
Ing. Michal Valenta, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague December 18, 2018

ASSIGNMENT OF MASTER’S THESIS
 Title: Linked Data Notifications and ActivityPub Client and Server

 Student: Bc. Antonín Karola

 Supervisor: RNDr. Jakub Klímek, Ph.D.

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of summer semester 2019/20

Instructions

The student will get familiar with Linked Data, the RDF data model, the recent W3C Recommendations
[1][2][3] and the Solid project [4], a recent activity of the inventor of the Web, Sir Tim Berners-Lee.
The student will implement a client and a server supporting decentralized messaging on the Web according
to the Linked Data Notifications [2] and ActivityPub [3] W3C Recommendations in support of the Web re-
decentralization.
The client part will be a new, user friendly messaging application.
Based on the analysis of existing Solid server implementations, the student will determine what is missing
in the existing implementations for the given task.
The missing features will be implemented either as a new Solid server, or an existing implementation will
be enhanced.
The client and the server will be documented, evaluated, tested and published as open-source on GitHub.
The tests will consist of unit tests and tests of compatibility with existing tools implementing the
Recommendations.

References

[1] Linked Data Platform 1.0, W3C Recommendation, 2015, https://www.w3.org/TR/ldp/
[2] Linked Data Notifications, W3C Recommendation, 2017, https://www.w3.org/TR/ldn/
[3] ActivityPub, W3C Recommendation, 2018, https://www.w3.org/TR/activitypub/
[4] Solid, MIT, https://solid.mit.edu/

Master’s thesis

Linked Data Notifications and ActivityPub
Client and Server

Bc. Antońın Karola

Katedra softwarového inženýrstv́ı
Supervisor: RNDr. Jakub Kĺımek, Ph.D.

April 26, 2021

Acknowledgements

I would like to thank my supervisor, RNDr. Jakub Kĺımek, Ph.D. for his
guidance, valuable insight and patience.

Besides my supervisor, I would like to thank my family for their endless
support, not just throughout my studies. Furthermore, I would like to extend
a big thank you to my friends for their moral support and believing in me,
especially Petr, Petra, Mı́̌sa and Radim. My sincerest thanks also goes to
Nathaniel, Vratislav, Ema, Honza and Mike for their help.

Last but not least, thanks to IDC CEMA for their flexibility and meeting
me halfway with my needs.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accor-
dance with Article 46(6) of the Act, I hereby grant a nonexclusive authoriza-
tion (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity.

In Prague on April 26, 2021 .

Czech Technical University in Prague
Faculty of Information Technology
© 2021 Antońın Karola. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Karola, Antońın. Linked Data Notifications and ActivityPub Client and Server.
Master’s thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2021.

Abstrakt

”Źıskejme web zpět!“ - Sir Tim Berners-Lee, tv̊urce World Wide Webu.

Pro podporu re-decentralizace webu, princip̊u otevřených dat a skutečného
vlastnictv́ı dat, buduje tato práce aplikace na základě technologíı od Web
Consortium (W3C).

Práce prozkoumává nejnověǰśı W3C protokoly a doporučeńı: Linked Data
(propojená data), RDF datový model, Linked Data Platform, Linked Data No-
tifications (LDN), Activity Streams (AS), ActivityPub (AP) a projekt Solid.
Pro d̊ukaz použitelnosti těchto technologíı jsou vytvořeny a publikovány tři
proof-of-concept aplikace (aplikace na ověřeńı konceptu).

Hlavńım ćılem této práce je vytvořit uživatelsky př́ıvětivou webovou ap-
likaci podporuj́ıćı decentralizovanou komunikaci. Jako prvńı je provedena
analýza existuj́ıćıch LDN a AP aplikaćı. Na základě této analýzy je vybrán
solid-server jako server pro LDN část a Pleroma server pro AP část. Jako
klient je vytvořena nová aplikace Inbox.

Inbox je webová aplikace napsaná ve frameworku Angular. Tento klient je
otestován pomoćı automatických unit a end-to-end test̊u. Uživatelské rozhrańı
aplikace je podrobeno uživatelskému testováńı kognitivńım pr̊uchodem. Na
základě výsledk̊u je pak aplikace vylepšena.

Nakonec je Inbox klient zdokumentován, publikován jako open-source na
GitHubu a instance aplikace je nasazena na web.

Kĺıčová slova webová aplikace, propojená data, návrh webové aplikace,
implementace webové aplikace, Linked Data Platform, Linked Data Notifi-
cations, ActivityPub, Activity Streams, RDF, JavaScript, REST, JavaScript
Notifications API, JavaScript Push API, node.js, Solid, Angular

vii

Abstract

”Reclaim the web!” - Sir Tim Berners-Lee, the inventor of the World Wide
Web.

To support Web re-decentralization, open data principles and true data
ownership, this thesis builds applications on top of the Web Consortium
(W3C) technologies.

This thesis investigates the current W3C protocols and recommendations:
Linked Data, the RDF data model, the Linked Data Platform, Linked Data
Notifications (LDN), Activity Streams (AS), ActivityPub (AP) and the Solid
project. To prove their applicability, three proof-of-concept applications are
created and published.

The main goal of the thesis is to create a user-friendly web application
supporting decentralized messaging. First, an analysis of existing LDN and
AP applications is conducted. Based on this analysis, solid-server is selected
as the server for the LDN part and the Pleroma server for the AP part. As a
client, a new Inbox application is created.

Inbox is a web application written in Angular framework. This client is
then tested using automated unit and end-to-end tests. Application’s user
interface is subjected to the cognitive walk-through user testing. Based on
the results, the application is enhanced.

Finally, the client is documented and published as open-source on GitHub
and its instance deployed on the web.

Keywords Web application, Linked Data, Linked Data Platform, Linked
Data Notifications, ActivityPub, Activity Streams, RDF, JavaScript, REST,
JavaScript Notifications API, JavaScript Push API, node.js, Solid, Angular

viii

Contents

Introduction 1
Goals of this work . 3

1 State-of-the-art and available technology 5
1.1 Current technologies that address the centralization problem . 5

1.1.1 RDF . 6
1.1.2 Linked Data . 7
1.1.3 Linked Data Platform 8
1.1.4 Linked Data Notifications 10
1.1.5 Activity Streams . 13
1.1.6 ActivityPub . 14
1.1.7 Solid . 16

2 Analysis 19
2.1 Requirements . 19

2.1.1 Actors . 19
2.1.2 List of requirements . 20

2.2 Use cases . 21
2.2.1 List of use cases - consumer 21
2.2.2 List of use cases - sender 23

2.3 Analysis of existing solutions - LDN clients and Solid servers . 25
2.3.1 Criteria for analysis of existing solutions 25
2.3.2 Overview of all analysed applications - LDN 26
2.3.3 Detailed analysis of selected applications 29

2.4 Analysis of existing solutions - ActivityPub applications 34
2.4.1 Criteria for analysis of existing AP solutions 35
2.4.2 Overview of analysed servers - AP 35
2.4.3 AP servers analysis result 37

2.5 Implementation analysis . 37

ix

2.6 Analysis results . 38

3 Design 39
3.1 System architecture: in-browser web application + server back-

end . 39
3.2 Client . 39

3.2.1 Programming languages and frameworks 39
3.2.2 Application architecture: MVC 40
3.2.3 User interface design - wireframes 40
3.2.4 Linked Data Notifications part 46
3.2.5 ActivityPub part . 49

3.3 Server . 51
3.3.1 Linked Data Notifications part - solid-server 52
3.3.2 ActivityPub part - Pleroma 52

4 Implementation 53
4.1 Client . 53

4.1.1 Linked Data Notifications part 53
4.1.2 ActivityPub part . 59

4.2 Server . 61

5 Testing 63
5.1 Unit tests . 63

5.1.1 Coverage . 64
5.2 E2E tests . 64

5.2.1 Coverage . 65
5.3 Continuous integration . 65
5.4 Usability testing . 66

5.4.1 Cognitive walk-through 66
5.4.2 How the cognitive walk-through was conducted 66
5.4.3 Test cases . 66
5.4.4 Cognitive walk-through testing results 68

5.5 Tests of compatibility with existing tools 70
5.5.1 LDP, LDN, Solid - Solid-server 70
5.5.2 ActivityPub - Pleroma 71

6 Documentation 73
6.1 User documentation . 73

6.1.1 Login . 73
6.1.2 Reading messages . 74
6.1.3 Sending a message . 76
6.1.4 Inbox monitoring and notifications 77
6.1.5 Pleroma connection . 79

6.2 Administrator documentation 80

x

6.2.1 Source code . 81
6.2.2 Live version . 81
6.2.3 Requirements . 81
6.2.4 Installation and build 81
6.2.5 Running the application 81
6.2.6 Tests . 82
6.2.7 Deployment . 82
6.2.8 Continuous integration (CI) 83

6.3 Developer documentation . 83
6.3.1 Development environment 83
6.3.2 Project structure . 83
6.3.3 Contributing to Inbox 84

Conclusion 85
Problems encountered . 86
Future work . 87

Bibliography 89

A Glossary 93

B Technical research - proof-of-concept applications 95
B.1 LDN-inbox - LDN proof-of-concept 95

B.1.1 Architecture . 95
B.1.2 Technologies . 96
B.1.3 Implementation . 97
B.1.4 Documentation . 100

B.2 LDN-target . 101
B.2.1 Architecture . 101
B.2.2 Technologies . 102
B.2.3 Documentation . 102

B.3 js-notification-poc . 103
B.3.1 Architecture . 103
B.3.2 Technologies . 103
B.3.3 Implementation . 104
B.3.4 Documentation . 105

B.4 inbox-client . 106
B.4.1 Architecture . 107
B.4.2 Technologies . 107
B.4.3 Implementation . 107
B.4.4 Testing . 110
B.4.5 Documentation . 111

C Reported GitHub/GitLab issues 113

xi

C.1 Problems with solid-client-authn-js library 113
C.1.1 Problem using the library in Angular 113
C.1.2 Library producing unsolicited request with 404 error . . 113
C.1.3 session.info.webId not available in onLogin callback . . . 113
C.1.4 Library does not stay logged in after page reload 114

C.2 Solid server issues . 114
C.2.1 Server sends phantom WebSocket pub messages 114
C.2.2 GET https://tonda.inrupt.net/inbox times out 114
C.2.3 Solid sends WebSockets messages for private resources

without authentication 114
C.2.4 Solid uses incompatible WebSockets protocol version . . 114
C.2.5 POSTing ActivityPub message to Solid produces wrong

content-type . 115
C.3 Other repositories . 115

C.3.1 LDN tests page unavailable 115
C.3.2 Cannot verify Pleroma OAuth token 115
C.3.3 Mastodon offers little to no ActivityPub client-to-server

support . 115
C.3.4 solid-auth-fetcher - missing method implementation . . 116
C.3.5 Questions in forums . 116

D Complete results of cognitive walk-through 117
D.1 TC1 - Read list of messages from all available inboxes 117
D.2 TC2 - Read list of messages from selected inbox 118
D.3 TC3 - Read detail of a received message 118
D.4 TC4 - Reply to message . 119
D.5 TC5 - Send a simple message 119
D.6 TC6 - Send an AP message . 120
D.7 TC7 - Start monitoring arbitrary inbox 120
D.8 TC8 - Stop monitoring arbitrary inbox 121
D.9 TC9 - Receive a system notification on a new message 121
D.10 General comments from the testing 121

E Attached medium content 123

xii

List of Figures

0.1 Example of centralized social networks 2

1.1 Example of a connected graph that can be represented with RDF . 6
1.2 Structure of Linked Data Platform Resources 8
1.3 Overview of Linked Data Notifications 10
1.4 Illustration of a solid pod with application 17

2.1 UML diagram of Consumer use cases 23
2.2 UML diagram of Sender use cases 25
2.3 Solid inbox - list of messages. Screenshot of the current official

inbox client application. 31
2.4 Solid inbox - message detail. Screenshot of the current official

inbox client application. 32
2.5 Solid inbox - message content. Screenshot of the current official

inbox client application. 33

3.1 Screen 1 - welcome page. 40
3.2 Screen 2 - login using Solid authentication - step 1. 41
3.3 Screen 3 - login using Solid authentication - step 2. 41
3.4 Screen 4 - start monitoring inbox - UC1. 42
3.5 Screen 5 - stop monitoring inbox - UC2. 42
3.6 Screen 6 - Read list of all messages - UC3, default screen.

All messages from all monitored inboxes combined. This is the
main screen user will see when he logs in. 43

3.7 Screen 7 - Empty list of all messages. All messages view,
when no messages are available. 43

3.8 Screen 8 - Read list of messages from one inbox. All mes-
sages from chosen inbox. 44

3.9 Screen 9 - Read list of messages from one inbox - empty.
Detail of inbox, when there are no messages available. 44

3.10 Screen 10 - Message detail - UC4. 45

xiii

3.11 Screen 11 - Send a notification - UCs 6 - 9, empty On the
screen, there is an option to send a notification to an either person
from Solid contact list, or directly using IRI. 45

3.12 Screen 12 - Send a notification - UCs 6 - 9, filled User can
specify multiple recipients. 46

3.13 Application architecture - web application running in user’s
browser, reading data from Solid POD hosted on a solid-server . . 47

3.14 UML diagram of application entities 48
3.15 Receiving system notifications for incoming messages - se-

quence diagram illustrating User A receiving notification for new
message from User B. 49

3.16 Communication with Pleroma server - sequence diagram il-
lustrating Client application communicating with Pleroma server. . 51

5.1 Message sent by Inbox test, consumed directly in the Solid data
browser at Inrupt.net. 71

5.2 Message sent by Inbox test, consumed in the Solid POD ”OhMy-
Pod!” browser. 71

5.3 Post sent from Mastodon social network to the Pleroma test user,
consumed in the Inbox client. 72

6.1 Login screen . 74
6.2 Choosing login provider . 74
6.3 List of all messages . 75
6.4 Message content . 75
6.5 Message content - detail . 76
6.6 Send message - Activity Streams 76
6.7 Selecting recipient from contacts - application offers list of

user contacts . 77
6.8 Selecting multiple recipients - user can send a message to mul-

tiple recipients simultaneously . 77
6.9 Application notification for new message 78
6.10 System notification - example of a system notification in OS MS

Windows 10 . 78
6.11 Add inbox for monitoring . 79
6.12 Step 1 - login to Pleroma . 80
6.13 Step 2 - user’s Pleroma statuses 80
6.14 Project structure. Only notable files and folders are shown (e.g.

ones that are not standard part of Angular or are important for
development). 84

B.1 inbox - index screen. Screenshot of the index page 98
B.2 inbox-client screen 1 - watched inboxes 109
B.3 inbox-client screen 2 - added watched inbox 110

xiv

B.4 inbox-client screen 3 - send message to a friend 110

xv

Introduction

The Internet was designed from the start as a decentralized network. It began
as the military’s ARPANET, where in the case of one network node being
incapacitated, technologies like network packets and dynamic routing would
still allow for the rest of the nodes to communicate [1]. The internet infras-
tructure has since become very robust, and it is virtually impossible to take
it down by disabling even multiple nodes.

Meanwhile, market monopolization has introduced a new problem - web
centralization [2]. Tech giants like Google (with YouTube) and Facebook
(owning Instagram), have made users dependent on them for information or
entertainment [3]. As a result, the internet has become very centralized re-
garding ownership and services. Furthermore, web applications are incapable
of intercommunication because they are closed systems (e.g. a Facebook user
cannot comment on YouTube, YouTube cannot send you notifications to the
app of your choice, etc.).

An important part of this problem is data ownership. For example, when
you upload your photograph to the Facebook platform, you are granting Face-
book many rights:

”Specifically, when you share, post, or upload content that is cov-
ered by intellectual property rights ..., you grant us a non-
exclusive, transferable, sub-licenseable, royalty-free, and world-
wide license to host, use, distribute, modify, run, copy, publicly
perform or display, translate, and create derivative works of
your content ... This means, for example, that if you share a
photo on Facebook, you give us permission to store, copy, and
share it with others ... This license will end when your content is
deleted from our systems.” 1

1From Facebook terms of use: https://www.facebook.com/terms.php

1

https://www.facebook.com/terms.php

Introduction

Figure 0.1: Example of centralized social networks. Original at [4].

As we can see from recent events in the US2, based on these user data,
the tech giants can influence politics, access private messages, and delete user
content without any justification.

Recently, these problems have become the focus of multiple re-
dentralization initiatives, e.g. Redecentralize.org3 or the Solid project4. The
World Wide Web Consortium (W3C) together with the web creator Tim
Berners-Lee are working to address these problems with technical solutions.
They have proposed protocols such as Linked Data (LD), LD Platform (LDP)
and Notifications (LDN), its extension ActivityPub (AP) and ActivityStreams
(AS), so web developers can build their applications without these problems.
Users would then be able to choose e.g. their data provider and applications
could intercommunicate.

We can see this development already taking place with social networks
such as the decentralized platform mastodon5 or AS video streaming service
PeerTube6. In fact, a whole platform of interconnected, federated, open-
sourced applications that are making use of the ActivityPub and other open
protocols has emerged - fediverse7.

2https://www.theguardian.com/technology/commentisfree/2019/oct/23/faceboo
k-influence-next-election-democratic

3https://redecentralize.org/
4https://solidproject.org/
5https://joinmastodon.org/
6https://peertube.video/
7Home page: https://fediverse.party/, about page: https://fediverse.party/en

2

https://www.theguardian.com/technology/commentisfree/2019/oct/23/facebook-influence-next-election-democratic
https://www.theguardian.com/technology/commentisfree/2019/oct/23/facebook-influence-next-election-democratic
https://redecentralize.org/
https://solidproject.org/
https://joinmastodon.org/
https://peertube.video/
https://fediverse.party/
https://fediverse.party/en/fediverse
https://fediverse.party/en/fediverse
https://fediverse.party/en/fediverse

Goals of this work

Goals of this work

This work aims to provide a Linked Data Notifications and ActivityPub im-
plementation that is easy to use and is not merely a proof-of-concept. The
assignment has divided the implementation into two parts - a client and a
server.

The client should be a user-friendly messaging application that takes ad-
vantage of system notifications.

The server should be an AP and LDN compliant implementation, either
an enhanced existing one or a new implementation.

Both client and server should be documented, evaluated, tested and pub-
lished as open-source on GitHub.

/fediverse

3

https://fediverse.party/en/fediverse
https://fediverse.party/en/fediverse
https://fediverse.party/en/fediverse
https://fediverse.party/en/fediverse
https://fediverse.party/en/fediverse
https://fediverse.party/en/fediverse
https://fediverse.party/en/fediverse
https://fediverse.party/en/fediverse
https://fediverse.party/en/fediverse
https://fediverse.party/en/fediverse
https://fediverse.party/en/fediverse
https://fediverse.party/en/fediverse
https://fediverse.party/en/fediverse
https://fediverse.party/en/fediverse

Chapter 1
State-of-the-art and available

technology

This chapter introduces current technologies that are being used to address
the centralization problem. It covers protocols developed by the World Wide
Web Consortium (W3C), mainly by its Linked Data Platform Working Group
and Social Web Working Group. These include Linked Data, Linked Data
Platform and Notifications.

The main building block is Linked Data (LD) with its RDF representa-
tion. It allows resources to be more than just a heap of binary data. LD
introduces data semantics, it gives data meaning and allows the resources to
be interlinked. Furthermore, this enables data to be computer-readable and
allows automated querying and processing of the data.

On top of Linked Data and RDF, W3C has developed protocols such as
LD Platform (LDP) and LD Notifications (LDN). These protocols specify
data formats and communications methods, so compliant applications can
work together and exchange data. This allows e.g. various web applications
to interchange notifications and messages. More specifically, with a LDN-
compliant social network, a user could post e.g. comments on a video from
another LDN-compliant video application.

1.1 Current technologies that address the
centralization problem

World Wide Web Consortium (W3C) is trying to address the centralization
problem with various technologies. The technologies described in this section
were not necessarily created to address the centralization problem, but they
are being used to do so.

5

1. State-of-the-art and available technology

1.1.1 RDF

Resource Description Framework (RDF) is a standard graph data model cre-
ated for data interchange on the web. It was created as a W3C specification [5]
and is used for modelling information like web resources. RDF can be under-
stood as a language for describing statements about things/entities. It consists
of triples: subject + predicate + object:

Listing 1.1: RDF triple example

<subject> <predicate> <object>

These together create an oriented labeled multigraph, where subjects and
objects represent nodes and predicates represent edges. Aditionally, RDF
supports named graphs, thus creating quads: subject + predicate + object +
graph label.

Figure 1.1: Example of a connected graph that can be represented with RDF.
Original at [6]

RDF supports a big variety of data serialization formats, Turtle/N-Triples
being the most human-readable:

Listing 1.2: RDF Turtle/N-Triples serialization example. Turtle repre-
sentation of the main subset of the graph at Figure 1.1

<http://example.org/#bob>
<http://perceive.net/schemas/relationship/isInterestedIn>

6

1.1. Current technologies that address the centralization problem

<http://example.org/#mona-lisa> .

In web applications, JSON-LD (JSON for Linking Data) [7] serialization is
easier to use because JSON-LD is still valid JSON, which has robust support
among web application technologies:

Listing 1.3: JSON-LD serialization example. JSON-LD representation of
list of LDP notifications.

