
Instructions

The Manta project will soon migrate to a new architecture as well as to a new graph database. This will 

require a reimplementation of current processes and introduces a possibility for optimization of the 

present data processing algorithms. 

 

1. Get familiar with the Manta project, especially with the persistent data flow storage module in the 

graph database and its usage in Manta algorithms. 

2. Investigate which operations and algorithms in the Manta project would be the right candidates for 

optimization. 

3. Select suitable candidates for parallel processing. 

4. Design optimized and parallel processing of the operations from the second and the third step with 

the focus on preserving the same results that would be yielded with the original approach. 

5. Implement a prototype and carry out profound testing, including performance testing, to verify the 

positive performance effects of your proposed enhancements.
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Abstrakt

Táto práca sa zameriava na migráciu imperat́ıvneho pŕıstupu grafových al-
goritmov z grafovej databázy Titan do procedurálneho pŕıstupu grafovej da-
tabázy Neo4j pomocou dotazovacieho jazyka Cypher. Ciel’om je tiež optimali-
zovat’ tieto algoritmy a zaviest’ paralelizmus, čo môže byt’ celkom náročná úloha
z dôvodu uzamykania databázy, ako aj d’aľśıch obmedzeńı pochádzajúcich z
paralelizovaných algoritmov.

Kĺıčová slova grafová databáza, optimalizácia, paralelizácia, Neo4j, Titan

Abstract

This work focuses on the migration of the graph algorithms from the Titan
graph database’s imperative approach into the Neo4j graph database’s proce-
dural approach using the Cypher query language. The goal is also to optimize
these algorithms and introduce parallelism, which can be a quite challenging
task due to database locking, as well as the other constraints originating from
the parallelized algorithms.

Keywords graph database, optimization, parallelization, Neo4j, Titan
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Introduction

Modern systems usually work with a large amount of data and as the data is
rapidly growing in volume and variance, the complexity of maintenance and
change increases with it. This complexity further grows as the data usually
originates from various sources and is interconnected in a way that change of
one item typically reflects into cascade changes of many other items across
the di�erent sources.

MANTA Flow application helps with the maintenance problem as it can
analyze the connections between the data of various sources and create unified
data lineage. Using this lineage, customers can see how each item a�ects the
other items. For example, in a banking database system, one would be able to
see how the column amount of a table representing transactions is connected
to the balance column of a table representing accounts as the change would
be reflected in some database script which is analyzed by MANTA Flow.

The analyzed data comes from various sources and can be substantially
large requiring a lot of processing time. On top of that, each stored element
has a certain revision (version), which determines its validity.

After the analysis of the input data is done, it needs to be merged into
the database. The database, in this case, is the bottleneck as the analysis
can not only be done in parallel within a single technology but also parallel
processing of di�erent technologies is possible, as mostly the order of technolo-
gies processed is not set. There are cases, in which certain processing order is
required, but those are the minority. After the initial analysis and insertion
of analyzed data into the database, various post-processing algorithms, which
might also modify the database, are invoked.

The main goal of this thesis is to choose the right candidate for optimiza-
tion from within the graph algorithms used in the Manta Flow project. As the
current database algorithms run in serial, the focus lays in finding the way to
be able to run them in parallel, which could greatly increase the performance.
Currently, the main storage technology used in the Manta is the Titan graph
database, but it will be soon migrated to a new graph database. This the-
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sis also deals with the reimplementation of the optimized versions of selected
algorithms within the new graph technology.

In the first chapter, the MANTA Flow project, the current implemen-
tation of the chosen algorithm, as well as graph database specifications are
described. The next chapter contains an analysis of the possible optimization
steps along with the migration possibilities, followed by the chapter contain-
ing an implementation of the previously analyzed parts. The last chapter
contains performance evaluation to determine the increase in performance in
comparison to the current implementation.
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Chapter 1
Background

In the first chapter, the MANTA Flow project as a whole is described. The
focus of this chapter is to explain how Manta currently works, its architecture,
mainly the database storage system, along the model used to represent internal
structures.

Following the initial explanation, merger, one of the important database
algorithms used within MANTA is introduced. Optimizing this algorithm is
the main focus of this work and will be discussed in the following chapters.

1.1 MANTA
MANTA is a data lineage platform that automatically scans your data envi-
ronment to build a powerful map of all data flows and deliver it through a
native UI and other channels to both technical and non-technical users. With
MANTA, everyone gets full visibility and control of their data pipeline. [3]

It is used to extract and analyze various type of technologies, where users
can visualize the result of the analysis, which provides them with better
overview of how the data in their systems is interconnected, therefore sup-
porting better data quality and control.

1.1.1 Supported technologies

The technologies MANTA supports can be divided into 5 categories [4]. Each
category has specific traits, which separates them, but there is one thing that
they all have in common – metadata, which can be extracted and used to
create dataflows. These technologies are grouped as follows:

• Modeling tools This group represents modeling tools used to build con-
ceptual and logical models which provide a higher-level representation of
the data used within a company. MANTA can be used to interpolate the
dataflows extracted from physical data into these higher-level models.
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• Data integration tools Data integration involves combining data re-
siding in di�erent sources and providing users with a unified view of
them. The most widely used term for representing this group is ETL.
All of the ETL tools are used to extract and process the data, so it can
be loaded into another system.

• Programming languages Programming languages like C# or Java
contain methods through which certain objects are passed, which means
that data flows through them. This data can be extracted and used to
provide a more detailed flow of the data.

• Databases Databases are the most frequent target of the data analysis
as this is the technology that contains the most data and is used in
almost every company.

• Reporting & Analysis These tools often work together with database
and ETL tools to further aggregate and analyze the data to create var-
ious reports.

1.1.2 Architecture

The currently used architecture model of the MANTA application is the client-
server model. This model works in a way, that the application is distributed
into two separate modules which communicate together. Each of these mod-
ules contains several components.

• MANTA Flow CLI The client part of the model is a Java command-
line application, which contains certain scenarios to extract and analyze
the metadata (along with several supporting scenarios to create a new
version, clean the repository, etc.).

• MANTA Flow Server The server part of the model is a Java applica-
tion deployed on the Tomcat application server, which handles requests
sent from the client. The MANTA Flow Server contains an embedded
graph database Titan, which is persistent storage serving as a repository
of the extracted metadata. The model stored on the database can be
visualized by the viewer module, which is the last bigger component of
the MANTA Flow Server.

Another important segment of the application is the Admin UI, which
runs on a separate server than the MANTA Flow Server. It allows users to
manage configuration and handle the updating of both client and server parts
of the main application. The other use of this application is to view logs from
all run scenarios in a sophisticated user-friendly way.
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1.2 Data Model

This section contains a detailed description of how the data lineage within
MANTA is represented. There are two main types of objects – vertices to
identify various objects and edges used to connect certain vertices. Both
object types are divided into several subtypes representing a specific part of
the hierarchy or other supporting structures. Currently, there are 9 types of
vertices and 10 types of edges used in MANTA.

1.2.1 Vertices

Most of the vertex types are used to represent structural objects retrieved from
the metadata analysis, but some vertices are used for versioning purposes.
Each of the vertices includes several properties that describe it or serve for
indexing purposes for faster lookups.

There are three special vertices, which serve as control structures. Only
one instance of each controlling structure can exist at any time. Each of these
special vertices contains boolean property indicating the type of the root and is
used solely for indexing. These vertices are used to separate the database into
three distinct parts and serve as the roots of the respective subtrees created by
connecting other vertices to them. All instances of other vertex types contain
vertexType property, which represents the type of the vertex. The separation
of the types is as follows:

• source root This vertex is the root of the source node subtree. The
depth of the subtree of this vertex is only one as it only contains source
nodes directly connected to the stated root. The indexing boolean prop-
erty it contains is named sourceRoot.

• source node As mentioned previously, these vertices can only be con-
nected to the source root. Each source node vertex contains local name

property, which points to the source file location. Following properties
are node identifier, which is a uniquely generated string. Hash property
is a hash created from the source file contents. The last two properties
are the technology and connection which are references to the technolo-
gies from which the source files were extracted.

• revision root Revision root serves as the root of the versioning subtree.
This subtree contains the history of all versions represented by revision
nodes. While the other root vertices only serve as control structures, in
addition to indexing property revisionRoot, revision root also contains
two other properties – latestCommittedRevision and latestUncommitte-

dRevision which allow easier retrieval of revision numbers which are
often used.
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• revision node This vertex represent specific version. Revision node
contains 5 properties – revisionNumber, which represents given version,
committed flag denoting whether the revision has been committed, com-

mitTime, previousRevisionNumber, and nextRevisionNumber for easier
information retrieval. Each of these vertices is connected to revision root
vertex.

• super root The super root is the root of the subtree containing all
extracted metadata from the source files. The indexing boolean property
it contains is named superRoot.

• layer Layer vertex is connected to vertex and serves to determine re-
source’s layer a�liation. It contains additional layerName and layerType

properties.
The purpose of this vertex is to di�erentiate the logical level of various
resources and underlying metadata. For example, there can be concep-
tual, logical, and physical levels, where each portrays the data from a
di�erent perspective.

• resource The resource is the highest level vertex connected directly
to the super root vertex. It represents certain technology (Oracle) or
subtype of the technology (Oracle DDL). Each resource vertex has to
be connected to a specific layer vertex and contains three properties –
resourceName, resourceType and resourceDesc. Each resource vertex is
connected to super root vertex and exactly one layer vertex.

• node This is the most common vertex which can be linked to resource,
node (flow-wise or parent-wise), or attribute vertices. Contains node-

Name, nodeType properties. An example of this node vertex is Oracle’s
table or column. Each node belongs to a certain resource, either con-
nected directly or indirectly through its parent nodes.

• attribute Each node can be linked to arbitrary amount of attribute
vertices. Each attribute vertex contains attributeKey and attributeValue

properties.
These attributes are not an immediate part of node vertex due to version-
ing reasons (see subsection 1.2.4). The properties of the nodes extracted
from the metadata might get slightly changed, so the new revision needs
to reflect that.

1.2.2 Edges

Each of the vertices can be connected to other vertices by edges. There are
several types of edges, where each type can only connect specific types of
vertices and is of a certain direction.
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Every edge contains tranStart and tranEnd properties which serve as revi-
sion boundaries. For any type of vertex (save the root vertices), there has to
exist exactly one control edge which dictates its revision using the mentioned
properties.

• hasSource This type connects the source root vertex and the underlying
source node vertices. There can exist only hasSource edge between a
specific source node and source root vertices as it serves as the control
edge of the source node vertices.

• hasRevision This type connects revision root vertex and underlying
revision vertices. There can exist only a hasRevision edge between spe-
cific revision and revision root vertices as it serves as the control edge
of the revision node vertices.

• hasResource This edge connects super root vertex to every resource
vertex but also connects node vertices to specific resource vertices to
indicate their resource. If a node vertex has no direct connection to
resource vertex, its resource is determined by the parent’s resource re-
cursively. The edge is incoming to super root or resource respectively.
This edge is the control edge for resource vertices and can be the control
edge for node vertices in the case they are not connected to other nodes
by the hasParent edge.

• inLayer This type is used to connect a resource vertex to its layer vertex,
where it is incoming to the layer vertex. The edge is a control edge for
the layer.

• hasParent Used to determine parenthood of the nodes, hasParent edge
also contains one additional childName property, containing the name of
the child of a given relationship and is used for faster lookup. The edge
is incoming to the parent node vertex. Each node can have an arbitrary
number of child nodes, essentially forming a subtree. One given node
vertex can have up to exactly one parent node vertex. The edge always
serves as a control edge for the nodes as there are cases when node vertex
has both hasParent and hasResource edges.

• hasAttribute HasAttribute edge connects node vertex to its attribute
vertices and is used solely for versioning purposes. The edge is incoming
to the attribute vertex. As it is the only edge connecting the attribute
vertex it also serves as its control edge.

• directFlow This type of edge is used to represent the direct data flow
of the node vertices as extracted from the metadata. It can only connect
the node vertices and it contains an additional targetId property, which
represents the identifier of the targeted node of a given flow and is used
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for faster lookups, and a interpolated property indicating whether the
edge was created by the interpolation1.

• filterFlow As the previous type, this type is used to represent the data
flows, but in this case, the conditional data flows. For example, if the
source file contains the IF statement, filter flow is extracted. This type
also contains the same properties as the directFlow and can only be used
to connect the node vertices.

• mapsTo Represents mapping of a node vertex belonging to one layer
to a node vertex belonging to another. Same properties and vertex
requirements as on the directFlow edge are applied.

• perspective This type of edge is used to map node vertex belonging
to the physical layer so that it would appear as a child of the node
(belonging to a di�erent layer) it is mapped to. When the node vertex
is mapped to another node vertex by perspective, its entire children
hierarchy is mapped to the perspective as well. Same properties and
vertex requirements as on the directFlow edge are applied.

1.2.3 Hierarchy

As mentioned in the previous subsection, there are 3 special types of vertices
that serve as roots for the underlying subtrees. The source root and the re-
source root subtrees are just subtrees of depth one containing only elements
of one vertex type (see figures 1.1 and 1.2 depicting respective subtree’s hier-
archy).

The more complex subtree is the one created under the super root ver-
tex. The depth of this subtree is only bound by the extracted technology’s
restrictions and it contains various types of the vertices (see figures 1.3 and
1.4 depicting super root subtree hierarchy).

1.2.4 Versioning

Each vertex and edge in the MANTA hierarchy is versioned allowing users
to view dataflows of the previous analyses. The specific versions are called
revisions in MANTA terminology. Each revision is represented by the revi-
sion node vertex connected to the revision root vertex. This temporality was
implemented thanks to the work of Petr Holeček [5].

Initially, when creating a new revision all the data had to be processed
from scratch and then merged into the database which was not very e�ective
as the amount of data changed was usually not that significant. Thanks to the
work of Jan Sýkora [6], incremental updates were introduced allowing for the

1
Interpolation is used to derive data flow from one layer to another.
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Figure 1.1: Source root subtree vertex hierarchy

Figure 1.2: Revision root subtree vertex hierarchy

creation of minor revisions containing only smaller changes, hence complete
analysis and change of objects’ versions was no longer required in such cases.

The versioning of the vertices is done using control edges (which must exist
for all vertices excluding the root vertices), by their tranStart and tranEnd

properties which indicate the starting and ending revision. The value for each
of these properties is the floating-point number, which can be split into an
integral and decimal part, where the integral part represents a major revision
and the decimal part represents a minor revision. The versioning of the edges
is also done by the same properties. If the vertex or the edge is valid in the
latest revision, the decimal part of the tranEnd is .999999 and the integer
part reflects the value of the property revision number belonging to the latest
committed revision node vertex.
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Figure 1.3: Super root subtree vertex hierarchy

• Major revisions Used for the initial extraction and analysis where all
the metadata is inserted into the database or for the full updates where
the user expects a lot of changes.

• Minor revisions If there are only minor changes, the user can use the
minor revision, which updates changed vertices by updating the decimal
part of the tranEnd property.

1.3 Titan
The main database to store user’s metadata in a format described in (see
section 1.2) used in MANTA is the graph database Titan. Titan is a scalable
graph database optimized for storing and querying graphs containing hundreds
of billions of vertices and edges distributed across a multi-machine cluster. It
is a transactional database that can support thousands of concurrent users
executing complex graph traversals in real-time. [7].

Titan is a graph database engine. Titan itself is focused on compact graph
serialization, rich graph data modeling, and e�cient query execution. [8].
This section focuses on the general properties of the Titan graph database,
especially on the configuration that is used within MANTA.

1.3.1 Structure
Titan allows various data storage backend implementations, where data is
physically stored (storage backend is required) and several index backends
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Figure 1.4: Super root subtree edge hierarchy

(index backend is optional) to provide better performance of database queries.
The figure 1.5 shows the high-level architecture of Titan. This subsection
describes the data model used internally for Titan as well as how edges and
vertices

1.3.1.1 Internal data model [1]

Titan stores graphs in adjacency list format which means that a graph is
stored as a collection of vertices with their adjacency list. The adjacency list
of a vertex contains all of the vertex’s incident edges (and properties).

This storage format speeds up the traversal as neighbors of each vertex
are stored compactly in one place, however, the down side of this is that each
edge has to be stored twice, once for source and once for target vertex. The
adjacency list is sorted by the order defined by the sort key and sort order of
the edge labels.
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Figure 1.5: Titan architecture [2]

Titan stores the adjacency list representation of a graph in any storage
backend that supports the BigTable data model depicted in the figure 1.6.
Additionally, the cells must be sorted by their columns and a subset of the
cells specified by a column range must be e�ciently retrievable (e.g. by using
index structures, skip lists, or binary search)

Figure 1.6: BigTable data model [1]

1.3.1.2 Edge

Titan uses edges to connect vertices within a graph. Each edge contains a label
and has a certain direction. This label defines the semantics of the relationship
between the vertices. Edges can contain numerous properties which can be
used for indexing.
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In Titan, it is possible to define edge label multiplicity, which defines a
constraint of what edges can be created between given pair of vertices. Based
on the documentation [9] Titan recognizes the following multiplicity settings:

• MULTI Allows multiple edges of the same label between any pair of
vertices. This is the default multiplicity configuration that MANTA uses
for all edge labels.

• SIMPLE Allows at most one edge of such label between any pair of
vertices.

• MANY2ONE Allows at most one outgoing edge of such label on any
vertex in the graph but places no constraint on incoming edges.

• ONE2MANY Allows at most one incoming edge of such label on any
vertex in the graph but places no constraint on outgoing edges.

• ONE2ONE Allows at most one incoming and one outgoing edge of
such label on any vertex in the graph.

1.3.1.3 Vertices

Each Titan vertex can have a label, but unlike edge labels, vertex labels are
optional. Although optional, Titan assigns all vertices a label as an internal
implementation detail.

1.3.1.4 Properties

Each vertex and edge can have numerous properties. Keys of the properties
have to be of unified data type to ensure valid graph data. Each value asso-
ciated with a property key has to be of one of the native Titan data types.
There are three types of cardinality allowed for each property [9].

• SINGLE Allows at most one value per element for such key. In other
words, the key-value mapping is unique for all elements in the graph.
This is a default cardinality configuration as well as the one used within
MANTA.

