all the scopes to
help resolve every encountered identifier.

The high level look at a compilation of a class is:

• The class identifier is registered as a string constant in the constants
pool.

• Instance side and class side variable identifiers are registered as string
constant in the constants pool.

• Every method defined in the class is visited (and compiled). For every
method, method value is registered in the constant pool.

30

3.4. Bytecode

• Class value is then added into the program. All of the previously com-
piled variables and methods are registered as slots.

3.4.3.1 Method compilation

When a method node is encountered, a new scope is created on the scope stack.
The scope stack contains CMethodCompilationCtx objects. Every such object
holds:

• a vector of local variable identifiers,

• a vector of formal argument identifiers.

Figure 3.8: Conceptual class diagram for compilation environment.

The position of the identifier in the vector then determines the index that
is assigned to said argument / local variable. That index is then used for
GET ARG / GET LOCAL instructions. When the method compilation finishes,
its context is popped from the stack.

After the arguments and locals are registered in the method scope, the
method selector is then added to the constants pool as string value. For
unary and binary methods, the selector is saved as defined. For keyword
messages, the selector is defined as a concatenation of all of the keywords
(inluding the colons). This means that for a method defined as foo: fooArg
bar: barArg, the selector in the constants pool ends up being foo:bar:.

31

3. Realisation

After that, the method block is visited. An empty vector of instructions is
created, then every expression is compiled and added to the vector. Whenever
and identifier is encountered during this, it is resolved as:

• if the identifier is of value self, the result is GET SELF instruction,

• if the identifier is registered as the current method’s local variable with
index i, the result is GET LOCAL i instruction,

• if the identifier is registered as the current method’s argument with index
i, the result is GET ARG i instruction,

• otherwise, the identifier’s value is either looked up in the constants pool
(if the value exists) or registered (if it does not exist); the index i of the
value is then used in the resulting GET SLOT i instruction.

Handling of literal values is straightforward – the value is registered in the
constants pool and LIT instruction is returned. String delimiters are stripped
from the quotations in this step.

3.5 Interpretation

The process of interpreting the loaded bytecode is handled by class CInterpret.
The class diagram of the interpretation environment is in the figure 3.9. The
diagram serves as a reference point, all the parts are described in further detail
in the following sections.

3.5.1 Garbage collection

The process of garbage collection is a part of the interpretation loop. The
algorithm used is mark and sweep (described in subsection 2.9.1). There is no
mechanism implemented to explicitly trigger garbage collection. As running
the process after each executed instruction would have a potential of slowing
the execution down, the garbage collection is triggered after every context
switch.

3.5.2 Program counter

The class CProgramCounter is an implementation for a program counter for
the VM. During initialization of this object, the entry point of the program is
loaded. The program counter also saves the ”end” address. The addresses are
implemented as iterators to a vector of instructions – that is possible simply
because all of the executable code will be contained within a method, and all
the method instructions are loaded into a vector of instructions. The entry
point of the program is therefore the first instruction of the run method, while

32

3.5. Interpretation

Figure 3.9: Conceptual class diagram for interpretation environment.

”end” address is the end iterator of the same vector. This means that the end
address is not an executable instruction (nor it is a dereferenceable iterator).

3.5.3 Execution stack

The execution stack is responsible for management of method calls (and nested
block evaluations). It is implemented as a LIFO (last in, first out) structure.
For every method call or block evaluation, a new frame is created and pushed
on the stack. A frame contains:

• Arguments accessible by their index, assigned at compilation. For the
sake of stack, the callee is also considered an argument and is always the
last element of the arguments array.

• Array of local variables, accessible by their index assigned during com-
pilation.

• Return address. The program counter is set to this address when a RET
instruction is executed.

33

3. Realisation

• The address of the beginning of the current context. This is used only
to achieve iteration without the need of recursion.

• Local data for the method/block execution. This part is used for all the
temporary object creation (e.g. literal values) and argument passing.

Sending a message or evaluating a block therefore can be split into multiple
steps:

• The receiver of the message is pushed to the stack.

• The arguments are then pushed to the stack, in the order from left to
right.

• When the SEND instruction is executed, new stack frame is created. The
return address is initialized to the address of the instruction following the
SEND instruction. Array of arguments is initialized with the values from
the top of the stack, number of arguments is provided as an argument
of the instruction.

• The new frame is pushed to the stack. The receiver is then accessed,
added to the end of the argument array and given the responsibility to
invoke the method corresponding to the sent message.