{
"@context": "http://www.w3.org/ns/ldp#",
"@id": "http://localhost:5001/API/notifications/",
"@type": "ldp:Container",
"ldp:contains": [

{
"@id": "http://localhost:5001/API/notifications/0"

},
{
"@id": "http://localhost:5001/API/notifications/1"

},
{
"@id": "http://localhost:5001/API/notifications/2"

},
{
"@id": "http://localhost:5001/API/notifications/3"

},
{
"@id": "http://localhost:5001/API/notifications/4"

}
]

}

1.1.1.1 Relation of RDF to this thesis

RDF is the basic data model that the technologies used in this thesis build
on. All linked data technologies like LDN, JSON-LD and ActivityPub build
on RDF. Furthermore, it is essential part of open data and e.g. the Solid
initiative.

1.1.2 Linked Data

Linked Data are structured data that are interlinked. More specifically, it is
a term defined by Tim Berners-Lee in his 2006 design note ”Linked Data” [8].
He outlines four basic principles of Linked Data:

1. use URI (IRI) to identify entities

2. use HTTP URI to access data

7

1. State-of-the-art and available technology

3. use RDF + SPARQL to retrieve useful information on entities

4. include links to other entities for discovery

1.1.3 Linked Data Platform

Linked Data Platform (LDP) is a W3C recommendation [9] from the 26 of
February 2015, published by the Linked Data Platform Working Group8. It is
a set of rules that applications must follow to exchange Linked Data resources.

LDP differentiates between a client and a server. They communicate using
defined HTTP methods and exchange Linked Data in specific format, typi-
cally RDF. More specifically, LDP defines LDP Resource (LDPR) as a HTTP
resource that conforms to the LDP patterns and conventions [10]. LDPR can
be either RDF or a non-RDF resource (see Figure 1.2).

Figure 1.2: Structure of Linked Data Platform Resources. Origi-
nal at [10].

Furthermore, LDP introduces an important concept for LDN - Linked Data
Platform Containers (LDPC). Simply put, an LDP Container is an RDF
resource where the subject is the container, the predicate is ldp:contains,
and the object is the real data resource:
<LDPC URI> <ldp:contains> <document-URI>

Listing 1.4: Simple LDP Container. Example of a Linked Data Platform
Basic Container in an RDF Turtle serialization format [11].

@prefix dcterms: <http://purl.org/dc/terms/>.
@prefix ldp: <http://www.w3.org/ns/ldp#>.

<http://example.org/c1/>
a ldp:BasicContainer;
dcterms:title "A very simple container";

8https://www.w3.org/2012/ldp/wiki/Main Page

8

https://www.w3.org/2012/ldp/wiki/Main_Page

1.1. Current technologies that address the centralization problem

ldp:contains <r1>, <r2>, <r3>.

The LDP Container concept is further extended in the Linked Data
Notifications protocol - LDN Inbox is based on LDP Basic Container.

The following code is an example of a full LDP exchange. It repre-
sents an LDP-conformant client’s request and the server’s response.

Request to http://example.org/container1/:

Listing 1.5: Example of LDP exchange - request. Example of a full
Linked Data Platform communication - client’s request [11].

GET /container1/ HTTP/1.1
Host: example.org
Accept: text/turtle
Prefer: return=representation;

include="http://www.w3.org/ns/ldp#PreferMinimalContainer"

And response:

Listing 1.6: Example of LDP exchange - response. Example of a full
Linked Data Platform communication - server’s response [11].

HTTP/1.1 200 OK
Content-Type: text/turtle
ETag: "_87e52ce291112"
Link: <http://www.w3.org/ns/ldp#DirectContainer>; rel="type",

<http://www.w3.org/ns/ldp#Resource>; rel="type"
Accept-Post: text/turtle, application/ld+json
Allow: POST,GET,OPTIONS,HEAD
Preference-Applied: return=representation
Transfer-Encoding: chunked

@prefix dcterms: <http://purl.org/dc/terms/>.
@prefix ldp: <http://www.w3.org/ns/ldp#>.

<http://example.org/container1/>
a ldp:DirectContainer;
dcterms:title "A Linked Data Platform Container of
Acme Resources";

ldp:membershipResource <http://example.org/container1/>;
ldp:hasMemberRelation ldp:member;
ldp:insertedContentRelation ldp:MemberSubject;
dcterms:publisher <http://acme.com/>.

To summarize, LDP is introducing important concepts like LDP Con-
tainers, it defines communication roles (client/server), methods (HTTP) and
formats (RDF). Together it represents an important building block for further
applications like LDN.

9

1. State-of-the-art and available technology

1.1.3.1 Relation of LDP to this thesis

Linked Data Platform is based on RDF and it is a superset of the Linked Data
Notifications (LDN). LDP concepts like Containers, its communication roles
(client/server) and other specifications are essential for the technologies and
concepts used in this thesis.

1.1.4 Linked Data Notifications

Linked Data Notifications (LDN) is a W3C recommendation [12] from the
Social Web Working Group. It is a subset of Linked Data Platform. LDN is a
protocol that specifies generic notification format for sharing between various
web applications.

It defines the following roles: target (for inbox discovery [13]), server with
inbox = receiver and client = consumer/sender: Figure 1.3

Figure 1.3: Overview of Linked Data Notifications. LDN overview with
distinct roles - Consumer, Sender and Receiver. Original at [12].

Consumer and Sender is typically one client web application. User A
sends a notification using his application (LDN sender) to the user B’s inbox
on his receiver application. User B can then access the notification on his
receiver using his application - LDN consumer. Inbox is an endpoint on the
Receiver, to which the notifications are sent by the Sender and from which they
are being accessed by the Consumer. Furthermore, LDN specifies a Target.

Target provides a way for a user to discover another person’s Inbox [13].
There are two ways to present the Inbox’s URL:

• as a response to an HTTP request using the Link header with rel value
http://www.w3.org/ns/ldp#inbox,

10

1.1. Current technologies that address the centralization problem

• or as a predicate <http://www.w3.org/ns/ldp#inbox> in
an RDF graph, where the subject is the requested resource
and the object is the Inbox: <http://localhost:3000/>
<http://www.w3.org/ns/ldp#inbox>
<http://localhost:5001/API/notifications/>

The first option is a way to present the Inbox by the server’s response headers,
the second way can be embedded in the content’s body, e.g. RDF, JSON-LD
or even embedded in the HTML (e.g. on a blog post):

1. HTTP Link

a) HEAD > Link: <http://example.org/inbox/>;
rel="http://www.w3.org/ns/ldp#inbox"

b) GET > Link: <http://example.org/inbox/>;
rel="http://www.w3.org/ns/ldp#inbox"

2. RDF

a) JSON with relation of type http://www.w3.org/ns/ldp#inbox
b) HTML <a> tag with rel="http://www.w3.org/ns/ldp#inbox"
c) HTML <link> tag with rel="http://www.w3.org/ns/ldp#inbox"
d) HTML <section> tag with

property="http://www.w3.org/ns/ldp#inbox"
e) text/turtle with <http://www.w3.org/ns/ldp#inbox> relation

Simple discovery example:

Listing 1.7: Example of LDN discovery. Example of a Linked Data Noti-
fications discovery of a Inbox using HTTP request to a LDN Target.

GET / HTTP/1.1
Accept: */*
Cache-Control: no-cache
Host: localhost:3000

HTTP/1.1 200 OK
Link: <http://localhost:5001/API/notifications/>;

rel="http://www.w3.org/ns/ldp#inbox"
Content-Type: text/html; charset=utf-8
Content-Length: 249
Date: Sat, 18 Jul 2020 10:02:35 GMT

<!DOCTYPE html>
<html>

...
</html>

11

1. State-of-the-art and available technology

LDN also specifies the message format (RDF, preferably JSON-LD) and
defines the application communication using HTTP protocol. Notifications
can contain any data. The following HTTP dump is example of a simple LDN
communication. The client, which is called ”consumer” in LDN, sends a GET
request to the Receiver to access his notifications. The server with the LDN’s
receiver role responds with RDF data (see Listing 1.8):

Listing 1.8: Example of LDN exchange - request and response. Exam-
ple of a Linked Data Notifications communication - consumer’s request and
receiver’s response.

GET /API/notifications/ HTTP/1.1
Host: localhost:5001
Accept: application/ld+json

HTTP/1.1 200 OK
Access-Control-Allow-Credentials: true
Content-Type: application/ld+json; charset=utf-8
Content-Length: 390
Date: Sat, 18 Jul 2020 08:43:20 GMT
{

"@context": "http://www.w3.org/ns/ldp#",
"@id": "http://localhost:5001/API/notifications/",
"@type": "ldp:Container",
"ldp:contains": [

{
"@id": "http://localhost:5001/API/notifications/0"

},
...
{
"@id": "http://localhost:5001/API/notifications/4"

}
]

}

To summarize, LDN is a protocol for a universal notification exchange
between LDN-compliant web applications. It uses RDF as data format and
HTTP as communication protocol.

1.1.4.1 Relation of LDN to this thesis

Linked Data Notifications is one of the communication protocols of the result-
ing client application. It is used to communicate with e.g. Solid server, read
user inboxes and other.

12

1.1. Current technologies that address the centralization problem

1.1.5 Activity Streams

Activity Streams 2.0 is a W3C data format specification [14]. It is ba-
sically a way of representing an activity in JSON. AS is specified with
application/activity+json MIME media type.

Listing 1.9: Basic AS example. Very simple example of an Activity Streams
data format.

{
"@context": "https://www.w3.org/ns/activitystreams",
"summary": "A note",
"type": "Note",
"content": "CTU FIT is awesome."

}

Using Activity Vocabulary9, AS defines entities that are neccessary to
represent an Activity. For example summary, type of an activity (e.g. ”Like”,
”Create”), actor and others. Furthermore, it defines collections, pagination
and other useful constructs The five core objects are:

• Object

• Actor

• Activity

• Collection

• CollectionPage

In the following example, you can see an example of a Person adding an
object of type Article to his blog, located at the target: id URL:

Listing 1.10: Detailed AS example. Example of an Activity Streams with
additional details [14].

{
"@context": "https://www.w3.org/ns/activitystreams",
"summary": "Martin added an article to his blog",
"type": "Add",
"published": "2015-02-10T15:04:55Z",
"actor": {
"type": "Person",
"id": "http://www.test.example/martin",
"name": "Martin Smith",

9https://www.w3.org/TR/activitystreams-vocabulary/

13

https://www.w3.org/TR/activitystreams-vocabulary/

1. State-of-the-art and available technology

"url": "http://example.org/martin",
"image": {
"type": "Link",
"href": "http://example.org/martin/image.jpg",
"mediaType": "image/jpeg"

}
},
"object" : {
"id": "http://www.test.example/blog/abc123/xyz",
"type": "Article",
"url": "http://example.org/blog/2011/02/entry",
"name": "Why I love Activity Streams"

},
"target" : {
"id": "http://example.org/blog/",
"type": "OrderedCollection",
"name": "Martin's Blog"

}
}

Activity Streams is used as the data format of the protocol ActivityPub.

1.1.5.1 Relation of AS to this thesis

Activity Streams data format is the base of the ActitivyPub (AP) protocol.
It defines the core objects of AP and is essential to understand the communi-
cation between federated AP applications.

1.1.6 ActivityPub

ActivityPub10 is a protocol for decentralized social networks, which can also
be extended to create all kinds of federated apps [15]. It is a W3C recommen-
dation that provides two kinds of API:

• C2S API - client-server protocol for AP clients for creating, updating
and deleting content;

• S2S API (server-server, federation protocol) for delivering notifi-
cations and content between AP applications.

ActivityPub application can implement only one or both of them, based on
the application’s scope. Based on the implementation, we differentiate three
kinds of AP applications (three ”conformance classes” based on the AP spec-
ification):

• C2S Client - a client application that implements C2S API (= Activ-
ityPub conformant Client), e.g. mobile application that connects to a
AP server.

10https://www.w3.org/TR/activitypub/

14

https://www.w3.org/TR/activitypub/#specification-profiles
https://www.w3.org/TR/activitypub/#specification-profiles
https://www.w3.org/TR/activitypub/

1.1. Current technologies that address the centralization problem

• C2S Server - a server that implements C2S API (= ActivityPub con-
formant Server), e.g. web server that allows mobile clients to read user
data.

• S2S Server - a server that implements S2S API (= ActivityPub con-
formant Federated Server), e.g. server that connects to another server
(like the whole https://fediverse.party/).

AP uses Activity Streams 2.011 as its data format. It adds couple of extra
requirements. Only Link and Object entities are allowed. In the Object
entity, id and type fields are required [15]. Additionally, the Actor object
must have inbox and outbox. An inbox is a collection of all messages received
by the Actor. Similarly, an outbox is a collection of messages produced by
the Actor.

An Actor is not only a person/human user, but it can be any fitting object,
such as a company, a website, software, city and others. Typically, it is one
of the AC core types:

• Application

• Group

• Organization

• Person

• Service

However, it can also be of another type, made with ActivityStreams exten-
sion12 (= type not defined by the Activity Vocabulary13). Furthermore, Ac-
tivityPub extends AS addressing with to, bto, cc, bcc and audience fields:

Listing 1.11: AP example - Submitting an Activity to the Outbox.
Example of an ActivityPub Like with additional details [14].

POST /outbox/ HTTP/1.1
Host: dustycloud.org
Authorization: Bearer XXXXXXXXXXX
Content-Type: application/ld+json; profile="https://www.w3.org/ns/

↪→ activitystreams"

{
"@context": ["https://www.w3.org/ns/activitystreams",

{"@language": "en"}],
"type": "Like",
"actor": "https://dustycloud.org/chris/",

11https://www.w3.org/TR/activitystreams-core/
12https://www.w3.org/TR/activitystreams-core/#extensibility
13https://www.w3.org/TR/activitystreams-vocabulary/

15

https://fediverse.party/
https://www.w3.org/TR/activitystreams-core/
https://www.w3.org/TR/activitystreams-core/#extensibility
https://www.w3.org/TR/activitystreams-vocabulary/

1. State-of-the-art and available technology

"name": "Chris liked 'Minimal ActivityPub update client'",
"object": "https://rhiaro.co.uk/2016/05/minimal-activitypub",
"to": ["https://rhiaro.co.uk/#amy",

"https://dustycloud.org/followers",
"https://rhiaro.co.uk/followers/"],

"cc": "https://e14n.com/evan"
}

1.1.6.1 Relation of AP to this thesis

ActivityPub is one of the communication protocols of the resulting client ap-
plication. It is used to communicate with e.g. Pleroma social network. The
whole Fediverse federated network14 is based on this protocol.

1.1.7 Solid

Solid is a set of open specifications, built on existing open standards like
LDN and RDF, that describes how to build applications in such a way that
users can conveniently switch between data storage providers and application
providers. [16]

1.1.7.1 WebID

A WebID is a unique identifier of an agent (e.g. user, organization). It is
an Internationalised Resource Identifier (IRI) and can be dereferenced as a
FOAF profile document [17]. An example is https://tonda.solid.commun
ity/profile/card#me.

The owner can set sharing preferences of his WebID to the WebID of third
parties [17]. In Solid, WebIDs are also used to manage access rights though
Web Access Control [17].

1.1.7.2 Pod

”A Pod is where data is stored on the Web with Solid. A user may store their
data in one Pod or several Pods, and applications read and write data into the
Pod depending on the authorisations granted by the user or users associated
to that Pod.” [17] (see Figure 1.4).

1.1.7.3 Relation of Solid to this thesis

Solid is the main server that the resulting client application is intended to
communicate with. It is used as the data storage for the user inboxes.

14https://fediverse.party/

16

https://tonda.solid.community/profile/card#me
https://tonda.solid.community/profile/card#me
https://fediverse.party/

1.1. Current technologies that address the centralization problem

Figure 1.4: Illustration of a solid pod with application. An illustration of
interaction of a web/mobile application with user’s solid pod. Original at [18].

17

Chapter 2
Analysis

This chapter deals with the analysis of the topics relevant to the thesis. First,
based on the Linked Data Notifications and ActivityPub protocols, the system
actors are identified. Second, the system requirements are specified, distin-
guishing between functional and non-functional ones. Third, use cases are
derived to further specify the desired system behavior.

With this system specification, an analysis of existing applications was
conducted in two phases. The first phase is a broad search for existing so-
lutions with quick analysis to determine whether the application meets the
basic requirements (sources, documentation are available) and is applicable
for a more detailed analysis. The second phase goes into details of the system
and studies if the application not only meets desired requirements but can
support all the use cases.

Lastly, the analysis result is presented.

2.1 Requirements

First, requirements and use cases were specified for use in further analysis.
Requirements cover required functionality on an abstract level. They are
constructed based on the required technologies and represent boundaries of
the system.

2.1.1 Actors

User roles can be divided into two roles as defined in LDN: consumer and
sender (see Figure 1.3).

2.1.1.1 Consumer

Consumer is a person who can access his inbox and notifications. He under-
stands what LDN and AP are and he wants to try communication using these

19

2. Analysis

protocols.

2.1.1.2 Sender

Sender is a person who can post notifications to other people’s inboxes. He
understands what LDN and AP are and he wants to try communication using
these protocols.

2.1.2 List of requirements

In this section, a list of requirements is presented, divided into functional and
non-functional requirements.

2.1.2.1 Functional requirements

List of functional requirements with short descriptions.

F1 Support LDN. Application supports communication using Linked
Data Notifications protocol.

F2 Support AP. Application supports communication using ActivityPub
protocol.

F3 Support LDP inbox monitoring. Application supports monitoring
of Linked Data Protocol inboxes that the user has access to.

F4 Support AP inbox monitoring. Application supports monitoring of
ActivityPub inboxes that the user has access to.

F5 Support JSON-LD. Application is able to exchange data with another
application using JSON-LD.

F6 Support system notifications. Application supports system notifica-
tions, such as pop-up information on incoming message to the monitored
LDP inbox.

F7 Support WebID login. Users can authorize and authenticate using
WebID 15.

F8 List of incoming messages. Application can show list of incoming
messages.

F9 List of sent messages. Application can show list of sent messages.

F10 Show message content. Application can show message content.

F11 List of contacts. Application can show list of user contacts.

F12 Show contact detail. Application can show contact detail.
15https://www.w3.org/wiki/WebID

20

https://www.w3.org/wiki/WebID

2.2. Use cases

2.1.2.2 Non-functional requirements

List of non-functional requirements with short descriptions.

N1 Web application. System is implemented as a web application.

N2 Git versioning. Application sources are versioned using Git VCS 16,
publicly hosted on GitHub17.

N3 Security. User can access only messages he has access to.

2.2 Use cases

A use case is a description of the specific ways a user interacts with a system.
Use cases are a more specific view of system requirements.

List of use cases is divided into two parts based on actors: consumer and
sender.

2.2.1 List of use cases - consumer

UC1 Start monitoring inbox. Consumer sets application so it monitors an
LDP inbox he has access to.

a) User logs in using WebID.
b) User clicks on action ”add inbox for monitoring”.
c) System shows form to add inbox.
d) User inputs IRI of a resource and submits.
e) System discovers resource’s inbox.
f) System starts monitoring messages coming to the inbox.

UC2 Stop monitoring inbox. User can turn off monitoring of an inbox he
has previously selected for monitoring.

a) User logs in using WebID.
b) System shows list of monitored inboxes.
c) User chooses inbox to stop being monitored.
d) System stops monitoring incoming messages to the chosen inbox.

UC3 Read list of all messages. Consumer can read a list of all incoming
messages that he has access to in all monitored inboxes.

a) User logs in using WebID.
16https://git-scm.com/
17https://github.com/

21

https://git-scm.com/
https://github.com/

2. Analysis

b) System shows list of incoming messages.

UC4 Read list of messages from selected inbox. Consumer can read a
list of incoming messages that he has access to in a selected inbox.

a) User logs in using WebID.

b) System shows list of monitored inboxes.

c) User chooses inbox.

d) System shows list of incoming messages.

UC5 Read detail of a received message. Consumer can read the complete
content of a received message that he has access to.

a) User logs in using WebID.

b) User sees list of his incoming messages.

c) User can open and read the full content of the incoming message.

UC6 Receive a system notification on new message. Consumer gets
a system notification, such as pop-up message, when he receives a new
message to one of his monitored inboxes.

a) User logs in using WebID.

b) System receives a message for the user to a monitored inbox.

c) System shows a pop-up system notification to the user.

22

2.2. Use cases

Figure 2.1: UML diagram of Consumer use cases

2.2.2 List of use cases - sender

UC7 Send a message to a person/resource from contact list using
LDN. Sender sends a message to an actor from contact list using Linked
Data Notifications protocol. The actor can be a person or some other
resource (like company, website, etc.) identified by IRI.

a) User logs in using WebID.
b) User sees list of his contacts.
c) User clicks on the action ”send message”.
d) User enters a content of the message.
e) User submits the message.
f) System sends the message to the resource’s inbox.

UC8 Send a message to a person/resource from contact list using
AP. Sender sends a message to an actor from contact list using Activi-
tyPub protocol. The actor can be a person or some other resource (like
company, website, etc.) identified by IRI.

a) User logs in using WebID.

23

2. Analysis

b) User sees list of his contacts.

c) User clicks on the action ”send message”.

d) User enters a content of the message.

e) User submits the message.

f) System sends the message to the resource’s inbox.

UC9 Send a message to an unknown person/resource using LDN.
Sender sends a message to an actor that is not in his contact list using
LDN protocol. The actor can be a person or some other resource (like
company, website, etc.) identified by IRI.

a) User logs in using WebID.

b) User opens a new message form.

c) User enters the receiver’s IRI.

d) User enters a content of the message.

e) User submits the message.

f) System sends the message to the resource’s inbox.