• LIST Allows an arbitrary number of values per element for such key. In
other words, the key is associated with a list of values allowing duplicate
values.

• SET Allows multiple values but no duplicate values per element for such
key. In other words, the key is associated with a set of values.
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1.3.2 Tinkerpop Blueprints

Blueprints is a property graph model interface. It provides implementations,
test suites, and supporting extensions. Graph databases and frameworks that
implement the Blueprints interfaces automatically support Blueprints-enabled
applications. Likewise, Blueprints-enabled applications can plug-and-play dif-
ferent Blueprints-enabled graph backends. [10] Titan natively implements the
Blueprints API which means that Blueprints is the core interface for Titan.
[11]

1.3.3 Storage

There are various storage backends available to use in Titan. As mentioned
previously, the backend has to support the BigTable data model. Titan doc-
umentation [12] describes three main storage backends – Cassandra, HBase
and BerkeleyDB. MANTA, however, uses Persistit backend to allow simple
configuration and installation for the end-users.

The Persistit storage backend runs in the same JVM as Titan and provides
local persistence on a single machine. Hence, the Persistit storage backend
requires that all of the graph data fits on the local disk and all of the frequently
accessed graph elements fit into the main memory. This imposes a practical
limitation of graphs with 10-100s million vertices on commodity hardware.
However, for graphs of that size, the Persistit storage backend exhibits high
performance because all data can be accessed locally within the same JVM.
[13]

1.3.4 Deployment

Titan can be deployed on a remote standalone server. The user is then able
to interact with it by submitting Gremlin [14] queries to the server. Titan
natively supports the Gremlin Server component of the Tinkerpop stack.

Another way to use Titan is to have it embedded within the Java applica-
tion. This means that all database processing happens inside the same JVM
as the application. Communication with the storage backend, however, can
be both local or remote.

MANTA uses the embedded version of Titan to increase query performance
as the database is running on the same JVM as the server application and also
to simplify the installation.

1.3.5 Index

There are also various index backends that can be used within Titan. Few
examples listed in the documentation [15] are Elasticsearch, Solr, and Lucene.
The index backend used within MANTA is Apache Lucene.
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Apache Lucene is a high-performance, full-featured text search engine li-
brary written entirely in Java. It is a technology suitable for nearly any
application that requires full-text search, especially cross-platform. [16] Titan
supports Lucene as a single-machine, embedded index backend, which works
well with Persistit storage backend.

1.3.6 Transactions
This subsection explains how transactions are handled within Titan. It is
important to understand as all of the database algorithms are using the trans-
actions.

Almost all interaction with Titan is associated with a transaction. Ti-
tan transactions are safe for concurrent use by multiple threads. Methods
on a TitanGraph instance like graph.v(...) and graph.commit() perform
a ThreadLocal lookup to retrieve or create a transaction associated with the
calling thread. Callers can alternatively forego ThreadLocal transaction man-
agement in favor of calling graph.newTransaction(), which returns a ref-
erence to a transaction object with methods to read/write graph data and
commit or rollback. [17]

The isolation level and ACID support are configured through the storage
backend, meaning the graph database isolation level is inherited from the
isolation level of the underlying storage backend. The isolation level used
within MANTA is repeatable read, meaning that the data read repeatedly
is always the same, even if other transaction concurrently modified it.

1.3.6.1 Transaction handling

As in any transactional storage, every graph operation in Titan occurs within
the context of a transaction. According to the Blueprints’ specification, each
thread opens its transaction against the graph database with the first opera-
tion (i.e. retrieval or mutation) on the graph.

All subsequent operations occur in the context of that same transaction
until the transaction is explicitly stopped or the graph database is shutdown().
If transactions are still open when shutdown() is called, then the behavior of
the outstanding transactions is technically undefined. [17]

1.3.6.2 Transactional scope

All graph elements (vertices, edges, and types) are associated with the transac-
tional scope in which they were retrieved or created. Under Blueprint’s default
transactional semantics, transactions are automatically created with the first
operation on the graph and closed explicitly by committing or rollbacking.

Once the transaction is closed, all graph elements associated with that
transaction become stale and unavailable. However, Titan will automatically
transition vertices and types into the new transactional scope. Edges, on the
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other hand, are not automatically transitioned and cannot be accessed outside
their original transaction. They must be explicitly transitioned. [17]

1.3.6.3 Transactional failures

A transaction can sometimes fail due to several reasons. When committing a
transaction, Titan will attempt to persist all changes to the storage backend.
This might not always be successful due to IO exceptions, network errors,
machine crashes or resource unavailability [17]. To handle failures one has
to make sure that the transaction is retried upon failure so the system is
eventually in a desirable state.

Based on the documentation [17] transaction failures that can occur are
split into two categories:

• potentially temporary Potentially temporary failures are those re-
lated to resource unavailability and IO hiccups (e.g. network timeouts).
Titan automatically tries to recover from temporary failures by retrying
to persist in the transactional state after some delay. The number of
retry attempts and the retry delay is configurable.

• permanent Permanent failures can be caused by complete connection
loss, hardware failure, or lock contention.

1.3.6.4 Multi-threaded transactions

To utilize multi-core systems one can make use of multi-threaded transactions,
where multiple threads share one transactional context. Titan supports multi-
threaded transactions through Blueprint’s ThreadedTransactionalGraph in-
terface. [17] To open a thread-independent transaction, one has to use the
newTransaction() method.

1.4 Neo4j
As the Titan graph database is no longer supported, MANTA is in the process
of choosing the candidate for replacement. Neo4j is looking very promising
as it is quite mature (documentation-wise and production readiness) and the
performance of the required algorithms and queries is better than within other
candidate databases.

Neo4j’s primary product and focus is its graph database that stores data
in the form of nodes and relationships. It handles both transactional and/or
analytics workloads and is optimized for traversing paths through the data
using the relationships in the graph to find connections between entities. [18]
Neo4j supports both embedded and remote versions of the graph database.

This section describes Neo4j from its structural perspective, query lan-
guage Cypher, and transactional properties along with its possible pitfalls as
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that are closely related to the main goals of this work - optimizing graph
algorithms that run within a transactional context.

1.4.1 Structure

As with all graph databases, Neo4j is comprised of vertices (in Neo4j termi-
nology nodes) and edges (called relationships), which are, in conjunction with
their properties, forming a property graph.

Neo4j documentation [18] describes nodes as entities in the graph, which
can hold any number of attributes (key-value pairs) called properties. Nodes
can be tagged with labels, representing their di�erent roles in modeled domain.
Node labels may also serve to attach metadata (such as index or constraint
information) to certain nodes and are optional.

Relationships connecting two nodes provide directed, named, semantically
relevant connections between them. A relationship always has a direction, a
type, a start node, and an end node. Like nodes, relationships can also have
properties. Due to the e�cient way relationships are stored, two nodes can
share any number or type of relationships without sacrificing performance.
Although they are stored in a specific direction, relationships can always be
navigated e�ciently in either direction. [18]

1.4.2 Deployment

Neo4j supports both remote server deployment as well as embedded deploy-
ment. Running Neo4j in server mode involves having all the classes and logic
to access and process interactions with the Neo4j database contained within
its dedicated process, completely separate from any clients wishing to use it.
[19] HTTP-based RESP API is provided to communicate with the server.

When using the embedded mode, the Neo4j engine is running on the same
JVM as the application allowing direct access, which provides the user with
greater control but also. Using Neo4j in embedded mode provides better
performance than using the server mode as the native Java API is not slowed
down by the network round-trips of REST communication.

1.4.3 Querying

In Neo4j there are three approaches to access and traverse the graph. Users can
use Java Core API, traversal framework, or Cypher query language providing
various degrees of control.

1.4.3.1 Java Core API

Java Core API is the most basic one and is the most similar to Titan’s way of
graph manipulation. Core API provides the biggest degree of freedom as the
user is solely responsible for the graph traversing. Each node or relationship
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can be queried for related objects, hence allowing the user to create complex
traversals. The listing 1.1 demonstrates querying for node’s relationships of
certain direction and type and retrieval of relationship’s start node.

node.getRelationships(
Direction.INCOMING,
RelationshipType.withName("hasParent")

)
relationship.getStartNode()

Listing 1.1: Example of Neo4j Java Core API

1.4.3.2 Traversal framework

The Neo4j Traversal framework Java API is a callback-based, lazily executed
way of specifying desired movements through a graph in Java. [20] Traversal
framework provides a compact interface to specify how to traverse the graph.
User has to specify description to create an instance of traverser — define
what to traverse, typically in terms of relationship direction and type, order
of evaluation (depth-first or breadth-first), uniqueness determining whether
nodes or relationships can be traversed multiple times, evaluation criterion
to determine when to stop and starting nodes of traversal. However, this
framework is now deprecated.

The listing 1.2 demonstrates breadth-first traversal starting from arbitrary
startingNode, which traverses using incoming hasParent relationships. Traver-
sal continues until whole accessible graph is visited and each relationship is
visited at most once.

tx.traversalDescription()
.breadthFirst()
.relationships(RelationshipType.withName("hasParent",

Direction.INCOMING)
.evaluator(path -> Evaluation.INCLUDE_AND_CONTINUE;
.uniqueness(Uniqueness.RELATIONSHIP_GLOBAL)
.traverse(startingNode)

Listing 1.2: Processing of sub-phases

1.4.3.3 Cypher

The main asset of Neo4j is a Cypher query language. Cypher provides a
powerful declarative way to query the graph. Its syntax provides a visual and
logical way to match patterns of nodes and relationships in the graph. It is
a declarative, SQL-inspired language for describing visual patterns in graphs
using ASCII-Art syntax. [21] User can use Cypher to query the database both
remotely and as embedded.
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The listing 1.3 demonstrates basic Cypher syntax. Assume there are nodes
of label Node, which are connected using a relationships of type directFlow,
and the task is to retrieve all target nodes (nodes which are connected to source
node with an incoming relationship) of a source node having a property name

with value TableA.

MATCH (a:Node)-[:directFlow]->(b:Node)
WHERE a.name=�TableA�

RETURN b

Listing 1.3: Example Cypher query with properties inside WHERE clause

Alternatively, the syntax is shown in the listing 1.4, where property match-
ing is used instead of WHERE clause and is equivalent to the previous query.

MATCH (a:Node {name:�TableA�})-[:directFlow]->(b:Node)
RETURN b

Listing 1.4: Example Cypher query with matching properties

1.4.4 Storage
In subsection 1.3.3, the storage backend used in Titan was discussed listing
multiple variants that can be used as a storage backend. Neo4j, on the other
hand, is a native graph database meaning the underlying storage is optimized
for graphs.

What makes graph storage distinctively native is the architecture of the
graph database from the ground up. Graph databases with native graph
storage have underlying storage designed specifically for the storage and man-
agement of graphs. They are designed to maximize the speed of traversals
during arbitrary graph algorithms by ensuring that data is stored e�ciently
by writing nodes and relationships close to each other. [22]

1.4.5 Index
Neo4j documentation [23] states there are two di�erent index types: b-tree
and full-text.

• B-tree B-tree indexes can be created and dropped using Cypher. Users
typically do not have to know about the index in order to use it, since
Cypher’s query planner decides which index to use in which situation.
B-tree indexes are good at exact look-ups on all types of values, and
range scans, full scans, and prefix searches.

• Full-text Full-text indexes di�er from B-tree indexes, in that they are
optimized for indexing and searching text. They are used for queries
that demand an understanding of language, and they only index string
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data. They must also be queried explicitly via procedures, as Cypher
will not make plans that rely on them.

1.4.6 Transactions

As stated earlier, Neo4j supports both transactional and analytical processing.
Database algorithms used within MANTA often update the stored model,
hence requiring transactional processing to ensure data’s validity.

1.4.6.1 Transactional scope

Transactions in Neo4j use a read-committed isolation level, which means they
will see data as soon as it has been committed and will not see data in other
transactions that have not yet been committed. This type of isolation is
weaker than serialization but o�ers significant performance advantages whilst
being su�cient for the overwhelming majority of cases. [24]

1.4.6.2 Transaction failures

As Neo4j supports concurrent transactions and due to that there exists a
locking mechanism to ensure no 2 transactions try to modify the same nodes
or relationships. Because of this deadlock can occur. More information on
these deadlocks can be found in subsection 2.4.1 as it closely relates to the
optimization work.

1.5 Merger

This section describes the merging algorithm. After data is initially extracted
and analyzed, all the entities have to be merged into the database. This in-
cludes new objects, but also already existing objects, which require updating
of their revisions. The merging process is necessary for keeping track of dif-
ferent versions of user’s data throughout di�erent runs of flow analysis. This
part of the flow is one of the biggest bottlenecks, as the algorithm is run only
in serial and can take hours to finish in substantially large analyzed systems.

The first part of this section describes the merger from a higher perspective
– the arrival of the merge request, types of data it contains, how it gets pre-
processed, and how are the transactions managed. The second part describes
various graph traversing and modifying operations. The last part focuses on
the core of the merger algorithm, in other words, details of how the specific
objects are merged.
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1.5.1 Higher level

This subsection focuses on how the transactions are handled within MANTA,
what is the format of the merge request and the specific way transactions are
created and committed throughout each merge request processing.

1.5.1.1 Transaction management

To avoid problems with concurrent writes locks for accessing the database are
used on the application level. When creating a new transaction for accessing
the database, TransactionLevel value is used for determining the type of
isolation. Based on this value, a specific application-level lock is acquired,
followed by a creation of a new transaction, which is then used to process
the specific request using a callback. Java ReentrantReadWriteLock lock
implementation is used to guard the database access for di�erent threads.
There are 5 di�erent values of TransactionLevel:

• READ Used for reading access of the database, which can be performed
by multiple threads at the same time, as the reading lock can be held
by more threads simultaneously. The read-only transaction is created
for this level.

• READ NOT BLOCKING Used for non-blocking reading access. No
lock is applied, meaning the other transactions can access and modify
the database concurrently. The read-only transaction is created for this
level.

• WRITE EXCLUSIVE Used for writing to the database exclusively
as the writing lock can be owned by one single thread and only if there
is no other thread that holds the reading lock. For this isolation level, a
read-write transaction is used.

• WRITE SHARE Used for concurrent modification, the same lock as
in READ level is applied, ensuring that processing multiple transactions
within this isolation level is possible. The transaction type is the same
as in the exclusive writing level.

• WRITE SOURCE CODE Used for storing the source code files. The
lock used is distinct from the main database lock as it is used to modify
di�erent subgraphs. Only one thread can hold this lock. The same type
of transaction as in other writing levels is used.

1.5.1.2 Merge request format

The input of the merging process is a file containing a linearized graph repre-
sented by a list of several object types – source codes, layers, resources, nodes,
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node attributes, edges, and edge attributes. This order is always respected as
the merging of certain types must precede other types.

One of the reasons for the specific order is the layers preceding the resources
as each resource always belongs to a specific layer. Another reason for this
order is the merging of the nodes as it must happen before the merging of
the node attributes and edges because a node attribute is always bound to a
certain node and an edge can only exist between already existing nodes. The
last case where the order is important is the precedence of the source code
objects as the node attribute objects may reference it. A detailed description
of the specific object types and their attributes:

• Source code Represents stored source node. Consists of local identifier,
name, hash, technology, and connection string.

• Layer Represents resource’s layer. Consists of local identifier, layer
name, and layer type.

• Resource Represents resource. Consists of local identifier, name, type,
description, and identifier reference to the layer it belongs to.

• Node Represents node. Consists of local identifier, reference to its par-
ent and resource, name, type, and optionally a flag (REMOVE MYSELF,
REMOVE) used in minor revisions for more e�cient merging. The refer-
ence to its parent node can be blank if the node has no parent.

• Node attribute Represents attribute of the node. Consists of the local
identifier, key, and value of the attribute.

• Edge Represents edge between two nodes. Consists of local identifier,
name, type, the source node, and the target node.

• Edge attribute Represents attribute of the edge. Consists of the local
identifier, key, and value of the attribute.

1.5.1.3 Merge orchestration

As a certain technology is being analyzed, the merge requests are sporadically
sent to the MANTA Flow Server endpoint. Each technology can be analyzed
in parallel, meaning multiple requests can arrive in a small time frame. After
the request arrives, the head of the stream gets processed, as it contains source
code objects which need to be validated against the MANTA license.

After that, the request proceeds to the merging phase, where it tries to
retrieve WRITE EXCLUSIVE lock (see part 1.5.1.1) to merge its content. Each
merging transaction is committed after processing 500 objects and the lock
is released. The count of objects was determined to be an optimal threshold
to minimize commit time. Each request keeps track of the objects processed
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in their most recent transaction in case of transaction failure to retry the
processing.

By limiting the number of merged objects within single transaction, various
merging requests contend with each other for the database lock, and only after
owning process finishes processing its batch of objects the lock is released,
which is then available for other processes. An important thing to note is that
it is not only available for the merging processes but also for other MANTA
modules which use the database mostly for reading (can be done concurrently),
however, if at least one thread holds the reading lock the writing lock can not
be acquired.

1.5.2 Graph functions

This subsection describes various graph methods used to modify and retrieve
entities within the Titan graph used for merging purposes. Within embedded
Titan, the imperative approach is used, meaning graph traversals are done by
querying vertices recursively. There are 3 structures containing these methods
for more specific reasons.

1.5.2.1 Graph creation

Graph creation focuses on creating vertices and edges connecting various ver-
tices. Methods used for merging purposes:

• createLayer Used for creating layer vertex.

• createResource Used for creating resource vertex along with an edge
connecting it to a specific layer to which it belongs.

• createNode Used to create node vertex. There are 2 versions of this
method, one where only an edge connecting the node to its parent is
created and the second, where an edge connecting it to its resource is
created as well (see part 1.2.3).

• createEdge Creates an edge of a specific type between two given ver-
tices. Contains validation of whether the specific type of edge can be
created between given vertices.

• createNodeAttribute Creates a node attribute vertex with an edge
connecting it to the owning node vertex.

• createRevisionNode Creates a new revision node vertex in the revi-
sion subtree to represent new revision.

