
05/05/2021, 21:53ProjectsFIT

Page 1 of 2https://projects.fit.cvut.cz/theses/127/assignment-print

Instructions

Blockchain smart contracts (SC) are an emerging technology that aspires to change e-commerce security

and trust. However, without a proper process architecture, interacting with online stores can not evolve.

This thesis's primary goal is to explore blockchain smart contract possibilities in e-commerce and

demonstrate them on a proof-of-concept case study.

Steps to take:

- Review blockchain smart contracts in e-commerce.

- Choose a suitable process for digitalization.

- Create an as-is and to-be process and technological architecture.

- Crete proof-of-concept of chosen use case.

- Evaluate the benefits and impacts of the to-be state.

Electronically approved by Ing. Michal Valenta, Ph.D. on 19 February 2021 in Prague.

Assignment of master’s thesis

Title: Exploring the use of blockchain smart contract in the e-commerce

Student: Bc. Šimon Urbánek

Supervisor: Ing. Marek Skotnica

Study program: Informatics

Branch / specialization: Web and Software Engineering, specialization Information Systems and

Management

Department: Department of Software Engineering

Validity: until the end of summer semester 2022/2023

Master’s thesis

Exploring the use of blockchain smart
contract in the e-commerce

Bc. Šimon Urbánek

Department of Software Engineering
Supervisor: Ing. Marek Skotnica

May 6, 2021

Acknowledgements

First of all, I would like to thank my supervisor Ing. Marek Skotnica for his
endless patience and instructive advice to this diploma thesis and life. A huge
thanks goes to my family who supported me throughout my studies. Last but
not least, I thank Bc. Ondrej Pudǐs for helping with grammatical and stylistic
proofreading of the work.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accor-
dance with Article 46 (6) of the Act, I hereby grant a nonexclusive authoriza-
tion (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity. However,
all persons that makes use of the above license shall be obliged to grant a
license at least in the same scope as defined above with respect to each and
every work that is created (wholly or in part) based on the Work, by modi-
fying the Work, by combining the Work with another work, by including the
Work in a collection of works or by adapting the Work (including translation),
and at the same time make available the source code of such work at least in a
way and scope that are comparable to the way and scope in which the source
code of the Work is made available.

In Prague on May 6, 2021

Czech Technical University in Prague
Faculty of Information Technology
© 2021 Šimon Urbánek. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Urbánek, Šimon. Exploring the use of blockchain smart contract in the e-
commerce. Master’s thesis. Czech Technical University in Prague, Faculty of
Information Technology, 2021.

Abstrakt

Diplomová práca sa zaoberá využit́ım technológie blockchain a jeho smart
contract-u v eCommerce sfére. Práca vysvetl’uje základné pojmy k pochope-
niu problematiky blockchain-u v jeho Ethereum implementácíı. Vel’ký dôraz
kladie na analýzu online objednávky a platby, ktorá je namodelovaná pomocou
jazyka BPMP. Na základe namodelovaného as-is modelu je vytvorený to-be
model, funkčné a nefunkčné požiadavky na tento model a jeho technologická
architektúra. Ako dôkaz fungovania to-be stavu je vytvorená decentralizovaná
aplikácia. Záver práce sumarizuje výhody a dôsledky použitia takéhoto mo-
delu v reálnom svete.

Kl’́učové slová technológia blockchain, Ethereum smart contracts, smart
contracts in eCommerce, BPNM 2.0, proces online objednávky , smart con-
tract ako sprostredkovatel’ transakcii, ochrana spotrebitel’a, návrh softvérového
riešenia

Abstract

The diploma thesis deals with a use of blockchain technology and its smart
contract in the eCommerce sphere. The thesis explains basic concepts to
understand blockchain issues in its Ethereum implementation. It places great

vii

importance on the analysis of online orders and payments, which is modeled
using the BPMP language. Based on the modeled as-is model, a to-be model is
created with functional and non-functional requirements and its technological
architecture. A decentralized application is created as a proof of concept of
the to-be state. The conclusion summarizes the advantages and impacts of
using such a model in the real world.

Keywords blockchain technology, Ethereum smart contracts, smart con-
tracts in eCommerce, BPNM 2.0, online order process, smart contract as a
transaction intermediary, consumer protection, software solution design

viii

Contents

Introduction 1

1 Goal 3

2 Theoretical background 5
2.1 Basic terms . 5

2.1.1 Peer-to-peer network . 5
2.1.2 Hash function . 5

2.2 Blockchain . 6
2.2.1 The philosophy of blockchain 6
2.2.2 Consensus mechanism 7

2.2.2.1 A Proof of work (PoW) 7
2.2.2.2 Other algorithms 7

2.2.3 Cryptocurrency Wallet 8
2.2.4 Decentralized application 8

2.3 Smart contract . 9
2.4 Ethereum . 10

2.4.1 Accounts . 11
2.4.2 Gas and transaction cost 12

2.4.2.1 Cost examples 13
2.4.3 Transactions . 13
2.4.4 Smart contract in Ethereum 15

2.5 BPMN . 16
2.5.1 Activity . 17
2.5.2 Gate . 17
2.5.3 Event . 17
2.5.4 Flow . 18
2.5.5 Artifacts . 18
2.5.6 Pool and swimlane . 18

ix

2.5.7 Data . 20
2.6 Das contract . 21

3 Smart contract in eCommerce 23
3.1 Technical solutions . 23
3.2 Products . 24

3.2.1 Purchase contract . 25
3.3 Payments . 26
3.4 Delivery . 28
3.5 Blockchain in e-commerce . 29

3.5.1 Payment methods . 29
3.5.2 Supply chain management 30
3.5.3 Genuine reviews . 31
3.5.4 Fraud reduction . 31
3.5.5 Marketing . 31
3.5.6 Protecting personal information and privacy 32

3.6 Suitable process for digitization 33

4 Analyses of an online store order process 35
4.1 Process of an online store order 35
4.2 Order as a state machine . 39
4.3 Existing solutions on the market 42

4.3.1 Buyers protection . 43
4.3.2 Buyers Protection process 44

4.4 To be model . 44
4.4.1 Functional requirements 45
4.4.2 Non-functional requirements 45
4.4.3 Use cases . 45
4.4.4 Data model . 47

4.5 Technological architecture . 48
4.5.1 Smart contract composition 49
4.5.2 Advanced future architecture 51
4.5.3 DApp . 52

4.6 Chapter summary . 52

5 Proof of concept 57
5.1 Used technologies . 57
5.2 Smart contract implementation 58
5.3 Implementation of the frontend dApp 60

5.3.1 Code example . 60
5.3.2 Communication example 62

5.4 Testing of the proof of concept 62
5.5 Chapter summary . 64

x

6 Evaluation 65
6.1 Cost e�ciency . 65

6.1.1 Proof of concept metrics 65
6.1.2 Influences and reductions of the costs 66

6.2 Comparison with other solutions 67
6.3 Benefits and impacts of the to-be state 69
6.4 Chapter summary . 70

7 Conclusion 71

Bibliography 73

A Acronyms 81

B Contents of enclosed USB 83

xi

List of Figures

2.1 The blockchain data structure [4] 6
2.2 The blockchain data structure [4] 11
2.3 The blockchain data structure [4] 12
2.4 EOA to CA to CA transaction [4] 14

3.1 Most popular payment methods of online shoppers in selected re-
gions as January 2019 . 27

3.2 An example of age verification flow from [51] 33

4.1 Overview of as-is model of online order (full size: EA1) 36
4.2 Order as a state machine . 40
4.3 Overview of to-be order model (full size: EA2) 45
4.4 Order actors . 47
4.5 Das contract data model of the order process (full size: EA9) . . . 48
4.6 High level technological architecture [4] 49
4.7 Basic smart contract architecture (full size: EA9) 50
4.8 Das Contract process model (full size: EA4) 50
4.9 Future smart contract architecture (full size: EA9) 51

5.1 Proof of concept screen with console (all screens: EA8) 60
5.2 Sequence diagram of contract communication 63

6.1 Gas spent and ETH cost of order processing transactions (data:
EA5) . 66

6.2 Paypal fees influenced by order value (data: EA5) 67

xiii

List of Tables

2.1 Ethereum Units . 12
2.2 Ethereum operation cost examples 13
2.3 Ethereum transaction example [23] 15
2.4 Activity . 17
2.5 Gates . 18
2.6 Events . 19
2.7 Flows and association . 19
2.8 Artifacts . 20
2.9 Pool and swimlanes . 20
2.10 Data objects . 20

4.1 Functional requirements . 46
4.2 Owerview of non-functional requirements 53
4.3 Use case 1 . 54
4.4 Use case 2.4 . 54
4.5 Use case 2.6 . 54
4.6 Use case 3.2 . 54
4.7 Use case 3.6 . 55
4.8 Use case 4.1 . 55
4.9 Use case 6 . 55

6.1 Comparison of payment solutions 68

xv

Listings

5.1 OrderLogicContract.sol function example 58
5.2 OrderLogicContract.sol confirmation mechanism example . . . 59
5.3 OrderLogicContract.sol getOrder function 61
5.4 App.js react JSX aviable actions 61
5.5 App.js calling acceptOrder function on smart contract 61
5.6 App.js receiving OrderStateChanged events 62
5.7 OrderLogicContract.js test case of Accept state 63

xvii

Introduction

Nowadays, we are witnesses to an enormous growth of e-commerce, especially
in smaller businesses. A lot of restrictions for in-person selling forced these
stores to sell their goods and services online. In this situation, many customers
started to ask questions about these new online stores’ trustworthiness.

From other point of view, we can hear about fast-growing, almost magical
technology called blockchain. Blockchain and its smart contracts has many
great use cases. While the most popular is a cryptocurrency, it has an immense
potential in e-commerce as well.

This study deals with a usage of the Ethereum smart contract in an online
order process. It is focused on replacing traditional payment intermediaries
with public and transparent smart contracts.

1

Chapter 1
Goal

This study’s primary goal is to find a solution for using blockchain and smart
contract to raise trustworthiness of new smaller online stores and increase the
customers’ safety.

This challenge begins with an explanation of the essentials of blockchain
technology and its implementation in Ethereum. We present the smart con-
tract and its vision and demonstrate the operation of the transaction and its
parameters. We explain terms such as a consensus mechanism, a proof of work
and a decentralized application. We also introduce the basics of the BPMN
modeling language and its symbols, which will help us later to describe the
process.

We will continue by introducing the fundamental pillars of the eCommerce
world and its processes, such as payments and delivery. We pay close attention
to the purchase contract, which is the legal support for the operation of online
orders. At the end of the chapter, we will illustrate the use of smart contracts
in eCommerce and select the process for analysis.

The analytical part of the work examines the process of online ordering
in detail. We create an as-is model and we describe an order in a state di-
agram. We also explore various solutions that are already on the market,
from which we highlight the importance of buyers’ protection in online pay-
ments. Based on the collected information, we design a to-be model and define
non-functional and functional requirements, which are divided into use cases.
Using these requirements, we will produce a technological architecture of the
solution.

To verify the functionality of our solution, we create a decentralized appli-
cation as a proof of concept. A user logs into the application using a crypto
wallet and interacts with the created smart contracts. Two smart contracts
are created as a backend of the application. The first handles the order logic
and the second supports the delivery process. The application is also comple-
mented by tests that show various process transitions.

The conclusion of the thesis looks at the process from a business point of

3

1. Goal

view. It evaluates its advantages and impacts in the real world not only now
but also in future.

4

Chapter 2
Theoretical background

This chapter describes the basic theory for understanding this study. The
chapter explains blockchain technology, its philosophy and features. Later
focuses on Ethereum platform with impressive smart contract technology. At
the end of the chapter, the basics of e-commerce and WordPress software with
Woocommerce plugin are introduced.

2.1 Basic terms

2.1.1 Peer-to-peer network

Based on [1], a peer-to-peer network is a distributed network architecture,
where peers share their hardware resources for providing services or a content
between them. Another, yet not an exact definition is describing peer-to-peer
networks as opposite to client-server networks. It is important to realize that
there is no intermediary between the peers. In this document’s terminology a
peer is addressed as a node in a network.

2.1.2 Hash function

Definition from [2]: A hash function is a function h: D -> R, where the
domain D = {0,1}* and R = {0,1} n for some n >= 1. This definition is
not enough for a usable hash function. The essential characteristics of this
function are determinism, application to every length of an input, fixed size
of the output. Having an input, it is easy and fast to calculate an output, but
from the output it is computationally unfeasible to find the input. Also, if we
know the input and the output, it is impracticable to find another input with
the same output.

5

2. Theoretical background

2.2 Blockchain
Information provided in this section is from [3] and [4].

Blockchain is a data structure based on blocks, which are cryptographically
linked into a chain. A block of data is a group of transactions. Each block
has a hash pointer to the previous block (except the first genesis block). The
most popular use of blockchain is Bitcoin, which was introduced in 2008 by
Satoshi Nakamoto [3].

The working principle of blockchain is similar in every use case.

• It is a peer-to-peer network without third party in between.

• Every peer has its own copy of the whole chain.

• It is possible only to insert data into the chain.

• No trusted third party is needed for verifying transactions.

The block’s exact attributes are di�erent in every network. A block of Ethereum
will be described later.

Genesis

Block
Data

Previus block

Hash

pointer

Block-2Block-1

Data

Previus block

Hash

pointer

Block-3

Data

Previus block

Hash

pointer

Block-N

Figure 2.1: The blockchain data structure [4]

2.2.1 The philosophy of blockchain

We have described blockchain principles, but how this technology can be used
and what the purpose is? The main goal of blockchain is to create trust
between two parties without having a third trusted party.

With reference to [5], the point is to avoid the intermediaries, who mediate
transactions and maintain integrity, usually for some fee. By replacing this in-
termediary, we are trying to reduce the transaction fees but keep the integrity.
Intermediaries often have the data and services on their own servers, which
are vulnerable to crash or be hacked and lose or damage the data. Sometimes
we can even dispute about manipulating with our data or sharing our personal
information.

Use of blockchain for data management and data authentication is another
big topic in this field. We need authority, such as a government, a university, or
a certificated organisations, to add their certificates (driving licence, university

6

2.2. Blockchain

degree or certification of knowing any skill) to the blockchain. Then we can
easily prove our information to another object (for example a new employer).
Only we are controlling our personal data.

2.2.2 Consensus mechanism

This section is a sourced from [6], [7] and [4]
The consensus mechanism is an algorithm for creating a consensus (also

can be understood in this context as the same state) between nodes in the
network. Nodes by this mechanism agree on the current state of the network.
It also works as prevention from attacking the network. Theoretically, the
attacker has to control majority of nodes to break this algorithm and set their
state. The exact percentage relay on a specific consensus algorithm. [7]

2.2.2.1 A Proof of work (PoW)

This algorithm’s main idea is that every node has to do a specific amount of
work before sending a completed block to the whole network. This work is
generally hard to calculate, but easy and quick to verify. In most cases, this
work is to solve a cryptographic puzzle, where the only solution is to try and
validate every possibility. Example of this cryptographic puzzle is finding a
nonce. The nonce is a static-length bit array from which a specific hash is
calculated in combination with other data.

This algorithm is running on particular nodes called miners, who are
spending their hardware resources. When the fastest miner solves the cryp-
tographic puzzle, they win a reward (usually some amount of coins in the
network). When the network is using the PoW algorithm, as an attacker, one
would need 51% of the network’s computational power to defraud the chain.
Such an attack would be enormously cost-ine�cient and extremely energet-
ically wasteful. In the end, they would lose more than they would get. [4],
[7]

2.2.2.2 Other algorithms

We know more consensus algorithms, with specific advantages. In the follow-
ing section we list a few more of them.

Proof of stake (PoS) is not about mining, it is about validating, instead.
The di�erence is that there is no reward for a winning miner, but the
miners are collecting transaction fees. Every validator has to give a
deposit as an insurance (or a stake) for validating transactions. If the
validator tries to cheat (validate invalid/fake transactions), they will lose
their stake in favour of the network. The higher the value of the stake
is, the higher the probability of being chosen for validating. Ethereum
plans to upgrade to this algorithm. [4], [7]

7

2. Theoretical background

Proof of Authority is a mechanism, where only the authorised nodes can
validate the transactions. Instead of value as in PoW, they are giving
their reputation. This algorithm is suitable for private blockchains. [6]

Practical Byzantine Fault Tolerance is a broadcast-based algorithm. There
are no miners, similar to the PoS, but the working principle is di�erent.
Every validator has to validate their part of the final solution, so every
validator knows, what others are working on. The final result is based
on the majority decision. It is an e�cient mechanism compared to oth-
ers but causes lower anonymity in the network. This protocol is used
by Hyperladger, Stellar and Ripple and is famous also in non-blockchain
environments. [4]

And more as Proof of Elapsed Time, Proof of Capacity, Proof of Activity
and Proof of Burn.

2.2.3 Cryptocurrency Wallet

A cryptocurrency wallet can be a hardware device, software or a mobile ap-
plication whose main purpose is to save private keys from cryptocurrency
accounts. Next is the list of other standard features of the crypto wallets
mentioned in [8] and [9].

Signing: Most of the wallets also provide other features as signing capability,
which is necessary for creating transactions.

Supported currencies: Cryptocurrencies which are supported in the con-
crete wallet.

Key-management: We are talking about the place where the keys are stored.
Two main categories are non-hosted (only we know, where the keys are)
and third-party hosted wallets.

Anonymity: We need to consider which information the wallet asks from us.
Some wallets don’t want any personal information, others want only an
e-mail or require a private information set. We need to consider this in
case of a hacker attack on the wallet’s servers.

Other usual features are converting the coins or tokens, QR code scanner,
backup and restoration facility keys. This thesis works with browser-based
wallet Metamask [10], which supports Ethereum cryptocurrency.

2.2.4 Decentralized application

Decentralized applications or dApps are applications which work on a blockchain
in the background. From a user perspective, there is no significant di�erence

8

2.3. Smart contract

from the casual centralized application, but on the backend, they are com-
municating (not only) with blockchain. They are naturally open-source ap-
plications that use user blockchain accounts for login and identification and
commonly use blockchain token technology. [11]

2.3 Smart contract

“Both the term smart and the term contract are misleading, since a smart
contract consists of dumb computer code and rarely represents a legally bind-
ing construct.” [12] A smart contract is a software script that is living in a
blockchain. It is possible to interact with a smart contract thought transac-
tions, which start code execution. The purpose is to create a deal and trust
between all involved parties. These values are reached by the transparency of
the code, immutability and determinism of the written code.