UC10 Send a message to an unknown person/resource using AP.
Sender sends a message to an actor that is not in his contact list us-
ing AP protocol. The actor can be a person or some other resource (like
company, website, etc.) identified by IRI.

a) User logs in using WebID.

b) User opens a new message form.

c) User enters the receiver’s IRI.

d) User enters a content of the message.

e) User submits the message.

f) System sends the message to the resource’s inbox.

24

2.3. Analysis of existing solutions - LDN clients and Solid servers

Figure 2.2: UML diagram of Sender use cases

2.3 Analysis of existing solutions - LDN clients
and Solid servers

An analysis of existing LDN clients and Solid server implementations was
conducted to determine whether they could be used for the thesis goal
(a client and a server supporting decentralized messaging). Applications
were searched on the web using Google with terms like ”ldn inbox”, “solid
server” and similar. Also, existing implementations linked at “LDN Test
Reports and Summary” https://linkedresearch.org/ldn/tests/summary and
https://solidproject.org/use-solid/apps were examined.

2.3.1 Criteria for analysis of existing solutions

The following criteria were considered:

• application has available sources;

• license permits extending the application;

• application has sufficient documentation on how to run it, or it is
runnable without the need for documentation;

25

2. Analysis

• application is live or with active development - sources without a commit
within 1 year were excluded;

• application support for linked data, LDP, LDN, AP, RDF and system
notification;

• application must be extensible with our cause - LDN/AP notifications.
Applications without the possibility of being extended with our use cases
were excluded.

Based on these criteria, three applications were selected for more detailed
analysis (see section Detailed analysis below).

2.3.2 Overview of all analysed applications - LDN

This section contains list of all analysed applications with short description,
result of the analysis and link for access.

2.3.2.1 SCTA inbox receiver

Only a simple LDN app to pass the LDN test suite18. No information available
on how to run this. No extension possible.

Accessible at https://github.com/scta/scta-inbox.

2.3.2.2 Sloph/DIY Inbox

Sample/POC LDN demonstration in PHP. No extension possible. Made only
to pass the LDN test suite19.

Accessible at https://rhiaro.co.uk/2017/08/diy-ldn.

2.3.2.3 gold

Reference Linked Data Platform server for the Solid platform. Not maintained
anymore - latest commit on Oct 10, 2018.

Accessible at https://github.com/linkeddata/gold.

2.3.2.4 ldn-streams

Implementation of Linked Data Notifications for RDF streams. Not main-
tained anymore - latest commit on Jun 11, 2018.

Accessible at https://github.com/jpcik/ldn-streams.
18LDN test suite, available at https://linkedresearch.org/ldn/tests/
19see footnote above

26

https://github.com/scta/scta-inbox
https://rhiaro.co.uk/2017/08/diy-ldn
https://github.com/linkeddata/gold
https://github.com/jpcik/ldn-streams
https://linkedresearch.org/ldn/tests/

2.3. Analysis of existing solutions - LDN clients and Solid servers

2.3.2.5 Carbon LDP

Carbon LDP is ”an enterprise-class Linked Data Platform that helps artists
and engineers create and extend web applications with ease” [19]. Based on
its broad capabilities, it has been selected for a detailed analysis, see below.

Accessible at https://carbonldp.com/, https://github.com/CarbonLDP.

2.3.2.6 solid-server in Node

Solid-server is the main candidate for the possible solution. It is implemented
in NodeJS on top of the file system. Solid supports Linked Data Platform, Web
Access Control, WebID+TLS Authentication, real-time live updates (using
WebSockets) and other features. It is available both as a NodeJS project and
as a Docker container. Detailed analysis is available below.

Accessible at https://github.com/solid/node-solid-server.

2.3.2.7 pyldn

Pyldn is a lighweigth Linked Data Notifications (LDN) receiver implemented
in python. As it does not include other LDN parts, it was not selected for
further analysis.

Accessible at https://github.com/albertmeronyo/pyldn.

2.3.2.8 Virtuoso Universal Server

Commercial Data Virtualization platform. Sources not available.

Accessible at https://virtuoso.openlinksw.com/#this.

2.3.2.9 maytkso

”HTTP server and command-line RDF tool to get/send, serialise data.” [20]
Written in one JS file, merely an LDN server/receiver. Not acceptable for
extension.

Accessible at https://github.com/csarven/mayktso.

2.3.2.10 Apache Marmotta

Open platform for LDP, implemented as a Java web application. Has to be
run on a JavaEE application server. Based on its capabilities, it has been
selected for a detailed analysis below.

Accessible at https://marmotta.apache.org/.

27

https://carbonldp.com/
https://github.com/CarbonLDP
https://github.com/solid/node-solid-server
https://github.com/albertmeronyo/pyldn
https://virtuoso.openlinksw.com/#this
https://github.com/csarven/mayktso
https://marmotta.apache.org/

2. Analysis

2.3.2.11 IndieAnndroid/ blog-a-loosh

IndieAnndroid is a Indieweb blog platform. It has been developed for personal
use and not applicable for our purpose.

Accessible at https://github.com/Kongaloosh/blog-a-loosh.

2.3.2.12 LDP-CoAP

LDP for the Constrained Application Protocol. Provided mapping of LDP
over HTTP to CoAP (RFC 7252 Constrained Application Protocol [21]). Not
applicable for our purpose.

Accessible at http://sisinflab.poliba.it/swottools/ldp-coap/, https:
//github.com/sisinflab-swot/ldp-coap-framework.

2.3.2.13 distbin.com

Application similar to pastebin - for easy copy, paste and share of text. Not
useful for messaging. Not available anymore.

Accessible at https://distbin.com/.

2.3.2.14 Fedora Repository

Big repository system for management and dissemination of digital content
(digital libraries and archives). It does not support use cases such as decen-
tralized messaging for a common user.

Accessible at https://wiki.duraspace.org/display/FF/Fedora+Reposit
ory+Home.

2.3.2.15 SNS

SNS is a social network based on Solid. It is built using JavaScript. No sources
available, so the project cannot be used for this thesis.

Accessible at https://electrapro-pk.github.io/SNS/.

2.3.2.16 Solidarity

Chat application written in node.js. It is an online chat with channels. No
license information available.

Accessible at https://github.com/scenaristeur/solidarity, https:
//scenaristeur.github.io/solidarity/.

28

https://github.com/Kongaloosh/blog-a-loosh
http://sisinflab.poliba.it/swottools/ldp-coap/
https://github.com/sisinflab-swot/ldp-coap-framework
https://github.com/sisinflab-swot/ldp-coap-framework
https://distbin.com/
https://wiki.duraspace.org/display/FF/Fedora+Repository+Home
https://wiki.duraspace.org/display/FF/Fedora+Repository+Home
https://electrapro-pk.github.io/SNS/
https://github.com/scenaristeur/solidarity
https://scenaristeur.github.io/solidarity/
https://scenaristeur.github.io/solidarity/

2.3. Analysis of existing solutions - LDN clients and Solid servers

2.3.2.17 OChat

Simple chat application written with React. Not maintained anymore (last
commit on Jul 25, 2019).

Accessible at https://github.com/jaxoncreed/o-chat, https://chat.o
.team/.

2.3.2.18 Friend Requests Exploration

Exploration into how Solid could be used for sending friend requests. Not
extensible.

Accessible at https://github.com/inrupt/friend-requests-exploratio
n.

2.3.2.19 solid-inbox

Inbox for processing notifications. It is just a single JavaScript file application.
It is not maintained anymore.

Accessible at https://github.com/solid/solid-inbox.

2.3.3 Detailed analysis of selected applications

Applications selected in the previous analysis were subjected to a more de-
tailed analysis based on the requirements and support of possible use cases.
Table 2.1 is an overview of the analysis, details follow below.

29

https://github.com/jaxoncreed/o-chat
https://chat.o.team/
https://chat.o.team/
https://github.com/inrupt/friend-requests-exploration
https://github.com/inrupt/friend-requests-exploration
https://github.com/solid/solid-inbox

2. Analysis

Table 2.1: Detailed analysis. This table shows application support of re-
quirements and use cases. Only applications selected for detailed analysis are
shown. See requirements section and use cases section for details. X means
full support, 7 means no support, - means that the support could not be
verified or that it is not applicable in the application’s scope.

requirement/
use-case ID

application name
solid-server Apache Marmotta

F1 X X
F2 X 7

F3 X X
F4 X 7

F5 X X
F6 X -
F7 X 7

F8 X -
F9 X -
F10 X -
F11 X -
F12 X -
N1 X X
N2 X X
N3 X X
UC1 X -
UC2 X -
UC3 X -
UC4 X -
UC5 X -
UC6 X -
UC7 X -
UC8 X -
UC9 X -

30

2.3. Analysis of existing solutions - LDN clients and Solid servers

2.3.3.1 solid-server

Solid is a project led by Prof. Tim Berners-Lee, inventor of the World Wide
Web, taking place at MIT [22]. Solid-server is a server is implemented in
NodeJS on top of the file system. It supports Linked Data Platform, Web
Access Control, WebID+TLS Authentication, real-time live updates (using
WebSockets) and other features. It is available both as a NodeJS project and
as a Docker container.

Solid-server is still a developing prototype. The main instance is running
at https://solid.community/, however it is designed so anybody can host
their instance. It is published under the free MIT license [23], so it is available
for extension.

Source code and documentation is available at https://github.com/sol
id/node-solid-server.

2.3.3.2 Solid inbox client

As a part of the public Solid server instance at https://solid.community/,
there is an existing inbox client application. The problem is that its user
interface (UI) is very un-intuitive and cumbersome. Figure 2.3 is the UI for
the use case UC4 - read a list of inbox messages:

Figure 2.3: Solid inbox - list of messages. Screenshot of the current official
inbox client application.

The following two screenshots Figure 2.4 and Figure 2.5 capture the solid
UI for message detail - UC4.

31

https://solid.community/
https://github.com/solid/node-solid-server
https://github.com/solid/node-solid-server
https://solid.community/

2. Analysis

Figure 2.4: Solid inbox - message detail. Screenshot of the current official
inbox client application.

As you can see, the current UI makes it impossible to access the detail
content and the user is forced to use another solution (such as HTTP GET
the RDF document representation.

32

2.3. Analysis of existing solutions - LDN clients and Solid servers

Figure 2.5: Solid inbox - message content. Screenshot of the current
official inbox client application.

33

2. Analysis

2.3.3.3 Apache Marmotta

Apache Marmotta is an Open Platform for Linked Data [24]. Based on the
Linked Media Framework project, it is an implementation of a Linked Data
Platform. It is implemented as a Java Web Application [24].

Marmotta features Linked Data server for the Java EE stack, LDP,
SPARQL and LDPath querying, caching and basic security mechanisms. The
installation comes as a Java Web Archive (.war) file that has to be deployed
on an application server (such as Tomcat) [24].

Marmotta is a robust, well-documented platform. However, based on the
version list [25] and issue tracker [26], it does not appear to be under active
development. The last version was published in June 2018 [25] and there are
unresolved open issues from 2018 [26].

Apache Marmotta is published under the open-source Apache Software
License, Version 2.0: https://marmotta.apache.org/license.html.

2.3.3.4 Carbon LDP

Carbon LDP is an enterprise server implementation of LDP. It aims to help
engineers and artists to create web applications supporting LDP. It provides
R/W access to RDF graph data using RESTful HTTP. Homepage: https:
//carbonldp.com/, GitHub page: https://github.com/CarbonLDP.

Carbon LDP supports REST API requests over HTTP. It supports JSON-
LD, Turtle and RDF XML serializations. Data are stored in native RDF for-
mat - RDF triples in a NoSQL database. It also supports querying documents
using SPARQL.

At first glance, Carbon LDP appears to be open source with commercial
support (like e.g. Spring framework20). However, after a more thorough analy-
sis Carbon LDP emerges as a commercial product without sources available
and without an option for extensions. It does contain open source modules,
such as a graph/document visualisation tool Workbench 21 and JavaScript
SDK 22. But these modules do not meet requirements for this theses
and thus Carbon LDP is disqualified from further use.

2.4 Analysis of existing solutions - ActivityPub
applications

This section deals with the analysis of existing ActivityPub applications. The
main goal was to find an ActivityPub C2S Server (a server that supports AP
client API - C2S protocol, or ”Social API”, see subsection 1.1.6 for details).

20https://spring.io/
21https://github.com/CarbonLDP/carbonldp-workbench
22https://github.com/CarbonLDP/carbonldp-js-sdk

34

https://marmotta.apache.org/license.html
https://carbonldp.com/
https://carbonldp.com/
https://github.com/CarbonLDP
https://spring.io/
https://github.com/CarbonLDP/carbonldp-workbench
https://github.com/CarbonLDP/carbonldp-js-sdk

2.4. Analysis of existing solutions - ActivityPub applications

As a part of this analysis, also a search for existing clients was conducted.
Results are available in the Table 2.2.

The analysis is mostly based on the lists of ActivityPub implementations
available at https://activitypub.rocks/implementation-report/ and
https://en.wikipedia.org/wiki/ActivityPub.

2.4.1 Criteria for analysis of existing AP solutions

The following criteria were considered:

• application has available sources;

• license permits extending the application;

• application has sufficient documentation on how to run it, or it is
runnable without the need for documentation;

• application is live or with active development - sources without a commit
within 1 year were excluded;

• server supports ActivityPub client to server API

2.4.2 Overview of analysed servers - AP

This section contains a table with the analysis result for a quick overview and
a list of analysed applications with short description, result of the analysis
and link for access.

Table 2.2: AP API support. This table shows application support of Ac-
tivityPub API. The table columns (C2S Client, C2S Server, S2S Server) are
based on the subsection 1.1.6.

ActivityPub API part
application name C2S Client C2S Server S2S Server

distbin.com (X)23 (X) (X)
Go-Fed 7 X X
Express ActivityPub Server 7 7 X
Mastodon 7 7 X
Pleroma 7 X X
AndStatus X 7 7

23distbin only supports parts of AP API

35

https://activitypub.rocks/implementation-report/
https://en.wikipedia.org/wiki/ActivityPub

2. Analysis

2.4.2.1 distbin.com

Distbin is a distributed service similar to a more widely known application
pastebin24 - users can paste any text and share it using URL. According to
the activitypub.rocks implementation report, Distbin is supporting C2S API.
However no public instance of this service is available, the proclaimed website
http://distbin.com/ is not running.

Sources are available at https://github.com/gobengo/distbin.

2.4.2.2 Go-Fed

Go-Fed is a suite of libraries for writing Fediverse applications. It supports
both CS2 and S2S API. As its name suggests, Go-Fed is written in the ”Go”
programming language25. This exotic language, together with the lack of
publicly running servers was the main reason not to use Go-Fed as a server
for our solution.

Accessible at https://go-fed.org/.

2.4.2.3 Express ActivityPub Server

Express ActivityPub Server is a simple ActivityPub implementation written
in Node.js. It was created as a sample implementation and is not intended for
production usage. No public instances of this server are available.

Accessible at https://github.com/dariusk/express-activitypub/.

2.4.2.4 Mastodon

Mastodon is a social network that was built in support of web re-
decentralization. It is an open-source federated network and it is using Activ-
ityPub as the federation protocol. User can choose an existing network with
various topics or create his own instance. Mastodon instances can be part of
Fediverse26.

Accessible at https://joinmastodon.org/.

2.4.2.5 Pleroma

Pleroma is an open-source social network. It is a fork of the Mastodon project
with aim for lightweight devices, such as a Pi computer. Pleroma has also
capabilities to be part of the Fediverse27.

24https://pastebin.com/
25https://golang.org/
26https://fediverse.party/
27https://fediverse.party/

36

http://distbin.com/
https://github.com/gobengo/distbin
https://go-fed.org/
https://github.com/dariusk/express-activitypub/
https://joinmastodon.org/
https://pastebin.com/
https://golang.org/
https://fediverse.party/
https://fediverse.party/

2.5. Implementation analysis

Accessible at https://pleroma.social/.

2.4.2.6 AndStatus

AndStatus is an open-source mobile application that works as a client for
various social networks including Mastodon, Twitter, ActivityPub (Client to
Server), GNU social and Pump.io. It also implements the C2S AP API.

AndStatus is written in Java and runs on the Android mobile platform. It
is not a web-based application and thus is not usable for the purpose of this
thesis.

Accessible at https://github.com/andstatus/andstatus.

2.4.3 AP servers analysis result

Pleroma was chosen as the application server because it is the only Activity-
Pub implementation that meets all criteria - supports CS2 API, has running
public servers available and is open-source.

2.5 Implementation analysis

As a part of this thesis, before designing the final application, several proof-
of-concept applications were created in order to explore the W3C recommen-
dations and protocols:

1. inbox - LDN proof-of-concept - web application created to investi-
gate the LDN protocol, test the architecture, technologies and the LDN,
RDF libraries.

2. LDN-target - simple web application separated from the original inbox
POC in order to document how to use the LDN target.

3. js-notification-poc - implementation of the JavaScript Notification
API and Push API. Its development was intended to get familiar with
the specifications and test the APIs.

Detailed description of the applications is available at Appendix A. Based
on this analysis, solid-client-authn-js28 was chosen as the only usable library
for WebID authentication. Similarly, solid-client29 was chosen as the best
library for connecting to the Solid POD.

28https://github.com/inrupt/solid-client-authn-js
29https://github.com/inrupt/solid-client-js

37

https://pleroma.social/
https://github.com/andstatus/andstatus
https://github.com/inrupt/solid-client-authn-js
https://github.com/inrupt/solid-client-js

2. Analysis

2.6 Analysis results

In the analysis chapter, first, requirements for the solution were formulated.
Use cases were derived from requirements to specify user actions. Based on
the requirements and use cases, a broad analysis of existing solutions was
conducted.

Only solid-server and Apache Marmotta matched the criteria of the first
research for Linked Data Notifications (LDN) solution and were selected for
a more detailed review.

After a more detailed analysis, the solid-server was selected as a suf-
ficient server solution to support the LDN client part of the thesis. There
is no need to implement a new server solution.

It was determined that there is no usable messaging client supporting
LDN protocol and a new one should be implemented.

Based on the implementation analysis, the solid-client-authn-js and
solid-client libraries were selected for client implementation.

The research for ActivityPub (AP) clients and servers concluded that only
Pleroma supports the client-to-server (C2S) API and can be used as the
AP server. Apart from the mobile application AndStatus, no web client
implementing AP C2S API has been found. Thus it was determined
that a new client should be implemented.

38

sec:impl_analysis

Chapter 3
Design

First, a technical research, three proof-of-concept applications (POC) were
developed. Then, based on these applications, the final client application
Inbox was implemented. This chapter describes design of the final Inbox
application. For details about the POC applications, see Appendix A.

3.1 System architecture: in-browser web
application + server back-end

The goal of this thesis is to ”implement a client and a server supporting
decentralized messaging on the Web”. Based on this requirement, the client
needs to be a web application, meaning user can access its interface in a web
browser. It connects to a server where the user data is stored.

3.2 Client

In this section, the Inbox client application’s design is introduced.

3.2.1 Programming languages and frameworks

Open-source web application framework Angular30 was chosen as the appli-
cation base. It allows to create modern web applications and take advantage
of the existing solid libraries for authentication and communication with Solid
server.

Angular Material31 components were chosen as the best fit for develop-
ing user interface.

30https://angular.io/
31https://material.angular.io/

39

https://angular.io/
https://material.angular.io/

3. Design

Both Angular framework and Material components are written in Type-
Script. TypeScript is a language that allows type-safe programming and
direct compilation to JavaScript.

3.2.2 Application architecture: MVC

As the application is written in Angular, it takes advantage of the Model-View-
Controller architecture. The Model is represented by entities and services.
The View is represented by HTML templates with CSS styles sheets. The
Controller is represented by components.

More details on the model are provided in the application LDN and AP
parts below.

3.2.3 User interface design - wireframes

User interface was designed using wireframes - a low-fidelity prototypes of
application web pages. The web pages are based on the use cases. The
wireframes were created using free online tool Photopea32.

Please note that the solid.community login pop-up windows in the screens
2 and 3 are screenshots of actual 3rd party component.

Figure 3.1: Screen 1 - welcome page.

32https://www.photopea.com/

40

https://www.photopea.com/

3.2. Client

Figure 3.2: Screen 2 - login using Solid authentication - step 1.

Figure 3.3: Screen 3 - login using Solid authentication - step 2.

41

3. Design

Figure 3.4: Screen 4 - start monitoring inbox - UC1.

Figure 3.5: Screen 5 - stop monitoring inbox - UC2.

42

3.2. Client

Figure 3.6: Screen 6 - Read list of all messages - UC3, default screen.
All messages from all monitored inboxes combined. This is the main screen
user will see when he logs in.

Figure 3.7: Screen 7 - Empty list of all messages. All messages view,
when no messages are available.

43

3. Design

Figure 3.8: Screen 8 - Read list of messages from one inbox. All
messages from chosen inbox.

Figure 3.9: Screen 9 - Read list of messages from one inbox - empty.
Detail of inbox, when there are no messages available.

44

3.2. Client

Figure 3.10: Screen 10 - Message detail - UC4.

Figure 3.11: Screen 11 - Send a notification - UCs 6 - 9, empty On
the screen, there is an option to send a notification to an either person from
Solid contact list, or directly using IRI.

45

3. Design

Figure 3.12: Screen 12 - Send a notification - UCs 6 - 9, filled User can
specify multiple recipients.

3.2.4 Linked Data Notifications part

Based on the requirements from section 2.1, namely the requirement ”F7 Sup-
port WebID login”, the web application needs to rely on the existing libraries
for WebID authentication. Implementing custom ones would be out of scope
of this thesis.

