

Master’s thesis

Quadratic sieve factorization algorithm

Bc. Ondřej Vladyka

Department of Information Security
Supervisor: doc. Ing. Ivan Šimeček, Ph.D.

May 6, 2021

Acknowledgements

I would like to thank my friends and family for their support through thick
and thin. I would also like to thank my supervisor, doc. Ing. Ivan Šimeček,
Ph.D., for his invaluable consultations and guidance that allowed me to finish
this thesis.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on May 6, 2021

Czech Technical University in Prague
Faculty of Information Technology
© 2021 Ondřej Vladyka. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Vladyka, Ondřej. Quadratic sieve factorization algorithm. Master’s thesis.
Czech Technical University in Prague, Faculty of Information Technology,
2021.

Abstrakt

Diplomová práce se zabývá faktorizaćı č́ısel pomoćı algoritmu kvadratického
śıta a některých jeho modifikaćıch. V teoretické části práce je detailńı popis
těchto algoritmů. V praktické části práce je popsaná jejich implementace v
jazyce C++ a paralelizace pomoćı openMP a MPI. Implementované metody
jsou otestovány na fakultńım serveru STAR a výsledky navzájem porovnány.

Kĺıčová slova Faktorizace, faktorizace č́ısel, kvadratické śıto, QS, v́ıce po-
lynomiálńı kvadratické śıto, Dixonova metoda, Fermatova faktorizace, MPQS

Abstract

This thesis is focused on the quadratic sieve factorization algorithm and some
of its modifications. The theoretical part of this thesis serves as a detailed
description of these algorithms. The practical part of the thesis describes
their implementation in C++ programming language and parallelization using
openMP and MPI libraries. The implemented methods are tested on the
faculty server STAR and results are compared together.

Keywords Factorization, integer factorization, quadratic sieve, QS, multi-
ple polynomial quadratic sieve, Dixon’s method, Fermat’s factorization, MPQS

vii

Contents

Introduction 1

1 Basic terms and definitions 3
1.1 Basic algorithms . 6

1.1.1 Sieve of Eratosthenes 6
1.1.2 Trial division . 7

2 Quadratic sieve factorization method 9
2.1 Fermat’s integer factorization 9

2.1.1 Algorithm . 10
2.1.2 Example . 11

2.2 Dixon’s factorization method 11
2.2.1 The main idea . 12
2.2.2 Example . 13
2.2.3 Algorithm . 14

2.3 Quadratic sieve factorization method 15
2.3.1 Improving the factor base 16
2.3.2 Sieving . 16
2.3.3 Logarithmic approximation 17
2.3.4 Additional optimizations 19
2.3.5 Algorithm . 19

2.4 Multiple polynomial quadratic sieve 20
2.4.1 Generating multiple polynomials 21
2.4.2 Negative values . 24
2.4.3 Potential for improvement 24
2.4.4 Algorithm . 24

2.5 Self-initializing quadratic sieve 26
2.6 Large prime optimization . 26
2.7 State-of-the-art . 27

ix

2.7.1 Msieve . 27
2.7.2 YAFU . 27
2.7.3 MPQS implementation by Peter Kováč 28

3 Quadratic sieve implementation 29
3.1 General implementation details 29
3.2 Technology used . 30
3.3 Trial division implementation 31

3.3.1 Trial division usage . 31
3.4 Dixon’s method implementation 31

3.4.1 Initialization . 32
3.4.2 Gathering relations . 32
3.4.3 Linear algebra . 33
3.4.4 Obtaining the results . 34
3.4.5 Dixon’s method usage 35

3.5 Quadratic sieve implementation 35
3.5.1 Initialization . 36
3.5.2 Sieving . 36
3.5.3 Quadratic sieve method usage 37

3.6 Multiple polynomial quadratic sieve implementation 37
3.6.1 Initialization . 37
3.6.2 Sieving . 38
3.6.3 Multiple polynomial quadratic sieve method usage . . . 39

3.7 Large prime optimization of MPQS 39
3.7.1 Initialization . 39
3.7.2 Sieving . 40
3.7.3 Large prime MPQS method usage 40

3.8 Parallelization . 41
3.8.1 Parallelization via openMP 41
3.8.2 Parallelization via MPI 42
3.8.3 Combining the openMP and MPI approaches 43
3.8.4 Parallel large prime MPQS method usage 43

4 Quadratic sieve testing 45
4.1 Environment set-up and compilation 46
4.2 Testing the trial division method 47
4.3 Testing the Dixon’s method . 48
4.4 Testing the quadratic sieve method 48
4.5 Testing the multiple polynomial quadratic sieve method 49
4.6 Testing the large prime MPQS method 50
4.7 Testing the parallelized large prime MPQS method 50
4.8 Comparing the results . 51

Conclusion 53

x

Bibliography 55

A Acronyms 57

B Training measurements 59

C Contents of enclosed CD 65

xi

List of Figures

3.1 Trial division usage example . 31
3.2 Dixon’s method usage example . 35
3.3 Quadratic sieve usage example . 37
3.4 Multiple polynomial quadratic sieve usage example 39
3.5 Multiple polynomial quadratic sieve usage example 40
3.6 Parallel large prime MPQS usage example 43

4.1 Average time to factorize one composite number from input files . 51

xiii

List of Tables

4.1 Input files description . 46
4.2 Trial division testing results . 48
4.3 Dixon’s method testing results . 48
4.4 Quadratic sieve testing results . 49
4.5 Multiple polynomial quadratic sieve testing results 49
4.6 large prime MPQS testing results 50
4.7 Parallelized large prime MPQS testing results 50
4.8 Time spent in the linear algebra stage for the input file 220bit.in 52

B.1 Training Dixon’s method with option -b 59
B.2 Training quadratic sieve with options -b and -s for the input file

80bit.in . 59
B.3 Training quadratic sieve with options -b and -s for the input file

100bit.in . 60
B.4 Training quadratic sieve with options -b and -s for the input file

120bit.in . 60
B.5 Training quadratic sieve with options -b and -s for the input file

140bit.in . 60
B.6 Training quadratic sieve with options -b and -s for the input file

160bit.in . 60
B.7 Training quadratic sieve with options -b and -s for the input file

180bit.in . 61
B.8 Training MPQS with options -b and -s for the input file 140bit.in 61
B.9 Training MPQS with options -b and -s for the input file 160bit.in 61
B.10 Training MPQS with options -b and -s for the input file 180bit.in 61
B.11 Training MPQS with options -b and -s for the input file 200bit.in 62
B.12 Training large prime MPQS with option -t and the best performing

options -b 35000 and -s 1000000 for the input file 140bit.in . . . 62
B.13 Training large prime MPQS with option -t and the best performing

options -b 75000 and -s 1000000 for the input file 160bit.in . . . 62

xv

LIST OF TABLES

B.14 Training large prime MPQS with option -t and the best performing
options -b 150000 and -s 1500000 for the input file 180bit.in . . 63

B.15 Training large prime MPQS with option -t and the best performing
options -b 250000 and -s 1500000 for the input file 200bit.in . . 63

B.16 Training parallelized large prime MPQS with options -b, -s and
constant option -t 10000 for the input file 220bit.in 63

B.17 Training parallelized large prime MPQS with options -b, -s and
constant option -t 20000 for the input file 220bit.in 64

B.18 Training parallelized large prime MPQS with options -b, -s and
constant option -t 30000 for the input file 220bit.in 64

xvi

Introduction

Number theory is a branch of mathematics dealing with the analysis of integers
and prime numbers, among other things. Mathematical problems in number
theory are quite special, typical for their rather simple description, but often
very complex solution. A perfect example of one of these problems is the
integer factorization problem.

The description of the integer factorization problem is very simple indeed,
it is also probably as old as the human civilization itself. It goes as follows:
“given any non-prime number, figure out all of its non-trivial divisors.” Even
an ordinary layman could surely understand that, but solving this very prob-
lem can get extremely difficult. So difficult in fact, that modern day computer
security is partially based on this seeming unsolvability.

The concept of integer factorization and its related prime numbers has
fascinated mathematicians since the times of the ancient Greeks, but most of
the big breakthroughs happened surprisingly recently – in the 20th century.
This is probably thanks to the rapid development in the computer science and
cryptography in that era, but most notably thanks to the the invention of the
asymmetric public-key cryptosystem RSA in 1977.

The basic idea of the security behind RSA is that multiplying two numbers
together is fairly easy and quick to accomplish no matter their size, but its
reverse operation – finding two non-trivial divisors of a given number – is
unachievable for large enough number (“unachievable” meaning there is no
publicly known algorithm that could find the divisors in a polynomial time
based on the bit-length of the given number1).

For a long time there have been many different ways and approaches to
solve the integer factorization problem. The easiest approach to find factors
of a composite number N is to just use a “brute-force” method and try divide
N by all the numbers starting from 2 up to

√
N (this method is also known

1The existence of Shor’s algorithm with quantum computers slightly refutes this claim,
but the state of quantum computing is unfortunately/thankfully not developed enough to
be usable in any practical use-case yet.

1

Introduction

as trial division). This algorithm could be theoretically used to factorize any
number, but using it to factorize larger and larger integers (that are usually
used in real-life computer security scenarios) quickly becomes unfeasible. It
is no wonder that the wide-spread usage of RSA during the last century has
motivated many mathematicians to figure out new ways to factorize integers
in much more efficient and less time consuming manner.

In this master’s thesis, I will be analyzing two such algorithms. The first
one is called the Dixon’s factorization method published by John D. Dixon in
1981. The second one is called the quadratic sieve factorization method, an
improvement on the Dixon’s method published in 1982 by Carl Pomerance. I
will implement both methods in the C++ programming language using the
GNU Multiple Precision Arithmetic Library to help with handling arbitrary
large integers. I will explore some basic optimization techniques known as
multiple polynomial quadratic sieve and large prime optimization. I will discuss
and implement parallelization using the openMP and MPI libraries. Lastly,
I will test my implementations on the faculty server STAR and compare the
results.

2

Chapter 1
Basic terms and definitions

Before the analysis of more advanced factorization algorithms can begin, I
need to establish some basic (but important) terms and definitions that I
will be using throughout the rest of this thesis. Even just to be able to
properly define the integer factorization problem, I will need to refresh on some
parts of the discrete mathematics and number theory. In most cases I will be
working with the set of natural numbers N = {1, 2, 3, . . .} or integers Z =
{. . . ,−2,−1, 0, 1, 2, . . .} and with two binary operations on those sets, + : N×
N→ N, · : N×N→ N, + : Z×Z→ Z and · : Z×Z→ Z, representing classical
addition and multiplication of natural numbers or integers respectively. All
terms and definitions used in this chapter are taken from [1] and [2].

Definition 1.1. (Integer divisibility)
For any two integers a, b ∈ Z we say that a divides b if there exists some
z ∈ Z such that a · z = b. If a divides b, we can write that as a | b. This is
the equivalent of saying that a is a divisor of b, b is a multiple of a, or that
b is divisible by a. If b is not divisible by a, we write that as a - b.

With the new-found knowledge of integer divisibility, we can define the
major protagonists of integer factorization: primes and composite numbers.

Definition 1.2. (Prime number)
Prime number is a number p ∈ N \ {1} that is divisible only by itself and
the number 1. Therefore, we can say that p has precisely two divisors.

Definition 1.3. (Composite number)
Composite number is a number c ∈ N \ {1} that is not a prime number.
Composite number always has at least three divisors. It is trivial to see that c is
a composite if and only if there are some numbers a, b ∈ N, 1 < a < c, 1 < b < c
such that c = a · b. The notion of composite numbers can be extended to the
set of integers Z as well, but it is unnecessary for the purpose of this thesis,
since the factorization problem is usually focused on factorizing mainly large
natural numbers.

3

1. Basic terms and definitions

Definition 1.4. (Probabilistic primality test)
Probabilistic primality test are family of algorithms that examine some
odd integer n > 2. If this integer is prime, they always return true. If integer n
is a composite, they might return true with certain probability, otherwise they
return false. The test parameters are usually chosen such that the probability
of returning true for a composite number is so extremely small it can be
dismissed for real-life applications.

Definition 1.5. (Probable prime number)
A number p ∈ N \ {1} is a probable prime number, if p satisfies some
specific condition that holds true for all prime numbers, but holds false for
most composite numbers. Probable primes have one big advantage over prime
numbers: they can be produced very quickly using probabilistic primality
tests in polynomial time. In some rare cases, probable prime number can be
a composite (in which case it is also called a pseudoprime).

In the old days of mathematics, some mathematicians considered the num-
ber 1 to be prime as well. Alas, this would slightly complicate the formula-
tions of other theorems and algorithms used later on in this thesis. Therefore,
number 1 is a special number in the set of N in that it is neither prime nor
composite.

With the above-mentioned information, we can finally define the funda-
mental theorem of arithmetic and the primal focus of this thesis, the factor-
ization problem itself.

Theorem 1.6. (Fundamental theorem of arithmetic)
Every natural number n ∈ N can be represented in exactly one unique way as
a product of one or more primes:

n = pe1
1 · p

e2
2 · p

e3
3 · . . . · pek

k =
k∏

i=1
pei

i

where p1 < p2 < . . . < pk ∈ N are distinct primes and e1, . . . , ek ∈ N are their
exponents. This product is also called the prime number factorization of
n. The exponents e1, . . . , ek can be called prime exponents.

The theorem 1.6 seemingly does not apply for n = 1. Fortunately, this case
is not very interesting (it is the cases where n is very big that are interesting)
and can be solved by letting k = 0 and interpreting 1 as a product of zero
terms.

Just like in the definition 1.3, the fundamental theorem of arithmetic can
be easily extended to all non-zero integers. If we want to find the prime
number factorization of a number n ∈ Z \ {0}, we can simply find the prime
number factorization of |n| and then multiply one of the primes (usually p1)
by −1 if n < 0.

4

Definition 1.7. (The integer factorization problem)
The integer factorization problem is a mathematical problem defined as
follows: given some number n ∈ Z, find all the prime numbers p1, p2, . . . , pk ∈
N and their exponents e1, e2, . . . , ek ∈ N from the prime number factorization
of n.

