
Instructions

The goal of this thesis is to create a working prototype of an easily extensible framework for user and

entity behavioural anomaly detection (UEBA). The framework must support multiple different data

sources, e.g.: network connection data (proxy logs, netflows), endpoint data (OS logs, registry

modifications), and combine them into an embedding of observed entities (users, devices, etc.).

Analyze the state of the art statistical and behavioural anomaly detection systems in the computer

security domain.

Based on the previous step, propose and compare embeddings for modelling various network

entities. The quality of embeddings should be evaluated by means of anomaly detection.

Design a modular framework for processing different data sources by multiple behavioural models for

various network entities.

Demonstrate viability of the framework on real data provided by the supervisor.

Electronically approved by prof. Ing. Róbert Lórencz, CSc. on 4 January 2021 in Prague.

Assignment of master’s thesis

Title: Multi-modal threat detection framework

Student: Bc. Jaroslav Hlaváč

Supervisor: Ing. Martin Kopp, Ph.D.

Study program: Informatics

Branch / specialization: Computer Security

Department: Department of Information Security

Validity: until the end of summer semester 2021/2022

Master’s thesis

Multi-modal Threat Detection Framework

Bc. Jaroslav Hlaváč

Department of Information Security
Supervisor: Ing. Martin Kopp, PhD.

May 6, 2021

Acknowledgements

First and foremost, I would like to thank my supervisor Ing. Martin Kopp,
PhD. for his inspiring guidance and patience while explaining complex topics
to me.

I would also like to thank my mother and father for their support in my
studies and their tremendous help with proofreading the thesis.

Most importantly, I would like to thank my wife for continuous love and
support during the process of writing this thesis.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on May 6, 2021

Czech Technical University in Prague
Faculty of Information Technology
© 2021 Jaroslav Hlaváč. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Hlaváč, Jaroslav. Multi-modal Threat Detection Framework. Master’s thesis.
Czech Technical University in Prague, Faculty of Information Technology,
2021.

Abstrakt

Detekce behaviorálńıch anomálíı je široce použ́ıvaná metoda pro ochranu poč́ı-
tačových śıt́ı proti moderńım útok̊um. Systémy behaviorálńı analýzy uživatel̊u
a entit (UEBA) sleduj́ı chováńı entit a odhaluj́ı v něm vzorce běžné pro mal-
ware.

Pro monitorováńı poč́ıtačových śıt́ı lze použ́ıt mnoho heterogenńıch zdroj̊u
telemetrie. Mohou to být śıt’ové toky, logy z koncových zař́ızeńı a logy z aplikač-
ńıch server̊u. Vytvořit kombinovanou telemetrii z těchto zdroj̊u je náročné, ale
může to výrazně rozš́ı̌rit detekčńı schopnosti systémů UEBA.

Tato práce navrhuje architekturu typu pipeline, která obsahuje tři nezávislé
vrstvy pro zpracováńı kombinované telemetrie ze śıtě i koncových zař́ızeńı.
Prvńı vrstva kombinuje zdroje telemetrie do normalizovaného formátu. Vrstva
Event generation ji předává model̊um určeným pro detekci anomálíı a ty z ńı
generuj́ı bezpečnostńı události. Posledńı vrstva použ́ıvá vygenerované bezpeč-
nostńı události pro automatickou detekci hrozeb.

Implementace navrhovaného konceptu vrstvy Event generation byla úspěš-
ně otestována na telemetrii z v́ıce než 25 r̊uzných privátńıch śıt́ı. Velikosti śıt́ı
se pohybovaly od stovek do stovek tiśıc zař́ızeńı. Jednalo se o śıtě z r̊uzných
odvětv́ı, jako akademické sféra, finančnictv́ı, doprava a medićına.

V rámci práce je zaveden nový postup pro vytvářeńı embedding̊u śıt’ových
entit pomoćı Bag of Words model̊u s použit́ım časových okének. Kombi-
nace vytvořených embedding̊u byla úspěšně otestována na problému sledováńı
zař́ızeńı v pr̊uběhu času. Tento př́ıstup rovněž umožňuje vytvořit nové typy
model̊u pro sledováńı náhlé změny chováńı zař́ızeńı.

Kĺıčová slova detekce behaviorálńıch anomálíı, embedding entit, śıt’ové chováńı,
UEBA

vii

Abstract

Behavioral anomaly detection is the state-of-the-art method for protecting
computer networks against modern attacks. User and entity behavioral an-
alytics (UEBA) systems track the behavior of entities to uncover patterns
common for malicious software.

Computer network can be monitored using many heterogeneous types of
telemetry sources. They include network flows, endpoint logs, and application-
specific server logs. The combination of information from these sources is
challenging, but it can vastly extend the detection capabilities of a UEBA
framework.

This thesis proposes framework containing three independent layers for
processing combined telemetry from both network and endpoints. The first
layer combines the telemetry sources in a normalized format. The combined
telemetry is forwarded to anomaly detection models in the event generation
layer. Generated events are then used for automated threat detection in the
last layer.

The proof-of-concept implementation of the event generation layer was
successfully tested using telemetry from more than 25 different private net-
works. Sizes of these networks ranged from hundreds to hundreds of thousands
of devices in multiple industries, including academia, finance, transportation,
and medicine.

The thesis also introduces a new approach for embedding network entities
by time window Bag of Words models in latent space. A combination of these
embeddings was successfully tested for device tracking over time. It is also a
prerequisite for a new type of behavioral models, such as a model for detection
of a sudden change in behavior.

Keywords behavioral anomaly detection, entity embedding, network be-
havior, UEBA

viii

Contents

Introduction 1

Goals 3

State of the Art 5

1 Scope Definition of the Framework 7
1.1 Persistent Threat Life-Cycle . 8
1.2 Intrusion Detection Systems . 9
1.3 Cross-Domain User and Entity Behavior Analytics 11
1.4 Proposed Framework Overview 12

2 Data Sources 15
2.1 Network Data . 16
2.2 Endpoint Data . 18
2.3 Application Specific Data . 19
2.4 Merging Data . 19
2.5 Data Enrichment . 21

3 Proposed Framework for Security Event Generation 25
3.1 Anomaly Detection . 26
3.2 Behavioral Modeling . 27

3.2.1 Stateless models . 28
3.2.2 Stateful Models . 29

3.3 Entity Embedding . 31
3.3.1 Bag-of-Words Representation 33

4 Threat Detection Layer 35
4.1 Security Information and Event Management System 35
4.2 Rule Mining . 36

ix

5 Implementation of the Event Generation Pipeline 39
5.1 Architecture . 39

5.1.1 Combining Data and Enrichment 40
5.1.2 Security Event Generation 41

5.2 Technology Used . 43

6 Entity Embedding Experiment 45
6.1 Embedding Evaluation . 46
6.2 Experimental Setup . 47
6.3 Results . 48
6.4 Takeaways . 54

Conclusion 55

Bibliography 57

A Acronyms 63

B Contents of enclosed drive 65

x

List of Figures

1.1 High-level overview of the framework. It uses a pipeline architec-
ture starting with raw data and ending with threat alerts. 12

2.1 Most common data collection points (depicted green) on the net-
work are flow monitoring devices on the edge or inside of a network
(a), a monitoring system running on the end devices (b) and server
logs collection (c). 15

2.2 Response for a www.seznam.cz in Talos web interface. 21
2.3 First part of the response from RIPE (Réseaux IP Européens) for

the query whois 77.75.74.172, the IP address of www.seznam.cz.
A lot of additional information can be found in the response. . . . 22

3.1 Distribution of registered ports contacted by a single device in
one day. Anomaly scores are listed above bars corresponding to
different port numbers. The red bars exceed the p = 0.05 anomaly
threshold. This type of model is more sensitive to small changes
on the device level that could be missed on the company level. . . 31

5.1 Overview of whole framework using multiple modalities. Data from
separate telemetry sources (the leftmost green box) is merged and
stored in cloud. Event generation layer (the middle yellow box)
loads the stored telemetry and feeds it to individual anomaly de-
tection models. Security events are then stored in cloud. Threat
detection layer (the rightmost red box) uses security events to gen-
erate alerts. 40

6.1 Histograms of similarity distributions for device embeddings be-
tween Monday January 11 and Tuesday January 12, 2021. 50

6.2 Comparing CDFs of devices appearing on N -th rank between dif-
ferent features (a) and different days of the week (b). 51

xi

6.3 Comparing the combined averaged similarity with different features
over 2 days. 52

6.4 Confusion matrices for 10 randomly selected devices common for
both telemetries. 53

xii

List of Tables

1.1 Areas of a computer network where different phases of a malware
kill-chain are visible. Weaponization usually happens outside of
the network on a system maintained by the attacker. 9

3.1 Taxonomy of used anomaly detection methods with examples. . . . 28

4.1 Example of a rule, mined for the dropper malware type. Two of
the behavioral security events come from endpoint telemetry and
the rest is coming from network telemetry. 36

6.1 Features tested for device embeddings. 47
6.2 Number of devices observed in different telemetries on the network 48
6.3 Comparison of mean rank and mean similarity of BoW and time

window BoW embedding creation methods. Mean rank shows the
efficiency of tracking individual users (the lower the better). Pre-
cise hits ratio shows the percentage of devices that were tracked
accurately over time. 49

6.4 Results of using average similarity for computing similarity be-
tween a subset devices present in both network and endpoint teleme-
try between Jan 11 and Jan 12, 2021. 52

xiii

Introduction

Protecting modern computer networks is a difficult task. The volume of data
transferred and the number of devices online grow rapidly [1]. Networks
change with each new service and each device update. This creates a space for
mistakes in configuration and new attack vectors for malicious actors. There-
fore, as the landscape transforms every second the security systems need to
adapt dynamically to keep up with the changes.

The common way to detect threats in the network is to use Indicators of
Compromise (IoCs). An IoC is a piece of data observed on the network. It can
be defined by a signature such as a domain, file hash, IP address, etc., that was
previously labeled as malicious. These signatures can be used to create alerts.
To overcome a defense framework based solely on IoCs the attacker just needs
to change the domain or one line in the code. Then he remains undetected
until someone adds the changed signature to the list of known IoCs.

Behavioral analysis is a technique used to observe the activities of actors
present in the network based on the context they appear in. It is used for
modeling the behavior of entities in the network and helps to uncover complex
or ever-changing threats. It is much harder to change the behavioral pattern
of a malware than to change its IoC. No matter what program or domain
is used to exfiltrate data, the behavioral pattern of unusual outgoing traffic
will always be present (even though it might be hard to differentiate it from
normal traffic).

For instance, seeing a network device access the domain drive.google.com
does not indicate anything suspicious as it is commonly used public ser-
vice. Yet, adding a context to the visit may drastically change that inno-
cently looking activity. Imagine that the following sequence of events was
observed in a short succession. An e-mail was received with a link from
secret-attack@yahoo.com. A few seconds later, a script was run on the
device modifying its Windows Registry 1. Right after that the device started

1A database used for storing settings for the Windows OS.

1

Introduction

communicating heavily with internal database server and a few other key
network assets. A little bit later, huge amounts of data were uploaded to
drive.google.com. Such stream of events immediately turns the innocently
looking visit of a public cloud storage service into an important piece of evi-
dence suggesting that sensitive data are being exfiltrated.

The example illustrated that having access to multiple sources of data
and combining them on the behavioral level can be a powerful way to detect
attacks. These different modalities can be endpoint logs from an operating sys-
tem, network flows, e-mails, proxy logs, reputation databases of IP addresses
or domains, and many more. The more information, the better.

Given the diverse nature of the data sources and the amount of data on
the network, creating such a complete picture is a difficult task. The system
needs to keep track of many features and also persist the previous state of the
network to look for behavioral changes that indicate possible threats. With
this approach, both known and unknown threats may stand out from the huge
amount of traffic as illustrated by the example above.

The cost that comes with it is the complexity of behavioral analysis as it
needs to dynamically adapt to the ever-changing state of the network. The
widely used term for these methods is User and Entity Behavior Analytics
(UEBA). The main challenge of UEBA is the creation of a normal profile
of behavior of the entity, that can be used to look for abnormal actions.
An entity is any identifiable object on the network. It can be a personal
computer (PC), router, internet of things (IoT) device, or even a subnet, a
group of devices (e.g. printers), etc.

A framework for user and entity behavioral anomaly detection was imple-
mented as part of this thesis. A cross domain analytics (XDA) approach is
used to combine information from different sources of telemetry that do not
share a reliable common identifier. The models in the framework are designed
to track and analyze the changes in behavior of entities on the network. The
framework provides easily extensible anomaly detection capabilities on top of
the combined telemetry.

The thesis also contains experiments with embedding devices into a latent
space. Device representations in the latent space were used for device tracking
over one week in a real network. The experiments had shown that using com-
bined telemetry in modified bag of words device representation is a promising
direction of representing the device behavior.