• createSourceCode Creates a new source node vertex in the source
node subtree.
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1.5.2.2 Graph operation

Graph operation focuses on traversing and retrieval of specific entities con-
tained within a graph.

• getVertexByQualifiedName Retrieves the vertex by specified path.
The path contains a list of vertices represented by three values – name,
type, and resource’s name. The graph is then traversed within a given
revision starting from super root vertex going through resources and
vertices by the list values.

• setSubtreeTransactionEnd This method is used for incremental up-
dates. The revisions of the whole subtree of certain node vertex are
updated and in some cases, invalid vertices are deleted. This operation
is done by traversing the edges connecting the given node to its subtree
(by MANTA hierarchy) of a node recursively.

• getResource Retrieves the resource of the vertex by traversing the
graph from the given vertex to its resource. If the vertex is of node

type, the traversal is done through its parent recursively until resource
vertex is reached. If the vertex is of attribute type its owning node is
first retrieved and then the same approach is used.

• getLayer Retrieves the layer of the vertex by retrieving the resource of
the vertex by using the previous method and then retrieving the directly
connected layer.

• getVertexPathString Retrieves the full path of the vertex. The full
path of the certain vertex is retrieved by traversal starting from the
given vertex to its resource. The same approach is used as in getResource

method, but instead of retrieving the resource, a string concatenation of
all vertices on the path is returned.

• getEdge Retrieves the edge of a specific type connecting two given
vertices within a specific revision.

1.5.2.3 Revision utilities

Revision utilities contain methods for updating revisions of the control edges
connecting certain vertices. Methods used in the merger process are as follows:

• setVertexTransactionEnd Sets the new revision of the given vertex.
Used when merging an already existing vertex to update its revision to
a newer one by updating the revision property of its control edge.

• setEdgeTransactionEnd Sets the new revision of the given edge. Used
when merging an already existing edge to update its revision property.
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1.5.3 Current merging process
As the specific object is read from the request’s input stream, the merging of
that object begins. Merging is done di�erently for every object type. Through
merging, the contextual structure is maintained to keep track of mappings of
local identifiers of input objects to their merged counterparts in the graph.
This subsection describes how specific types of input objects are merged.
Merging of each type is of similar structure – at first, the previous existence of
the object is determined and then based on the gained information, the object
is either created or its revision is updated. The common merging processes of
the vertices and edges are depicted in the figures 1.7 and 1.8 respectively.

Figure 1.7: Common vertex merging

Figure 1.8: Common edge merging

1.5.3.1 Source code

Vertices representing source nodes are directly connected to the source root
vertex. Due to this, the source root vertex is first queried to determine the
previous existence of the source node vertex. This is done by querying for
vertices connected to the source root vertex by an edge of type hasResouce
having the value of tranEnd property higher or equal to the latestCommitte-

dRevision. To di�erentiate it from other source node vertices, its name and
technology are compared to the input object’s properties.
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If the given source node existed in the latest revision, ending revision
(tranEnd) of its control edge is updated to merged revision number and in the
case, it did not exist, it is created with an edge connecting it to the source
root vertex.

1.5.3.2 Layer

Layer type is processed together with the resource as the control edge has
to be added between them to mark validity of the layer and the resource’s
a�liation to the layer, so the merging of this type only consists of adding the
mapping of local layer identifier to its attributes, hence no database access is
done there.

1.5.3.3 Resource

Resource vertices are connected to the super root vertex by hasResource edge.
So to determine the previous existence of the resource, the super root vertex
is queried for all its children connected by hasResource edge belonging to the
latest revision and having the value of childName property equal to the name
from the input. Then the correct resource vertex is determined by comparing
its type (resourceType) to the type retrieved from the input properties.

Previous non-existence of the vertex representing a given resource implies
that its layer does not exist either so both the resource and the layer (layer
information retrieved using the mapping table from the contextual structure)
are created. Firstly the layer vertex is created and then the resource vertex is
created with two edges, one serving as a control edge for the resource (having
hasResource type), connecting it to the super root, and the second one as a
control edge of the layer (having inLayer type).

If the vertex representing resource exists, revision of its control edge is
updated and the database is queried to determine whether the layer to which
the resource is supposed to belong exists. If the vertex representing layer
exists, the ending revision of its control edge is updated. It can also happen
that the resource already has a layer, whose type does not match with the type
of the input properties, but this di�erence is ignored and the same approach
is used. If the vertex representing layer does not exist, both the vertex and
the control edge connecting it to the resource vertex are created.

1.5.3.4 Node

Each node vertex is either connected directly to the resource by hasResource
edge or its parent node vertex by hasParent edge. To decide which vertex is to
be queried to determine the previous existence of the node, input properties
are used. At first, both vertices representing the node’s resource and parent
nodes are fetched from the database using their database identifiers retrieved
from the mapping contained in the contextual structure. Both resource’s and
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parent’s vertex must exist (if specified in the input properties) as it had to be
processed before the given node following the structure of the input file. Next,
the type of control edge is determined by whether the node has a parent or a
resource. If the parent’s value in input properties was blank, hasResource is
used, otherwise hasParent is used.

After determining the type of control edge, the correct vertex (parent or
resource) is queried for all vertices connected to its by the determined edge
type belonging to the latest revision having childName property value set to
the name value retrieved from the input properties. The correct vertex is
determined by its nodeName and nodeType properties.

If the correct vertex exists, mapping of a local identifier to database ver-
tex identifier is added to the contextual structure for further use, and the
following step is determined by its flag (input property). If the flag’s value is
REMOVE MYSELF, the node with its whole subtree is removed. This means all
the ending revisions (tranEnd) of control edges of the node’s subtree are set
to the latest committed revision. Another possible value of the flag is REMOVE,
which behaves in the same way as REMOVE MYSELF, but preserves the node
itself. If the already existing node does not contain any flag, only the tranEnd

property of its control edge is updated.
In the other case, the new vertex representing the node along with its

control edge. In case that node belongs to a di�erent resource than its parent
(see part 1.2.2) 2 edges have to be created. One of these edges is the node’s
control edge connected to its parent and the other is connecting it to its
resource. In the case that the node shares the same resource as its parent,
only the edge connecting it to its parent is created. The decision of whether the
resource of the node is equal to the resource of its parent is done by retrieving
the parent’s resource by traversing the graph upwards and then comparing it
to the resource’s node.

1.5.3.5 Node attribute

Each node attribute belongs to a specific node. To determine whether the
node attribute exists, the owning node vertex has to be fetched first. It is
fetched from the database using its internal identifier retrieved from the con-
textual structure. There are two special types of node attributes mapsTo and
sourceLocation.

If the attribute key is mapsTo, it represents the mapping of the source
node to a di�erent node, represented by a path to the node from the super

root vertex. Target node vertex is then retrieved. After retrieving the vertex
the database is queried for the mapsTo edge between source and target ver-
tices belonging to the latest revision. If it does exist, its tranEnd property is
updated, otherwise, it is created.

If the value of the key is sourceLocation, the stored database identifier of
the source code is used as the attribute value and the new attribute vertex
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with an edge connecting it to owning node vertex is created.
Then the owning node vertex is queried for adjacent vertices connected by

hasAttribute edges belonging to the latest revision. The correct node attribute
vertex is chosen by its attributeKey and attributeValue properties. If the vertex
exists, revision of its control edge is updated, otherwise, the vertex with its
control edge is created.

1.5.3.6 Edge

Both source and target vertices are retrieved based on their identifiers from
the mapping retrieved from the contextual structure. After the two vertices
are retrieved, the database is queried for all the edges of the requested type
belonging to the latest revision, which are connecting the source and target
vertices. If the edge already exists between the two nodes its tranEnd property
is updated. Otherwise, a new edge with specified properties is created between
the source and target vertices.

The perspective edges (see subsection 1.2.2) are processed a bit di�erently.
If the merged edge is of this type, all outgoing edges of the source vertex
having perspective type are retrieved. Then the layers of all target vertices of
the retrieved edges are compared with the layer of target vertex, potentially
resulting in multiple retrievals of the layers, each being an expensive operation.
If the layer of the target vertex is not equal to any other compared layer,
the node attribute vertex belonging to the source node is created containing
the layer’s name as attributeKey and path to target node as attributeValue.
The edge connecting source and target vertices are also created, but with an
additional layer property with the layer’s name as a value. The described
process is depicted in the figure 1.9.

Figure 1.9: Perspective edge merging
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1.5.3.7 Edge attribute

Each edge can have its attributes, which are stored as the properties of the edge
in the database. The edge can be easily retrieved as the database identifier
was already collected when processing the given edge. After getting the edge,
its attributes are checked to determine whether the edge already contains the
input attribute with its value.

If the edge does not contain the attribute, it is added. If it does contain the
attribute but with a di�erent value, the value is overwritten if the edge was
created in the merged revision. If the edge was created in the previous revision,
it is copied with a new attribute value, and the old edge’s transEnd property
is set to latestCommittedRevision number. Various situation of merging edge
attributes are depicted in the figure 1.10.

Figure 1.10: Edge attribute merging
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The goal of this chapter was to acquaint the reader with MANTA in general
and the data model it uses. As the Titan is currently used database, its main
properties were described as well as general properties of the Neo4j database,
to which the project will be migrated. The last focus of the chapter was the
current merging algorithm, whose migration and optimization will be the main
focus of the following chapter.
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Chapter 2
Analysis

This chapter describes the possible parallelization of the current merging al-
gorithm within the Titan graph database. The chapter later focuses on the
migration of the merging process to the Neo4j graph database as well as pos-
sible improvements to increase its overall performance. These improvements
include minor optimization steps as well as parallelization of the whole process.

2.1 Titan parallelization
Titan graph database supports multithreaded transactions (as mentioned in
part 1.3.6.4), so it might be possible to use this feature to improve the merg-
ing process within the current database. If successful, this would only be
a temporary solution to boost performance as Neo4j, to which the MANTA
project will soon be migrated, does not support threaded transactions. This
section describes previous attempts to parallelize the merging process as well
as possible parallelization using multithreaded transactions.

2.1.1 Optimistic parallel merging

There was an attempt to enable merge requests to run in parallel. During
merging WRITE SHARE lock is used allowing other threads to acquire the lock
as well and create transactions for database access.

However, in some cases two or more merging processes may want to edit a
single vertex or edge which causes RepositoryRollbackException exception
to be thrown in all secondary threads, causing them to rollback. When this
occurs each transaction is re-run using the kept journal and all objects are
processed again.

Another problem is that if two or more merging processes want to add the
same new vertex representing a certain type and the requested vertex did not
exist at a time when merging processes attempted to determine its previous
existence. Both evaluate the vertex as non-existent (which was correct at

31



2. Analysis

that given moment), so both create it and then proceed to work with created
database vertex while processing following vertices and edges causing more
distinct subtrees to be created. This is later fixed by traversing the database
graph and removing the duplicates, however, this approach proved to be less
e�ective than the sequential approach.

2.1.2 Parallelization posibilities
There are two possible solutions for parallel merging within the Titan graph
database. One solution is to use multithreaded transactions throughout for
multiple merging requests where the database would be synchronized through
the shared singleton transaction. Synchronizing multiple merge requests as
in previously described optimistic merging is not possible as various transac-
tions do not see local changes of other transactions. To synchronize multiple
transactions one would need to ensure that no two transactions would attempt
editing the same subtree to avoid locking exception or duplicate subtree cre-
ation. To make this possible, locks for all vertices would need to be maintained
– which could be done using full path of the vertex from resource, but this
could bring another problem such as deadlocks and synchronization overhead.

On the other hand, if a multithreaded transaction for all merging pro-
cesses is used, writing synchronization is not required as it is all done within
one transaction, reading locks, on the other hand, are still required to pre-
vent merging processes from creating duplicate objects in the database. To
have only one running merging transaction, various operations need synchro-
nization, be it creating and committing the transaction, controlling the count
of objects processed as well as troubleshooting in case of failed or rollbacked
transaction, as all participating merging processes would lose their progress.

2.1.3 Multithreaded transaction
This subsection discusses various locking scenarios required for merging spe-
cific object types as well as transaction synchronization mechanisms.

2.1.3.1 Transaction synchronization

To maintain a single transaction used by various threads running in parallel
synchronization of a transaction is required in a number of places:

• Creation or transaction retrieval Before merging a certain object,
the current transaction has to be retrieved by merging the thread. If
there is no transaction existing, a new one must be created. This process
must be guarded by a lock to ensure exclusive access.

• Commiting After a certain number of processed objects is reached,
only one thread can be allowed to commit the transaction, while all
other threads have to wait before continuing their work.
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• Rollbacking If the committing of the transaction fails or a certain
thread fails transactional processing, the transaction is rollbacked. It
must be ensured that all participating transaction rerun their journal,
as all processing within that transaction is deemed invalid.

• Counting There has to be an atomic counter to count the number of
objects processed within a current transaction and a number of objects
submitted to merging to make sure that the commit happens at right
time – after all submitted objects are processed.

2.1.3.2 Locking

Each object type requires reading locks in di�erent places to ensure that no 2
transactions attempt to create distinct vertices or edges representing the same
object. Description of locks for each object is as follows:

• Source code To process this type, the reading lock has to be applied
for the source root vertex to determine whether the vertex representing
the given source code already exists.

• Layer This type does not require any kind of locking as the processing
is not accessing the database and only storing the layer’s attributes.

• Resource Reading lock must be applied to the super root as it is queried
for the resource vertices. If the resource does not exist, the reading lock
is kept until the resource, its layer, and all the control edges are created,
otherwise, it is released.

• Node To avoid creating more distinct subtrees the control vertex has
to be locked and as it was already processed previously, its database
identifier is already stored, so the lock can be bound to the identifier.
After determining control vertex and edge, the database is queried for
the control node’s children and this is where the reading lock must be
applied so that no other process queries for children of this node. Even
tighter lock could be applied to lock pair of parent and child (parent’s
database identifier is known, however for input vertex only name and
type is known). This tighter locking would mean that database could
be queried for di�erent children in two di�erent merging processes. If
the vertex did not exist it will be created and the lock will be released
or if it did exist, the lock can immediately be released.

• Node attribute Node attribute can be of di�erent types and di�erent
types require di�erent locking.
If the type is mapsTo, the target vertex, whose existence is ensured, as
it had to be merged in the previous part of the analysis, gets fetched
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based on its qualified name and then the database is queried for the edge
of type mapsTo between the source vertex and the target vertex. This
part needs to be locked by reading lock for edges, which is described in
the following edge locking.

If the node attribute is of normal type or processed attribute of type
sourceLocation, the reading lock needs to be applied for querying of
node attribute vertices belonging to a given node to prevent duplicates.

• Edge To prevent duplicate edges from being created some locking must
be applied here as well. Locking of the edges was described in the
mapsTo attributes, as the edges are created there.

As the edges are unidirectional, using the reading locks for both source
and target vertices is not required, locking one of those is su�cient.
Tighter locking which would consist of source and target vertices and
edge’s type could be used here as well, and would allow more permissive
querying for the edges. The lock can be released after the edge was
created or after determining it was already existing.

• Edge attribute Database retrieval of the edge has to be locked as
the following processing depends on the retrieved edge. Only after the
processing, the reading lock can be released.

This approach, however, proved to be quite ine�cient and problematic as
various problems arose after it was implemented. A detailed description will
be provided in the last chapter 4.

2.2 Neo4j migration

!
Graph entities naming
In the following sections and chapters graph vertices will be re-
ferred as nodes and graph edges will be referred as relationships
when referring to Neo4j structure.

This section discusses Neo4j from a querying perspective to explore ways
to migrate the database accessing parts of the merging algorithm. The first
subsection explains various Cypher structures needed to implement the algo-
rithm. The MERGE command is discussed in a separate subsection, as it might
be directly applicable to the algorithm.

In the case of Neo4j, the plan is not to use the embedded version as it
currently is with Titan, but to use the server mode to provide better scalability
and the possibility of distribution.
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2.2.1 Graph functions
A basic example of Cypher query language was already shown in part 1.4.3.3 of
the Neo4j description, but this subsection addresses structures more specific
to the merging algorithm. Mainly used queries in the merging algorithm
are the retrieval queries used to fetch the children of a certain object by
specific properties and relationships or to fetch the objects by their database
identifiers. Another category of simple queries is represented by the creational
queries used to create nodes and relationships.

The more complex queries are required for the merging operations which
need graph traversals such as retrieval of the object by its path from super

root vertex or traversal and manipulation of the subtree of a certain node.

2.2.1.1 Simple queries

The most commonly used operations are simple selections as well as cre-
ations. Only Cypher statements required are MATCH, WHERE or alternatively
using property matching and CREATE. Here are a few examples of how certain
operations can be performed:

• Retrieval by identifier Both nodes and relationships have their inter-
nal identifier by which they can be queried. The listing 2.1 shows query
can be used to retrieve node with an identifier value 547380. Retrieval
of the relationship by its identifier is shown in the listing 2.2.

MATCH (node)
WHERE ID(node)=547380

RETURN node

Listing 2.1: Retrieval of a node by its identifier

MATCH ()-[relationship]-()
WHERE ID(relationship)=547380

RETURN relationship

Listing 2.2: Retrieval of a relationship by its identifier

• Retrieval of nodes to ensure existence Merging of every object
type contains the part, where the previous existence of the object is
determined. This is either the existence of the node connected by a
relationship to another existing node, or the existence of a relationship
between two existing nodes.
Consider the following example where the goal is to retrieve nodeB which
is connected to nodeA (having database identifier 547380)by a relation-
ship of type RelationshipType incoming to nodeA. Following query can
be used to retrieve nodeB by the given specification.
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MATCH (nodeA)<-[relationship:RelationshipType]-(nodeB)
WHERE ID(nodeA)=547380

RETURN nodeB

Listing 2.3: Retrieval of a node by its relationship

• Simple creational operations Another category of queries contains
the simple creational queries which either create a new node connected
to a given node or create a relationship between 2 existing nodes. The
listing 2.4 demonstrates the creation of a new node of label Node with
an outgoing relationship of type RelType to a given node with identifier
547380.

MATCH (givenNode)
WHERE ID(givenNode)=547380
CREATE (givenNode)<-[relationship:RelType]-(node:Node)

RETURN node

Listing 2.4: Creation of a new node connected to certain node

• Property modification operations Last very common operation is
to update revision properties on relationships. This can be done using
SET statement (see listing 2.5).