Although the definition 1.7 is asking for all prime numbers and their expo-
nents while factoring some n, I will consider it a correct solution to find some
two integers a, b ∈ Z \ {1, n} such that n = a · b, even if a or b are composites.
The reason is that if some algorithm can find a and b in a reasonable time, it
can be used recursively on a and/or b (both of which are smaller than n) to
find a proper solution to the factorization problem. Also, when dealing with
real-life applications and challenges (like the RSA cryptosystem), n is usually
a composite with only two prime factors.

Definition 1.8. (Greatest common divisor)
Given some numbers a, b ∈ Z, we call d ∈ Z a common divisor of a and
b, if and only if d | a and d | b. If such d is a positive integer and all other
common divisors of a and b also divide d, d is called the greatest common
divisor of a and b. Usually, the extended Euclidean algorithm is used to find
the greatest common divisor of n in polynomial time with respect to bit-size
of n. We write the greatest common divisor of a and b as

gcd(a, b)

Definition 1.9. (Congruence modulo n)
Given some numbers n ∈ N and a, b ∈ Z, we say that a is congruent to b
moludo n if n | (a − b). This is the same as saying that there exists some
k ∈ Z, such that

a = b + k ∗ n

We write the congruence modulo n as

a ≡ b (mod n).

Definition 1.10. (B-smooth number)
A number n is called B-smooth number, if its prime number factorization

n =
k∏

i=1
pei

i

satisfies pi ≤ B for all i = 1, 2, . . . , k.

Definition 1.11. (B-smooth relation)
Congruence of type

x2 ≡
k∏

i=1
pei

i (mod n),

5

1. Basic terms and definitions

where all pi ≤ B, is called B-smooth relation or smooth relation with
respect to smoothness bound B.

Definition 1.12. (Partial B-smooth relation)
Congruence of type

x2 ≡
k∏

i=1
pei

i · P (mod n),

where all pi ≤ B and P is some prime number and P > B is called partial
B-smooth relation or 1-partial B-smooth relation. It is called 1-partial
relation, because it is only one prime over the smoothness bound B. A 2-
partial or 3-partial B-smooth relations are very similar, only they are two or
three primes over the smoothness bound B.

Definition 1.13. (Quadratic residue)
If an integer n is congruent to a square modulo p, meaning

x2 = n (mod p)

for some x ∈ Zp, this integer n is called quadratic residue modulo p. If this
congruence does not have a solution (such x does not exist), n is said to be
quadratic nonresidue modulo p.

Definition 1.14. (Legendre symbol)
Given an odd prime p and integer n, the Legendre symbol is a function of
n and p and is defined as

(
n

p

)
=

0 if p | n
1 if n is quadratic residue modulo p
−1 if n is quadratic nonresidue modulo p

Definition 1.15. (Euler’s criterion)
Euler’s criterion is a formula used to calculate Legendre symbol. Let p be
an odd prime and n a positive integer not divisible by p, then(

n

p

)
≡ n

p−1
2 (mod p)

1.1 Basic algorithms

1.1.1 Sieve of Eratosthenes

According to [3], one of the things that heavily inspired the creation of the
quadratic sieve method was an algorithm already known by ancient Greeks,
the sieve of Eratosthenes, used to find all primes up to some parameter n.
It is also fairly important because it is an extremely fast way to generate all
primes below n for relatively small n, which is going to be important for factor
base generation in quadratic sieve.

6

1.1. Basic algorithms

Algorithm 1: Sieve of Eratosthenes
Input: positive integer n
Output: all primes up to n
Primes← ∅
/* initialization phase */
for i = 2, 3, . . . , n do

Primes[i]← true
/* sieving phase */
for p = 2, 3, . . . , b

√
nc do

if prime[p] = true then
c← p2

while c ≤ n do
Primes[c]← false
c← c + p

return all integers i = 2, 3, . . . , n for which Primes[i] is True

1.1.2 Trial division

Trial division is using the “brute force” approach to factorize some composite
n and is therefore by far the simplest method of them all. Still, it is widely
used in general factorization programs with some given cut-off parameter to
factorize out all of the small prime factors of n up to the cut-off. Below is
a slightly improved version, firstly removing all factors of 2 and then only
checking for divisibility with odd integers.

Algorithm 2: Trial division
Input: positive integer n
Output: all prime factors of n
Factors← ∅
/* remove factors of 2 */
while 2 | n do

add 2 to Factors
n← n/2

/* start at 3, only checking odd integers */
i← 3
while i ≤ b

√
nc do

if i | n then
add i to Factors
n← n/i

else
i← i + 2

return Factors

7

Chapter 2
Quadratic sieve factorization

method

Instead of diving straight into the theory behind the quadratic sieve method,
first I should go over the two of its direct predecessors: the Fermat’s integer
factorization and the Dixon’s factorization method.

2.1 Fermat’s integer factorization

There are many different approaches to try and factorize integers, one of them
is called the Fermat’s integer factorization. In fact, all of the factorization
methods in this chapter are ultimately based on this method. It is named after
its inventor, the famous french mathematician Pierre de Fermat. The basic
idea is as follows: suppose some number n, a product of two primes p and q,
is to be factorized. If one can find a way to write down n as difference of two
squares, meaning

n = x2 − y2 (2.1)

for some integers x, y ∈ Z, it is then trivial to see that

n = (x− y) · (x + y).

Furthermore, assuming n is an odd integer (and if not, just find and remove
all powers of 2 by simple trial division), then n can always be written as a
difference of two squares

n = p · q

n =
(

p + q

2

)2
−
(

p− q

2

)2
.

Because n is odd, p and q have to be odd as well. That means x = p+q
2

and y = p−q
2 are valid integers from Z.

9

2. Quadratic sieve factorization method

If the factors are (x−y) = 1 and (x+y) = n, then we have found so-called
trivial factors of n, meaning no progression in finding the actual p and q
prime factors. If that happens, we have to continue searching for different
values of x and y, hoping they are going to be non-trivial.

For the sake of convenience, throughout this section I will be referring to
x2 as X and to y2 as Y .

2.1.1 Algorithm

The real question here is how to generate the x and y values. There are
probably many different variations, but the frequently used one is the one
originally devised by Fermat. Start by letting x =

⌈√
n
⌉
, then repeatedly

calculate Y = x2 − n and check if
√

Y ∈ Z while incrementing x by one each
time.

Algorithm 3: Fermat’s integer factorization
Input: odd composite integer n
Output: two factors of n
for i = 0, 1, 2, . . . do

x←
⌈√

n
⌉

+ i

Y ← x2 − n

y ←
√

Y
if y is an integer from Z ∧ (x− y) 6= 1 then

return (x− y), (x + y)

As per [1, p. 226], this always terminates with the non-trivial factors of
n before x reaches b(n + 9)/6c + 1. This is because the search for x and y
starts around

√
n and slowly stretches out. Therefore, the worst case scenario

is when the two factors of n are the furthest apart, which is the case for
n = 3 ∗ p where p is some prime and in this case x will reach exactly (n + 9)/6
before finding non-trivial factors of n.

It is apparent that the time complexity of this algorithm is not only de-
pendent on n, but it is also heavily dependent on its factors p and q. If these
factors are relatively close to each other (therefore close to

√
n), Fermat’s

factorization will find them very quickly. The further are p and q apart, the
longer it will take. In the most extreme cases, it can take even longer than
with trial division. It is interesting to note that the worst case scenario for
Fermat’s method is the best case scenario for trial division method (where we
start from 2 and end at

√
n) and vice versa.

10

2.2. Dixon’s factorization method

2.1.2 Example

Given the number n = p · q = 8509, find the factors p and q using the Fer-
mat’s integer factorization. Firstly, calculate

⌈√
n
⌉

= 93. Using the sequence
93, 94, 95, 96, 97, . . . as values for x, calculate Y = x2 − n. The resulting se-
quence for Y would be 140, 327, 516, 707, 900, When the Y = 900 is hit,
the algorithm can stop because 900 = 302 and so

972 − 8509 = 900 = 302

8509 = 972 − 302 = (97− 30) · (97 + 30)

8509 = 67 · 127

p = 67, q = 127

2.2 Dixon’s factorization method

As stated above, if n gets large enough while using Fermat’s method, it quickly
becomes infeasible to individually check all possibilities for y and x, especially
when the worst case scenario scales exponentially with the bit-size of n.

According to [4], Maurice Kraitchik, Belgian mathematician specializing
in number theory, suggested that equation 2.1 from Fermat’s method can be
loosened up a little bit, replacing it with congruence

x2 ≡ y2 (mod n) (2.2)

with the condition that
x 6≡ ±y (mod n).

If one can find values x and y that satisfy this congruence, then the result
will be

n | (x2 − y2)

n | (x− y) · (x + y).

By using the extended Euclidean algorithm to find the gcd((x−y), n) there
is a chance we find one of the non-trivial factors of n. According to [3], if n is
odd integer with at least two different prime factors, then the probability of
this happening is at least 50 %.

But there is still one big problem to solve: How to find the values x and
y from the congruence 2.2? Just picking some pseudorandom numbers and
seeing if they fit in the equation is not very effective nor elegant solution. In
1981, John D. Dixon published a method in [5], where he described a much
better way of finding them (in fact, he was not the first person to discover
this method, but he was the first one to publish it with a rigorous proof of its
time complexity). Instead of searching straight for the answers for x and y

11

2. Quadratic sieve factorization method

that satisfy congruence 2.2, it is better to create them from some other values
of xj and yj that “almost” satisfy the congruence 2.2.

Similarly to the section 2.1, for convenience sake I will be referring to x2

as X (this time meaning “the left side of the congruence 2.2”) and to y2 as Y
(meaning “the right side of the congruence 2.2”).

2.2.1 The main idea

First and foremost, some parameter B representing the smoothness bound
must be chosen. Then a set called the factor base (or just FB for short) is
created. It is just a set of k primes FB = {p1, p2, . . . , pk} such that pi ≤ B
for all i = 1, 2, . . . , k. Next, we search for some amount of B-smooth relations
by calculating x2

j for some values xj and checking if that square is B-smooth
using the primes prepared in FB. When we get enough different relations, we
can combine a specific subset of them together to create x and y satisfying
the congruence 2.2.

There are three important questions that need answers here however. How
do we generate values xj , how many relations do we need and how do we
combine them together? The answer to the first question is to let

xj =
⌈√

n
⌉

+ j for j = 1, 2, . . .

and then calculate
Yj = |x2

j |n.

To answer the second question is more tricky. The usual approach is
to get about as many relations as there are factors in the factor base (in
fact, it should be at least one more than the size of factor base). The exact
number and the reasoning behind it will be discussed in the section 3.4.3
dealing with the implementation details. For now just suppose that some m
relations is enough. If Yj is B-smooth, there exist the exponents ej,i from
prime factorization of Yj . If we can find m such relations, we get

x2
1 ≡

k∏
i=1

p
e1,i

i (mod n)

x2
2 ≡

k∏
i=1

p
e2,i

i (mod n)

...

x2
m ≡

m∏
i=1

p
em,i

i (mod n)

Now to answer the third question. After we multiply the chosen relations
together, we need to have all the exponents for all the primes on the right-
hand side even. Without loss of generality, suppose we multiply together the

12

2.2. Dixon’s factorization method

relations for x1, x2 and x3 making exponents for all primes in factor base
e1,i + e2,i + e3,i even for i = 1, 2, . . . , k.

x2
1 · x2

2 · x2
3 ≡

k∏
i=1

p
e1,i+e2,i+e3,i

i (mod n)

(x1 · x2 · x3)2 ≡
(

k∏
i=1

p
e1,i+e2,i+e3,i

2
i

)2

(mod n),

which gives us the values satisfying congruence 2.2. It is apparent that this
principle generalizes to any finite set of relations, but only if the sum of expo-
nents is even for all of their primes. Therefore, in order to use this method,
there needs to be a way to find such subset from all of the m B-smooth rela-
tions that are collected. This can be achieved using linear algebra, discussed
in more detail in the section 3.4.3.

2.2.2 Example

Given the number n = p·q = 44377 and the smoothness bound B = 7, find the
factors p and q using the Dixon’s integer factorization. Firstly, we generate
the factor base FB = {2, 3, 5, 7} and calculate

⌈√
44377

⌉
= 211. Then, we

follow by generating numbers with

xj = 211 + j for j = 1, 2, . . .

Yj = |x2
j |44377

and checking if Yj is B-smooth number. If it is, we collect the smooth rela-
tion x2

j ≡ Yj (mod 44377). After collecting enough relations and using linear
algebra, we find that we can multiply relations

x2
8 = (219)2 ≡ 3584 = 29 · 7 (mod 44377)

x2
18 = (229)2 ≡ 8064 = 27 · 32 · 7 (mod 44377)

to get modular equivalence of two squares as follows:

2192 · 2292 ≡ 216 · 32 · 72 (mod 44377)

(219 · 229)2 ≡ (28 · 3 · 7)2 (mod 44377)
(5774)2 ≡ (5376)2 (mod 44377),

getting the congruence of type 2.2. Now with some algorithm for finding the
greatest common divisor of two numbers, we can see that

p = gcd(5774− 5376, 44377) = 199

q = 44377/199 = 223.

13

2. Quadratic sieve factorization method

2.2.3 Algorithm

The more concrete algorithm would get fairly long and complicated, so only
very general pseudo-code follows.

Algorithm 4: Dixon’s integer factorization
Input: odd composite integer n, positive integer B
Output: two factors of n
FB← create factor base for primes ≤ B
Relations← ∅
Exponents← ∅
j ← 1
while not enough B-smooth relations in Relations do

xj ←
⌈√

n
⌉

+ j

Yj ← |x2
j |n

/* B-smoothness is tested using primes stored in FB */
if Yj is B-smooth then

Add x2
j ≡ Yj (mod n) to Relations

Add prime exponents from prime number factorization of Yj to
Exponents

j ← j + 1
Solutions ← Use GEM on Exponents to get lists of relations with
their linear combination giving even sums of exponents for all primes

foreach solution in Solutions do
x← multiply all xi from list of relations in solution
Y ← multiply all Yi from list of relations in solution
y ←

√
Y

p← gcd(x− y, n)
if p 6= 1 ∧ p 6= n then

return p, n/p
return Unable to find non-trivial factors.

