
Reviewer:
Student:
Thesis title:
Branch / specialization:

Created on:

Review report of a final thesis

Ing. Jan Trávníček, Ph.D.
Bc. Jan Jindráček
Usability improvements to JavaScript/ECMAScript
Web and Software Engineering, specialization Software
Engineering
31 May 2021

Evaluation criteria

1. Fulfillment of the assignment

▶ [1] assignment fulfilled
[2] assignment fulfilled with minor objections
[3] assignment fulfilled with major objections
[4] assignment not fulfilled

The task was to study the JavaScript programming language and to identify its design
issues. The task is of medium to higher complexity due to the overall size of the
JavaScript programming language.

2. Main written part 85 /100 (B)

The text of the thesis is written in very good to excellent English. It is worth noting that
the text is detailed and may serve as a basis for a JonScript user guide/documentation. I
find all sections important and content-wise rich. I have identified some factual and
typographic issues with the text that are mostly minor. More important issues relate to
the evaluation of JonScript language as such, either to its ease-of-use or to its
performance.
- The evaluation of "Ease of use" criteria is not supported by any quantifiable data. It is
only deduced that JonScript should be easy to use based on the proposed
simplifications/amendments of JavaScript/TypeScript. I'm convinced the language is
simpler, nevertheless, the claim should be supported by hard data.
- It would be interesting to see how exactly JonScript is translated to JavaScript especially
for the claimed performance costly operations. I believe at least a rudimentary analysis
will be presented at the defence.

Factual issues:
- [set vs list] - "Function may have a set of parameters" - shouldn't it be a list of
parameters? (Also, an article is missing.)
- [NaN] - "This value is never equal, greater, lesser, greater or equal, lesser or equal than

any other value except for itself. This value is unequal to every other value within the
standard, including itself." The two statements seem to contradict each other on the
equality of NaNs.
- [nil vs null vs undefined] - The text regarding JonScript even below the introduction of nil
in section 2.1.7 still refers to undefined or null which are by my understanding not
present?
- [operator overloading] - Reserving a fixed list of keywords in order to implement
operator overloading is not optimal when a single keyword would be enough (C++).
- [default parameters] - It is not clear from the description whether default parameters
may only be specified for the rightmost parameters or any. The same with templates.
- [try-catch-finally] - Description of finally in the try-catch-finally expression is
overcomplicated by alternating between cases: finally is present, finally is not present
and finally is present again. Also, it is not clear what the "this expression" references in "If
the finally is present, the resulting value of either the try expression, or the catch
executed function will be passed into the function defined after the finally keyword. This
expression returns either the value returned by catch on expression, or the value passed
into try clause, if finally is not present.".
- [property access] - It is rather strange to name "." as a keyword in the section Property
access expression. Also, it is not clear whether the square brackets access to a property is
allowed to contain an expression or it has to contain a string literal only.
- [short-circuiting] - Even though it was mentioned before, the description of logical
expressions should state again that logical or and logical and short-circuit.
- [queue example] - A queue is not an algorithm but a data type.

Typography issues:
- The thesis text was not prepared to be compiled on an UTF8 system (nor any other for
that matter; i.e. the latex code is missing the specification of the input encoding); The
multiplication symbol (×) was inserted into the text in a raw way whereas it should be
specified using latex command \times.
- The Czech abstract overflows the right text boundary a bit.
- The first chapter (Introduction) already contains an analysis of issues with JavaScript
that in my opinion deserves a separate Chapter. (Which to some extend is represented by
Chapter II.)
- The text commonly alternates between "I" and "we".
- Paragraphs are sometimes too long.
- The last example of section 1.3.2 seems to be without context.
- "... example found in this [12] documentation." is awkward - could be rephrased "...
example found in documentation [12]."
- "The differences between null and undefined", undefined should probably be bold.
- "... and what the future development of JonScript." is an unfinished sentence fragment.
- Is it webassembly or WebAssembly?
- Related works chapter should likely be present sooner in the text. I'm aware it contains
references to JonScript improvements, these, however, may be reversed.
- Description of private properties and public properties is counter-intuitively placed into
unrelated descriptions. (Private properties and Public API).

Typos
- [there] - "Modern programming languages that are not considered functional
programming languages support there features".
- [order of define and to] - "Next, we are going define to create a property on Module."
- [if if, objects vs object's] - "If if does not find anything, it finds said objects prototype and

tries to find the method there."
- [no vs not] - "This is due to the fact that a function, or a constructor will treat an
undefined parameter as if it was no there."
- [from vs in] - "This mistake was not fixed from the language..."
- [missing period] - "Relational operators are simplified There is no triple equals."
- [an vs and] - "Throw expression is an unary prefix operator, which consists of the throw
keyword an an expression."