The rest of the work is structured in the following way. Chapter 1 ex-
plains the possible approaches to UEBA solutions and shows an overview of
the proposed framework. Chapter 2 covers different data sources available on
a computer network and points out the advantage of combining these data
sources. The anomaly detection layer used for event creation is described in
Chapter 3 and the threat detection layer follows in Chapter 4. Chapter 5 cov-
ers the architecture of implemented data processing framework and Chapter 6
covers the experiments conducted to compare different entity embeddings.

2

Goals

This thesis aims to create an easily extensible framework for user and entity
behavioral anomaly detection that will serve as a part of an existing intrusion
detection system Cognitive Threat Analytics developed by Cisco Systems, Inc.
The focus is on anomaly detection using different models with several data
sources.

The framework’s input consists of network telemetry (network flows and
proxy logs) and information gathered on the monitored network’s endpoints
(via Cisco Secure Endpoint2). The framework should investigate devices’ be-
havior on the network by combining information from both data sources. Yet,
the framework should be designed in such a way that it will allow additional
data sources such as, e-mail or firewall logs.

The output should consist of events generated by behavioral anomaly de-
tection models. These security events, need to be labeled by the device that
the anomaly was observed on. They are consumed by subsequent modules of
the IDS. The thesis should also demonstrate an approach for device behavior
tracking over time in an embedding space.

The framework has to be lightweight in order to handle traffic from net-
works consisting of tens or even hundreds of thousands of devices. Moreover,
it has to be extensible with new anomaly detection methods, behavioral model
types, and data sources. The implementation is expected to serve as a proof-
of-concept solution of the architecture.

2a client used for endpoint telemetry collection (https://www.cisco.com/c/en/us/
products/security/amp-for-endpoints/index.html)

3

https://www.cisco.com/c/en/us/products/security/amp-for-endpoints/index.html
https://www.cisco.com/c/en/us/products/security/amp-for-endpoints/index.html

State of the Art

The traditional approach to computer security is to use multiple layers of
defense. The first layer is on the edge of the network, and the last one is on
the operating system level of the end device. To gain control of a device in the
network, the adversary must get through the firewall, avoid detection in the
internal network, gain access to the device and avoid detection there. For each
of these layers, there exists a complex and robust solution. Yet, it is not enough
to protect computer networks against modern threats. One of the reasons
is the increasing sophistication of attacks. The attackers develop targeted
attack vectors suited for specific networks, which are almost impossible to
detect by traditional means. Another problem is the complexity of the correct
configuration of sophisticated security tools [2].

To tackle these problems, security researchers invented a dynamic method
that leverages the logging and detection capabilities of existing systems. They
create the user and behavioral analytics as a sophisticated system to monitor
modern computer networks (e.g. [3]).

UEBA solutions build standard profiles of entities (hosts, network traffic,
etc.) on the network across time [4] to determine the entity’s normal behav-
ior. Traffic that differs from this baseline profile is then considered anomalous.
The need for UEBA is well defined in [5]. UEBA system should support the
human analyst (or software) to make decisions about potential threats. Their
solution creates the baseline profile of the behavior from network traffic seen
on a device and flags changes in the network communication as anomalies.
The authors introduce a UEBA architecture of the system containing four
parts: data preparation, feature extraction, behavior profiling, and anomaly
detection. DINGfest [6] proposes a similar architecture that uses data col-
lected by virtual machine inspection (VMI), creating periodic snapshots of
the monitored system. Their approach focuses on permissions violations seen
in the data stream. The anomalies are created by matching event streams
to a database of malicious behavior fingerprints. DINGfest data sources lack
the network data collected, thus decreasing the visibility into the network. Xi

5

State of the Art

et al. [7] again uses a similar architecture to find anomalies using endpoint
logs. They use neural networks and isolation forests as anomaly detection
models, and also introduce the idea of data enrichment from previously saved
knowledge databases.

This thesis implements a proof-of-concept of UEBA framework similar to
[5]. It is designed to be composed of different data source specific detectors.
The PoC solution uses pattern matching models and histogram-based mod-
els [8] implemented with surprisal adjustments as described in [9]. It was
further expanded by simple statistical anomaly detectors such as [10, 11].
These detectors are expected to consume network flows, network proxy logs,
logs from the endpoint, with the possibility to add more data sources in the
future. The sources are merged and then enriched with available information
(e.g. GeoIP).

6

Chapter 1
Scope Definition of the

Framework

To truly protect a computer network means maintaining confidentiality, in-
tegrity, and availability (CIA) of the data. Therefore, the ultimate goal of
security solutions is to prevent any disruption of the CIA, whether it was
caused by malicious intent or mere mistake. An example of malicious activity
is sending a phishing e-mail to HR department in order to get access to the
company network. A worker unaware of company policy copying confiden-
tial files to his personal Dropbox to work on them from home is a case of
unintentional security policy violation by mistake.

In reality, protecting computer networks is a never-ending race between
attackers and defenders. Network administrators try to stay at least one step
ahead of the attackers in order to prevent most of the attacks. The security
breaches need to be identified and patched as fast as possible. Once they are
patched, the administrators use the knowledge to update the security so that
the breach does not repeat. On the other side of the barrier, the attackers try
to overcome any defenses put in front of them. They actively search for new
loopholes and for known unpatched vulnerabilities in the network to achieve
their malicious intents.

Over the years, many powerful intrusion detection techniques were devel-
oped to discover and prevent security breaches. This chapter covers defensive
techniques that are often used within an intrusion detection systems (IDS).
Parts of these systems target different stages of malware life cycle as described
in section Section 1.1. A taxonomy of intrusion detection systems is covered
in Section 1.2. Section 1.3 establishes the advantages that user and entity
behavioral anomaly detection systems bring to the network security industry.
Finally, Section 1.4 presents the overview of the proposed framework in the
scope of an IDS.

7

1. Scope Definition of the Framework

1.1 Persistent Threat Life-Cycle

The goal of an attacker is to extract value from the infected host or network
in any possible way. There are many ways to exploit networks by malicious
activity. A database with personal data (addresses, passwords, usernames,
etc.) can be sold on the dark web. Stolen blueprints with a new prototype
can be sold to a competitor. Another way is to mine cryptocurrency on the
infected hosts or by sending spam e-mails from it. In order to extract value,
these attacks need to gain control of a device in the network or at least of a
program running on it. Once they are in control, they are able to run arbitrary
code and achieve their goals. In case of an advanced persistent threat (APT)
a persistence will be established (e.g. by writing into Windows Registry). Or
some sensitive data will be stolen with all traces of the attack erased.

A malware uses seven steps to get into the network and complete its ob-
jectives. They are summarized as a malware kill-chain in [12]. This model
is widely used by security software and personnel to mitigate the threats on
different layers of the network. The stages of kill-chain paraphrased from [12]
are as follows:

1. Reconnaissance: Conducting both passive and active research about
the target. Searching public information for useful clues to be used in
the attack, e.g. port scanning, web scraping.

2. Weaponization: Creating a package of malware exploiting a vulner-
ability found during reconnaissance. E. g. hiding malware inside of a
macro in an Office365 document or a PDF document.

3. Delivery: Transferring the weaponized package to the targeted network
host. E. g. a document sent via e-mail, a USB drive dropped in the
company parking lot.

4. Exploitation: Triggering the malicious code in the delivered package
by exploiting the targeted vulnerability. E. g. user opening a document
received in a phishing e-mail, plugging the USB into his/her workstation.

5. Installation: Establishing persistence on the attacked system. It can be
installed in the Windows Registry to start automatically after a system
reboot.

6. Command and Control: Establish a communication channel with
the outside world. The malware notifies a Command and Control server
outside of the network of its state and may receive instructions on what
to do next.

7. Actions on Objectives: Taking concrete steps toward completing the
objectives. These steps are controlled remotely through the communica-

8

1.2. Intrusion Detection Systems

tion channel set up previously. An attacker might use the network host
to ex-filtrate internal data or any other goal that he is after.

Each of the stages can be further divided to smaller steps, and each step
can be achieved by multiple different techniques. A curated knowledge base
of adversary behavior with a detailed description of individual techniques can
be found in MITRE ATT&CK® [13].

Kill-Chain Phase Visibility
Reconnaissance Network
Weaponization Usually not visible
Delivery e-mail, (Network, Endpoint)
Exploitation Endpoint
Installation Endpoint
Command and Control (C2) Network
Actions on Objectives Network

Table 1.1: Areas of a computer network where different phases of a malware
kill-chain are visible. Weaponization usually happens outside of the network
on a system maintained by the attacker.

To successfully achieve the objectives, the attacker needs to go through at
least some of the phases of the kill-chain. Often he needs to go through all of
them. Each phase gives the security team several opportunities to disrupt the
kill-chain and effectively stop the attack. Table 1.1 shows where each phase
of the kill-chain happens, can be detected and disrupted. In the following
chapters, the focus will be on the most common areas of visibility: network and
endpoint. Other relevant data sources exist, like physical security (monitoring
office entry logs) or e-mail, but those are beyond the scope of this thesis.

1.2 Intrusion Detection Systems

The best way to prevent a malicious actor from causing harm to a computer
network is to prevent him from gaining access to it. A properly set up firewall
can stop a majority of non-targeted attacks. However, as the networks need to
communicate with the internet, there is always a loophole where the attacker
can possibly get through. Any unauthorized action on the network that can
cause damage is considered an intrusion. An intrusion detection system is a
software or hardware solution that detects any malicious network traffic and
computer usage that the firewall cannot block [14].

A typical IDS only passively monitors the network. In case of an anomalous
or suspicious behavior, it notifies the person or software responsible for the
security. Some systems enable actively modifying defenses according to the
detections. Such a system is called an intrusion prevention system (IPS).

9

1. Scope Definition of the Framework

An IPS has a significant responsibility as it can act on the observed events
[15]. The following example can explain the difference between IPS and IDS,
together with the pitfalls.

Imagine that there is an intrusion detection system set up on the edge of
a small company network. Suddenly it notices that the mail server starts to
send hundreds of e-mails an hour, where it previously sent only about 300
e-mails a day. It clearly is a massive change in the behavior of the server
and therefore should be investigated. The IPS could immediately stop all
outgoing SMTP communication from the network to prevent any further harm.
The IDS would only send an alert to the security log, where the security
worker would investigate it and act accordingly. In case of actual infection,
the IPS would be a better solution as it would stop the harmful activity in a
matter of minutes. But what if it was only a new marketing campaign, where
the company started sending weekly newsletters to its customers. Then it
would mean that the IPS effectively stopped a value-generating process of the
company.

The previous example leads to the main difference between IPS and IDS.
An IPS needs to be very precise and should act only if it is sure of the
assumption. Each false-positive intrusion prevention can harm the protected
company. On the other hand, IDS focuses on not missing any actual threat,
and it can safely create less precise events. IDS produces some false positives,
but these can be filtered by the subsequent system or person responsible for
the threat detection. This thesis uses the term IDS as the focus is on the
anomaly detection part of the system, which is similar for both IDS and IPS.

There are three types of IDS distinguished by the technique use to detect
intrusions: signature-based, anomaly-based, and hybrid.

A signature-based intrusion detection system tries to match patterns ob-
served in the traffic against a database of known signatures, previously ob-
served in known attacks. In case of a match, an intrusion has been detected.
The system can identify the attack type according to the signature matched
with high confidence. The signature-based approach is powerful in identify-
ing already documented attacks such as Snort signatures [16]. The biggest
weakness of signature-based IDS is the inability to identify the zero-day (pre-
viously unseen and unknown) attacks. Since there is no signature, each zero-
day attack goes unnoticed. There even exists polymorphic malware, a type
of malware that leverages this weakness by dynamically changing the signa-
tures to avoid detection. This weakness underlines the need for anomaly-based
detection systems, as are designed to detect zero-day attacks.

The anomaly-based IDS leverages unsupervised methods for finding pos-
sible intrusions. It looks for suspicious traffic that deviates from the normal
behavior on the network. Often it has a training phase to create a baseline
for the normal behavior and active phase when newly observed traffic is com-
pared with the normal behavior to identify anomalies. The main strength
of the anomaly-based approach is the ability to detect previously unobserved

10

1.3. Cross-Domain User and Entity Behavior Analytics

attacks. The behavioral change can identify any previously unseen malicious
action, that might become a threat to the network. Because of the unsuper-
vised nature, anomaly-based IDS also creates false alerts (e.g. a legitimate
server moving to a new IP address could be identified as an anomaly because
of high number of connections to a previously unseen IP address) that need
to be filtered later.

The signature-based and anomaly-based IDS complement each other. The
best performance comes from their combination in a hybrid IDS [17]. Threat
researchers can leverage proper usage of anomaly-based IDS to find new signa-
tures for a signature-based IDS. Models implemented in the proposed frame-
work use both anomaly-based and signature-based approach.