Smart contract grows up from the idea in Szabo’s mind in 1994 [13] (right,
it was before Bitcoin) as a piece of computerized transaction protocol that
reduces the need for trust between involved parties. Of course, Bitcoin also
supports smart contracts [14] but only with limited functionality. The first
platform to enable fully Turing-complete smart contracts was Ethereum in
2013.

Turing-complete smart contract has many benefits and huge potential but
also brings risk in a form of bugs in code. As mentioned before, they can
be activated by and only by a transaction. So an external event to fire the
execution is needed. The problem is that smart contracts have no informa-
tion outside of the blockchain (o�-chain) and can only react to transactions
inside the network (on-chain). A good way how to understand smart con-
tract functionality is thought examples. Follow a few use-cases of the smart
contract.

Hotel room: Imagine this situation. You want to rent a hotel room. The
scenario is following. You choose the room in a hotel, and in front of
this room, you unlock the doors by your electronic ID (thought any
reader connected to a blockchain, this will represent your digital sign).
This act activates the smart contract between you and the hotel. When
you finish your stay in the room, you provide your sign in the reader
again and then leave the room. The reader sends this act to the smart
contract.

Now the smart contract can calculate the price based on the length of
your stay, but not only that. The final price calculation can also depend
on how much electricity and water you spent (there are sensors for that
in the hotel room). It can also call the cleaning service and finally,
charge you. This example was re-written from the original [12].

9

2. Theoretical background

Crowdfunding is an excellent and intuitive example of use. One creates a
crowdfunding project with a goal to collect an exact amount of money,
and if they find enough backers to reach the goal, they have to realize
their project. The project has a time limit.
In a very simplified version, this smart contract handles three actions.
Create a project, back the project and validate. Action create a cam-
paign creates the campaign (obviously). Action back the project saves
the backer and adds the backed amount to smart contract account. Val-
idate action checks the campaign’s state and determines if the date is
after the project’s due date. Based on the collected amount it either
sends the amount to the creator or returns it back to the backers.
As mentioned before, a smart contract can’t execute this action at the
point where the date is equal to the due date because the code can be
performed only by a transaction.

DAO is name of the first implementation of Decentralized Autonomous Or-
ganization (DAO) on Ethereum network in 2016 [15]. DAO is a smart
contract based organization, which rules and logic are written into the
smart contract. The DAO was intended to work as a venture capital fund
investing in the crypto. Investors should vote for the investments by
DAO tokens, representing the amount of investor’s ether (the Ethereum
unit) in The DAO.
This project was revolutionary, raising 150 million Dollars in ether at
first crowdfunding from 11 000 investors. Everything looked brilliant,
but three months after the launch, the DAO was hacked. The code of
this smart contract had more problems but was hacked using an exploit
at recursive call. The DAO investors lost more than 6O million Dollars
in ether.
This was a massive problem for Ethereum network because this project
had around 14% of all ether. After long discussions, the community
of Ethereum decided to hard fork the network, which means that the
network’s transaction returned in time before this attack happened. In-
vestors had their investments back, but not everyone agreed with this
solution. Ethereum network was split into the Ethereum and Ethereum
Classic(without the hard fork).
This historical event should teach us, that smarts contract technology
is impressive, but when human writes something, there is always a po-
tential threat of bugs. [16], [17]

2.4 Ethereum
This section was written based on information provided by [18], [19] and [4].

10

2.4. Ethereum

Ethereum was introduced in 2013 by Vitalik Buterin, as the blockchain
platform for building decentralized applications. The goal was not only to fix
Bitcoin issues like energy consumption [20] but also to add another possibility
for the transactions. Of course, transactions are still supporting cryptocur-
rency exchange, but help to support even shares, lands, vehicles, online assets
and many more.

2.4.1 Accounts
An Ethereum account is used to hold ethers and for signing the transactions.
Every account is represented by 20-byte address, which is used for identifica-
tion and as a reference. An account also has an associated state in the trie
(or tree) structure. Ethereum network is tracking the account’s state changes.
Following information are from [21].

Externally owned account (EOA) is something like a ”bank account”,
and can be controlled using a private key. This key is used for signing
transactions. In this account, the structure is only nonce and balance.
You can see the structure of EOA in figure 2.2.

Externally Owned Account

Address Account
State

Nonce

Balance

Figure 2.2: The blockchain data structure [4]

Contract accounts (CA) are controlled only by contained code. The code
is called a smart contract as we discussed before in 2.3. They are acti-
vated only by receiving transactions. The CA account structure consists
of nonce, balance, contract code and storage (see figure 2.3).

Account data has following attributes.

Nonce: In EOA account, it is a counter representing a number of signed
transactions from account address. In CA account, it is also counting
the number of created smart contracts.

Balance shows the current account balance in Wei.

Contract code is a cryptographic hash of the smart contract’s code. If the
account type is EOA, this field has an empty string.

11

2. Theoretical background

Contract Account

Address Account
State

Nonce

Balance

Contract code

Storage

Ethereum Virtual
Machine

EVM
code

Account
Storage

Figure 2.3: The blockchain data structure [4]

Storage is a 256-bit cryptographic root hash to Markle tree of account stor-
age.

2.4.2 Gas and transaction cost

As mentioned before, Ethereum is a blockchain network powered by cryp-
tocurrency Ether (ETH). Gas in cars is the moving power (with the engine)
of the vehicle and similar idea is in the Ethereum. By spending the gas, we
are moving from one state of the network to another. We are not buying the
gas, we are only paying for gas, that we have used by Ether.

Ether has smaller units, which are describer in table 2.1. These smaller
units exist for two main reasons. Firstly, it is clearer to see how much Wei or
more commonly Gwei was spent for executing a transaction than Ether. The
second reason is that we can’t use double values of prices in transactions, so
Ethereum designers made the precision for 18 decimal places (when we pay
by Ether).

Table 2.1: Ethereum Units
Unit Wei value Wei
Wei 1 Wei 1
Kwei (babbage) 103 Wei 1 000
Mwei (lovelace) 106 Wei 1 000 000
Gwei (shannon) 109 Wei 1 000 000 000
Microether (szabo) 1012 Wei 1 000 000 000 000
Milliether (finney) 1015 Wei 1 000 000 000 000 000
Ether (buterin) 1018 Wei 1 000 000 000 000 000 000

For every transaction, we need to specify two parameters.

12

2.4. Ethereum

Gas: Maximum gas limit to spend for executing the transaction. It is possible
to find out the estimated gas for the transaction. It is recommended to
set this attribute large enough, because if a transaction does not use all
the gas, the unspent gas is returned to sender’s account. Otherwise, if
the transaction exceeds the gas limit, it is rolled back and gas is not
returned. This attribute is also used as a fuse in case of an infinite loop
or unexpected exception.

gasPrice: Is the price for one unit of gas, which the sender is willing to pay.
The right price can also be estimated as an average gas price from a
previous block or use service info from https://ethgasstation.info.

The total cost of a transaction is computed as gasPrice*gasUsed, where
gasPrice is specified by sender and gasUsed is total gas consumed by Ethereum
virtual machine, while processing the transaction. This amount is added to a
miner’s account as a fee for using their computational resources.

2.4.2.1 Cost examples

In Ethereum blockchain there are two types of transactions. The first type
is a view transaction, which is not changing the state of the network. This
transaction does not consume gas. The second type is a gas-consuming but
not only for computing but also for storing the data. For better imagination
here are examples of gas units used for concrete operations in table 2.2.

Table 2.2: Ethereum operation cost examples

Operation Approximate gas consuption
ADD - adding two numbers 3 gas units
MUL - Multiplying two numbers 5 gas units
SHA3 hash 30 gas units
Store word ”Contract” 20 000 gas units
Base transaction fee 21 000 gas units
Include 1 MB in transaction data 68 000 gas units
Store 1 MB of data 625 000 000 gas units

2.4.3 Transactions
For a better understanding of the analytical part of this thesis, it is essential
to have an overview of transaction parameters and requirements and have an
idea of what is possible and what is not. Ethereum transaction has a stan-
dardized calling structure. Following is an example from web3.js[22] library
for calling sendTransaction(transactionObject [, callback]) function.
See the transaction example in 2.4. A transaction object has these attributes
(simplified):

13

https://ethgasstation.info

2. Theoretical background

from: Address for the sending account

to: The destination address. This attribute is undefined, when we are creating
smart contract and address is unknown.

value: Amount of Wei transferred by the transaction.

gas: Maximum gas limit to spend for executing the transaction.

gasPrice: Is a unite price of gas, which a sender is willing to pay.

data: The byte string containing the data for a function or smart contract
code in case of creating one by the transaction.

nonce: Nonce of the sending account

and more as a chain, hardfork and a common object.

Externally

Owned Account

Contract Account

Contract Account

Figure 2.4: EOA to CA to CA transaction [4]

Every successfully executed transaction is stored in blockchain. Examples
of transactions on Ethereum network can be found at https://etherscan.io.
For better imagination, which data are stored, look at the table 2.3.

14

https://etherscan.io

2.4. Ethereum

Table 2.3: Ethereum transaction example [23]

Transaction
Hash

0x24673c�c87a72730b42dc3ba082f0c03baadd370-
5c95202d4e79e03602e105f

Status Success
Block 11868617
Timestamp Feb-16-2021 03:19:06 PM +UTC, Confirmed within 11 secs
From 0xa7deccee71c016e76b5af940ce�114b1d28befd
To 0xf2ce9cee6c632a3cfc54�a095730f82e318f106
Value 0.09 Ether ($161.24)
Transaction
Fee

0.0029001 Ether ($5.20)

Gas Price 0.0000001381 Ether (138.1 Gwei)
Gas Limit 21,000
Gas Used by
Transaction

21,000 (100%)

Nonce 100
Input Data 0x

2.4.4 Smart contract in Ethereum

Based on the section about smart contract 2.3, we now discuss specifics of
Ethereum’s implementation of this concept. We can use two new developer-
friendly programming languages for creating smart contract.

First language is Solidity which is object oriented programming language
influenced by C++, Python and JavaScript [24]. It is statically typed, sup-
ports inheritance, self-created types and it has a lot of supported libraries.

The second is Vyper, which is contract-oriented language based on Python.
Compared to Solidity, it has fewer features, for example, does not support
inheritance, function overloading or modifiers. The reason for not supporting
these features is to make it more secure [25]. Experienced Ethereum developers
can write smart contracts in another language called Yul.

Smart contract consists of functions and data, which are executed in
Ethereum virtual machine. Here is a short overview of what we can use in
smart contract Ethereum programming.

Data are divided into three sections: storage, memory and stack. Storage
data are stored in blockchain forever. They are representing the state
of a smart contract. They support large scale of types from booleans,
integers and strings to enums or custom-made types. Memory data are
living only in function and then they are discarded. They are cheaper
to use because we are not spending gas for storing them. It is possible
to use global variables mostly for getting information about the current
transaction (who is the sender) or block information.[26]

15

2. Theoretical background

Functions can be divided into two types based on call. When we communi-
cate with a smart contract we are calling external functions. All external
functions are part of the contract interface. An internal function can be
called only from a smart contract itself. We can also talk about private
and public function. The di�erence is that public functions can be called
internally or externally but private only from inside the contract, where
they are defined.

An important term is a view function. The specific of this function is
that it is not changing the state of the contract. It is only providing a
view inside, commonly to get the storage data.

Events are a special construct which work as publisher-subscriber pat-
tern. When a specified event is triggered inside the contract, this event
will provide its information to the subscribers, usually a frontend appli-
cation.[26]

2.5 BPMN

Following section is based on [27] and supported by [28]. Business process
modelling and notation is a language that provides a wide range of sym-
bols and signs, that are highly intuitive and easy to understand even for
non-specialists. Symbols are divided into activities, gateways, events, flows,
swimlanes, artefacts and data.

We will later use this notation to create a well-understood as-is and to-be
models of the observed process. According to [29] as-is model describes a cur-
rent state of the process. This model is created based on process identification,
process documentation, and possibly based on process metrics. On the other
hand, a to-be model describes the process in future. It is often based on the
as-is model in which the changes were proposed.

Model of one process can have more BPMN models based on a chosen
level of abstraction. For high-level overview (typically for business persons)
complicated structures and advanced symbols are not used . We can also talk
about executive models for BPMN systems, which can execute the modelled
process. In this case, BPMN components are chosen for supporting the con-
crete system. Some systems are not supporting every symbol, and models can
have slightly di�erent behaviour in each software. Another type of BPMN
modelling style is not to create executable models but informative models.
These models have a purpose of explaining the process, usually with special-
ization (on data/information flow, process chaining etc.). Now follows a quick
overview of BPMN essentials.

16

2.5. BPMN

2.5.1 Activity
An activity indicates a general concept of work in a certain process. The
activity is commonly atomic, i.e. it is no longer divided to lower levels of
detail. If the activity is not atomic, we speak of a non-atomic activity called
a thread. The thread must be marked with a special symbol (Table 2.4, line
2). The activity becomes more specific by adding additional markings to the
upper left side or the middle-lower part (Table 2.4, line 4) of the rectangle. The
activity may have a participant defined by a pool, and a swimline assigned.
Selected types of assets are listed in table 2.4.

Table 2.4: Activity

We note abstract activity by a rounded rectangle.

User task is the work that a person does using a soft-
ware application.

A manual task is a job performed by a person without
software or other supporting equipment.
A thread is an activity that encapsulates a process.
The context of this process is either irrelevant or ex-
plained in a separate diagram.

2.5.2 Gate
A gate is used to control the flow in a process. The gateway supports multiple
inputs and outputs, allowing it to marge or split flows. We can divide flows
using conditions, signals, events or our own rules. This behaviour is giving a
lot of flexibility to the model. If it is not necessary to control the flow in the
process, we do not need gateways. Selected types of gates are listed in table
2.5.

2.5.3 Event
An event is a construct, which occurs during a process. These events can a�ect
the flow of the process and usually have some trigger or impact (result), based
on its type. We can see events as circles with written marks in the middle.
Based on the impact on the process, we recognize three types of events, namely
start, intermediate, and end. All start events and some intermediate events
can capture facts from the process what cause start flow from them. We can
call them pending events that are waiting to run. Some intermediate and
all ending events throw a fact as a result, which can turn into an event that

17

2. Theoretical background

Table 2.5: Gates

Exclusive gateway: When merging, it is su�cient if
one stream arrives and the exclusive gateway passes
the flow further. When splitting, the exclusive gate-
way passes just one flow.
Inclusive gateway: When merging, the flow must be
active from all incoming branches to allow the flow to
continue. When splitting, it can allow flow through
multiple branches.

Parallel gate: When merging, the flow must be active
from all incoming branches to allow the flow to con-
tinue. When divided, it lets flow through all branches.

Complex Gateway: Merging and splitting is defined
by the gateway’s own rules provided by the comment.

Event-based gateway: The branches that exit the
gateway have events assigned to them and are trig-
gered depending on those events.

another pending event can capture. Selected types of events are listed in table
2.6.

2.5.4 Flow

The activities, gates and events are connected by connecting objects. These
objects are used to show the direction of the flow of a process or to assign
two objects to each other. In general, a connecting object is a line (solid,
dashed, dotted) or a di�erent type of an arrow. In case of an arrow, the tip
of the arrow determines the flow direction or the direction of the association.
Symbols may appear on the line that adjusts the flow behaviour. Selected
types of flows are listed in table 2.7.

2.5.5 Artifacts

Artifacts are used primarily to refine information and bring greater detail from
the process. Selected types of artifacts are listed in table 2.8.

2.5.6 Pool and swimlane

Pools are showing responsibilities for activities. The pool can be divided into
lanes to show mode details, especially to divide entities and organizations,

18

2.5. BPMN

Table 2.6: Events

An empty start event does not need to have a trigger
defined. It starts at the beginning of the process.

An empty ending event has no result. This event is
used to end the flow.
An empty intermediate event is used only in the classic
process flow. Even if it does not have a trigger defined,
it has a defined result. Used to model those events that
determine a change in process state.

Throw - message intermediate event sends a message
toward the capture event, shifting the flow.

Catch - Message intermediate event is an intermediate
event. This event triggers a flow when it receives a
message.

Table 2.7: Flows and association

Sequential flow is used to display the order of activities
that will be performed in the process.
Sequential flow can have a condition that determines
flow through a given branch. Such a sequential flow is
called a conditional sequential flow and is used when
the flow is based on activity.
For exclusive or inclusive gates, one type of branch
can be referred to as a standard flow. The flow will
go through this branch only if it is not possible to go
through any other.
The message flow is used to deliver messages between
two roles that are ready to receive or send them.
A data association is a subspecies of an association
and focuses on retrieving, transmitting, and storing
data with a specific data store.

based on the use case. Pools and swimlanes are explained in table 2.9.

19

2. Theoretical background

Table 2.8: Artifacts

A group of graphic elements that expresses a
common property of activities. I give activities
to groups for analytical or documentary reasons.

Komentár A text commentary is a way to add additional
information to a chart reader.

Table 2.9: Pool and swimlanes

The pool is a graphic representation of the en-
tity. The pool supports the overall layout, so it
can be divided into smaller and more detailed
parts using lanes. When the pool does not con-
tain internal information about the processing
of the process, we speak about a ”black box”
pool.

Ba
zé
m

Dr
áh

a
Dr
áh

a The lanes are used to organize and categorize
activities.

2.5.7 Data

Data objects have the purpose of transferring information between activities.
The selected data objects are described in table 2.10.

Table 2.10: Data objects

The data object serves as a variable in the pro-
cess that carries the information. At the end of
the process, the data object is lost.
The data storage serves similarly to the object
for transmitting information, with the di�erence
that after the end of the process, this data is
stored.

20

2.6. Das contract

2.6 Das contract
This section is written based on [30] and [31]. We have discussed smart con-
tracts and BPMN, and now its time to put it together. Das Contract is a
”formal language that use BPMN models to describe a smart contract with
high conceptual quality and enough expressiveness to contract between peo-
ple.”[30]

The best way how to understand Das Contract is to look at why it was
created. A contract was written on a paper or only spoken between people
before the digital age. In this type of communication, there was room for
misunderstanding or misinterpretation of the contract between parties. On the
opposite side, there are smart contracts with zero tolerance for non-specified
facts because they are written in immutable code. That sounds great but is
unreadable for a person who does not understand the specific programming
language (it is sometimes hard even for programmers). Also, as we mentioned
before in 2.3, in a smart contract written by a human, there can be bugs,
which can cause a catastrophic scenario.