The time complexity of most methods based on Fermat’s factorization is
very problematic to prove. The difficulty lies in the uncertainty whether Yj is
going to be B-smooth or not. Dixon’s method is one of the very few with a
rigorous mathematical proof, published by Dixon in [5] and stating that the
time complexity of factorizing integer n with this method is

O(exp(3(2 ln n ln ln n)1/2))

or in the L-notation
Ln

[1
2 , 3
√

2
]

,

making Dixon’s method a sub-exponential factorization algorithm.

14

2.3. Quadratic sieve factorization method

2.3 Quadratic sieve factorization method

When it comes to the basic Dixon’s method described above, there are a
few problems that make it very slow, so much so that it becomes unusable
in any sort of real world scenario. However, it is a great starting point for
other factorization methods and the quadratic sieve is next in line in this
evolutionary branch.

In this method, the 2.2 congruence is still ultimately used to find factors of
n, but what has changed is the way B-smooth relations are generated. In order
to generate potential B-smooth relations, a polynomial is now used instead.
There are a few different approaches using slightly different polynomials, but
the basic one is defined as

Q(x) =
(⌈√

n
⌉

+ x
)2
− n.

The sequence of Q(1), Q(2), Q(3), . . . is then used to generate possible B-
smooth relations. If the value of Q(xj) for some xj is B-smooth, then we get
the B-smooth relation

Q(xj) =
k∏

i=1
p

ej,i

i ≡
(⌈√

n
⌉

+ xj

)2
(mod n)

and, analogically to the Dixon’s method, if we get big enough set of such
B-smooth relations, we can find (using the same linear algebra tools used in
Dixon’s method) some subset J for which the sum of exponents ej,i of all
Q(xj) in the subset is an even number for all the primes pi in factor base and
we get

∏
xj∈J

Q(xj) =
∏

xj∈J

k∏
i=1

p
ej,i

i =
k∏

i=1
p

∑
xj∈J

ej,i

i =

 k∏
i=1

p

∑
xj∈J

ej,i

2
i

2

.

Therefore, by multiplying all B-smooth relations in the subset J , we get

∏
xj∈J

Q(xj) =

 k∏
i=1

p

∑
xj∈J

ej,i

2
i

2

≡
∏

xj∈J

(⌈√
n
⌉

+ xj

)2
(mod n)

 k∏
i=1

p

∑
xj∈J

ej,i

2
i

2

≡

 ∏
xj∈J

(⌈√
n
⌉

+ xj

)2

(mod n),

which is an instance of the congruence 2.2. The next three sections look at the
three main improvements quadratic sieve offers over the Dixon’s method: bet-
ter factor base generation, addition of the sieving process and the logarithmic
approximation.

15

2. Quadratic sieve factorization method

2.3.1 Improving the factor base

In Dixon’s method described in section 2.2, the process of generating the
factor base was very simple. Based on the smoothness bound B, simply add
all primes that are less than or equal to B to the FB. This leads to a big
problem: the bigger B is, the larger the size of FB is going to be and the more
B-smooth relations we need to find. This problem is unfortunately inevitable,
but it can be mitigated a little bit with smarter strategy of FB generation.

As a reminder, the only point of FB is to hold the primes that are used to
test if Q(x) for some x is a B-smooth number. In other words, all primes in
FB that can divide Q(x) are useful to have in FB, other primes that can not
divide Q(x) are never used (their prime exponent is always going to be 0 in
all relations) and so they are not useful and only make the size of FB bigger,
resulting in needless search for more B-smooth relations. Luckily, with the
way the polynomial Q(x) is defined, there is a way to check if certain prime
can ever divide Q(x) for any value of x.

Suppose we need to find prime factors of integer n. For all primes p ≤ B
we have to figure out if p divides Q(x) for any x. If yes, then add p to FB. If
not, skip it. We can write

p | Q(x)

p |
((⌈√

n
⌉

+ x
)2
− n

)
(⌈√

n
⌉

+ x
)2
− n ≡ 0 (mod p)

(⌈√
n
⌉

+ x
)2
≡ n (mod p).

Therefore, if n is congruent to a square modulo p for any value of x, then
p will be useful prime and should be added to FB. In other words, we need
to check if check if n is quadratic residue modulo p, or, using the Legendre
symbol, if

(
n
p

)
= 1.

In conclusion, it is better to generate the factor base in following way: For
all primes p ≤ B, check if

(
n
p

)
= 1 and if so, add p to FB. According to

[1, p. 265], this process usually reduces the size of FB by about a half. The
calculation of Legendre symbol can be done very quickly using the Euler’s
criterion formula.

2.3.2 Sieving

The most important addition of the quadratic sieve method is the sieving pro-
cess. Instead of going through the sequence of values Q(x1), Q(x2), Q(x3), . . .,
calculating the value of each Q(xi) individually and then checking if it is B-
smooth number, Carl Pomerance described much more efficient process in [6].
First off, start by establishing some integer s ∈ N representing the size of

16

2.3. Quadratic sieve factorization method

the sieving interval. Now, instead of calculating and checking each value of
Q(xi) individually, we will work with the entire sequence of Q(x) for all x from
the sieving interval [x1, x2, . . . , xs] simultaneously. If we do not have enough
B-smooth relations at the end of this process, we continue with the values of
x from the next sieving interval [xs+1, xs+2, . . . , x2s] analogously. Generally,
this process can be done with however many intervals it takes to find the
required amount of B-smooth relations. For the sake of brevity, the phrase
“Q(x) inside the sieving interval” means “the value of Q(x) using some x from
the sieving interval”.

The sieving portion of this algorithm comes as a result of the following
observation. Instead of checking whether Q(x) is divisible only by the primes
in FB, we turn this process upside-down and, for each prime p ∈ FB, we find
which values of Q(x) inside the sieving interval p divides. Because Q(x) =
(d
√

ne+ x)2 − n, we need the roots of modular polynomial

Q(x) =
(⌈√

n
⌉

+ x
)2
− n ≡ 0 (mod p). (2.3)

According to [7, p. 16], solving the equation 2.3 usually leads to two integer
solutions in Zp, lets call them xp and ẋp = p − xp. They can be found using
the Tonelli–Shanks algorithm, or even better yet, using the Cipolla’s algorithm
(possible implementation described in [1, p. 102]).

Knowing that p | Q(xp) and p | Q(ẋp), it is very easy to find all the other
values of Q(x) divisible by p inside the sieving interval by using the following
principle:

p | Q(x) ⇐⇒ p | Q(x + kp), k ∈ Z. (2.4)

The sieving strategy is now clear: For each prime p ∈ FB, calculate the
roots xp and ẋp of the equation 2.3. Then, go through the sieving interval
[x1, . . . , xs] and mark all xi for which p | Q(xi) using the principle 2.4.

The incredible speed-up using this method manifests when the size of the
factor base is much smaller than the size of the sieving interval. In that case,
instead of doing some sort of trial division by p on all Q(x) in the interval
individually, we calculate only one slightly more complicated equation (roots
from 2.3) for each p ∈ FB and then, using simple addition, we get all Q(x)
divisible by p at once. The problem is, this method does not tell us how many
times is Q(x) divisible by p. Luckily, this is not a very big issue at all and it
will be addressed at the end of the following section.

2.3.3 Logarithmic approximation

One aspect of the sieving process above was just briefly mentioned, but not
clearly described. What does it actually mean to “mark” that some value
of Q(x) is divisible by p? The simplest way is to precompute all values of

17

2. Quadratic sieve factorization method

Q(x1), . . . , Q(xs) for all values of x in the sieving interval in advance. After-
wards, to mark that p | Q(xi) would mean to divide the precomputed Q(xi) by
p. At the end of the sieving, we could just check which values of Q(xi) in the
interval are equal to 1, those represent B-smooth values. This approach has
several disadvantages. Firstly, for each prime, we would have to find not only
which values of Q(x) are divisible by it, but also how many times, requiring
some extra work. Secondly, and more importantly, the time complexity of
integer division is very high and it would be very advantageous to substitute
it with simple addition. The logarithmic approximation can achieve just that.

To do so, the logarithmic approximation uses the simple fact that

Q(x) =
k∏

i=1
pei

i

log(Q(x)) =
k∑

i=1
log(pei

i).

Instead of starting with the value of Q(x) for each x in sieving interval at the
beginning, dividing it by all primes from FB Q(x) is divisible by and checking
if it is equal to 1 at the end, we can create a variable for each Q(x) inside
the interval representing the sum of logarithms of all the primes dividing this
particular Q(x). All of these sums would be initially set to 0, and to mark
that p | Q(xi) would now mean to just add the value of log(p) to the sum
for this Q(xi). At the end, we check if this value is equal to log(Q(x)) and
if it is, Q(x) is B-smooth number. To make this slightly faster, we should
precompute and store the values of log(p) for every p in the FB.

Because working with logarithms requires swapping from integers to real
numbers, this could be a problem for computer programs if we needed precise
calculations. Fortunately, approximations are all we need. Addressing the
problem from previous section, we just have the information that Q(x) is
divisible by some p from FB, but not how many times (i.e. we are missing the
exponent of the prime). The usual solution to this, recommended for example
in [1, p. 267], is to just ignore this. At the end, instead of comparing the
resulting sum of logarithms we get from the sieving process for each Q(x) to
the exact value of log(Q(x)), we compare it to some estimate of log(Q(x))
called the sieving threshold. If the final sum of logarithms for some x in
the sieving interval is bigger than the sieving threshold, Q(x) is probably a
B-smooth number. Therefore, at the end of the sieving process, we can look
through all the final sums for all the values of x from the sieving interval,
check if they are bigger than the sieving threshold and if so, check the Q(x)
manually for B-smoothness. By making the sieving threshold slightly smaller,
we make up for the fact that we add just log(pi) and not log(pei

i).
Proper selection of the sieving threshold is essential for this approach to

work. If the sieving threshold is too big (i.e. strict), a lot of the actual B-
smooth values of Q(x) will be missed. If it is too small (i.e. loose), we will end

18

2.3. Quadratic sieve factorization method

up manually checking a lot of values Q(x) that are not actually B-smooth,
therefore wasting a lot of time and potentially removing all the benefits of
sieving.

2.3.4 Additional optimizations

In the section 2.3.1, we have removed all unnecessary primes from the factor
base. However, it could be beneficial to ensure that some small primes are
in the FB. For example, when we are manually checking if some Q(x) is B-
smooth, we need to divide it by all primes in the FB. Because of the way
computers are built, it is incredibly fast to divide by the number 2 using the
bit shifting operator. Also, when considering whether to add 2 to the factor
base or not, we cannot use the Euler’s criterion, because 2 is not an odd prime.
To solve both of these problems, we could force the prime 2 to always be in the
FB by multiplying the n we are trying to factorize by some small multiplier
k. In [7, p. 13], it is advised to do so by letting k = |n|8.

Another optimization can be made during the sieving process. Because
the logarithmic values of small primes are so small, they do not contribute
very much to the final sum for the particular numbers Q(x) they divide. On
top of that, they contribute most of the work in the actual sieving process.
For example, consider the smallest prime p = 2. Every other value of Q(x)
in the sieving interval is going to be divisible by 2 and thus we will need to
process half of the interval by adding log(2) to it. Therefore, it can be very
advantageous to skip sieving with small primes altogether and then make the
sieving threshold slightly less strict to compensate for the small loss in the
final sum.

2.3.5 Algorithm

All the differences between quadratic sieve and Dixon’s method are in the
way B-smooth relations are found. Everything hereafter (the usage of linear
algebra and the extraction of solution using the greatest common divisor)
is exactly the same and thus it will be skipped in the following algorithm
description.

Unlike the Dixon’s method, the time complexity of quadratic sieve al-
gorithm is only conjectured. According to [8] in the analysis done by Carl
Pomerance, the conjectured time complexity of factorizing composite n with
quadratic sieve is

O(exp((ln n ln ln n)1/2))

or in the L-notation
Ln

[1
2 , 1

]
,

making it sub-exponential algorithm with better constant component in the
exponent than the Dixon’s method. Interestingly enough, even though there

19

2. Quadratic sieve factorization method

Algorithm 5: Quadratic sieve factorization method
Input: odd composite integer n, positive integer B, size of the

sieving interval s
Output: two factors of n

FB← create factor base for primes p ≤ B,
(

n
p

)
= 1

Relations← ∅
Exponents← ∅
while not enough B-smooth relations in Relations do

/* Beginning of sieving process. */
I ← array of size s filled with 0
t← sieving threshold estimate
foreach p in FB do

calculate the roots xp and ẋp

while xp ≤ s do
I[xp]← I[xp] + log(p)
xp ← xp + p

while ẋp ≤ s do
I[ẋp]← I[ẋp] + log(p)
ẋp ← ẋp + p

/* End of sieving process. */
foreach i in I do

if i > t then
if Q(xi) is B-smooth then

Add Q(xi) ≡ (
√

n + xi)2 (mod n) to Relations
Add exponents from prime number factorization of
Q(xi) to Exponents

Prepare the next sieving interval
Enough B-smooth relations obtained, continue same as in algorithm 4

are many variations of the quadratic sieve method that offer considerable im-
provements (some of which are discussed later on in this thesis), the asymp-
totic time complexity estimate for them remains unchanged (they only improve
some constants discarded in the asymptotic analysis).

2.4 Multiple polynomial quadratic sieve

The polynomial Q(x) used in the simple version of quadratic sieve described
above comes with one great disadvantage. The rate at which we find B-
smooth relations usually starts fairly high, but decreases rapidly over time.
This happens because Q(x) = (d

√
ne+ x)2 − n and we start sieving with

x1 = 1, x2 = 2, . . ., thus the values of Q(x) keep increasing with increasing
x. And since smaller numbers are more likely to be B-smooth than bigger

20

2.4. Multiple polynomial quadratic sieve

numbers for the same B that is given, the longer the sieving takes, the less
likely we are to find additional B-smooth relations. We could make smoothness
bound variable B bigger, but that would only expand the factor base and in
turn increase the amount of B-smooth relations needed. The proper remedy
to this problem is to use more than one polynomial to generate B-smooth
relations.

The general idea is as follows: We start the sieving process with some
polynomial Q1(x) over fixed sieving interval, collecting B-smooth relations,
and when the values of Q1(x) get too high and the probability of finding B-
smooth relations decreases too much, instead of moving to the next interval,
we switch to a slightly different polynomial Q2(x). We continue sieving and
switching polynomials until we have gathered enough B-smooth relations.