When returning, the top of the stack contains the return value of the
method or block. The frame is popped from the stack, program counter is set
to the return address and the top value is pushed to the new top of the stack.

3.5.4 Objects

Every object created during runtime (implicitly or explicitely) is represented
by the VMObject class. Every value is represented by an instance of this class
or its subclass. Every object holds a pointer to its class and a map of the
instance values – the identifier as a key, object pointers as a value. Upon
creation, instance field values are initialize to the nil value.

Every class is represented by a VMClass instance, which is a subclass of
VMObject. This allows every class to be manipulated as an object. There is
only one class instance per class definition during runtime and instantiating
new class object is not possible. Before the execution of the code, the byte-
code is traversed and for every CLASS value, a singleton object is created and
initialized. These objects are accessible globally by the identifier – the class
name.

Every class holds all the information needed to create and manipulate its
instance. This includes the method dispatch.

34

3.5. Interpretation

3.5.4.1 Object creation

One of the main responsibilities of the class object is to handle dynamic cre-
ation of its instances. This is done via a new message send. Upon the new
message send:

• new VMObject is created on the heap and its class is set,

• instance fields of the new object are initialized,

• pointer to the new object is returned.

3.5.5 Messages

In SOM, almost everything is handled via message sends. Message sends
invoke a method, implemented either directly in SOM, or as a primitive. The
process of invoking a method on an object depends on what kind of message
is sent. Additionally, a small number of special cases needs to be handled for
code blocks, to allow for iteration.

When a SEND instruction is encountered, the receiver of the message is
retrieved from the stack. As the receiver is pushed to the stack first, before
the argument, it needs to be retrieved using the message arity. To achieve the
late binding, the selector (a string value) is then retrieved from the constants
pool.

Reference to the class of the object than handles the method dispatch.
Every method invokation results in a new frame being created on the

execution stack. Because the execution stack is implemented as a stack of
separate objects representing the frames (and not a continuous array), every
new frame needs to be initialized. This handles the argument passing, as well
as scoping of local variables when sending messages to code blocks.

When the new frame is created, multiple actions take place:

• Return address on the frame is set to the instruction following the SEND
instruction. As every block of code must end with return (local or non
local), the existence of the address is guaranteed.

• The array of arguments is initialized. Arguments had been pushed to
the stack in the order of corresponding keywords (therefore left to right).
As a result, the arguments are reversed in the actual array – member
functions access them from the back. The last argument is set to the
reciever – that is the object accessed by self keyword (comparable to
this pointer in C++).

• Array of local variable is initialized. This step is skipped for every object
outside of code blocks – instances of Block class. This is due to the
scoping rules – code blocks can access the local variables of the method,
in which they are evaluated.

35

3. Realisation

After the new stack frame is created, the execution of the method can
take place. For primitive values, the corresponding member function is called
directly in the VM. For native methods, program counter is set to the address
of the method and interpreting loop continues.

Method execution should always end with the return value at the top of
the stack – for primitives and native methods. Every method should also end
with the RET instruction. When this instruction is executed, the top value of
the current stack is taken. The top frame of the stack is removed, program
counter is set to its return address and the top value is pushed to the top of
the underlying frame. Interpreting loop can then continue.

3.6 Core library

SOM programming language is very light on features. In order for it to be
usable, there needs to be an implementation of some fundamental principles
provided. For example, the language itself does not provide a way to ma-
nipulate numbers, character strings, standard input and output or control
structures. All of these can be implemented in the VM itself while preserving
the consistency of rules of the language.

In order to achieve that, a keyword primitive is defined. This keyword is
used for methods that require an implementation in the VM runtime. From
the outside, caling a primitive method is no di�erent than calling a method
implemented directly in SOM.

While the user is able to implement their own primitives, a lot of them
are already provided in the core library. This library is a set of classes loaded
every time a SOM code is interpreted. This library provides implementations
for:

• strings,

• numbers – integers and doubles,

• boolean values with messages that provided control flow features,

• code blocks,

• arrays.

3.6.1 Primitives

Every class that marks a method primitive has to provide its implementation
in the VM. This is done by creating a new subclass of VMClass. This subclass
then has to implement the primitive methods (in the form of void member
functions that take CInterpret* as an argument). Resolving of method se-
lector (which is a simple string) and the function to invoke is then done via
member function dispatchPrimitive.