Das Contract o�ers a solution in form of advantages from both sides. From
the classical paper form, we have a strict fact and no place for misunderstand-
ing the contract, and visual and well-described support for understanding the
process and rules. We will use Das Contract as a methodology for creating
smart contracts. The speciality of processes created by this methodology is
a timer. We can’t implement an accurate timer or a cron function in smart
contracts (the code can be executed only by transaction). So we use a skip
function which anyone can call with an intention to change the state of the
process. We also use the Das Contract data model for describing data inside
the system.

21

Chapter 3
Smart contract in eCommerce

This chapter is an introduction to the basic aspects of the eCommerce world.
It covers the problems of eCommerce technical solution and basic elements of
eCommerce business. It provides information about product restrictions and
online selling problematic as purchase contract. It also covers the most famous
payments methods and delivery methods. At the end, we will talk about use
of block chain and smart contract in payments, supply chain, reviews and
marketing.

3.1 Technical solutions
When you want to start selling online, you need some platform or a solution.
The right solution depends on your individual needs, the number of products
you want to sell and on your budget. Now follows a list of four possible ways
divided by the technical complexity of the solution.

Online market (marketplace): This is the simplest way to start selling
goods online. You are selling on domains of the chosen market and the
marketplace solves all critical problems such as the infrastructure of the
store and trusted payments. You focus on your product and marketing
around it. Most of this solution has a service called buyer protection and
if a customer is unsatisfied with the product, they can open a dispute
and want a refund. In this case, the marketplace acts as a judge between
you and the customer. The disadvantage of this marketplace is that they
are highly product-oriented and you don’t have many opportunities to
present your brand and low customizability of product page. The famous
representatives by [32] of this category on global market are Amazon,
E-bay and Aliexpress.

SAAS Solution: System as a service solution is providing pre-programmed
store software. Commonly you have your own domain with a chosen

23

3. Smart contract in eCommerce

design template customized to your brand identity. The level of cus-
tomization is limited because you are not able to change the code. This
solution comes with a pre-integrated payment solution, and in most
cases, there is no possibility to add a non-supported payment gateway.
You are paying a monthly fee for renting the software. The company
representatives are Shopify and Shoptet.

Free/Paid customizable solution: Similarly, as in the SAAS solution, there
is a pre-programmed store software, but we need to install it on our own
server. Selling is provided on the seller’s domain address. Many of these
solutions o�er pre-made design templates which are ready to customize
to seller’s brand. They are usually more customizable than the SAAS
solutions or pre-made elements are used. These solutions are based on
plugins where external developers can expand the basic functionality
of the system. They are mostly paid, but creating a custom plugin to
support third-party payment solutions is possible. This solution is a
compromise between SAAS and a custom made solution. General ex-
amples are WordPress with Woocommerce and PrestaShop.

Custom made solution: There is no concrete description for this solution.
Basically, the possibilities are limited only by the used technology. Ev-
erything is customizable, but requires a programming skill which is not
cheap in these times. This solution is reasonable for a big project with
a significant budget.

3.2 Products
Two basic categories of products are services (also tickets for events, flights)
and goods (can be non-physical as software). This thesis is focused on selling
goods and we will also specify the attributes of these goods. By selling the
products, we are often dealing with a restriction of selling. The common
restrictions are:

Age restrictions: Best examples are alcoholic beverages or tobacco prod-
ucts.

Location legality restrictions: Some products can be illegal in certain lo-
cations.

Licence restriction: For buying product as guns or medicaments.

Shipping restrictions: Some products cannot be shipped or special ship-
ping method is needed. Examples are animals or hazardous materials.

It is the seller’s responsibility to check if these restrictions are not broken. For
example, the delivery person can check the buyer’s age or an ID needs to be
provided to the seller.

24

3.2. Products

3.2.1 Purchase contract
The critical topic in eCommerce is the purchase contract signed at a distance.
This is a specific type of contract with particular rules. This thesis does not
have enough space to discuss all law specifics, so it describes only parts needed
to understand the problematic. The next pieces of information is from Slovak
law codex 102/2014 [33] and is neither word to word nor o�cially translated.

The fact why this type of purchase contract is important is that the cus-
tomer has a right to withdraw from the contract up to 14 days from acceptance
of goods (law documents contain more cases, but the ones listed below are rel-
evant in this study). The goods are considered to have been taken over by
the consumer at the moment when the consumer or a third party delegated
by them, with the exception of the carrier, takes over all parts of the ordered
goods, or if

• the goods ordered by the consumer in one order shall be delivered sepa-
rately, at the moment of taking over the goods, which were delivered as
last,

• delivered goods consist of several parts or pieces, at the moment of taking
over the last part or the last piece.

This law document describes twelve exceptions when the customer cannot
withdraw from the purchase contract. Relevant for this study are

• the sale of goods made to the consumer’s special requirements, custom-
made goods or goods intended specifically for one consumer,

• the sale of goods which are subject to rapid deterioration,

• the sale of goods enclosed in protective packaging which cannot be re-
turned for health or hygiene reasons and whose protective packaging has
been broken after delivery,

• the sale of sound recordings, video recordings or computer software sold
in protective packaging, if the consumer has unpacked that packaging.

The responsibility of proving the application of the right of withdrawal lies
on the customer. They are obliged to send the goods back or hand them over
to the seller or a person authorized by the seller to take over the goods no later
than 14 days from the date of withdrawal from the contract. This does not
apply if the seller proposes to pick up the goods in person or through a person
authorized by them. The time limit referred to in the first sentence shall be
deemed to have been observed, if the goods were handed over for transport
no later than the last day of the time limit.

Upon withdrawal from the contract, the consumer bears only the cost of
returning the goods to the seller or the person authorized by the seller to take

25

3. Smart contract in eCommerce

over the goods. This does not apply if the seller has agreed to bear them
themselves or if they have not fulfilled the notification obligation mentioned
above.

The consumer is only liable for reduced value of the goods that have arisen
due to such treatment of the goods as it is beyond the scope of the treatment
necessary to ascertain the characteristics and functionality of the goods. The
consumer is not responsible for the reduction in the value of the goods if the
seller has not fulfilled the obligation to provide information on the consumer’s
right to withdraw from the contract.

In addition to the obligations mentioned above, it must not give rise to
additional costs or other obligations for the consumer.

The seller is obliged without undue delay, no later than 14 days from the
date of delivery of the notice of withdrawal to the consumer to return to the
consumer all payments received from them under or in connection with the
contract, including transport, delivery and postage and other costs and fees.

The seller is not obliged to reimburse the consumer for additional costs
if the consumer has explicitly chosen a method of delivery other than the
cheapest standard method of delivery o�ered by the seller. Additional costs
are the di�erence between the consumer’s delivery costs and the costs of the
cheapest delivery method o�ered by the seller.

Upon withdrawal from the contract for the sale of goods, the seller shall
not be obliged to reimburse the consumer for payment before the goods have
been delivered to them or until the consumer proves good’s return to the
seller. Unless the seller proposes to pick up the goods in person or through
them authorized person.

The store also has the right to cancel the order, especially for the following
reasons:

• if it is not possible for technical reasons to deliver the goods within the
required period or under the conditions of the order,

• if the goods are no longer manufactured or delivered or their price
charged by the supplier of the goods has changed significantly.

Other reasons for withdrawal from the contract may be specified in their terms
and conditions.

3.3 Payments

At this time, we recognise a lot of various online payment methods. Each of
them has its advantages and disadvantages. Below find a quick overview of
the most used online payment methods by [34] in 2019 and a few more. See
figure 3.1.

26

3.3. Payments

Figure 3.1: Most popular payment methods of online shoppers in selected
regions as January 2019

Credit/debit cards: In this payment method, the payer provides card de-
tails information to the merchant or directly to the payment gateway.
Then payment gateway continues through the payment processor to the
right card network and then to the card issuer. In case of a problem
with the purchased item (it is not delivered, wrong goods are delivered
and so on), the card issuer takes care of the payment and can start the
goods claim process. In this process, the card issuer asks for evidence of
communication with a store and all recipes from the store and optionally
the photos of delivered goods. The issuer is taking these steps when the
store is not answering or when the customer can’t contact the store in
any way. In case of a problem, the recommended way of communication
is a registered letter or an o�cial store email. In case the customer is
right, the card issuer can execute a chargeback of the payment. [35] [36]

Paypal, Alipay, WeChat pay: In this case, the customer is paying thought
intermediatory. The payment is not going directly to the store account
but to the intermediatory account and later is sent to the store. And this
is a huge advantage of the payment solution. When a problem appears,

27

3. Smart contract in eCommerce

the money is not directly at the store’s account, so the intermediary
can hold it until the problem is solved. The intermediary often has the
position of ”a judge” in problematic situations when the purchase is
not in the local law’s competence. This solution is discussed deeply in
section 4.2.

Visa Checkout, Masterpass: These solutions are nowadays merged together
as click to pay services. In short, the customer has an account where
they store their credit/debit cards, and can make a purchase on the
stores where the click to pay functionality is integrated. [37]

Apple pay, Google wallet: These solutions also work on storing the card
details and then providing the interface for paying. The di�erence is
that customer can use this solution also in o�ine paying mode thought
a payment terminal. These services are not intermediaries in the right
way because they are not storing any money. They are only providing
the bridge for direct transfer. In case of problems, the customer has to
contact the card issuer.

Cash on delivery: It is an o�ine payment method, but it is needed to men-
tion it here because it is one of the classic payment methods.

Internet banking: Direct money transfer to the store’s account. The recog-
nising key for merging payment is the variable symbol, which is the
number of the order.

Crypto: Crypto payments work similarly to direct bank account transfers.
Some solutions work on the market as an intermediatory as Utrust [38],
but they are mostly in a prototype stage. There is no standardized
solution, how to pay safely for goods.
Furthermore, when you are scammed and you use crypto payment, there
is no bank chargeback possible. The customer is fully responsible for
their signed transactions.

3.4 Delivery
Delivery is a fundamental part of the shopping process, which can significantly
a�ect the customer’s final satisfaction. Next are the basic types of delivery
methods with their typical use cases.

Courier delivery: One of the most typical delivery method. The delivery
person comes to the customer’s house and gives them (or the delegated
person) ordered goods. Depending on the specific delivery type and
implementation of the company, the delivery person can make an act of

28

3.5. Blockchain in e-commerce

security check (ask for a code sent to them via SMS or e-mail) or ask for a
signature of receiving person (and ID in some cases). This act is marked
in this thesis as a confirmation mechanism because it simply proves that
an authorised receiver took the goods. It is necessary to mention that
this confirmation mechanism is not mandatory, and it does not happen
in all courier delivery cases, which may cause significant problems. On
the other hand, it is cheaper and more time-e�cient for the delivery
company. The delivery person only leaves goods at the selected address.
Various kinds of shops use this delivery method.

Post packet: Postman delivers products at the address (usually without con-
firmation mechanism), or the customer has to go to the post o�ce and
pick up the goods in person.

Local delivery: This is a typical delivery used by food stores or restaurants,
which has to be quick. This delivery is provided by a local delivery
service or in house (imagine pizza delivery).

In house delivery system: It is commonly o�ered by larger online stores
but is not a rule. The store has its deliverer or uses special post boxes
with an authentification of the withdrawer.

Withdraw point: Following the previous point, the withdraw points are also
a kind of an authorised service. The withdraw point doesn’t have to
necessarily be an in-house solution. [39]

Others: As mentioned before, some goods need special delivery. Represen-
tative examples are furniture, animals or trees.

3.5 Blockchain in e-commerce
This section is a review of usage of blockchain and smart contracts in the
eCommerce sphere. We discuss possible applications of this technology, and
for some cases, we introduce real projects and software solutions. We also
mention a few examples of smart contract usage in 2.3, so this section digs
deeper and merges technology which a sector of natural application.

3.5.1 Payment methods

Everyone knows the famous button pay by ”something” as Pay by credit card,
Pay by Paypal, Pay by Bitcoin etc. Thanks to blockchain’s immutable char-
acter, it suits well for providing a trusted payment mechanism and you would
rather choose Pay by Ethereum protected by smart contract than Paypal.
This thesis describes this payment process more deeply in the next chapter
4.2.

29

3. Smart contract in eCommerce

3.5.2 Supply chain management
Supply chain management is a promising field of use of blockchain technology
and it is a massive topic in eCommerce. The idea of using a smart contract as
an intermediary and a single source of truth will connect parties involved in the
supply process in an immutable master ledger. It can create a relationship not
only between business parties but also between the seller and end customer.

Support for supply delivery: The primary goals for using the smart con-
tract in this process are to increase transparency, improve traceability
and higher e�ciency. As for example, imagine an online shop with cus-
tom PC builds. When a customer makes an order for a custom PC build
a smart contract can check the actual prices of a certain component and
then order the chosen one based on specific criteria. The deliverers see
their orders and, based on the contract, can specify the delivery method
and delivery date. This smart contract can also manage the logistics and
assume the production date for the final product. What is truly impres-
sive is that this process can be easily chained. One contract makes an
order from another, and then the second makes an order based on the
original order and so on. In our PC example, a motherboard producer
can order a SSD which will be built into this board. This small example
does not directly show the big advantages of this solution but imagine
the car industry process, with hundreds of suppliers.[40]

Tractability for end-user The traceability of the product prevents the cus-
tomer from buying fake products and increases the seller’s trustworthi-
ness. It is a big topic, specifically in the food industry, where we can
find already successful projects as Beef chain[41] or Smucker’s Folgers
co�ee farms[42]. Customers or consumers can see the whole distribution
process, from where the product was grown or manufactured to how the
delivery company transferred it to their seller. Simply they can discover
the history of the product.

An excellent example is wowtrace.io[43] which is a traceability solution
for businesses. The end-user can simply scan a QR code and see the details
about the product. As an example, they provide an orange history, from
growing place and farm, thought harvesting to distribution to a local store.
The example also provides information about expiration dates, producers and
certificates.

The food industry is not the only example of the importance of trusted
traceability. The pharmacy, fast-moving consumer goods or luxury product
industries are other adepts for high level transparency and traceability. [44]
informs about four ways how blockchain and smart contract can significantly
improve the healthcare industry and build a genuine end-to-end supply chain.
The topics are drug quality and security act, controlled substance monitoring,

30

3.5. Blockchain in e-commerce

cold chain monitoring and ending with active pharmaceutical ingredients. If
we merge these ideas with online drug selling, the use is even more critical.

3.5.3 Genuine reviews
”92% of 18-34-year-olds have read a fake review in the last year” says [45]
from their [46] survey from 2020 which is an enormous number. The problem
with good or bad fake reviews is truly hard to imagine. Another interesting
statistic from [47] is ” 91% of 18-34 year olds trust online reviews as much
as personal recommendations, and 93% of consumers say that online reviews
influenced their purchase decisions.”

When we put it together, it makes an enormous mistrusted and misleading
information scope. In the analytical part, we talk about reviews on Google,
Facebook and Heureka more, with details about how they authenticate the
review and how the businesses can defend themselves. What do all these have
in common with blockchain and smart contract? It can’t solve the situation it-
self, but connected with orders, products, and services thought smart contract
could be easily validated if the user really used reviewed service.

3.5.4 Fraud reduction
Fraud reduction is not a use, but an e�ect of using the blockchain. Based on
[48], the eCommerce businesses lost more than 57 billion dollars by frauds. If
we use a smart contract, it doesn’t mean that the fraud and scammer stores
disappear, but they will have more challenging work again. If people use a
button to pay by crypto protected by a smart contract, it actually does not
mean anything. Same as with Paypal, the redirection doesn’t have to be on
Paypal’s webs, and if the customer is not careful enough, they can be easily
cheated.

Nowadays, customers are (thankfully) harder to cheat, and if they are
not feeling secure enough, they leave the web instead of taking a risk. It
will require teaching the users how to check if they are using the right smart
contract for their purchase protection or a nice new feature or cryptocurrency
wallet. As browsers warn us that we are on a non-trusted web, the wallets
can warn us that we are using a non-authorised smart contract.

3.5.5 Marketing
Marketing is an essential part of each online store. It is a summary of activities
which purpose is to bring potential customers to the store and encourage
former customers to purchase. In order to achieve this goal, online stores use
various tools and platforms for advertising. But how can blockchain and smart
contract change marketing?

According to Campbell R. Harvey from the National Bureau of Economic
Research in Cambridge [49], blockchain will change the whole marketing in-

31

3. Smart contract in eCommerce

dustry. We mention a few of his ideas and add theoretical implementation
example for them.

The first brave idea is that blockchain will end Google’s and Facebook’s
duopoly in the digital advertisement field. ”We believe that the Google-Facebook
duopoly in digital advertising will soon be threatened by blockchain technology.
While keyword-based search will not disappear completely, it will become much
less prominent. Eventually, individuals could control their own online profiles
and social graphs.” [49]

Secondly, it talks about spam reduction and here is where the use of the
smart contract can shine. His idea is to pay for every sent email, so customers
can freely subscribe to a smart contract to agree to receive emails and be
paid for it. It sounds untypically, but similar projects are here now (as swag-
bucks.com as an example). The smart contract will have the intermediary
role, and whenever a customer wants to delete their subscription, it will be
guaranteed by immutable code. This study goes further and discusses the
idea of paying directly to the customer for seeing an advertisement (a banner,
video etc.).

The last marketing topic which we mention in this thesis is loyalty pro-
grams. The use of smart contract can set the rules for discounts based on the
numbers of purchases or the quantity of ordered goods. This is nothing new
in eCommerce, but the di�erence comes when we add a virtual identity to the
game and give an opportunity to share these programs across multiple sites
and vendors.

3.5.6 Protecting personal information and privacy

The last but not least use of blockchain and smart contract in eCommerce
is the protection of personal information and management of privacy on the
web. In 2016, the European Union released the general data protection regu-
lation [50], well known as GDPR, for protecting private data. Based on this
regulation, a research for the usability of blockchain as a data provider and
protector started. [51] discusses the use of distributed identification based on
W3.org recommendations for decentralized identity. ”Decentralized identifiers
(DIDs) are a new type of identifier that enables verifiable, decentralized digital
identity. A DID identifies any subject (e.g., a person, organization, thing,
data model, abstract entity, etc.) that the controller of the DID decides that
it identifies.” [52] We provide an example with a bit of improvement.