2.4.1 Generating multiple polynomials

There are couple of differences between normal quadratic sieve and multiple
polynomial quadratic sieve methods. The main difference is, as the name
suggests, instead of sieving over single polynomial Q(x) = (d

√
ne+ x)2−n to

gather all B-smooth relations, we use a family of polynomials called Qj(x).
There are multiple different versions of MPQS using slightly different ways to
generate the polynomials, but the most common one was suggested by Peter
Montgomery and further modified by Robert Silverman in [9]. I followed
the method described by Carl Pomerance in [1, p. 273], which is a slight
modification of the Silverman method. The new family of polynomials is
defined as

Qj(x) = ajx2 + 2bjx + cj

with some coefficients aj , bj , cj ∈ Z satisfying certain conditions. First of all,
it is very important for aj to be square of a prime for reasons discussed in a
moment. Let us call that prime dj . It is also important that 0 ≤ bj < aj and

b2
j − ajcj = n.

This can be rewritten as

b2
j ≡ n (mod aj) (2.5)

meaning bj can exist only if
(

n
p

)
= 1 for every prime p that divides aj . Since

the only prime dividing aj is dj , it is only needed that
(

n
dj

)
= 1.

With the condition for bj satisfied, we can write

ajQj(x) = a2
jx2 + 2ajbjx + ajcj = (ajx + bj)2 − n

and therefore
(ajx + bj)2 ≡ ajQj(x) (mod n). (2.6)

21

2. Quadratic sieve factorization method

Assuming dj ≤ B, aj is also a B-smooth number. Therefore, all we need
is to find values of x for which Qj(x) is B-smooth number and we can use the
congruence 2.6 to generate B-smooth relations. In order to get an instance
of the congruence 2.2 to get the solution, we use these relations identically
as we used them in quadratic sieve and Dixon’s methods, but with one small
exception. To get a square on the right-hand side of the congruence, we make
use of the fact that because aj is a square, the product of squares is a square
as well. When we multiply multiple congruences of type 2.6 together, the
product of all aj on the right-hand side has to always be square. Therefore,
in the linear algebra step, we do not need to work with the prime exponents
of the entire right-hand side ajQj(x), but only with the prime exponents of
Qj(x).

Now we know what the new polynomials generally look like, but we do not
know how to actually create them, in other words, how to actually pick the
coefficients aj , bj , cj such that the values of Qj(x) are relatively small over the
sieving interval. To achieve that, first we need to consider the minimum of the
function Qj(x). Because aj > 0, the function is a convex quadratic function
and it has a minimum precisely where the first derivative of Qj(x) is equal to
0, which is at x = −bj/aj .

In the quadratic sieve method, only positive integers for x were used in
the sieving intervals, starting at x1 = 1 and increasing linearly. Considering
the fact that

lim
x→∞

Qj(x) =∞∧ lim
x→−∞

Qj(x) =∞,

and that the minimum of Qj(x) is a negative integer, it would be very ad-
vantageous to shift the beginning of the sieving interval to negative values
as well. That way, the values of Qj(x1) will start off large, slowly decrease
as x approaches −bj/aj , where the Qj(−bj/aj) hits the minimum and starts
increasing again. This would maximize the amount of small values of Qj(x)
over the sieving interval, making it more likely to find B-smooth relations.
However, using Qj(x) with negative values of x comes with one problem that
needs to be fixed and is further addressed in the following section 2.4.2.

As a result, suppose the sieving interval is [−M, M] for some variable
M . It can be seen that for every one concrete polynomial Qj(x), we will
sieve with precisely 2M + 1 values of x, then switch to the next polynomial
Qj+1(x). The goal is to choose the coefficient aj and with it calculate bj , cj

such that the values of Qj(x) are kept relatively small over [−M, M]. One
possible approach, suggested in [1], is to let the minimum and the maximum
of Qj(x) over [−M, M] approximately equal each other in absolute value, in
other words, let the minimum and the maximum of Qj(x) over [−M, M] have
approximately the same magnitude, but opposite sign.

Given that the largest value of Qj(x) over this interval is at the endpoints

22

2.4. Multiple polynomial quadratic sieve

x = ±M , we estimate that

Qj(±M) = ajM2 ± 2bjM + cj =
a2

jM2 ± 2ajbjM + b2
j − n

aj
≈

a2
jM2 − n

aj
.

It was already established that the minimum is at x = −bj/aj and thus

Qj

(
− bj

aj

)
=

ajb2
j

a2
j

−
2b2

j

aj
+ cj =

−b2
j + ajcj

aj
= − n

aj
.

Therefore, we need to choose aj such that

a2
jM2 − n

aj
≈ n

aj

which can be solved by letting

aj ≈
√

2n

M
.

Considering that aj should be square of a prime dj , we can roughly define dj

and aj as

dj ≈

√√
2n

M

aj = d2
j .

There is one more condition to fulfill, namely that dj needs to be prime. For
the sake of efficiency, this is usually achieved by generating probable primes
around (2n)1/4/M1/2 using Miller-Rabin or similar primality test. With this
value of dj , we can calculate the value of aj and in turn the values of bj and
cj . Each time new polynomial is needed, a new dj is chosen and the rest of
coefficient calculated from it. To get the value of bj from aj , the congruence
2.5 needs to be solved. If the modulus aj was prime, this congruence would be
easy to solve. Unfortunately, aj is not a prime, but a square of prime dj . One
method to solve the congruence 2.5, described in [7, p. 20], is to first solve the
congruence

b2
j ≡ n (mod dj)

using Tonelli-Shanks or Cipolla’s algorithm, then lift the result by Hensel
lemma to higher prime power (more on “Hensel lifting” can be found in [1,
p. 105]. This leads to two solutions for bj , both describing the same polyno-
mial, so only one of them is used. The value of cj is then calculated simply
with cj = (b2

j − n)/(aj).

23

2. Quadratic sieve factorization method

2.4.2 Negative values

When trying to implement this version of multiple polynomial quadratic sieve,
one could run into a problem with the values Qj(x) is returning. Because we
are now not restricting the sieving interval to positive integers for x only,
Qj(x) can return negative integers as well. We need to be able to check the
B-smoothness of a negative number, as well as to process them for the linear
algebra step. This is done by adding one special “prime” to our factor base,
the p0 = −1. Its prime exponent e0 will be zero if the B-smooth number is
positive or one if the B-smooth number is negative. It is also important not
to forget to include the exponent in the linear algebra step, making sure that
in the final multiplication of B-smooth relations, the sum of all exponents e0
is even.

2.4.3 Potential for improvement

Ironically enough, big potential bottleneck of the MPQS method is the poly-
nomial generation process itself, or rather what follows it. Every time, after
some new polynomial is created, the roots xp and ẋp of Qj(x) ≡ 0 (mod p)
for each prime p from the factor base have to be computed. This would take
fairly long indeed, using quite complicated Cipolla’s algorithm to perform root
extraction for every prime after each polynomial change. Luckily, this process
can be sped up by using a simple suggestion found in [7]. Before the any
of the polynomial generation or sieving begins, calculate and save the values
of rp =

√
n (mod p) for all primes p in factor base. There should be two

solutions in Zp, rp and ṙp = p − rp, but saving only the first one will suffice.
With these values precalculated, we do not need to perform any more root
extractions when the polynomial switches. The roots of Qj(x) can be found
simply using

xp =
∣∣∣∣∣rp − bj

aj

∣∣∣∣∣
p

, ẋp =
∣∣∣∣∣p− rp − bj

aj

∣∣∣∣∣
p

.

By far the most time consuming segment of the calculation above is the
modular inverse a−1

j (mod p). Currently, each time the polynomial switch
occurs, different polynomial coefficient are generated, including the aj . Should
we wish to make this process more time efficient, we need to find a way to
be able to reuse the same aj for more than one polynomial, saving time on
the modular inverse calculations. The self-initializing quadratic sieve method
addresses just that.

2.4.4 Algorithm

The general description of the MPQS method in pseudo-code follows in the
algorithm 6.

24

2.4. Multiple polynomial quadratic sieve

Algorithm 6: Multiple polynomial quadratic sieve method
Input: odd composite integer n, positive integer B, bounds of the

sieving interval M
Output: two factors of n
FB← −1
FB← add all primes p ≤ B,

(
n
p

)
= 1

Relations← ∅, Exponents← ∅
d0 ← (2n)1/4/M1/2

while not enough B-smooth relations in Relations do
/* Create new polynomial and start sieving. */

dj ← next probable prime from previous dj−1 such that
(

n
dj

)
= 1

aj , bj , cj ← calculate polynomial coefficients from dj

I ← array of size 2M + 1 filled with 0
t← sieving threshold estimate
foreach p in FB, p 6= −1 do

calculate the roots xp and ẋp in Zp

offset the roots xp and ẋp so they start at the beginning of the
sieving interval in [−M,−M + p]

while xp ≤M do
I[xp]← I[xp] + log(p)
xp ← xp + p

while ẋp ≤M do
I[ẋp]← I[ẋp] + log(p)
ẋp ← ẋp + p

/* End of sieving process. */
foreach i in I do

if i > t then
if Qj(xi) is B-smooth then

Add Qj(xi) ≡ (
√

n + xi)2 (mod n) to Relations
Add exponents from prime number factorization of
Qj(xi) to Exponents

Enough B-smooth relations obtained, continue same as in algorithm 4

25

2. Quadratic sieve factorization method

2.5 Self-initializing quadratic sieve

As was mentioned above, the main idea behind the self-initializing quadratic
sieve method is to change the way coefficients aj , bj are calculated. The goal is
to be able to use the same aj for multiple different values of bj , thus skipping
the modular inverse calculation for that many polynomials. Of course, the
conditions for coefficients from section 2.4.1 still need to be met for the rest
of the method to work. Looking back at the congruence 2.5 used to calculate
bj from aj , it only had two solutions, both describing the same polynomial.
That is because we defined aj as a square of another prime. But, if aj is a
product of multiple primes

aj =
s∏

i=1
dj,i,

then, according to the Chinese remainder theorem, the congruence 2.5 has
2s−1 solutions for bj describing different polynomials. Much like the prime dj

used before, all the primes dj,i have to be odd and satisfy
(

n
dj,i

)
= 1.

The theory behind the SIQS method and its implementation proved to
be much more complicated than initially expected when creating the thesis
assignment. After a consultation with my thesis supervisor, we decided not
to focus on SIQS and spend more time on MPQS, large prime optimization
and parallelization instead.

2.6 Large prime optimization

The large prime optimization can be done for any version of the quadratic
sieve method – the basic one, MPQS or SIQS. All of these methods have
something in common. During the process of sieving the sieving interval, one
way or another, the relations that are probably B-smooth are marked. After
the sieving of this interval is finished, some method (usually trial division by
all primes from factor base) is used to check which ones are actually B-smooth
and which ones are not. The actual B-smooth relations are collected, but the
“almost” B-smooth relations are discarded and the time spent processing them
is essentially wasted. The large prime optimization remedies just that.

Suppose we find two partial B-smooth relations with the same prime P
that is over the smoothness bound B

x2 ≡
k∏

i=1
pei

i · P (mod n)

ẋ2 ≡
k∏

i=1
pėi

i · P (mod n).

26

2.7. State-of-the-art

If both of these partial B-smooth relations would be found/marked during
sieving, they would be checked for B-smoothness and discarded afterwards,
because they both contain factor P > B. However, by multiplying them
together, we get

(x · ẋ)2 ≡
k∏

i=1
pei+ėi

i · P 2 (mod n),

which can actually be used as a substitute for one legitimate B-smooth re-
lation. The P prime factor is already square, so it will have to be square if
it is used in the final multiplication. Although the probability of finding two
partial B-smooth relations for a given shared prime factor P is fairly small,
the probability of having some two partial B-smooth relations that have some
shared prime factor P in a set of many partial B-smooth relations is much
larger (given the principles behind the birthday paradox). In a very simi-
lar manner, one could attempt to use 2-partial or even 3-partial B-smooth
relations for 2-large or 3-large prime optimization.

2.7 State-of-the-art

The goal of this section is to go over some of the already existing open-source
implementations of quadratic sieve methods.

2.7.1 Msieve

Msieve is a popular project written mainly by Jason Papadopoulos in the
C language, using the GMP library to handle operations with big integers.
It contains a static library called libmsieve.a, implementing two different
algorithms for large number factorization, and a msieve demo application
that uses the library. The two algorithms implemented are the self-initializing
quadratic sieve with 2-large prime optimization and the number field sieve, so
far the most advanced method to factorize large numbers.

According to the documentation, the library is multithread aware and also
contains support for computing in a cluster via MPI, although it seems that
is only for the linear algebra calculations. The most up to date version and
documentation can be found in [10].

2.7.2 YAFU

Yet Another Factorization Utility, more known as its abbreviation YAFU, is
one of the most efficient open-source implementations of the quadratic sieve
method. It contains an implementation of the simple QS, MPQS and SIQS
methods, all with the single large prime optimizations. According to their
own homepage, “YAFU’s SIQS implementation is the fastest publicly available
quadratic sieve implementation” [11]. It also contains an implementation of

27

2. Quadratic sieve factorization method

the number field sieve method and very fast implementation of the sieve of
Eratosthenes, all written in the C programming language. All major stages
of the factorization in SIQS are multi-threaded. It does not support cluster
computation however.

2.7.3 MPQS implementation by Peter Kováč

The master’s thesis [12] by Peter Kováč looks at few different versions of
the quadratic sieve method, the most advanced one being the MPQS with
single large prime optimization. Implementation is written in C++ language,
using GMP to handle large integer operations. Neither the thesis nor the
implementation focus on any parallelization of the algorithm.

28

Chapter 3
Quadratic sieve implementation

3.1 General implementation details

The implementation is split into two separate programs. The first program,
called qsieve, implements all of the following methods in one-threaded, non-
parallel execution style:

• trial division,

• Dixon’s method,

• quadratic sieve,

• multiple polynomial quadratic sieve,

• large prime multiple polynomial quadratic sieve.

The second program is called qsievempi and implements only the large
prime multiple polynomial quadratic sieve method, but in parallelized execu-
tion suitable for distributed computing in a cluster with openMP and MPI
libraries.