As a part analysis (see section 2.5), several proof-of-concept applications
were created in order to explore the W3C recommendations and protocols.
With the experience from these implementations, the solid-client-authn-js33

was chosen as the only usable library for WebID authentication. Also, solid-
client34 was chosen as the best library for connecting to the Solid POD.

The libraries and experience with POC implementation determined the
final application architecture - in-browser web application without back-end,
written in JavaScript. Thanks to the usage of Solid PODs, there is no need
for custom data storage and all users data can be stored in their Solid profile.

33https://github.com/inrupt/solid-client-authn-js
34https://github.com/inrupt/solid-client-js

46

https://github.com/inrupt/solid-client-authn-js
https://github.com/inrupt/solid-client-js

3.2. Client

Figure 3.13: Application architecture - web application running in user’s
browser, reading data from Solid POD hosted on a solid-server

3.2.4.1 Model

The application is using data from the Solid POD directly, so it does not need
an extensive model. But few entities are necessary in order to manipulate
data in the application:

• Inbox - each instance represents single http://www.w3.org/ns/ldp#i
nbox of the logged-in user, identified by its url. Class member messages
holds all messages of that inbox. style is merely a helper for CSS inline
style (color of inbox label).

• InboxMessage - each instance of InboxMessage class represents a single
message in the user’s inbox. Identified by its url, it holds all informa-
tion about the message, such as created date, message type (plaintex-
t/json/rdf..., based on the message metadata). When the message is
of an Activity Streams type, its JSON gets parsed and fields such as
its sender (replyToMessageInboxUrl field) and original’s message URL
(inReplytTo field) are filled.

• Contact represents contacts from user’s profile and contacts added in
the send new message form.

• ContactInbox - as each user represented by his/her WebID can have
multiple inboxes, ContactInbox holds information about every single
such inbox (much like the Inbox class).

47

http://www.w3.org/ns/ldp#inbox
http://www.w3.org/ns/ldp#inbox

3. Design

Figure 3.14: UML diagram of application entities

3.2.4.2 Technical details - notifications using WebSockets

To enable notifications for incoming messages, the specification of the solid-
server offers WebSockets API35. WebSockets is a JavaScript API36 that en-
ables ”push” notifications without server polling. See Figure 3.15 for details.

35https://github.com/solid/solid-spec/blob/master/api-websockets.md
36https://developer.mozilla.org/en-US/docs/Web/API/WebSockets API

48

https://github.com/solid/solid-spec/blob/master/api-websockets.md
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API

3.2. Client

Figure 3.15: Receiving system notifications for incoming messages -
sequence diagram illustrating User A receiving notification for new message
from User B.

3.2.5 ActivityPub part

Based on the analysis, the ActivityPub part of the application should use
Pleroma as its back-end server. The social network Pleroma and its original
version Mastodon are using a different authentication system than the solid-
server: OAuth and WebFinger (as opposed to the solid-server’s WebID). There
are ongoing discussions in the community about interconnecting these two
enterprises37, however there is no connection for now. Because of this, the
LDN and AP client parts need to be logically separated.

The client connection to the Pleroma is designed using client-to-server API
(see subsection 1.1.6 for details) Thanks to this, there is no need for special
application model. All data are loaded directly from Pleroma servers and
stored in browser memory.

The integration was designed after discussion with community38 and
Pleroma developers39. The following steps are required in order to login user,
register the client and retrieve data from server:

1. In client, user submits his Pleroma account’s username with URL of the
server instance, e.g. https://greenish.red/users/<username>;

37https://forum.solidproject.org/t/discussion-solid-vs-activitypub/2685 and
https://socialhub.activitypub.rocks/t/which-links-between-activitypub-and-so
lid-project/529/22

38https://socialhub.activitypub.rocks/t/want-to-build-an-activitypub-client-where-to-
start/993/17

39https://gitlab.com/vpzomtrrfrt/c2sdemo

49

https://forum.solidproject.org/t/discussion-solid-vs-activitypub/2685
https://socialhub.activitypub.rocks/t/which-links-between-activitypub-and-solid-project/529/22
https://socialhub.activitypub.rocks/t/which-links-between-activitypub-and-solid-project/529/22
https://gitlab.com/vpzomtrrfrt/c2sdemo

3. Design

2. from the URL, the client application fetches user data - ActivityPub
Actor object40, typically in JSON-LD serialization;

3. from the AP Actor object, the endpoints.oauthRegistrationEndpoint is ex-
tracted. This is an URL at which the CS2 client application should
register.

4. To register, the client application POSTs to this URL with required
information:

• client name (e.g. Inbox),

• redirect URL (callback address, URL that the server redirects to
after a successful registration),

• requested permission scope - e.g. ’read write follow’.

The response from server includes client_id and client_secret parame-
ters. Client should save this data.

5. When the client is successfully registered, it can now proceed to login the
user. The user is redirected to the endpoints.oauthAuthorizationEndpoint
URL from the previously received AP Actor object. The URL is Pleroma
login page, where user enters his/her credentials. This way user never
provides his sensitive data to the client.

6. After a successful login, the Pleroma server redirects user back to the
client’s callback URL, while providing two additional parameters:

• ”code” - unique identifier to retrieve OAuth token,

• ”state” (”apid”) - URL with user identification (typically equal to
URL user submits in the first step, e.g. https://greenish.red/users
↪→ /<username>).

7. Client extracts the state/apid parameter, e.g. https://greenish.red/users
↪→ /<username>, and fetches it (similar to the first two steps).

8. From the response (ActivityPub Actor) the endpoints.oauthTokenEndpoint
↪→ URL is extracted. Client then fetches an OAuth token from this
URL, using the client_id and client_secret parameters from previous
communication (stored in the application memory).

9. Finally, this token can be used to retrieve some data, e.g. fetch user.
↪→ inbox (e.g. https://greenish.red/users/<username>/inbox).

40https://www.w3.org/TR/activitypub/#actor-objects

50

https://greenish.red/users/<username>/inbox
https://www.w3.org/TR/activitypub/#actor-objects

3.3. Server

Figure 3.16: Communication with Pleroma server - sequence diagram
illustrating Client application communicating with Pleroma server.

Because of the limitations in the Pleroma’s implementation of the C2S
API [27], the Inbox client is designed to only access the user’s Pleroma inbox
that contains public statuses.

3.3 Server

The analysis (see section 2.6) concluded that there is no need to implement a
new server, neither for Linked Data Notifications, nor ActivityPub part.

51

3. Design

3.3.1 Linked Data Notifications part - solid-server

As described at subsection 3.2.4 and Figure 3.13, the application’s LDN client
part is using Solid POD hosted at solid-server as the back-end.

3.3.2 ActivityPub part - Pleroma

As described in the analysis results, the client’s ActivityPub part is using
Pleroma server as its back-end, taking advantage of its C2S server API imple-
mentation.

52

Chapter 4
Implementation

This chapter covers implementation specifics of the thesis main application
Inbox. For implementation details about the proof-of-concept applications,
see Appendix A.

The main application of this thesis was developed in two iterations. The
first iteration was written using plain JavaScript with no application frame-
work. However, it was deemed insufficient at the thesis defense. Detailed
description of the application is available at the Appendix A.

Implementation details of the second iteration are described below.

4.1 Client

In this section, the implementation details of the user-facing client application
are described. The client is split to two conceptual parts:

1. Linked Data Notifications - connecting to solid-server;

2. ActivityPub - connecting to Pleroma server.

4.1.1 Linked Data Notifications part

This subsection describes implementation details of the LDN client part.

4.1.1.1 Authentication

Inbox application relies on the solid-client-authn-js41 library for authentica-
tion. Application itself does not store any private user data. Only a list of
arbitrary inboxes manually added for monitoring is stored in user’s browser
memory. However this is not private data that would be insecure to store. All
requests for private user data are secured with session information. This way
the application transfers any security concerns to the Solid server.

41https://github.com/inrupt/solid-client-authn-js

53

https://github.com/inrupt/solid-client-authn-js

4. Implementation

Parts of the application that are accessible only to a logged user are secured
with auth-guard.service.ts:

canActivate(route: ActivatedRouteSnapshot, state: RouterStateSnapshot):
↪→ UrlTree | boolean {
if (this._inruptService.isLoggedIn()) {

return true;
} else {

return this._router.parseUrl('/login');
}

}

Then, in route definition at app-routing.module.ts, the secured routes
are specified with canActivate:

{ path: 'monitor', component: MonitorInboxesComponent, canActivate: [
↪→ AuthGuardService]}

4.1.1.2 Working with Solid POD

To access user data stored on a Solid POD, the solid-client-js library is used.
It supports two basic fetch modes: authenticated and unauthenticated. The
latter is available in static context and provides an easy way to work with
public RDF data. For example this is the way to find all inboxes associated
with a WebID:

static async retrieveInboxUrlsFromWebId(webID: string): Promise<string[]> {
const myDataset: SolidDataset = await getSolidDataset(webID);
const profile = getThing(myDataset, webID);
return getUrlAll(profile, LDP.inbox);

}

Minor inconvenience of the library is, as shown in the example above,
that it works with JavaScript promises, as opposed to Angular’s RxJS Ob-
servables42. Developer then can either mix Promises and Observables in the
application, or wrap the Promise into Observable:

private _getObservableInboxes$() {
return new Observable<Inbox[]>((subscriber) => {
InboxDiscoveryService.retrieveInboxUrlsFromWebId(this.getSessionWebId()
↪→)
.then(inboxUrls => {

this._prepareInboxes(inboxUrls).then(inboxes => {
subscriber.next(inboxes);

42https://rxjs-dev.firebaseapp.com/

54

https://rxjs-dev.firebaseapp.com/

4.1. Client

subscriber.complete();
})

});
}).pipe(shareReplay(1));

}

The shareReplay(1) also removes redundant calls of the same endpoint,
multiple observers can read the same data without extra HTTP request to
the server.

4.1.1.3 Retrieving inbox name

The default Solid POD’s inbox, the container for messages, does not have any
name. But since users can have multiple inboxes (like email addresses), it
is probable that they might want to name them, e.g. ”school inbox”, ”work
inbox” and similarly. RDF natively supports this. However there are multiple
ways of adding name to the resource, so reading the name from RDF must
accept at least the best-practise options. The Inbox application accepts three
options, all use http://purl.org/dc/terms/ predicate:

• string with locale - application default language (English) tag,

• string with any locale,

• string with no locale.

Using the solid-client-js library, this is the way to implement it:

private _findInboxName(inboxUrl): Promise<string> {
return new Promise<string>(async (resolve, reject) => {

try {
await getSolidDataset(inboxUrl, {fetch: this.session.fetch}).then(

inboxDataSet => {
const inbox = getThing(inboxDataSet, inboxUrl);

const titleEn = getStringWithLocale(inbox, DCTERMS.title, "en");
if (titleEn) {

resolve(titleEn);
return;

}

const titleSomeLocale = getStringByLocaleAll(inbox, DCTERMS.title
↪→);

if (titleSomeLocale && titleSomeLocale[0]) {
resolve(titleSomeLocale[0]);
return;

}

const titleNoLocale = getStringNoLocaleAll(inbox, DCTERMS.title);

55

http://purl.org/dc/terms/

4. Implementation

if (titleNoLocale && titleNoLocale[0]) {
resolve(titleNoLocale[0]);
return;

}

reject();
return;

});
} catch (error) {

console.error("Error␣when␣finding␣inbox␣name:␣", error);
reject();

}});
}

4.1.1.4 Inbox monitoring using WebSockets

As described at subsubsection 3.2.4.2, WebSockets (WS) are used for inbox
monitoring. In order to receive WS message, the application has to open the
connection with correct WS protocol supported by the server. During the
development, problem with the WS protocol version has occurred, however
it has been fixed in the meantime (see subsection C.2.4 for the details). The
most important part is what happens after receiving WS message - see the
socket.onmessage callback:

private connect(inboxUrl: string, connectNew: boolean = false) {
let socket = new WebSocket(MonitorInboxesService.getWsUrlFromInboxUrl(

↪→ inboxUrl), MonitorInboxesService.WS_SOLID_PROTOCOL);
socket.onopen = this.onopenCallback(inboxUrl, this._snackBar, connectNew)

↪→ ;

socket.onmessage = (msg) => {
if (msg.data && msg.data.slice(0, 3) === 'pub') {

this.zone.run(() => {
this._snackBar.openFromComponent(MessageSnackbarComponent, {data:

↪→ inboxUrl});
this._systemNotificationsService.inboxNotification(inboxUrl);

});
}

}
this.sockets.push(socket);

}

If the message contains data and the data is string ’pub’ (as published), the
application notifies the user, using both in-browser and system notification (if
enabled). The this.zone.run is needed in order to run the code in Angular
context.

56

4.1. Client

However using WebSockets for inbox monitoring has its limitations. Ac-
cording to the specification43, the server sends WS messages on all CRUD
(POST, PUT, PATCH, DELETE) operations on the subscribed resource. This
means that if e.g. message deletion would be implemented, there is no way to
distinguish between new incoming message (POST) and the DELETE request.
In order to keep getting notifications on new messages, a subsequent message
reload and comparison would need to be implemented, using WS messages
only as a trigger for this check.

Furthermore, the current solid-server implementation has another bug lim-
iting the WS usage - it is sending phantom WS messages even when no CRUD
operation has occurred on the resource. See Appendix C for details and link
on this issue.

4.1.1.5 Problems encountered

During development of the applications, many problems were encountered.
This section describes the most affecting issues and problems that led to im-
plementation changes. Part of these problems were bugs in the used third-
party libraries. These bugs were reported to the library authors and part of
them was already fixed. For list of these bugs see Appendix C.

Cannot use solid libraries in Angular with npm Angular uses npm44

as its default package manager. Based on the analysis, solid-client-js library
was chosen to connect to the Solid POD. However after including this library
in the Angular application, the build fails.

The problem lays in the library dependencies and missing polyfills (supply-
ing new JavaScript functions in old browsers) in the new npm builds. After
reporting the issue to the library authors (see https://github.com/inr
upt/solid-client-js/issues/608) and working with them on a fix, a
workaround had to be found in order to use this library.

A custom webpack configuration is needed for the build to work. This is
not supported by the default npm package manager. However its alternative,
the yarn package manager45, does support this feature. To use yarn instead
of the default npm, the following command is used:

ng set --global packageManager=yarn

Using yarn, a custom webpack configuration can be supplied to the ap-
plication build and polyfills can be added. But first, custom angular builder

43https://github.com/solid/solid-spec/blob/master/api-websockets.md
44https://www.npmjs.com/
45https://yarnpkg.com/

57

https://github.com/inrupt/solid-client-js/issues/608
https://github.com/inrupt/solid-client-js/issues/608
https://github.com/solid/solid-spec/blob/master/api-websockets.md
https://www.npmjs.com/
https://yarnpkg.com/

4. Implementation

must be used. After trying out ngx-build-plus46, a better alternative @angular
↪→ -builders47 was used instead:

yarn add @angular-builders/custom-webpack --dev

More details can be found on StackOverflow48. Required polyfills are listed
in the webpack.partial.js file (in the application root):

module.exports = {
resolve: {
fallback: {

crypto: require.resolve("crypto-browserify"),
stream: require.resolve("stream-browserify"),
util: require.resolve("util/"),
buffer: require.resolve("buffer/"),

}
},

}

In order to add the polyfill file to the build, the following custom config
option must be used at every build specification in angular.json file, path
projects.inbox.architect.build.options:

"customWebpackConfig": {
"path": "./webpack.partial.js",
"replaceDuplicatePlugins": true

},

Additionally, after a successful application build, another error occurred.
In the browser, the application did not start up and global not defined error
occurred in the console. After further research, the solution was adding the
following code to the main HTML file \src\index.html:

<script>
global = globalThis // fix for "global not defined" error

</script>

With this setup, solid libraries can be used in angular

46https://github.com/manfredsteyer/ngx-build-plus
47https://github.com/just-jeb/angular-builders
48https://stackoverflow.com/questions/51068908/angular-cli-custom-webpack-

config/51130803#51130803

58

https://github.com/manfredsteyer/ngx-build-plus
https://github.com/just-jeb/angular-builders
https://stackoverflow.com/questions/51068908/angular-cli-custom-webpack-config/51130803#51130803
https://stackoverflow.com/questions/51068908/angular-cli-custom-webpack-config/51130803#51130803

4.1. Client

solid-client-authn-js library does not stay logged in After integrating
authentication in Inbox with Solid using the solid-client-authn-js, a problem
occurred - the user does not stay logged in after page refresh. Before reporting
this issue, an existing GitHub issue was found49. This is a known problem of
the library. Possible fixes and workarounds were discussed by thesis author
on the GitHub issue (https://github.com/inrupt/solid-client-authn
-js/issues/423#issuecomment-741646705). As suggested in the discus-
sion, using another library solid-auth-fetcher50 has been tried. Unfortunately,
this library cannot be used as a workaround, mainly because it is missing
implementation of key method (see Appendix C for details).

As a result, no solution has been found to this issue and it remains as an
UX problem of the Inbox application.

4.1.2 ActivityPub part

In the design chapter, the Inbox client communication with the Pleroma back-
end is explained. Here, the implementation details are described.

Pleroma source code is located in the pleroma.component.ts component and
its service pleroma.service.ts. When the /pleroma page is loaded, the initPage
↪→ () method is called. It determines whether the page has been loaded as a
callback from the Pleroma server (= when the code and state URL parameters
are present), or the page has been requested by user - loadInbox() method is
called in that case:

private initPage(): void {
this.route.queryParamMap.subscribe(

queryParamMap => {
this.code = queryParamMap.get('code');
this.apid = queryParamMap.get('state');
if (this.code && this.apid) {

this.submitted = true;
this.connectPleroma(this.code, this.apid);

} else {
this.loadInbox()

}
});

}

But before any user data can be loaded, first they must submit their
Pleroma username with the URL of their account’s server, e.g. https://
↪→ greenish.red/users/<username>. When the URL is submitted, the steps 1.
- 5. from the Pleroma connection can be executed:

49https://github.com/inrupt/solid-client-authn-js/issues/423
50https://github.com/solid/solid-auth-fetcher/

59

https://github.com/inrupt/solid-client-authn-js/issues/423#issuecomment-741646705
https://github.com/inrupt/solid-client-authn-js/issues/423#issuecomment-741646705
https://github.com/inrupt/solid-client-authn-js/issues/423
https://github.com/solid/solid-auth-fetcher/

4. Implementation

submit() { // user submitted - step 1.
this.submitted = true;
this.pleromaService.fetchUser(this.idInput).subscribe(// step 2.
user => {

BrowserStorageService.saveToLocalStorage(PleromaService.
↪→ STORAGE_KEY_USERS, [this.idInput])

this.pleromaService.registerApp(user.endpoints.
↪→ oauthRegistrationEndpoint).subscribe(// steps 3., 4.

app => { // step 5.
this.pleromaService.logUserIn(user, app);

});
})

}

After a successful login, the Pleroma server redirects user back to the Inbox
client application with the code and state parameters. As a result, the ’if (this
↪→ .code && this.apid) {..’ condition from the initPage() method is satisfied
and the connectPleroma() is executed.

The connectPleroma() function then does steps 6. - 8. from the subsec-
tion 3.2.5 - it receives the code and state parameters, fetches the user’s Actor
ActivityPub object in JSON-LD and retrieves the OAuth token:

private connectPleroma(code, apid) {
this.pleromaService.fetchUser(apid).subscribe(user => {

this.pleromaService.getOAuthToken(code, apid, user.endpoints).
↪→ subscribe(

tokenInfo => {
const token = tokenInfo.access_token;
this.pleromaService.saveToken(token);
BrowserStorageService.saveToSession('userInbox', user.inbox)

// remove the 'code' and 'state' parameters from URL
this.router.navigate([],

{queryParams: {'code': null, 'state': null,},
queryParamsHandling: 'merge'});

});
})

}

In order to retrieve token, the client has to do a POST request with specific
parameters:

getOAuthToken(code: string, apid: string, userEndpoints): Observable<any> {
const storageKey = PleromaService.STORAGE_PREFIX_APP + btoa(userEndpoints

↪→ .oauthRegistrationEndpoint);
const app = BrowserStorageService.loadFromLocalStorage(storageKey);

const params = {
grant_type: 'authorization_code',

60

4.2. Server

code: code,
client_id: app.client_id,
client_secret: app.client_secret,
redirect_uri: this.CALLBACK_URI,
scope: 'read write follow',

};

return this.http.post(userEndpoints.oauthTokenEndpoint, params, {headers:
↪→ {'Content-Type': 'application/json'}});

}

Finally, the Inbox client application now has all data that is required to
fetch user data from the server. The application proceeds with fetching user
ActivityPub inbox, that contains the user’s public statuses in the Pleroma
context. The statuses are then displayed to the user.

4.2 Server

As concluded in the analysis, no server implementation is needed for this the-
sis. The Inbox client is using existing server implementations (see section 3.3
for details).

61

Chapter 5
Testing

This chapter describes how the Inbox application was tested. To avoid ambi-
guities, first the testing terms are defined and then information about how the
testing methods were applied is presented. For details on testing the proof-of-
concept applications and the first client application iteration see Appendix B.

5.1 Unit tests

Unit tests are automated tests that verify behavior of the application’s isolated
methods. For example for a simple method sum (a, b) {return a + b;}, a
unit test should verify the method’s output. Unit tests should run with each
application build. A build should fail when the tests don’t pass. This way a
developer can be informed about code changes that broke the desired behavior
as soon as possible.

The Inbox application was built using the Angular framework which comes
with unit testing capabilities - it takes advantage of Karma and Jasmine:

• Karma51 is a JavaScript test runner. It provides an environment in
which the unit tests can be executed.