Look at figure 3.2 about Jane opening an online store with wines. Accord-
ing to age regulatory, the website needs to verify that Jane was 18 or more
(or 21, based on region). The web asks the credential repository for a proof
of age, and Jane gives the agreement to share her personal information as a
passport, a driving license or a birth certificate. These credentials are used as
the proof of age for the website, and she can enter (or be redirected) to the
website and buy a bottle of wine as an authorised identity.

32

3.6. Suitable process for digitization

In this case, the website knows the exact date of Jane’s birth, but is it
necessary? No, it is not. The website needs to know only yes, she is more
than 18 or no, she isn’t. This can be done by use of a zero-knowledge proof.
This pattern can be used to verify age, education, skills, certification or health
information.

Central Repository User Agent Credential Consumer

Jane

1. Navigate to website

2. Request proof of age

3. Need proof of age

4. Displays relevant cretentials

5. Select a credential

6. Use credential as proof of age

7. Verify

8. Redirect to web site

Figure 3.2: An example of age verification flow from [51]

3.6 Suitable process for digitization
We have discussed a huge potential of blockchain and smart contract use in
eCommerce, and we have introduced a few real projects. One of the core
processes and the most critical part is payment. With a payment process, yet
another responsibility, like a buyer’s protection and refunds appear. When
the payment process is well designed, another discussed improvements and
e�ects of using smart contracts as fraud reduction and genuine reviews appear
almost naturally. Therefore, our scope of interest for the rest of this thesis is
the process of online order that focuses on payment and buyer protection.

33

Chapter 4
Analyses of an online store

order process

This chapter introduces the process of an online store order with a description
of each process’s mandatory aspects. It starts with a detailed analysis of the
as-is model. We will look at the order as a state machine and talk about
possible cases in each state. The review of the existing solutions and buyer
protection are critical topics to truly understand the business idea of the whole
to-be model.

The to-be model is designed based on provided functional and non-functional
requirements. Included use cases fulfil each functional requirement.

The last section, technological architecture, contains a technical and archi-
tectural solution for the introduced to-be model. It discusses the data model
and the composition of the smart contracts with an idea of future technological
solution design.

4.1 Process of an online store order

This observation is focused on Slovak e-commerce market, but a proper expla-
nation is provided for every mentioned element. In other European countries,
the principles are similar, and you can easily find the described patterns all-
around word. We also mention a few world-wide examples.

Before the start of this process, customer checks if the store has their
product. If not, there is no reason to continue. This model also does not
cover all details, as for example, the customer commonly looks up more online
stores with interested products, and then they decide themselves based on
their personal preferences.

In most cases, when choosing the right store, the important factors are:
the price of the products, the credibility of the store, the price for delivery,
payment methods, the design of the store, its marketing and so on. There is

35

4. Analyses of an online store order process

a lot of subjective factors. The process is focused closely on the ordering part
and events after the order is placed.

Figure 4.1: Overview of as-is model of online order (full size: EA1)

Check the credibility of the store: One of the first things the customer is
interested in is if the chosen store is credible and can fulfil the customer’s
needs (not only from the product point of view but also from the service
perspective). The most frequent ways, how to find the credibility of
online stores in Slovakia are:

Google reviews: To have Google reviews, it is necessary to have
Google business account [53], where the creator has to have ba-
sic verification. Google account users can then leave a review for
its business (the reviewer has to have a Google account). The re-
viewer can leave a review without verification of buying service
(can review everything, not only products or service, so it is pos-
sible to leave a review without relevant experience). All reviewers
are almost anonymous (Google knows basic information about tel.
number, which cannot be taken as identifying information). We
can judge reviewer credibility based on the numbers of reviews and
the local guide mark.
Stores can defend themselves against bad reviews by comment re-
plays with an explanation. It is also not easy to fight against fake

36

4.1. Process of an online store order

reviews and businesses have to solve every comment individually.
[54]

Heureka: Heureka started as a product price comparator and nowa-
days is also used to review products and online stores. Being on the
marker for years, it is a trusted website and is used by smaller and
medium e-shops. What is interested is that Heureka is providing a
mark ”verified by customers” to guarantee e-shop reliability. This
mark is given to an e-shop when it completes defined conditions.
When a store is a partner of Heureka and a customer makes a pur-
chase, after 10 days, Heuraka sends an email with a custom link
bound to their order. With this link the customer is redirected to
a web form, where they leave a review (if they recommend/not rec-
ommend the store, questions about the store and product quality
etc.) This guarantees that the review is based on a real order. The
store with enough recommendation reviews can have the credibility
mark (90% of satisfied customers and tens of reviews or 97% of sat-
isfied customers and hundreds based on mark colour). In this case,
a reviewer is anonymous for a reader of the reviews (store can link
order with a review), but the review is based on the actual order.
The store can defend itself by responding to the review. [55]

Facebook reviews: For this kind of reviews, store has to have a Face-
book page. Then every Facebook user can leave a review on the
store’s Facebook site. These reviews are not linked to orders. It
means that every user can leave their opinion similarly to google
reviews. The di�erence is that users are not (mostly) anonymous
(this is questionable, but by the Facebook policy, we will assume
this state). It is possible to have a fake account, but it is straight-
forward to fight against reviews from these kinds of accounts. Also
not every store has these reviews public; there is an option to hide
reviews. Stores can defend themselves as in previous examples by
commenting the review. [56]

These representatives were chosen based on the digital report of Slovakia
in 2020 [57], where Google is the most visited site in Slovakia. Facebook
is 5-th most visited site and the most popular social network (based
on total active users). Heureka is the most visited e-commerce site
in Slovakia ([58] and [59]). This method is also recommended by the
network of European Consumer Centers ECC-Net [60].
If there are not enough reviews in these places and the customers are
still willing to buy, they pay significantly more attention to the payment
methods with buyers’ protection.

Preparing the order: This step is individual for every store. The main
goals are placing items into the basket, entering the discount code/-

37

4. Analyses of an online store order process

coupon, and providing the mandatory information to complete the or-
der, such as the payer information and delivery information. In this
step, there can be some store-specific forms, for example, the delivery
date or notes for the store. Commonly customer can choose the delivery
company and payment method, which we discuss in the next step.

Making the payment: The exact execution of this action depends on the
chosen payment method discussed in 3.2.1. This model counts on a
payment method which goes through an intermediary (Paypal, Klarna
and so on). The customer sends the payment to the intermediary bank
account, and it informs the store about a successful payment. When
the customer is registered in the intermediary system, it usually only
accepts the payment. If they doesn’t have an account, they will need to
enter credit card information. They also see the order details, which the
intermediary will save to its database. This re-saving prevents the store
from changing the information on its side.

Accepting the order: As discussed before in the purchase contract 3.2, the
seller can also withdraw from the contract.

Preparing the order: This is an individual process for every online store.
Some have their own stocks, others use external supplies or a drop-
shipping. In this step the store can customize the product or produce
the whole product, when it is custom made. The model is not covering
this process deeper, because of the individuality. The important thing
is that the result of this activity is a shipment-ready product.

Delivery: We have discussed and described the delivery methods in 3.3. This
model represents the courier delivery method with authentication. It
is not a necessary confirmation mechanism. Suppose the box or the
package is damaged. Is it possible with a delivery guy to write a report
about the delivery condition, which can be used as evidence in the case
of a dispute later.

Product discovery: The 14 days period after receiving goods is called a
product discovery in this model . A few things can happen in this
action. We will go through them in chronological order. After opening
the package, the received goods are:

Not the ordered one: The product is significantly di�erent from the
described one (has another colour, size, ...) or doesn’t have sup-
posed functionality, the customer can withdraw from the purchase
contract.

Goods are defective: This case will be not covered in this model be-
cause the next step is a claim for goods, and the claim is out of
our scope of interest. If the goods are damaged, the customer can’t

38

4.2. Order as a state machine

simply return the goods because the store can ask for a price di�er-
ence. In the as-is model, the customer has to contact the seller and
start the claim process. If there is a problem with communication,
the customer can open a dispute via the intermediary and provide
them an evidence of damaged goods.

If the products are without a problem customer has 14 days to explore
their functionality and in case that the customer is not satisfied, they
can withdraw from the contract and return all of the ordered products.
A lot of stores (mainly with clothes) o�er to return only a part of the
order. In this situation, we are not talking about withdrawing from the
contract. Some stores even o�er pay return postage. This model works
with the possibility to return only part of the order. The di�erence is
discussed later in 4.2.
If the customer is satisfied with the products after 14 days, the order
is considered successfully completed. Any other problems are solved by
the claim process based on its warranty.
The exceptions from this return possibility are mentioned in 3.2. If any
problem occurs with these kinds of products the solution is the claim
process.

Product return: The customer must send the unwanted products back to
the store no later than 14 days after notifying the store about the with-
drawal from the purchase contract. Shipping costs are paid by the cus-
tomer, unless otherwise stated in the terms and conditions. The store
can also provide the possibility of self-removal or delivery of products at
the store’s preferred location.
After receiving the products, the store checks the condition of the prod-
ucts. The shop is obliged to return the full amount paid to the seller,
including the cheapest postage o�ered unless otherwise stated in the
contractual conditions.
If the product’s condition is undesirable (the goods have been handled
beyond normal handling), the store may claim damages from the cus-
tomer for restoration to the normal state. However, the amount re-
quested may not exceed the value of the product.[33] The reduction of
the product price is obligatory to prove by the store.

4.2 Order as a state machine
It is suitable to think about an order as a state machine. It can be divided
into non-looping stages which rapidly helps to lower complexity in describing
requirements and decide what is possible to do in every step. See figure 4.2
where the states are visualised. These stages will be used later in 4.4. We

39

4. Analyses of an online store order process

assume an intermediary for payment in these stages. Follows the description
of the states:

Recieve a payment

CancellationCreated

CancellationPaid

CancelledAccepted

Shipped

Delivered

Completed

Returned products
 are delivered

Proposal for settlementFrozen Refunded

Accept the order

Cancellation

Cancellation or the order was not delivered

Delivery confirmation

Shipping confirmation

14 days or
no refundable products Shipping confirmation

Delivery confirmation

Products are sent back

No problem with delivered products

Not delivered

Settelment is declined Settelment accepted

Settlement decision

Created proposal

Figure 4.2: Order as a state machine

Created: It is the initial state of the order. It defines the ordered products,
its method and price.

40

4.2. Order as a state machine

Paid: This state occurs when the customer pays for the order. The payment
doesn’t have to be necessarily at the store’s account.

Cancelled: As described before in 3.2, the store can cancel the order for
various reasons. Also, if the store is unable to accept the order (take a
long time), the customer can cancel the order.

Accepted: This state becomes after accepting the order. When the order
is transferred to this state, it also starts encountering time to delivery.
The store has limited time for the delivery (from law [33] it is 30 days,
but the store can change this delivery time in their terms and conditions
document).

Delivered: The order is in this state when the customer receives the goods.
If the order has a returnable product, it will be in this state for 14 days
and then will transfer to a Completed state, or the customer will want to
return it. If there are no returnable products, the order is automatically
transferred to the Completed state.

Completed: The order is completed and the store can receive the money for
the order. This is the end-state for the order. The purchase process
can continue by starting an warranty case, but this is out of the order
process scope.

Products are sent back: Suppose the customer decides to return some (or
all) returnable products. This state also depends on the Terms and
conditions of every store individually. By the law discussed before in
3.2, the customer has to return all products, but some stores (especially
with clothes) give customers the ability to return only a part of the
order. The customer has to return every gift provided with the goods
(if it is linked to returning goods.)

Returned products are delivered: The store confirms delivered product
and checks the condition of the goods. If everything is right, the next
state is the refund. If not, the store can ask for compensation for dam-
aged goods, and the order continues to Proposal for settlement.

Proposal for settlement: The customer can agree with the Proposal and
then the order continues to the refund state or they can disagree and
then open a dispute and the order continues to Frozen state.

Frozen: The intermediary will decide which side is right and settle the refund.

Refund: The proper amount of price will be sent to both accounts. Here are
three cases, based on which way did the order came to this stage.

41

4. Analyses of an online store order process

• From Returned products are delivered, that means that all
the goods were returned, and the full price of the returned products
will be sent to the customer account.

• From Proposal for settlement means that the customer agreed
to the reduced return price, and the agreed amount will be sent to
their account. The di�erence between the paid and returned price
is sent to the store account.

• From Frozen state, it depends on the decision of the intermediary.
The decided amount will be sent to both the accounts.

In case of returning all the goods, the price for the cheapest o�ered
delivery solution is returned to the customer account (if it is not defined
in ToC to return full delivery price).

4.3 Existing solutions on the market
This section describes the working principle of intermediaries as a payment
solution for online stores. It informs about benefits for buyer and seller and
about fees for providing this type of services. Pieces of information are taken
from Paypay o�cial website and Klarna o�cial website and merged in order
to o�er non-domain specific description. We follow up on the information
provided in 3.2.1.

The intermediary solutions are provided by highly trusted companies.
They are o�ering buyers protection service, which the buyer can use when
any problem with a transaction made through them occurs. The customer
can register an account in these companies and save their credit card infor-
mation. They can see the whole transaction history in their account with an
option to open a dispute about a concrete transaction. The intermediaries are
also providing advantages as a mobile application for easier use.

From a business point of view, it is advantageous to use an intermediary
for several reasons. When it comes to a new store, o�ering a payment with
the buyer’s protection increases the credibility of the store and the customer
feels covered in case of a problem.

Another significant advantage is that the intermediary stores the informa-
tion about payment cards, so it is their responsibility to protect them. The
intermediary also provides a payment gateway and a payment mechanism,
which is advantageous, especially for new e-shops. Most pre-programmed e-
shop systems o�er a built-in integration of these payment solutions, or the
payment intermediary also often provides a plug-in for these systems.

On the other hand, the intermediary wants a fee for each mediated pay-
ment, which consists of a fixed amount per transaction and a variable per-
centage of the amount of the transaction. The store may also be charged fees

42

4.3. Existing solutions on the market

for resolving customers’ opened dispute (dispute fee / high volume dispute
fee). As mentioned above, the transaction’s money does not go directly to the
store account but to the intermediary account and to the store account, still
in their own system. These funds (after deducting fees) can be withdrawn by
the store, which in some instances may also be for a fee.

4.3.1 Buyers protection
This service’s main idea is to protect the consumer from ending up without
the purchased goods and the money they paid for it. Before we go to further,
we need to define the following terms, according to the definition of PayPal:

Proof of shipment - Online or physical document from the delivery com-
pany, where you can see the date of shipment together with the cus-
tomer’s address entered when ordering. This address must include at
least a city, country, or ZIP / Postal code or equivalent.

Proof of delivery - Online or physical document from the delivery company,
where you can see the date of shipment, the customer’s address entered
when ordering. This address must include at least a city, country, or
ZIP / Postal code or equivalent. Signature confirmation is an online
document on the company’s website, indicating that it was signed. In
other words, the shipping company can prove the deliver status.

Consumers can use this program in two cases, namely

When products never arrived: In this case, proof of shipment or proof of
delivery based on the value of the goods will be required from the trader.

When the item significantly di�ers form its description: We have de-
scribed a few cases in 4.2, so now examples from PayPal website tell more
than definitions

• You received a completely di�erent item.
• Example: You purchased a book, but received a DVD.
• The item is missing parts or features, and this was not disclosed.
• Example: The listing said batteries included, but they weren’t.
• You purchased a specific quantity of an item, but received the

wrong amount.
• Example: You purchased five pairs of fuzzy dice and only received

four.
• The item was damaged en route to its destination.
• Example: You bought a beautiful antique lamp, and it arrived in

pieces.

43

4. Analyses of an online store order process

• You received a counterfeit version of the item.

• Example: You purchased a Rolex, but received a Faux-Lex.

4.3.2 Buyers Protection process

Start a dispute: The customer starts a dispute process by a conversation
with the seller. If they are not able to reach an agreement, they involve
the intermediary.

Intermediary involution: The intermediary starts paying attention to this
case. It reads the conversation between the customer and the seller.

Presenting documents, information, and proofs: When the intermedi-
ary gets acquainted with the problem’s circumstances, it may ask the
customer and seller for the documents and evidence that proves them
right. From the customer, it can ask a photo or video of received goods or
the record of receiving protocol if the package had noticeable damages.
From the seller, it can ask a proof of shipment or a proof of delivery.

Shipping request: By moderating the situation by the intermediary, it can
ask the customer to send the goods back to the seller, to the intermediary
or to a third party and provide a proof of shipment or a proof of delivery.

Final decision: After considering all facts, evidence and documents, the in-
termediary decides the occurred situation’s solution.

4.4 To be model

This section provides a description of the to-be model. The purpose of to-be
model is to replace the intermediary for payment in the as-is model. Have a
closer look at figure 4.3, where the to-be model is modelled in BPMN. The
goal was to change the original as-is model 4.1 as little as possible, ideally only
to replace third-party intermediary to the smart contract. Of course, it is not
that easy, but the presented model is significantly close to the as-is model to
provide the most similar experience for the user.

Orange colour marks the state changes of the order described in section
4.2. The model also doesn’t provide all details as all possible cancellations
because its purpose is to describe basic behaviour.

It is possible to observe a few di�erences. For example, the model doesn’t
end by taking the goods by the customer and providing a kind of seller pro-
tection in the form of a proposal for settlement.

44

4.4. To be model

Figure 4.3: Overview of to-be order model (full size: EA2)

4.4.1 Functional requirements

Functional requirements are used to express and define the behavioural and
business functionality of the system. In table 4.1 are provided functional
requirements for the to-be system.

The first three requirements are also discoverable in the as-is model so that
the system’s idea does not change. The F4 is essential functionality for the
frozen state of the order and for the system’s legal site. The last requirement
F5 is for supporting advantages for the public and the ability to use the full
immutable and public power of the blockchain technology. The functional
requirements are later fulfilled by use cases.

4.4.2 Non-functional requirements

The non-functional requirements are system restrictions. Table 4.2 is an
overview of the non-functional requirements required from to-be system. These
requirements capture the system from di�erent perspectives as accessibility,
availability, deployment, documentation, maintainability, licence, regulations,
privacy, compatibility, usability, device supportiveness, security, cost elements
and more.