The two programs have slightly different usage. Since the qsieve program
is expected to be run interactively from terminal, the usage can be printed
simply by running just ./qsieve or ./qsieve -h. The qsievempi is not
expected to be run interactively, but instead to be added to some computer
cluster’s job queue, hence why there is no option to just print usage. For
qsieve, the required options depend on the method that has been selected.
For obvious reasons, since the qsievempi only implements one method, there
is no option for method selection and the rest of the required options are
exactly the same as qsieve with the the large prime multiple polynomial
quadratic sieve method selected. If something goes wrong during the execu-
tion, error messages are printed to the standard output or to the output file
if it is provided as option.

29

3. Quadratic sieve implementation

3.2 Technology used

I chose the C++ programming language for the implementation. The main
reasoning behind that decision was that the language is very efficient and
fairly easy to use for this task, with a set of already existing libraries to help
with parallelization and some other problematic parts. I used the C++11
standard, mostly because I wanted to take advantage of the move semantics
this standard offers. With them I can make the implementation slightly more
efficient by cutting down the time it takes to make copies of some temporary
object in the program.

Because the entire point of factorization of large integers is to work with
large numbers, I needed some way to store them in the program. The fun-
damental C++ data types would not do, because they have a fixed size and
would overflow easily, causing unexpected results or errors. I opted to use the
GNU Multiple Precision Arithmetic Library, also known as GMP, to handle
the large integer operations. It is a free open-source library under the dual
GNU LGPL v3 and GNU GPL v2 license, written in C programming language
[13]. For the implementation, I used GMP version 6.2.1.

I also decided to use some of the Boost libraries to help with several parts of
the implementation. Boost is a collection of various C++ libraries distributed
under the Boost Software License [14], providing some additional utility that
is missing from the standard libraries. Most of the libraries in Boost are
header-only libraries, meaning they do not have to be built separately, instead
they can be simply imported into the project’s source code by the #import
compiler preprocessor directive. The Boost version 1.75.0 was used during
implementation.

One of the tasks for this thesis was to discuss and implement parallelism
of the algorithms, then measure the results on the faculty server STAR. STAR
is a hybrid distributed-shared memory computer cluster, meaning it contains
multiple nodes (each node has its own memory – distributed memory archi-
tecture) and each node contains multiple processors with multiple cores per
processor (shared memory architecture). To successfully implement paral-
lelization for STAR, I had to address both of these architectures separately.

To help with the shared memory architecture, I used the API standard
for shared memory programming called openMP [15]. By using openMP I
was able to split some parts of the original sequential algorithm into multiple
threads, causing it to be computed in parallel on multi-core processors.

For the parallelization with distributed memory architecture, I used the
Message Parsing Interface standard (or MPI for short) [16]. This is widely
used standard for distributed computing, defining a set of functions for inter-
process communication via message passing and other tasks.

Some of the calculations during the sieving process require finding the
roots of a modular polynomial. To achieve that, several different algorithms
can be used. I chose to use the Cipolla’s algorithm implementation from

30

3.3. Trial division implementation

the Project Wycheproof [17]. It is a project developed and maintained by
the Google Security Team under the Apache 2.0 license. The algorithm is
originally written in the Java programming language, so I rewrote it into the
C++ language and modified it slightly to fit my needs.

3.3 Trial division implementation

The files TrialDivision.h and TrialDivision.cpp contain very simple im-
plementation of trial division factorization algorithm shown in section 1.1.2.
The main purpose of this implementation is be able to show the juxtaposition
of this very basic/trivial method and some of the other, more elaborate and
complicated methods. There are no required options for this method.

3.3.1 Trial division usage

The figure 3.1 is an example of how the trial division method can be run. The
-m option selects the trial division method, all the numbers to be factorized
are read from the input file specified by the -i option and then factorized
one by one until end of file is encountered or until some error occurs. The
entire output is printed out to the output file specified by the -o option. The
program will read from standard input and print to standard output if no
input/output files are provided.

Figure 3.1: Trial division usage example

./qsieve -m td -i inputfile.txt -o outputfile.txt

3.4 Dixon’s method implementation

To factorize with any method discussed in this thesis (not counting the trial
division), 4 different steps/stages need to be implemented. The stages are in
the following order

1. initialization,

2. gathering relations / sieving,

3. linear algebra,

4. obtaining the results.

Most of the Dixon’s method, which was described in section 2.2, is imple-
mented in the files DixonMethod.h and DixonMethod.cpp. The abstract class

31

3. Quadratic sieve implementation

in file ILinSolver.h is used to solve the linear algebra stage, with the concrete
implementation of simple GEM in the files SimpleGEM.h and SimpleGEM.cpp.

Because using the GMP library with the C++ language can be very cum-
bersome because of its C-like design, I have decided to use the mpz int class
from the Boost multiprecision library instead. The library still uses GMP in
the backend, but the design of its frontend is more suitable for C++ language.
Additionally, using the mpz int objects makes them compatible with the rest
of the useful Boost integer functions, functions to calculate the modular in-
verse, square root and others.

3.4.1 Initialization

The initialization of the Dixon’s method is very simple. The only thing that
needs to be done is to create the factor base. The factor base is simply a set of
all primes that are less or equal to the smoothness bound B. Although there
is one question remaining: How to generate the primes? In the current version
of the implementation, the list of primes in a file has to be provided via the
option -p. In that file, the first line needs to be some integer k followed by k
lines with one prime on each line in ascending order. At the beginning of the
program start-up, this file is loaded into memory and then used to generate
the factor bases during factorization. The program also contains a static list
of the first 1000 primes in memory, so for B ≤ 1000, the file with primes does
not have to be provided.

I used the sieve of Eratosthenes to generate 5 files in the primes directory
containing primes in the correct format to be used according to need. This
was meant as a more of a temporary solution and a possible point for future
improvement is to integrate the sieve of Eratosthenes algorithm in the program
to generate the required primes on the fly.

3.4.2 Gathering relations

The goal of this stage is to gather enough B-smooth relations for the next
stage. What exactly constitutes enough relations is going to be discussed in
the following section 3.4.3. Together with the values for the left-hand side
and the right-hand side for each relation, it is also important to store its
prime exponents for the linear algebra step. To store these three compo-
nents together, the class BSmoothRelation in the files BSmoothRelation.h
and BSmoothRelation.cpp was created. The left-hand side and the right-
hand side values are stored as mpz int objects because of the unlimited pre-
cision, the prime exponents are stored as dynamic bitset objects from Boost
dynamic bitset library for reasons that will be obvious shortly.

The process itself is straightforward. Starting at the value of x0 =
⌈√

n
⌉

and incrementing by one, calculate Yj = |x2
j |n and check if Yj is B-smooth.

The B-smooth check itself is just a slight modification of trial division by all

32

3.4. Dixon’s method implementation

primes from the factor base. Check if the prime p ∈ FB divides Yj and if it
does, divide Yj by p until it is no longer divisible by it. Store how many times
p divided Yj to use it later as the prime exponent of the prime p. If Yj is equal
to 1 at the end of the process, the original Yj was B-smooth.

3.4.3 Linear algebra

Just to refresh the memory, the main objective of this stage is this: Given a set
of enough B-smooth relations, figure out its subset for which the multiplication
of all relations yields an even value for all prime exponents (ei from definition
1.11). This is the same as saying that for each prime p ∈ FB, the sum of its
prime exponent from all relations in the subset needs to equal to zero in Z2.

In order to achieve that, I used the method suggested in [1, p. 263] and
[18]. Suppose that the size of the factor base is k. The idea is to think of the
prime exponents of each B-smooth relation as one vector from Zk

2, for example

~vi = (ei,1, ei,2, . . . , ei,k)

for the ith relation. If we could get a sum of such vectors that gives the zero
vector ~0 as a result, we would fulfill the objective stated above.

Because we are working in Z2, sum of some subset of vectors is the same as
linear combination of all vectors, where the vectors in the subset are multiplied
by the scalar 1 and the rest is multiplied by the only other scalar, 0. Therefore
we need to get the zero vector ~0 as some linear combination of the other
vectors. In other words, supposing that the set of all vectors is of the size m,
there need to be some scalars a1, a2, . . . am ∈ Z2 such that

a1~v1 + a2~v2 + · · ·+ am~vm = ~0

and at least one scalar is equal to 1. If this linear combination exists, all
the vectors that have their corresponding scalars equal to 1 are representing
precisely the B-smooth relations from the desired subset.

To ensure that the above-mentioned linear combination exists, the set of
all vectors has to be linearly dependent. Thus the size of the set (meaning the
amount of B-smooth relations gathered) needs to be at least one larger than
the dimension of the vector space Zk

2. This finally answers the question of
“how many B-smooth relations is enough”, and the answer is “at least k + 1”.
If we get exactly k + 1 relations, theoretically we have at least one solution,
but that solution can lead to trivial factorization. In practice however, this
rarely happens and we usually get multiple solutions from just k +1 relations,
one of which is bound to be non-trivial.

To implement this part, I used a slight variation of the extended Gaussian
elimination method described by Shoup in [2, p. 391]. I started off by creating
an exponent matrix M ∈ Zk+1×k

2 on the left side and identity matrix on

33

3. Quadratic sieve implementation

the right side

e1,1 e1,2 · · · e1,k 1 0 · · · 0
e2,1 e2,2 · · · e2,k 0 1 · · · 0

...
...

...
...

ek+1,1 ek+1,2 · · · ek+1,k 0 0 · · · 1

Each row in the exponent matrix represents the prime exponents of one

B-smooth relation in Z2. If in the relation with x2
i the prime pj had exponent

with odd value, then ei,j = 1, otherwise ei,j = 0. The objective now is to find
a combination of relations (rows) that yields ~0 in Z2. The Gaussian elimina-
tion method can be used with some caveats to get the left side (the exponent
matrix) into upper triangular matrix. Because the matrix calculations are in
Z2, multiplying the rows by scalars (which is normally done in GEM) does
not make any sense, because the only scalars are 0 and 1. The only GEM op-
erations left are swapping rows and adding one row to a different one. Adding
in Z2 can be done very efficiently by using the bitwise xor operator in the
C++ language. Now it is apparent why I used the dynamic bitset to store the
prime exponents of B-smooth relations. It is because each exponent is stored
in Z2 as one bit that is either turned on or off and the class dynamic bitset
supports fast xor operations with its objects.

After Gaussian elimination method done, all rows that are equal to zero
on the left-hand side represent linear combinations of B-smooth rows with
even exponents and their respective rows on the right side represent which
individual relations were used to get that particular linear combination. This
also means that the amount of different solutions is equal to the amount of
zero vectors in the upper triangular exponent matrix.

The use of GEM can get very cumbersome when factorizing very large
numbers. The reason is that with factorizing larger number comes bigger B
parameter which in turn makes the size of the factor base k bigger, making the
exponent matrix grow in both dimensions. Luckily, the use of GEM is only
one of many options for the linear algebra stage. Other, much more advanced
methods exist that take into consideration the sparseness of the exponent
matrix. One of such methods can be found in [7].

3.4.4 Obtaining the results

Obtaining the results is the last stage in the entire factorization process. One
valid solution is a subset of B-smooth relations obtained through the previous
stage. Lets assume the subset has a size of l and the relation

x2
i ≡ Yi (mod n)

34

3.5. Quadratic sieve implementation

is the ith relations in the subset. To get the final result, a couple of simple
multiplications and a square root computation has to be used

x =
l∏

i=1
xi, Y =

l∏
i=1

Yi, y =
√

Y

and then one of the factors p = gcd(x − y, n). If p = 1 or p = n, the factor
is trivial and the next solution obtained through the previous stage has to be
used analogically, if not, the final result is p and q = n/p.

3.4.5 Dixon’s method usage

One example of Dixon’s method usage can be found in the figure 3.2. The
required option -b specifies the smoothness bound B. If the value for B is
larger than 7919, a text file with primes in the correct format must be provided
via the option -p. These text files can be found in the directory primes in
the source files on the enclosed CD.

Figure 3.2: Dixon’s method usage example

./qsieve -m dm -b 50000 -p primes.txt -i inputfile.txt

3.5 Quadratic sieve implementation

The Dixon’s method serves as a foundation upon which all of the other
quadratic sieve methods build. Therefore, a large portions of the implemen-
tations of these methods are exactly the same as in the Dixon’s method im-
plementation. Because of that, in these next few sections I will only describe
the parts that differ from the Dixon’s method. More specifically, I will only
describe the changes in the stages

1. initialization,

2. sieving.

The stages

3. linear algebra,

4. obtaining the results

remain exactly the same. This section focuses on the implementation of the
quadratic sieve method described in 2.3.

35

3. Quadratic sieve implementation

3.5.1 Initialization

The initialization in the quadratic sieve is slightly more complicated. First, the
number n that is to be factorized is multiplied by small constant k = |n|8 for
the reasons discussed in 2.3.4. The rest of this implementation then works with
this new value of kn as if it was the original n. Then, the factor base is built,
but the process is slightly different than in Dixon’s method implementation.
Not all primes p ≤ B are added, but only the primes that also satisfy

(
n
p

)
= 1.

The Euler’s criterion is used for this calculation.
Finally, the buildLoops() function is called. This function creates objects

of the class SievingLoop, each of them representing one of the results of the
congruence 2.3 for all primes p in the factor base. In order to get the results,
some algorithm to calculate the modular square root has to be used. I used the
implementation of the Cipolla’s algorithm described in the section 3.2. The
class SievingLoop has only one method called sieveInterval(interval), which
loops through the interval array parameter during sieving, adding log(p) to
its appropriate elements.

3.5.2 Sieving

The sieving is the most important change from the Dixon’s method imple-
mentation. In the very beginning, an array representing the sieving interval is
created. Because the array will be storing results of logarithmic operations, it
has to be an array of floating point data types. The size of the array is based
on the interval size option given via -s, the default being 100000. The inter-
valStart variable represents x1 in the current sieving interval [x1, x2, . . . , xs].
At the beginning of sieving it is given the initial value of

⌈√
n
⌉

+ 1.
Then the actual sieving of the current sieving interval commences. For

each SievingLoop object the sieveInterval(interval) gets called with the current
interval array as parameter. Inside the function is a simple for loop going
through the array adding precomputed log(p) to appropriate elements using
the principle 2.4.