The main two places in the network where an IDS can run are an endpoint
device and a network device. Host intrusion detection system (HIDS) runs on
a single machine with access to fine-grained information such as API calls, file
executions, and registry changes (e.g. [18] or antivirus software). Many de-
tections can be created on the end device with the help of signature databases
downloaded from the internet (or policies set up on the host). HIDS enables
a granular insight into what is happening on one device, but it lacks a global
view of the network.

Network intrusion detection system (NIDS) usually monitors network traf-
fic of the whole computer system. NIDS looks for anomalies in the traffic ob-
served on collection points in the network. The information about individual
hosts in the network is not as rich as from HIDS, but it enables modeling rela-
tionships between internal and external hosts. Moreover, it allows monitoring
of all devices that communicate over the network, even those that do not have
a HIDS installed, such as IoT devices and personal appliances.

Information obtained from both HIDS and NIDS gives a good insight into
what is happening in the network and enables complex detections.

1.3 Cross-Domain User and Entity Behavior
Analytics

User and Entity Behavioral Analytics (UEBA) is method used in anomaly-
based IDS. Its goal is to create security events based on anomalies found in
the data. Previous section covered two domains, endpoint device and network,
where anomalies are usually detected. Since there can be many such events, it
is not expected that a real person would go through all raw events manually.
For that reason, security information and event management (SIEM) systems
were developed. It is a system that aggregates logs and reports from multiple
sources. Well-presented and aggregated information in a SIEM can help the
administrator get more insight into what is happening in the computer network
and take the appropriate action.

11

1. Scope Definition of the Framework

A cross-domain analytics (XDA) empowers the approach above by com-
bining the telemetry under one entity (e.g. device, user or subnet) prior to the
anomaly detection. This greatly increases detection capabilities of the system
as the behavioral anomaly detection can run on the entity level. The fact,
that entities are determined prior to the anomaly detection phase simplifies
the work of the person using the SIEM and enables better automation of the
threat detection.

Ideally, the cross-domain UEBA system would be able to identify users and
different assets on the network. Personal computer, router, IoT device, sub-
nets, groups of devices (e.g. printers) and others can be monitored. However,
identifying entities on the network is a complex problem due to the hetero-
geneous data sources available in computer networks. The sources usually do
not have an identifier to tie all the information together and create a well-
structured database where one could filter by username, MAC address or IP
address. Users change their locations, IP addresses rotate because of DHCP
and MAC addresses are not always available in the data. Creating combined
telemetry for the UEBA system, covered in Chapter 2, is a non-trivial task.
Using this combined telemetry to produce security events is covered in Chap-
ter 3.

1.4 Proposed Framework Overview

This thesis proposes UEBA framework, used to create security events from
multiple data sources. An overview of the proposed pipeline architecture
is depicted in Figure 1.1. It starts with raw data collected from different
sources available in the network. This data are combined and enriched with
additional information (for details see Section 2.5). The combined telemetry
is then forwarded to the anomaly detection layer where detection models run
tracking both whole network and individual entities.

The anomaly detection layer scales well with more data as the models run
in parallel. Each model is consuming data from one modality and anomalies
found are forwarded to the threat detection layer as security events. The
threat detection layer can be either a SIEM or an automatic threat detection
algorithm.

Figure 1.1: High-level overview of the framework. It uses a pipeline architec-
ture starting with raw data and ending with threat alerts.

The main focus of the implementation part of this thesis was the event
generation layer. Several anomaly-based and signature-based models were

12

1.4. Proposed Framework Overview

used to create security events. The event generation layer was connected to
systems implemented by other developers. The whole system was then tested
as a successful proof of concept solution for UEBA deployed on data provided
by Cisco.

13

Chapter 2
Data Sources

The detection capability of an IDS comes from the quality of the data col-
lected, efficient filtering, and processing. Even a small high-speed computer
network (hundreds of devices) can produce a considerable amount of teleme-
try. Thus collecting and storing the data is a problem that needs to be solved
in both hardware (e.g. special network interface cards) and software solutions.
A common assumption that more data means better results can become a li-
ability while monitoring computer networks. To use accurate techniques, like
deep packet inspection (DPI), the data needs to be prefiltered and stored in a
concise form. It is important to note that the collected data contains highly
confidential information. Therefore, it needs to be stored and processed in a
secure environment without the possibility of it being ever exposed to unau-
thorized personnel.

(a) (b) (c)

Figure 2.1: Most common data collection points (depicted green) on the net-
work are flow monitoring devices on the edge or inside of a network (a), a
monitoring system running on the end devices (b) and server logs collection
(c).

This chapter covers different data sources collected in a monitored com-

15

2. Data Sources

puter network. Figure 2.1 shows the most common places where an IDS can
collect computer system telemetry. Having access to all of the data sources,
brings the best results in defending the network. However, telemetry is not
always collected on every device (e.g. IoT devices often do not have an end-
point client installed). Section 2.1 covers the network-based data sources,
Section 2.2 gives an overview of endpoint data collection and Section 2.3 lists
other possible data sources. The problem of merging the data under one
identifier is laid out in Section 2.4. It also covers the approach of merging
data from different data sources used in the deployment of the framework.
Enrichment of the data from external databases is covered in Section 2.5.

2.1 Network Data

Today, most threats come over the network. Therefore, the information about
an ongoing attack can usually be found in the network telemetry. The attacker
is generating traffic that would not normally be present on the network. The
goal of the network monitoring system is to highlight such unwanted network
traffic.

The smallest amount of data that is usually monitored is a packet. A
network packet is a formatted piece of information traveling over the internet.
It contains information used for transporting the packet across the network
and the actual information carried to the destination. Theoretically, whole
network communication can be reconstructed if all packets are captured. In
reality, it is not possible because of the following reasons. Networks can easily
generate tens of gigabytes of telemetry per second. Going through this amount
of data in real-time is computationally unfeasible, and storing it would take
an immense amount of space. Moreover, most of the traffic is encrypted by
private keys available only to the communicating hosts.

As packets are not suitable for efficient network monitoring, they are aggre-
gated into network flows. A network flow is a record containing important
properties of an unidirectional communication between two network host. A
lot of the information is lost in the aggregation process (especially the actual
payload of the packets). However, the condensed information enables investi-
gating the network flows in real-time (or close to real-time) and storing them
in a database for later investigation. Many countries around the world require
internet service providers to store flow information for a period of time to be
used for forensic purposes by the authorities if there is a suspicion of a crime.

There are two commonly used format specifications for network flow, the
NetFlow [19], and IPFIX [20]. Different implementations use different fields.
However, the basic structure is very similar for both of them. The most
common fields are the following:

1. Flow identifier

16

2.1. Network Data

2. Source IP address

3. Destination IP address

4. Direction

5. IP protocol

6. Source port (for UDP or TCP)

7. Destination port (for UDP or TCP)

8. Bytes transferred

9. Start time

10. End time

Once captured, the flow record is usually processed and stored so that
an IDS system can access it later. Sensors in different parts of the network
can collect network flows, as depicted in Figure 2.1a. The most common
spot for deploying the flow collector is the edge of the network, where all
communication with the outside world can be captured. Routers used on
edge often come with this capability. To enable monitoring of the internal
communication, collectors also need to be placed inside the network. However,
this creates additional work for the IDS as it needs to deduplicate some of the
flows seen on multiple collection points.

Network flows are a good source of information for behavioral analysis.
They can be further enhanced by other interesting parts of the communication,
such as the initial data packet (IDP). IDP is the first packet sent as part
of the communication that usually carries essential information about the
connection. Network flows can also be grouped to bi-flows merging the two
directions into one record, which further reduces storage space.

Proxy logs can be considered as another source of data (they could also
be categorized as application-specific, see Section 2.3). A proxy is a server
that acts as an intermediary between the user and the internet, especially the
web. A proxy can serve as a simple security measure in the company network.
They can partially hide the network identity of the end-user, block specific
websites, etc. Each request to access a website goes through a proxy and is
logged there. These logs contain important information about the connection:
URL of the requested website, the username of the user that has created the
request, and more depending on the logging setup.

Network telemetry data used in this thesis comes from both network flow
collectors and proxy logs.

17

2. Data Sources

2.2 Endpoint Data

Even though most attacks come over the network, their target is an endpoint
device. An endpoint is any physical (or virtual) device connected to the inter-
net. It can be a server, personal computer with any operating system, mobile
device, switch, router, or IoT device. Each of these endpoints is a potential
target. Personal computers, servers, and mobile devices are often targeted by
attacks trying to steal confidential information. They are usually better pro-
tected than IoT devices and small appliances like cameras and home routers.
These are more often exploited as bots for sending spam e-mails or DDoS
attack generation.

The attacker’s goal is to infect the endpoint with malware and hide its
presence. It tries to mislead the operating system and any antivirus software
into believing it is a legitimate service. The malicious code exploits vulnera-
bilities in the host’s software to gain control of it. Once it is in control, it can
perform actions to complete its goal. An example of an obfuscation technique
can be injecting malicious code into running processes (process hollowing),
running solely in memory without any trace on the disk, and even deleting
evidence of its presence when the goal is achieved.

An adequately set up endpoint is logging the actions happening on it.
Logins, program installation, file download, file execution, registry changes,
reboots, and even API calls can be logged. With this kind of information, the
antivirus software running on the endpoint can look for malicious activity. It
matches the hashes of files with its database to block any known threats. It can
also monitor the Windows Registry changes and send suspiciously behaving
software to the threat analysts for further investigation. Even more sophisti-
cated detection mechanisms can run on the endpoint, such as monitoring the
system calls [21].

Some of the logs can be sent to a secure cloud database accessible by
an IDS, where more computation capacity is available. This also enables an
overview of the health of the computer network from the view of the end hosts.
For example, suppose malware starts appearing on multiple Windows devices
in the network. In that case, the administrator can assume a virus is spreading
through the network and act accordingly (e.g. quarantine these devices into
a separate subnet to prevent the infection from spreading). Alternatively, it
can analyze the freshly changed registry keys to discover and attempt to gain
persistence on the machine.

The endpoint logs used for experiments in this thesis come from Cisco
Secure Endpoint clients.

18

2.3. Application Specific Data

2.3 Application Specific Data

In addition to user-operated endpoints and network infrastructure devices,
there is usually a service-providing server. These servers are an attractive
target for the attackers as they hold important databases and provide ser-
vices crucial for the operation of the network. Logs from these services are
another data source useful for multi-modal detections. An example could be
the Lightweight Directory Access Protocol (LDAP) server, where logins to
the company network are being logged. If an LDAP server is compromised,
it could allow the attacker access to a database of all users in the network.
Logs from a network proxy, mentioned in Section 2.1, can be to some extent
considered application-specific.

Another excellent example of application-specific telemetry are mail servers.
Phishing e-mails are still one of the most prevalent sources of infection. There-
fore, monitoring mail servers should be a priority. The best results are achieved
when the security system can read whole e-mails and use natural language pro-
cessing and other methods to find phishing and other threats. This approach
requires particular caution as e-mails are highly sensitive. For this reason,
detections on e-mail data often use only the header information.

Combining e-mail data with other sources of telemetry has become increas-
ingly important. It is standard now that the attackers use legitimate services
to deliver malware to the users. Malware code can be found on GitHub3, or
the binaries are being downloaded from Google Drive, Dropbox, and other
public storage services. The link from a phishing e-mail might download a
compressed zip file from Google Drive containing malware as well as a legiti-
mate document sent by a coworker.

The framework implemented as part of this thesis does include only proxy
logs as application-specific data. However, it was implemented with other data
sources in mind. If e-mail or other application-specific data are available, they
can be easily added to the framework to widen its detection capabilities.

2.4 Merging Data

Detecting anomalies in individual telemetries covered in previous sections is
a well-used security technique. However, when the telemetries are merged,
the quality of detections can increase significantly. For example, by looking
only at the link or file attached to the e-mail, it is hard to decide whether
it is malicious. Knowing that the executed file was received as an e-mail
attachment came from a suspicious address, it tried to communicate with
an IP address hosted in Zimbabwe and was found malicious by the antivirus
software gives the security personnel a much better story of what has happened
on the network.

3a provider of hosting software source code on the internet (https://github.com/)

19

https://github.com/

2. Data Sources

Combining the telemetry from more data sources enhances current detec-
tions and opens new detection capabilities of the IDS. Data, merged by a
unique key, can also be used as a complex behavioral fingerprint of an entity.
Not only it can automate some of the processes that are usually done manu-
ally, but it can also bring up important information that would otherwise go
unnoticed.

Combined telemetry is created by joining all sources of telemetry under one
entity. An entity is any object on the network that can be logically separated
from the others. It can be a user, a device, a subnet, a group of devices
or users, etc. The choice of an entity depends on the data available and the
nature of the protected assets. The rest of the thesis uses a device as an entity
of choice. The approach for different entities would be similar.