4.4.3 Use cases

Use cases describe system interactions with external entities (as actors) and
the accessibility of the pieces of information for concreate user roles. Use

45

4. Analyses of an online store order process

Table 4.1: Functional requirements

FR Name Description

F1 Order
management

The system provides functionality for order manage-
ment, such as creating an order, manipulation with
an order based on the order’s stare, and cancelling the
order. The system can’t delete an order.

F2 Shipping
confirmation

The system has functionality for confirming the deliv-
ery state only. The system doesn’t have functional-
ity for advanced delivery management, such as claim
management or delivery tracking. The system option-
ally supports third party integration, where it is pos-
sible to provide additional information (link for third
party website).

F3 Buyers
protection

The system has buyers protection policy. That means,
the payments cannot be withdrawn from the system
before both sites accept the completeness of commit-
ments. Otherwise the system escalates and holds the
payment while the authority makes a decision.

F4 Intervention of
authority

The system can be intervened by an authority (govern-
ment, legal judgment, ministry), but only in a special
frozen state. An authorized entity can intermediate
the frozen state. The authorized entity is specified in
the system.

F5 Providing
information

The system provides public information about orders
but covers personal data. Anyone can see all orders
from the store and orders from a specific customer.
But customers have to be anonimized (no personal
information revealed to unauthorized entities).

cases for the system are provided by marking Y.X, where Y is describing
the group similarity and X the concrete case. Each use case has a mark,
name, description, optionally pre-conditions and post-conditions, extension
(is extended by) and the authorised roles. All use cases are provided as the
attachment EA3 to this thesis, so now we describes only a few representatives
from chosen categories. The description provided here is only to understand
the idea of the case. Before embarking on the presentation of use cases, focus
your attention on the figure 4.4 that illustrates the system’s role. The public,
customer, store, deliverer are pretty self-describing and the authority role
comes from F5 (functional requirement 5 in table 4.1) and N8 (non-functional
requirement in table 4.2).

• The first UC1 implements 4.3 the basic requirement for interacting with

46

4.4. To be model

a system, and it is available for a public role.

• Group 2.X are information providers. Their purpose is to select infor-
mation that is available to certain roles in given situations. They are
mostly used as an extension for other use cases. They primary con-
tain exact attributes, which are used later in the data model. Chosen
representatives are in table 4.4 and 4.5.

• Group 3.X contains the use cases which represent the interactions which
are changing the order state. The state changes are observable in pre and
post conditions. They realize the intercommunication between parties
and implement the logic of the order process. The representatives of this
category are in tables 4.6 and 4.7.

• Group 4.X carries the public interaction with the system. Together with
group 5, it o�ers the views to the lists of orders. The representative is
4.8

• Groups 6, 7 and 8 include the functionality for system management and
maintainability. The representative is 4.9

Public

Customer Store Deliverer Authority

Figure 4.4: Order actors

4.4.4 Data model

As we mentioned before, storing data in blockchain is extremely costly. There-
fore, it is very important to correctly select the most important data to be
stored in blockchain and which in o�-chain. The data model 4.5 shows nec-
essary data for a correctly working order system, but not every data has to
be stored in the network. The decision, which data are stored where highly
depends on the technical architecture of the system. It is always better just
to re-use stored data, which are already in the network, than saving new one.
We discuss the saving logic later in 4.5.1.

47

4. Analyses of an online store order process

As an example of saving the place, it is unnecessary to store all product
details, so we can store only a hash of the products list. For the raw data
will be responsible to store, but the copy of data can have a customer as well.
The contract still holds the truth of purchased goods, so the customer can
easily say what they bought, and it can be easily proved by the hash. If the
store tries to cheat with a purchased product, the system can have a buyer
advantage mechanism in a problematic situation. The system application
provides storing logic.

Order

+ costInTotal: Double

+ acceptedDate: TimeStamp

+ additionalCont: Double

+ state: OrderState

+ field: type

OrderContract

+ id: Adress

1

0..*

Customer

+ id: Adress

Delivery confirmation

+ consignor: Adress

+ recipient: Adress

+ consignorConfirmation: Timestamp

+ recipientConfirmation: Timestamp

Delivery method

+ name: String

+ price: Double

Store

+ id: Adress

+ name: String

Product

+ id: Identifiable

+ name: String

+ priceWithTax: Double

+ tax: Double

+ description: String

+ reFundable: Boolean

Deliverer

+ id: Adress

+ name: String

+ acceptedAddresses: [Adress]

Proposal for settlement

+ refundedAmount: Double

+ accepted: Boolead

+ decicedrefundedAmount: type

<<Enumeration>>

OrderState

Created

Paid

Accepted

Canelled

Shipped

Delivered

Sent back

Returned

Proposal for settlement

Frozen

Refunded

Custmer informaiton

+ name: String

+ streerAdress: String

+ state: String

+ postalCode: String

+ phoneNumber: String

+ email: String

1 0..*

0..1

1

0..* 1

0..1

1

1

1

0..* 1

1

0..4

1..*

0..*

0..*

0..*0..* 0..*

1

1
Billing

information

Shipping

information

Customer

adress

Ordered

products

Returned

products

Shipping confirmation

Delivery confirmation

Retured shipping

confirmation

Retured delivery

 confirmation

Merchant

adress

Shipping

method

Returned

shipping

method

Ledger

of

orders

Proposal

for

settlement

Figure 4.5: Das contract data model of the order process (full size: EA9)

4.5 Technological architecture

This section contains a discussion of technological and architectural solutions
of the proposed to-be system. We start with the problematic of the possi-
bilities of dividing smart contracts within the network and take two di�erent
approaches depending on the use and popularity of blockchain. The second
part of this section is a discussion of the client-side system and the possibilities
of using the application as a plugin for popular online store solutions.

The proposed architecture needs to respect functional and non-functional
requirements and strictly look at the cost e�ciency and data distribution. It
is challenging to achieving a maintainable solution, especially with the im-
mutability of code, but it is not impossible. We use the best practices from
[61] to achieve suitable architecture for specified requirements.

48

4.5. Technological architecture

You can see high-level technological architecture in figure 4.6, and this
architecture is a core for all discussed possibilities. We later specify each part
of the architecture and dApp integration as a frontend. The backend part
will be Ethereum blockchain and smart contracts. We use the development
principle described in [62] and some methodology ideas from [63].

Application code Blockchain
specific libraries

dApp

Node 1

Node 5

Node 2

Node 4

Node 3

Blockchain
network

Figure 4.6: High level technological architecture [4]

4.5.1 Smart contract composition
The first huge challenge is to find the answer to the question: ”How will the
smart contract architecture look like?”. Many factors restrict the answer to
this question. Firstly, we look at the close term scenario and the fact that
our system has to manage all the model processes. Later, when the smart
contract became part of the casual interaction (as internet nowadays), we can
talk about a genuinely cost-e�cient and trusted online purchase solution.

Look at figure 4.7, where a UML class diagram of the first-mentioned
scenario is. The smart contract composition is simple, with two contracts. The
first contract OrderLogic represents the system’s business logic and has an
interface for communication with dApp. Second OrderStorage is a primitive
smart contract, which represents the database of the orders.

This separation has logic in the maintainability of the system. If some
law changes appear or are the possibility to upgrade the business layer (we
will discuss this later), we can easily change the OrderLogic contract with
another implementation. In the real world, we can’t delete the old one, but
we can make internal logic to stop the interaction and, in dApps, simply
change the smart contract address. The new one can easily continue where
the old stopped.

To save some data storage, we have decided to store only the hashes of
products, shipping information and billing information. The reason is to save
the cost of storage and there is no reason to store whole data. A copy of this

49

4. Analyses of an online store order process

<<Interface>>
ConfimrmationMechanism

+ participant: Adress
+ delivery: Adress
+ participantConfirmation:TimeStamp
+ deliveryConfirmation: TimeStamp

+ confirm(adress): Bool

<<Contract>>

OrderLogic

+ adress: Adress

- makeHash([Products]): String
- makeHash(shippingInformation): String
- makeHash(billingInformation): String
- getRoleByAdress(OdrerId, Adress): Role

<<Interface>>
ContractIntreface

 + isValid: Bool
 - authorisedAdrresses : [Adress]

+ createorder(Type): orderId
+ createOrder(customer, store, [products], shippingInformation,
 shippingMethod , billingInformatinon) : orderId
+ payOrder(orderId)
+ acceptOrder(orderId)
+ cancelOrder(orderId)
+ confirmShipment(orderID)
+ confirmRecievment(orderID)
+ returnProducts(allProducts: [Products], returned: [Products])
+ makeProposal(orderId, Proposal)
+ poposalAcceptence(orderId, accept: Boolean)
+ unfroze(orderId, Proposal)
+ step(orderId)

<<Struct>>
Order

+ orderId: UID
+ costInTotal: Double
+ acceptedDate: TimeStamp
+ additionalCosts: Double
+ state: OrderState
+ productInformatiohHash: String
+ shippingInformatiohHash: String

 + billingInformationHash: String

<<Contract>>

OrderStorage

+ orders: [order]

+ addOrder(Order): OrderId

<<Struct>>

BacisConfirmation

+ customAtributes

+ cutomLogic()

Figure 4.7: Basic smart contract architecture (full size: EA9)

Figure 4.8: Das Contract process model (full size: EA4)

data can be saved by the store and (optionally) on the customer side. This
solution can have a few disadvantages because in function returnProducts(

allProducts: [Products], returned: [Products]), the application needs
to provide whole list of products. The responsibility of hash calculation is on
the smart contract’s side for security reasons.

Figure 4.8 represents backend logic. Pay attention to the timer and flows
from the timers. We can’t implement exactly the same functionality because
the only way to execute code in a smart contract is via transaction. No cron
functions exist, so we use a step function to solve this problem, which works
as a impulse to check the dated conditions and change the state. You can find
a full-size process as external attachment 4 (EA4).

50

4.5. Technological architecture

Can authentificate store >

<<Interface>>
Store Authenticator

+ isAuthorised(Adress): Bool

< Offers

<<Struct>>

DeliveryMethod

+ name: String
+ methodId: String

+ cutomLogic()

<<Contract>>

Delivery Authentificator

+ deliverers: [Deliverers]

+ cutomLogic()

<<Interface>>
ConfimrmationMechanism

+ participant: Adress
+ delivery: Adress
+ participantConfirmation:TimeStamp
+ deliveryConfirmation: TimeStamp

+ confirm(adress): Bool

< Can store to

<<Contract>>

OrderLogic

+ adress: Adress

- makeHash([Products]): String
- makeHash(shippingInformation): String
- makeHash(billingInformation): String
- getRoleByAdress(OdrerId, Adress): Role

<<Interface>>
ContractIntreface

 + isValid: Bool
 - authorisedAdrresses : [Adress]

+ createorder(Type): orderId
+ createOrder(customer, store, [products], shippingInformation,
 shippingMethod , billingInformatinon) : orderId
+ payOrder(orderId)
+ acceptOrder(orderId)
+ cancelOrder(orderId)
+ confirmShipment(orderID)
+ confirmRecievment(orderID)
+ makeProposal(orderId, Proposal)
+ poposalAcceptence(orderId, accept: Boolean)
+ unfroze(orderId, Proposal)
+ step(orderId)

0..*

<<Struct>>
Order

+ orderId: UID
+ costInTotal: Double
+ acceptedDate: TimeStamp
+ additionalCosts: Double
+ state: OrderState
+ productInformatiohHash: String
+ shippingInformatiohHash: String

 + billingInformationHash: String

<<Contract>>

OrderStorage

- orders: [order]

+ addOrder(Order): OrderId
+ changeOrder(Order): OrderId

<<Struct>>

BacisConfirmation

+ customAtributes

+ cutomLogic()

<<Contract>>

CustomDeliveryContract

+ customAtributes

+ cutomLogic()

<<Contract>>

Store Manager

+ stores: [Store]

+ authentificateStore(Store)

<<Struct>>

Store

 + storeName: String
 + storeAdress: Adress
 + responsibleAuthority: Adress
 + contactAdress: String
 + contactEmail: String
 + contactPhone : String
 + storeEndPoint: URL
 + authorisedOrderManagementAdress: [Adress]
 + authorisedShippingAdress: [Adress]

+ method(): Type

<<Struct>>

Deliverer

+ name: String
+ adress: Adress
+ authorisedAdresses: [Adress]

+ cutomLogic()

1

1

0..4

< has
is based on >

Figure 4.9: Future smart contract architecture (full size: EA9)

4.5.2 Advanced future architecture

It is not possible to predict future, but we have to design solutions that can
be scaled and upgraded. When blockchain becomes more used by state au-
thorities, our model’s story can look like on figure 4.9. The contract interface
is not changed, so the interaction with dApp can be the same.

Imagine that the store has an opportunity to register through an authority
(for example a ministry) to this system. Store’s information is stored in store
structure, and every store is bounded to a public entity, such as a company.
This system can accept only authorized stores as sellers and a buyer is no more
purchasing goods from an anonymous entity. We mean anonym because the
system surely now only the address of the seller. It is possible to imagine this
registration as nowadays, when the store wanna accept the payments through
PayPal. Firstly, it needs to register itself at PayPal as a merchant and provide
some identification documents. We can apply the same pattern for delivery
(or virtual identity).

The next advantage we can observe is signing the shipping confirmation
or defining the internal rules for contract behaviour. Not every time the same
person accepts the orders and the person who is signing the shipping contract
the same. This pattern is even well suited for the delivery company.

We mentioned that supply chain management and delivery are one of the
most promising blockchain applications. In this type of process, the delivery
company can have its smart contract for delivery and use it in the presented
model. The only restriction is to use confirmation mechanism as an interface

51

4. Analyses of an online store order process

so that the system can work with it.

4.5.3 DApp
The dApp has to have two backend parts. The first part is the store side,
where all information in the raw version is stored. This side creates a pre-
defined API for dApp. The API is the same for all online store systems, so
when it is delivered as a plugin to store, the programmers have to only map
this functions to concreate implementation.

The second part of the backend is a blockchain side. This is the same for
every implementation. DApp will interact with smart contract, which has a
certain interface. Contract stores only the hashes of information stored on the
store side to ensure the system’s integrity.

Utilizing this principle allows dApp to be reusable across all online store
systems. For integration to the new system, it is only needed to code the
store’s API for dApp.

4.6 Chapter summary
We created an as-is model of online order in BPMN language with a detailed
description of each part and activity. We have also produced a state diagram
for order, which helps us to create specific and well-understood requirements.
We have explored existing solutions on the market, highlighting the impor-
tance of the buyers’ protection for business success.

Based on collected pieces of information, the to-be model was designed.
We have specified the non-function and functional requirements, which were
defined into the use cases. We introduced the Das Contract data model for the
system entities and Das Contract process model to illustrate smart contract’s
behaviour.

The end of the chapter was focused on the technological architecture of the
system. Two versions of the architecture were discussed with their backend
and frontend parts.

52

4.6. Chapter summary

Table 4.2: Owerview of non-functional requirements

NR Name Descruption

N1 Public acces The system is publicly accessible, with the requirement that
the user has to have a supported browser or application to
interact with javascript and crypto wallet (Metamask).

N2 Public avail-
ability

The system has no granted accessibility. Accessibility is
based on access to Ethereum network and acces providers.
System is independent from falling the acces provider (store
hosting). Universal acces point is not included.

N3 Deployment
to online store
solution, Store
aviability

The system can be provided as a plug-in into online store
solutions. The pre-programmed solution is not included.
The online stores have to provide defined API by the system.
The deployed environment has to support JavaScript and
has a connection to the Ethereum network.

N4 Documentation
of the smart
contract

Smart contract has a public documentation which describes
the interaction with it.

N5 Maintainability
of application

The application software is possible to maintain by plug-in
updates.

N6 Maintainability
of smart con-
tract

The smart contract is not possible to update. Smart con-
tract requires to deploy a new one in case of law changes.

N7 Open-source The software is provided as open-source.
N8 Law regula-

tions
System support law codex of the specified country but only
to the date of last change...

N9 Privacy policy The system respects the protection of personal data with
the exception of the right to be forgotten. The orders are
not possible to delete, but the customer is anonym from the
public site of view...

N10 Platform com-
patibility

System is compatible with all platforms supporting acces
requirements.

N11 Usability The system has a similar behaviour as classical payment
methods thought intermediary. In every state, the user
knows the possible next steps.

N12 Device support The system is supported on all devices supported access re-
quirements N1.

N13 Identification The user is identified by his account ID and password is his
private key for signing the transactions.

N14 Cost Users (customers, online stores, and deliver) is paying a
transaction fee for every change of order’s state. Providing
information is free.

53

4. Analyses of an online store order process

Table 4.3: Use case 1
Use case UC1
Name Log in
Description The user can log in to the system through his crypto wallet

(Metamask).
Pre-conditions Ethereum account, Crypto wallet with sign in functionality
Roles Public

Table 4.4: Use case 2.4
Use case UC2.4
Name Deliverer details
Description Deliverer details are the company account address, deliverer,

who took goods from the shop and deliver, who gave goods
to a customer. Optionally, when returning goods company
account address, deliverer took goods from the customer and
deliverer, who gave goods to a store.

Roles Customer, Store, Deliverer

Table 4.5: Use case 2.6
Use case UC2.6
Name Payment details
Description Payment details are cost of goods, delivery cost, tax rate, tax

price in total, payment in total (goods + delivery including
tax), additional costs (gas fee).

Roles Customer, Store

Table 4.6: Use case 3.2
Use case UC3.2
Name Pay for order
Description Customer pay for the order payment in total cost plus gas

fee consumed by the transaction. This gas fee is added ad-
ditional cost attribute in order.

Pre-conditions OrderStare = Created
Post-conditions OrderStare = Paid
Is extended by UC1, UC2.X
Roles Customer

54

4.6. Chapter summary

Table 4.7: Use case 3.6
Use case UC3.6
Name Confirm receivement
Description The recipient confirms the given shipment. It is possible to

confirm only the whole product list, not only parts.
Pre-conditions OrderStare = Accepted or OrderStare = Shipped
Post-conditions OrderStare = Shipped or OrderStare = Deliveder
Is extended by if role = store or role = customer UC1, UC2.X, if role =

deliverer UC1, UC2.3. UC2.4, UC2.5
Roles Customer, Store, Deliverer

Table 4.8: Use case 4.1
Use case UC4.1
Name Public information of store orders
Description It displays the list of the store’s orders and the status of the

order.
Is extended by UC1
Roles Public

Table 4.9: Use case 6
Use case UC6
Name Upgrade contract
Description The authority can change the address of the smart contract

in the network (Migrate the contract).
Roles Authority

55

Chapter 5
Proof of concept

The concept’s goal is to show potential real-world implementation direction
and prove the possibility of realising the described system and its ideas.
It describes a working application for order management with the backend
blockchain system. We will go through the introduction of used technologies,
the smart contract architecture and frontend web-based application. The end
of the chapter is focused on testing the implementation of smart contracts.
The code snippets are provided for each part.