• Jasmine52 is a general JavaScript test framework that provides test
syntax.

To summarize, Jasmine was used to write unit tests and Karma is used
to run them. A package.json script goals test and test-headless were
created for easy test execution. See subsection 6.2.6 on how to run the tests.

In the Angular framework, unit tests are typically located in the
same folder as the class being tested. So for example the class
MonitorInboxesService is located in the \src\app\services\monitor-inboxes

51https://karma-runner.github.io/
52https://jasmine.github.io/

63

https://karma-runner.github.io/
https://jasmine.github.io/

5. Testing

folder, the file monitor-inboxes.service.ts contains the class code and the
file monitor-inboxes.service.spec.ts contains the unit tests, such as:

Listing 5.1: Example of unit test. Testing method for parsing Web-
Socket URL from user inbox URL.

it('get correct WS URL from inbox URL', () => {
const wsUrlFromInboxUrl = MonitorInboxesService.getWsUrlFromInboxUrl('
↪→ https://tonda.solidcommunity.net/inbox/');
expect(wsUrlFromInboxUrl).toEqual("wss://solidcommunity.net/");

});

5.1.1 Coverage

All custom service methods with application logic such as sorting, parsing
and similar, were covered with unit tests. Methods that use library functions
to orchestrate application logic were not tested, as testing 3rd party libraries
is not in scope of unit testing. Inbox contains 31 unit tests. Code coverage
statistics as generated by Angular’s CLI:

> ng test --no-watch --code-coverage

========================= Coverage summary =========================
Statements : 33.12% (210/634)
Branches : 22.6% (33/146)
Functions : 31.4% (65/207)
Lines : 31.69% (187/590)
==

5.2 E2E tests

End-to-end (E2E) tests are automated comprehensive tests of the whole sys-
tem. They should simulate behavior of a typical user of the tested system,
they are usually based on the user scenarios. E2E tests of web applications
are typically run with testing frameworks that control a testing instance of a
browser. Principally they run longer than unit test, so they are usually run
periodically and/or with each release candidate.

The Angular framework also provides E2E testing capabilities - apart from
the aforementioned Jasmine test framework, it utilizes Protractor53 - an E2E
testing framework. Jasmine is used to write the tests, Protractor is used as
the test runner (just like Karma for unit tests).

A package.json script goal e2e is used for E2E test execution. See sub-
section 6.2.6 on how to run the tests.

53https://www.protractortest.org/

64

https://www.protractortest.org/

5.3. Continuous integration

5.2.1 Coverage

E2E tests cover integration with the Solid server and the Pleroma social net-
work. They test main use cases derived from section 2.2 and from test cases
defined at subsection 5.4.3 - e.g. reading message list, detail; sending message,
form validation and other UI parts. More specifically:

• integration with Solid PODs: AppPage.loginToInrupt. For application
to work, it needs to read data from 3rd-party server (this is not a separate
test, but methods executed before most tests to ensure login state)

1. test logs in using preset credentials (existing test user, see subsec-
tion 6.2.6)

2. if the application has not been authorized in the Solid POD yet,
test authorizes it

3. test waits for return back to application and ensures user has been
successfully logged in.

• further login checks with UI test (OIDC auto-complete suggestion):
login.e2e-spec.ts

• consume messages: messages.read.e2e-spec.ts

– read list of messages
– read message detail

• sending messages: messages.send.e2e-spec.ts

– form validation (cannot send empty email)
– reading contact from user Solid POD
– UI checks - recipients picker
– sending simple message (integration with Solid POD)

• UI navigation: homepage.e2e-spec.ts

• integration with Pleroma: pleroma.login.e2e-spec.ts

5.3 Continuous integration

To avoid introducing bugs during development, a continuous integration (CI)
was set up. Taking advantage of the GitHub actions54, unit tests and E2E tests
are executed with every Git Push to the hosted repository. The application
is installed, built and tests are executed in the headless mode. For details see
the subsection 6.2.8.

54https://github.com/features/actions

65

https://github.com/features/actions

5. Testing

5.4 Usability testing

Usability testing is manual testing of the application. Its goal is to determine
how usable for a typical user the system is. There are several types, such as
cognitive walk-through, heuristic evaluation and user testing [28]. The key
part of the thesis is to prove that the solid inbox application can be user-
friendly. To ensure this, a usability testing was conducted.

Because the application’s typical user is an experienced user, the cognitive
walk-through was selected as the most suitable usability testing method.

5.4.1 Cognitive walk-through

Cognitive walk-through testing is typically conducted by a developer/UX ex-
pert. This person uses user scenarios to walk through the application and uses
his expertise to identify system’s UX defects [28].

More specifically, the goal is to answer the following questions [29]

1. Will the user try and achieve the right outcome?

2. Will the user notice that the correct action is available to them?

3. Will the user associate the correct action with the outcome they expect
to achieve?

4. If the correct action is performed; will the user see that progress is being
made towards their intended outcome?

5.4.2 How the cognitive walk-through was conducted

The tester, an experienced front-end developer, followed the steps defined in
test cases subsection 5.4.3. At each step, the tester was trying to answer the
questions defined at subsection 5.4.1. Afterwards, the tester summarized his
findings and presented the results.

The complete testing records with the findings is available in the Ap-
pendix D.

5.4.3 Test cases

Test cases were derived directly from the use cases (defined at section 2.2).
There are only minor differences, with the biggest one being the order - test
cases are ordered to follow the natural user flow through the application.

TC1 Read list of messages from all available inboxes

a) User logs in using WebID
b) System shows list of all received messages

66

5.4. Usability testing

TC2 Read list of messages from selected inbox. Users can have multiple
inboxes in their Solid profile. Application shows list of all user inboxes
in the left menu.

a) On the Incoming page, choose an inbox in the left menu and click
on it

b) System shows list of all messages in that inbox

TC3 Read detail of a received message

a) On the list of messages, choose some message from the list and click
on it

b) System shows you its content with details

TC4 Reply to message

a) select a message that has a recipient (there’s some name in the
“From” column)

b) open it
c) click on “reply” button
d) send your reply

TC5 Send a simple message. Send a simple message to an unknown per-
son.

a) click on “Send message”
b) choose simple message
c) add recipient “https://inbox4.inrupt.net/profile/card#me”
d) send him a message

TC6 Send an AP message. Send an Activity Streams message to a person
from your contacts.

a) on Send message, choose Activity Streams message
b) click on recipient and choose one of the shown contacts
c) fill all message fields
d) send

TC7 Start monitoring arbitrary inbox. Users can add any other inbox
for monitoring (e.g. inbox for their article where people send their com-
ments).

a) go to Monitored inboxes

67

https://inbox4.inrupt.net/profile/card#me

5. Testing

b) add “https://inbox3.inrupt.net/profile/card#me” for dis-
covery and monitoring

c) add “https://inbox4.inrupt.net/inbox/” directly for monitor-
ing

TC8 Stop monitoring arbitrary inbox

a) at Monitored inboxes, stop monitoring previously added inboxes

TC9 Receive a system notification on a new message

a) enable system notifications (please note they don’t work in incog-
nito browser mode)

b) (test administrator sends a message)
c) user receives system notification

5.4.4 Cognitive walk-through testing results

The cognitive walk-through has not found any serious UX problems. All
test cases answers to the testing questions (defined at subsection 5.4.1) were
answered positively. The findings are presented below:

Table 5.1: Table with test findings and reactions to them. Ordered by their
seriousness, from most serious to least serious.

Finding Reaction
The “Messages from all inboxes” op-
tion could be reduced to “All in-
boxes” and be visually separated
from the single inboxes.

Fixed - used suggested text and vi-
sual separation.

Show message subject in the message
list.

Fixed - added subject to the mes-
sage list.

Inbox labels should not be visually
prominent in the message list - this
information is not important to the
user.

Fixed - made inbox labels (badges)
smaller.

Monitoring arbitrary inbox:
Users can get confused by two differ-
ent fields and two different buttons
(and other confusion in TC7, TC8)

Fixed - added visual separator and
added informative text

Logo “inbox” in the header should
redirect the user into the inboxes
overview, now it logs the user out.”

Fixed link.

68

https://inbox3.inrupt.net/profile/card#me
https://inbox4.inrupt.net/inbox/

5.4. Usability testing

The notification logic does not seem
stable. Sometimes only a toast
message appears, sometimes only
a browser system notification and
sometimes both.

Reported - this is a bug of the Solid
WS implementation. A bug was re-
ported.

Consider adding a button icon to
each item in the inbox overview. It
can be visible on hover only.
In result it will be a nice shortcut for
a quick reply.

Not fixed - action is not easy to im-
plement in the list of messages.

Message details should be part of the
header and not below the message
content.

Not fixed - unlike email client, the
message details are important part
of the message, because parsing of
the message is not common and
user needs simple access to the con-
tent.

The form has inconsistency in back-
ground colors. Keep it the same as
in inbox (main grey background and
for content use white background to
make it step out of the rest of the
page).

This is a good design suggestion.
Added to the ”future work”.

It might take few second before user
finds the “send message” option in
the top navigation.
Change the label to “New message”
and add an icon to it to make it more
visible as it is one of the primary user
actions.
Also there can be new message icon
in the same container as reload but-
ton (can be a shortcut to send a mes-
sage from actual inbox)

This is a good design suggestion.
Added to the ”future work”.

A success toast can contain green
color which represents success (and
the errors should be red).

This is a good design suggestion.
Added to the ”future work”.

When loading list of messages, spin-
ner should be placed in the messages
container, not in the ”reload” but-
ton.

Not fixed - spinner size and placing
is only a small design issue.

The purple loading spinner could be
smaller.

Not fixed - spinner size and placing
is only a small design issue.

69

5. Testing

The simple message misses the sub-
ject field. Is it by purpose?

Yes, simple message over LDN does
not support subject field.

5.5 Tests of compatibility with existing tools

One of the thesis goals was to test compatibility of the new client with existing
tools implementing the LDP, LDN and AP W3C recommendations. This
section describes how the compatibility is ensured.

5.5.1 LDP, LDN, Solid - Solid-server

The Inbox client application is built on the solid-server, using Solid POD as
its data storage. The client compatibility with solid-server is being tested
using the E2E tests - integration with its main implementation Inrupt.net is
ensured. This inherently tests the LDP, LDN and Solid compatibility.

Also manual tests have been conducted. Using e.g. the HTTP POST
request below, a message can be posted to the test user’s inbox and then
consumed in the application:

Listing 5.2: POST ActivityPub message to user inbox. Based on the AP
specification, a message can be POSTed to the user inbox and then consumed
in the Inbox client.

curl --location --request POST 'https://test-user1.inrupt.net/inbox/' \
--header 'Content-Type: application/ld+json' \
--data-raw '{
"@context": ["https://www.w3.org/ns/activitystreams",

{"@language": "en"}],
"type": "Like",
"actor": "https://dustycloud.org/chris/",
"name": "This is message (activity) name",
"object": {"type": "https://rhiaro.co.uk/2016/05/minimal-activitypub", "

↪→ content": "Hello! I'\''m sending you an interesting message content
↪→ !"},

"to": ["https://rhiaro.co.uk/#amy",
"https://dustycloud.org/followers",
"https://rhiaro.co.uk/followers/"],

"cc": "https://e14n.com/evan"
}'

Furthermore, for every message, the Inbox client shows link to its original
URL. User can consume the message directly there:

70

5.5. Tests of compatibility with existing tools

Figure 5.1: Message sent by Inbox test, consumed directly in the Solid data
browser at Inrupt.net.

The message can be consumed in other Solid POD applications in similar
fashion. The https://podbrowser.inrupt.com/ and https://ohmypod.ne
tlify.app/ have been tried out:

Figure 5.2: Message sent by Inbox test, consumed in the Solid POD ”OhMy-
Pod!” browser.

5.5.2 ActivityPub - Pleroma

The Inbox client application has capability of connecting to the Pleroma social
network and access user inbox that contains paginated user statuses. The
compatibility is being tested using the E2E tests.

71

https://podbrowser.inrupt.com/
https://ohmypod.netlify.app/
https://ohmypod.netlify.app/

5. Testing

Pleroma is a part of the https://fediverse.party/, so e.g. users from
Mastodon social network can post to Pleroma users and vice-versa. To test
Inbox client compatibility, a manual test was conducted: a post was created
on the Mastodon network, tagging the Pleroma user in the post. This post is
now available at the tagged Pleroma user’s timeline (inbox). Inbox client is
able to read this post:

Figure 5.3: Post sent from Mastodon social network to the Pleroma test user,
consumed in the Inbox client.

72

https://fediverse.party/

Chapter 6
Documentation

This chapter provides documentation of the Inbox application. It is split to
three main parts:

1. user documentation - how to use the application, including screenshots
and user scenarios;

2. administrator documentation - including links to access source code,
software prerequisites, application requirements; installation, build and
run steps;

3. developer documentation - how is the project structured, how to con-
tribute to it (where to code to add functionality).

6.1 User documentation

In this section, the application is described from a user perspective. It is
explained how to use the application, including screenshots. Main application
features are presented.

Application runs in a web browser (tested in Google Chrome and Mozilla
Firefox). You can deploy your own copy using the steps below or simply access
the live version at https://whyineedtofillusername.github.io/inbox/.

6.1.1 Login

To start using the application, first you need to login:

73

https://whyineedtofillusername.github.io/inbox/

6. Documentation

Figure 6.1: Login screen

Use identity provider of your choice:

Figure 6.2: Choosing login provider

After clicking on the Login button, you will be redirected to the login
provider’s page. If you don’t have an account, you can create one there.

After a successful login, you might need to authorize the Inbox applica-
tion’s access to your pod data. Then you will be redirected back to the Inbox
application.

In the top right corner, the username and profile picture is loaded from
the Solid profile.

6.1.2 Reading messages

After a successful login (and application authorization), the main screen is
presented - list of all messages in your profile’s inboxes:

74

6.1. User documentation

Figure 6.3: List of all messages

By default, Inbox application shows list of all messages from all inboxes
combined. In the left column, list of all inboxes in the Solid profile is shown.
You can choose specific inbox and application will show messages only from
that particular inbox.

6.1.2.1 Message detail

When you click on a message from the list, its content is opened:

Figure 6.4: Message content

If this is a message in the Activity Streams format, You can look at its
details:

75

6. Documentation

Figure 6.5: Message content - detail

For this message format you can also use the ”reply” button to send a
reply message.

6.1.3 Sending a message

To send a message, either use the ”reply” function, or go to the ”Send message”
tab. Here, you have two options. The default option is to send a message in
an Activity Streams format. This allows the application to send details with
the message, such as ”subject”, multiple recipients and original sender’s id:

Figure 6.6: Send message - Activity Streams

You can also choose to send a simple text message. First, you have to
select recipient(s). You have three options:

76

6.1. User documentation

1. select recipients from your profile contacts (loaded from WebID’s foaf:
↪→ knows);

2. insert WebID - application executes inbox discovery (using ldp:inbox);

3. inser inbox IRL directly.

Figure 6.7: Selecting recipient from contacts - application offers list of
user contacts

Figure 6.8: Selecting multiple recipients - user can send a message to
multiple recipients simultaneously

If you’re using the ”reply” functionality, the recipient’s inbox is pre-filled
automatically. Then simply type in message content (text only) and click on
the ”send” button.

6.1.4 Inbox monitoring and notifications

Inbox application automatically starts monitoring all user inboxes after login.
This means that application creates a notification when user receives a new
message to his inbox:

77

6. Documentation

Figure 6.9: Application notification for new message

Application also supports system notifications. This means that when
user receives a new message, Inbox creates a system notification. The system
notification is shown above all windows and user is informed of a new message,
even when the Inbox application is not in focus:

Figure 6.10: System notification - example of a system notification in OS
MS Windows 10

6.1.4.1 Enabling system notifications

To receive system notifications, user must enable them in the ”Notifications”
tab. System notifications are also limited by user system and browser, they
do not work e.g. in incognito browser mode.

6.1.4.2 Monitoring other inboxes

Inbox application can also monitor other inboxes that user specifies. This
allows user to get notifications for incoming messages that are not in his Solid

78

6.1. User documentation

profile. To do so, go to the ”Monitor inboxes” tab and add the desired inbox.
There are two options:

• add target URL (e.g. WebID) and let the application discover ldp:inbox;

• add inbox URL directly (application checks that the inserted URL con-
tains Link HTTP header with <http://www.w3.org/ns/ldp#Container>; rel
↪→ ="type").

Figure 6.11: Add inbox for monitoring

6.1.5 Pleroma connection

Inbox application also includes an integration of ActivityPub C2S API (for
details see subsection 1.1.6):

79

6. Documentation

Figure 6.12: Step 1 - login to Pleroma

Because of the limited options of Pleroma’s implementation, Inbox only
offers list of all user statuses on the Pleroma:

Figure 6.13: Step 2 - user’s Pleroma statuses

For more details on problems with Pleroma connectivity see subsubsec-
tion 4.1.1.5.

6.2 Administrator documentation

This section documents application for its administrators. It contains link
to the source code, presents application requirements and provides steps to
build, run and deploy the application.

80

6.2. Administrator documentation

6.2.1 Source code

Source code is versioned using Git on GitHub, published as open-source. It is
available with documentation at
https://github.com/WhyINeedToFillUsername/inbox

GitHub is a public Git VCS with a web interface. Please note that the
source codes at GitHub are subject to change. To access the code version that
comes with this thesis (see attached DVD), a Git branch ”thesis-version” was
made in the repository.

6.2.2 Live version

Live version of the Inbox application is deployed using GitHub pages at
https://whyineedtofillusername.github.io/inbox/.

6.2.3 Requirements

In this section software needed to run the Inbox application is described. You
need:

• node.js (with included npm);

• Yarn package manager.

6.2.4 Installation and build

Run the following command in the root folder:

yarn install

It installs all project dependencies.
After install, you can use any of the ”goals” specified in the package.json

file. More specifically, to build the application use the following command in
the root folder:

yarn build

6.2.5 Running the application

Use predefined goals in package.json to run the application. You can either
build the application yourself and then deploy it on a web server, or use the
Angular’s ng serve to run an embedded development web server:

yarn serve

The application should be now running. Navigate to http://localhost:
4200/ in your browser.

81

https://github.com/
https://github.com/WhyINeedToFillUsername/inbox
https://pages.github.com/
https://whyineedtofillusername.github.io/inbox/
https://nodejs.org/
https://www.npmjs.com/get-npm
https://yarnpkg.com/
http://localhost:4200/
http://localhost:4200/

6. Documentation

6.2.6 Tests

As described at chapter 5, the Inbox application contains both unit tests and
E2E tests.

6.2.6.1 Unit tests

As is typical for the Angular framework, unit tests for the Inbox application are
located in the same folder as the class being tested, with *.spec.ts extension.
E.g. the class MonitorInboxesService is located in the \src\app\services\monitor
↪→ -inboxes folder, the file monitor-inboxes.service.ts contains the class code
and the file monitor-inboxes.service.spec.ts contains the unit tests.

In order to run the unit tests, you can use the predefined goals from package
↪→ .json. To run and debug tests, the ”test” goal is useful, as it starts the
Karma test runner and tests are executed with each code change:

yarn test

For continuous integration (CI), the headless test mode is more useful, as
it does not start a browser window and closes after tests finish:

yarn test-headless

This is done using --watch=false and --browsers=ChromeHeadless parameters. See
\karma.conf.js file for further unit test configuration.

6.2.6.2 E2E tests

End-to-end tests mock a typical user behavior and cover application integra-
tion with other services. E2E tests for the Inbox application are located in
the \e2e folder. Use

yarn e2e

Please note that a valid test user is required to run this test (”test-user1”
is used).

6.2.7 Deployment

In order to deploy the application, first you need to build it with a prod flag.
You can use the prepared deploy step:

yarn build-prod

In order to deploy the application on a URL with some path (e.g.
www.application/your-path), you need to specify the --base-href /your-path
↪→ / option. See the build-prod-github step:

82

6.3. Developer documentation

yarn build-prod-github

Then you can proceed by deploying the built application to a web server
of your choice. The built application is located in the \dist folder.

6.2.8 Continuous integration (CI)

To avoid introducing bugs during development, a continuous integration was
set up. Taking advantage of the GitHub actions55, unit tests and E2E tests
are executed with every Git Push to the hosted repository. The application
is installed, built and tests are executed in the headless mode. For details see
the GitHub actions configurations file located in the source code at \.github
↪→ \workflows\node.js.yml. The test results are available at the repository’s
Action tab at https://github.com/WhyINeedToFillUsername/inbox/acti
ons.

6.3 Developer documentation

This section documents application for developers and contributors. It con-
tains information about development environment and project structure. The
section informs developer on how to modify or add functionality to the Inbox
application.

6.3.1 Development environment

The Inbox application is a Angular application written in web technologies
TypeScript/HTML/CSS. A web development environment (IDE) is suggested
for the application’s development. The Inbox application and all research
and POC applications in this thesis were developed in the JetBrains’ IntelliJ
IDEA56 IDE.

Inbox application development doesn’t require any special tools and envi-
ronment setup.