A unique device identifier is needed to distinguish between devices and
merge available telemetries. For endpoint data, this unique identifier can be
the installation ID of the antivirus software or operating system or MAC
address if it can be obtained reliably. An IP address is the closest thing that
is available as the unique identifier in network telemetry. However, in private
networks, an IP address is not necessarily unique. On top of that, IP addresses
change over time, so the identification is valid only at the exact moment the
IP was observed. Some telemetry cannot be accurately merged as some types
of telemetry may not be available for some devices, e.g. IoT or mobile devices
might not have antivirus software installed.

Fortunately, modern endpoint monitoring software also stores some net-
work requests and logs the source IP address used for this request. One way
to create the combined telemetry from the endpoint and network telemetry is
to join network telemetry to the endpoint telemetry by matching IP addresses
in a time window. Prolonging the time window lowers the certainty that
the match has been created correctly. However, make the time windows too
small, and less telemetry can be merged accurately. This approach requires
the timestamps of different telemetries to be aligned.

Merging other types of telemetries is similar to the example above. There
needs to be at least one common feature, to merge the telemetries correctly.
The quality of the resulting data depends on the features available.

The approach explained above was used to create combined telemetry for
this thesis. The resulting dataset consists of network and endpoint telemetries
merged under a unique device identifier. Some parts of the telemetry could
not be used for multi-modal detection as it could not be merged with high
enough certainty. One way to improve the algorithm for data merging, is by
optimizing the time window. However, it is out of the scope of this thesis.

20

2.5. Data Enrichment

Figure 2.2: Response for a www.seznam.cz in Talos web interface.

2.5 Data Enrichment

The data collected and merged as explained in previous sections can be further
enriched with even more information. Below are listed three sources commonly
used for data enrichment. It can be information available on the internet
via shared allow lists, blocklists, and databases. Other means are using an
internet geolocation (GeoIP) database or passively gathering domain name
system (DNS) queries.

Both public and private block and allow lists can be used to enhance
network flows. For example, Cisco Talos Intelligence Group [22] maintains a
whole reputation database that contains information whether Talos considers
the queried domain, IP address, or URL favorable or not. A simple web view
of such a query for www.seznam.cz can be found in Figure 2.2.

Gathering GeoIP information is a process used to determine the geographi-
cal whereabouts of the queried IP address. There are publicly available GeoIP
databases available on the internet (e.g. [23]), and many companies collect
their own databases suiting their needs. The easiest way to gather GeoIP is to
create a whois query targeting an IP address. The whois command-line tool
uses the WHOIS [24] text-based protocol designed for providing information
about IP addresses and domains to internet users. The registration authority
responsible for the IP maintains a server that responds to whois queries with a
record containing the company’s name, location, and other information about
the IP address. An example of a response to the whois query can be found in
Figure 2.3.

Another common way to store additional information is to create a passive
DNS database. Passive DNS is an approach to store historical DNS resolution
data into a database. In case of a security incident, this database can be
referenced for past DNS queries. It can help uncover threats that use domain
generation algorithms (DGA), for example, a malware using domains that
exist only for a short amount of time. When the security expert investigates

21

2. Data Sources

inetnum: 77.75.74.0 - 77.75.74.255
netname: SEZNAM-CZ
descr: Seznam.cz
country: CZ
admin-c: SZN5-RIPE
tech-c: SZN5-RIPE
status: ASSIGNED PA
mnt-by: SEZNAM-MNT
created: 2007-06-20T11:47:42Z
last-modified: 2007-06-20T11:47:42Z
source: RIPE
role: Seznam.cz IT department
address: Radlicka 3294/10 150 00 Prague 5

Czech Republic
phone: +420 602 126 570
abuse-mailbox: abuse@seznam.cz
admin-c: PZ172-RIPE
tech-c: SZN11-RIPE
tech-c: SZN10-RIPE
nic-hdl: SZN5-RIPE
mnt-by: SEZNAM-MNT
created: 2007-05-06T15:50:27Z
last-modified: 2015-07-03T13:19:00Z
source: RIPE # Filtered
% Information related to ’77.75.74.0/24AS43037’
route: 77.75.74.0/24
descr: SEZNAM - II
origin: AS43037
mnt-by: SEZNAM-MNT
created: 2007-10-04T08:21:30Z
last-modified: 2007-10-04T08:21:30Z
source: RIPE

Figure 2.3: First part of the response from RIPE (Réseaux IP Européens) for
the query whois 77.75.74.172, the IP address of www.seznam.cz. A lot of
additional information can be found in the response.

22

2.5. Data Enrichment

a domain, the only record is in the passive DNS database as the domain is
already nonexistent.

The data sources covered in this chapter open vast opportunities for both
human and machine-operated intrusion detection systems. The private dataset
used in experiments in this thesis consists of network flows, proxy logs, and
endpoint telemetry gathered by Cisco Secure Endpoint logs merged by source
IP address under Cisco Secure Endpoint client installation ID in one minute
time windows. Public IP addresses are then enhanced with GeoIP data.

23

Chapter 3
Proposed Framework for

Security Event Generation

The main focus of this thesis is the event generation layer of the framework.
This layer leverages user and entity behavioral anomaly detection to find sus-
picious activity on the network that traditional signature-based approaches
would not notice. In recent years all of the major security system vendors (e.
g. [25], [3], [26]) were investing heavily into the development of UEBA systems
as they are by design able to detect zero-day attacks [27]. This chapter cov-
ers the theoretical background for cross-domain UEBA framework consuming
combined telemetry merged by the algorithm from Section 2.4.

A straightforward yet still powerful behavioral anomaly detection method
is to create several different models, each handling a specific type of detection.
For this reason, both anomaly-based and signature based models are deployed
in the proposed framework. The findings are then combined in the subsequent
threat detection layer.

Anomaly-based models create a behavioral fingerprint of the tracked
entity and look for perturbances in the behavior. Signature-based models
generate security events by matching signatures with the telemetry. With the
combined telemetry as an input, these security events are easily assigned to a
specific entity/device. Knowing the source entity that has created a security
event, helps with threat detection and serves as evidence for investigation.
Section 3.2 covers the details about individual implemented detection tech-
niques.

Another type of behavioral fingerprint is a vector representation of entities
embedded into a vector space. This approach opens several options useful in
an anomaly detection framework. New types of anomaly detectors can be
introduced by tracking the embedding over the vector space and looking for
significant shift or a change in the group of an entity. Clustering methods can
be used to create groups of similar entities. These groups can be monitored
by models with specifically adjusted thresholds. Section 3.3 formalizes the

25

3. Proposed Framework for Security Event Generation

problem of embedding creation. The embeddings are used in experiments in
Chapter 6 for tracking devices in time according to their behavior.

3.1 Anomaly Detection

Anomaly detection (also called outlier analysis) is a technique used to find
data points that do not correspond to the observed group’s expected pattern.
Most of the data points likely originate from a normal data source. Whereas,
anomalies are data points that do not adhere to the structure expected from
the normal data source [28]. Therefore, there is a suspicion that the abnormal
data points originate from a different source or the normal source started to
behave differently. The goal of anomaly detection is to flag these abnormal
data points as anomalous.

Anomaly detection is used in many different areas (i.e., industrial damage
detection [29], medical anomaly detection [30], cyber-security anomaly detec-
tion [31], etc.) for details, see e.g. [32]. In some areas the normal data source
is well defined, and anomalies are easily spotted. For example, a roller press
producing 0.5 mm thick sheets of metal with a tolerance of 0.01 mm is easily
monitored for anomalies. Any sheet that is thinner than 0.49 mm or thicker
than 0.51 mm is considered anomalous. This abnormality would indicate a
possible malfunction and would be reported to the operator.

In computer security usual actions of a legitimate user are the normal data
source. The abnormal data are then generated by the attacker or accidental
misuse by a normal user. Concrete properties of the data source’s normal
behavior are unknown and need to be estimated or learned from the data.
A model of normal behavior needs to be crafted to serve as a baseline for
anomaly detection. Examples of such models can be found in the next section.
The quality of the model defines the relevance of the security events forwarded
to the threat detection engine. The problem of defining normal behavior is
difficult. Many different algorithms exist for normal model creation, such as
histogram-based outlier score models [8], multi-variate statistical analysis [33],
and others.

This thesis uses statistical unsupervised anomaly detection methods. A
data model is learned from the observed data points without any prior knowl-
edge of the data point distribution. A data point is considered anomalous if it
appears out of the distribution created by most data points. The tricky part
of this approach is selecting the features to be modeled and the entity to be
modeled. The creation of multiple statistical models can solve this problem,
by each model focusing on a specific feature and tracking different entities.
Thus, the chance of some significant change in the data structure slipping
unnoticed is decreased. Ideally, the amount of false positives needs to be as
low as possible, while maintaining zero false negatives.

26

3.2. Behavioral Modeling

3.2 Behavioral Modeling

The proposed solution for UEBA framework uses multiple standalone anomaly
detection models of different types to model the behavior of entities in the
network. Each model can target a specific technique, tactic or procedure
used in one or more phases of malware kill-chain [12]. The goal is to create
comprehensive security events from different parts of the network. These
events are later presented to the administrator preserving the context of a
potential threat. The contextual information is crucial for the decision making
of the administrator.

A few examples of anomalies are presented in Table 3.1. Security events,
generated by models in this layer can be leveraged to create comprehensive
behavioral signatures. There are many legitimate tools, that are used for
both legitimate and malicious purpose. An example of such a tool is nmap4.
However its simplicity also makes it an excellent tool for malicious purposes.
Classic signature-based IDS would not flag nmap as malicious. In the proposed
framework, low severity events are created to be later automatically processed
to serve as evidence in threat analysis or discarded.

Investigating the anomalies from Table 3.1 separately does not give enough
information to determine whether the anomaly needs to be considered a threat.
The administrator would probably discard them as too weak and not action-
able. However, their combination may create a very strong evidence of a device
being compromised and tell the story how it happened. In the example case,
if the events were observed on one device, the story could be the following. A
signature-based detection was triggered by a nmap scan. A statistical model
detected unusually high amount of internal hosts contacted. These two events
might look suspicious, but they could easily be a part of a regular network
administrator workflow. With the information added by a rule-based system,
it is possible, that the scan was run by a PowerShell parented by Microsoft
Word5. It is obvious, that the whole incident should be inspected further. The
administrator should check, whether the host that executed nmap is not in-
fected. The ability to combine the information is enabled by properly merging
the data from different sources, as explained in Section 2.5.

The implemented event generation layer of the framework creates security
events from several different anomaly detection models covered below. The
input data is merged under a unique device identifier, which enables creating
one complete story for the security analyst to support his decision making.
Creating alerts, by combining the security events is beyond the scope of this
thesis. However, to showcase the framework’s value, a rule-mining algorithm
was used to combine the security events. The goal was to find new rules specific

4a network scanner used for device discovery on the network (https://nmap.org/)
5a word processor developed by Microsoft (https://www.microsoft.com/en-us/

microsoft-365/word)

27

https://nmap.org/
https://www.microsoft.com/en-us/microsoft-365/word
https://www.microsoft.com/en-us/microsoft-365/word

3. Proposed Framework for Security Event Generation

Detection
type Example

statistics-based unusually high amount of internal hosts contacted
signature-based suspicious file hash
rule-based opening a document spawned a PowerShell process

Table 3.1: Taxonomy of used anomaly detection methods with examples.

for predefined malware classes (e.g. dropper6). This experiment serving as a
proof of concept for the whole framework is demonstrated in Section 4.2. The
other option would be to feed a SIEM with the events from different sources
and let the analyst to write the “rules” themselves.

One of the framework’s main advantages is that it can be easily extended
with new models. Newly created detection methods can be added and com-
plement old ones instead of rewriting the whole framework. Moreover, the
framework can consume events from existing systems to use all defense mea-
sures in the network to the fullest extent. This thesis divides the models into
2 main categories, stateless models and stateful models.

Stateless models are used where the anomaly can be determined within
the context of the actual batch of data. They are often used for pattern-based
models that filter the telemetry without the need for memorizing historical
data. Stateful models are mainly used for statistical anomaly detection. They
have to learn from the historical data before they start to generate anomaly
events. These types of models are discussed in further detail below.

3.2.1 Stateless models

Stateless models are best described as a sophisticated signature-based or rule-
based filter specifically crafted by a security expert. Each batch of telemetry
is processed independently with no information stored in the model. The
filter does not have to be as strict as a concrete signature of an attack. In-
stead, it should try to capture a behavior that is common for some type of
malware. This behavior can be captured as a pattern to be matched (e.g.
suspicious domain name generated by domain generation algorithm) or as a
sequence of behavioral events (e.g. an Adobe Acrobat7 application parenting
a PowerShell8 process).

An example of a stateless model is the registry change detection model.
Commonly, malware uses Windows Registry to establish persistence on the
device. However, installing legit programs also creates registry modifications.