MATCH ()-[relationship]-()
WHERE ID(relationship)=547380

SET relationship.tranEnd=2.5

Listing 2.5: Updating tranEnd property of certain relationship

2.2.1.2 Complex traversal queries

This part focuses on more complex queries for methods mentioned in the part
1.5.2.1 of the current merging process. In Titan, these queries were done im-
peratively by recursively retrieving neighboring nodes. The same thing could
be done while using embedded Neo4j, but using Cypher to match patterns is
more e�cient.

The goal is to create general Cypher queries which would work for all
possible types of input nodes.

• Retrieval of node’s resource In the merging process, the only re-
trieval of node label occurs, however in other modules even querying for
the resource of other underlying types (such as node attribute) might
be required. In Cypher it is possible to quantify the number and types
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of relationships in the matched pattern. This property allows for simple
traversal.
Consider the example depicted in the figure 2.1 and the Cypher query in
the listing 2.6, where the task is to retrieve the resource of nodes having
various labels.

Figure 2.1: Example for resource retrieval

MATCH path=(node)<-[:hasAttribute*0..1]
-()-[:hasParent*0..]
->()-[:hasResource]->(resource)

WHERE ID(node)=···
RETURN resource

Listing 2.6: Retrieval of a resource of certain node

There are 3 cases that need consideration:

– Attribute Consider resource’s retrieval of a node A, which has At-

tribute label, the first relationship pattern will match it - as it
expects up to 1 hasAttribute relationship. Then it expects arbi-
trary sequence of outgoing hasParent relationships. Based on the
figure 2.1, 2 hasParent relationships will be matched – as node B
and node C are on the path to resource.

– Node Retrieval of the node having node label works exactly same
as in the attribute’s case, with the di�erence that no hasAttribute
relationship will be matched by the pattern.
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– Node with di�erent resource In the scenario where a node has a
di�erent resource than its parent, multiple resource nodes would
be matched. To select the correct one, it is important to limit
the size of the result to one, but also sorting of matched paths is
required. This sorting ensures that the resource from the shortest
path is returned (see listing 2.7).

– Resource If the node’s label is a resource, it is a bit tricky as it also
has an outgoing hasResource relationship connecting it to super root

node, meaning the super root node would be returned if used query
as-is. To deal with this conditional return has to be added – either
checking for the label of retrieved resource variable or checking for
the label of matched input node (see listing 2.8).

···
RETURN resource
ORDER BY LENGTH(path) ASC
LIMIT 1

Listing 2.7: Sorting result and limiting its size

···
RETURN CASE

WHEN �Resource� in labels(node)
THEN node
ELSE resource

END
as resource

Listing 2.8: Conditional return

Another very similar use case is retrieving the layer of the node, which is
very similar to discussed cases with the addition of inLayer relationship
and layer node variable to the pattern.

• Getting node by its path from the super root The input of this
task is a list of elements containing the resource’s name, name, and type.
The original method in Titan for this retrieval was iteratively retrieving
children of the node vertices starting from the resource vertex.
The original implementation is as follows. After retrieving children of a
given vertex (node or resource), for every child, its resource is fetched
for further comparison with the initial resource. Then for each child, its
name and type are compared with the input properties and the fetched
resource’s name with the initial resource. By this comparison, the chil-
dren are split into 2 groups – exact matches and case insensitive matches.
After every child is evaluated exactly one child is selected for further eval-
uation, where the group of exactly matched children takes precedence.
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However, if the group, from which the child is selected, contains more
than 1 node, an exception is thrown as that is an invalid state.
In the Cypher pattern can be created to match the path based on the
list from the input. There are two approaches to creating the required
query pattern, each starting from the super root node.
The first approach is to create the pattern concatenation of the matched
parts, as shown in the following example. The pattern must be supple-
mented by the correct revision properties of all control edges in the WHERE
clause. To make sure the paths contain both exact and case insensitive
matches the properties of the nodes need to be included in the WHERE
clause as well (example shown in the listing 2.9).
This solution however has a few drawbacks. Its readability is not very
good as the final query would only be essentially glued from multiple
parts. Another problem is that due to the query not being parameter-
ized, the potential for query caching is not there. The last problem is
also related to parametrization, as there is a risk of database injection
attacks due to creating queries this way.

MATCH paths=(superRoot)<-[r1:hasResource]
-(:Resource {resName: �resA�, resType: �resTypeA�})
<-[r2:hasResource]
-(:Node {nodeName: �nodeA�, nodeType: �nodeTypeA� })
<-[r3:hasParent]-···
WHERE r1.tranEnd >= 1.0 AND r2.tranStart <= 2.0 AND ···
Listing 2.9: Matching full path by string concatenation

The second approach is to directly pass the input list into the query
as a parameter. This makes query caching possible and is much more
readable. Every matched path can be iterated and each value compared
insensitively (with the input list) in the WHERE clause as a part of ALL
predicate in the query using the TOLOWER2 and COALSCE3 statements.
In the initial solution, for every node in the retrieved path, the resource
is retrieved for comparison with the resource in the path to ensure that
no node with a di�erent resource is selected. This can be a very ex-
pensive operation if performed separately, but in Cypher the addition
of retrieving each path node’s directly connected resource is much more
e�ective. The listing 2.10 illustrates the described query.

WITH $inputList AS path
MATCH p = (superRoot)<-[:hasResource]

-(res)<-[*SIZE(inputList) - 1]-()

2
TOLOWER converts strings to lower case

3
COALESCE converts null values to predefined values
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···
WHERE TOLOWER(COALESCE(NODES(p)[idx][$nodeName], ��))

= TOLOWER(path[idx-1][0])
AND TOLOWER(COALESCE(NODES(p)[idx][$nodeType], ��))

= TOLOWER(path[idx-1][1])
···
UNWIND NODES(p) AS n

MATCH resPaths = (n)-[:hasResource]->(r)
RETURN p, COLLECT(resPaths) AS nodeToResourcePaths.

Listing 2.10: Matching full path by input array

• Updating node’s subtree Method setSubtreeTransactionEnd up-
dates the ending revision property for each control relationship in the
node’s subtree, as well as for all adjacent relationships of the subtree.
To achieve this functionality with Cypher, consider listing 2.6, where the
path to resource from the node is matched. If the pattern was reversed in
a way that paths from the node to the attributes were matched, matched
paths would form a subtree of a node. After matching the subtree, all
that’s left to do is to update every relationship of every node belonging
to the subtree. This can be done using UNWIND statement (see listing
2.11 for the full example).

MATCH path=()<-[:hasAttribute*0..1]-()-[:hasParent*0..]->(node)
WHERE ID(node)=···

UNWIND NODES(path) as nodes
MATCH (nodes)-[relationships]-()
SET relationships += $property

Listing 2.11: Updating subtree of a node

2.2.2 Merge
Cypher query language provides MERGE statement which could, in theory, be
very useful for the merging algorithm as it checks for a given pattern in the
stored graph and creates it only if it did not exist.

In a concurrent environment, however, a race condition can occur as MERGE
only combines MATCH and CREATE statements and has no way of knowing what
changes are done in the database by a di�erent transaction. To prevent this
unique constraint can be used which ensures that no two same objects are
created concurrently. Constraint, however, induces performance penalty. For
performance reasons, creating a schema index on the label or property is highly
recommended when using MERGE [25].

The versioning of the graph using the relationship produces another big
problem, as the versioning is done using relationships, there can be multi-
ple nodes of the same properties in the same position in the graph (under
di�erent revisions), which means that to use MERGE properly in a concurrent
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environment, each of nodes would need to contain unique constraint on the
combination of revision and its hierarchy position (e.g. full path from super
root), which is highly impractical memory-wise.

2.2.3 Graph equality testing

To ensure that the migrated merging algorithm works correctly, some sort of
evaluation technique is required. In the current MANTA, it is possible to
export the whole Titan graph into the dump file, which can then be imported
to the database. To ensure that the algorithm works correctly, this imported
graph has to be compared to the graph created using the migrated algorithm.

The problem of determining equality between 2 graphs is called the exact
graph matching problem or graph isomorphism problem. There are various
algorithms that can be used for solving this problem, most of which are based
on depth-first traversal of the graphs and finding appropriate matching. For
example, the VF2 algorithm [26] uses a state-space representation and is based
on a depth-first strategy while employing the feasibility rules to ensure con-
sistency of the explored states.

However, in MANTA, there are some inconveniences that make it impos-
sible to directly compare the graphs as some elements are interconnected not
only by the graph edges but also by the properties. The first problem is that
the node attributes with a key sourceLocation contain a source code identifier
which is a UUID, which would result in the structurally same graphs having
di�erent values. The other cases of this interconnection are the flow edges,
which contain targetId property representing the database identifier of that
target node. The original database identifiers from the Titan database are also
exported, so the mapping of these properties can be easily created, however,
to solve the first problem, mapping of the source codes has to be created.

By taking advantage of the MANTA graph structure, simple algorithms
to determine equality can be implemented. This subsection describes the use
of the traversal framework and Cypher query language to compare 2 MANTA
graphs.

2.2.3.1 Traversal framework and Java Core API

The deprecated traversal framework still works and can be used to compare the
graph in conjunction with Java Core API. As the MANTA graph contains 3
subgraphs, the source subgraph, the revision subgraph, and the main metadata
subgraph, each has to be compared.

To compare the source and the revision subgraphs Java Core API can be
used to retrieve children of source root and revision root nodes respectively.
After the retrieval, the mapping can be created by comparing the properties
of each node.
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The idea of the metadata subgraph comparison is to use a traversal frame-
work to collect all paths from the super root node to the leaf nodes using the
hasResource and hasParent relationships. The problem however is that the
criteria determining the order of the evaluation of the traversed nodes can not
be specified, resulting in a nondeterministic order of the paths, hence they
can not be compared directly. Therefore, a mapping of each node has to be
created, which can be very computationally expensive as each of the paths has
to be compared with other paths. To improve performance the paths can be
grouped by their length and starting and ending nodes. After the mapping of
all nodes is finished, all the attributes and relationships of each node have to
be compared. But this can easily be done by using Java Core API and retriev-
ing the adjacent nodes and relationships and comparing all their properties.
To solve the problem of node attributes of key sourceLocation, the mapping
for each source code has to be created and then used when comparing node
attributes of the mapped nodes.

2.2.3.2 Cypher

The main advantage of using Cypher directly instead of the previous solution
is the ability to chose the order in which traversed nodes are returned as
specifying the sorting order inside Cypher query is possible. This ensures that
no path-to-path comparisons are required and each node is only traversed
once. To compare 2 traversed graphs they have to be traversed and compared
concurrently or the textual representation of each graph can be created while
traversing and then the representations can easily be compared.

Once again the 3 subgraphs are compared separately with the exception
of the source code nodes due to them being referenced by attribute nodes.
As each source code node contains the hash code of the stored file, the at-

tributeValue inside the attribute nodes can be replaced by the hash of the
given node before saving the textual representation resulting in the equality
of the compared attributes referencing the same source code nodes in di�erent
graphs.

The traversal of the metadata subgraph has to be done starting from super

root node continuing by traversing hasResource and hasParent relationships to
the leaf nodes to prevent ambiguity problems. Other relationship types would
be traversed as well so the correct representation of the graph can be created,
however, the relationship traversal can cause ambiguity problems as depicted
in the figure 2.2, where the string representations of the relationships A->D
and B->C are ambiguous due to C having same properties. These relationships
which are candidates of causing ambiguity have to be resolved to ensure graph
equality.
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Figure 2.2: Edge ambiguity problem

2.3 Improvements
This section focuses on performance improvements of the migrated merging
algorithm. The goal is to improve the performance of the re-implemented
algorithm in Neo4j. The first subsection discusses minor optimization steps
which will guarantee a performance boost in certain situations. The second
and last subsection contains information about user-defined procedures within
Neo4j and the possible use of them to improve overall performance. The results
of various approaches will be discussed in the last chapter (see chapter 4).

2.3.1 Minor optimizations

This subsection describes minor changes of the merging algorithm, which could
increase its performance. Most of the proposed changes are caching-based to
trade-o� a little of memory for better processing time.

• Retrieving latest revision number Retrieving a number of the last
committed revision happens during the merging of every object type.
Originally, this number is retrieved by querying revision root in the
database and getting its latestCommittedRevision property. This, how-
ever, creates redundant database calls even if it is cached. Fetching this
number only once during the initialization of the merging process and
saving it in the contextual object, from which the processing is able to
retrieve it as needed, would reduce thousands of database calls to just
one.

• Node identifiers instead of nodes Originally, when processing each
type that requires previously processed nodes (e.g. source and target
nodes when creating a relationship), the required nodes are retrieved
from the database. The properties of the retrieved nodes are rarely
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needed for processing. Therefore, retrieving these nodes is often redun-
dant and only the way to access them in the database is needed, so the
relationships and other nodes can be added.
Database access insurance can be achieved in two ways – caching the
entire node objects or only their database identifiers. The advantage of
storing entire nodes is that in case of needing to process their properties
they are directly available. However, it also comes with a memory disad-
vantage and could cause problems when large merge input is processed.
Caching of database identifiers seems like a more suitable approach as
the memory usage won’t be as high and the need for properties to process
is minimal.

• Newly added nodes When processing every object type, the database
is always queried for the previous existence of the merged object to deter-
mine whether to create a new object or to update its revision. Consider
merging a node, the parent of the node is queried for its children, how-
ever, if the parent was freshly created within current merge processing,
this operation is unnecessary as there can not exist any children.
Knowledge of which nodes are newly added can be used during merging
processing in multiple cases – when merging a node, if its parent is newly
created, it is safe to assume that the currently merged node could not
have existed, therefore there is no need to query its parent for its previous
existence. When merging relationships, if either source or target nodes
are missing, querying for previous existence is unnecessary. This would
work similarly with processing node attributes, as they could not have
existed if the owning node was newly added. Caching newly added nodes
only helps if there are new merged nodes in the given merge request.

• Node to resource mapping Given node can share the same resource
as its parent or have a di�erent resource. When the new node is being
created, a comparison of its resource and its parent’s resource is done to
determine the fact. Originally this is done by retrieving the resource of
the parent by traversing the graph upwards which can be very costly in
deep graphs. As the node hierarchy is merged gradually, all the nodes are
processed with their resource, therefore storing these relationships and
later using them for comparison is much more e�cient than traversing
the graph.

2.3.2 User-defined procedures

Neo4j enables implementing and using user-defined procedures which might
help performance-wise, mainly with the communication overhead, as each
merge request can contain thousands of objects, where each translates to a
number of database statements.
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User-defined procedures have their context injected from the Neo4j server.
Context can be either a single transaction or database service, which can be
used to create multiple transactions allowing further optimization by making
use of multiple processor cores.

These procedures have to be written in Java and built into a .jar library.
Then, this library can be inserted into the Neo4j plugins folder. Each proce-
dure inserted this way can be run using Cypher’s CALL statement (see listing
2.12).

CALL custom.procedures.userDefinedProcedure(1000)

Listing 2.12: Calling user-defined procedure

Each procedure can have an arbitrary number of parameters of supported
types, which are some of the basic Java types as well as some of the Neo4j types
such as Node, Relationship or Path. Lists and maps containing supported
types are also allowed. Therefore, each merge request has to be passed to
the user-defined procedure to be processed. This can be done by storing the
request into the list and passing the list as a parameter.

The Neo4j internal interface provided for implementing the user-defined
procedures is a bit di�erent than the interface provided by the Neo4j Java
driver for client-side applications. This means that to implement the algorithm
as a procedure, each component containing Neo4j driver classes has to be
rewritten. Internal interfaces are defined in the package org.neo4j.graphdb,
while the driver’s interface is defined in the org.neo4j.driver package.

The di�erences are usually pretty minimal, for example, the retrieving of
the identifiers of certain entity can be done directly by using entity.id() in
driver’s interface but syntax entity.getId() is required while using internal
interface. Another di�erence is working with the result of the transaction,
where the driver’s interface provides easier access to the retrieved objects (see
listing 2.13 and 2.14, where the entity has to be explicitly converted)

Result result = tx.run(···)
if (result.hasNext()) {

return result.single().get("resource").asNode();
}

Listing 2.13: Returning a node from the transation’s result using driver
interface

Result result = tx.run(···)
if (result.hasNext()) {

return (Node)result.next().get("resource");
}

Listing 2.14: Returning a node from the transation’s result using internal
interface
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2.4 Parallelization

This section discusses the introduction of parallelism to the migrated merging
algorithm to enhance its performance. Only the shared memory parallelization
is taken into account as the processing is performed on a singular machine
where MANTA runs (alternatively on the machine where the Neo4j server
runs).

As mentioned in the description of the merge request format (see part
1.5.1.2), there are various merge types. Processing of di�erent types can be
split into phases which can be processed in parallel. The first subsection
describes the locking properties of the Neo4j entities, followed by a detailed
description of the multiple approaches to parallel processing of specific object
types.

2.4.1 Locking properties

Each transaction acquires locks on certain entities upon accessing them. In
Neo4j, there are 2 types of locks – shared lock, acquired when reading an
object, and exclusive lock, acquired when modifying the object. Each of these
locks is bound to a certain Neo4j entity, either node or relationship.

Shared locks are taken when we want to read something and at the same
time prevent other transactions from writing to, or otherwise modifying that
object.[27] These locks are released upon finishing the query execution. Each
of the shared locks can be held by an arbitrary number of transactions at a
given time.

Exclusive locks, on the other hand, can be only held by a singular trans-
action to avoid problems of concurrent writes and are released only upon
committing or rollbacking the owning transaction. When creating or remov-
ing a relationship between 2 nodes, an exclusive lock is acquired on both of
those nodes. On the other hand, if a relationship is only edited, the lock is
acquired only on the given relationship.

2.4.2 Initial approach

The initial approach proposes the parallelization solutions for each of the
object types based on the locking properties of Neo4j. The implementation of
these solutions is later described in the chapter 3.