Afterwords, the sievingThreshold variable has to be calculated. It could be
calculated for each x in the sieving interval individually, which would be much
more precise but very inefficient. Because the sievingThreshold is supposed
to be only a rough estimate of log(Q(x)), it can be calculated only once per
entire sieving interval. To calculate it I chose the following equation

sievingThreshold = log(intervalStart2 − n)− log(maxFactor),

where maxFactor is the larges prime in the factor base. In the equation above,
the first logarithm is just a calculation of the log(Q(x1)) for the first x1 inside
the sieving interval (and approximation for all the other values of x in current
interval), but what about the second logarithm and the subtraction? It is
there simply to make the approximation less strict to compensate for the fact

36

3.6. Multiple polynomial quadratic sieve implementation

that the sieving ignores higher powers of primes. The idea is that if we take
the value of some Q(x), divide it only once by all primes from FB that divide
that number and end up with a number that is less or equal to the larges
prime in the factor base, the original Q(x) has to be B-smooth.

Lastly the sieving interval array is looped over and checked for elements
that are greater than thesievingThreshold. Suppose the ith element in the
array is greater than thesievingThreshold, that means the value of Q(xi) is
probably B-smooth. The value is therefore checked for B-smoothness and the
relation added to the collection of relations if it passes.

After the current sieving interval [x1, x2, . . . , xs] is sieved over, but not
enough B-smooth relations are found, the interval array is zeroed out and the
intervalStart variable is increased by the interval size, signifying that the inter-
val has shifted to [xs+1, xs+2, . . . , x2s]. The entire sieving process is repeated
until enough B-smooth relations are found.

3.5.3 Quadratic sieve method usage

For the quadratic sieve usage, there is only one new option available. It is
the option -s, used to specify the size of the sieving interval. If the option is
left out, the default value of 100000 is used as the size of the sieving interval
instead. On top of that, all of the other options from previous method also
remain with the same functionality.

Figure 3.3: Quadratic sieve usage example

./qsieve -m qs -b 50000 -s 100000 -p primes.txt -i inputfile.txt

3.6 Multiple polynomial quadratic sieve
implementation

Once again, the multiple polynomial quadratic sieve method builds upon the
quadratic sieve method, moderately improving it. Because of that, some of
the parts of these implementations are exactly the same. In this section, I
will explain the implementation details of the MPQS method described in 2.4,
focusing mainly on the parts that differ from the implementation of QS in the
previous section.

3.6.1 Initialization

Because of the usage of multiple polynomials during sieving, the initialization
stage had to be changed slightly. In quadratic sieve, the sieving is done only
on single polynomial Q(x), so the roots of congruence Q(x) ≡ 0 (mod p)

37

3. Quadratic sieve implementation

from 2.3 can be found for each p ∈ FB during the initialization process. In
contrast, the MPQS uses multiple polynomials Qj(x), periodically switching
from old one to a new one, and therefore the roots have to be calculated
each time after switching to new polynomial occurs. This includes rather
lengthy algorithm to calculate the modular square root, making the process
of switching polynomials time consuming. Luckily, as discussed in section
2.4.3, the modular square root in the calculation does not depend on the
coefficients aj , bj or cj and thus it can be precomputed and stored during the
initialization stage and used later on, making the switch to new polynomial
much faster.

Therefore, the biggest change is that the buildLoops() cannot be called
during the initialization. Instead, after the factor base is built, the modular
square roots rp =

√
n (mod p) are calculated and stored for each prime p ∈

FB. Additionally, the values of log(p) are also stored and ready for further
use during sieving. The last change made to the initialization stage was the
addition of −1 into the factor base at the very first position.

3.6.2 Sieving

The meaning of the -s option is slightly different in MPQS. It represents the
variable M from the section 2.4.1. In other words, instead of the option -s
representing the size of the entire sieving interval, it represents only half of
the interval (given that the size of interval [−M, M] is 2M + 1). The sieving
itself starts with the computation of the polynomial coefficients aj , bj and cj

using the formulas described in 2.4.1. Then, the buildLoops(aj, bj) function is
called, which prepares the SievingLoop objects. The rest of the sieving stage
implementation is almost the same as in QS implementation, but with two
major differences.

First difference in the sieving stage is that once the interval [−M, M]
is sieved through using the polynomial Qj(x), instead of continuing with the
next interval on the same polynomial (which is what was essentially happening
in QS), the program switches to new polynomial Qj+1(x) while keeping the
sieving interval at [−M, M]. This ensures that the values of Qj(x) do not keep
increasing indefinitely as the sieving continues on, which is the whole point of
using multiple polynomials.

The second difference is the calculation of the sievingThreshold variable.
As was mentioned before, proper estimate of the sievingThreshold is crucial
for the performance of the algorithm. If the estimate is too low, many of the
Qj(x) values will be marked as probably B-smooth without actually being B-
smooth. All of these values will have to be checked for B-smoothness, wasting
a lot of time in the process. On the other hand, if the estimate if too big,
a lot of Qj(x) values that are actually B-smooth will be missed. The way
the threshold is calculated largely depends on the way the polynomials were
constructed. In [1, p. 274], Carl Pomerance writes that the values of Qj(x) on

38

3.7. Large prime optimization of MPQS

the interval [−M, M] are bounded by (M/
√

2)
√

n. Because I used his method
of generating polynomials, I estimated the values of log(Qj(x)) as

sievingThreshold = log(M
√

n)− log(maxFactor).

3.6.3 Multiple polynomial quadratic sieve method usage

The usage of the MPQS implementation is exactly the same as with the QS
implementation, with the exception of the -m option specifying which method
to run of course. A small difference is that instead of representing the size
of the sieving interval, the option -s now represent the M variable from the
definition of MPQS. The size of the entire sieving interval in the figure 3.4 is
therefore 200001 instead of just 100000.

Figure 3.4: Multiple polynomial quadratic sieve usage example

./qsieve -m mpqs -b 50000 -s 100000 -p primes.txt \
-i inputfile.txt

3.7 Large prime optimization of MPQS

The singe large prime optimization, described in section 2.6, can be imple-
mented in any version of quadratic sieve methods with just a few changes. I
chose to implement it for the more efficient MPQS method to see how much
it can be further improved.

3.7.1 Initialization

The initialization stage is identical to the MPQS initialization, with one small
exception. The bounds for the large prime P from the partial B-smooth
relation need to be established. The lower bound P > B is already given
by the definition of a partial relation, but what should be the upper bound?
Setting the upper bound to P ≤ B2 can be very advantageous, because any
number P in the range B < P ≤ B2 that is not divisible by any prime
p ≤ B has to automatically be a prime. Setting the upper bound this big is
impractical, as “It is noticed in practice, and this is supported too by theory,
that the larger the large prime, the less likely for it to be matched up” [1,
p. 272]. In my implementation I used the suggestion from [7] to set the upper
bound of P to 128 ·B.

39

3. Quadratic sieve implementation

3.7.2 Sieving

The sieving stage also has only one small change. Before, when some number
Qj(x) was being checked for B-smoothness, it got progressively divided by all
primes in factor base until some remainder was left. If that remainder was
anything other than 1, the original number was not B-smooth. With the large
prime optimization, there is one addition at the end. If the remainder is bigger
than 1, but smaller than the upper bound for P , the original Qj(x) is “almost
B-smooth” and can be collected as partial B-smooth relation. If there is some
other partial B-smooth relation with the same P already collected, they can
be combined as described in 2.6 and used as one proper B-smooth relation.

For this optimization to work well, a correct choice for the data container
used to store the partial relations is extremely important. The container
needs to support very efficient search based on the values of P , insertion and
deletion. I used the class called unordered map from C++ standard library,
which supports these operations with constant time complexity on average,
utilizing some hashing algorithm underneath. The partial relations are stored
as a key-value pair, where P is the key for each particular relation and value
is the rest of the information about that relation (the left-hand side value, the
right-hand side value and the prime exponents).

With the addition of partial relations, it can be beneficial to make the
sievingThreshold less strict to allow more of the almost B-smooth numbers
to “fall through the sieve”, get marked and then get processed into partial
relations. For this reason I added one new option -t for dynamic change of
the threshold strictness. Supposing the value of the option -t is called T , the
new sievingThreshold formula is

sievingThreshold = log(M
√

n)− log(maxFactor · T),

3.7.3 Large prime MPQS method usage

As mentioned above, there is only one added option -t accepting some floating
point value. The default value is 1, the higher the value the less strict the
sieving threshold is, meaning more Qj(x) values get processed. The entered
value cannot be smaller than the default value.

Figure 3.5: Multiple polynomial quadratic sieve usage example

./qsieve -m lpmpqs -b 100000 -s 100000 -t 200 \
-p primes.txt -i inputfile.txt

40

3.8. Parallelization

3.8 Parallelization

Many of the modern computer clusters are using the hybrid distributed-shared
memory architecture and the faculty server STAR is no exception. Thus, to
properly leverage the parallelization, I had to combine two different paralleliza-
tion approaches, one for shared memory architecture and one for distributed
memory architecture.

To achieve that, I used the help of the openMP and MPI libraries. How-
ever, compiling projects that are using MPI is slightly more complicated pro-
cess that requires installation of the library. This makes sense on a computing
cluster, but not so much on a simple desktop/laptop computer. For this rea-
son I decided to implement the parallelized version of the large prime MPQS
algorithm as a separate program called qsievempi that is compiled separately,
so that the sequential implementations can still be used without the need to
install MPI.

The parallelization was done only for the sieving procedure (which is the
hardest part of the problem and should theoretically take most of the time),
the linear algebra stage of the program was left sequential as I felt it was
not really the focus of this thesis. For potential future improvement of the
program, the implementation of parallel version of this stage would be a good
start.

3.8.1 Parallelization via openMP

OpenMP is a library that substantially simplifies parallelization on a system
with shared memory architecture. This is achieved by separating some of the
workload into different threads, which can run simultaneously on a multi-core
processor. All of the threads have shared memory, which has some benefits
(simple inter-thread communication), but it can also lead to a lot of problems
due to race conditions.

A very general description of the library utilization is as follows. The pro-
gram begins with a single thread, which initializes the workload. Then, when
the parallel block is encountered, multiple threads spawn and start working
separately on their own. At the end of the parallel block is a synchronization
barrier, where all the finished threads wait until every single thread is done.
Afterward, the program continues in a single thread, usually also consolidating
the individual results of each thread.

At the very beginning of the file LPMPQS mpi.h, there are three impor-
tant #define directives used in the parallelization process. First one de-
fines the THREADS PER SLAVE constant, which symbolizes the amount
of threads that can run simultaneously on a particular processor. The sec-
ond one is defined as POLS PER THREAD and symbolizes how many differ-
ent polynomials should each thread sieve through before the synchronization
barrier and consolidation of each thread’s results occurs. And finally the

41

3. Quadratic sieve implementation

POLS PER SLAVE, which is defined as a simple multiplication of the pre-
vious two constants, symbolizes how many polynomials in total get sieved
through by all threads before the consolidation occurs.

The actual implementation of parallelization with openMP is fairly simple,
using the general description above. Instead of generating only single poly-
nomial at the time, POLS PER SLAVE polynomials are generated at once.
The coefficients aj and bj for each polynomial are stored in an instance of
PolData class. Then, up to THREADS PER SLAVE threads are spawned
(or reused from an already existing thread pool), each thread sieving through
POLS PER THREAD polynomials in parallel, collecting B-smooth and par-
tial B-smooth relations into their own separate containers. After the sieving
is done for all threads, a single thread iterates through all the separate con-
tainers, moving the collected results into one global container. This repeats
until there is enough B-smooth relations collected in the global container.

3.8.2 Parallelization via MPI

One of the disadvantages of the openMP parallelization approach is its scala-
bility. Since the resulting program is designed to be run on single computer,
its scalability depends on how many processors cores the computer has and
adding more of them gets increasingly more difficult. MPI can address that
by allowing us to split the workload not between different cores on single com-
puter, but between different processes running on different computers con-
nected through a network. This helps with the scalability issue, as when it
becomes difficult to add more processor cores to a single computer, we can
simply start using more computers instead. A slight disadvantage is that
the processes do not share memory and so the inter-process communication
with MPI is more difficult to achieve, done so by passing messages between
processes over said network.

In my implementation, I used the master-slave model to accomplish par-
allelization with MPI. One of the processes is called the “master process”, all
the other are called the “slave processes”. The master process is responsible
for the generation and distribution of the workload, meaning the coefficients
of different polynomials, to all slave processes. All slave processes have to do
is to wait until they obtain the polynomial coefficients from master process,
work on the assigned workload and sieve over the polynomials, then send the
obtained B-smooth relations back to the master process. The master process
collects these relations from all slaves in a single container, sending back more
work until there is enough of them collected.

To be able to send polynomial coefficients and B-smooth relations over
the network, the data needs to be serialized first. The coefficients, stored in
PolData objects as mpz int data types, can be easily serialized into string
objects by mpz int member functions. The B-smooth relations are stored in
BSmoothRelation objects and have three member variables, the left-hand side

42

3.8. Parallelization

and right-hand side values as mpz int and the prime exponents of the relation
as dynamic bitset. The dynamic bitset class also has member functions allow-
ing them to be turned into or constructed from a string object, but doing that
would not be very efficient, because it turns every bit from the bitset into one
character, either 0 or 1. That would generate a needlessly long string with
as many characters as the size of the factor base for each B-smooth relation.
Instead of that, I used different member function to block range() to turn the
bits in the bitset into blocks of long integers, transformed them into strings
and then reassembled back into dynamic bitset with from block range() on the
other side.

3.8.3 Combining the openMP and MPI approaches

Once both of the approaches are designed and implemented separately, their
combination is fairly straightforward. The initialization stage is identical for
all processes and is unchanged from how it was described in section 3.7.1.
Then, during the sieving stage, the roles of the processes get separated. The
master process starts by generating and sending POLS PER SLAVE polyno-
mials to each slave process. Then the master process splits into two separate
threads, one to handle communication with slaves and one for its own sieving
computations. The communication thread waits until it receives a result from
a slave, saving the newly obtained relations. If there are not enough relations
collected, the thread sends POLS PER SLAVE new polynomials to the slave,
otherwise it sends an instruction to terminate. The other thread of the mas-
ter process generates its own POLS PER SLAVE− 1 polynomials and sieves
them with THREADS PER SLAVE−1 threads using openMP technique from
3.8.1. This way, all of the processor cores of the machine running the master
process are fully utilized. For the second thread to be able to spawn its own
threads, the openMP nested parallelism had to be explicitly enabled.