6a software used to install malware on a device while avoiding detection by antivirus.
7a popular PDF document viewer (https://acrobat.adobe.com/us/en/)
8a command-line shell and scripting language developed by Microsoft (https://

docs.microsoft.com/en-us/powershell/)

28

https://acrobat.adobe.com/us/en/
https://docs.microsoft.com/en-us/powershell/
https://docs.microsoft.com/en-us/powershell/

3.2. Behavioral Modeling

This model creates an event if a modification is made to one of the watched reg-
istries (e.g. HKCU\Software\Microsoft\Windows\CurrentVersion\Run*).

The advantage of stateless models looking for behavioral patterns is the
simplicity of deployment. Once the hard part of finding the pattern common
for the malware’s behavior is finished, it literally takes minutes to deploy a
stateless model to the framework. The downside is that these models can
provide many false positives (in case the pattern is too broad) or no findings
at all (if the behavioral pattern is too strict). However, security events from
stateless models are vital for threat discovery in the network, as they help
with explaining the story behind the breach.

3.2.2 Stateful Models

The idea behind stateful models is to create a baseline behavior of the modeled
entity and then compare newly observed behavior to this baseline. From
the standpoint of anomaly detection (Section 3.1), the baseline is learned
from the normal data source. If the observed behavior suddenly changes, an
anomaly is reported together with the change of behavior that caused it. The
change in behavior can serve as crucial information for the person or software
determining the severity of a possible incident.

The operation of a stateful model consists of two phases: warm-up phase
and detection phase. During the warm-up phase the model learns the base-
line of the behavior of the entity (e.g. device). The warm-up phase needs
to be long enough to establish a proper baseline. Once the warm-up is over,
the anomaly-detection phase starts. Incoming traffic is compared with the
baseline to find abnormal behavior and create security events. It is expected
that the behavior of the device changes over time because of legitimate rea-
sons, e.g. new software is installed or the device’s user starts to work from
home more often. To take these changes into account, stateful models use a
sliding window to adjust the baseline behavior to actual state of the network.
The size of the sliding window is set by the forget period parameter. Any
behavior older than the forget period is discarded from the model’s baseline.
Therefore, the forget period needs to be long enough to smooth out expected
cyclic changes in the behavior of the network, like day and night, or work day
and weekend.

The basic assumption is that the baseline behavior is the expected behavior
of the device. In case of the device being infected prior to the deployment of
a stateful model, the security events will not be generated, even though there
is malicious behavior going on.

A stateful model’s operation is demonstrated by the implementation of a
histogram-based outlier score (HBOS) model [8] with updated surprisal score
from [9]. This model learns a feature distribution over time and then calculates
the anomaly score of all incoming values. If the observed value is beyond
a probability threshold, it is considered anomalous. The internal state of

29

3. Proposed Framework for Security Event Generation

this model is kept in the histogram keeping track of the current distribution.
The histogram is updated with each incoming batch of data. A normalised
surprisal [9] is used to compute the anomaly score S for each bin after the
update:

S(x) = max{0,− log2(p(x))−H(B)}, (3.1)

where p(x) is the probability of value x calculated from the current histogram,
H is Shannon’s entropy and B is the set of all bins. From the current state
an anomaly threshold is calculated to determine which bins are considered
anomalous usually by a probability of p = 0.05 or less. For each bin whose
anomaly score exceeds the anomaly threshold, a security event is created.

To make sure that the histogram is populated, a minimal amount of records
in the histogram can be set to create anomaly events. This prevents models
with a low number of records from creating events for every single observation.

The HBOS models (and other stateful models) can model different enti-
ties. In this thesis, the models run on company and on device level. The per
company mode creates a baseline from all traffic observed on the company
network. A small change on the network can be lost in the company view
due to noisiness of the baseline. To mitigate this problem, per user mode is
also used, where a stateful model is maintained for every single entity/device.
These individual baselines track behavior specific to the device. The downside
is, that the device needs to have enough traffic to populate the baseline. Ide-
ally, similarly behaving devices could be tracked in groups, creating baselines
specific to the groups behavior. To enable such clustering is one of the goals
of embedding creation covered in Section 3.3. An example of per user HBOS
model histogram with destination ports contacted by a single device in one
day is depicted in Figure 3.1. The model is looking for out-of-distribution
ports which in the case of the depicted device would be ports 1900 and 123.

To underline the power of modeling different entities, two different sce-
narios are presented below. A newly accessed country (e.g. Kyrgyzstan) in
a small US-based company could be a reason to create an anomaly on the
company level and not on the device level. Especially when the device com-
municates to Kyrgyzstan, it does not have enough telemetry to populate the
country code HBOS model because it mainly communicates to the internal
network. A counterexample to showcase the advantage of using the per-user
HBOS model would be a device (e.g. proxy server) suddenly communicating
on the 445 via the Server Message Block (SMB) protocol port. This change
would easily get lost in the per company model as SMB is a frequently used
protocol and therefore would not be considered anomalous. From the per-
spective of this particular proxy server, it is an anomaly that needs to be
logged.

More stateful models can be added to the framework (e.g. models based on
cumulative sum [34], σ-distance models similar to the ones used in [5]). They

30

3.3. Entity Embedding

Figure 3.1: Distribution of registered ports contacted by a single device in
one day. Anomaly scores are listed above bars corresponding to different port
numbers. The red bars exceed the p = 0.05 anomaly threshold. This type
of model is more sensitive to small changes on the device level that could be
missed on the company level.

calculate the standard deviation from normal distribution on given feature
and when a change bigger than several standard deviation occurs, a security
event is created. These models are used to detect bursts on different features
(e.g. sudden burst on a specific port number). The σ-distance models were
implemented by another developer and successfully used in the PoC frame-
work.

3.3 Entity Embedding

An entity embedding is a vector representation of the entity in a latent
space. A latent space is a vector space defined by the dimension of the
embeddings. Ideally, the data points representing the entities in a latent space
are similar to each other, if the entities behave similarly. Embeddings that
preserve the similarities of entities in the latent space bring new possibilities
to work with the data.

The devices cannot be represented by vectors in the raw feature space as
it is not a metric space. Therefore, the devices can be represented only as
sets of feature values. Only pairwise set similarities can be used for working
working with these sets, which is computationally expensive. The usage of the
embedding transformation to the latent space overcomes the heterogeneity of
the raw feature space. The vector representations in the metric latent space
can leverage the properties of metric spaces.

31

3. Proposed Framework for Security Event Generation

The entities change dynamically, therefore their embedding also changes
and corresponding data points move in the latent space. A stateful model can
track these changes in time by comparing the embedding vectors created for
individual entities in time. If a significant shift occurs in the latent space, an
anomaly is reported. The embeddings can be used to find groups of similarly
behaving entities. Finding that an entity has changed its group can be treated
as an anomaly. Another possibility is to track the entity in time without need
of a unique identifier. The behavioral fingerprint could serve as the identifier.
This would enable, for example, identifying the device even after the change
of device identifier (e.g. due to reinstalling the endpoint client). Several of
these possibilities are explored in Chapter 6.

The creation of entity embedding is a transformation e : X → L from
heterogeneous non-metric feature space X to a latent space L where each
entity is represented by a vector. The goal is to create behavioral fingerprint
of the entity. The embedding should be comparable to other entities using a
similarity metric, while retaining the structural information of the network.
There are two requirements for the embeddings:

• Requirement 1: Embeddings of an entity in two subsequent time peri-
ods need to be similar to each other. This can be expressed as following
formula for average self-similarity:

r1 = 1
N

N∑
i

sim (e(xit1), e(xit2)) , (3.2)

where N is the number of entities in the set, sim is an arbitrary simi-
larity function, e is the embedding transformation, xi ∈ X is the entity
representation in feature space and t1 and t2 are the subsequent time
periods.

• Requirement 2: Different entities need to be dissimilar and distin-
guishable by their embeddings. This can be expressed as the following
formula for average dissimilarity between different entities:

r2 = 2
N(N − 1)

N∑
i

i−1∑
j

(1− sim(e(xit), e(xjt))) (3.3)

where N is the number of entities in the set, sim is an arbitrary similarity
function with a range of [0, 1], e is the embedding transformation and
xi, xj ∈ X are different entities.

Using only r1 would not be enough as a function transforming all enti-
ties into one point in the latent space would not bring meaningful results,
even though it would fulfill the requirement. Therefore, requirement r2 is
introduced.

32

3.3. Entity Embedding

With the requirements above, finding the embedding transformation e can
be formulated as an optimization of the following function:

e∗ = arg max
e∈E

(w1r1 + w2r2), (3.4)

where E is the set of all embedding transformations e, w1 and w2 are weights
assigned to the requirements r1 and r2. The embedding function e should
also regularize the vectors. The experiments in Chapter 6 were evaluated by
metrics corresponding with the requirements above.

3.3.1 Bag-of-Words Representation

This thesis uses a bag-of-words (BoW) representation for proof-of-concept
of device embedding. BoW is a information retrieval technique originating in
document classification. It is used to represent a document in a vector space by
computing the number of term occurrences in the document and discarding
the structure of the document. A term is usually a word or n-gram. The
dimension of the representation space is determined by the number of unique
terms (called vocabulary) in the set of documents that are being compared.

Having network flows and endpoint logs at disposal, the bag is constructed
from all values (terms) observed in one feature in a given time window, i.e.
all executable hashes used by a device in one day (treated as a“document”.)
would be added to the bag. The vocabulary would then be all the hashes used
by the devices in the network in an extended time window (e.g. day, week).

Using only counts of occurrences in individual features does not work well
for many of the features as usually few values occur significantly more often
than others. Thus, all vectors look similar, because of this frequent feature.
In the case of executable hashes, this could be Google Chrome, as it is the
most common browser. Therefore, tf-idf (term frequency - inverse document
frequency) [35] is used to weight the vector by the amount of information each
term brings. If the term is very common, the idf value is small, reducing the
impact of the term in the resulting vector.

The frequent features can have several orders of magnitude more occur-
rences than the other features. In the document classification problems, the
most frequented words (is, are, with, the, a, an etc.) can simply be removed
from the vocabulary. Such is not the case in the network and endpoint teleme-
try as the most frequented terms can change (e.g. update of a program changes
the executable’s file hash). Or they can contain information useful for entity
identification (e.g. the most frequented autonomous systems (AS) contacted
by Windows machines are maintained by Microsoft, distinguishing them from
Linux machines).

According to our experiment even using tf-idf to re-weight features is not
enough. Therefore, a different approach needs to be used to re-weight the

33

3. Proposed Framework for Security Event Generation

feature in the combined telemetry. This thesis uses time window BoW (tw-
BoW) representation, where each feature is counted only once for each time
window it occurred in. This creates a constraint on maximal value of each
component of the vector (e.g. 288 for a representation of one day split into 5
minute windows). This vector is then re-weighted by tf-idf.

Chapter 6 covers the experiments comparing BoW and tw-BoW represen-
tations.

34

Chapter 4
Threat Detection Layer

Security events created by the event generation layer are forwarded to the
threat detection layer. The goal of threat detection is to combine and filter
the security events to find actual threats and create an alert for the security
operations center (SOC). A SOC is a specialized workplace where dedicated
employees use technical security solutions to monitor the security of a com-
pany.

This chapter briefly covers two approaches that can be used in a threat
detection layer. One is combining the data from a security information and
event management system (SIEM) via handcrafted rules and the other is to
automate the rule creation process by an algorithm.

4.1 Security Information and Event Management
System

Security information and event management systems such as Splunk [36] or
Solarwinds Security Event Manager [37], are a system where all the security
events, anomaly detections, antivirus and other logs are normalized into a
common representation. The events should also contain information about the
current state of the network. The system gives the SOC the ability to monitor
and analyze events transpiring in the network in real-time [38]. Based on the
findings, the SOC is able to write rules targeting specific threats. Stored
events also helps with post hoc investigation. SIEMs are the state-of-the-art
solution used by security analysts for tracking and responding to potential
threats in the network.

Originally, SIEMs started as an enhanced logging tool to combine logs
from different security tools running in the network. Over the years the ability
to manually create detection rules was added, so that security analysts could
create alerts fulfilling their needs. Nowadays some SIEMs are able to automate
the process of rule creation. The automatic approach for finding rules is

35

4. Threat Detection Layer

covered in the next section.

4.2 Rule Mining

To showcase the new capabilities opened by using combined telemetry for
anomaly detection a rule mining approach was used. Security events were for-
warded to the rule mining algorithm implemented as part of another project.
The rule mining algorithm is designed to help threat analysts to discover new
behavioral rules for known threats. The rules are mined for malware families,
groups of similarly behaving malware. An example of such a malware family
could be ad injector or dropper. Ad injector is software used for injecting adds
to web pages via browser. Injected ads are not monetized by the official owner
of the website. Instead, they are sold by the malicious actors controlling the
ad injector. A dropper is the software responsible for the delivery phase of
malware kill-chain.