36

3.6. Core library

To demonstrate the functioning of the primitive method, consider the fol-
lowing implementation of the concatenate: method in String class.

void VMString::concatenate(CInterpret* interpret) {
auto argument =

interpret->executionStack().getArgument(0)->getValue().asString();
auto receiver =

interpret->executionStack().getSelf()->getValue().asString();
interpret->executionStack().push(

std::make_shared<VMObject>(
interpret->globalContext().getClass("String"),
VMValue(receiver.append(argument)))

);
}

The method takes one string argument and returns the concatenation of
self and argument. The member function itself does not return anything, it
only manipulates the interpreter environment. The objects are retrieved from
the current frame of the execution stack and the result is returned as the top
value on the current frame.

3.6.2 Strings

Every literal string value is represented by an instance of String class during
runtime. The corresponding class implementing the primitives is VMClass. In
SOM, every string object is immutable, therefore every string manipulation
results in creating a new string object.

This approach can however lead to ine�ciencies when constructing strings.
To combat this, a class handling dynamic string creation could be imple-
mented, similar to streams.

When looking at String implementation, there is a big di�erence to how
they are implemented in SOM and Smalltalk. When a string object is created
in Smalltalk, it is handled as an object with indexed fields, each containing
a character. Provided implementaion of SOM does not conform to this, as
strings are simply handled in the VM runtime. Possible extension of the
language could be developed, allowing for creation of objects with indexed
fields.

This could be then applied to arrays, thus creating a unified ways to handle
collections.

3.6.3 Booleans

The core library also provides an implementation of boolean values. The two
values are implemented as separate classes (True and False) with a com-

37

3. Realisation

Nil = (
asString = (ø’nil ’)
isNil = (ø true)

notNil = (ø false)

ifNil: aBlock = (øaBlock value)
ifNotNil: aBlock = (ø self)
ifNil: goBlock ifNotNil: noGoBlock = (
øgoBlock value)

)

Figure 3.10: Implementation of Nil class in core library.

mon superclass (Boolean). The runtime then provides a globally accessible
instances of these two classes under the identifiers true and false.

3.6.4 Array

Array object implementation is also provided in the core library. Array class
implements messages for element access and iteration over elements. Inter-
nally, every array object holds a std::vector containing pointer to the ele-
ment.

3.6.5 Nil

This class implements a special type of object, signifying an empty value.
There is only one instance of this class during runtime, accessible globally
under nil identifier. This object is used to initialize variables (locals, instance
fields etc.) that are not otherwise initialized.

3.6.6 Blocks

As blocks are treated as any other objects in SOM, there needs to be a class
implemented for them. Every block in the program is an instance of the Block
class. Given the special nature of blocks (as discussed in section 2.5.1), they
require more implementation details compared to other classes.

The actual implementation for blocks is pretty simple – methods for eval-
uating and methods for iterating (simulating while loops known from other
programming languages).

Every block created is an object instance – therefore it is implemented as
an instance of VMObject in the VM. Every block object is initialized with a
special primitive value (struct BlockContext), holding information needed to
evaluate the block. That is:

• address of the first instruction of the block,

38

3.7. Block evaluation

Block = (
value = primitive
value: arg = primitive
"More evaluation methods omitted "

whileTrue: block = (
self value ifFalse: [ø nil].
block value.
self restart

)

whileFalse: block = (
[self value not] whileTrue: block

)
)

Figure 3.11: Block implementation in SOM core library.

• a pointer to the home context of the block (pointer to the stack frame
corresponding with the method that created the block).

3.7 Block evaluation

What happens upon the evaluation of the block is as follows:

• The message value (or any variant with arguments) is sent to a block
object. This is dispatched using standard method dispatch. As a part of
standard method dispatch, new stack frame is created and the execution
of the primitive method starts.

• Upon the start of the execution of the method, the new stack frame
is discarded and replaced by the block’s home context. In standard
situations, this will result in multiple pointers pointing to a single frame
(as execution stack stores pointers to frames). The return address from
the discarded frame is saved, as that is the return address in the case of
local return.

• Program counter is set to the first instruction of the block.

• The local return address is set in a separate part of the context. It
cannot overwrite the return address already in the context, as that is
needed in case execution moves to the context of the executed block
again.

39

3. Realisation

• The interpret loop is called (creating a nested call inside of the main
interpret loop). On one of the return instructions, interpret jumps out
of the nested interpret call.

Every block ends with RETNL i instruction. The integer from an argument
decides the behaviour of the return.