6.3.2 Project structure

The Inbox application follows standard Angular project structure:

55https://github.com/features/actions
56https://www.jetbrains.com/idea/

83

https://github.com/WhyINeedToFillUsername/inbox/actions
https://github.com/WhyINeedToFillUsername/inbox/actions
https://github.com/features/actions
https://www.jetbrains.com/idea/

6. Documentation

Figure 6.14: Project structure. Only notable files and folders are shown
(e.g. ones that are not standard part of Angular or are important for devel-
opment).

e2e/ ..E2E tests
src/Main folder with the actual application files

app/
components/Shared components that are not specific to any tab.
helpers/Static functions that can be used in various components.
model/ ...Application entities.
services/ ..Main application logic.
tabs/All application components, split to folders by navigation tabs.
app.module.ts ..Main module. Defines all components and modules used in
the app.
app-routing.module.ts ..Routing definition. The whole app navigation is
defined here.

assets/Folder for images, fonts and other assets.
index.html ..Main HTML file. Base for all other HTML code. Contains fix for
”global not defined” issue (see Appendix C for details).
styles.css ..Global CSS definitions.

package.json......Main config file with run and build scripts + all app dependencies.
webpack.partial.js...Neccessary polyfills. Fallback for missing dependencies. See
Appendix C for details.

6.3.3 Contributing to Inbox

There are 2 options for a developer who wants to contribute to the Inbox
application (see section 6.2 for the link to the GitHub repository):

1. work on a private copy of the application, obtained by forking the code
on GitHub or copying the sources manually;

2. contribute to the existing GitHub repository using merge requests.

There are no special requirements in order to add and modify the appli-
cation functionality.

84

Conclusion

In support of Web re-decentralization, the goal of this thesis was to get fa-
miliar with Linked Data, the RDF data model, the W3C Recommendations
Linked Data Platform, Linked Data Notifications, ActivityPub, and the Solid
project. Furthermore, the goal was to analyse current applications. Based on
the analysis, an existing application was then to be enhanced or a new one
implemented to produce a user-friendly messaging application.

Firstly, the current technologies that address the centralization problems
were studied and described.

Secondly, requirements for the result application were formulated. Actors
in the system were identified and, from the requirements, a list of use cases
was derived.

Based on the requirements and use cases, a thorough analysis of existing
solutions and applications was conducted. The result is that the solid-server is
a sufficient solution for the application server, but no user-friendly messaging
client is available. The solid-server has been improved by collaboration with
its developers.

Next, the technologies to create the client application were researched and
described in the Design section. Based on this research, multiple proof-of-
concept applications were implemented to test these technologies for further
use. The following proof-of-concept applications were created:

• LDN-inbox - an implementation of the Linked Data Notifications pro-
tocol. The resulting application was successfully tested with LDN test
suite. The source codes were published as open-source on GitHub.

• ldn-target-showcase - a simple POC implementation of the Linked
Data Notifications Target. Its goal is to showcase the LDN Discovery
process to the community. The source code was published as open-
source on GitHub and the application deployed for public access: https:
//ldn-target-showcase.herokuapp.com.

85

https://linkedresearch.org/ldn/tests/
https://linkedresearch.org/ldn/tests/
https://ldn-target-showcase.herokuapp.com
https://ldn-target-showcase.herokuapp.com

Conclusion

• js-notification-poc - an implementation of the JavaScript Notification
API and Push API, developed to become familiar with the specifications
and test the APIs. The source code was published as open-source on
GitHub, and the application deployed for public access: https://js-n
otification-poc.herokuapp.com/.

Based on the previous analysis and technology review, the main client
application developed:

Inbox is a new, user-friendly client for Linked Data Notifications and Activi-
tyPub messaging. The application is an Angular application using solid-server
as its back-end. It utilizes Solid WebID for user authentication and autho-
rization, Solid PODs for data storage. The application allows its users to
add their LDP inboxes for monitoring and get system notifications for new
messages.

Inbox has been tested - automated tests and UX testing, documented and
published as open-source on GitHub. Furthermore, the application has been
deployed for a public use: https://whyineedtofillusername.github.io/i
nbox/.

Problems encountered

During the analysis and development, several major problems were encoun-
tered. The first problem occurred when developing the LDN-inbox proof-of-
concept. The RDF library rdflib.js had problems with JSON-LD serializa-
tion/deserialization. The problem was discussed in Gitter Solid Chat and
reported on GitHub. In the Inbox application, the problem was avoided by
using another RDF library.

Another related problem is with the current technology and libraries for
working with RDF data, Solid and Solid Pods. As the W3C recommenda-
tions for this area are relatively new, the technologies are still in the rapid
development and work-in-progress phases. Documentation is sparse, and of-
ten insufficient.

This can be seen on the next major issue - Solid libraries not working in
Angular framework. More specifically, the solid-client-js library brakes build
with the Angular’s default package manager npm. This issue has been resolved
by using an alternative package manager yarn and using custom build options.
For details see subsubsection 4.1.1.5.

Another case of these immaturities are various solid-server issues, the most
pressing of them being Solid server sending phantom WebSocket messages,
causing false notifications about new incoming message. For the full list of
problems that were reported to the library and other software authors and
community, please see Appendix C.

86

https://js-notification-poc.herokuapp.com/
https://js-notification-poc.herokuapp.com/
https://whyineedtofillusername.github.io/inbox/
https://whyineedtofillusername.github.io/inbox/
https://gitter.im/solid/chat

Future work

Lastly, the ActivityPub (AP) Client-to-server (C2S) server-side API has
very few and limited implementations. For example, the C2S API is regarded
as ”incredibly bare-bones” by Mastodon (AP implementation) developers [27],
who decided it is easier to implement a proprietary REST API. Thus the Inbox
AP client part offers only basic functionality.

Future work

Future work should focus on further development of the Inbox application.
The main focus should be on improving application performance - do not load
all messages at once, but use pagination. Also, the application cache should
be introduced in order to reduce number of HTTP requests to the Solid POD
and shorten loading times of particular messages.

The next steps should also include adding new key functionalities such
as keeping sent messages and introducing a private contact list (as opposed
to using the public foaf:knows list). To make application accessible on as
many devices as possible, UI responsiveness for various screen widths should
be introduced.

Last but not least, reported GitHub issues should be monitored and In-
box application updated when the bugs are resolved, (most pressingly losing
session after page reload and phantom WebSocket messages).

87

Bibliography

[1] Abbate, J. E. From ARPANET to Internet: A history of ARPA-sponsored
computer networks, 1966-1988. [cit. 2020-07-18].

[2] Hindman, M. The Internet Trap: How the Digital Economy Builds Mo-
nopolies and Undermines Democracy (2018). Princeton University Press,
2018, ISBN 9780691159263. Available from: https://books.google.c
o.ke/books?id=hmmYDwAAQBAJ&printsec=frontcover&dq=monopoly+o
f+the+internet&hl=en&sa=X&ved=0ahUKEwj6483N3ZvlAhWIh1wKHTTq
AIkQ6AEIJzAA#v=onepage&q=monopoly%20&f=false

[3] Peng, Z. Decentralized Internet [online]. [cit. 2020-07-18]. Available from:
https://www.cse.wustl.edu/˜jain/cse570-19/ftp/decentrl/index
.html

[4] World Wide Web Consortium (W3C). Social Network Silos [online]. [cit.
2020-07-12]. Available from: https://www.w3.org/2010/Talks/0303-s
ocialcloud-tbl/#(2)

[5] World Wide Web Consortium (W3C). Resource Description Framework
(RDF) [online]. [cit. 2020-03-29]. Available from: https://www.w3.org
/RDF/

[6] World Wide Web Consortium (W3C) Working Group. RDF 1.1 Primer
[online]. [cit. 2020-07-17]. Available from: https://www.w3.org/TR/rd
f11-primer/#section-triple

[7] W3C JSON-LD Working Group. JSON for Linking Data [online]. [cit.
2020-07-13]. Available from: https://json-ld.org/

[8] Berners-Lee, T. Linked Data [online]. World Wide Web Consortium
(W3C), [cit. 2020-07-12]. Available from: https://www.w3.org/Des
ignIssues/LinkedData.html

89

https://books.google.co.ke/books?id=hmmYDwAAQBAJ&printsec=frontcover&dq=monopoly+of+the+internet&hl=en&sa=X&ved=0ahUKEwj6483N3ZvlAhWIh1wKHTTqAIkQ6AEIJzAA#v=onepage&q=monopoly%20&f=false
https://books.google.co.ke/books?id=hmmYDwAAQBAJ&printsec=frontcover&dq=monopoly+of+the+internet&hl=en&sa=X&ved=0ahUKEwj6483N3ZvlAhWIh1wKHTTqAIkQ6AEIJzAA#v=onepage&q=monopoly%20&f=false
https://books.google.co.ke/books?id=hmmYDwAAQBAJ&printsec=frontcover&dq=monopoly+of+the+internet&hl=en&sa=X&ved=0ahUKEwj6483N3ZvlAhWIh1wKHTTqAIkQ6AEIJzAA#v=onepage&q=monopoly%20&f=false
https://books.google.co.ke/books?id=hmmYDwAAQBAJ&printsec=frontcover&dq=monopoly+of+the+internet&hl=en&sa=X&ved=0ahUKEwj6483N3ZvlAhWIh1wKHTTqAIkQ6AEIJzAA#v=onepage&q=monopoly%20&f=false
https://www.cse.wustl.edu/~jain/cse570-19/ftp/decentrl/index.html
https://www.cse.wustl.edu/~jain/cse570-19/ftp/decentrl/index.html
https://www.w3.org/2010/Talks/0303-socialcloud-tbl/#(2)
https://www.w3.org/2010/Talks/0303-socialcloud-tbl/#(2)
https://www.w3.org/RDF/
https://www.w3.org/RDF/
https://www.w3.org/TR/rdf11-primer/#section-triple
https://www.w3.org/TR/rdf11-primer/#section-triple
https://json-ld.org/
https://www.w3.org/DesignIssues/LinkedData.html
https://www.w3.org/DesignIssues/LinkedData.html

Bibliography

[9] World Wide Web Consortium (W3C), Linked Data Platform Working
Group. Linked Data Platform [online]. [cit. 2020-07-17]. Available from:
https://www.w3.org/TR/ldp/

[10] World Wide Web Consortium (W3C), Linked Data Platform Working
Group. Linked Data Platform Resources [online]. [cit. 2020-07-17]. Avail-
able from: https://www.w3.org/TR/ldp/#ldpr

[11] World Wide Web Consortium (W3C), Linked Data Platform Working
Group. Linked Data Platform Containers [online]. [cit. 2020-07-17]. Avail-
able from: https://www.w3.org/TR/ldp/#ldpc

[12] World Wide Web Consortium (W3C). Linked Data Notifications [online].
[cit. 2019-09-18]. Available from: https://www.w3.org/TR/ldn/

[13] World Wide Web Consortium (W3C). Linked Data Notifications - Dis-
covery [online]. [cit. 2020-07-24]. Available from: https://www.w3.org
/TR/ldn/#discovery

[14] World Wide Web Consortium (W3C), Social Web Working Group. Ac-
tivity Streams 2.0 [online]. [cit. 2020-07-20]. Available from: https:
//www.w3.org/TR/activitystreams-core/

[15] Castaño, A. What is ActivityPub? [online]. [cit. 2020-07-20]. Available
from: https://alexcastano.com/what-is-activity-pub/

[16] This Week in Solid 2019-12-12 [online]. [cit. 2020-04-14]. Available from:
https://solidproject.org/this-week-in-solid/2019-12-12

[17] What is a Pod? [online]. [cit. 2020-07-22]. Available from: https://so
lidproject.org/faqs#pod

[18] Moody, G. Tim Berners-Lee unveils next step for Solid, a decentralized
Web platform with privacy built-in as standard [online]. [cit. 2020-07-22].
Available from: https://www.privateinternetaccess.com/blog/tim
-berners-lee-unveils-solid-a-decentralized-web-platform-wi
th-privacy-built-in-as-standard/

[19] About Carbon LDP implementation [online]. [cit. 2020-06-07]. Available
from: https://www.w3.org/wiki/LDP Implementations#Carbon LDP
.28Client and Server.29

[20] maytkso, HTTP server and command-line RDF tool to get/send, serialise
data. [online]. [cit. 2020-06-07]. Available from: https://github.com/c
sarven/mayktso

[21] Internet Engineering Task Force (IETF). RFC 7252, The Constrained
Application Protocol (CoAP) [online]. [cit. 2020-06-07]. Available from:
https://tools.ietf.org/html/rfc7252

90

https://www.w3.org/TR/ldp/
https://www.w3.org/TR/ldp/#ldpr
https://www.w3.org/TR/ldp/#ldpc
https://www.w3.org/TR/ldn/
https://www.w3.org/TR/ldn/#discovery
https://www.w3.org/TR/ldn/#discovery
https://www.w3.org/TR/activitystreams-core/
https://www.w3.org/TR/activitystreams-core/
https://alexcastano.com/what-is-activity-pub/
https://solidproject.org/this-week-in-solid/2019-12-12
https://solidproject.org/faqs#pod
https://solidproject.org/faqs#pod
https://www.privateinternetaccess.com/blog/tim-berners-lee-unveils-solid-a-decentralized-web-platform-with-privacy-built-in-as-standard/
https://www.privateinternetaccess.com/blog/tim-berners-lee-unveils-solid-a-decentralized-web-platform-with-privacy-built-in-as-standard/
https://www.privateinternetaccess.com/blog/tim-berners-lee-unveils-solid-a-decentralized-web-platform-with-privacy-built-in-as-standard/
https://www.w3.org/wiki/LDP_Implementations#Carbon_LDP_.28Client_and_Server.29
https://www.w3.org/wiki/LDP_Implementations#Carbon_LDP_.28Client_and_Server.29
https://github.com/csarven/mayktso
https://github.com/csarven/mayktso
https://tools.ietf.org/html/rfc7252

Bibliography

[22] Solid [online]. [cit. 2020-07-29]. Available from: https://solid.mit.ed
u/

[23] Solid license [online]. [cit. 2020-07-29]. Available from: https://github
.com/solid/node-solid-server/blob/master/LICENSE.md

[24] The Apache Software Foundation. Apache Marmotta [online]. [cit. 2020-
07-29]. Available from: https://marmotta.apache.org/

[25] The Apache Software Foundation. Download Apache Marmotta [online].
[cit. 2020-07-29]. Available from: https://marmotta.apache.org/down
load.html

[26] The Apache Software Foundation. Apache Marmotta - Open issues [on-
line]. [cit. 2020-07-29]. Available from: https://issues.apache.org/ji
ra/projects/MARMOTTA/issues/MARMOTTA-674?filter=allopenissue
s

[27] tootsuite/mastodon developers. ActivityPub client-to-server support -
GitHub issue [online]. [cit. 2021-04-05]. Available from: https://github
.com/tootsuite/mastodon/issues/10520

[28] Nielsen Norman Group. Summary of Usability Inspection Methods [on-
line]. [cit. 2020-07-30]. Available from: https://www.nngroup.com/arti
cles/summary-of-usability-inspection-methods/

[29] Interaction Design Foundation. How to Conduct a Cognitive Walk-through
[online]. [cit. 2020-07-30]. Available from: https://www.interaction-
design.org/literature/article/how-to-conduct-a-cognitive-w
alkthrough

[30] Bootstrap (front-end framework) [online]. [cit. 2020-07-24]. Available
from: https://en.wikipedia.org/wiki/Bootstrap (front-end f
ramework)

[31] Inrupt. Tripledoc GitLab - project page [online]. [cit. 2020-07-24]. Avail-
able from: https://gitlab.com/vincenttunru/tripledoc

[32] Inrupt. Tripledoc GitLab - first commit [online]. [cit. 2020-07-24]. Avail-
able from: https://gitlab.com/vincenttunru/tripledoc/-/commit
/802f3661920dddedf34120d4c07cacb8d4a49c94

[33] Mozilla and individual contributors. MDN web docs - Push API [online].
[cit. 2020-07-24]. Available from: https://developer.mozilla.org/en
-US/docs/Web/API/Notifications API

[34] Spyna, L. Push Notifications in JavaScript? Yes, you can! [online]. [cit.
2020-07-24]. Available from: https://itnext.io/an-introduction-to
-web-push-notifications-a701783917ce

91

https://solid.mit.edu/
https://solid.mit.edu/
https://github.com/solid/node-solid-server/blob/master/LICENSE.md
https://github.com/solid/node-solid-server/blob/master/LICENSE.md
https://marmotta.apache.org/
https://marmotta.apache.org/download.html
https://marmotta.apache.org/download.html
https://issues.apache.org/jira/projects/MARMOTTA/issues/MARMOTTA-674?filter=allopenissues
https://issues.apache.org/jira/projects/MARMOTTA/issues/MARMOTTA-674?filter=allopenissues
https://issues.apache.org/jira/projects/MARMOTTA/issues/MARMOTTA-674?filter=allopenissues
https://github.com/tootsuite/mastodon/issues/10520
https://github.com/tootsuite/mastodon/issues/10520
https://www.nngroup.com/articles/summary-of-usability-inspection-methods/
https://www.nngroup.com/articles/summary-of-usability-inspection-methods/
https://www.interaction-design.org/literature/article/how-to-conduct-a-cognitive-walkthrough
https://www.interaction-design.org/literature/article/how-to-conduct-a-cognitive-walkthrough
https://www.interaction-design.org/literature/article/how-to-conduct-a-cognitive-walkthrough
https://en.wikipedia.org/wiki/Bootstrap_(front-end_framework)
https://en.wikipedia.org/wiki/Bootstrap_(front-end_framework)
https://gitlab.com/vincenttunru/tripledoc
https://gitlab.com/vincenttunru/tripledoc/-/commit/802f3661920dddedf34120d4c07cacb8d4a49c94
https://gitlab.com/vincenttunru/tripledoc/-/commit/802f3661920dddedf34120d4c07cacb8d4a49c94
https://developer.mozilla.org/en-US/docs/Web/API/Notifications_API
https://developer.mozilla.org/en-US/docs/Web/API/Notifications_API
https://itnext.io/an-introduction-to-web-push-notifications-a701783917ce
https://itnext.io/an-introduction-to-web-push-notifications-a701783917ce

Bibliography

[35] Mozilla and individual contributors. MDN web docs - Push API [online].
[cit. 2020-07-24]. Available from: https://developer.mozilla.org/en
-US/docs/Web/API/Push API

[36] Copes, F. The Push API Guide [online]. [cit. 2020-07-24]. Available from:
https://flaviocopes.com/push-api/

[37] Solid-auth-client GitHub [online]. [cit. 2020-07-29]. Available from: http
s://github.com/solid/solid-auth-client

[38] SLANT TEAM. JavaScript E2E test framework comparison [online]. [cit.
2020-07-30]. Available from: https://www.slant.co/versus/9648/206
24/˜nightwatch-js vs cypress

92

https://developer.mozilla.org/en-US/docs/Web/API/Push_API
https://developer.mozilla.org/en-US/docs/Web/API/Push_API
https://flaviocopes.com/push-api/
https://github.com/solid/solid-auth-client
https://github.com/solid/solid-auth-client
https://www.slant.co/versus/9648/20624/~nightwatch-js_vs_cypress
https://www.slant.co/versus/9648/20624/~nightwatch-js_vs_cypress

Appendix A
Glossary

AP ActivityPub

AS Activity Streams

ČVUT České vysoké učeńı technické v Praze

GUI Graphical User Interface

IRI Internationalized Resource Identifier

JS JavaScript

LD Linked Data

LDN Linked Data Notifications

LDP Linked Data Platform

LDPC Linked Data Platform Container

LDPR Linked Data Platform Resources

NPM Node Package Manager

POC Proof of concept

R/W Read/Write

RDF Resource Description Framework

REST API Representational State Transfer Application Program Interface

SPARQL SPARQL Protocol and RDF Query Language

SSO Single Sign-On

URI Uniform Resource Identifier

93

A. Glossary

UX User Experience

VCS Version Control System

VPN Virtual Private Network

W3C World Wide Web Consortium

WIP Work-In-Progress

94

Appendix B
Technical research -

proof-of-concept applications

This appendix contains description of all POC applications developed as part
of the technical research for the final client Inbox application. Also, the first
iteration of the Inbox client application is described here.

B.1 LDN-inbox - LDN proof-of-concept

In this section, the LDN proof-of-concept (POC) application called originally
”inbox” is described. First, the architecture is discussed, followed with a
description of used technologies. This POC web application was created to
investigate the LDN protocol. Its purpose is to test the architecture, tech-
nologies and the LDN, RDF libraries.

B.1.1 Architecture

Based on the actors of the LDN protocol, the application is divided into three
modules (see Figure 1.3):

• consumer - LDN consumer + sender,

• receiver - LDN receiver,

• target - sample LDN target for inbox discovery.

The consumer is designed to communicate using REST API with any
application compliant with the LDN specification. The receiver is a REST API
server with in-memory DB implementation to receive and serve notifications
using LDN protocol. The target is an implementation of the LDN target and
works for the inbox discovery.

95

B. Technical research - proof-of-concept applications

Both consumer and server are designed to have a back-end with HTM-
L/CSS/JS front-end.

The consumer and receiver are an MVC architectures with RDF as a model
and a separate service layer.

B.1.2 Technologies

After the analysis, JavaScript was chosen as the language for development.
The main reasons are the requirement of a web client with desktop notification
and the lack of back-end libraries. Only these four back-end libraries were
discovered:

• rdflib57 for Python,

• Java:

– Apache Jena58,
– Eclipse RDF4J59;

• EasyRDF60 for PHP.

server For this application, the Node.js61 server was used with the Express
62 web framework. Node.js is an asynchronous, event-driven JavaScript engine
for back-end implementations. Express is a simple web framework built on
top of Node.js.

front-end Front-end is made of HTML/CSS/JS pages. The Bootstrap
framework was used to help with the UI design. Bootstrap is an open-source
CSS/JS framework [30].

B.1.2.1 LD/RDF libraries

To read, write and manipulate Linked Data in RDF, a JavaScript library is
needed. There are not many available libraries and the existing ones are still
in development. For example, while working on this thesis, an issue63 with
the rdflib64 was encountered - the library had troubles parsing JSON-LD.