Frequent item set mining algorithm FP-growth algorithm [39] with slight
modifications was used to look for behavioral patterns used by specific mal-
ware families. The algorithm leverages frequency based prefix tree to discover
frequent security event sets that lead to a confirmed detection. In case of
previous example, the item sets found are behavioral patterns of the malware
family. Found patterns are inspected by a security analyst and can be used
as new signatures for malware detection. This approach was not implemented
as part of this thesis, however the security events created by event genera-
tion layer were used as an input to the existing solution to see whether such
patterns can be found in combined telemetry.

Telemetry Source Event Description
Network unusual user-agent for given domain
Endpoint unusual file hash
Network connection check
Endpoint device fingerprinting
Network persistent communication with unusual domain
Network unusual user-agent

Table 4.1: Example of a rule, mined for the dropper malware type. Two of
the behavioral security events come from endpoint telemetry and the rest is
coming from network telemetry.

Table 4.1 shows an example of one such rule, mined for the dropper mal-
ware type. The rule was mined as a set but an actual threat was confirmed
with the listed succession of events. First a known domain was accessed with
an user-agent, that was not previously used to contact this domain. Then
an unusual file hash was flagged by endpoint client on the device. Later it

36

4.2. Rule Mining

was confirmed, that curl9 was used to download the file. Security events
detecting connection checks and collection of information about the device
started to appear. A persistent communication with unusual domain, again
using unusual user-agent were also observed. After deeper inspection, it was
discovered that events were caused by the dropper Shlayer [40], that was not
found by other means.

The tests with mining rules from security events showed, that not all rules
are meaningful. Therefore, the rules are currently used in the human-in-
the-loop scenario. A threat analyst checks selected rules for validity before
deploying them to the threat detection layer. The rule mining algorithm helps
the threat analyst to automatically discovering new rules, that would either
take a significantly higher time to write or would slip by unnoticed.

9An open source software used to transfer files over the internet

37

Chapter 5
Implementation of the Event

Generation Pipeline

This chapter covers the architecture and implementation of the framework,
which is designed to consume data from any source covered in Chapter 2.
Implemented pipeline consumes network flows, proxy logs and endpoint logs
merged by source IP address under the endpoint client installation ID. The
event generation layer is responsible for anomaly detection on the combined
telemetry and produces security events consumed by the threat detection layer
(e.g. by the rule-mining algorithm) and also stored for further reference. One
of the main contributions of this thesis is the implementation of the event
generation layer pipeline.

In a production deployment the framework would run in a batch streaming
mode. One batch consists of real-time telemetry collected for a small time
window. To mimic batch streaming, the proof-of-concept pipeline runs on
persistently stored historic data. Batches are loaded and processed in 5-minute
time windows as they would arrive in production deployment.

5.1 Architecture

The framework uses pipeline architecture consisting of three independent lay-
ers: Combining Data and Enrichment layer, Event Generation layer and
Threat Detection layer. A diagram of architecture can be found in Figure 5.1.
The first layer merges raw data from various sources and converts them into
a normalized format. The combined telemetry is then saved to cloud stor-
age in a columnar format partitioned by time. This partitioning provides the
possibility of loading batches for specified time windows efficiently, to mimic
the batch streaming mode expected of the deployment version of the pipeline.
The batches with combined telemetry are then forwarded to anomaly detec-
tion models running in distributed environment. Every model then creates

39

5. Implementation of the Event Generation Pipeline

Figure 5.1: Overview of whole framework using multiple modalities. Data
from separate telemetry sources (the leftmost green box) is merged and stored
in cloud. Event generation layer (the middle yellow box) loads the stored
telemetry and feeds it to individual anomaly detection models. Security events
are then stored in cloud. Threat detection layer (the rightmost red box) uses
security events to generate alerts.

security events of specific type. The events are again stored in cloud where
they can be accessed by the threat detection layer.

The independent deployment of each layer in a distributed environment
is important for such a framework. It offers the possibility of easily reusing
the layers in different networks and with different sources of telemetry, while
retaining the format of security events used for threat detection. The PoC
framework was successfully used for security event creation on telemetry from
more than 25 real private networks. University, transportation, financial and
other industrial networks were present in the dataset. The number of devices
present in the networks ranged from few hundred to hundreds of thousands.

5.1.1 Combining Data and Enrichment

First, raw network flows, proxy logs and endpoint logs need to be loaded and
transformed to a normalized format that the models in the event generation
layer are able to consume. In the implemented PoC version of the pipeline,
the individual telemetries are loaded from cloud storage, yet in the production
the input will be in the form of real-time data stream. The endpoint client
installation ID from the endpoint logs is used to uniquely identify devices on
the network. The rest of the thesis uses the term device ID for this unique

40

5.1. Architecture

identifier. Different telemetry sources are then merged using the source IP
address.

Source IP address was chosen for merging, because it is the only feature
available in all telemetry sources. However, many of the endpoint logs contain
only files executed and modified with no IP address, which makes the merging
process complicated. With the network dynamically changing, certainty that
an IP address is assigned to a specific device ID decreases rapidly from the
time a network communication was logged on the endpoint.

When a network connection is logged, it is certain that the device ID
has the source IP address used for the connection. If a device with ID A
communicated from an IP a.b.c.d in time t and in time t + ∆ a flow record
was observed with source IP a.b.c.d, it is not certain that the communication
originated from device A. The main cause of this problem is that IP address
is not an unique identifier. It changes in time because of DHCP leases, the
device reconnecting on different network (e.g. using VPN) or other reasons.

As explained above, the certainty of the (device ID, device IP) pair being
valid is highest right after the observation of both identifiers in one endpoint
network communication log. The algorithm used considers the (device ID,
device IP) pair to be valid for 1 minute after the observation. When the minute
has expired, the algorithm waits for another observation containing both IP
address and device ID. Depending on the density of network communication
logs, this approach may not be able to match some of the network traffic. The
devices not running the endpoint software cannot be merged at all. Unmerged
network telemetry can still be used for anomaly detection, but the anomalies
found cannot be attributed to a concrete device.

The combined telemetry is stored in a columnar format in a cloud storage.
The format chosen to store this data is Apache Parquet [41], as it is versatile
and programming language independent. Parquet data format also enables
compression and the possibility to load only selected columns or partitions
as well as storing arbitrary objects. This is useful in the event generation
phase of the pipeline, where each model needs to access only a subset of all
the features stored in the parquet.

5.1.2 Security Event Generation

Security events are generated from signature-based and anomaly-based mod-
els. A model is an independent module, consuming a subset of combined
telemetry needed for detecting suspicious behavior for devices in the network.
These models are the core of the framework. Each model uses different features
from the combined telemetry. Thus, each model can load only the features it
needs from the storage, leveraging the columnar storage format. All models
operate in a batch mode, consuming several minutes of telemetry at a time.
Each model can use a different sized time window.

41

5. Implementation of the Event Generation Pipeline

The models implemented are histogram-based outlier score (HBOS) mod-
els [8], signature-based models and event parser models. HBOS models and
signature-based models are explained in detail in Section 3.2. Event parser
model is a simple model used to translate existing detections from other secu-
rity systems running in the network to the security event format used further
in the pipeline. A security event is a timestamped tuple, identified by the de-
vice ID and flagged with an event type specific for the model type. The events
have the following format: timestamp, device id, event id, count, event type.
The individual field descriptions are below:

• timestamp: timestamp of the end of batch in which the event occurred

• device id: unique device identifier taken from endpoint telemetry (the
installation ID of an endpoint client)

• event data: subject of the event, for ports it would be the port number,
for hashes it would be a specific hash, etc.

• count: number of occurrences in given batch, used to group the same
events together

• event code: code identifying the anomaly detection model that pro-
duced the event

Parameters of each model need to be adjusted to improve the quality of
detections and to regulate the number of events generated by each model.
They are tuned with the same objective as described in Section 3.1: To keep
the number of false positives low, and ideally to produce zero false positives.
The pattern-matching models are adjusted by the patterns themselves. If
the pattern is too general the output gets cluttered by false positive events.
Coming back to the example of change in Windows Registry signature-based
detector a regular expression pattern HKCU* would generate many more events
than a specific HKCU\Software\Microsoft\Windows\CurrentVersion\Run*
pattern. The latter is commonly used for setting up persistence on the system,
as software listed there is started on user logon.

Adjusting parameters of the HBOS models is more complex. Warm-up
period, forget period, and the minimal population of models need to be set as
well as the anomaly threshold used to generate events in populated histograms.
Most of the detectors use anomaly threshold of 0.99, which means that only
1% of the most anomalous observations is reported as security events. In the
data used, this corresponds to 5-10% of the devices in the network generating
events. The minimal population of the histogram needed to start generating
events was set to 50 observations per forget period. The warm-up period for
the models is set to 24 hours, to capture the behavior for whole day before
the model starts generating events. To ensure smooth transitioning between
days and to mitigate small perturbances, the forget period is set to 48 hours.

42

5.2. Technology Used

StatefullModel and StatelessModel abstract classes provide an inter-
face that makes the implementation of completely new detection model fam-
ilies simple. The only requirement is that they consume combined telemetry
and generate security events in the required format.

5.2 Technology Used

This section lists the technology used for developing the prototype version of
the pipeline. The programming language of choice was Python (version 3.85)
because of its flexibility and many useful data science libraries. The data
format and libraries used in the framework were picked according to the ex-
pected rewriting of the prototype version into production code using Apache
Spark [42] with Java or Scala programming languages. Apache Parquet [41]
was chosen as the storage format and the library used for distributed com-
puting is Dask [43]. Dask is an open source library able to use common data
science libraries like Pandas [44] and NumPy [45] (both used in the implemen-
tation) in a distributed environment natively, while providing similar features
as Apache Spark.

The framework was designed to run both manually (either in a Jupyter
notebook [46] or as an application) and automatically using Apache Air-
flow [47] as a workflow automation library. Airflow enables easy deployment by
running Docker10 containers on Kubernetes11 clusters for each of the anomaly
detection models used by the framework.

10a service used for virtualization on the OS level via containers (https://
www.docker.com/)

11a system for automated deployment of containerized applications (https://
kubernetes.io/)

43

https://www.docker.com/
https://www.docker.com/
https://kubernetes.io/
https://kubernetes.io/

Chapter 6
Entity Embedding Experiment

This chapter covers experiments with different entity embeddings, that can be
used to extend the basic pipeline covered in Chapter 5. The main goal was to
compare different embeddings for tracking entities in the network over time.
For the purpose of these experiments, a device was selected as the represented
entity. It was an obvious choice (from the data available), as devices are
directly identifiable by the endpoint client installation ID.

The problem lies in the fact, that not all devices on the network have
an identifier assigned. IoT devices or personal appliance cannot or do not
have an endpoint client installed. The ultimate goal of embedding creation
would be the creation of a behavioral embedding that could serve as unique
identifier for all devices on the network. This ideal embedding would create a
unique fingerprint for each device, that would enable differentiation between
them based solely on their behavior. The experiments performed as part of
this thesis are the first step in this direction. The endpoint client installation
IDs were used as labels for the purpose of device tracking, thus omitting the
devices that produced only network telemetry.

Two possible embedding creation approaches based on the bag-of-words
(BoW) method explained in Section 3.3.1 are compared in the experiments.
The first approach is BoW representation using raw features weighted by tf-idf.
In classic BoW, feature frequencies are computed from all term occurrences
(e.g. for ports, each access on destination port 80 counts as one occurrence).
tf-idf is later used to re-weight each feature according to the frequencies ob-
served in the network.

The second approach is the time window BoW representation (again
weighted by tf-idf), where each feature counts only once for each time window
it occurred in (e.g. for ports, no matter how many times in a time window
device accessed port 80, it counts as only one occurrence). For this experiment
we used 5-minute time windows, therefore each vector component ranges from
0 to 288 (number of 5 minute windows in 24 hours). Smoothing the vector by
this method enables less significant values for given feature to have bigger im-

45

6. Entity Embedding Experiment

pact on the final vector. Otherwise the most frequent features could outrange
others even after tf-idf smoothing.

6.1 Embedding Evaluation

The embeddings were evaluated according to their ability to track the device
in time in the latent space. This evaluation criterion is formalized by the
requirements in Section 3.3. To evaluate the embedding quality, similarities
between all devices appearing in one day, and all devices appearing in the
other day were computed. Total of N ∗ M similarities were computed for
every two of days, where N is the number of devices in the first day and M
is the number of devices in the second day. The M similarities in each row i
of the matrix were ranked according to:

ranki = 1 + |{j|sim(e(xit1), e(xjt2)) > sim(e(xit1), e(xit2)}|, (6.1)

where sim is a similarity measure, e(xit1), e(xjt2) ∈ L are embedding of differ-
ent devices in the latent space L and times t1, t2 are two consecutive days.

The following metrics were used to compare the quality of the embeddings:

• Mean rank R in which each device embedding appeared in the second
day:

R =
∑M

i ranki

M
, (6.2)

where M is the number of devices in the second day and ranki is the rank
from Equation 6.1. The lower mean rank, the better the representation.
In the best case the mean rank would be 1, allowing to precisely track
all devices over time.