• If i = 1, the return behaves as a local return. Interpretation jumps
out of the nested interpret loop, than removes the top stack frame (as
is standard for every return from a method). As a return address, the
special value from the initially discarded stack frame is used.

• If i > 1, the return is a non local return. Stack frames are popped until
the block’s home context is at the top. The standard return from that
context ensures the execution returns from the block’s home context.
The execution of the program ends if the home context is the bottom–
most frame on the stack.

Consider the following example of a simple block evaluation on figure 3.12:

BlockEval = (
run = ([’Hello ’ printLn] value)

)

Figure 3.12: Example to demonstrate block evaluation process.

The state of the interpret environment after the value message send (right
before the first block instruction is evaluated) is depicted on figure 3.13.

There are few things to note. First, the execution stack contains one stack
frame two times. This is to ensure that:

Figure 3.13: State of execution environment for execution of example 3.12.

40

3.7. Block evaluation

• block can be evaluated in its home context without the need to copy
values on initialization and again on return,

• standard mechanism for returning from methods can be used when per-
forming local return from the block.

In this case, local return address and standard return address are the same,
because the block is evaluated in its home context. This does not always has
to be the case. In the example, the local return address is used as the block
does not perform non local return.

3.7.1 Argument handling

Every block can require arbitrary number of arguments in order to be eval-
uated. Given that blocks are executed inside already existing contexts (with
possible existing arguments), this needs to be handled on two levels:

• During compilation. The arguments are not resolved via their identi-
fier, but they are assigned an index in their scope. The indices of the
block cannot clash with already existing ones (arguments of the method
creating the block).

• During interpretation. At the beginning of block evaluation, the values
of arguments have to be initialized inside the home context. They then
have to be removed as to not be accessible from the original method.

3.7.2 Block restart

In order to achieve a possibility of iteration without the need of recursive
calls, Block class implements a special restart method. The method is im-
plemented as primitive and is used in core library. When writing programs
in SOM, the programmer should use existing messages aimed at providing
iteration functionality, thus the use of this message outside of core library is
not recommended.

The method simulates a recursive execution of a method, without the
need of allocating and initializing new stack frames on each message send.
Implementation itself is pretty simple:

• New stack frame is created as a part of standard message send mecha-
nism. This stack frame is discarded.

• The program counter is set to the address of the initial instruction of
curent context (stack frame).

• Interpret loop is then called to avoid context exiting mechanisms.

41

Chapter 4
Performance

To see, how a basic SOM runtime implementation compares to other SOM im-
plementations and some fully featured programming languages, a small set of
benchmarks was performed. With each one, an implementation code snippet
is provided.

4.1 Fibonacci sequence

The first test is calculating a specific position in the Fibonacci sequence. Even
though linear complexity is easy to achieve, for the purposes of the benchmark,
recursive approach is used. This will result in lot of redundant computations,
yielding O(2n) time complexity and resulting in easily measurable execution
times.

The conditions of the time measurements are as follows:

• Times stated are an average of 100 runs.

• The execution time is measured using Measure-Command on Windows
Powershell.

The execution time is measured as a time it takes for a command that
executes the program to finish. This includes all the potential runtime initial-
izations, procedures after the execution is finished etc.

The tested program in SOM is on figure 4.1. It calculates the thirteenth
number in the Fibonacci sequence using recursive calls and assigns it to a
variable.

Following are programs in C++ (figure 4.2) and Python(figure 4.3), doing
the exact same thing.

The results are displayed at figure . As expected, my interpreter of SOM is
slower than the traditional programming languages by an order of magnitude.

43

4. Performance

Fibonacci = (
run = (

| result |
result := self fibonacci: 13

)

fibonacci: n = (
ø(n <= 1)

ifTrue: 1
ifFalse: [
(self fibonacci: n - 1) + (self fibonacci: n - 2)
])

)

Figure 4.1: The program for Fibonacci sequence performance test in SOM.

int fibonacci(int n) {
if (n <= 1)

return 1;
return fibonacci(n - 1) + fibonacci(n - 2);

}

int main() {
int res = fibonacci(13);

}

Figure 4.2: The program for Fibonacci sequence performance test in C++.

def fibonacci(n):
if n <= 1:
return 1

else:
return (fibonacci(n-1) + fibonacci(n-2))

res = fibonacci(13)

Figure 4.3: The program for Fibonacci sequence performance test in Python.

44

4.2. While loop

Figure 4.4: Execution times of Fibonacci sequence test.