5.1 Used technologies

To create such a complicated system we need to choose the right technologies.
Despite the fact that Ethereum is a relatively new technology, we can find
exciting development tools and supporting development communities. We use
Solidity language for implementing smart contract, JavaScript for testing the
frontend application. The whole project is based on Node.js. Now follow our
deck of tools for creating the proof of concept.

Ganache [64] is easy to use local Ethereum network. It provides an appli-
cation or command-line interface and a fantastically quick run function-
ality to run local network literally with one click (or command).

Tru�e [65] framework is for developing smart contracts. We use Tru�e not
only for compiling and deploying created smart contract to the local
network but also for testing deployed smart contracts.

Chai.js [66] is a framework for testing in javascript. It has useful functions
such as asserts or shoud.be for testing smart contract response.

OpenZeppeline is as described in their website: ”A library for secure smart
contract development. Build on a solid foundation of community-vetted

57

5. Proof of concept

code.”[67] We use the pre-programmed library Utils to check the correct-
ness of the smart contract address.

dApp university [68] is a teaching programme from Gregory McCubbin,
who teaches Blockchain development basics. We have used his template
as a baseline of our system.

Web3.js [22] is a javascript library for interacting with smart contract. It
also has handy functions in web3.utils which are commonly used in the
project.

Metamask [10] is a Chrome extension for interaction with decentralised ap-
plications and crypto wallets. It supports local hosted networks, what is
mandatory for our concept. We use Metamask for signing transactions
and simulating system’s roles.

5.2 Smart contract implementation

We have created two smart contracts. The first one handles an order logic
(plus order storage) and the second manages the delivery process. The order
logic contract is a state-based contract (from order state described in 4.2),
which is responsible for manipulating the order. Each order has its roles:
a store, a customer and a deliverer, which are in our proof of concept user
accounts, but they don’t have to be. The delivery and the store can be smart
contracts in the future.

Let’s look at one of the smaller functions from OrderLogicContract.sol

contract acceptOrder(uint orderId) public with all necessary aspects for
understanding the contract’s behaviour.

1 function acceptOrder (uint _orderId) public {
2 // Make sure the id is valid
3 require (_orderId > 0 && _orderId <= orderCount);
4 // Fetch the post
5 Order memory _order = orders [_orderId];
6 // Check sender role in order
7 require (_order . store == msg. sender);
8 // Check state of the order
9 require (_order . state == OrderState .PAID);

10 // update state
11 _order . state = OrderState . ACCEPTED ;
12 // update order
13 orders [_orderId] = _order ;
14 // emit event
15 emit OrderStateChanged (_orderId , _order .state);
16 }

Listing 5.1: OrderLogicContract.sol function example

58

https://github.com/dappuniversity/social-network/releases/tag/28e13af

5.2. Smart contract implementation

require() function is a perfect mechanism for not consuming an addi-
tional amount of gas for calling the function with wrong parameters or func-
tion in an unsupported stage of an order. Firstly, we check if the order exists,
then if the sender of the transaction msg.sender is approved role for executing
this function, and finally, we make sure the order is in the right state. When
everything is correct, the logic is executed and the state of the order is saved.
The last line is emit function, which is usefull for frontend applications, which
can subscribe to the emitted event and then react on published events. It is
a classical publisher-subscriber pattern.

1 function confirmationMechanism (uint _orderId , address
_deliveryContractAdress) public {

2 // Check if provided address is smart contract
3 require (Address . isContract (_deliveryContractAdress));
4 // Make sure the id is valid
5 require (_orderId > 0 && _orderId <= orderCount);
6 // Fetch the order
7 Order memory _order = orders [_orderId];
8 // Creating communication instance from adress
9 DeliveryContract del = DeliveryContract (

_deliveryContractAdress);
10
11 if (_order .state == OrderState . ACCEPTED){
12 // Required function of delivery contract for

confirmation of
13 // delivery act
14 if (del. isConfirmed (_orderId , _order .store , _order .

deliverer)){
15 _order .state = OrderState . SHIPPED ;
16 }
17 }else if (_order .state == OrderState . SHIPPED){
18 ...
19 // save an order
20 orders [_orderId] = _order ;
21 // emit event
22 emit OrderStateChanged (_orderId , _order .state);
23 }

Listing 5.2: OrderLogicContract.sol confirmation mechanism example

Another interesting example of the proof of concept is listing 5.2, which
handles the confirmation of the delivery process. Similarly to acceptOrder,
the function takes orderId parameter and address deliveryContractAdress.
The address has to be a contract address, what we ensure with the first
requirement and Address library from OpeZeppeline. It also has to be a
contract implementing DeliveryConctract interface. The requirement is only
to have the isConfirmed(orderId, consignor, recipient) function im-
plemented for checking the confirmation of the selected tuple, based on the
current state of the order. This is an example of how to open the system
to enable stores and deliverers to implement their own smart contracts with
custom logic.

59

5. Proof of concept

5.3 Implementation of the frontend dApp
The frontend application of proof of concept is like a payment gateway in
today’s payment solutions. It appears when the customer clicks on the pay
by Ethereum button in the online store system. Then they see all the order’s
details and the available actions. The store and deliverer have a similar view
as the customer, but each role sees di�erent possible actions based on the
current order’s state. Notice the view of an application, with console logs
for explaining what is happening in the background in figure 5.1. There is a
walk through of every screen with a state and process diagrams in external
attachments EA8.

Figure 5.1: Proof of concept screen with console (all screens: EA8)

5.3.1 Code example

Application is written in Javascript with the React.js framework and Web3.js
library for communication with a smart contract. The mandatory part for
interacting with the application is a cryptocurrency wallet (we recommend
Metamask). The application is not for a standalone use, so it needs a prede-
fined API provided by the store. This is not a problem because the purpose
of the application is to be packed in a plugin for online store solutions, so the
plugin can expose its own API, so compatibility is guaranteed. For a proof of
concept use, we have created StoreAPI.js to simulate the plugin API.

Web3.js handles the essential part of the functionality: sending the trans-
actions and subscribing to the smart contract event OrderStateChanged. Now
follows tiny examples of the code to understand the functionality, with the sit-
uation, you are in Store role, and a new paid order came.

60

5.3. Implementation of the frontend dApp

1 async getOrder (){
2 if (this. state. orderFromStoreInfo .id !== undefined){
3 // Web3.js call to orderLocgic contract to get actual

order informations
4 const order = await this. state. orderLogic . methods . orders (

this. state. orderFromStoreInfo .id).call ()
5 this. setState ({ order : order })
6 this. setState ({ orderState : OrderState . getName (order.

state) })
7 this. determineRole () // Set role based on loged user and

order info
8 this. watchOrderEvents () // Start watching

OrderStateChanged events
9 ...

10 }

Listing 5.3: OrderLogicContract.sol getOrder function

Now we know all the stored order’s information from the local Ethereum
network. We can set this information to the global state of the application’s
reactive components can reflect a changed state. In our case, this code will
react and will show the store relevant action buttons.

1 { (this. state. orderState === OrderState .PAID &&
2 this. state.role === Role.STORE) &&
3 <p>
4 <button type=" button " className ="btn btn - primary " onClick ={

this. acceptOrder }> Accept order </ button >
5 <button type=" button " className ="btn btn - danger " onClick ={

this. cancelOrder }>Cancel </ button >
6 </p>
7 }

Listing 5.4: App.js react JSX aviable actions

Clicking on the accept order button will trigger the acceptOrder function

and a transaction call will be created.
1 async acceptOrder (){
2 this. state. orderLogic . methods . acceptOrder (this. state.order .

id).send(
3 {from: this. state. account }).once(�receipt �, (receipt)

=> {
4 ... // code
5 })
6 }

Listing 5.5: App.js calling acceptOrder function on smart contract

The last example is from the watch function. By calling acceptOrder the
order changes its state and the OrderStateChanged will be emitted. This
code is listening to these events. When we received the order change, we can
react to it and change the application’s state.

61

5. Proof of concept

1 watchOrderEvents (){
2 this. state. orderLogic . events . OrderStateChanged ({})
3 .on(�data �, event => {
4 if (this. state.order !== null){ // fix for creating one
5 if (event. returnValues . orderId === this. state.order .id

){
6 this. getOrder ()
7 }
8 }
9 })

10 }

Listing 5.6: App.js receiving OrderStateChanged events

5.3.2 Communication example

Now, we have an overview of how frontend and backend parts work, so it is
time to describe its communication. Figure 5.2 shows the sequential flow be-
tween the user application and two contracts. The first transaction is only be-
tween the application and one contract, where a confirmation is created. The
second transaction is more complicated, because the OrderlogicContract

has another call to DeliveryContract to confirm the delivery act. The code
example of this call is in listing 5.2.

It is necessary to mention that function isConfirmed(uint orderId,

address consigor, address recipient) public view returns (bool eval

) is a view function, so there is no additional gas consumption for calling this
method because it is not changing the state of the DeliveryContract.

5.4 Testing of the proof of concept

We face a complicated contract with immense responsibility, so it is necessary
to be as safe as possible, with zero tolerance to bugs. Of course, our proof of
concept doesn’t include the safest implementation, but to provide some safety
and bug catching, we have created a test set, which tests the contract’s most
common scenarios. The code example below shows the testing of Accept state
role. We can see, that only the store address is able to call the acceptOrder

function and after call, we are testing the change of the order’s state.

62

5.4. Testing of the proof of concept

Store

DeliveryConstract OrderLogicContract

orderStateChange()

confiormReceivement()

receipt

confirmationMechanism(_orderId, deliveryContractaddress)

receipt

isConfirmed(_odrerId, consignor, recipient)

result

Figure 5.2: Sequence diagram of contract communication

1 it(�Accept state �, async () => {
2 orderContract . acceptOrder (orderCount , {from: authority }).

should .be. rejected ;
3 orderContract . acceptOrder (orderCount , {from: customer }).

should .be. rejected ;
4 orderContract . acceptOrder (orderCount , {from: deliverer }).

should .be. rejected ;
5 orderContract . acceptOrder (orderCount , {from: store }). should .

be.ok;
6 const order = await orderContract . orders (orderCount)
7 assert . equal(order .state . toNumber (), 2, �Accept is ok �)
8 })

Listing 5.7: OrderLogicContract.js test case of Accept state

The second example is testing the claim of the store payment. We are
using notStrictEqual method because the di�erence of balances before and
after will be not exactly totalOrderConst, but less. It is because of the fee
for calling .step function. In the end, we are testing the change of the order’s
state.

1 it(�Claim payment �, async () => {
2 let amountBefore = await web3.eth. getBalance (store);
3 amountBefore = new web3. utils .BN(amountBefore);
4

63

5. Proof of concept

5 await orderContract .step(orderCount , {from: store });
6
7 let amountAfter = await web3.eth. getBalance (store);
8 amountAfter = new web3.utils .BN(amountAfter);
9

10 const order = await orderContract . orders (orderCount)
11 let toAdd = web3.utils .toWei (orderCost , �Ether �)
12
13 const exepectedBalance = amountBefore .add(new web3.utils .BN(

toAdd))
14 // No strict for gas expences
15 assert . notStrictEqual (amountAfter . toString (),

exepectedBalance . toString ())
16 assert . equal(order .state . toNumber (), 6, �Claim Payment is ok�

)
17 })

We have created 37 test sets for the most common ways of the order
process. The tests are for delivery deployment (1 set), confirmation mechanism
(4 sets), order deployment (2 sets), successful order (6 sets), returned order
(9 sets) , authority resolving (10 sets) and order cancellation (5 sets). They
provide nice examples of how the contract should work.

5.5 Chapter summary
This chapter described the implementation principle of the described system.
We had a walkthrough of used technologies, implementation and architecture
of the OrderLogicContract and Delivery contract. We have looked at how
the frontend application works and how to reflect changes based on the smart
contract state, thanks to emitting events. We have introduced the example of
testing the smart contract and with implementation examples.

Now you should have an idea of how the whole system can be implemented
and what problems can occur during the project. By creating this proof of
concept, we have a useful tool for measuring the transactions’ approximate
cost, which we can use to look at the system from a business perspective in
the next chapter.

64

Chapter 6
Evaluation

Business is an uncompromising world with zero tolerance for failure. If some
product or technology should have a chance to be successful in the business
world, it has to have business potential. This chapter discusses the business
advantages and dilemmas of blockchain intermediary solution for online orders.

We will estimate the costs e�ciency of the smart contract solution and then
we compare these results with a Paypal solution. We don’t stop only with cost
comparison, but we will look at the security, transparency and scalability.

6.1 Cost e�ciency
We connect to the previous chapter 5, and use created proof of concept to get
estimated metrics of the system. The proof of concept is not optimized for
gas consumption or storage e�ciency, but for this thesis is an excellent tool
for getting relevant data. The final system will not be radically di�erent.

6.1.1 Proof of concept metrics

The first thing that we can mine from proof of concept is a gas consumption.
We have measured the gas consumption of each order transaction and the
deployment of smart contracts. The contract is designed to be deployed only
once, and the store, deliverer or the customer does not pay this fee.

The second parameter that we need is the average gas price for a unit. We
use the Etherscan website to get this parameter. At the time of making this
calculation, the average gas unit price ws set to 108 GWei.

Finally, to recalculate the fee to fiat currency, we need to have a conversion
rate. The conversion rate between ETH and EUR is 1ETH = 1982,82EUR
(17. 4., 18:35 UTC from Coinbase). This rate is changing rapidly, so today
this rate is probably a lot di�erent.

Look at the table of measured values in external attachments EA5. In
figure 6.1 you can see the graph of measured values.

65

https://www.coinbase.com

6. Evaluation

Figure 6.1: Gas spent and ETH cost of order processing transactions (data:
EA5)

Altogether, the price for one entire process walkthrough is 0,149378 ETH
what is an astronomical price of 296 EUR. That is an enormous price for an
intermediary, isn’t it? Of course, with this price point, there is no chance to
use these contracts nowadays. Before we throw this idea into a trash, let’s
look at what influences the final price for the contract and some ways how to
reduce it.

6.1.2 Influences and reductions of the costs
The final price consists of three parts: the amount of gas spent, the price for
a gas unit and the conversion rate. Now we take a closer look at each of them.

The gas spent is influenced by computing steps, data transfers and memory
use. Existing techniques to write a solidity code optimize for gas spent.
Mostly the unnecessary expenses come from cycles or dead code. We
are also not storing the whole strings of products, only hashes for this
reason. We are losing the information of concentrate products, but we
can still evaluate the correctness of the order.

Price for a gas unit works on standard economic principle. The price for
a gas unit depends on the ratio of waiting transactions and the number
of miners. Now this ratio is extremely bad for users and developers, but

66

6.2. Comparison with other solutions

lucky times for miners. For the designed process, the opposite state or
balanced state of the network is beneficial. [69]

A future update of the Ethereum network from Proof of Work to Proof
of Stake can dramatically reduce the transaction costs.

The conversion rate has extremely high volatility nowadays. Sadly, we
can’t predict the movement.

6.2 Comparison with other solutions

We have used the Paypal solution as inspiration and intermediary a lot, now
it is time to compare these two solutions not only from price perspective. By
the price table from their o�cial website [70], here is a small graph example
in figure 6.2. The dispute fee can be charged based on the Paypal decision
or even can be assigned a high volume dispute fee. The table 6.2 is counting
with a standard dispute fees.

Figure 6.2: Paypal fees influenced by order value (data: EA5)

On the other hand, the smart contract solution has almost constant fee for
all orders. The process ended in a refunded state is naturally more expensive
than finished in a complete state, but the price of the order does not influence
the final price.

67

6. Evaluation

The table 6.1 compares a smart contract solution, Utrust solution and
Paypal service from a di�erent point of views. Utrust is also an intermediary
prototype of the solution, which works with cryptocurrency, but there is no
smart contract on the backend, but their own systems. [38]

Table 6.1: Comparison of payment solutions

Field Paypal Utrust To-be model
Fees 0.30Ä + 3,75%

from order price
1% from order
price

Constan fee
based on nubder
of transactions

Data Data are stored
in Paypal servers,
which full copy of
the order

Data are stored
in Utriust servers
(not mode speci-
fied)

Hashes of data
are store in public
network

Pesonal
data

Users has an Pay-
pal account

Users has an
Utrust account

Possibility to sup-
por virtial iden-
tity

Supported
currency

Fiat currencies
(USD, EUR,
RUB ...)

Payment
in crypto
(Ethereum,
Bitcoun, Utrust)
and convertions
to fiat currencies
(USD, EUR,
RUB ...)

Only crypto
(Ethereum)

Supported
solution

In-call support, e-
mail support, ac-
count onpen a dis-
pute posability

Forum support,
account open a
dispute

No support, only
a blochchain arbi-
tration or author-
ity help in frozen
state

Supported
e-commerce
solutions

Woocommerce,
Magento,
PrestaShop,
Utust API,
JumpSeller,
OpenCart,
Payrexx, Shopify
....

Woocommerce,
Magento,
PrestaShop,
Utust API,
JumpSeller,
OpenCart,
Payrexx, Shopify

Posibility to sup-
port all solutions

After this validation, it does not look well with the idea of using a smart
contract as an intermediary for online payments. And that is completely fine
because blockchain is only at the beginning, and the more popular blockchain
is, the better the smart contract solutions become.

68

6.3. Benefits and impacts of the to-be state

6.3 Benefits and impacts of the to-be state
To truly understand the potential of this solution, we need to go further in
time. We need to imagine how the world can use blockchain technology, and
smart contract payment will be only one piece of the puzzle in the whole image.
We mentioned a few benefits of blockchain use earlier in 3.5, so now we look
at ”How smart contract order payments can improve blockchain idea”. We
will also continue from the idea of an advanced future architecture described
in 4.5.1.