• Percentage of precise hits A is the defined as:

A =
∑M

i I[ranki = 1]
M

(6.3)

where M is the number of devices in the second day, I is the indicator
function which is 1 if the rank is equal to 1 and zero otherwise and ranki

is the rank from Equation 6.1.
The value of A shows the portion of devices that could be uniquely iden-
tified. If there are multiple devices tied with the same highest similarity,
it does not count as precise hit, because the device cannot be identified
uniquely (cf. Requirement 2 in Section 3.3).

46

6.2. Experimental Setup

• Cumulative distribution function (CDF) of the device appearing on
rank N or lower for each device:

f(x) = P (ranki ≤ x) (6.4)

where the right-hand side represents the probability of randomly se-
lected device x having higher rank than ranki. This metric is useful for
comparison between different embedding transformations.

These metrics enable comparison of both BoW and time window BoW
approaches as well as comparing the different features.

6.2 Experimental Setup

The experiments use three different features, listed in Table 6.1, to test the
viability of the BoW approach. Private destination IPs are addresses falling
into ranges defined in RFC1918 [48]. This feature comes from the endpoint
telemetry due to the fact, that network telemetry available in the dataset was
gathered on the edge of the network. That is why endpoint logs were used as
a source for private IP address. Private IP address was chosen because it is
one of the few that captures behavior on the internal network.

The file hash is a string uniquely identifying a file. Files that were created,
opened or executed on the endpoint are supplied to a hashing function to
compute the hash. In endpoint security, the hashes are queried against a
database of known files to check their legitimacy. The telemetry used in this
thesis come from logs of these queries.

Autonomous system number comes from enriching the network telemetry
with information from a GeoIP database. It is expected that a single network
in one location will mostly communicate with several autonomous systems.
The dominant autonomous systems will be similar for each device in the net-
work. The experiment is designed to test whether the remaining less frequent
ASNs can serve to distinguish devices.

Feature Description Telemetry
Private destination IP Private range IP address Endpoint
File Hash Hash of the inspected file Endpoint
Autonomus System Number ASN of the destination IP Network

.

Table 6.1: Features tested for device embeddings.

The experiments were performed on a week of real telemetry (Jan 11 to
Jan 18, 2021) from a corporate network. Table 6.2 shows the numbers of
devices present in the network for each day in the week. The difference be-
tween numbers of devices seen at the endpoint and in the network is mainly

47

6. Entity Embedding Experiment

caused by endpoint devices that communicate only within the private network.
Therefore, the traffic wasn’t observed on a proxy.

During weekdays, the number of devices changed by several percent as
some of the devices present one day did not appear in the other. This can be
due to many reasons. For example the device was not powered on during that
day. Or, the device was a virtual machine instance and each new instance
receives new endpoint client installation ID. During the weekend, a significant
drop in device number is observed because less employees are at work.

Date Number of Devices
Endpoint Telemetry

Number of Devices
Network Telemetry

2021-01-11 1764 1057
2021-01-12 1802 1065
2021-01-13 1796 1087
2021-01-14 1790 1068
2021-01-15 1754 1056
2021-01-16 1667 979
2021-01-17 1154 714
2021-01-18 1801 1064

Table 6.2: Number of devices observed in different telemetries on the network

The embeddings were created for one feature at a time using the BoW
and time window BoW approach covered in Section 3.3.1. One day period
was selected to create an embedding, with the assumption that it contains
most of the regular behavioral routines of the device and is small enough
to detect the behavioral change as soon as possible. The dimensions of the
embedding spaces (defined by the vocabulary size) changed between different
days. They were ∼ 3500 for dstIpPrivate, and ∼ 12000 for fileHash, and
∼ 850 for autonomusSystemNumber changing slightly every day.

To test the device tracking in time, two embeddings (one for each day)
were created for every two consecutive days. The vocabulary used for em-
bedding creation contains all terms (observed feature values) that occurred
during these two days. A days embedding was created for each device by
counting feature occurences and re-weighting the resulting vector by tf-idf
(using scikit-learn [49] library). Cosine similarity between embeddings from
consecutive days was used to evaluate the quality of embeddings. This process
was repeated for each day.

6.3 Results

Figure 6.1 shows similarity distributions to self and the most similar device
using the available features independently. The plotted histograms represent

48

6.3. Results

similarities of device embeddings from Monday January 11 and Tuesday Jan-
uary 12, for other days the distributions are similar. The orange color depicts
the similarity to self in the second day. Better representation of devices can
be seen from the amount of orange bars that are higher than the blue ones.
By looking at the plots in Figure 6.1, several observations can be made:

• Time window BoW representation performs better, with more devices
being most similar to themselves rather than to another device.

• File hashes has the highest number of devices with high self-similarity
followed by autonomous system numbers and destination IP address.

• Private destination IP address has a number of devices with similarity 0
to itself, indicating, that some devices cannot be tracked by this feature
at all.

To compare the ability to track devices in time, cumulative distribution
functions from Equation 6.1 are plotted in Figure 6.2a. Bigger area under
the CDF indicates better representation. Time window BoW representations
outperform the raw BoW approach for all the tested features. File hash shows
the best results, with 75% of devices being in top ten ranks in the second day
embeddings. Autonomous system number performs the worst of the three
features. This indicates, that infrequently accessed autonomous systems are
not enough to differentiate between devices. Private destination IP address
slightly outperforms the ASN feature. After inspecting the data, most of
the network communications were to several addresses that belong to load-
balanced servers.

Complete results averaged over the whole week are listed in Table 6.3. Best
values for each category are highlighted in bold. In all three tested features
the time window BoW representation has shown better results and file hash
proved to be the best feature for device tracking.

Feature Embedding Mean Rank Precise Hit Ratio
dstIp Private BoW 142.55 ± 21.96 0.27 ± 0.06

tw-BoW 86.16 ± 15.20 0.34 ± 0.07
file hash BoW 55.82 ± 10.98 0.35 ± 0.06

tw-BoW 25.65 ± 4.99 0.47 ± 0.10
ASN BoW 119.71 ± 21.49 0.22 ± 0.01

tw-BoW 49.30 ± 10.20 0.42 ± 0.05

Table 6.3: Comparison of mean rank and mean similarity of BoW and time
window BoW embedding creation methods. Mean rank shows the efficiency
of tracking individual users (the lower the better). Precise hits ratio shows
the percentage of devices that were tracked accurately over time.

49

6. Entity Embedding Experiment

(a) dstIpPrivate: BoW (b) dstIpPrivate: tw-BoW

(c) fileHash: BoW (d) fileHash: tw-BoW

(e) autonomousSystemNumber: BoW (f) autonomousSystemNumber: tw-BoW

Figure 6.1: Histograms of similarity distributions for device embeddings be-
tween Monday January 11 and Tuesday January 12, 2021.

50

6.3. Results

(a) Comparison of all embedding repre-
sentations with the cumulative distribu-
tion functions for probability of the device
being within the top N ranks of similari-
ties the next day. This graph was created
for tracking between Monday Jan 11 and
Tuesday Jan 12, 2021.

(b) CDF for the file hash feature in dif-
ferent days of the week. The quality
of embeddings deteriorates significantly
over the weekend as the number of de-
vices drops significantly and their behav-
ior changes due to employees of the com-
pany being at home.

Figure 6.2: Comparing CDFs of devices appearing on N -th rank between
different features (a) and different days of the week (b).

Figure 6.2b shows how the CDFs change over the course of the week for
file hashes. Device tracking during work days is quite stable. During the
weekend, the behavior changes and accuracy is significantly lower. The drop
from Friday to Saturday is smaller than from Saturday to Sunday. This is
probably caused by the time shift as the data is timestamped in GMT but
the network is located in GMT-6 timezone. The accuracy is high again from
Sunday to Monday because the devices running over the weekend are probably
servers. Their behavior is maintained over time. The drop in accuracy over
the weekend could be mitigated by tracking devices over regular week days
separately from weekends.

The last experiment performed was the use of combined embeddings for
device tracking. The already pre-computed embeddings were used to compute
similarity matrices to all devices and then the three similarities were averaged:

simavg(xi, xj) = simASN (xi, xj) + simdstIpP rivate(xi, xj) + simfileHash(xi, xj)
3 ,

(6.5)
where sim is the similarity function used with the suffixed feature and xi, xj

are the devices compared.
Only devices that were present in all three telemetries were used in this

experiment, which significantly reduces the number of devices for endpoint.
Figure 6.3 shows the CDFs for ranks using common devices. Using the average

51

6. Entity Embedding Experiment

(a) CDF with average for subset of 981
devices for Jan 11 and Jan 12, 2021

(b) CDF with average for subset of 988
devices for Jan 12 and Jan 13, 2021

Figure 6.3: Comparing the combined averaged similarity with different fea-
tures over 2 days.

similarity shows an improvement, increasing the precise hit ratio significantly.
Concrete numbers can be found in Table 6.4.

Feature Mean Rank Precise
Hit Ratio

average 3.32 0.85
fileHash 9.56 0.62
dstIpPrivate 53.00 0.43
autonomousSystemNumber 50.73 0.50

Table 6.4: Results of using average similarity for computing similarity between
a subset devices present in both network and endpoint telemetry between Jan
11 and Jan 12, 2021.

Lastly, to visualize the difference between all approaches, Figure 6.4 shows
confusion matrices for 10 randomly selected devices. Lighter tile color means
higher similarity. The difference between Figure 6.4c and Figure 6.4d shows
that even device I and J, that use similar hashes can be distinguished by using
the average similarity. Private destination IP address does not seem to be a
good feature for individual user tracking. However, groups of devices behaving
very similarly might be harvested from the data. For example, devices B, E,
H, I, J from 6.4a are behaving similarly. Looking at the raw data, has
revealed that the similarity comes mainly from few common IP addresses.
These addresses are LDAP and HTTP servers in the network. However, as
these servers use load balancing, the clusters are not stable in time as devices
communicate to different IP addresses.

52

6.3. Results

(a) dstIpPrivate (b) autonomousSystemNumber

(c) fileHash (d) average

Figure 6.4: Confusion matrices for 10 randomly selected devices common for
both telemetries.

53

6. Entity Embedding Experiment

6.4 Takeaways

The results above correspond with the expectation, that less frequent values
are crucial for definition of behavioral fingerprint. For example, in the case of
autonomous system numbers, many devices are expected to frequently access
Microsoft’s autonomous systems. The difference between users shows up when
the vector is limited by using the time-window approach. Then, less frequent
ASNs like the ones where the actual users’ favourite website is hosted have
higher impact on the embedding.

Even though file hashes show promising results for embedding creation, it
is not enough to confidently track the device over time. Averaging the simi-
larities from different feature embeddings significantly increased the number
of precisely tracked devices. The downside is that both network and endpoint
telemetries have to be present. Further research should lead to combining the
embedding from different features even if one feature is missing. Also dividing
the embeddings to workday and weekend embeddings should be tested.

One of the possible next steps in the direction of behavioral fingerprinting
would be creation of clusters of devices, that differentiates between different
groups of devices. These groups could be human operated devices, printers,
network devices, etc. The clusters can be used for targeted anomaly detection
(e.g. looking for a device changing its group, models tailored for a specific
device type).

54

Conclusion

This thesis presented an architecture and a proof of concept implementation
of a user and entity anomaly detection framework. Anomaly detection models
run in parallel in a distributed environment which makes the whole framework
scalable. The framework combines telemetries from multiple data sources and
is also open for extension with more telemetry types. Signature-based models
are used to detect suspicious patterns in the telemetry. Whereas histogram-
based outlier score (HBOS) serves as a behavioral fingerprint of the modeled
entity. Furthermore, HBOS models are designed to track the whole network
as well as individual devices.

The framework was successfully used to detect anomalies in real telemetry
from more than 25 private networks. The number of devices in these networks
ranges from hundreds to hundreds of thousands. The dataset spans multiple
industries, including academia, finance, transportation, and medicine. The
rule mining algorithm confirmed the quality of security events produced by the
framework. Leveraging security events created by the UEBA framework, the
algorithm was able to find new behavioral rules for known malware families.

Another contribution is the novel research in the direction of device embed-
ding. Time window bag of words embedding transformation in combination
with average similarity across different features was able to track 80% devices
over multiple days uniquely. From the results, it can be concluded that such
embeddings are good enough to be used in the sudden change of behavior
detector in the event generation layer of proposed framework.

There is much to be done as future work. The embeddings will be leveraged
in stateful anomaly detection models. Also, there are a plethora of additional
features that can be used to create similar embeddings. Weighted average
and other combinations of embeddings will be tested for device tracking. The
direction of clustering on top of the embeddings shows promise for network
asset identification.

55

Bibliography

[1] Internet live stats. https://www.internetlivestats.com/. Accessed:
2021-02-15.