2.4.2.1 Source codes, resources, layers

Each merge request contains these 3 types, but only a few instances of each
are merged, hence the parallelization of this part is not required.
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2.4.2.2 Nodes and node attributes

This part describes the method of splitting the nodes to allow parallel process-
ing using multiple threads as well as a method of parallel graph traversing.

The nodes are processed in a way that a parent of a node (or resource)
has to be processed before its children. By finishing the processing (merging
and committing the change) of the children belonging to a given parent node,
all the underlying subtrees of the processed children nodes can be further
processed. Therefore, the parallelization of the node processing is equivalent
to the parallel breadth-first traversing, where the processing of each element
comes with a database overhead as the database is queried and new vertices
can also be created.

In the specific case of breadth-first traversal of the graph database with the
occasional creational queries, it is important to distribute the traversed graph
in a way that the locking of related nodes is minimal to none. Due to the
structure of the MANTA metadata graph, this state is achievable by ensuring
that the processing of a certain node means processing all its children (hence
no lock contentions would apply to the given node as no 2 threads would create
nodes connected to the same node within their distinct transactions). Due to
the structure of the merging request (see part 1.5.1.2), the preprocessing of
nodes is very straightforward as only the mapping of nodes to its children has
to be created and later used to traverse the graph.

The problem with using the suggested solution is that a node can some-
times have both parent and resource nodes (see part 1.2.2 of the model de-
scription), which could create lock contentions as di�erent threads might try
to create relationships connected to the same resource using their transactions.
To prevent database locks or possible deadlocks, the definitions of these rela-
tionships have to be collected and processed sequentially only after all nodes
from the merge request have been processed.

To make the described processing possible shared synchronized queue
needs to be available for all the participating threads. This queue would
contain all the nodes which are ready to be processed. To lessen the synchro-
nization overhead, each thread would also need an additional internal queue
from which it would primarily consume the work, and only if this queue would
be empty it would try to get the next work from the shared queue. Upon all
working threads depleting their internal queues and the shared queue, the
processing would proceed to create stored node-resource relationships.

The following list describes possible scenarios of merging the nodes in
parallel as described. The example of the processing is depicted in the figure
2.3.

• Shared queue is initialized with the already processed resources.

• Each thread tries to retrieve nodes primarily from their internal queues
or secondarily from the shared queue.

47



2. Analysis

Figure 2.3: Parallel node processing

• If a thread has an empty internal queue and the shared queue is also
empty, the thread is put to sleep.

• Each thread processes all children of the node they retrieved from the
queue and inserts all children into their respective queues.

• After processing a specific node and inserting its children into the in-
ternal queue, the thread commits its transaction and redistributes its
internal queue into the shared queue in case of any sleeping merging
thread. This is done to ensure that no thread is idle for a long time.

• When the sleeping thread is notified it tries to retrieve the next node
from the shared queue and proceeds with the work.

• After all objects from the shared queue and all internal queues are de-
pleted the node processing can proceed to the next phase

2.4.2.3 Node attributes

As each of the node attributes is connected to a certain node all the attributes
can be split by the nodes they belong to and be processed in parallel using
multiple threads. This split is done to avoid multiple threads modifying the
same nodes which could potentially lead to lock contentions. As mentioned in
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2.4.1, write lock acquired during by transaction is held until the transaction
is committed (or rollbacked), hence the requirement of the same locks by
multiple transactions would essentially serialize the processing or in the worst
case cause a deadlock and require rerunning of the processed part.

Processing of the special attribute mapsTo, which creates a relationship to
a di�erent node, could cause a lock contention in case of di�erent transactions
processing mapsTo attribute and creation of a relationship between conflicting
nodes. Due to this, mapsTo attributes have to be processed at the end of this
step by a single transaction.

The figure 2.4 depicts the distribution of the node attributes for 2 threads.
It can happen that the distribution will not be balanced in the case of very
large di�erences of the attribute count for di�erent nodes (see figure 2.5), but
in the reality, this should not happen.

Figure 2.4: Parallel node attribute processing

Figure 2.5: Parallel imbalanced node attribute processing

2.4.2.4 Edges and edge attributes

Using a shared queue to merge edges in parallel by multiple threads could
possibly cause locking contention, especially if the number of edges is high. It
is the same problem as with node attributes described in 2.4.2.3, but in the
case of edges, 2 nodes are a�ected per each edge object.

Therefore to ensure lock-less distribution of the edges, the edge graph needs
to be partitioned into subgraphs, where the numbers of nodes in each partition
are similar in size. These subgraphs could then be separately processed by
di�erent threads.

There are various algorithms that can be used to split the graph. For
example, Kernighan–Lin [28], or the Fiduccia–Mattheyses algorithm [29] use
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heuristics to partition the graph into a bipartite graph, however, both require
initial preprocessing of the nodes. This would require continuously applying
the algorithm in case of more than 2 partitions needed. In this thesis, only the
simple iterative approach of partitioning is used and is described followingly.

The proposed solution for the node attributes was to split them into con-
tainers by a number of threads. The same method can be used for processing
edges, however, it is a bit trickier as the edges need to be split by the pair of
source and target nodes. The way that could be achieved is to iterate the list
of edges sequentially and split it into the containers by their source and target
node identifiers. The splitting would be done in a way that a mapping of each
container to the nodes of the edges assigned to it would be maintained. Edge’s
a�liation would be determined by the ownership of its source or target node.

If both source and target nodes of a certain edge are assigned, but to
di�erent containers, the edge can not be processed in a given batch, if no node
is owned by any container it would be assigned by an assignment mechanism
– round-robin, smallest-first or random fashion. After the splitting is done
(no more edges to preprocess), the size of the largest container is reduced to
match the size of the second-largest container to make the processing is more
balanced. This splitting can be repeated recursively on all the remaining edges
(which could not be assigned to any container due to conflicts) until a certain
threshold condition is met (the count of remaining edges is too small or the
sum of edges in split containers is too small). This further reduction should
boost the performance as more threads will be allowed to run in parallel for
a longer time.

Another problem is that certain edges are of perspective type, which can
create both relationships and node attributes, potentially causing a lock con-
tention. The solution to this problem is the same as with mapsTo node at-
tributes – store them and process them sequentially after all the batches of
edges are processed.

The following list describes possible scenarios of splitting the edges into 2
containers. The figure 2.6 depicts these scenarios and the figure 2.7 shows a
small example.

Figure 2.6: Edge distribution
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Figure 2.7: Edge distribution example

• In the case of both nodes of an edge being unassigned, the edge and the
nodes are assigned by the assignment mechanism.

• In the case of one node being assigned and the other one not, the edge
and the unassigned node are assigned to the same container as the as-
signed node.

• If both nodes are assigned to the same container, the edge is be assigned
to it.

• If the nodes are assigned to the di�erent containers, the edge is conflict-
ing and can not be processed.

Edge attributes can be processed in the same way as edges, but as the
number of these objects is usually small, they can be processed with the edge
they belong to.

2.4.3 Locking minimizing solution
After the initial implementation of the proposed solutions, a problem has
occurred – when splitting the node attributes and the edges only by nodes as
described in parts 2.4.2.3 and 2.4.2.4, deadlock would sometimes occur.

After analyzing the cause of these deadlocks, it turned out that the reason
was that the write locking a node to create a relationship also locks all its
adjacent relationships and hence causing undesired blocking and sometimes
even deadlocks. The figure 2.8 demonstrates the described situation, where
the concurrent threads could be blocked on the relationship 1 or the rela-
tionship 2. This issue does not happen when processing nodes, because the
situation causing lock contention can not occur there, but it can happen in all
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other phases of parallel processing. A simple solution is to retry processing
upon deadlock while reducing the number of objects processed within a single
transaction (so the retry does not take too much time), which would solve the
deadlock problem, but as the deadlocks are caused by writing locks, blocking
of processing would be still present. The following parts of this subsection
describe the way to avoid locking problems caused by the previous solution.

Figure 2.8: Deadlock inducing behavior

2.4.3.1 Nodes and node attributes

As mentioned previously, this problem can not occur while processing nodes,
as it only occurs when creating new relationships and if the new child of a
certain parent node is added there could not have been any relationships bound
to the new node which could cause any lock contentions and as all children
of the certain parent node are processed by a single thread no contention of
parent’s lock is.

The solution to reducing node attributes locking is to process node at-
tributes together with the nodes they belong to during the node processing
part. This would however require storing the mapsTo attributes along the
relationships connecting nodes to resources and then processed sequentially.

2.4.3.2 Edges and edge attributes

To avoid locking issues when processing edges, another constraint needs to be
added to the process of splitting edges into containers. As the issues originate
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from the adjacent edges of the nodes processed, they need to be taken into
account.

To make this work, all neighboring nodes of all processed edges need to
be collected so they can be used during splitting. This operation can be very
expensive if the sizes of the whole graph and merge requests are large. In the
case of splitting the edges into several iterations, all previously added edges
have to be counted as well.

The following list describes possible scenarios of splitting the edges into 2
containers while also taking into account their neighborhoods. The figure 2.9
depicts these scenarios.

Figure 2.9: Edge adjacency-aware distribution

• If both nodes are unassigned, they are assigned to a container by the
assignment mechanism. Every adjacent node of the source or the target
node is adjacent-assigned to the same container.

• If one node is assigned and the other one is unassigned, the unassigned
node with the edge is assigned to the same container as the assigned
node.

• If both nodes are assigned to di�erent containers, the edge is deemed
conflicting and is evaluated in the next batch.
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• If the adjacent node of a newly assigned edge already is adjacent-assigned
to a di�erent container than the edge’s, the node becomes the conflicting
node.

• If either of the nodes is conflicting, any edge connected to it is also
deemed conflicting and can not be assigned within a given batch.

2.4.4 Transaction-retry improvements

This part discusses possible enhancements to the transaction-retry solution.
As the locking and deadlocks happen while using this approach, it is possible
to mitigate it by splitting node attribute processing and edge processing into
non-blocking and potentially-blocking phases.

Non-blocking phase would contain reading operations, to determine what
needs to be done and writing operations, which do not cause lock contentions.
All operations potentially causing lock contention would be stored inside
supplementary structure and evaluated in the following potentially-blocking
phase.

2.4.4.1 Node attributes

Creating a new node attribute is a potentially-blocking operation as a new
relationship is created between the owning node and the new attribute node.
However, if only the revision of the control edge is updated, only lock on the
given relationship is acquired which will not cause lock contention as no other
transactions will access the relationship.

In the non-blocking phase, it is beneficial to split this phase into two
parts. The first part would process only mapsTo attributes split evenly into
containers based on thread count. The reason for this division of the non-
blocking phase is simply the fact, that processing of the mapsTo takes much
more time as the graph needs to be traversed, so by doing this more expensive
operations are evenly distributed to all merging threads. If it is determined
that a new relationship of type mapsTo needs to be created, it is stored and
later evaluated within the potentially-blocking phase of edge processing. The
second part of this phase is processing other types of node attributes. As this
is non-blocking phase, any creational queries are stored for later evaluation,
while the relationship updating operations are evaluated directly.

All previously stored node attribute creational queries are split in the same
way as in part 2.4.2.3 to further reduce potential conflicts as well as reduce
the processing time if the retry is needed.

2.4.4.2 Edges and edge attributes

This part can be done similarly to the node attributes processing as the edges
are either updated or created as well. The special type perspective is a par-
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allel to the mapsTo attribute, as it also requires longer processing due to the
retrieving of the layer as well as node attribute creation.

Non-blocking phase in this case would be divided into two parts, where
the first part deals with more expensive perspective edges, and the second
part processes the rest of the edges. Once again, the potentially-blocking
operations are stored for later evaluation.

In the following potentially-blocking phase, all stored potentially-blocking
edge operations (collected in the previous phase, but also during mapsTo node
attribute processing) would be split into node containers recursively and then
processed in parallel.

2.4.5 Merge request unification
Currently, implemented merger only processes single input request at a time,
while other requests need to wait for their turn. Unifying multiple merge
requests together (possibly in parallel) and then merging the created subgraph
to the database could further reduce processing time as multiple duplicities
would be removed. This would also a�ect parallel merging as more separate
subtrees might be contained within the merged file, making the splitting of
the nodes and edges could be more exclusive, reducing locking contentions.
This subsection discusses needed synchronizations and the process of merging
the merge requests.

2.4.5.1 Multiple type synchronization

As there can be multiple types of merging algorithms available (parallel, se-
quential, client, server, and maybe even more in the future), the request needs
to contain the type (or would be provided with a default). With the merge
requests of various types, it makes sense to only unify requests of the same
merging type, hence a certain synchronization mechanism is required.

To synchronize this part, a barrier containing type needs to be maintained.
If no merge request is being processed, the first incoming request would set
the type of the barrier to the value of its own merging type. All the following
merge requests of the same merging type would be allowed further, therefore
possibly be merged together. Requests of di�erent types are put to sleep and
wait for the release of the guard’s type. The di�erent scenarios are depicted
in the figure 2.10.

2.4.5.2 Request unifying synchronization

After merge request passes the barrier, another synchronization to control
submitting the requests to the database as well as unifying waiting requests
is required. The idea is to ensure that the request proceeds to the database
merging phase when the database is available. If the specific request is be-
ing merged into the database, therefore making the database unavailable, all
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Figure 2.10: Request type barrier

other requests waiting for the release of the database are unified together and
submitted to the database upon the completion of the merging. The figure
2.11 shows the synchronization process in detail.

2.4.5.3 Request unifying process

To unify multiple merge requests mimicking the database merge process is
needed. This can be achieved by using a global structure containing all merged
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Figure 2.11: Request merge/unify process

objects serving as the database, while all merged requests would merge their
objects into it. Each of the requests would manage their local contextual struc-
ture containing mappings of their local objects to the merged global objects.
Synchronization needed for each type is as follows:

• Source code Source codes require mapping of their local identifiers to
global identifiers as these identifiers are sometimes referenced by node
attributes as their value.

• Layer To ensure only one layer representing the same layer exist in
the merged structure, properties of the layer object have to be used –
layerName and layerType.

• Resource As each resource belongs to a certain layer, the global iden-
tifier has to replace the local identifier of the layer. Resources are then
merged using their resourceName and resourceType as well as a�liation
to the certain layer to ensure that no two same resources are created.

• Node To merge node objects, the mapping of a node to its children
needs to be maintained as each node is linked to a certain parent and
resource. Properties nodeName and nodeType are used to di�erentiate
di�erent nodes of same parent.
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• Node attribute Properties attributeKey and attributeValue are used to
di�erentiate attributes of the same owning node. Owning node’s global
identifier is retrieve for correct mapping.

• Edge To di�erentiate edges of the same source and target nodes, its
type has to be used. The direction is already given by the source and
target division.

• Edge attribute This type is merged in a same way as node attribute,
using the attributeKey and attributeValue properties to di�erentiate dif-
ferent properties of the same edge.
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The goal of this chapter was to analyze possible enhancements, which
could increase the overall performance of the merging algorithm along with
the possibilities of migrating specific parts needed for merger to work cor-
rectly. The first section contained the analysis of parallelization within Titan
graph, followed by the analysis of querying operations needed for migrating
the algorithm. The discussion of database queries was followed by analysis of
possible optimization steps.
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Chapter 3
Realization

This chapter describes the implementation of the proposed changes. All of
the changes were implemented in Java. The implementation sections reflect
the sections of the chapter 2, namely the Titan parallelization, migration of
the merging algorithm, improvements, and the parallelization of the migrated
algorithm.

3.1 Titan parallelization

This section is divided into 2 subsections, one containing implementation de-
tails of the singleton transaction synchronization and the second one describing
the locking used in the merging algorithm.

3.1.1 Transaction synchronization

This part describes the implementation of the synchronization for the singleton
transaction as per section 2.1. After reading the object from the input stream
it is sent to the singleton object of class MergerTransactionHandler. This
object handles all submissions of objects to be merged.

The MergerTransactionHandler singleton contains BATCH COMMIT COUNT
property to determine when the transaction should commit. Then it contains
batchesBeingProcessed and batchesDoneProcessed to ensure that all sub-
mitted work is done. The singleton also needs to keep track of all the requests,
which have submitted its input objects to the current transaction. The rea-
son for this is that when the request submits all their input objects and they
are merged into the database, they need to wait for the latest transaction to
commit successfully. The singleton also keeps track of the requests that need
to be rollbacked using the rollbackedProcesses set and the requests which
submitted the objects to the transaction that has been successfully committed.

61



3. Realization

Each merge request gradually reads the input object and submits it to the
singleton while keeping track of objects submitted to the latest transaction in
case of transaction failure.
TitanTransaction transaction = null;
try {

transactionLock.lock();
while((batchesBeingProcessed >= BATCH_COMMIT_COUNT
|| !rollbackedProcesses.isEmpty())
&& !rollbackedProcesses.contains(caller)) {

waitingForCommitCondition.await();
}
if (rollbackedProcesses.contains(caller)) {

throw new RepositoryRollbackException(···);
}
batchesBeingProcessed++;
if (committedProcesses.contains(caller)) {

transactionLock.unlock();
caller.prepareForNextTransaction(inputBatch);
transactionLock.lock();

}
transaction = getTransaction(caller);
registeredProcesses.add(caller);
return transaction;

} finally {
transactionLock.unlock();

}

Listing 3.1: Retrieve/creating transaction

As shown in the listing 3.1, firstly the transaction lock, an instance of Java
ReentrantLock, is acquired. After that, the value of batchesBeingProcessed
is checked to determine if the commit threshold has been reached. If it has
been reached the given process is put to sleep, in other cases it is allowed to
continue and the counter is increased. The batchesBeingProcessed is not
the only value checked, but also the rollbackedProcesses set to determine
whether the running request needs to rollback its submitted objects. The
last part checks for the request’s a�liation to the committedProcesses set to
determine whether the journal of a given object is to be cleared.