Each slave process waits until it receives a polynomial batch from master
and then sieves it in parallel using openMP as was described in 3.8.1. After-
wards, it sends the B-smooth relations found back to master and awaits next
message. If it receives the termination instruction, the slave process graciously
quits. After all slave processes quit, the master continues with the last two
stages on its own.

3.8.4 Parallel large prime MPQS method usage

Figure 3.6: Parallel large prime MPQS usage example

./qsievempi -b 100000 -s 100000 -t 200 -p primes.txt \
-i inputfile.txt

43

Chapter 4
Quadratic sieve testing

The testing and measuring the performance of all methods implemented in
this thesis was done on the faculty server STAR. STAR is a computer cluster
composed of 8 computer nodes, each node has the following specifications:

• motherboard Supermicro Super X10DRFF with dual CPU sockets,

• CPU Intel® Xeon® CPU E5-2630 v4 @ 2.20GHz,

• Each CPU has 10 cores and supports hyper-threading,

• 64 GB of RAM.

Nevertheless, the measuring on STAR came with some unpleasant restric-
tions. The server is set-up in such a way that maximum of 4 nodes can be used
for one parallel program execution and each execution is forcibly terminated
after 10 minutes, limiting the size of the numbers I could test these factorizing
algorithms on.

For the purpose of testing, many different input numbers were created and
separated based on their factorization difficulty into 11 individual files, which
can be found in the input directory. Each implemented method (with the
exception of trial division) has various options that can severely change the
outcome of the factorization speed, so before I could do the actual measure-
ments, I needed to know how to properly set these options. And because the
ideal values for options change based on how big the factorized number is, I
needed to know proper options for each method and for each of the different
input files. For this reason I split the input files into two categories: training
and testing. The training input files were used to estimate the ideal option val-
ues and the testing were used in the actual performance measurement. Each
version (training/testing) of every file contains 5 composite numbers with ex-
actly the same number of digits and approximately the same bit length. Each
composite was created by multiplying two random prime numbers of approx-
imately half of the composite’s bit length together. The list of files with their

45

4. Quadratic sieve testing

Table 4.1: Input files description

input
file name

approx.
bit length

number
of digits

40bit.in 40 12
60bit.in 60 18
70bit.in 70 21
80bit.in 80 24
100bit.in 100 30
120bit.in 120 36

input
file name

approx.
bit length

number
of digits

140bit.in 140 42
160bit.in 160 48
180bit.in 180 54
200bit.in 200 60
220bit.in 220 66

composite numbers’ respective approximate bit length and number of digits
can be found in table 4.1. The higher the bit length, the more difficult file it
is for factorization.

The time measurement was done using the steady clock class from the
chrono library, which is part of the C++ standard. I chose this class be-
cause it represent a “monotonic clock”, meaning it is guaranteed its value
constantly moves forward and never decreases (even when the system time is
changed during the run of the program), and as such it is ideal for time inter-
val measurements. Each individual number from the input file was measured
separately, starting the measurement right after it was loaded into memory
and ending right after two of its factors were found (but before they were
printed out).

The testing methodology I used was as follows: For each implemented
method I selected an appropriate set of input files from 4.1 to test the method
on. The more advanced method, the more difficult input files were chosen.
Afterward, I ran the method with the training version of the selected input
files multiple times, each time with different option values. After each run was
finished and all 5 composite numbers were factorized, I calculated the average
time it took to factorize one number of the approximate bit length with given
options by taking the arithmetic mean of the 5 time measurements. All of
the training measurements can be found in the appendix B. Lastly, I ran the
method one last time, this time with the testing version of the input files and
the option values that gave the best performance during training, once again
taking the average of the 5 time measurements for every file.

4.1 Environment set-up and compilation

Before the two programs can be run, they need to be compiled in a properly
prepared environment. In order to compile the qsieve program, a C++ com-
piler that supports C++11 is needed, as well as the GMP and Boost libraries.
The qsievempi additionally requires openMP and MPI libraries present. The

46

4.2. Testing the trial division method

make program with the enclosed Makefile file can be used to simplify the
compilation process, but before it can be used, the Makefile requires some
minor changes described below. This section focuses on compilation for both
of the programs on the STAR server.

The Boost collection of libraries is already present on the STAR server,
but unfortunately in the form of an older version 1.53.0, which is too old and
does not support some of the features that I used for the implementation.
Newer version of the Boost libraries is on the enclosed CD, it just needs to
be copied over to STAR and extracted. In the Makefile, the appropriate line
should be changed to CFLAGS += -I/path/to/extracted/boost. The Boost
libraries used are header-only libraries, so no further action is needed.

Additionally to Boost, the GMP library of version 6.2.0 is on the enclosed
CD and needs to be copied over and extracted as well. But, unlike the Boost
libraries, it also needs to be built and installed. This is done by changing into
the directory with extracted GMP and running the following:

./configure --prefix=${HOME}/gmp
make
make install

This will install the GMP library to the gmp directory in the home directory
of the user. Afterward, the Makefile needs to be changed one last time,
this time on the appropriate lines #CFLAGS += -I/path/to/gmp/include and
#GMPLIB += -L/path/to/gmp/lib.

If the program is being compiled on desktop/laptop, the GMP and Boost
libraries can be installed as a root user and no change in the Makefile should
be necessary. After all of this is done, everything is setup correctly and the
programs can be compiled. To compile qsieve, make has to be run in the
directory with the Makefile. In order to compile qsievempi, make mpi has
to be run instead. To clean the working directory from generated object files
and binaries, the make clean can be run. The compilation is done with the
-O3 and -ffast-math options for maximal optimization and efficiency.

4.2 Testing the trial division method

Trial division implementation is the only one with no additional options, thus
it was the only implementation that could be tested straight away with no
training required. The testing was done on the files 40bit.in, 60bit.in and
70bit.in, the average time it took to factorize one number for each input file
can be seen in table 4.2.

The implementation of trial division method was fairly basic and, as can
be seen in table 4.2, it struggled even with relatively easy 60 bit composite
numbers, which are just 18 digits long. As for the 70bit.in input file, trial
division could not find the factors of even single composite number before the

47

4. Quadratic sieve testing

Table 4.2: Trial division testing results

input file name average time (s)
40bit.in 0.066
60bit.in 32.598
70bit.in DNF

10 minute deadline of the STAR server was imposed, forcefully terminating
the computation.

4.3 Testing the Dixon’s method

I tested my implementation of the Dixon’s method with the files 60bit.in,
70bit.in, 80bit.in and 100bit.in. The only option available for this im-
plementation is the -b option for the value of smoothness bound variable B.
For the training of this option, I used the following values for the training
version of every file: 2500, 5000, 10000, 15000, 25000 and 50000. The final
results using the best performing option on the testing version of every file
can be found in the table 4.3.

Table 4.3: Dixon’s method testing results

input file name option -b average time (s)
60bit.in 2500 1.120
70bit.in 5000 9.245
80bit.in 10000 37.373
100bit.in — DNF

The Dixon’s method offers marginal improvement over the trial division,
being able to find factors of composite numbers up to 80 bits long in time.
Nevertheless, during training it failed to factorize single composite number
from the file 100bit.in in less than 10 minutes, before it was interrupted by
STAR, no matter what option -b was selected.

4.4 Testing the quadratic sieve method

The quadratic sieve method was more complicated to train, because it requires
two options: -b for B variable and -s for the size of the sieving interval.
The testing was done on the input files 80bit.in, 100bit.in, 120bit.in,
140bit.in, 160bit.in and 180bit.in. To get a good performance out of
this method for each file, I had to run their training versions with multiple
different options -b and -s. The option values tried for each training file and

48

4.5. Testing the multiple polynomial quadratic sieve method

their results can be found in the appendix B. The final measurements of the
testing input files with the best performing options are in the table 4.4.

Table 4.4: Quadratic sieve testing results

input file name option -b option -s average time (s)
80bit.in 5000 10000 0.031
100bit.in 10000 10000 0.112
120bit.in 30000 50000 0.507
140bit.in 75000 100000 2.445
160bit.in 150000 100000 16.996
180bit.in 300000 250000 78.335

Comparing the tables 4.4 and 4.3, it is obvious that all of the improvements
implemented in the quadratic sieve method offer a substantial increase of
factorization efficiency over the Dixon’s method, allowing me to more than
double the size of the composite numbers before hitting the STAR server
deadline of 10 minutes.

4.5 Testing the multiple polynomial quadratic
sieve method

The MPQS method requires the same option as the quadratic sieve method,
but with one small difference. The option -s is not the size of the sieving
interval per se, instead it is the value of the M variable (which is about a half
of the size of the sieving interval). Because MPQS offers some major changes
to the sieving stage, I could not use the same option values that performed the
best for the quadratic sieve method found in previous section, instead I had
to find the best performing options from scratch again. The files 140bit.in,
160bit.in, 180bit.in and 200bit.in were tested with the results in the
table 4.5.

Table 4.5: Multiple polynomial quadratic sieve testing results

input file name option -b option -s average time (s)
140bit.in 35000 1000000 0.853
160bit.in 75000 1000000 5.046
180bit.in 150000 1500000 21.656
200bit.in 250000 1500000 93.147

49

4. Quadratic sieve testing

4.6 Testing the large prime MPQS method

Unlike the MPQS from previous section, the large prime optimization does
not include any substantial changes to the sieving process, it only improves
its speed. Because of that, I chose to test the files 140bit.in, 160bit.in,
180bit.in and 200bit.in with the same best performing options -b and
-s from table 4.5. But there is one more option required, the -t option,
symbolizing the “looseness” of the sieving threshold. Therefore, I used the
training version of the input files with the options options -b and -s from
table 4.5 and many different values for option -t. The testing results, as well
as the best options found, can be seen in table 4.6.

Table 4.6: large prime MPQS testing results

input file name option -b option -s option -t average time (s)
140bit.in 35000 1000000 100 0.691
160bit.in 75000 1000000 80 3.973
180bit.in 150000 1500000 200 17.182
200bit.in 250000 1500000 1000 75.443

4.7 Testing the parallelized large prime MPQS
method

The testing of the parallelized large prime MPQS method was done on the
input files 140bit.in, 160bit.in, 180bit.in, 200bit.in and 220bit.in.
For the first four files, I used the already found options that performed best
in the sequential implementation. However, for the 220bit.in, I had to use
the training input file to find the best option for -b, -s and -t options from
scratch again. The results and the best options found are in the table 4.7.

Table 4.7: Parallelized large prime MPQS testing results

input file name option -b option -s option -t average time (s)
140bit.in 35000 1000000 100 0.524
160bit.in 75000 1000000 80 1.108
180bit.in 150000 1500000 200 3.919
200bit.in 250000 1500000 1000 14.367
220bit.in 250000 1500000 30000 44.286

50

4.8. Comparing the results

4.8 Comparing the results

The comparison of the average time results for all methods from the tables
above can be seen in the figure 4.1 below. The y-axis is representing the
average time spent to find factors on one composite number from the test-
ing version of a given input file from the x-axis. The scale of the y-axis is
logarithmic to better fit all of the results.

Figure 4.1: Average time to factorize one composite number from input files

0.01

0.1

1

10

100

40bit.in

60bit.in

70bit.in

80bit.in

100bit.in

120bit.in

140bit.in

160bit.in

180bit.in

200bit.in

220bit.in

av
er

ag
e

tim
e

(s
)

input file

Trial division
Dixon’s method
Quadratic sieve

MPQS
Large prime MPQS

parallelized large prime MPQS

While the trial division has fully exponential time complexity, all of the
other algorithms implemented in this thesis are sub-exponential. This can be
seen in the figure 4.1, as the results for trial division are increasing much more
steeply than the others.

The asymptotic time complexity difference between the Dixon’s method
(described in section 2.2.3) and the quadratic sieve (section 2.3.5) is in the
fairly large decrease for the constant component of the exponent from 3

√
2

to 1. This is also reflected in the figure 4.1 in the huge increase in efficiency
between Dixon’s method and quadratic sieve.

In the section 2.3.5 it is also mentioned that the time complexity of the

51

4. Quadratic sieve testing

quadratic sieve and all of its variations is asymptotically the same. This is ap-
parent from the figure 4.1, where the increase in efficiency between quadratic
sieve, MPQS and large prime MPQS is fairly small, asymptotically insignif-
icant and much smaller than the above-mentioned increase between Dixon’s
method and quadratic sieve.

The increase in efficiency of the parallelized large prime MPQS method
is somewhat dampened by the time costs of node communication overhead
and the usage of synchronization primitives when accessing variables shared
between multiple threads.

One more observation can be made in the table 4.7, where the best per-
forming option -b for the files 200bit.in and 220bit.in is the same. I suspect
the cause for this is the linear stage implemented sequentially via GEM. When
factorizing relatively small composite numbers, the values for variable B can
be fairly low and therefore the time spent in the linear algebra stage is insignif-
icant compared to the sieving stage. But as the size of the composite number
increases, so does the optimal value for B and thus the exponent matrix grows
as well. As a result, the algorithm spends a substantial amount of time in the
linear algebra stage for some of the more difficult input files. Thus, when
factorizing numbers from the file 220bit.in with smaller -b, the algorithm
prefers spending more time in the parallelized sieving process and less time
in the sequential GEM than the other way around. This could be rectified by
implementing more sophisticated linear algebra stage with parallelization as
mentioned in section 3.4.3. The average time spent in the linear algebra stage
for one composite number from 220bit.in input file with different values for
option -b as well as the approximate size of the factor base (which implies the
approximate size of the exponent matrix) can be found in the table 4.8 below.