[2] Artem Voronkov, Leonardo Horn Iwaya, Leonardo A Martucci, and Ste-
fan Lindskog. Systematic literature review on usability of firewall config-
uration. ACM Computing Surveys (CSUR), 50(6):1–35, 2017.

[3] The importance of user behavior analytics for cloud service se-
curity. https://www.oracle.com/assets/user-behavior-analytics-
3497541.pdf. Accessed: 2021-03-23.

[4] Gorka Sadowski, Avivah Litan, Toby Bussa, and Tricia Phillips. Market
guide for user and entity behavior analytics. 2018.

[5] Madhu Shashanka, Min-Yi Shen, and Jisheng Wang. User and entity
behavior analytics for enterprise security. In 2016 IEEE International
Conference on Big Data (Big Data), pages 1867–1874. IEEE, 2016.

[6] Florian Menges, Fabian Böhm, Manfred Vielberth, Alexander Puchta,
Benjamin Taubmann, Noëlle Rakotondravony, and Tobias Latzo. Intro-
ducing dingfest: An architecture for next generation siem systems. 2018.

[7] Xiangyu Xi, Tong Zhang, Dongdong Du, Guoliang Zhao, Qing Gao, Wen
Zhao, and Shikun Zhang. Method and system for detecting anomalous
user behaviors: An ensemble approach. In SEKE, pages 263–262, 2018.

[8] Markus Goldstein and Andreas Dengel. Histogram-based outlier score
(hbos): A fast unsupervised anomaly detection algorithm. KI-2012:
Poster and Demo Track, pages 59–63, 2012.

[9] Martin Kopp, Martin Grill, and Jan Kohout. Community-based anomaly
detection. In 2018 IEEE International Workshop on Information Foren-
sics and Security (WIFS), pages 1–6. IEEE, 2018.

57

https://www.internetlivestats.com/
https://www.oracle.com/assets/user-behavior-analytics-3497541.pdf
https://www.oracle.com/assets/user-behavior-analytics-3497541.pdf

Bibliography

[10] Eleazar Eskin, Andrew Arnold, Michael Prerau, Leonid Portnoy, and Sal
Stolfo. A geometric framework for unsupervised anomaly detection. In
Applications of data mining in computer security, pages 77–101. Springer,
2002.

[11] Yoohwan Kim, Wing Cheong Lau, Mooi Choo Chuah, and H Jonathan
Chao. Packetscore: Statistics-based overload control against distributed
denial-of-service attacks. In IEEE INFOCOM, volume 4, pages 2594–
2604. INSTITUTE OF ELECTRICAL ENGINEERS INC (IEEE), 2004.

[12] Eric M Hutchins, Michael J Cloppert, Rohan M Amin, et al. Intelligence-
driven computer network defense informed by analysis of adversary cam-
paigns and intrusion kill chains. Leading Issues in Information Warfare
& Security Research, 1(1):80, 2011.

[13] Mitre att&ck®. https://attack.mitre.org/. Accessed: 2021-03-08.

[14] Ansam Khraisat, Iqbal Gondal, Peter Vamplew, and Joarder Kamruz-
zaman. Survey of intrusion detection systems: techniques, datasets and
challenges. Cybersecurity, 2(1):1–22, 2019.

[15] Hung-Jen Liao, Chun-Hung Richard Lin, Ying-Chih Lin, and Kuang-
Yuan Tung. Intrusion detection system: A comprehensive review. Journal
of Network and Computer Applications, 36(1):16–24, 2013.

[16] Martin Roesch et al. Snort: Lightweight intrusion detection for networks.
In Lisa, volume 99, pages 229–238, 1999.

[17] Ratinder Kaur and Maninder Singh. A hybrid real-time zero-day at-
tack detection and analysis system. International Journal of Computer
Network and Information Security, 7(9):19–31, 2015.

[18] Suresh N Chari and Pau-Chen Cheng. Bluebox: A policy-driven, host-
based intrusion detection system. ACM Transactions on Information and
System Security (TISSEC), 6(2):173–200, 2003.

[19] B. Claise. Cisco Systems NetFlow Services Export Version 9. RFC 3954,
IETF, October 2004.

[20] B. Claise, B. Trammell, and P. Aitken. Specification of the IP Flow Infor-
mation Export (IPFIX) Protocol for the Exchange of Flow Information.
RFC 7011, IETF, September 2013.

[21] Ming Liu, Zhi Xue, Xianghua Xu, Changmin Zhong, and Jinjun Chen.
Host-based intrusion detection system with system calls: Review and
future trends. ACM Computing Surveys (CSUR), 51(5):1–36, 2018.

58

https://attack.mitre.org/

Bibliography

[22] Cisco Talos Intelligence Group. https://talosintelligence.com/
reputation_center. Accessed: 2021-03-14.

[23] MaxMind. GeoLite2 Free Geolocation Data, 2021. available at: https:
//dev.maxmind.com/geoip/geoip2/geolite2/.

[24] L. Daigle. WHOIS Protocol Specification. RFC 3912, IETF, October
2004.

[25] Cloud user security. https://www.cisco.com/c/dam/en/us/
products/collateral/security/cloudlock/cisco-cloudlock-
user-security-datasheet.pdf. Accessed: 2021-05-03.

[26] User and entity behavior analytics. https://www.fortinet.com/
products/ueba. Accessed: 2021-05-03.

[27] Ekta Gandotra, Divya Bansal, and Sanjeev Sofat. Zero-day malware
detection. In 2016 sixth international symposium on embedded computing
and system design (ISED), pages 171–175. IEEE, 2016.

[28] Charu C Aggarwal. Outlier analysis second edition. Springer, 2016.

[29] Daniel Toth and Til Aach. Improved minimum distance classification
with gaussian outlier detection for industrial inspection. In Proceedings
11th International Conference on Image Analysis and Processing, pages
584–588. IEEE, 2001.

[30] Soumi Ray, Dustin S McEvoy, Skye Aaron, Thu-Trang Hickman, and
Adam Wright. Using statistical anomaly detection models to find clinical
decision support malfunctions. Journal of the American Medical Infor-
matics Association, 25(7):862–871, 2018.

[31] Gilberto Fernandes, Joel JPC Rodrigues, Luiz Fernando Carvalho, Jalal F
Al-Muhtadi, and Mario Lemes Proença. A comprehensive survey on
network anomaly detection. Telecommunication Systems, 70(3):447–489,
2019.

[32] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detec-
tion: A survey. ACM computing surveys (CSUR), 41(3):1–58, 2009.

[33] Nong Ye, Syed Masum Emran, Qiang Chen, and Sean Vilbert. Multivari-
ate statistical analysis of audit trails for host-based intrusion detection.
IEEE Transactions on computers, 51(7):810–820, 2002.

[34] Tomáš Čejka, Lukáš Kekely, Pavel Benáček, Rudolf B Blažek, and Hana
Kubátová. Fpga accelerated change-point detection method for 100gb/s
networks. In 9th Doctoral Workshop on Mathematical and Engineering
Methods in Computer Science (MEMICS), 2014.

59

https://talosintelligence.com/reputation_center
https://talosintelligence.com/reputation_center
https://dev.maxmind.com/geoip/geoip2/geolite2/
https://dev.maxmind.com/geoip/geoip2/geolite2/
https://www.cisco.com/c/dam/en/us/products/collateral/security/cloudlock/cisco-cloudlock-user-security-datasheet.pdf
https://www.cisco.com/c/dam/en/us/products/collateral/security/cloudlock/cisco-cloudlock-user-security-datasheet.pdf
https://www.cisco.com/c/dam/en/us/products/collateral/security/cloudlock/cisco-cloudlock-user-security-datasheet.pdf
https://www.fortinet.com/products/ueba
https://www.fortinet.com/products/ueba

Bibliography

[35] Juan Ramos et al. Using tf-idf to determine word relevance in document
queries. In Proceedings of the first instructional conference on machine
learning, volume 242, pages 29–48. Citeseer, 2003.

[36] Splunk siem. https://www.splunk.com/en_us/cyber-security/
siem.html. Accessed: 2021-05-04.

[37] Solarwinds security event manager. https://www.solarwinds.com/
security-event-manager. Accessed: 2021-05-04.

[38] Sandeep Bhatt, Pratyusa K Manadhata, and Loai Zomlot. The opera-
tional role of security information and event management systems. IEEE
security & Privacy, 12(5):35–41, 2014.

[39] Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns without
candidate generation. In ACM sigmod record, volume 29, pages 1–12.
ACM, 2000.

[40] Malware authors trick apple into trusting malicious shlayer apps.
https://www.bleepingcomputer.com/news/security/malware-
authors-trick-apple-into-trusting-malicious-shlayer-apps/.
Accessed: 2021-03-23.

[41] Deepak Vohra. Apache parquet. In Practical Hadoop Ecosystem, pages
325–335. Springer, 2016.

[42] Matei Zaharia, Reynold S Xin, Patrick Wendell, Tathagata Das,
Michael Armbrust, Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram
Venkataraman, Michael J Franklin, et al. Apache spark: a unified en-
gine for big data processing. Communications of the ACM, 59(11):56–65,
2016.

[43] Matthew Rocklin. Dask: Parallel computation with blocked algorithms
and task scheduling. In Proceedings of the 14th python in science confer-
ence, volume 126. Citeseer, 2015.

[44] Wes McKinney et al. pandas: a foundational python library for data
analysis and statistics. Python for High Performance and Scientific Com-
puting, 14(9):1–9, 2011.

[45] Travis E Oliphant. A guide to NumPy, volume 1. Trelgol Publishing
USA, 2006.

[46] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian E
Granger, Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica B
Hamrick, Jason Grout, Sylvain Corlay, et al. Jupyter Notebooks-a pub-
lishing format for reproducible computational workflows., volume 2016.
2016.

60

https://www.splunk.com/en_us/cyber-security/siem.html
https://www.splunk.com/en_us/cyber-security/siem.html
https://www.solarwinds.com/security-event-manager
https://www.solarwinds.com/security-event-manager
https://www.bleepingcomputer.com/news/security/malware-authors-trick-apple-into-trusting-malicious-shlayer-apps/
https://www.bleepingcomputer.com/news/security/malware-authors-trick-apple-into-trusting-malicious-shlayer-apps/

Bibliography

[47] Apache Airflow Documentation. Apache airflow documentation-airflow
documentation, 2019.

[48] Y. Rekhter, B. Moskowitz, D. Karrenberg, G. J. de Groot, and E. Lear.
Address Allocation for Private Internets. RFC 1918, IETF, February
1996.

[49] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

61

Appendix A
Acronyms

APT Advanced Persistent Threat

AS Autonomous System

ASN Autonomous System Number

BoW Bag of Words

DDoS Distributed Denial of Service

DGA Domain Generation Algorithm

DHCP Dynamic Host Configuration Protocol

DNS Domain Name System

DPI Deep Packet Inspection

HBOS Histogram-Based Outlier Score

HIDS Host Intrusion Detection System

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secured

IDS Intrusion Detection System

IDP Initial Data Packet

IoC Indicator of Compromise

IoT Internet of Things

IP Internet Protocol

IPS Intrusion Prevention System

63

A. Acronyms

MAC Media Access Control

NIDS Network Intrusion Detection System

OS Operating System

PC Personal Computer

LDAP Lightweight Directory Access Protocol

SIEM Security Information and Event Management

SMB Server Message Block

SMTP Simple Message Transfer Protocol

SOC Security Operations Center

TCP Transmission Control Protocol

tf-idf Term Frequency - Inverse Document Frequency

tw-BoW time window Bag of Words

UDP User Datagram Protocol

UEBA User and Entity Behavior Analytics

URL Uniform Resource Locator

VMI Virtual Machine Inspection

VPN Virtual Private Network

64

Appendix B
Contents of enclosed drive

readme.txt...............................file with contents description
src...directory of source codes

event-generation models source code with pipeline notebook
experimentsexperiments with enitity embedding
thesis..................directory of LATEX source codes of the thesis

text..thesis text directory
thesis.pdf thesis text in PDF format

65

	Introduction
	Goals
	State of the Art
	Scope Definition of the Framework
	Persistent Threat Life-Cycle
	Intrusion Detection Systems
	Cross-Domain User and Entity Behavior Analytics
	Proposed Framework Overview

	Data Sources
	Network Data
	Endpoint Data
	Application Specific Data
	Merging Data
	Data Enrichment

	Proposed Framework for Security Event Generation
	Anomaly Detection
	Behavioral Modeling
	Stateless models
	Stateful Models

	Entity Embedding
	Bag-of-Words Representation

	Threat Detection Layer
	Security Information and Event Management System
	Rule Mining

	Implementation of the Event Generation Pipeline
	Architecture
	Combining Data and Enrichment
	Security Event Generation

	Technology Used

	Entity Embedding Experiment
	Embedding Evaluation
	Experimental Setup
	Results
	Takeaways

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed drive