Then the object is merged to the database, followed by ending synchroniza-
tion of the object processing, as shown in the listing 3.2, where the threshold
BATCH COMMIT COUNT is compared to the batchesDoneProcessed to see if the
transaction needs to be committed (as shown in the listings 3.2 and 3.3)
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transactionLock.lock();
batchesDoneProcessed++;
if (batchesDoneProcessed == BATCH_COMMIT_COUNT) {

commitTransaction();
waitingForCommitCondition.signalAll();

}
transactionLock.unlock();

Listing 3.2: Ending merge object processing

if (transaction != null) {
transaction.commit();
transaction = null;
committedProcesses.addAll(registeredProcesses);
registeredProcesses.clear();
batchesBeingProcessed = 0;
batchesDoneProcessed = 0;
doneProcesses = 0;
dbLock.unlock();

}

Listing 3.3: Committing Titan transaction

Another important method depicted in the listing 3.4 is the method used
by the requests which have finished merging all their input objects but need
to wait for the final commit of the transaction. If all requests have all their
input merged the final request will commit the transaction and notify other
processes. If the request arrives at this section but the other requests are still
submitting, the request is put to sleep and waits until the latest transaction
is committed or failed.

transactionLock.lock();
doneProcesses++;
if (doneProcesses == registeredProcesses.size()) {

commitTransaction();
waitingForCommitCondition.signalAll();

}
while (!committedProcesses.contains(caller) && !rollbackedProcesses.

contains(caller)) {
waitingForCommitCondition.await();

}
if (rollbackedProcesses.contains(caller)) {

throw new RepositoryRollbackException(···);
}
committedProcesses.remove(caller);
transactionLock.unlock();

Listing 3.4: Waiting for transaction commit
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If the transaction error occurs, all merge requests, which have submitted
objects to the given transaction, have to rerun their journals. This however
is done using an exclusive lock on the database and not using the singleton
transaction, as only one of the requests might be faulty.

3.1.2 Merging algorithm
This subsection contains the implementation of the locks used to ensure ex-
clusive access to certain elements of the graph.

For merging objects ReadLockedMergerProcessor class is used which is
an extension of the original StandardMergerProcessor containing merging
logic. This class contains an instance of LockingManager class serving as a
provider of all required locks. As mentioned in the section 2.1, each operation
used to determine the previous existence of the certain object needs to be
guarded to prevent the creation of duplicates. These locks can be split into 2
categories – vertices and edges.

For locking vertices synchronized Java BlockingConcurrentMap is used,
which is an extension of the Java Map providing concurrent access. The key
used in the case of vertices is a LockableVertexQuery instance, which contains
the identifier of the vertex, name of the target, and the direction of the edge
- to di�erentiate queries used to retrieve adjacent objects of a certain name.
The value of each map entry is the reentrant lock.

In the case of edges, BlockingConcurrentMap is used as well, but using a
di�erent type of keys – EdgeIdentification, to guard querying for the existence
of certain edges. The values used in the map are also reentrant locks.

The listings 3.5 and 3.6 demonstrate the retrieval of the lock for the certain
vertex query (children of certain node object) and edge query respectively.

LockableVertexQuery vertexQuery =
new LockableVertexQuery(parentVertexId, childName, Direction.IN);

Lock vertexLock = mergerLockingManager.retrieveQueryLock(vertexQuery);
vertexLock.lock();

Listing 3.5: Retrieving edge lock

EdgeIdentification edgeId = new EdgeIdentification(edgeDatabaseId);
Lock edgeLock = mergerLockingManager.retrieveEdgeLock(edgeId);
edgeLock.lock();

Listing 3.6: Retrieving edge lock

3.2 Neo4j migration
This section describes the implementation of the migrated merging algorithm
in the Neo4j database, namely the methods mentioned in the merging algo-
rithm description (see part 2.2.1). There is a number of helper methods, which
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are not necessarily accessing the graph but only retrieving the properties or
used to determine certain facts. These functions can be often used as-is or
only a small part needs to be changed to use the Neo4j interface.

The more challenging parts are the methods accessing the graph, as they
need to be rewritten from imperative Titan’s approach to Cypher’s declarative
approach. Originally, in Titan’s StandardMergerProcessor a lot of querying
(mostly to determine previous existence) was done in-place, not using the
methods inside structures, essentially worsening the code readability. The goal
of this migration is also to move this database logic to the more appropriate
structures.

3.2.1 Graph creation

This subsection describes the implementation of the queries used for creating
new objects. The Neo4j driver interface provides a way to parametrize Cypher
queries, however, one can not parametrize labels of nodes and types of rela-
tionships, which forces the programmer to use string concatenation or similar
approaches making the readability worse. It is also impossible to parametrize
the direction of the relationship.

The listing 3.7 provides example of creating a new node attribute. In the
example, for both node and relationship parameter maps are created and filled
with the required properties, then they are put into the final parameters map
which is directly inserted into the query. Notice how String.format is used
to parametrize label and type in the query, as it is currently not possible to
parametrize the type.

Map<String, Object> parameters = ···
tx.run(String.format(

"MATCH (node)\n"
" WHERE ID(node)=$idNode" +
"CREATE (node)-[edge:%s $relProps]->(attr:%s $attrProps)",

"hasAttribute", "Attribute"), parameters);

Listing 3.7: Creating a new node attribute

Another quite di�erent example is a case of inserting properties to an
already created note or a relationship. The listing 3.8 represent this case. In
Cypher += operator can be used to add a map of properties to an entity.

Map<String,Object> parameters = ···
tx.run(

"MATCH (v) \n"
" WHERE ID(v)=$id\n"
"SET v += $newNodeProperties\n"
"RETURN v", parameters);

Listing 3.8: Inserting properties to an existing node
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Most of the creational queries are similar in structure to those mentioned,
hence no more examples will be provided in this part.

3.2.2 Graph operation

!
Cypher examples
Examples in this section and the following parts only show
parametrized Cypher queries to provide better readability, but in
real case similar approach as in the previous subsections is used.

This subsection describes the implementation of the queries used mostly for
retrieving certain objects from the graph as well as new methods for retrieval
existing objects to determine previous existence in the merging algorithm.

The listing 3.9 shows the retrieval of the node’s children to determine
whether the node which is currently merged exists. The listing only shows the
Cypher query for better readability.

MATCH (child)-[r:hasParent]->(parent)
WHERE r[$transEnd]>= $transEndVal

AND ID(parent) = $idParent
AND child[$name]=$nameValue
AND child[$type]=$typeValue
AND r[$edgeChild]=$edgeChildValue

RETURN child

Listing 3.9: Retrieve node’s children

The listing 3.10 shows the retrieval of a relationship between given nodes
(sourceNodeId and targetNodeId) of type directFlow.

MATCH (source)-[relationship:directFlow]->(target)
WHERE relationship[$transEnd] >= $transEndVal

AND ID(target) = $idTarget
AND ID(source) = $idSource
AND relationship[$edgeTarget]=$edgeTargetValue

RETURN relationship

Listing 3.10: Retrieve node’s children

Retrieval of the resource is shown in the listing 3.11, as mentioned in the
part 2.2.1.2 of the analysis, the best way to retrieve the resource of a node is
to traverse from the node to the node representing the resource.
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MATCH (node)<-[:hasAttribute*0..1]-
()-[:hasParent*0..]->()-[:hasResource]->(resource)

WHERE ID(node)=$idNode
RETURN

CASE
WHEN $resourceLabel IN LABELS(node)
THEN node ELSE resource

END
AS resource ORDER BY length(p) ASC LIMIT 1

Listing 3.11: Retrieve node’s resource

The implementation of full method getVertexByQualifiedName from the
analysis using the list of strings as an input parameter to the query is depicted
in the listing 3.12. Each element from the list is compared to the node on the
corresponding position in the matched path as well as revisions of the control
edges.

WITH $inputList AS path
MATCH path = (superRoot)<-[:hasResource]-(res)<-[:hasResource*]-()
WHERE ID(superRoot) = $idSuperRoot

AND TOLOWER(res[$resNameProp])=TOLOWER($resName)
AND res[$transStartProp] <= $tranStart
AND res[$transEndProp] >= $tranEnd
AND ALL(idx IN RANGE(2, SIZE(nodes(p))-1)

WHERE TOLOWER(COALESCE(NODES(p)[idx]["nodeName"], ��)) = TOLOWER(path[
idx-1][0])

AND TOLOWER(COALESCE(NODES(p)[idx]["nodeTypes"], ��)) = TOLOWER(path[
idx-1][1])

AND RELATIONSHIPS(p)[idx-1][$transStartProp] <= $tranStart
AND RELATIONSHIPS(p)[idx-1][$transEndProp] >= $tranEnd)
RETURN res

Listing 3.12: Retrieve node by its path from super root

All paths returned by the query are then evaluated to select the singu-
lar correct path based on the evaluation definition. This approach proved to
be quite ine�cient as the performance was substantially worse than in origi-
nal Titan implementation (see section 4.9). Therefore another approach was
implemented, which reflects the original implementation (see part 2.2.1.2),
where Cypher queries are used for gradual traversing. The solution is further
improved by only retrieving the resources of the nodes when the node has a
direct link to a resource.

The second complex query is used to change the revisions of the subgraph
of a certain node. At first, the control edge of the root node is retrieved
to ensure that the revision is correct. After that, the query 3.13 is used to
collect all paths representing the subtree of the given node while also updating
tranEnd property of all the relationships connected to every collected node.
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MATCH path = (m)<-[:hasParent*0..]-(b)-[:hasAttribute*0..1]->(a)
WHERE id(m)=$idNode

AND (nodes(path)[size(nodes(path))-1][$type]=$attribute
OR (nodes(path)[size(nodes(path))-1][$type]= $node
AND NOT (a)<-[:hasParent]-() AND NOT (a)-[:hasAttribute]->()))

UNWIND NODES(path) AS allNodes
MATCH (allNodes)-[relationships]-()
SET relationships += $edgeProps

RETURN path

Listing 3.13: Retrieve node’s subgraph

Retrieved paths are then iterated and all control edges are checked to
ensure their correctness. In the case of the control edge being created in the
latest committed revision, the node with whole its subtree is removed from
the graph (see listing 3.14). The query is constructed to only match full paths
to the ending nodes (hence the WHERE clause).

MATCH path = (a)<-[:hasAttribute*0..1]-(b)-[:hasParent*0..]->(m)
WHERE ID(m)=$idNode

AND (nodes(path)[0][$type]=$attribute
OR (nodes(path)[0][$type]=$node
AND NOT (a)<-[:hasParent]-() AND NOT (a)-[:hasAttribute]->()))

UNWIND NODES(path) AS allNodes
DETACH DELETE allNodes

Listing 3.14: Remove node’s subgraph

3.2.3 Revision utilities
This subsection describes Cypher queries used for revision editing of the graph.
There are only few distinct queries used here – setVertexTransactionEnd
and setEdgeTransactionEnd depicted in the listing 3.15.

MATCH (node)<-[controlEdge:hasParent]-()
WHERE ID(node)=$idNode

SET controlEdge += $edgeProperties

MATCH ()-[relationship]-()
WHERE ID(relationship)=$idRelation

SET relationship += $edgeProperties

Listing 3.15: Setting ending revision of a node and a relationship
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3.2.4 Graph equality testing

The following subsection describes the implementation of MANTA graph
equality testing. Both approaches from the analysis (see part 2.2.3 of the
analysis) have been implemented.

3.2.4.1 Traversal framework and Java Core API

The listing 3.16 shows the traversal definition, which collects all the paths
from super root to leaf nodes. The special condition in the evaluator part
ensures that the paths, where the node has both parent node and resource are
skipped, as it is not required for later comparison, therefore only increases the
complexity.

tx.traversalDescription()
.breadthFirst()
.relationships(RESOURCE_TYPE)
.relationships(PARENT_TYPE, Direction.INCOMING)
.evaluator(path -> {

if (path.length() == 2 && path.endNode().hasRelationship(
Direction.OUTGOING, PARENT_TYPE)) {

return Evaluation.EXCLUDE_AND_PRUNE;
} else return Evaluation.INCLUDE_AND_CONTINUE;

})
.uniqueness(Uniqueness.RELATIONSHIP_GLOBAL)
.traverse(tx.findNodes(SUPER_ROOT_LABEL)

Listing 3.16: Getting paths from super root node to leaf nodes

After the paths are collected the source codes are compared using the Java
Core API and the mapping of nodes is created by comparing paths. After the
mapping is done all node properties with their attributes and relationships
are compared. The final step is to compare revisions, which is done similarly
to the source code comparison.

3.2.4.2 Cypher

Graph comparison using Cypher was also done as mentioned in the analysis
(part 2.2.3). The listing 3.17 shows the query used for DFS traversing from
the starting super root node. The ORDER BY clause defines the ordering of the
matched objects. The direction of the query is also parametrized to ensure
the right order.

After retrieving nodes and relationships that are connecting the queried
node and retrieved nodes their textual representation is saved. If the rela-
tionship is possibly ambiguous (see figure 2.2), it is stored and later evaluated
with the possibly ambiguous relationships of the other graph. After the graph
traversals are done for both graphs, these representations are compared.
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MATCH (n)%s-[relationship]-%s(other)
WHERE ID(n)=$idNode

OPTIONAL MATCH p=(other)-[]-()
RETURN other, relationship, count(p) as cnt
ORDER BY type(relationship), relationship.tranStart ASC,

other.nodeName ASC, other.nodeType ASC ···
Listing 3.17: Traversing graph for comparison using Cypher

3.2.5 Testing

As a part of the algorithm migration, the various unit tests were implemented
to ensure the correctness of certain operations based on the original merging
process. The main focus was the testing of the merging algorithm alone to
cover most of the di�erent scenarios, which can occur while merging di�erent
object types. Tests covering the other implemented optimization improve-
ments were implemented as well.

3.3 Improvements
This section contains the implementation of the minor improvements of the
merging algorithm and the implementation of the merging algorithm as a
user-defined procedure.

3.3.1 Minor optimizations

This subsection focuses on the implementation of the minor optimizations of
the merging algorithm. Most of these adjustments are based on using some
sort of cache.

• Retrieving latest revision number In this case only the new prop-
erty is added to the contextual structure ProcessorContext, which is
set before the merging of the given merge request begins and then is
retrieved every time it is required.

• Node identifiers instead of nodes All methods have to be reworked
to use the identifiers of the nodes as parameters instead of the nodes.
Most of the methods use the full objects only to directly access the object
within a database using its identifier, therefore it did not cause many
complications to change them. However in some cases, the properties of
these objects were used, therefore the queries had to be rewritten to use
the properties if possible. The listings 3.18 and 3.19 show the di�erent
approaches, where when working with full node object, childName string
is acquired by processing source node.
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String childName
= GraphOperation.processChildName(source.name()));

MATCH (source), (target)
WHERE ID(source)=$idSource

AND ID(target)=$idTarget
AND $sourceLabel in LABELS(source)
AND $targetLabel in LABELS(target)

CREATE (source)-[edge:$edgeType $edgeProps]->(target)
SET edge.childName= $childName

RETURN edge

Listing 3.18: Create relationship by using node

MATCH (source), (target)
WHERE ID(source)=$idSource

AND ID(target)=$idTarget
AND $sourceLabel in LABELS(source)
AND $targetLabel in LABELS(target)

CREATE (source)-[edge:$edgeType $edgeProps]->(target)
SET edge.childName= CASE source[$vertexType]

WHEN $typeNode THEN substring(source["nodeName"], 0, 200)
ELSE substring(source["resourceName"], 0, 200) END

RETURN edge

Listing 3.19: Create relationship only by using node identifiers

• Existing nodes This optimization requires adding a new set containing
node identifiers to the contextual structure. It also requires adding the
logic to the merging algorithm – adding a node’s identifier when the
merged node existed in the database prior to the merging of the current
revision, and querying the set when processing objects, which require
the previous existence of a given node. (see listing 3.20)

if (context.nodesExistedBefore().contains(parentVertexId)) {
List<Node> children = graphOperation.getChildren(···)
···

}

Listing 3.20: Retrieving the children of a node

• Node to resource mapping This optimization requires adding a new
map containing node identifiers as keys and database identifiers as values
to the contextual structure. Then adding the logic of insertion and
retrieval of this map when processing resource and node objects (see
listing 3.21 where the mapping is retrieved and inserted)
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Long resourceParentId = context.mapNodeResourceMapping().get(
parentVertexId);

if (resourceParentId != null && resourceParentId.equals(
resourceVertexId)) {
··· create new node only connected to parent or resource

} else {
··· create new node connected to both parent or resource

}
context.mapNodeResourceMapping().put(newNode.id(),

resourceVertexId);

Listing 3.21: Creating a new node

3.3.2 User-defined procedures

This section describes migrating the implemented merging algorithm in Neo4j
to a user-defined procedure to improve the performance of the algorithm.

3.3.2.1 Di�erences

The whole merging algorithm, as well as graph accessing structures, had to
be rewritten to the internal interface. (see part 2.3.2 of the analysis)

3.3.2.2 Transaction handling

As mentioned in the analysis, it is possible to either use the injected transac-
tion object or to use the injected database service. The approach of using the
latter has to be used as it is required to create multiple transactions under
the same procedure allowing further parallelism. The listing 3.22 shows how
the transaction is created and committed.

Transaction transaction = graphDatabaseService.beginTx();
transaction.execute(···);
transaction.commit();

Listing 3.22: Transaction cycle inside user-defined procedure

3.3.2.3 Handling the procedure

This part describes how these procedures are handled from the MANTA
server-side. The whole merge request needs to be sent to the Neo4j server
so that it can be processed. This is done by reading the whole input and cre-
ating a list of the merge objects, which can be used as a procedure parameter.
The list is created in a way that groups of each objects types are stored sepa-
rately which eliminates preprocessing needed in the case of parallel processing
as each object type is processed separately.

Listing 3.23 displays how the procedure is called with the parameters.
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CALL manta.merge($mergeObjects, $revision)
YIELD time, newObjects, errorObjects, existedObjects,

unknownTypes, processedObjects, requestedSourceCodes
RETURN time, newObjects, errorObjects, existedObjects, unknownTypes,

processedObjects, requestedSourceCodes

Listing 3.23: Calling a user-defined procedure

The returning object of the user-defined procedure has to be a stream of
objects. These objects can only contain supported types of Neo4j procedures
[30]. Special class MergeOutput was created for this, containing the result of
the merging (count of new objects, merged objects, . . .).

3.4 Parallelization

The following section describes the implementation details of the paralleliza-
tion approaches proposed in the analysis chapter (see part 2.4). The first
subsection describes the managing process of thread creation and synchro-
nizing. The next subsection describes each working thread. The following
subsections describe various approaches to parallelization.