Supply chain management: The to-be model is specially designed to sup-
port third party delivery contract. The only restriction is to conform the
delivery contract interface with one mandatory function. So the delivery
contract (or contracts) can do much more. Promising function candi-
dates are to calculate prices or the traceability for end-user functions.
Would not it be perfect to see where the goods come from directly on the
website? Or to evaluate the originality of ordered goods. Every aspect
of the delivery contract depends on the deliverers and stores.

Fraud reduction: Using the to-be model will make scam at the stores a lot
harder. It is exponentially harder to scam someone when everything you
do is immutably written into blockchain. On the other side, if people
are not well informed about how to interact with a contract, there is
always a way how to scam them. It will require a lot of time and energy
to teach people that they are fully responsible for their decisions, and
there is no step back function in blockchain.
It can’t be an automatically safe operation to ”pay by crypto protected
by smart contract” and the customers have to be careful where they are
sending a transaction. They have to pay attention if they are signing a
transaction for the right smart contract. In future, it can be a useful tool
to check this information for users as now web browsers are checking the
certificates of web sites, but as you know it’s not 100%.

Marketing and reviews: Online reviews are the basic pillar of public opin-
ion. We have talked a lot about reviews and their verification in 4.1.
The to-be model can serve as a fantastic example of review verification,
where the reviewer can review only the order, that they made, and the
public sees what really happened. The potential customer can see not
only the ratio of satisfied customers but also the number or successfully
completed orders. It will become much easier to estimate the store’s
credibility.

Protecting personal information and privacy: To-be model is opened
to support virtual identities. There is no requirement that the cus-
tomer address has to be an externally owned account. It can be freely

69

6. Evaluation

a smart contract with an interface for providing proofs (proof of age as
an example) as verifications to order logic contract.
We can go even further, and the stores can also have their validators, so
the store account doesn’t have to be EOA account and can be linked to
a public registration entity.

Scalability: Designed to-be model is ready for having a variety of logics for
specific geolocation law restrictions. It is almost impossible to have one
order logic for all countries. As indicated, the o�cial order logic contract
will be created by the government authority to respect local laws and
enable law forces to interfere with transactions (in a frozen state as
decision authority of course).

Cost reduction: We have talked, that this kind of solution has the advantage
of the constant cost fee for transactions. Ethereum in not only working
blockchain and in the future other cheaper solutions can become popular.
We have used Das contract methodology and it is not fixed to Ethereum.
The working principles can be used in others blockchains as well.

Besides these benefits, some challenges have to be solved. Blockchain is
a relatively new technology and people have to learn how to interact with it.
They have to understand what it means, that the transactions are public. A
huge challenge will be for humanity to trust the blockchain technology.

Blockchain brings responsibility to users, so they are responsible for every
signed transaction. Only the user is responsible for their secret key and the
seed phase. If the user is not careful enough, it can easily lead to a loss of
their crypto coins and no one would be able to help them.

6.4 Chapter summary
We talked about the cost e�ciency of designed to-be models and compared
this model with Paypal and Utrust solutions. The to-be model is not well
suited for today’s use (mainly for transaction costs), but it has promising
benefits and advantages in future.

We have also described the impact of the to-be model on the eCommerce
market from di�erent perspectives and which challenges blockchain technology
can expect in future to become successful.

70

Chapter 7
Conclusion

This diploma thesis shows that blockchain technology has the potential to
change eCommerce, to help legitimate sellers and fair customers.

The beginning of this work was devoted to introducing and explaining
the basic principles and ideas of blockchain and its specific implementation in
the form of Ethereum. Understanding how Ethereum works is the key to a
deeper understanding of Smart Contracts and their purpose. The end of the
chapter is dedicated to BPMN and its symbols, which helped us understand
the modelled processes.

The third chapter introduced the world of eCommerce and its essential
pillars. It informed about the technical possibilities of modern online stores
and fundamental processes such as payments and delivery. Great attention
was paid to the purchase contract because the whole logic of the designed
model is based on it. The end of the chapter describes the inspiring use of
blockchain in the eCommerce sphere.

The analytical part examines in detail the order process in the online store
and reveals existing solutions. From the analysis follows buyers protection in
online payment process is a critical need. This fact has a significant impact
on the creation of a to-be model using smart contracts. The system is based
on non-functional and functional requirements, which are developed into use
cases. This knowledge is the heart of the technological architecture of the
system.

As for verifying the feasibility of the proposed to-be solution, we imple-
mented a proof of concept. As proof of concept, a decentralized application
has been created. User can log in using a crypto wallet and interact with
blockchain network. DApp handles the entire communication part of the sys-
tem with smart contracts. There are two smart contracts in the network that
interact with each other. The first takes care of the order logic and the second
is used to support delivery.

The end of the work pays attention to the use of this solution in the real
world. It deals with the proposed model from a business and financial point of

71

7. Conclusion

view and the conditions that a�ect it. It focuses on the benefits and impacts
of the solution.

The work introduced a new concept of how online orders can work and
discussed its feasibility in the future. Blockchain is just beginning its journey,
and we believe that this work will help to develop it, not only in terms of
technology, but also in bringing it closer to the public.

This thesis brings insights for further research.

• Extend the to-be model to work with Decentralized identity

• Experiment to use di�erent blockchain technologies

• Recreate the to-be model for other countries, with their law specifics

• Implement the blockchain-based review mechanism for the completed
orders with statistics about customers and sellers

• Implement the browser extension for validation of trusted smart con-
tracts

• Compare the possibilities of di�erent implementations of delivery con-
tract, with support of presented model

72

Bibliography

1. SCHOLLMEIER, Rüdiger. A definition of peer-to-peer networking for
the classification of peer-to-peer architectures and applications. 07 August
2002. Linkoping, Sweden, Sweden: IEEE, 2002. isbn 0-7695-1503-7.

2. SOBTI, Rajeev; GEETHA, G. Cryptographic Hash Functions: A Re-
view. International Journal of Computer Science Issues (IJCSI). 2012,
vol. 9, no. 2, pp. 461–479. isbn 1694-0814. Available also from: http:

//ezproxy.techlib.cz/login?url=https://www-proquest-com.

ezproxy.techlib.cz/scholarly- journals/cryptographic- hash-

functions-review/docview/1033568312/se-2?accountid=119841.
Copyright - Copyright International Journal of Computer Science Issues
(IJCSI) Mar 2012; Last updated - 2012-09-17.

3. NAKAMOTO, Satoshi. Bitcoin: A Peer-to-Peer Electronic Cash System
[online]. [N.d.], vol. 2008 [visited on 2021-01-31]. Available from: https:

//bitcoin.org/bitcoin.pdf.
4. SINGHAL, Bikramaditya; DHAMEJA, Gautam; PANDA, Priyansu Sekhar.

Beginning Blockchain: A Beginner’s Guide to Building Blockchain Solu-
tions. 1st ed. 2018. Imprint: Apress, 2018. isbn 9781484234440.

5. TAPSCOTT, Don; TAPSCOTT, Alex. How Blockchain Will Change Or-
ganizations. MIT Sloan Management Review. 2017, vol. 58, no. 2, pp. 10–
13. isbn 15329194. Available also from: http : / / ezproxy . techlib .

cz/login?url=https://www-proquest-com.ezproxy.techlib.cz/

scholarly-journals/how-blockchain-will-change-organizations/

docview/1875399260/se-2?accountid=119841. Copyright - Copyright
Â© Massachusetts Institute of Technology, 2015. All rights reserved; Last
updated - 2020-09-04; CODEN - SMRVAO.

6. 9 Types of Consensus Mechanisms That You Didn’t Know About [online].
The daily bit, 2018 [visited on 2021-02-06]. Available from: https://

medium.com/the-daily-bit/9-types-of-consensus-mechanisms-

that-you-didnt-know-about-49ec365179da.

73

http://ezproxy.techlib.cz/login?url=https://www-proquest-com.ezproxy.techlib.cz/scholarly-journals/cryptographic-hash-functions-review/docview/1033568312/se-2?accountid=119841
http://ezproxy.techlib.cz/login?url=https://www-proquest-com.ezproxy.techlib.cz/scholarly-journals/cryptographic-hash-functions-review/docview/1033568312/se-2?accountid=119841
http://ezproxy.techlib.cz/login?url=https://www-proquest-com.ezproxy.techlib.cz/scholarly-journals/cryptographic-hash-functions-review/docview/1033568312/se-2?accountid=119841
http://ezproxy.techlib.cz/login?url=https://www-proquest-com.ezproxy.techlib.cz/scholarly-journals/cryptographic-hash-functions-review/docview/1033568312/se-2?accountid=119841
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
http://ezproxy.techlib.cz/login?url=https://www-proquest-com.ezproxy.techlib.cz/scholarly-journals/how-blockchain-will-change-organizations/docview/1875399260/se-2?accountid=119841
http://ezproxy.techlib.cz/login?url=https://www-proquest-com.ezproxy.techlib.cz/scholarly-journals/how-blockchain-will-change-organizations/docview/1875399260/se-2?accountid=119841
http://ezproxy.techlib.cz/login?url=https://www-proquest-com.ezproxy.techlib.cz/scholarly-journals/how-blockchain-will-change-organizations/docview/1875399260/se-2?accountid=119841
http://ezproxy.techlib.cz/login?url=https://www-proquest-com.ezproxy.techlib.cz/scholarly-journals/how-blockchain-will-change-organizations/docview/1875399260/se-2?accountid=119841
https://medium.com/the-daily-bit/9-types-of-consensus-mechanisms-that-you-didnt-know-about-49ec365179da
https://medium.com/the-daily-bit/9-types-of-consensus-mechanisms-that-you-didnt-know-about-49ec365179da
https://medium.com/the-daily-bit/9-types-of-consensus-mechanisms-that-you-didnt-know-about-49ec365179da

Bibliography

7. WACKEROW, Paul. PoW and PoS consensus-mechanisms [online] [vis-
ited on 2021-02-06]. Available from: https://ethereum.org/en/developers/

docs/consensus-mechanisms/.
8. SURATKAR, Saurabh; SHIROLE, Mahesh; BHIRUD, Sunil. Cryptocur-

rency Wallet: A Review. In: 2020 4th International Conference on Com-
puter, Communication and Signal Processing (ICCCSP) [online]. Chen-
nai, India, India: IEEE, 2020-9-28, pp. 1–7 [visited on 2021-01-31]. isbn
978-1-7281-6509-7. Available from doi: 10.1109/ICCCSP49186.2020.

9315193.
9. NEWMAN, Lily Hay. How to Keep Your Bitcoin Safe and Secure. Wired

[online]. [N.d.] [visited on 2021-01-31]. Available from: https://www.

wired.com/story/how-to-keep-bitcoin-safe-and-secure/.
10. Metamask: A crypto wallet & gateway to blockchain apps [online] [visited

on 2021-01-31]. Available from: https://metamask.io/index.html.
11. CRYPTOPEDIA. What Are Decentralized Apps? Cryptopedia [online].

[N.d.] [visited on 2021-03-29].
12. ANTE, Lennart. Smart contracts on the blockchain – A bibliometric

analysis and review. Telematics and Informatics. 2021, vol. 57, p. 101519.
issn 0736-5853. Available from doi: https://doi.org/10.1016/j.

tele.2020.101519.
13. SZABO, Nick. Smart Contracts [online]. [N.d.] [visited on 2021-02-08].

Available from: https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/

CDROM / Literature / LOTwinterschool2006 / szabo . best . vwh . net /

smart.contracts.html.
14. Bitcoin: Contracts [online] [visited on 2021-02-08]. Available from: https:

//developer.bitcoin.org/devguide/contracts.html.
15. CHRISTOPH, JENTZSCH. DECENTRALIZED AUTONOMOUS OR-

GANIZATION TO AUTOMATE GOVERNANCE FINAL DRAFT -
UNDER REVIEW: White paper [online]. 2016 [visited on 2021-02-08].
Available from: https://lawofthelevel.lexblogplatformthree.com/

wp-content/uploads/sites/187/2017/07/WhitePaper-1.pdf.
16. SAMUEL, Falkon. The Story of the DAO — Its History and Conse-

quences. Medium [online]. [N.d.] [visited on 2021-02-08]. Available from:
https://medium.com/swlh/the-story-of-the-dao-its-history-

and-consequences-71e6a8a551ee.
17. CRYPTOPEDIA. What Was The DAO? Cryptopedia [online]. [N.d.]

[visited on 2021-02-08]. Available from: https : / / www . gemini . com /

cryptopedia/the-dao-hack-makerdao.

74

https://ethereum.org/en/developers/docs/consensus-mechanisms/
https://ethereum.org/en/developers/docs/consensus-mechanisms/
https://doi.org/10.1109/ICCCSP49186.2020.9315193
https://doi.org/10.1109/ICCCSP49186.2020.9315193
https://www.wired.com/story/how-to-keep-bitcoin-safe-and-secure/
https://www.wired.com/story/how-to-keep-bitcoin-safe-and-secure/
https://metamask.io/index.html
https://doi.org/https://doi.org/10.1016/j.tele.2020.101519
https://doi.org/https://doi.org/10.1016/j.tele.2020.101519
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
https://www.fon.hum.uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/smart.contracts.html
https://developer.bitcoin.org/devguide/contracts.html
https://developer.bitcoin.org/devguide/contracts.html
https://lawofthelevel.lexblogplatformthree.com/wp-content/uploads/sites/187/2017/07/WhitePaper-1.pdf
https://lawofthelevel.lexblogplatformthree.com/wp-content/uploads/sites/187/2017/07/WhitePaper-1.pdf
https://medium.com/swlh/the-story-of-the-dao-its-history-and-consequences-71e6a8a551ee
https://medium.com/swlh/the-story-of-the-dao-its-history-and-consequences-71e6a8a551ee
https://www.gemini.com/cryptopedia/the-dao-hack-makerdao
https://www.gemini.com/cryptopedia/the-dao-hack-makerdao

Bibliography

18. BUTERIN, Vitalik. Ethereum Whitepaper: A Next-Generation Smart
Contract and Decentralized Application Platform [online]. [N.d.] [visited
on 2021-02-02]. Available from: https://ethereum.org/en/whitepaper/

%5C # a - next - generation - smart - contract - and - decentralized -

application-platform.
19. WOOD, DR. GAVIN. Ethereum Yellow Paper: ETHEREUM: A SE-

CURE DECENTRALISED GENERALISED TRANSACTION LEDGER
[online]. [N.d.] [visited on 2021-02-02]. Available from: https://ethereum.

github.io/yellowpaper/paper.pdf.
20. BARANIUK, Chris. Bitcoin’s energy consumption ’equals that of Switzer-

land’ [online]. [N.d.] [visited on 2021-02-02]. Available from: https://

www.bbc.com/news/technology-48853230.
21. Learn Ethereum: Build Your Own Decentralized Applications with Ethereum

and Smart Contracts. [Online]. Birmingham: Packt Publishing, 2019 [vis-
ited on 2021-02-08]. Available from: https://ebookcentral.proquest.

com/lib/techlib-ebooks/detail.action?docID=5904527%5C#.
22. Web3js: Ethereum JavaScript API [online]. 23. Jun 2020 [visited on 2021-

02-18]. Available from: https://web3js.readthedocs.io/en/v1.3.0/.
23. Transaction Details [online] [visited on 2021-02-17]. Available from: https:

//etherscan.io/tx/0x24673cffc87a72730b42dc3ba082f0c03baadd370/

5c95202d4e79e03602e105f.
24. Solidity [online]. 2016-2020 [visited on 2021-02-17]. Available from: https:

//docs.soliditylang.org/en/v0.7.4/.
25. Vyper [online]. Vyper Team, 2017-2020 [visited on 2021-02-17]. Available

from: https://vyper.readthedocs.io/en/stable/.
26. RICHARDS, Sam. ANATOMY OF SMART CONTRACTS [online] [vis-

ited on 2021-02-18]. Available from: https://ethereum.org/en/developers/

docs/smart-contracts/anatomy/.
27. GAGNÉ, Denis; RINGUETTE, Simon. Quick Guide [online]. 3100 Côte-

Vertu, suite 420 Montréal QC H4R 2J8 Canada: Trisotech [visited on
2021-02-18]. Available from: http://www.bpmn.org/.

28. Business Process Model and Notation, v2.0 [online]. .02nd ed. Január
2011 [visited on 2021-02-18]. Available from: http://www.omg.org/

spec/BPMN/2.0.
29. DUMAS, Marlon; ROSA, Marcello la; MENDLING, Jan; REIJERS, Hajo

A. Fundamentals of business process management. Second. New York,
NY: Springer Berlin Heidelberg, 2018. isbn 9783662565087.