The following LD/RDF libraries were considered and examined:
57https://rdflib.readthedocs.io/en/stable/
58https://jena.apache.org/
59https://rdf4j.org/
60https://www.easyrdf.org/
61https://nodejs.org/
62https://expressjs.com/
63https://github.com/linkeddata/rdflib.js/issues/364#issuecomment-546705383
64https://github.com/linkeddata/rdflib.js/

96

https://rdflib.readthedocs.io/en/stable/
https://jena.apache.org/
https://rdf4j.org/
https://www.easyrdf.org/
https://nodejs.org/
https://expressjs.com/
https://github.com/linkeddata/rdflib.js/issues/364#issuecomment-546705383
https://github.com/linkeddata/rdflib.js/

B.1. LDN-inbox - LDN proof-of-concept

rdflib rdflib.js is an RDF JavaScript library. It supports R/W with RD-
F/XML and Turtle RDF serializations. It also supports reading of JSON-LD.
Furthermore, it contains a fetch API to access RDF resources and local store
with API to query the result.

Rdflib.js sources and documentation is accessible at https://github.c
om/linkeddata/rdflib.js/. It is also available as a npm65 (JavaScript
package manager) at https://www.npmjs.com/package/rdflib.

Tripledoc Tripledoc is an RDF JavaScript library to read, create and update
documents on a Solid Pod [31]. It has a more intuitive and easy-to-understand
interface than the rdflib, however fewer capabilities.

Please note that it was not available at the time of development of the
inbox POC (first commit is Jul 17, 2019 [32]). For this reason it was not
considered for this POC, but was later used in the inbox-client application.
https://vincenttunru.gitlab.io/tripledoc/,

Shighl https://github.com/scenaristeur/shighl,

LDflex https://github.com/LDflex/LDflex.

The rdflib was chosen as the most mature technology. To access solid pods,
the solid-auth-client66 library is needed.

B.1.3 Implementation

Here, the application implementation details are described.
The application flow is:

1. user visits consumer+sender application

2. the welcome page is shown: Figure B.1

3. user inputs target URL or click on one from the last used list

4. consumer+sender module performs inbox discovery

5. if successful, consumer+sender reads messages from the inbox

The inbox can be located anywhere. In this application, it is located at
the receiver module.

65https://docs.npmjs.com/about-npm/
66https://github.com/solid/solid-auth-client

97

https://github.com/linkeddata/rdflib.js/
https://github.com/linkeddata/rdflib.js/
https://www.npmjs.com/package/rdflib
https://vincenttunru.gitlab.io/tripledoc/
https://github.com/scenaristeur/shighl
https://github.com/LDflex/LDflex
https://docs.npmjs.com/about-npm/
https://github.com/solid/solid-auth-client

B. Technical research - proof-of-concept applications

Figure B.1: inbox - index screen. Screenshot of the index page

B.1.3.1 consumer + sender

The main functionality is in the application services:

• receiverServices.js

– getNotifications(inboxUrl, callback) retrieve all available
notifications from the inbox/target, then execute callback

– getNotificationById(id, callback) retrieve a specific notifica-
tion from the inbox/target by supplied id, then execute callback

• targetService.js

– discoverInboxAt(urlToExplore, callback) attempt to dis-
cover inbox at the urlToExplore

– getInboxUrlFromRDF(urlToExplore, callback) when no link
header is available, try to get the inbox url from RDF content

B.1.3.2 receiver

The main functionality is in the application service:

98

B.1. LDN-inbox - LDN proof-of-concept

• notificationService.js

– processMessage (notification)

– createAllNotificationsResponse() produce valid JSON-LD en-
velope for the notifications from DB

– getNotificationById()

B.1.3.3 target

Target is a simple web page to try and showcase LDN discovery [13]. It is im-
plemented as a node.js/express application that responds to HTTP requests.

As described at Figure 1.1.4, there are two options for discovery - using
HTTP Link header67, for both HEAD and GET methods, or by embedding RDF
into the resource content.

For the first option (HTTP Link header), the application accepts both
GET and HEAD HTTP requests:

const LINK_VALUE = '<' + INBOX_URL + '>;
rel="http://www.w3.org/ns/ldp#inbox"';

router.get('/', function (req, res, next) {
res.set('Link', LINK_VALUE);
res.render('index', {title: 'Inbox␣discovery␣demo'});

});

router.head('/', function (req, res, next) {
res.set('Link', LINK_VALUE);
res.status(200).end();

});

The second option is returning content based on the Accept header. It
either returns RDF in JSON-LD or Turtle, or return HTML with embedded
RDF:

// 2) RDF
router.get('/content', function (req, res, next) {

// switch response based on Accept header and set the response content
↪→ type accordingly
res.format({

// a) JSON with relation of type http://www.w3.org/ns/ldp#inbox
'application/ld+json': function () {

res.send(
{

"@context": "http://www.w3.org/ns/ldp",
"@id": "https://tonda.solid.community/",
"inbox": "https://tonda.solid.community/inbox/"

}

67https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Link

99

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Link

B. Technical research - proof-of-concept applications

)
},

// b) HTML <a> with rel="http://www.w3.org/ns/ldp#inbox"
// c) HTML <link> with rel="http://www.w3.org/ns/ldp#inbox"
// d) HTML <section> with property="http://www.w3.org/ns/ldp#inbox"
'text/html': function () {

res.render('contentWithRdf');
},

// e) text/turtle with <http://www.w3.org/ns/ldp#inbox> relation
'text/turtle': function () {

res.send("<https://tonda.solid.community/>␣<http://www.w3.org/
↪→ ns/ldp#inbox>␣<https://tonda.solid.community/inbox/>␣.");

},

default: function () {
// log the request and respond with 406
res.status(406).send('Not␣Acceptable')

}
})

});

B.1.4 Documentation

This section contains the LDN-inbox POC documentation.

B.1.4.1 Source code

Source code (with documentation) available at
https://github.com/WhyINeedToFillUsername/ldn-inbox

B.1.4.2 Requirements

You need to install node.js (with included npm).

B.1.4.3 Install

Run the following command in the module’s root folder:

npm install

It installs all project dependencies, for details see https://docs.npmjs.c
om/cli/install.

100

https://github.com/WhyINeedToFillUsername/ldn-inbox
https://nodejs.org/
https://www.npmjs.com/get-npm
https://docs.npmjs.com/cli/install
https://docs.npmjs.com/cli/install

B.2. LDN-target

B.1.4.4 Run

consumer listens on local port 8000, receiver on 3000. You can change that
in their bin/www files. Run each module separately using following command
in the module’s root folder:

npm start

The consumer requires the receiver to be running.

B.1.4.5 Usage

You can try the consumer in your browser at http://localhost:8000/.
When you post

{"@context": "https://www.w3.org/ns/activitystreams",
"type": "Note",
"to": ["https://chatty.example/ben/"],
"attributedTo": "https://social.example/alyssa/",
"content": "Say, do you think that Gary Webb and Jeffrey Epstein really

↪→ killed themselves?"}

with Content-Type: application/ld+json to http://localhost:50
01/API/notifications, the receiver will return 201 with location. You
can then GET it at http://localhost:5001/API/notifications/xx. Or let the
consumer display it in the browser at http://localhost:8000/notification/xx.

B.2 LDN-target

LDN-target is a simple web application that was separated from the original
inbox POC. It was extracted to a new project and extended, so it is possible to
document and deploy it separately. This way it can be a helpful contribution
to the community.

B.2.1 Architecture

Based on the LDN target discovery protocol [13], the application has the
following endpoints:

• HTTP HEAD that returns response with the Link header,

• HTTP GET that returns response with the Link header,

• HTTP GET that returns RDF content with serialization based on the
HTTP content negotiation.

101

http://localhost:8000/
http://localhost:5001/API/notifications
http://localhost:5001/API/notifications

B. Technical research - proof-of-concept applications

B.2.2 Technologies

The technology stack is the same as for the inbox POC.

server For this application, the Node.js68 server was used with the Express
69 web framework.

front-end Front-end is made of HTML pages with CSS styling.

B.2.3 Documentation

This section contains the LDN-target POC/showcase documentation. The
application is a simple Linked Data Notifications target implementation to
test and showcase all discovery options. It is a node.js (express) app.

B.2.3.1 Source code

Source code (with documentation) available at
https://github.com/WhyINeedToFillUsername/ldn-target-showcase

B.2.3.2 Requirements

You need to install node.js (with included npm).

B.2.3.3 Install

Run the following command in the root folder:

npm install

It installs all project dependencies, for details see https://docs.npmjs.c
om/cli/install.

B.2.3.4 Run

Run with

npm start

Application is listening on the port 3000.
68https://nodejs.org/
69https://expressjs.com/

102

https://www.w3.org/TR/ldn/
https://nodejs.org/
https://expressjs.com/
https://github.com/WhyINeedToFillUsername/ldn-target-showcase
https://nodejs.org/
https://www.npmjs.com/get-npm
https://docs.npmjs.com/cli/install
https://docs.npmjs.com/cli/install
https://nodejs.org/
https://expressjs.com/

B.3. js-notification-poc

B.2.3.5 Usage

Open browser at http://localhost:3000/. You can see all the options
to try out. Use e.g. curl or Postman to make HTTP request with various
options.

For example this request:

GET /content HTTP/1.1
Accept: application/ld+json
Host: localhost:3000

gets this response:

HTTP/1.1 200 OK
Content-Type: application/ld+json; charset=utf-8
{

"@context": "http://www.w3.org/ns/ldp",
"@id": "https://tonda.solid.community/",
"inbox": "https://tonda.solid.community/inbox/"

}

B.2.3.6 Live version

Application is deployed to: https://ldn-target-showcase.herokuapp.com.

B.3 js-notification-poc

js-notification-poc is an implementation of the JavaScript Notification API
and Push API. Its development was intended to get familiar with the spec-
ifications and test the APIs. The Notification API part of the application
is based on the API documentation [33], the second, Push API, is directly
derived from an existing Push API example [34] (its source code available at
https://github.com/Spyna/push-notification-demo/).

B.3.1 Architecture

This POC is a simple static page. It is split to two conceptual parts, first
being based on the JavaScript Notification API [33] and the second on the
Push API [35]. Both are a simple web page, the whole application logic is
written in JavaScript.

B.3.2 Technologies

The technology stack is the same as for the inbox POC.

103

http://localhost:3000/
https://ldn-target-showcase.herokuapp.com
https://github.com/Spyna/push-notification-demo/

B. Technical research - proof-of-concept applications

server For this application, the Node.js70 server was used with the Express
71 web framework.

front-end Front-end is made of HTML pages with CSS styling. The core
functionality is written in JavaScript.

B.3.3 Implementation

This POC is a simple static page to test JavaScript notification api. It runs on
node.js (express) server. The POC was created based on the MDN documen-
tation. Quite simply, first the application first checks if the browser supports
the Notification API:

// Let's check if the browser supports notifications
if (!('Notification' in window)) {

const message = "This␣browser␣does␣not␣support␣notifications.";
console.error(message);

} else {
// yes, supports, handle user's answer
}

After the user confirms that he wants to receive notifications, a notification
is created with the following code:

function createSimpleNotification() {
var img = '/images/fit.png';
var text = 'Text␣of␣the␣notification.';
var title = 'Hello␣there!␣Cool␣title!';
const options = {

body: text,
icon: img,
// A vibration pattern to run with the display of the notification.
vibrate: [200, 100, 200],
// An ID for a given notification that allows you to find, replace,

↪→ or remove the notification using a script if necessary.
tag: "new-product",
image: img,

// URL of an image to represent the notification when there is not
↪→ enough space to display the notification itself

badge:
"https://spyna.it/icons/android-icon-192x192.png"

};
let notification = new Notification(title, options);
// hook events, save reference etc.

}

70https://nodejs.org/
71https://expressjs.com/

104

https://nodejs.org/
https://expressjs.com/
https://developer.mozilla.org/en-US/docs/Web/API/Notifications_API/Using_the_Notifications_API
https://developer.mozilla.org/en-US/docs/Web/API/Notifications_API/Using_the_Notifications_API
https://nodejs.org/
https://expressjs.com/

B.3. js-notification-poc

This creates a system notification with the requested parameters (the whole
list is accessible at the MDN web docs: https://developer.mozilla.org/
en-US/docs/Web/API/ServiceWorkerRegistration/showNotification#P
arameters).

B.3.3.1 Push API

The second part, Push API implementation, is directly derived from the Push
Notifications in JavaScript article [34].

To make a full use of the JavaScript Notification + Push API, there are 6
steps [36]:

1. Check if Service Workers are supported

2. Check if the Push API is supported

3. Register a Service Worker

4. Request permission from the user

5. Subscribe the user and get the PushSubscription object

6. Send the PushSubscription object to your server

Also, to identify application and prevent spam for the clients, a VAPID key
must be generated and used in the subscription. The web-push npm package
was used for this purpose: https://www.npmjs.com/package/web-push.

Further implementation details are available in the Push Notifications in
JavaScript article [34].

B.3.4 Documentation

js-notification-poc is an implementation of the JavaScript Notification API
and Push API. It was developed to get familiar with the specifications and
test the APIs.

B.3.4.1 Source code

Source code (with documentation) available at
https://github.com/WhyINeedToFillUsername/js-notification-poc

B.3.4.2 Requirements

You need to install node.js (with included npm).

105

https://developer.mozilla.org/en-US/docs/Web/API/ServiceWorkerRegistration/showNotification#Parameters
https://developer.mozilla.org/en-US/docs/Web/API/ServiceWorkerRegistration/showNotification#Parameters
https://developer.mozilla.org/en-US/docs/Web/API/ServiceWorkerRegistration/showNotification#Parameters
https://developer.mozilla.org/en-US/docs/Web/API/ServiceWorkerRegistration/showNotification#Parameters
https://developer.mozilla.org/en-US/docs/Web/API/ServiceWorkerRegistration/showNotification#Parameters
https://developer.mozilla.org/en-US/docs/Web/API/ServiceWorkerRegistration/showNotification#Parameters
https://www.npmjs.com/package/web-push
https://github.com/WhyINeedToFillUsername/js-notification-poc
https://nodejs.org/
https://www.npmjs.com/get-npm

B. Technical research - proof-of-concept applications

B.3.4.3 Install

Run the following command in the root folder:

npm install

It installs all project dependencies, for details see https://docs.npmjs.c
om/cli/install.

B.3.4.4 Build

Run the following command in the root folder:

npm build

It uses browserirfy to build the project javascript bundle files.

B.3.4.5 Run

The node.js server is set to listen on local port 3001. You can change that in
the bin/www files. Start it by this command:

npm start

Then go to http://localhost:3001/. Click on the ”Enable notifications”
button to request permission, and ”Create notification” to show system noti-
fication.

Please note that request for notifications won’t work in browser ”private”
mode.

B.3.4.6 Live version

Application is deployed to: https://js-notification-poc.herokuapp.co
m/.

B.4 inbox-client

In this section, the first iteration of the final Inbox application called ”inbox-
client” is described. First, the user interface was designed. It is described
in the main design chapter, see subsection 3.2.3. Here, the the application’s
architecture is discussed, followed with a description of used technologies.

106

https://docs.npmjs.com/cli/install
https://docs.npmjs.com/cli/install
http://browserify.org/
https://js-notification-poc.herokuapp.com/
https://js-notification-poc.herokuapp.com/

B.4. inbox-client

B.4.1 Architecture

As for the inbox POC, JavaScript was used as the language for development.
The main reasons are the requirement of a web client with desktop notification
and the lack of back-end libraries.

The application logic is on the client side, with server used only for serving
HTML/JS/CSS content. This is based on the findings from the development
of the inbox POC section B.1. The reason is that the solid pods require the
solid-auth-client library for authentication. This is available only as a client-
side browser library [37].

All data are stored in the solid pod and the client-side JavaScript is using
the tripledoc library’s fetch api to create authenticated HTTP requests to
access the pod.

B.4.2 Technologies

The technology stack is the same as in the inbox POC (see subsection B.1.2),
with the main difference of using different LD/RDF library.

server For this application, the Node.js72 server was used with the Express
73 web framework.

front-end Front-end is made of HTML/CSS/JS pages. The Bootstrap [30]
framework was used to help with the UI design.

B.4.2.1 LD/RDF libraries

To read, write and manipulate Linked Data in RDF, a JavaScript library
is needed. The tripledoc RDF JavaScript library [31] was chosen for this
application. It has more intuitive and easy-to-understand interface than the
rdflib used in the inbox POC.

To access solid pods, the solid-auth-client74 library is required.
The rdf-namespaces library (https://www.npmjs.com/package/rdf-na

mespaces is used to help with RDF namespaces. This allows to use predefined
constants like rdfnamespaces.foaf.knows instead of direct URLs like http:
//xmlns.com/foaf/0.1/knows.

B.4.3 Implementation

All the application’s logic is in the front-end (browser) JavaScript. To struc-
ture the application, code is divided into separate modules based on their

72https://nodejs.org/
73https://expressjs.com/
74https://github.com/solid/solid-auth-client

107

https://www.npmjs.com/package/rdf-namespaces
https://www.npmjs.com/package/rdf-namespaces
http://xmlns.com/foaf/0.1/knows
http://xmlns.com/foaf/0.1/knows
https://nodejs.org/
https://expressjs.com/
https://github.com/solid/solid-auth-client

B. Technical research - proof-of-concept applications

functionality. During the build, JS code is processed by the browserirfy plu-
gin. A separate JS bundle file is created for each page. This way only used
code is being loaded.

This application uses the solid-auth-client to authenticate and tripledoc
RDF JavaScript library [31] to read and manipulate solid pod data.

B.4.3.1 Modules

Below is a list of the application JavaScript modules with description.

• alerts.js a helper module with
addAlert(level, message, autoDissmiss function to create a user-
friendly alerts

• inbox.js main module with the logic to add a watched in-
box, retrieve notifications from it, show them to user and de-
tect new messages. Every ten seconds, it loads notifica-
tions from the monitored inboxes and detects any new messages:
window.setInterval(loadNotifs, 1000 * 10);

– loadMonitoredInboxesFromPod(webID) retrieve monitored in-
boxes from the solid pod:

1. fetch solid profile
2. on the profile, get/create document that stores the watched

inboxes list
3. from the document, get all subjects of class schema.URL
4. each has the url saved as type string; save them to memory

and call addInboxToShownList()

• inbox-detail.js module for loading and formatting the inbox mes-
sages. Also contains methods for remove inbox from monitored list.

• inbox-discover.js module for LDP inbox discovery on the supplied
LDP target

• inbox-send.js contains methods for sending the messages using LDN
protocol (with AS format)

• notifications.js contains methods for handling system notifications
using the JavaScript Notification API

• pod.js using the tripledoc library [31], this module contains methods
for the communication and data retrieval from the solid pods.

– getFriends(webID) retrieve a list of user contacts (predicate
foaf.knows)

108

http://browserify.org/

B.4. inbox-client

– getWatchedInboxesListDocument(profile) retrieves the
document where list of watched inboxes. If it does
not exist in the client’s profile, it is created by calling
initialiseWatchedInboxesList() method.

– initialiseWatchedInboxesList(profile, typeIndex) creates
an empty document for storing the watched inboxes list

– addWatchedInbox(inbox, watchedInboxesListDoc) stores a
watched inbox into the supplied document

– removeWatchedInbox(inboxIRI, watchedInboxesListDoc) re-
moves a watched inbox from the supplied document

• solid-login.js contains logic for solid login, using the solid-auth-client
library

• solid-logout.js functionality for the logout button

B.4.3.2 User interface

By using the Bootstrap CSS/JS framework [30], the UI is fully responsive.
Below are few screenshots of the UI for illustration:

Figure B.2: inbox-client screen 1 - watched inboxes

109

B. Technical research - proof-of-concept applications

Figure B.3: inbox-client screen 2 - added watched inbox

Figure B.4: inbox-client screen 3 - send message to a friend

B.4.4 Testing

This section describes testing of the inbox-client application.

B.4.4.1 Unit tests

For this application, a unit testing framework research was conducted. From
the candidates the Mocha testing framework (https://mochajs.org/) was
selected. It is a JavaScript test framework running on Node.js.

However, during the test development it occurred that the inbox-client
application has no back-end services. Because of the used available solid and
RDF libraries, all the application logic is on the front-end. The created front-
end JavaScript methods are not suitable for unit tests - they either directly

110

https://mochajs.org/

B.4. inbox-client

modify HTML DOM or rely on the solid session, which is created with the
external solid-client-auth library.

B.4.4.2 E2E tests

For the inbox-client, a E2E testing framework research was conducted. From
the candidates, the Cypress E2E testing framework (https://www.cypress.
io/) was selected as the most suitable framework [38]. It is an open source,
JavaScript test framework running on Node.js and in a browser.

However a problem with the selected testing framework occurred. It does
not support pop-up windows. And as of time of writing the thesis, a pop-
up windows is the only way the solid-client-auth library is able to work. As
a result, the testing framework is unable to log into the application This is
an essential step in each UC and so the E2E tests are not part of the final
solution.

B.4.4.3 Usability testing

The key part of the thesis is to prove that the solid inbox application can be
user-friendly. To ensure this, a usability testing was conducted. Because the
application’s typical user is an experienced user, the cognitive walk-through
was selected as the most suitable usability testing method.

B.4.5 Documentation

Documentation for inbox-client. The application is designed as a JavaScript
client-side application with Node.js/express web framework back-end.

B.4.5.1 Source code

Source code (with documentation) available at
https://github.com/WhyINeedToFillUsername/inbox-client

B.4.5.2 Requirements

You need to install node.js (with included npm).