3.4.1 Contextual structure

For using multiple threads all structures inside the contextual object need to
be synchronized to ensure correct concurrent access. Only updated values are
various sets and maps, for which Java’s ConcurrentHashMap implementation
can be used.

For the advanced parallelization with splitting the processing of node at-
tributes and edges into 2 phases (non-blocking and potentially-blocking), the
contextual object is further supplemented by additional fields to store the op-
erations, which are evaluated at the potentially-blocking phase. The way the
storing of these operations is implemented is that instead of evaluating them,
they are added to the lists used for this storing. An example of this is creating
a new node attribute, in the listing 3.24, the node attribute is directly created,
but in the listing 3.25 it is stored inside the contextual structure.

graphCreation.createNodeAttribute(
context.getServerDbTransaction(),
nodeIdentifier,
attributeKey,
attributeValue,
revisionInterval

);

Listing 3.24: Creating a new node attribute
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DelayedAttributeQuery query = new DelayedNodeAttributeQuery(
nodeIdentifier,
attributeKey,
attributeValue,
revisionInterval

);
context.getNodeAttributeQueryList().add(query);

Listing 3.25: Storing a node attribute creation

Each of these postponed operations has its evaluation reflecting the original
evaluation.

• DelayedNodeResourceEdgeQuery This query consists of creating a
new edge connecting the node and its resources and is used when creating
nodes that have both parent and resource to ensure no lock contention
occurs.

• DelayedEdgeQuery Edge is defined by its source and target nodes’
identifiers, by its type, and by the arbitrary number of properties.

• DelayedNodeAttributeQuery Node attribute is defined by the own-
ing node identifier and by the attributeKey and attributeValue properties.

• DelayedPerspectiveEdgeQuery This query consists of creating a
new edge and a new node attribute and is evaluated in the potentially-
blocking phase of edge processing.

3.4.2 Managing threads
This subsection explains how threads are managed and how the whole process
looks from a higher perspective.

3.4.2.1 Creating and completion of the threads

For managing each created thread the synchronization is needed. The thread
life cycle is managed by the instance of Java ExecutorService. The listing
3.26 shows how the instance of ExecutorService is created and how new
threads are submitted to it. The listing 3.27 shows how the executor waits for
the completion of the execution of all the submitted threads.
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ExecutorService executorService =
Executors.newFixedThreadPool(threads);

IntStream.range(0, threads).forEach(
e -> executorService.submit(

new MergerWorker(···)
)

);

Listing 3.26: Submitting a working threads to executor service

executorService.shutdown();
try {

if (!executorService.awaitTermination(
Integer.MAX_VALUE, TimeUnit.MILLISECONDS)) {
executorService.shutdownNow();

}
} catch (InterruptedException e) {

executorService.shutdownNow();
}

Listing 3.27: Executor service waiting for submitted threads to finish

3.4.2.2 Controlling the process flow

To ensure the correct processing barrier is required. For this case, Java Phaser
was used, which allows controlling the flow of the processing. An instance of
Phaser serves as a barrier that forces all registered threads to wait until all
arrive.

The execution of parallel processing alone is split into various stages con-
trolled by Phaser instance. The first stage is merging the starting parts
(source codes, layers, and resources) sequentially.

3.4.2.3 Transaction-retry processing

This part explains the process flow when using the solution, where locking
problems occur and transactions have to be retried in case of deadlock. Ini-
tially, the source codes, layers, and resources are processed sequentially.

The following phase is a preprocessing phase, in which the nodes, the
node attributes, and the edges are preprocessed. The implementation of the
preprocessing is described in more detail in the following part.

Node attributes are split evenly by the owning nodes as described in part
2.4.2.3 of the analysis. Edges are split recursively by the source and target
nodes.

The next phase is the node processing which is divided into two sub-
phases. The first merge the nodes in parallel, followed by the creating of the
node-resource edges, which is delayed to avoid locking problems.

75



3. Realization

After the node phases are finished, node attributes can be processed. This
phase is as well divided into 2 sub-phases, where the first sub-phase only
contains node attributes, which are not of type mapsTo. It is processed in the
second phase sequentially to avoid locking problems as the relationships are
created when processing this type.

The last phase is the processing of the edges, which are split into multiple
sub-phases in a node-conflict reducing way. Edge attributes are processed
together with the edge they are assigned to. Each phase has to be guarded
by a barrier so that no thread, having finished its work, can proceed further,
as the lock conflicts may arise. The listing 3.28 shows the workflow described
above.

··· merge initial objects sequentially

··· node preprocessing
··· node attribute preprocessing
··· initial edge preprocessing

··· create merging threads

··· barrier node processing

··· barrier node attribute processing

··· barrier edge and edge attributes processing

··· wait for the completion of the processing

Listing 3.28: Processing flow of parallel merging

3.4.2.4 Deadlock-free processing

This processing is very similar to the previously mentioned processing, with
a few di�erences. The node attributes are not processed separately but are
processed with the nodes. During the node preprocessing, along with the
children of each node, node attributes belonging to it are also stored. This
ensures that all nodes and node attributes are processed in a non-conflicting
way.

The other di�erence is the edge processing. The edges are preprocessed
into phases in such a way that the neighborhood of the source and target
nodes is also respected. For this solution to work properly, all the adjacent
nodes of every node participating in the edge creation need to be collected. In
this implementation, only the adjacent nodes from the merge request are used,
to see whether this solution is better than the others (see the last chapter 4).
The listing 3.29 shows the deadlock-free merging workflow described above.
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··· merge initial objects sequentially

··· node and node attributes preprocessing
··· edge and edge attributes preprocessing

··· create merging threads

··· barrier node and node attribute processing

··· barrier edge processing

··· wait for the completion of the processing

Listing 3.29: Processing flow of deadlock-free parallel merging

3.4.2.5 Delayed processing

This processing is an improvement of the initial parallelized solution, where
during the node attribute and edge preprocessing two sub-phases for each type
are created.

The first sub-phase of node attribute preprocessing contains all but map-

sTo attributes split evenly for the number of threads. In this sub-phase, only
reading or relationship updating is done. In the second sub-phase evenly
distributed mapsTo attributes are processed in the same way as in the first
sub-phase. Creational operations are stored in the contextual object, which is
followed by the preprocessing of the stored node attribute creational queries,
where they are evenly split by the owning nodes and then processed by multi-
ple threads. Note that result of new mapsTo node attributes are edges, which
are processed in the next phase.

The edges are processed similarly, non-blocking phase of edge processing is
divided into a sub-phase processing normal edges and a sub-phase processing
perspective edges. Creational edge queries are stored and then split together
with the previously stored mapsTo edges by the source and target nodes and
processed in the next phase. The listing 3.30 shows a workflow of the merging
processing with the non-blocking and potentially-blocking phases.

··· merge initial objects sequentially

··· initial node preprocessing
··· initial node attribute preprocessing
··· initial edge preprocessing

··· create merging threads

··· barrier node processing

··· barrier first sub-phase of the node attribute processing
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··· split creational node attributes queries
··· barrier preprocessing completion
··· barrier second sub-phase of the node attribute processing

··· barrier first sub-phase of the edge attribute processing
··· split creational edge queries with their attributes
··· barrier preprocessing completion
··· barrier second sub-phase of the node attribute processing

··· wait for the completion of the processing

Listing 3.30: Processing flow of delayed parallel merging

3.4.3 Preprocessing

This subsection explains how the node attributes and the edges are prepro-
cessed before they are merged into the database. After preprocessing, each
part of the node attributes or the edges, which can be processed by a single
merging thread is stored within a wrapping structure MergeContainer. A list
of the instances of this structure is stored within a blocking queue to allow
concurrent polling of multiple threads.

3.4.3.1 Nodes

Nodes are preprocessed in a way that each node or resource mapping to its
children is stored, which is required for merging the nodes in parallel. The
shared queue is initialized by inserting all resources.

3.4.3.2 Node attributes

Node attributes are split by their owning nodes. At first, the approximate
size of the part assigned to each thread must be calculated, which is done by
dividing the number of node attributes by the number of threads. After that,
iteration through all node attributes assigns them to the list gradually. If the
given list reaches the calculated size, all the remaining node attributes owned
by a node, whose node attributes were already assigned to the given list,
must be assigned to the same list to prevent locking problems. As the node
attribute’s input list is sorted by the owning nodes, no sorting is required,
only the rest of the attributes must be assigned and then the filling of the
following list begins.

3.4.3.3 Edges and edge attributes

For each thread, one instance of MergeContainer is created, to which the
edges are assigned. The first variant is the splitting of the edges only by their
source and target nodes, which is done in a way that all edges are iterated and
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are assigned (along with its source and target nodes) based on the previous
assignments. In the case of the source and the target node not belonging to
any containers, the edge with its nodes is assigned to a certain container given
by one of the splitting algorithms described in part 2.4.2.4. In the case of
using the second variant, the same approach is used, but the algorithm, which
takes also the node’s neighborhood into account, is used for determining the
edge’s alignment.

3.4.4 Working thread
This subsection describes implementation details of the parallel processing of
the nodes using the internal and shared queue and the processing of the node
attributes, the edges, and the edge attributes after their preprocessing are
done.

3.4.4.1 Nodes

This part describes the implementation of parallel node processing. The syn-
chronization is done using Java ReentrantLock and Condition is used for
thread’s sleeping and notifying.

The main merging loop (see listing 3.31) describes the first sub-phase of
node processing.

NodeMergingStep step = getNextStep(internalQueue);
if (step.getState() == PROCESSING_CONTINUE) {

continue;
} else if (step.getState() == PROCESSING_DONE) {

break;
} else {

nodeId = step.getNodeId();
}
List<List<String>> ownedNodes = nodeQueue.getOwned(nodeId);
if (!ownedNodes.isEmpty()) {

mergeNodesAndAttributes(ownedNodes, journal, internalQueue);
}

if (nodeLock.getWaitingCounter() > 0 && internalQueue.size() >
nodeLock.getWaitingCounter()){
splitInternalQueue(internalQueue, journal);

}

Listing 3.31: Loop of merging nodes

The method getNextStep (see listing 3.32) is used to retrieve the next
node identifier for further processing and to terminate the loop. In the method,
retrieval from the internal queue is attempted. In case that this queue is empty,
retrieval from the shared queue is attempted. If the retrieval is not successful,
the thread is put to sleep and the thread waiting counter is increased. If all
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merging threads are put to sleep, the phase is deemed finished and the threads
are woken up.

if (!internalQueue.isEmpty()) {
nodeId = internalQueue.poll();

} else {
nodeId = nodeQueue.poll();
if (nodeId == null) {

nodeLock.getWaitLock().lock();
nodeLock.increaseWaitingCounter();
if (nodeLock.getThreads() == nodeLock.getWaitingCounter()) {

nodeLock.getWaitingForWorkCondition().signalAll();
return NodeMergingStep.of(PROCESSING_DONE);

} else {
nodeLock.getWaitingForWorkCondition().await();

}
if (nodeLock.getThreads() == nodeLock.getWaitingCounter()) {

return NodeMergingStep.of(PROCESSING_DONE);
}
nodeLock.decreaseWaitingCounter();
nodeLock.getWaitLock().unlock();
return NodeMergingStep.of(PROCESSING_CONTINUE);

}
}
return NodeMergingStep.of(PROCESSING_NODE, nodeId);

Listing 3.32: Retrieving next node element

The method splitInternalQueue (see listing 3.33) shows how the internal
queue is split when the merging thread detects that there are other merging
threads with no more work. The part of elements from the internal queue is
moved to the shared queue from which the other merging threads can retrieve
them.
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ensureTransactionCommit(journal);
Transaction tx = graphDatabaseService.beginTx();
context.setServerDbTransaction(tx);
int keep = internalQueue.size() / (nodeLock.getWaitingCounter() + 1);
for (int i = 0; i < internalQueue.size() - keep; ++i) {

nodeQueue.addToQueue(internalQueue.poll());
}
nodeLock.getWaitLock().lock();
nodeLock.getWaitingForWorkCondition().signalAll();
nodeLock.getWaitLock().unlock();

Listing 3.33: Splitting an internal queue

The second sub-phase of the node processing is the creation of the node-
resource relationships as depicted in the listing 3.34.

nodeLock.getWaitLock().lock();
NodeResourceRelationshipQuery query = nodeQueue.

getNodeResourceRelationship();
if (query == null) return;
Transaction tx = graphDatabaseService.beginTx();
context.setServerDbTransaction(tx);
while (query != null) {

processor.processNodeResourceRelationship(query, context);
query = nodeQueue.getNodeResourceRelationship();

}
tx.commit();
nodeLock.getWaitLock().unlock();

Listing 3.34: Second sub-phase of the node processing

3.4.4.2 Node attributes and edges

For both the node attributes and the edges. The listing 3.35 shows how the
sub-phases are processed. For example in the case of delayed node attribute
processing, the first line of the listing refers to non-blocking processing, fol-
lowed by the phaser barrier and by a potentially blocking processing. The
listing 3.36 shows how each part of the previous sub-phases is processed. An
instance of MergeContainer, containing the list of all objects to merge, is re-
trieved from the synchronized queue by each merging thread and then further
merged into the database.

queuePhaser.getCurrentPhase().getQueueList()
.forEach(this::processMergeQueue);

phaser.arriveAndAwaitAdvance();
queuePhaser.getCurrentPhase().getQueueList()
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.forEach(this::processMergeQueue);

Listing 3.35: Processing of sub-phases

MergeContainer container = mergeQueue.poll();
if (container != null && !container.getContent().isEmpty()) {

mergeObjectsToDatabase(container.getContent());
}
phaser.arriveAndAwaitAdvance();

Listing 3.36: Processing within a sub-phase

3.4.5 Unifying merge requests
This section describes the implementation of the unification of the di�erent
merge requests. As mentioned in the part 3.4.5 of the analysis, two levels of
synchronizations are needed.

3.4.5.1 Synchronizing merge types

To ensure only one type of merging request can be unified, synchronizing struc-
ture MergerManager was created, which handles the registration and unregis-
tration of the requests. The synchronization is done by Java ReentrantLock.
The listings 3.37 and 3.38 reflect these operations respectively.

lock.lock();
if (lockedGroup == null) {

init(mergingGroup);
} else if (mergingGroup.equals(lockedGroup)) {

registered++;
} else {

while (true) {
lockCondition.await();
if (lockedGroup == null) {

init(mergingGroup);
return;

} else if (lockedGroup.equals(mergingGroup)) {
registered++;
return;

}
}

}
lock.unlock();

Listing 3.37: Registering a new merge request
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lock.lock();
registered--;
if (registered == 0) {

lockedGroup = null;
lockCondition.signalAll();

}
lock.unlock();

Listing 3.38: Deregistering a merge request

3.4.5.2 Synchronizing unification and database submissions

To synchronize unification of the merge requests, 3 di�erent flags are used
– request-merging, database-merging and waiting flags, along with a locks to
determine how requests should proceed.

If a request arrives and request-merging flag is set, it subscribes to the
request merging and merges itself with other requests. Upon finishing merging
itself it checks whether all subscribed requests have finished merging. If that
is the case and database-merging flag is unset and it proceeds to merge the
unified request into the database. If not all subscribed requests have finished
merging or the database-merging flag is set the thread is put to sleep and
waits for the shared result.

If the last request is allowed into the database-merging phase and finishes
the database work, it checks whether there is any unified request available
for the processing – this is a situation, where the second batch of requests
finished merging themselves (while another request was being merged to the
database), but the last merged request could not proceed to the database
merging phase due to the first batch request holding the lock. If there was a
unified merge request it is sent to the database for processing. This is done
recursively until no other request is ready for database merging. Upon ending,
the database-merging flag is unset and all sleeping threads are awoken.

If there is no request processed currently - the process proceeds to the
database merging phase and sets the database-merging flag. After this is
done - the request checks whether there is any merged request available for
processing and proceeds in the same way as in the previous situation.

If the other request arrives and the request-merging flag is unset and
database-merging flag is set, it checks whether any other process is waiting.
If that is true, the request merging phase is initialized and the other waiting
thread awakens and is merged, following the first situation. If the waiting flag
is unset, it is set and the request is put to sleep. Once the request is awakened
it checks whether request-merging flag is set and it joins the merging if it is.
The other case is that request-merging flag is unset and database-merging flag
is unset as well, in that case, the request proceeds to merge itself into the
database as in the second situation.
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3.4.5.3 Request unification

This part describes the implementation of the actual merging of the di�erent
requests. The implementation lies in the use of Java ConcurrentHashMap
and its method computeIfAbsent, ensuring concurrent synchronization. The
synchronization structures were implemented as per analysis (see part 2.4.5.3),
where various merged types require some sort of identification to ensure no
duplicates are created. These identification classes only contain vital data,
which is used to compute hash codes that are used as the keys within the
ConcurrentHashMap’s instances.

The listing 3.39 shows how node attribute object is handled, where the
unifiedNodeId represents the new mapped node identifier in the unified re-
quest, nodeToAttributes represents the mapping of a node to its attributes
and nodeAttributeIdentifier is an instance of node attribute identification
class containing the key and value to ensure no duplicates are created.

nodeAttribute.set(NODE_ID, unifiedNodeId);
nodeToAttributes.computeIfAbsent(nodeId,

key -> new ConcurrentHashMap<>())
.computeIfAbsent(nodeAttributeIdentifier, key -> {

nodeAttributes.add(nodeAttribute);
return true;

}
);

Listing 3.39: Unifying requests – merging a node attribute
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The goal of this chapter was to acquaint the reader with how the certain
parts of this work were implemented. Each of the parts discussed in the
chapter 2 were described from the implementation perspective.
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Chapter 4
Evaluation

This chapter focuses on testing how various implemented algorithms per-
formed in comparison with the original Titan solution. The first subsection
discusses the initial implementation of the parallelization within the Titan
algorithm. The next subsection introduces the data used to test the per-
formance on the migrated Neo4j, and the testing machine’s specifications,
followed by subsections showing the testing results of the performance using
the introduced data.