75

https://ethereum.org/en/whitepaper/%5C#a-next-generation-smart-contract-and-decentralized-application-platform
https://ethereum.org/en/whitepaper/%5C#a-next-generation-smart-contract-and-decentralized-application-platform
https://ethereum.org/en/whitepaper/%5C#a-next-generation-smart-contract-and-decentralized-application-platform
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://www.bbc.com/news/technology-48853230
https://www.bbc.com/news/technology-48853230
https://ebookcentral.proquest.com/lib/techlib-ebooks/detail.action?docID=5904527%5C#
https://ebookcentral.proquest.com/lib/techlib-ebooks/detail.action?docID=5904527%5C#
https://web3js.readthedocs.io/en/v1.3.0/
https://etherscan.io/tx/0x24673cffc87a72730b42dc3ba082f0c03baadd370/5c95202d4e79e03602e105f
https://etherscan.io/tx/0x24673cffc87a72730b42dc3ba082f0c03baadd370/5c95202d4e79e03602e105f
https://etherscan.io/tx/0x24673cffc87a72730b42dc3ba082f0c03baadd370/5c95202d4e79e03602e105f
https://docs.soliditylang.org/en/v0.7.4/
https://docs.soliditylang.org/en/v0.7.4/
https://vyper.readthedocs.io/en/stable/
https://ethereum.org/en/developers/docs/smart-contracts/anatomy/
https://ethereum.org/en/developers/docs/smart-contracts/anatomy/
http://www.bpmn.org/
http://www.omg.org/spec/BPMN/2.0
http://www.omg.org/spec/BPMN/2.0

Bibliography

30. SKOTNICA, Marek; PERGL, Robert. Das Contract - A Visual Domain
Specific Language for Modeling Blockchain Smart Contracts. In: 2020,
pp. 149–166. isbn 978-3-030-37932-2. Available from doi: 10.1007/978-

3-030-37933-9_10.
31. SKOTNICA, Marek; APARÍCIO, Marta; PERGL, Robert; GUERREIRO,

Sérgio. Process Digitalization using Blockchain: EU Parliament Elec-
tions Case Study. In: 2021, pp. 65–75. Available from doi: 10.5220/

0010229000650075.
32. Top Websites Ranking: Top sites ranking for E-commerce And Shop-

ping ¿ Marketplace in the world [online]. SimilarWeb - Milton Gate 60
Chiswell St London EC1Y 4AG: SimilarWeb LTD 2021 [visited on 2021-
03-18]. Available from: https://www.similarweb.com/top-websites/

category/e-commerce-and-shopping/marketplace/.
33. 102/2014 Z. z. o ochrane spotrebitel’a pri predaji tovaru alebo poskyto-

vańı služieb na základe zmluvy uzavretej na dial’ku alebo zmluvy uzavretej
mimo prevádzkových priestorov predávajúceho a o zmene a doplneńı niek-
torých zákonov [online]. Námestie slobody 1, 813 70 Bratislava: Úrad
vlády Slovenskej republiky [visited on 2021-03-20]. Available from: https:

//www.slov-lex.sk/pravne-predpisy/SK/ZZ/2014/102/.
34. Most popular payment methods of online shoppers in selected regions as

January 2019 [online] [visited on 2021-03-19]. Available from: https:

/ / www . statista . com / statistics / 676385 / preferred - payment -

methods-of-online-shoppers-worldwide-by-region/.
35. How do online payments via credit or debit card work?: Online credit

and debit card transactions can be very complex, involving many di�erent
entities and several steps. [Online]. Ltd., Sutton Yard, 65 Goswell Road,
London, EC1V 7EN, United Kingdom [visited on 2021-03-20]. Available
from: https://gocardless.com/guides/online-payments-guide/

online-payments-credit-debit-card/.
36. Reklamačný poriadok. Tatra Banka a.s. [Online]. [N.d.] [visited on 2021-

03-20]. Available from: https://www.tatrabanka.sk/files/archiv/

dolezite-dokumenty/ReklamPor_SJ_01_11_20.pdf.
37. KEHL, Frank. What Is Click To Pay?: Everything You Need To Know

About The New Online Checkout Option [online] [visited on 2021-05-05].
Available from: https://www.merchantmaverick.com/click-to-pay/.

38. Utrust: Accept crypto payments, easily. [Online]. Harju maakond, Tallinn,
Kesklinna linnaosa: Utrust, 2021 [visited on 2021-04-22]. Available from:
https://utrust.com.

39. Zasilkovna [online]. Zásilkovna s.r.o. Lihovarská 1060/12 190 00 Praha 9:
Zásilkovna 2021 [visited on 2021-03-20]. Available from: https://www.

zasilkovna.cz.

76

https://doi.org/10.1007/978-3-030-37933-9_10
https://doi.org/10.1007/978-3-030-37933-9_10
https://doi.org/10.5220/0010229000650075
https://doi.org/10.5220/0010229000650075
https://www.similarweb.com/top-websites/category/e-commerce-and-shopping/marketplace/
https://www.similarweb.com/top-websites/category/e-commerce-and-shopping/marketplace/
https://www.slov-lex.sk/pravne-predpisy/SK/ZZ/2014/102/
https://www.slov-lex.sk/pravne-predpisy/SK/ZZ/2014/102/
https://www.statista.com/statistics/676385/preferred-payment-methods-of-online-shoppers-worldwide-by-region/
https://www.statista.com/statistics/676385/preferred-payment-methods-of-online-shoppers-worldwide-by-region/
https://www.statista.com/statistics/676385/preferred-payment-methods-of-online-shoppers-worldwide-by-region/
https://gocardless.com/guides/online-payments-guide/online-payments-credit-debit-card/
https://gocardless.com/guides/online-payments-guide/online-payments-credit-debit-card/
https://www.tatrabanka.sk/files/archiv/dolezite-dokumenty/ReklamPor_SJ_01_11_20.pdf
https://www.tatrabanka.sk/files/archiv/dolezite-dokumenty/ReklamPor_SJ_01_11_20.pdf
https://www.merchantmaverick.com/click-to-pay/
https://utrust.com
https://www.zasilkovna.cz
https://www.zasilkovna.cz

Bibliography

40. ANGWEI, Law. Smart contracts and their application in supply chain
management: Thesis: S.M. in Engineering and Management. 2017.

41. Beef chain: Blockchain Verified Beef & Sheep [online]. © 2018. BeefChain™
[visited on 2021-03-18]. Available from: https://beefchain.com.

42. ANZALONE, Robert. Big Co�ee Sellers Use Blockchain To Connect
Farmers And Customers. Forbes.com [online]. [N.d.] [visited on 2021-03-
18]. Available from: https://www.forbes.com/sites/robertanzalone/

2020/07/15/big-coffee-sellers-use-blockchain-to-connect-

farmers-and-customers/?sh=7ca30a54f1a1.
43. Wowtrace.io: BLOCKCHAIN-BASED TRACEABILITY SOLUTION [on-

line]. District 11, Ho Chi Minh City, Viet Nam: WOWTRACE [visited
on 2021-03-18]. Available from: https://www.wowtrace.io/en.

44. SIWICKI, Bill. The next big thing in pharmacy supply chain: Blockchain:
With $200 billion lost to counterfeit drugs annually and patient safety
issues, a chain-of-custody log that blockchain could enable holds promise.
[Online]. HIMSS Media [visited on 2021-03-19]. Available from: https:

//www.healthcareitnews.com/news/next- big- thing- pharmacy-

supply-chain-blockchain.
45. PITMAN, Jamie. Fake Reviews Are a Real Problem: 8 Statistics That

Show Why [online]. BrightLocal Ltd [visited on 2021-03-19]. Available
from: https://www.brightlocal.com/learn/fake-reviews-are-a-

real-problem-8-statistics-that-show-why/.
46. MURPHY, Rosie. Local Consumer Review Survey 2020 [online]. Bright-

Local Ltd [visited on 2021-03-19]. Available from: https://www.brightlocal.

com/research/local-consumer-review-survey/%5C#fake-reviews.
47. KAEMINGK, Diana. Online reviews statistics to know in 2021: CUS-

TOMER EXPERIENCE [online] [visited on 2021-03-19]. Available from:
https://www.qualtrics.com/blog/online-review-stats/.

48. E-Commerce Fraud Loss Reaches $57.8 Billion [online]. BNP Media [vis-
ited on 2021-03-19]. Available from: https://www.securitymagazine.

com / articles / 88451 - e - commerce - fraud - loss - reaches - 578 -

billion.
49. HARVEY, Campbell; MOORMAN, Christine; TOLEDO, Marcos. How

Blockchain Will Change Marketing As We Know It. SSRN Electronic
Journal. 2018. Available from doi: 10.2139/ssrn.3257511.

50. REGULATION (EU) 2016/679 OF THE EUROPEAN PARLIAMENT
AND OF THE COUNCIL: on the protection of natural persons with re-
gard to the processing of personal data and on the free movement of such
data, and repealing Directive 95/46/EC (General Data Protection Reg-
ulation) [online] [visited on 2021-03-19]. Available from: https://eur-

lex.europa.eu/legal-content/CS/ALL/?uri=CELEX:32016R0679.

77

https://beefchain.com
https://www.forbes.com/sites/robertanzalone/2020/07/15/big-coffee-sellers-use-blockchain-to-connect-farmers-and-customers/?sh=7ca30a54f1a1
https://www.forbes.com/sites/robertanzalone/2020/07/15/big-coffee-sellers-use-blockchain-to-connect-farmers-and-customers/?sh=7ca30a54f1a1
https://www.forbes.com/sites/robertanzalone/2020/07/15/big-coffee-sellers-use-blockchain-to-connect-farmers-and-customers/?sh=7ca30a54f1a1
https://www.wowtrace.io/en
https://www.healthcareitnews.com/news/next-big-thing-pharmacy-supply-chain-blockchain
https://www.healthcareitnews.com/news/next-big-thing-pharmacy-supply-chain-blockchain
https://www.healthcareitnews.com/news/next-big-thing-pharmacy-supply-chain-blockchain
https://www.brightlocal.com/learn/fake-reviews-are-a-real-problem-8-statistics-that-show-why/
https://www.brightlocal.com/learn/fake-reviews-are-a-real-problem-8-statistics-that-show-why/
https://www.brightlocal.com/research/local-consumer-review-survey/%5C#fake-reviews
https://www.brightlocal.com/research/local-consumer-review-survey/%5C#fake-reviews
https://www.qualtrics.com/blog/online-review-stats/
https://www.securitymagazine.com/articles/88451-e-commerce-fraud-loss-reaches-578-billion
https://www.securitymagazine.com/articles/88451-e-commerce-fraud-loss-reaches-578-billion
https://www.securitymagazine.com/articles/88451-e-commerce-fraud-loss-reaches-578-billion
https://doi.org/10.2139/ssrn.3257511
https://eur-lex.europa.eu/legal-content/CS/ALL/?uri=CELEX:32016R0679
https://eur-lex.europa.eu/legal-content/CS/ALL/?uri=CELEX:32016R0679

Bibliography

51. EIDAS SUPPORTED SELF-SOVEREIGN IDENTITY. EIDAS [online].
May, 2019 [visited on 2021-03-19].

52. Decentralized Identifiers (DIDs) v1.0: Core architecture, data model, and
representations [online] [visited on 2021-03-19]. Available from: https:

//www.w3.org/TR/did-core/.
53. Google Business [online] [visited on 2021-02-21]. Available from: https:

//www.google.com/business/.
54. MIGS, Bassig. How to Delete a Google Review [online]. November 17,

2020 [visited on 2021-02-21]. Available from: https://www.reviewtrackers.

com/blog/how-to-delete-google-review/.
55. Overeno zakazniky: Poznejte kvalitńı e-shop, kde nakouṕıte chytře a s

přehledem. [Online]. Heureka Group a.s [visited on 2021-02-21]. Available
from: https://www.overenozakazniky.cz.

56. Answered: How to Remove Facebook Reviews [online]. Podium [visited on
2021-02-21]. Available from: https://www.podium.com/article/how-

to-remove-facebook-reviews/.
57. KEMP, Simon. Datareportal.com: DIGITAL 2020: SLOVAKIA [online].

18 FEBRUARY 2020 [visited on 2021-02-21]. Available from: https :

//datareportal.com/reports/digital-2020-slovakia.
58. Www.similarweb.com: Website Tra�c Intelligence [online]. London [vis-

ited on 2021-02-21]. Available from: https://www.similarweb.com/

website/heureka.sk.
59. Heureka Group: PROPAGAČNÍ SDĚLENÍ [online]. [N.d.] [visited on

2021-02-21]. Available from: https://heureka.group/upload/112-

heureka-group-prezentace.pdf.
60. European Consumer Centers ECC-Net: European Consumer Centers Net-

work - ESC Network [online] [visited on 2021-03-20]. Available from:
https://ec.europa.eu/info/live- work- travel- eu/consumer-

rights-and-complaints/resolve-your-consumer-complaint/european-

consumer-centres-network-ecc-net_sk.
61. GUPTA, Mudit. How to make smart contracts upgradable! [Online]. Hack-

ermoon [visited on 2021-04-23]. Available from: https://hackernoon.

com/how-to-make-smart-contracts-upgradable-2612e771d5a2.
62. MARCHESI†, Michele; MARCHESI, Lodovica; TONELLI, Roberto. An

Agile Software Engineering Method to Design Blockchain Applications.
Software Engineering Conference Russia (SECR 2018) [online]. [N.d.]
[visited on 2021-03-28].

63. LALLAI, Giorgia; PINNA, Andrea; MARCHESI, Michele; TONELLI,
Roberto. Software Engineering for DApp Smart Contracts managing
workers Contracts. In: 2020.

78

https://www.w3.org/TR/did-core/
https://www.w3.org/TR/did-core/
https://www.google.com/business/
https://www.google.com/business/
https://www.reviewtrackers.com/blog/how-to-delete-google-review/
https://www.reviewtrackers.com/blog/how-to-delete-google-review/
https://www.overenozakazniky.cz
https://www.podium.com/article/how-to-remove-facebook-reviews/
https://www.podium.com/article/how-to-remove-facebook-reviews/
https://datareportal.com/reports/digital-2020-slovakia
https://datareportal.com/reports/digital-2020-slovakia
https://www.similarweb.com/website/heureka.sk
https://www.similarweb.com/website/heureka.sk
https://heureka.group/upload/112-heureka-group-prezentace.pdf
https://heureka.group/upload/112-heureka-group-prezentace.pdf
https://ec.europa.eu/info/live-work-travel-eu/consumer-rights-and-complaints/resolve-your-consumer-complaint/european-consumer-centres-network-ecc-net_sk
https://ec.europa.eu/info/live-work-travel-eu/consumer-rights-and-complaints/resolve-your-consumer-complaint/european-consumer-centres-network-ecc-net_sk
https://ec.europa.eu/info/live-work-travel-eu/consumer-rights-and-complaints/resolve-your-consumer-complaint/european-consumer-centres-network-ecc-net_sk
https://hackernoon.com/how-to-make-smart-contracts-upgradable-2612e771d5a2
https://hackernoon.com/how-to-make-smart-contracts-upgradable-2612e771d5a2

Bibliography

64. Ganache: ONE CLICK BLOCKCHAIN [online]. ConsenSys Software
Inc., 2021 [visited on 2021-04-22]. Available from: https://www.trufflesuite.

com/ganache.
65. TRUFFLE: SMART CONTRACTS MADE SWEETER [online]. Con-

senSys Software Inc., 2021 [visited on 2021-04-22]. Available from: https:

//www.trufflesuite.com/truffle.
66. Chai Assertion Library: BDD / TDD assertion framework for node.js

and the browser that can be paired with any testing framework. [Online].
12 Mar 2021 [visited on 2021-04-22]. Available from: https : / / www .

chaijs.com.
67. Open Zeppelin: The standard for secure blockchain applications [online].

Argentina, Australia, Canada, Costa Rica, Ireland, Netherlands, Russia,
Spain and United States: Open Zeppelin, 2015 [visited on 2021-04-22].
Available from: https://openzeppelin.com.

68. Dapp University: Become an in-demand blockchain master [online]. Dapp
University, 2021 [visited on 2021-04-22]. Available from: https://www.

dappuniversity.com.
69. DU’MMETT, Shawn. Why is ETH Gas Price so high? Cryptopolitan

[online]. [N.d.] [visited on 2021-04-18]. Available from: https://www.

cryptopolitan.com/why-is-ethereum-gas-price-so-high/%5C#

Why_is_the_price_of_Ethereum_Gas_so_high.
70. PayPal Merchant Fees: When you sell with us, you can get some of the

most competitive rates in the business. [Online]. San Jose, California
95131: Paypal [visited on 2021-04-22]. Available from: https://www.

paypal.com/us/webapps/mpp/merchant-fees.

79

https://www.trufflesuite.com/ganache
https://www.trufflesuite.com/ganache
https://www.trufflesuite.com/truffle
https://www.trufflesuite.com/truffle
https://www.chaijs.com
https://www.chaijs.com
https://openzeppelin.com
https://www.dappuniversity.com
https://www.dappuniversity.com
https://www.cryptopolitan.com/why-is-ethereum-gas-price-so-high/%5C#Why_is_the_price_of_Ethereum_Gas_so_high
https://www.cryptopolitan.com/why-is-ethereum-gas-price-so-high/%5C#Why_is_the_price_of_Ethereum_Gas_so_high
https://www.cryptopolitan.com/why-is-ethereum-gas-price-so-high/%5C#Why_is_the_price_of_Ethereum_Gas_so_high
https://www.paypal.com/us/webapps/mpp/merchant-fees
https://www.paypal.com/us/webapps/mpp/merchant-fees

Appendix A
Acronyms

BPMN Business Process Model and Notation

CA Contract account

dApp Decentralized Application

DAO Decentralized Autonomous Organization

DID Decentralized identifier

EA External attachment

EVM Ethereum Virtual Machine

EOA Externally owned account

ETH Ethereum currency

GDPR General Data Protection Regulation

PoS Proof of Stake

PoW Proof of Work

SAAS Software as a service

81

Appendix B
Contents of enclosed USB

readme.md.............................the file with contents description
external attachments.............directory with external attachments

EA1 As-is model

EA2 To-be model

EA3 Requiretements and use-cases

EA4 DasContract to-be model

EA5 PoCMetricts

EA6 ThesisShowcase

EA7 code

EA8 process simulation

EA9 Diagrams

src..the directory whole dApp
migrations..migration files
srcsource code of the dApp

components....................................react application
contracts............................smart contract source code

testtests for the application
text ...the thesis text directory

thesis.pdfthe thesis text in PDF format
thesisthe directory of LATEX source codes of the thesis

LICENSE ..License file

83

	Introduction
	Goal
	Theoretical background
	Basic terms
	Peer-to-peer network
	Hash function

	Blockchain
	The philosophy of blockchain
	Consensus mechanism
	A Proof of work (PoW)
	Other algorithms

	Cryptocurrency Wallet
	Decentralized application

	Smart contract
	Ethereum
	Accounts
	Gas and transaction cost
	Cost examples

	Transactions
	Smart contract in Ethereum

	BPMN
	Activity
	Gate
	Event
	Flow
	Artifacts
	Pool and swimlane
	Data

	Das contract

	Smart contract in eCommerce
	Technical solutions
	Products
	Purchase contract

	Payments
	Delivery
	Blockchain in e-commerce
	Payment methods
	Supply chain management
	Genuine reviews
	Fraud reduction
	Marketing
	Protecting personal information and privacy

	Suitable process for digitization

	Analyses of an online store order process
	Process of an online store order
	Order as a state machine
	Existing solutions on the market
	Buyers protection
	Buyers Protection process

	To be model
	Functional requirements
	Non-functional requirements
	Use cases
	Data model

	Technological architecture
	Smart contract composition
	Advanced future architecture
	DApp

	Chapter summary

	Proof of concept
	Used technologies
	Smart contract implementation
	Implementation of the frontend dApp
	Code example
	Communication example

	Testing of the proof of concept
	Chapter summary

	Evaluation
	Cost efficiency
	Proof of concept metrics
	Influences and reductions of the costs

	Comparison with other solutions
	Benefits and impacts of the to-be state
	Chapter summary

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed USB