3. Non-written part, attachments 90 /100 (A)

Lexer:
- lexer rule fragments are used inconsistently: TYPE_OR, TYPE_AND in TYPE_OPERATORS
vs PLUSMINUS_OPERATORS.
- some parser rules may be simplified while still permitting the same language, consider
the following fragment (with some alternatives omitted from rule "type"):
type : VAR
| (VAR | accessType) templateType
| accessType ;
accessType : VAR OBJECT_OPERATORS (accessType | VAR);

May be redesigned to:
type : VAR templateType?
| accessType templateType?;
accessType : VAR OBJECT_OPERATORS (accessType | VAR);

And further on to:
type : accessType templateType?;
accessType : VAR (OBJECT_OPERATORS VAR)*;

Also some comments in the grammar are ambiguous:
ignoreableVar : (VAR QMARK? (COLON type)? (EQUALS expression)?) | IGNORE; // Much later
we can remove the '?'
Which '?' may be removed?

I reckon the implementation is sufficiently tested with unit tests and using a sample
application testing intercompatibility with other TypeScript libraries.

Even though the quiz was fun (hacking it anyway), I would expect some sort of interactive
parse-and-run like form to try JonScript easily.

4. Evaluation of results, publication outputs and awards 90 /100 (A)

JavaScipt is known to be inconsistent and with many pitfalls. Any attempt to improve it,
practical or theoretical, is important. The implementation as such requires partially
software engineering and partially computer science knowledge. I believe the
implementation fully fulfilled the theoretical aspect. However, based on mostly
performance evaluation, some bits of the computer science contribution are yet to be
added. The project has potential to be useful in the future if the stated limitations/
performance issues are fixed and yet to be implemented features are implemented.

The overall evaluation 87 /100 (B)

The text is detailed, well written, and easily understandable. The amount of work put into
the implementation of the parser and transcriptor is more than enough for a masters
thesis in a software engineering study branch. I recommend the thesis for defence and I
recommend evaluating it with 87 points, i.e. grade B (very good).

Questions for the defense

Considering the example of the pattern matching implemented by the operator is, how
exactly the matching of a concrete Date works? Is it fixed to the three possibilities
explicitly mentioned or any value of any type (even user-defined) convertible to Date will
match?
Have you considered using different tools, for instance, alternatives of the parser
generator, and what were the decisions against those?

Instructions

Fulfillment of the assignment

Assess whether the submitted FT defines the objectives sufficiently and in line with the assignment;
whether the objectives are formulated correctly and fulfilled sufficiently. In the comment, specify the
points of the assignment that have not been met, assess the severity, impact, and, if appropriate, also the
cause of the deficiencies. If the assignment differs substantially from the standards for the FT or if the
student has developed the FT beyond the assignment, describe the way it got reflected on the quality of
the assignment’s fulfilment and the way it affected your final evaluation.

Main written part

Evaluate whether the extent of the FT is adequate to its content and scope: are all the parts of the FT
contentful and necessary? Next, consider whether the submitted FT is actually correct – are there factual
errors or inaccuracies?

Evaluate the logical structure of the FT, the thematic flow between chapters and whether the text is
comprehensible to the reader. Assess whether the formal notations in the FT are used correctly. Assess
the typographic and language aspects of the FT, follow the Dean’s Directive No. 26/2017, Art. 3.

Evaluate whether the relevant sources are properly used, quoted and cited. Verify that all quotes are
properly distinguished from the results achieved in the FT, thus, that the citation ethics has not been
violated and that the citations are complete and in accordance with citation practices and standards.
Finally, evaluate whether the software and other copyrighted works have been used in accordance with
their license terms.

Non-written part, attachments

Depending on the nature of the FT, comment on the non-written part of the thesis. For example: SW work
– the overall quality of the program. Is the technology used (from the development to deployment)
suitable and adequate? HW – functional sample. Evaluate the technology and tools used. Research and
experimental work – repeatability of the experiment.

Evaluation of results, publication outputs and awards

Depending on the nature of the thesis, estimate whether the thesis results could be deployed in
practice; alternatively, evaluate whether the results of the FT extend the already published/known results
or whether they bring in completely new findings.

The overall evaluation

Summarize which of the aspects of the FT affected your grading process the most. The overall grade
does not need to be an arithmetic mean (or other value) calculated from the evaluation in the previous
criteria. Generally, a well-fulfilled assignment is assessed by grade A.

	Evaluation criteria
	1. Fulfillment of the assignment
	2. Main written part
	3. Non-written part, attachments
	4. Evaluation of results, publication outputs and awards

	The overall evaluation
	Questions for the defense
	Instructions
	Fulfillment of the assignment
	Main written part
	Non-written part, attachments
	Evaluation of results, publication outputs and awards
	The overall evaluation