When compared to other SOM implementations, the di�erences are smaller,
though CppSOM implementation is still the slowest. The assumption is that
this is due to the fact that no optimizations (during compilation or during
runtime) are implemented.

Figure 4.5 shows comparison with the first Java implementation of SOM,
along with the Python one (PySOM). The latter has an option of two types
of interpreters – bytecode interpreter and AST interpreter. Both options have
been tested and the results are shown. I have also included a bytecode in-
terpreter written in Rust – SOM-RS along with SOM++ (reference C++
implementation).

I have decided not to include CSOM (C implementation) in the compari-
son, as it failed to parse SOM source files other implementations did.

4.2 While loop

It is pretty apparent that further comparisons of SOM performance to tradi-
tional, fully featured programming languages have no purpose. In the next
test, I will compare how a very basic language feature performs across the
tested SOM implementations.

The program consists of a simple while loop, iterating and incrementing a
local variable two million times. The SOM source code (same for all imple-
mentations) is on figure 4.6.

45

4. Performance

Figure 4.5: Execution times of Fibonacci sequence test for various SOM im-
plementations.

WhileLoopBench = (
run = (

| x |
x := 0.
(x < 2000000) whileTrue: [

x := x + 1.
]

)
)

Figure 4.6: SOM source code for second performance benchmark – while loop
evaluation.

The results of the test (figure 4.7) are unexpected. The provided C++
implementation of SOM is very close to (highly optimized) PySOM bytecode
interpreter implementation and consistently faster than Java one. This could
be caused by multiple things:

• The optimizations in PySOM and SOM (Java) did not cover the spe-
cific code in the benchmark. This could mean that relative speedup of
my implementation is simply due to underlying programming languages
used (compiled C++ interpreter against interpreted Java/Python ones).

46

4.3. Non local returns

• The implementation of restart method (used in whileTrue:) in Block
class in di�erent virtual machines.

Figure 4.7: Execution times for di�erent SOM implementations for code from
4.6.

When examining the Java implementation, I found that the restart prim-
itive method for block is implemented very similarly to mine. From the code
snippet () it is safe to assume that no extra message sends or any di�erent
actions are performed.

public void invoke(Frame frame, Interpreter interpreter) {
frame.setBytecodeIndex(0);
frame.resetStackPointer();

}

Figure 4.8: Invokation of restart method in Java implementation of SOM
(taken from [1]).

4.3 Non local returns

In the third test, I take a look at performance of non local returns. The code
that is run in all implementation is on figure 4.9.

47

4. Performance

NLReturn = (

first: a = (self second: a)
second: a = (self third: a)
third: a = (a value)

nlr = (
self first: [ø1]

)

run = (
| x |
x := 0.
[x < 200] whileTrue: [

x := x + self nlr
].
x printLn

)
)

Figure 4.9: SOM source code for third performance benchmark – non local
return evaluation.

Figure 4.10: Execution times for di�erent SOM implementations for code from
4.9.

48

Conclusion

The thesis provided an overview of the syntax and core principles of the Simple
Object Machine programming language. It put the language in the context of
Smalltalk, on which SOM is based.

It provides a basic implementation of a virtual machine to execute SOM
programs. The solution parses the source files, compiles them into bytecode
and is then able to load the compiled bytecode and execute it. The thesis
provides the description of abstract syntax tree design, as well as bytecode
design and its implementation.

The project provides basic functionality, compared to existing SOM im-
plementations. Especially from the performance point of view, there is a lot
of potential for further work and improvement. Optimizations over AST and
bytecode or more advanced garbage collection algorithms are the first things
that come to mind.

On the other hand, this relatively small implementation o�ers an advan-
tage of providing an easy to get into playground for people that want to
experiment with runtime systems. The clear separation of every step of com-
pilation/execution allows faster understanding of the functioning, as well as
ability to easily modify or completely change the parser, compiler or inter-
preter.

Future work

The provided solution o�ers basic functionality to execute SOM programs. It
can be further built upon and improved in several ways. As demonstrated in
the benchmarking section, the performance is lackluster compared to existing
solutions. I will propose a few solutions, that could be implemented in the
future to remedy this.

Provided solution utilises a custom design bytecode, based on SOM/S-
malltalk bytecode. An alternate compiler could be built, utilising an existing
bytecode with existing VM implementation.

49

Conclusion

Implemented garbage collection algorithm is a fairly basic one. An in-
teresting addition would be the implementation of more advanced GC algo-
rithms (such as reference counting or generational collection). Other possible
improvements to GC could be the implementation of concurrent mark and
sweep to shorten the execution pauses.