B.4.5.3 Install

Run the following command in the root folder:

npm install

It installs all project dependencies, for details see https://docs.npmjs.c
om/cli/install.

111

https://www.cypress.io/
https://www.cypress.io/
https://github.com/WhyINeedToFillUsername/inbox-client
https://nodejs.org/
https://www.npmjs.com/get-npm
https://docs.npmjs.com/cli/install
https://docs.npmjs.com/cli/install

B. Technical research - proof-of-concept applications

B.4.5.4 Build

Run the following command in the root folder:

npm build

It uses browserirfy to build the project javascript bundle files.

B.4.5.5 Run

The node.js server is set to listen on local port 3000. You can change that in
the bin/www file. Start it by this command:

npm start

Then go to http://localhost:3000/. Click on the ”Enable notifications”
button to request permission.

Please note that request for notifications won’t work in browser ”private”
mode.

B.4.5.6 Usage

Open browser at http://localhost:3000/.
Please note that you have to add the running url ”http://localhost:3000”

(exactly like this, with no trailing slash) to your trusted applications in your
solid.community profile preferences with Read, Write and Append rights.

B.4.5.7 Live version

Application is deployed to: https://inbox-client.herokuapp.com/.
Please note that you have to add ”https://inbox-client.herokuapp.com”

(exactly like this, with no trailing slash) to your trusted applications in your
solid.community profile preferences with Read, Write and Append rights.

Or you can use the following test user:

• Username ”test-user”

• Password ”SolidCommunity@2020”

112

http://browserify.org/
http://localhost:3000/
https://inbox-client.herokuapp.com/

Appendix C
Reported GitHub/GitLab issues

This appendix contains list of issues of various libraries that have been dis-
covered and reported during development for this thesis. Both GitHub and
GitLab repositories were used for issue tracking.

C.1 Problems with solid-client-authn-js library

This section describes problems with the @inrupt/solid-client-authn-browser
libary (GitHub repository at https://github.com/inrupt/solid-client
-js, npm package at https://www.npmjs.com/package/@inrupt/solid-cl
ient-authn-browser).

C.1.1 Problem using the library in Angular

This is a major issue for the library - including the @inrupt/solid-client-authn-
browser npm package in an angular package.json breaks its build. Originally
reported at https://github.com/inrupt/solid-client-js/issues/608,
the issue has not been properly resolved and a workaround had to be found
in order to use the library in the angular application.

C.1.2 Library producing unsolicited request with 404 error

Closed with ”working as expected”. https://github.com/inrupt/solid-cl
ient-authn-js/issues/981

C.1.3 session.info.webId not available in onLogin callback

This issue, reported at https://github.com/inrupt/solid-client-authn
-js/issues/955, was swiftly resolved and a new version of the solid-client-
authn-browser library was released.

113

https://github.com/inrupt/solid-client-js
https://github.com/inrupt/solid-client-js
https://www.npmjs.com/package/@inrupt/solid-client-authn-browser
https://www.npmjs.com/package/@inrupt/solid-client-authn-browser
https://github.com/inrupt/solid-client-js/issues/608
https://github.com/inrupt/solid-client-authn-js/issues/981
https://github.com/inrupt/solid-client-authn-js/issues/981
https://github.com/inrupt/solid-client-authn-js/issues/955
https://github.com/inrupt/solid-client-authn-js/issues/955

C. Reported GitHub/GitLab issues

C.1.4 Library does not stay logged in after page reload

The user does not stay logged in after page refresh. Before reporting this issue,
an existing GitHub issue was found: https://github.com/inrupt/solid-
client-authn-js/issues/423. The problem and possible workarounds were
discussed there (see comments by the thesis author at https://github.com/i
nrupt/solid-client-authn-js/issues/423#issuecomment-741646705).

C.2 Solid server issues

This section describes problems with the Solid server (GitHub repository
at https://github.com/solid/community-server). As the server
implementations deployed at e.g. inrupt.net are using its node.js im-
plementation, most issues were moved to the correct repository at https:
//github.com/solid/node-solid-server/issues/.

C.2.1 Server sends phantom WebSocket pub messages

The solid-server is sending phantom WebSocket messages for subscribed re-
source (e.g. inbox) even when no CRUD operation has occurred on the re-
source. Reported at https://github.com/solid/node-solid-server/iss
ues/1587 with no response from the developers.

C.2.2 GET https://tonda.inrupt.net/inbox times out

This issue occurs for the specific profile https://tonda.inrupt.net/. The profile
seems to gotten corrupted somehow, but no informative error is presented,
there is no action the user can do to fix it. There has been no reaction from
the server developers. Originally reported at https://github.com/solid
/community-server/issues/546, the issue has been moved to the node.js
server implementation GitHub tracker at https://github.com/solid/nod
e-solid-server/issues/1558.

C.2.3 Solid sends WebSockets messages for private resources
without authentication

For example an inbox https://inbox1.inrupt.net/inbox/ is not accessible with-
out authentication (HTTP GET returns 401). But anybody can subscribe to
it without any authentication/authorization. https://github.com/solid/s
olid-spec/issues/232

C.2.4 Solid uses incompatible WebSockets protocol version

Solid used 'solid/0.1.0-alpha' WS protocol name. As reported at https:
//github.com/solid/specification/issues/163#issuecomment-759725

114

https://github.com/inrupt/solid-client-authn-js/issues/423
https://github.com/inrupt/solid-client-authn-js/issues/423
https://github.com/inrupt/solid-client-authn-js/issues/423#issuecomment-741646705
https://github.com/inrupt/solid-client-authn-js/issues/423#issuecomment-741646705
https://github.com/solid/community-server
inrupt.net
https://github.com/solid/node-solid-server/issues/
https://github.com/solid/node-solid-server/issues/
https://github.com/solid/node-solid-server/issues/1587
https://github.com/solid/node-solid-server/issues/1587
https://github.com/solid/community-server/issues/546
https://github.com/solid/community-server/issues/546
https://github.com/solid/node-solid-server/issues/1558
https://github.com/solid/node-solid-server/issues/1558
https://github.com/solid/solid-spec/issues/232
https://github.com/solid/solid-spec/issues/232
https://github.com/solid/specification/issues/163#issuecomment-759725245
https://github.com/solid/specification/issues/163#issuecomment-759725245
https://github.com/solid/specification/issues/163#issuecomment-759725245
https://github.com/solid/specification/issues/163#issuecomment-759725245

C.3. Other repositories

245, this is not a valid WS protocol name and is incompatible with Google
Chrome. Before authors fixed it (see https://github.com/solid/solid
-spec/issues/221), using 'solid.0.1.0-alpha' version worked as a work-
around. The latest version is `solid-0.1`.

C.2.5 POSTing ActivityPub message to Solid produces
wrong content-type

POSTing message to solid inbox (inrupt.net) with content-type ’applica-
tion/ld+json; profile=”https://www.w3.org/ns/activitystreams”’ (official Ac-
tivityPub content-type from its specification, at https://www.w3.org
/TR/activitypub/#client- to- server- interactions) produces
’application/octet-stream’ content-type when GETting the message. Re-
ported at https://github.com/solid/node-solid-server/issues/1574.

C.3 Other repositories

This section lists issues reported in another repositories.

C.3.1 LDN tests page unavailable

The LDN test suite originally available at https://linkedresearch.org
/ldn/tests/ stopped working - it returned ”503 Service Unavailable” error.
The issues has been reported (https://github.com/csarven/ldn-tests/i
ssues/19) and swiftly resolved.

C.3.2 Cannot verify Pleroma OAuth token

Pleroma was forked from Mastodon. The issue (originally reported at https:
//git.pleroma.social/pleroma/pleroma-support/-/issues/49, moved
to https://git.pleroma.social/pleroma/pleroma/-/issues/2282) is
that Pleroma is using different way of obtaining the OAuth token. The issue
was closed with ”working as expected” status.

C.3.3 Mastodon offers little to no ActivityPub
client-to-server support

The social network Mastodon offers very limited ActivityPub client-to-server
support. Based on this GitHub issue, the developers find it ”incredibly bare-
bones” and chose to implement a proprietary REST API. https://github.c
om/tootsuite/mastodon/issues/10520

115

https://github.com/solid/specification/issues/163#issuecomment-759725245
https://github.com/solid/specification/issues/163#issuecomment-759725245
https://github.com/solid/specification/issues/163#issuecomment-759725245
https://github.com/solid/solid-spec/issues/221
https://github.com/solid/solid-spec/issues/221
https://www.w3.org/TR/activitypub/#client-to-server-interactions
https://www.w3.org/TR/activitypub/#client-to-server-interactions
https://github.com/solid/node-solid-server/issues/1574
https://linkedresearch.org/ldn/tests/
https://linkedresearch.org/ldn/tests/
https://github.com/csarven/ldn-tests/issues/19
https://github.com/csarven/ldn-tests/issues/19
https://git.pleroma.social/pleroma/pleroma-support/-/issues/49
https://git.pleroma.social/pleroma/pleroma-support/-/issues/49
https://git.pleroma.social/pleroma/pleroma/-/issues/2282
https://github.com/tootsuite/mastodon/issues/10520
https://github.com/tootsuite/mastodon/issues/10520

C. Reported GitHub/GitLab issues

C.3.4 solid-auth-fetcher - missing method implementation

The library is missing getSessions() method implementation. The method
is promoted in the library’s readme file. https://github.com/solid/solid
-auth-fetcher/issues/19

C.3.5 Questions in forums

Various topics have been discussed in few forums, e.g. ”How to get Objects
based on Predicate from Thing”: https://forum.solidproject.org/t/how
-to-get-objects-based-on-predicate-from-thing/3859. This question
has been quickly answered and stays as a proof that the community is active
and collaboration with it is useful.

116

https://github.com/solid/solid-auth-fetcher/issues/19
https://github.com/solid/solid-auth-fetcher/issues/19
https://forum.solidproject.org/t/how-to-get-objects-based-on-predicate-from-thing/3859
https://forum.solidproject.org/t/how-to-get-objects-based-on-predicate-from-thing/3859

Appendix D
Complete results of cognitive

walk-through

This appendix contains detailed results of the cognitive walk-through test-
ing of the Inbox application. It is ordered by test cases as defined in the
subsection 5.4.3. Each table contains answers (column ”A” - answer) to the
testing questions defined in the subsection 5.4.1 (identified in the column ”Q”
- question), together with tester comment and recommendation.

D.1 TC1 - Read list of messages from all available
inboxes

Test the first page after user logs in.

Q A Comment Recommendation

Q1 Yes

Users will expect the same behav-
ior as in traditional e-mail inbox -
to login and to see the messages im-
mediately.

Q2 Yes Provider selection form with the
“Login” button is clearly visible.

Add an onboarding / sign up flow
for new users (this is a must before
releasing it to the general public)

Q3 Yes

After successful login the user will
see a list of messages. It is sup-
ported by heading “messages from
all your inboxes”. The list con-
tain information about sender, first
words of message’s content, date
and to which inbox it belongs

Information about each message’s
inbox should not be visually promi-
nent. In e-mail communication
users firstly check who sent the
message, what is the subject and
then are most interested about its
content. Instead of showing part of
the message content consider ren-
dering the message’s subject.

117

D. Complete results of cognitive walk-through

Q4 Yes
This is pretty clear as the experi-
ence is very similar to traditional
e-mail inboxes.

The purple loading spinner could
be smaller. Loading spinner in the
inbox should be placed in the mes-
sages container to reflect that it
is loading messages, and not the
Reload button itself.

D.2 TC2 - Read list of messages from selected
inbox

Users can have multiple inboxes in their Solid profile. The application shows
a list of all user inboxes in the left menu.

Q A Comment Recommendation
Q1 Yes

Q2 Yes

The inbox selection is placed in the
left panel, which is similar to tra-
ditional e-mail clients (e.g. Apple’s
Mail)

The “Messages from all inboxes”
option could be reduced to “All in-
boxes” and be visually separated
from the single inboxes.

Q3 Yes
Each inbox item has a hover state,
so the user expects it to be click-
able.

Q4 Yes
On inbox item click the list of
available messages gets reloaded to
show desired content

D.3 TC3 - Read detail of a received message

Q A Comment Recommendation

Q1 Yes
Users will expect to open the mes-
sage’s details by clicking the par-
ticular message in the inbox.

Q2 Yes

There is a background color change
hover effect on each message to-
gether with the cursor changing to
a pointer. It is a standard way to
tell users that the element is click-
able.

Q3 Yes

Message details should be part of
the header and not to be below the
message content.
Generally do not reinvent the
wheel, make it as similar to clas-
sic email clients as possible, so it
can be adopted by the majority of
users easily.

Q4 Yes Loading spinner could be smaller
and centered.

118

D.4. TC4 - Reply to message

D.4 TC4 - Reply to message

Q A Comment Recommendation

Q1 Yes Users will look for a reply button
on the message detail page.

Consider adding a button icon to
each item in the inbox overview. It
can be visible on hover only. In re-
sult it will be a nice shortcut for a
quick reply.

Q2 Yes Reply button is clearly visible on
the message detail page.

Q3 Yes

Clicking the Reply button will
open a new message form with the
prefilled recipient and quoted pre-
vious message.
The type of message (simple mes-
sage vs. Activity Streams message)
respects the original message.
Subject is a mandatory field.
Send button is clearly visible

The form has inconsistency in
background colors. Keep it the
same as in inbox (main grey back-
ground and for content use white
background to make it step out of
the rest of the page).

Q4 Yes
A confirmation toast message is
shown on the bottom of the page
when the message is sent.

After sending the message, redirect
the user back to the inbox as writ-
ing another reply to the same user
is an improbable action.
A success toast can contain green
color which represents success (and
the errors should be red).

D.5 TC5 - Send a simple message

Send a simple message to an unknown person.

Q A Comment Recommendation
Q1 Yes

Q2 Partly
yes

It might take few second before
user finds the “send message” op-
tion in the top navigation.

Change the label to “New message”
and add an icon to it to make it
more visible as it is one of the pri-
mary user actions. Also there can
be new message icon in the same
container as reload button (can be
a shortcut to send a message from
actual inbox)

Q3 Yes

When new message forms appear,
the “Activity Streams message” is
selected by default. Therefore the
user has to switch it to “Simple
message”. The form is the same as
in UC4.

The simple message misses the sub-
ject field. Is it by purpose?

Q4 Yes Same as in UC4

119

D. Complete results of cognitive walk-through

D.6 TC6 - Send an AP message

Send an Activity Streams message to a person from your contacts.

Q A Comment Recommendation
Q1 Yes Same as in UC5
Q2 Yes Same as in UC5

Q3 Yes

When new message forms appear,
the “Activity Streams message” is
selected by default. There is an
info tooltip to tell users more about
the protocol. The form is the same
as in UC4.

Q4 Yes Same as in UC4 and 5

D.7 TC7 - Start monitoring arbitrary inbox

Users can add any other inbox for monitoring (e.g. inbox for their article
where people send their comments).

Q A Comment Recommendation

Q1 Yes Menu item “Monitor inboxes” is
clearly visible

Q2 Partly
Yes

Users can get confused by two dif-
ferent fields and two different but-
tons

Visually separate both forms and
describe their functionality clearly

Q3 No

Added inbox immediately appears
in the list below the form. However
if user goes to “Incoming” page,
there is no new inbox visible as ex-
pected.

Show newly added inboxes (even
those without any message) on the
“Incoming” page.
After adding a new inbox consider
redirecting user directly to the in-
box’s detail page.

Q4 Yes Added inbox appeared in the list of
monitored inboxes.

120

D.8. TC8 - Stop monitoring arbitrary inbox

D.8 TC8 - Stop monitoring arbitrary inbox

Q A Comment Recommendation

Q1 No
User would look for this option on
the inbox’s detail page and will ex-
pect it in the header of the inbox.

On inbox’s detail add a button to
allow user to stop monitoring the
arbitrary inbox.

Q2 Partly
yes

If user previously added any new
inbox to be monitored, he/she will
notice a red trash bin icon in the
list of monitored inboxes.

Q3 Yes

If user clicks the red trash bin
icon, the monitored inbox dissap-
pear from the list (Monitor inboxes
page)

Q4 Yes The action’s result is immediate

D.9 TC9 - Receive a system notification on a new
message

Q A Comment Recommendation

Q1 Yes Notifications menu item is clearly
visible (thanks to the icon).

Notifications menu item does not
make sense for not-logged users.

Q2 Yes

Enabling system notifications is
straightforward. “Test” button is
a great perk to enable users to test
it immediately.

I would make more clear what a
system notification is. Many users
will not understand it. Consider
adding a small screenshot/GIF
of typical system/browser notifica-
tion on Windows and Mac.
Test button should show the corre-
sponding text label in the notifica-
tion (now it shows New message in
your inbox).

Q3 No

The “Enable system notification”
becomes disabled. User might
thing it does not work and the
functionality is disabled

Instead of making the button dis-
abled, show button “Disable sys-
tem notification” or at least some
confirmation text (“System noti-
fications enabled”) instead of the
original disabled button.

Q4 Party
yes

The notification logic does not
seem stable. Sometimes only a
toast message appears, sometimes
only a browser system notification
and sometimes both.

The notifications should be deter-
ministic.

D.10 General comments from the testing

Tester added comments about the Inbox application that are not related to
any specific test case:

121

D. Complete results of cognitive walk-through

• ”Logo “inbox” in the header should redirect the user into the inboxes
overview, now it logs the user out.”

• ”Generally there is no visual difference between clickable text elements
and simple text.”

• ”Before releasing the solution to a general public, the author should
work on inbox client’s responsivity to make it usable on cell phones.”

• ”Regarding accessibility - app is already optimized for Deuteranomaly
(user cannot differentiate between red and green)”

122

Appendix E
Attached medium content

(root)
apps......................source codes of the developed applications

inbox main inbox application source code
other

ldn-inbox ldn-inbox application source code
ldn-target.................ldn-target application source code
js-notification........js-notification application source code
inbox-client..inbox-client application source code (first thesis
iteration)

text...................................... diploma thesis document
src document source code in LATEX
thesis.pdf...................................document in PDF

readme.txt.............................medium content description

123

	Citation of this thesis
	Introduction
	Goals of this work

	State-of-the-art and available technology
	Current technologies that address the centralization problem
	RDF
	Linked Data
	Linked Data Platform
	Linked Data Notifications
	Activity Streams
	ActivityPub
	Solid

	Analysis
	Requirements
	Actors
	List of requirements

	Use cases
	List of use cases - consumer
	List of use cases - sender

	Analysis of existing solutions - LDN clients and Solid servers
	Criteria for analysis of existing solutions
	Overview of all analysed applications - LDN
	Detailed analysis of selected applications

	Analysis of existing solutions - ActivityPub applications
	Criteria for analysis of existing AP solutions
	Overview of analysed servers - AP
	AP servers analysis result

	Implementation analysis
	Analysis results

	Design
	System architecture: in-browser web application + server back-end
	Client
	Programming languages and frameworks
	Application architecture: MVC
	User interface design - wireframes
	Linked Data Notifications part
	ActivityPub part

	Server
	Linked Data Notifications part - solid-server
	ActivityPub part - Pleroma

	Implementation
	Client
	Linked Data Notifications part
	ActivityPub part

	Server

	Testing
	Unit tests
	Coverage

	E2E tests
	Coverage

	Continuous integration
	Usability testing
	Cognitive walk-through
	How the cognitive walk-through was conducted
	Test cases
	Cognitive walk-through testing results

	Tests of compatibility with existing tools
	LDP, LDN, Solid - Solid-server
	ActivityPub - Pleroma

	Documentation
	User documentation
	Login
	Reading messages
	Sending a message
	Inbox monitoring and notifications
	Pleroma connection

	Administrator documentation
	Source code
	Live version
	Requirements
	Installation and build
	Running the application
	Tests
	Deployment
	Continuous integration (CI)

	Developer documentation
	Development environment
	Project structure
	Contributing to Inbox

	Conclusion
	Problems encountered
	Future work

	Bibliography
	Glossary
	Technical research - proof-of-concept applications
	LDN-inbox - LDN proof-of-concept
	Architecture
	Technologies
	Implementation
	Documentation

	LDN-target
	Architecture
	Technologies
	Documentation

	js-notification-poc
	Architecture
	Technologies
	Implementation
	Documentation

	inbox-client
	Architecture
	Technologies
	Implementation
	Testing
	Documentation

	Reported GitHub/GitLab issues
	Problems with solid-client-authn-js library
	Problem using the library in Angular
	Library producing unsolicited request with 404 error
	session.info.webId not available in onLogin callback
	Library does not stay logged in after page reload

	Solid server issues
	Server sends phantom WebSocket pub messages
	GET https://tonda.inrupt.net/inbox times out
	Solid sends WebSockets messages for private resources without authentication
	Solid uses incompatible WebSockets protocol version
	POSTing ActivityPub message to Solid produces wrong content-type

	Other repositories
	LDN tests page unavailable
	Cannot verify Pleroma OAuth token
	Mastodon offers little to no ActivityPub client-to-server support
	solid-auth-fetcher - missing method implementation
	Questions in forums

	Complete results of cognitive walk-through
	TC1 - Read list of messages from all available inboxes
	TC2 - Read list of messages from selected inbox
	TC3 - Read detail of a received message
	TC4 - Reply to message
	TC5 - Send a simple message
	TC6 - Send an AP message
	TC7 - Start monitoring arbitrary inbox
	TC8 - Stop monitoring arbitrary inbox
	TC9 - Receive a system notification on a new message
	General comments from the testing

	Attached medium content