Table 4.8: Time spent in the linear algebra stage for the input file 220bit.in

option -b approx. size of FB average time (s)
200000 9000 3.5
250000 11000 7.5
300000 13000 14
350000 15000 22

When I tested the factorization of the most difficult input file used in
this thesis, the 220bit.in file, using one of the state-of-the-art programs
called msieve (introduced in the section 2.7) on STAR, it was able to do so
in the average time of just 15 seconds. Msieve is one of the most efficient
implementations of quadratic sieve methods (based on the program’s own
documentation found in [10]), using the SIQS variation with the 2-large prime
optimization and many other small optimizations to make the code as fast as
possible, therefore it was to be expected it would perform the factorization
task much faster than what my implementation was able to achieve.

52

Conclusion

In this master’s thesis, I analyzed two factorization algorithms, the Dixon’s
method and the quadratic sieve. I also analyzed its modification known as the
multiple polynomial quadratic sieve and the large prime optimization. I went
over some of the existing open source implementations of quadratic sieve fac-
torization. I implemented all of the methods above in the C++ programming
language using the GNU Multiple Precision Arithmetic Library. I discussed
and implemented parallelization using the openMP and MPI libraries, tested
all implemented method on the faculty server STAR and compared all of the
results.

The first chapter describes some of the basic terms, definitions and algo-
rithms used throughout the rest of this thesis.

The second chapter focuses on the theoretical principles of the quadratic
sieve factorization method. It goes over its predecessors, the Fermat’s inte-
ger factorization and the Dixon’s factorization method. Then the quadratic
sieve itself is described in great detail, followed by the multiple polynomial
quadratic sieve method. All of the above-mentioned methods are provided
with algorithm description in pseudo-code. The main principle behind the
self-initializing quadratic sieve variation is mentioned, followed by the expla-
nation of the large prime optimization. The chapter is finished off with the
rundown of some other open source implementations.

The third chapter deals with the implementation details. It goes over the
general implementation idea as well as the technologies used. Then it explains
the implementation of each method, providing an usage example at the end.
The chapter ends with the description of the parallelization using openMP
and MPI.

In the fourth and the last chapter, all of the implemented methods are
tested on the faculty server STAR. The environment set-up and the testing
methodology are described, then the results of testing each method follow.
The chapter is closed off with the comparison of the results, as well as with
some general observations encountered during testing.

53

Bibliography

[1] CRANDALL, Richard; POMERANCE, Carl. Prime numbers: a compu-
tational persprective. 2nd ed. Springer, 2005. isbn 978-0387-25282-7.

[2] SHOUP, Victor. A Computational introduction to number theory and
algebra. 2nd ed. Cambridge University Press, 2008.

[3] POMERANCE, Carl. A tale of two sieves. Notice of the American Math-
ematical Society [online]. 1996, vol. 43, pp. 1473–1485 [visited on 2021-
04-03]. Available from: https : / / www . ams . org / notices / 199612 /
pomerance.pdf.

[4] WILLIAMS, Hugh Cowie; SHALLIT, Jeffrey. Factoring integers before
computers. Mathematics of Computation 1943–1993: A Half-Century
of Computational Mathematics. 1994, vol. 48, pp. 481–531. isbn 978-0-
8218-0291-5.

[5] DIXON, John D. Asymptotically fast factorization of integers. Mathe-
matics of Computation. 1981, vol. 36, no. 153, pp. 255–255. Available
from doi: 10.1090/s0025-5718-1981-0595059-1.

[6] POMERANCE, Carl. The Quadratic Sieve Factoring Algorithm. In: Ad-
vances in Cryptology: Proceedings of EUROCRYPT 84. Springer-Verlag,
1985, pp. 169–182.

[7] KECHLIBAR, Marian. The Quadratic Sieve - introduction to theory
with regard to implementation issues [online]. 2005 [visited on 2021-04-
03]. Available from: www.karlin.mff.cuni.cz/˜krypto/Implementace_
MPQS_SIQS_files/main_file.pdf.

[8] POMERANCE, Carl. Smooth numbers and the quadratic sieve. Algo-
rithmic Number Theory. 2008, vol. 44, pp. 69–81.

[9] SILVERMAN, Robert D. The multiple polynomial quadratic sieve. Math-
ematics of Computation. 1987, vol. 48, no. 177, pp. 329–329. Available
from doi: 10.1090/s0025-5718-1987-0866119-8.

55

https://www.ams.org/notices/199612/pomerance.pdf
https://www.ams.org/notices/199612/pomerance.pdf
https://doi.org/10.1090/s0025-5718-1981-0595059-1
www.karlin.mff.cuni.cz/~krypto/Implementace_MPQS_SIQS_files/main_file.pdf
www.karlin.mff.cuni.cz/~krypto/Implementace_MPQS_SIQS_files/main_file.pdf
https://doi.org/10.1090/s0025-5718-1987-0866119-8

Bibliography

[10] PAPADOPOULOS, Jason. Msieve [online]. 2021 [visited on 2021-04-16].
Available from: https://sourceforge.net/projects/msieve/.

[11] Yet Another Factorization Utility [online]. 2020 [visited on 2021-04-16].
Available from: https://sites.google.com/site/bbuhrow/home.

[12] KOVÁČ, Peter. Optimalizovaná faktorizace velkých č́ısel pomoćı kni-
hovny GMP. 2009. MA thesis. Czech Technical University in Prague.

[13] GNU Multiple Precision Arithmetics Library [online]. 2020 [visited on
2021-04-17]. Available from: https://gmplib.org/.

[14] Boost C++ Libraries [online]. 2021 [visited on 2021-04-17]. Available
from: https://gmplib.org/.

[15] OpenMP [online]. [N.d.] [visited on 2021-04-17]. Available from: https:
//www.openmp.org/.

[16] Message Passing Interface [online]. [N.d.] [visited on 2021-04-17]. Avail-
able from: https://www.mpi-forum.org/.

[17] Project Wycheproof [online]. 2019 [visited on 2021-04-17]. Available from:
https://github.com/google/wycheproof.

[18] BÜTTCHER, Stefan. Factorization of Large Integers. Ferienakademie
2001: Cryptography and Security of Open Systems [online]. 2001 [visited
on 2021-04-03]. Available from: http://stefan.buettcher.org/cs/
factorization/essay.pdf.

56

https://sourceforge.net/projects/msieve/
https://sites.google.com/site/bbuhrow/home
https://gmplib.org/
https://gmplib.org/
https://www.openmp.org/
https://www.openmp.org/
https://www.mpi-forum.org/
https://github.com/google/wycheproof
http://stefan.buettcher.org/cs/factorization/essay.pdf
http://stefan.buettcher.org/cs/factorization/essay.pdf

Appendix A
Acronyms

CPU Central processing unit

DNF Did not finish

FB Factor base

GCD Greatest common divisor

GEM Gaussian elimination method

GMP GNU multiple precision

MPI Message parsing interface

MPQS Multiple polynomial quadratic sieve

QS Quadratic sieve

SIQS Self initializing quadratic sieve

RAM Random access memory

57

Appendix B
Training measurements

All the tables in this section contain the average time spent factorizing one
composite number using implemented methods with different input files and
various option values. The training versions of input files were used, the time
is measured in seconds.

Table B.1: Training Dixon’s method with option -b

option -b

input file name 2500 5000 10000 15000 25000 50000
60bit.in 1.524 1.827 3.030 4.559 7.920 18.263
70bit.in 11.280 10.041 12.715 16.913 26.221 65.532
80bit.in 213.330 82.116 72.698 80.992 107.515 207.350
100bit.in DNF DNF DNF DNF DNF DNF

Table B.2: Training quadratic sieve with options -b and -s for the input file
80bit.in

option -s

option -b 10000 50000 100000
5000 0.029 0.065 0.111
10000 0.071 0.158 0.259
15000 0.125 0.271 0.441
20000 0.177 0.386 0.650

59

B. Training measurements

Table B.3: Training quadratic sieve with options -b and -s for the input file
100bit.in

option -s

option -b 10000 50000 100000
10000 0.147 0.175 0.198
20000 0.170 0.218 0.278
25000 0.202 0.271 0.356
30000 0.251 0.340 0.467

Table B.4: Training quadratic sieve with options -b and -s for the input file
120bit.in

option -s

option -b 50000 100000 200000
10000 2.179 2.372 2.463
20000 0.756 0.805 0.867
30000 0.633 0.693 0.756
40000 0.736 0.789 0.900

Table B.5: Training quadratic sieve with options -b and -s for the input file
140bit.in

option -s

option -b 100000 250000 500000
25000 8.902 9.376 9.558
50000 3.580 3.785 3.913
75000 3.290 3.483 3.720
100000 3.859 4.129 4.487

Table B.6: Training quadratic sieve with options -b and -s for the input file
160bit.in

option -s

option -b 100000 250000 500000
75000 24.856 25.942 26.434
100000 18.214 18.938 19.276
125000 15.750 16.224 16.568
150000 15.197 15.598 15.925

60

Table B.7: Training quadratic sieve with options -b and -s for the input file
180bit.in

option -s

option -b 100000 250000 500000
150000 114.575 117.444 118.855
200000 85.950 86.493 87.086
250000 74.841 73.901 74.538
300000 71.976 70.252 70.694

Table B.8: Training MPQS with options -b and -s for the input file 140bit.in

option -s

option -b 500000 1000000 1500000
35000 1.135 1.095 1.149
50000 1.345 1.263 1.280
75000 1.962 1.835 1.841

Table B.9: Training MPQS with options -b and -s for the input file 160bit.in

option -s

option -b 500000 1000000 1500000
50000 4.982 4.666 4.790
75000 5.216 4.629 4.650
100000 6.039 5.250 5.154

Table B.10: Training MPQS with options -b and -s for the input file
180bit.in

option -s

option -b 1000000 1500000 2000000
150000 20.474 19.223 22.458
200000 22.754 21.614 23.511
250000 27.227 25.069 26.950
300000 33.201 30.970 32.226

61

B. Training measurements

Table B.11: Training MPQS with options -b and -s for the input file
200bit.in

option -s

option -b 1000000 1500000 2000000
150000 96.762 96.144 109.807
200000 91.765 85.638 96.529
250000 92.909 82.596 92.865
300000 97.855 86.977 94.062

Table B.12: Training large prime MPQS with option -t and the best perform-
ing options -b 35000 and -s 1000000 for the input file 140bit.in

option -t average time (s)
1 1.032
10 0.860
20 0.840
40 0.831
80 0.832
100 0.828
120 0.830
150 0.839

Table B.13: Training large prime MPQS with option -t and the best perform-
ing options -b 75000 and -s 1000000 for the input file 160bit.in

option -t average time (s)
10 3.885
20 3.761
40 3.726
80 3.699
150 3.716
200 3.738
400 3.834
600 3.921

62

Table B.14: Training large prime MPQS with option -t and the best perform-
ing options -b 150000 and -s 1500000 for the input file 180bit.in

option -t average time (s)
10 16.328
50 15.668
100 15.438
150 15.677
200 15.644
400 15.970
600 16.108
800 16.476

Table B.15: Training large prime MPQS with option -t and the best perform-
ing options -b 250000 and -s 1500000 for the input file 200bit.in

option -t average time (s)
100 70.289
500 69.557
1000 69.347
2000 70.440
4000 70.446
6000 71.366
8000 71.785
10000 73.455

Table B.16: Training parallelized large prime MPQS with options -b, -s and
constant option -t 10000 for the input file 220bit.in

option -s

option -b 1000000 1500000 2000000
200000 48.766 45.411 51.565
250000 46.274 44.406 48.507
300000 48.872 47.636 50.603
350000 54.175 54.201 55.559

63

B. Training measurements

Table B.17: Training parallelized large prime MPQS with options -b, -s and
constant option -t 20000 for the input file 220bit.in

option -s

option -b 1000000 1500000 2000000
200000 48.202 44.677 50.641
250000 45.805 43.772 47.931
300000 48.982 47.694 50.179
350000 54.608 54.562 55.856

Table B.18: Training parallelized large prime MPQS with options -b, -s and
constant option -t 30000 for the input file 220bit.in

option -s

option -b 1000000 1500000 2000000
200000 47.278 44.185 49.910
250000 45.562 43.599 47.841
300000 48.660 47.557 50.214
350000 55.169 54.687 56.386

64

Appendix C
Contents of enclosed CD

readme.txt the file with CD contents description
libraries........the GMP and Boost libraries used for implementation
qsieve....................the directory containing the qsieve program

Makefile Makefile to easily compile the project with make
readme.txt the file with qsieve program description
input the directory containing training and testing input files
primes................the directory containing text files with primes
src the directory containing source files

thesis..the thesis text directory
masters thesis.pdf..................the thesis text in PDF format
src...........................the thesis source files in LATEX format

65

	Introduction
	Basic terms and definitions
	Basic algorithms
	Sieve of Eratosthenes
	Trial division

	Quadratic sieve factorization method
	Fermat's integer factorization
	Algorithm
	Example

	Dixon's factorization method
	The main idea
	Example
	Algorithm

	Quadratic sieve factorization method
	Improving the factor base
	Sieving
	Logarithmic approximation
	Additional optimizations
	Algorithm

	Multiple polynomial quadratic sieve
	Generating multiple polynomials
	Negative values
	Potential for improvement
	Algorithm

	Self-initializing quadratic sieve
	Large prime optimization
	State-of-the-art
	Msieve
	YAFU
	MPQS implementation by Peter Kováč

	Quadratic sieve implementation
	General implementation details
	Technology used
	Trial division implementation
	Trial division usage

	Dixon's method implementation
	Initialization
	Gathering relations
	Linear algebra
	Obtaining the results
	Dixon's method usage

	Quadratic sieve implementation
	Initialization
	Sieving
	Quadratic sieve method usage

	Multiple polynomial quadratic sieve implementation
	Initialization
	Sieving
	Multiple polynomial quadratic sieve method usage

	Large prime optimization of MPQS
	Initialization
	Sieving
	Large prime MPQS method usage

	Parallelization
	Parallelization via openMP
	Parallelization via MPI
	Combining the openMP and MPI approaches
	Parallel large prime MPQS method usage

	Quadratic sieve testing
	Environment set-up and compilation
	Testing the trial division method
	Testing the Dixon's method
	Testing the quadratic sieve method
	Testing the multiple polynomial quadratic sieve method
	Testing the large prime MPQS method
	Testing the parallelized large prime MPQS method
	Comparing the results

	Conclusion
	Bibliography
	Acronyms
	Training measurements
	Contents of enclosed CD