50

Bibliography

[1] Marr, S. SOM. [cit. 2021-5-5]. Available from: https://github.com/SOM-
st/som-java

[2] SOM. SOM: A minimal Smalltalk for teaching and research on Vir-
tual Machines. 2020, [cit. 2020-11-17]. Available from: https://som-
st.github.io/

[3] Lovejoy, A. L. Smalltalk: Getting The Message. 2007, [cit. 2021-1-19].
Available from: http://devrel.zoomquiet.top/data/20080627141054/
index.html

[4] Ducasse, S.; Chloupis, D.; et al. Pharo By Example 5. 2017.

[5] Bera, C. Blocks: A Detailed Analysis. [cit. 2021-4-30]. Available
from: http://pharobooks.gforge.inria.fr/PharoByExampleTwo-Eng/
latest/Block.pdf

[6] Boersma, E. Memory leak detection - How to find, eliminate, and avoid.
January 2020, [cit. 2020-11-5]. Available from: https://raygun.com/
blog/memory-leak-detection/

[7] Agarwal, C. Mark-and-Sweep: Garbage Collection Algorithm. [cit. 2021-5-
1]. Available from: https://www.geeksforgeeks.org/mark-and-sweep-
garbage-collection-algorithm/

[8] Tahir, N. An introduction to language lexing and parsing with ANTLR.
2017, cit. [2021-5-6]. Available from: https://willowtreeapps.com/
ideas/an-introduction-to-language-lexing-and-parsing-with-
antlr

51

https://github.com/SOM-st/som-java
https://github.com/SOM-st/som-java
https://som-st.github.io/
https://som-st.github.io/
http://devrel.zoomquiet.top/data/20080627141054/index.html
http://devrel.zoomquiet.top/data/20080627141054/index.html
http://pharobooks.gforge.inria.fr/PharoByExampleTwo-Eng/latest/Block.pdf
http://pharobooks.gforge.inria.fr/PharoByExampleTwo-Eng/latest/Block.pdf
https://raygun.com/blog/memory-leak-detection/
https://raygun.com/blog/memory-leak-detection/
https://www.geeksforgeeks.org/mark-and-sweep-garbage-collection-algorithm/
https://www.geeksforgeeks.org/mark-and-sweep-garbage-collection-algorithm/
https://willowtreeapps.com/ideas/an-introduction-to-language-lexing-and-parsing-with-antlr
https://willowtreeapps.com/ideas/an-introduction-to-language-lexing-and-parsing-with-antlr
https://willowtreeapps.com/ideas/an-introduction-to-language-lexing-and-parsing-with-antlr

Appendix A
Acronyms

AST Abstract syntax tree

GC Garbage collector

OOP Object Oriented Programming

SOM Simple Object Machine

VM Virtual machine

53

Appendix B
Contents of enclosed CD

readme.txt the file with CD contents description
src.......................................the directory of source codes

antlr grammar ANTLR grammar definitions
cmake CMake files for ANTLR building
core lib..........................SOM core library implementation
examples.............................examples of SOM source code
src implementation source files

thesis.................the directory of LATEX source codes of the thesis
media....................................the thesis figures directory
*.tex....................... the LATEX source code files of the thesis

text..the thesis text directory
thesis.pdf the Diploma thesis in PDF format

55

	Introduction
	Analysis and design
	Existing implementations
	Class definition
	Variables
	Variable name scoping

	Literals

	Primitives
	Methods and messages
	Blocks
	Non–local return and block scoping

	Expressions
	Control structures
	Conditional branching
	For loops
	While loops
	Class hierarchy

	Bytecode
	Program structure
	Program entities
	Instructions

	Garbage collection
	Mark and sweep

	Realisation
	Program overview
	Build

	Source code parsing
	Abstract Syntax Tree
	AST Nodes
	Expressions

	AST construction

	Bytecode
	Values
	Instructions
	Compilation
	Method compilation

	Interpretation
	Garbage collection
	Program counter
	Execution stack
	Objects
	Object creation

	Messages

	Core library
	Primitives
	Strings
	Booleans
	Array
	Nil
	Blocks

	Block evaluation
	Argument handling
	Block restart

	Performance
	Fibonacci sequence
	While loop
	Non local returns

	Conclusion
	Future work

	Bibliography
	Acronyms
	Contents of enclosed CD