4.1 Titan parallelization

After implementing Titan parallelization, various problems occurred when
testing this implementation. The problems are as follows:

• Transaction closed Transaction closes and an exception is thrown
when one of the merging threads attempted to access it. This is proba-
bly related to synchronization, where concurrent modification of a single
object caused it to close abruptly.

• SimpleVertexQuery Exception thrown when a query is being created
as there are 2 di�erent types of queries, which can be used. The specific
type is deduced in Titan by the state of vertex, which is queried. There
are various states such as new, loaded, modified etc. This problem is
caused because the type of query is firstly deduced when evaluating a
query, but the queried vertex is subsequently modified in some way by
other concurrently running threads and the state changes, which causes
the first thread to fail when the state is later rechecked. This is a syn-
chronization problem within the threaded transaction implementation
and can be solved by reattempting to query but could cause significant
overhead.
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Dataset Nodes Edges Split files Unified files
Small 1017 3170 5 1
Medium 55361 205883 9 1
Large 1484721 3212213 169 22

Figure 4.1: Main datasets description

• Missing vertices It seems that vertices are not always correctly cre-
ated as the merging process fails due to required vertices not being in
the database (they should be added previously as MANTA hierarchy is
followed).

These problems could probably be fixed by adding a writing synchroniza-
tion on the specific queries, however, the performance while ignoring these
errors was not better than running sequential merging using Titan, therefore
if another layer of synchronization was added, the process would be slowed
down even more.

4.2 Testing environment and data introduction
Properties of the testing environment are following:

• RAM 16384 MB DDR4 @ 3200 MHz

• CPU Intel Core i7 (10th Gen) 10610U @ 1.8 GHz

• SSD 500 GB NVM Express (NVMe)

Various testing datasets were created for performance-testing of the mi-
grated merging algorithm, implemented optimizations as well as the paral-
lelization of the whole algorithm. There are 3 main datasets of the various
size described in the figure 4.1. For each dataset, there are 2 di�erent versions
– split, where the files retrieved from the analysis are used and unified, where
the unification of requests is used (see part 3.4.5).

There are also 2 additional datasets used for performance testing of expen-
sive operations – merge file containing 2500 mapsTo edges of nodes in depth
12, and merge file containing 1000 perspective edges.

4.3 Migrated merging process
The tables and graphs in the figures 4.2, 4.3, and 4.4 show how client-sided
merging process performed in comparison with the original Titan implemen-
tation.
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Create graph

Time (ms) %
Titan 737 100
Neo4j client 3629 492.4

100 200 300 400 500

Titan

Neo4j client

Time required (%)

Update graph

Time (ms) %
Titan 716 100
Neo4j client 2886 403.1

100 200 300 400 500

Titan

Neo4j client

Time required (%)

Merge duration

Figure 4.2: Small dataset – Neo4j client merger performance

As seen in the graphs, the performance of the initial migrated version
is much worse than the original Titan implementation. This is caused by a
substantially large amount of database calls, which generate heavy overhead.

4.4 User-defined procedure

The figures 4.5, 4.6, and 4.7 provide comparison of the original Titan im-
plementation and the implementation of merging process as an user-defined
procedure.

The implementation of the merging process as a user-defined procedure
eliminated thousands of distinct database calls resulting in a significantly
better performance (time required was reduced to 60-70% for initial graph
creation and to 50% for updating revisions).
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Create graph

Time (ms) %
Titan 45115 100
Neo4j client 248981 551.9

100 275 450 625

Titan

Neo4j client

Time required (%)

Update graph

Time (ms) %
Titan 52283 100
Neo4j client 207882 397.6

100 200 300 400

Titan

Neo4j client

Time required (%)

Merge duration

Figure 4.3: Medium dataset – Neo4j client merger performance

4.5 User-defined procedure with improvements

This section describes how each of the minor optimization steps improved the
performance of the initial user-defined procedure. Performance was tested
on each of the main datasets using the user-defined procedure version of the
merging algorithm. The figures 4.8, 4.9, 4.10 show how each of the optimiza-
tion steps improved the performance for both the initial creation of the graph
and the update of the graph.

Using the medium and large dataset, the time required for initial graph
merging was more than halved when compared to initial user-defined imple-
mentation, where the largest contribution was due to caching latestCommit-

tedRevision and caching nodes, which were existing in the database before
merging. The updating of the graph was only influenced by the latestCom-

mittedRevision caching and by using node identifiers instead of retrieving the
nodes when processing various object types. The other two optimization tech-
niques did not a�ect the merging, as all the nodes already did exist, making
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Create graph

Time (ms) %
Titan 879523 100
Neo4j client 3768942 428.5

100 250 400 550

Titan

Neo4j client

Time required (%)

Update graph

Time (ms) %
Titan 987580 100
Neo4j client 3334681 337.7

100 200 300 400

Titan

Neo4j client

Time required (%)

Merge duration

Figure 4.4: Large dataset – Neo4j client merger performance

the cache pointless and resource retrieval not required.

4.6 Edge preprocessing splitting techniques
comparison

This section describes the di�erences in splitting the edges by using smallest-
first, round-robin, and random approaches. The figure 4.11 shows the reduc-
tion of the edges’ count on various merging input files (taken from the medium
dataset) by using each of the three approaches. When using only 2 containers,
the smallest-first approach performed similarly to the round-robin approach,
but when splitting into 4 containers, it performed significantly better. The
random approach performed the worst overall.
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Create graph

Time (ms) %
Titan 737 100
Neo4j user-defined 533 72.3

25 50 75 100

Titan

Neo4j user-defined

Time required (%)

Update graph

Time (ms) %
Titan 716 100
Neo4j user-defined 409 57.1

25 50 75 100

Titan

Neo4j user-defined

Time required (%)

Merge duration

Figure 4.5: Small dataset – Neo4j user-defined merger performance

4.7 Comparison of transaction-retry and
deadlock-free solution

The figure 4.12 compares the performance of the transaction-retry solution
with the deadlock-free solution. These two approaches were compared using
the medium dataset.

From the graph, it seems that the deadlock-free solution performed slightly
better, even despite the worse reduction of edge subset due to more complex
splitting. In the test case, the neighborhood was determined only by using
the merge input as this was not fully implemented, just to see whether it will
be substantially better than the transaction-retry solution. When querying
the database for all the adjacent nodes of nodes for which edges are created,
it took around 2 seconds (as seen in the figure 4.12), making it much worse.

Moreover, after sending the problematic case of deadlocks in transaction-
retry implementation to Neo4j, the cause of the locking/deadlocks was de-
termined to be false positivity caused by the change of locking management,
hence the transaction-retry implementation will be used for further testing.
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Create graph

Time (ms) %
Titan 45115 100
Neo4j user-defined 28724 63.7

25 50 75 100

Titan

Neo4j user-defined

Time required (%)

Update graph

Time (ms) %
Titan 52283 100
Neo4j user-defined 25655 49.1

25 50 75 100

Titan

Neo4j user-defined

Time required (%)

Merge duration

Figure 4.6: Medium dataset – Neo4j user-defined merger performance

Once the issue is resolved within Neo4j, the performance gain should be even
better.

4.8 User-defined procedure with parallelization

This section focuses on the performance of the transaction-retry parallel merg-
ing algorithm with all previously mentioned optimizations included.

The figures 4.13, 4.14, 4.15 show how the parallelized algorithm using 2 and
4 threads performed in comparison with sequential solution. Both creating and
updating of the graph using three main datasets are depicted in the figures.

The performance of 2-threaded and 4-threaded solutions when creating a
new graph was quite similar, which is likely caused by locking and deadlocking
occurring more often when using more threads and also by synchronization,
which Neo4j requires when creating new objects. When updating revisions,
however, the performance di�erence was more significant.
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Create graph

Time (ms) %
Titan 879523 100
Neo4j user-defined 541367 61.6

25 50 75 100

Titan

Neo4j user-defined

Time required (%)

Update graph

Time (ms) %
Titan 987580 100
Neo4j user-defined 468887 47.5

25 50 75 100

Titan

Neo4j user-defined

Time required (%)

Merge duration

Figure 4.7: Large dataset – Neo4j user-defined merger performance

4.9 Special types performance

The figures 4.16 and fig:perspective-edges show how the migrated algorithm
performed on datasets containing only mapsTo node attributes and perspec-

tive edges. These types require substantially more computing time, so it’s
important to know how well they perform.

The initial query matching full pattern, where the properties were evalu-
ated based on input array using ALL statement performed significantly worse
than the original Titan implementation, hence the imperative approach using
Cypher queries mirroring the original implementation was implemented. This
approach provided much better results, as seen in the figure 4.16.

The merging of the perspective dataset was slightly slower in sequential
solution, but had quite good performance scalability when using the parallel
approach, therefore providing better results.
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4.9. Special types performance

Create graph

Time (ms) %
Initial 533 100
Latest revision 438 82.2
Existing nodes 498 93.4
Resource 471 88.4
Node fetching 473 88.7
Final 281 52.7

25 50 75 100

Initial

Optimized

Time required (%)

Update graph

Time (ms) %
Initial 409 100
Latest revision 332 81.2
Existing nodes 409 100
Resource 409 100
Node fetching 349 85.3
Final 272 66.5

25 50 75 100

Initial

Optimized

Time required (%)

Merge duration Latest revision Existing nodes Resource

Nodes fetching

Figure 4.8: Small dataset – Reduction of merging duration by minor opti-
mizations
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4. Evaluation

Create graph

Time (ms) %
Initial 28724 100
Latest revision 22876 79.6
Existing nodes 22716 79.1
Resource 26948 93.8
Node fetching 25224 87.8
Final 11592 40.4

25 50 75 100

Initial

Optimized

Time required (%)

Update graph

Time (ms) %
Initial 25655 100
Latest revision 19222 74.9
Existing nodes 25655 100
Resource 25655 100
Node fetching 22155 86.4
Final 15334 59.8

25 50 75 100

Initial

Optimized

Time required (%)

Merge duration Latest revision Existing nodes Resource

Nodes fetching

Figure 4.9: Medium dataset – Reduction of merging duration by minor opti-
mizations
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4.9. Special types performance

Create graph

Time (ms) %
Initial 541367 100
Latest revision 448508 82.8
Existing nodes 413752 76.4
Resource 497553 91.9
Node fetching 461367 85.2
Final 197079 36.4

25 50 75 100

Initial

Optimized

Time required (%)

Update graph

Time (ms) %
Initial 468887 100
Latest revision 369088 78.7
Existing nodes 468887 100
Resource 468887 100
Node fetching 388887 82.9
Final 289088 61.6

25 50 75 100

Initial

Optimized

Time required (%)

Merge duration Latest revision Existing nodes Resource

Nodes fetching

Figure 4.10: Large dataset – Reduction of merging duration by minor opti-
mizations
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4. Evaluation

2 containers
Edges SF RR RN
23090 0.512 0.535 0.532
11661 0.507 0.508 0.533
26570 0.600 0.563 0.564
10951 0.580 0.514 0.550
11879 0.508 0.507 0.537
14370 0.510 0.521 0.537
14794 0.515 0.522 0.537
17660 0.502 0.549 0.535
19396 0.507 0.507 0.536

4 containers
Edges SF RR RN
23090 0.273 0.345 0.365
11661 0.298 0.346 0.353
26570 0.405 0.475 0.490
10951 0.335 0.408 0.375
11879 0.279 0.284 0.338
14370 0.270 0.304 0.331
14794 0.264 0.327 0.322
17660 0.261 0.355 0.321
19396 0.276 0.334 0.338

Figure 4.11: Splitting edges comparison of smallest-first (SF), round-robin
(RR) and random (RN) into 2 and 4 containers

Create graph

Time (ms) %
Sequential 11592 100
Transaction-retry 8705 75.1
Deadlock-free 8413 + 2031 72.6 + 17.5

25 50 75 100 125 150

Sequential

Transaction-retry

Deadlock-free

Time required (%)

Merge duration Additional processing time

Figure 4.12: Comparison of deadlock-free and transaction-retry solutions using
4 threads
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4.9. Special types performance

Create graph

Split Time (ms) %
Sequential 281 100
2 threads 248 88.3
4 threads 252 89.7

Unified Time (ms) %
Sequential 206 73.3
2 threads 195 69.4
4 threads 201 71.5

25 50 75 100

Sequential

Parallel 2-threaded

Parallel 4-threaded

Time required (%)

Update graph

Split Time (ms) %
Sequential 272 100
2 threads 221 81.3
4 threads 212 77.9

Unified Time (ms) %
Sequential 210 77.2
2 threads 158 58.1
4 threads 135 49.6

25 50 75 100

Sequential

Parallel 2-threaded

Parallel 4-threaded

Time required (%)

Split Unified

Figure 4.13: Small dataset – Parallel merging

99



4. Evaluation

Create graph

Split Time (ms) %
Sequential 11592 100
2 threads 8651 74.6
4 threads 8705 75.1

Unified Time (ms) %
Sequential 9777 84.3
2 threads 7002 60.4
4 threads 6775 58.4

25 50 75 100

Sequential

Parallel 2-threaded

Parallel 4-threaded

Time required (%)

Update graph

Split Time (ms) %
Sequential 15334 100
2 threads 11058 72.1
4 threads 9775 63.7

Unified Time (ms) %
Sequential 14568 95
2 threads 10452 68.2
4 threads 9098 59.3

25 50 75 100

Sequential

Parallel 2-threaded

Parallel 4-threaded

Time required (%)

Split Unified

Figure 4.14: Medium dataset – Parallel merging
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4.9. Special types performance

Create graph

Split Time (ms) %
Sequential 197079 100
2 threads 160584 81.5
4 threads 161924 82.2

Unified Time (ms) %
Sequential 183985 93.4
2 threads 158637 80.5
4 threads 156429 79.4

25 50 75 100

Sequential

Parallel 2-threaded

Parallel 4-threaded

Time required (%)

Update graph

Split Time (ms) %
Sequential 289088 100
2 threads 217728 75.3
4 threads 199866 69.1

Unified Time (ms) %
Sequential 276522 95.7
2 threads 197605 68.4
4 threads 185140 64

25 50 75 100

Sequential

Parallel 2-threaded

Parallel 4-threaded

Time required (%)

Split Unified

Figure 4.15: Large dataset – Parallel merging
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4. Evaluation

Create graph with mapsTo edges

Time (ms) %
Titan 7395 100
Full pattern sequential 175819 2377.5
Full pattern 2-thread 112569 1522.23
Full pattern 4-thread 85425 1155.2
Imperative sequential 2045 27.65
Imperative 2-thread 1287 17.4
Imperative 4-thread 1113 15.1

25 50 75 100

Titan

Imperative sequential

Imperative 2-thread

Imperative 4-thread

Time required (%)

Figure 4.16: Performance of merging mapsTo edges (full pattern solution ex-
cluded from the graph due to readability reasons)

Create graph with perspective edges

Time (ms) %
Titan 1237 100
Sequential 1695 137.02
Parallel 2-thread 878 70.98
Parallel 4-thread 555 44.87

25 50 75 100 125 150

Titan

Sequential

Parallel 2-thread

Parallel 4-thread

Time required (%)

Figure 4.17: Performance of merging perspective edges
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4.10. Final results

Create graph Update graph
Small dataset

Time(ms) % Acc
Titan 737 100 1
Neo4j 201 27.3 3.67

Time(ms) % Acc
Titan 716 100 1
Neo4j 135 18.9 5.3

Medium dataset
Time(ms) % Acc

Titan 45115 100 1
Neo4j 6775 15 6.66

Time(ms) % Acc
Titan 52283 100 1
Neo4j 9098 17.4 5.75

Large dataset

Time(ms) % Acc
Titan 879523 100 1
Neo4j 156429 17.8 5.62

Time(ms) % Acc
Titan 987580 100 1
Neo4j 185140 18.8 5.33

25 50 75 100

Small dataset

Medium dataset

Large dataset

Time required (%)

Create graph Update graph Merging time saved

Figure 4.18: Final results (4-thread parallel Neo4j) comparison with original
(Titan) implementation

4.10 Final results
The tables and the graph in the figure 4.18 show how final parallelized (4-
threaded) implementation performed in comparison with original Titan imple-
mentation using all main datasets. The performance of the merging algorithm
is around 5-6x better, which is quite a significant improvement.
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Conclusion

The goal of this work was to analyze graph algorithms used in the MANTA
Flow project and migrate it from the original Titan graph database to Neo4j
graph database, and to optimize these algorithms. The only focus of this work
was the merging algorithm required for the initial insertion and versioning of
the analyzed data into the database, as it was quite complex.

In the first chapter, MANTA Flow project as a whole was described, the
model of the data used and the fundamental properties of both Titan and
Neo4j graph databases. The last part focused on the description of the original
merging algorithm and all the related parts.

The second chapter described the analysis of the possible optimization
steps and the migration of the algorithm to Neo4j database. The migrating
part focused on the di�erence of the imperative approach used for querying in
Titan and the declarative approach used by Cypher. The optimization analysis
was split into 2 phases, where one was an initial proof of concept for Titan
optimization created due to presumption of quick possibility of parallelization
using Titan’s threaded transaction interface. The second part focuses solely
on the optimizations within migrated Neo4j version, and is divided into part
focusing on minor optimizations by removing redundant processing, and the
parallelization part focusing on the parallelization of the database processing
within the algorithm. The analysis chapter was followed by the third chapter
describing the implementation details of the previously analyzed parts.

The last chapter described the problems with the parallelization of the
Titan implementation and the performance results of the migrated Neo4j im-
plementation and its optimized versions. The performance achieved was sig-
nificantly better than when using the original Titan implementation due to
both Neo4j query times and the optimizations introduced.

The goal of this work was fulfilled as every part of it was carried out.
The implemented version of the merging algorithm is not yet deployed in the
production as the migration of the whole project to a new graph database is
still ongoing, but this is one of the initial steps required.
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Appendix A
Acronyms

API Application programming interface

CPU Central processing unit

DFS Depth-first search

ETL Extract, transform and load

JVM Java virtual machine

RAM Random-access memory

SSD Solid-state drive

UUID Universally unique identifier
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Appendix B
Contents of enclosed CD

readme.txt........................................contents description
src.......................................the directory of source codes

java........................................implementation sources
thesis..............the directory of LATEX source codes of the thesis

figures ............................ the figures used in the thesis
text..........................................the thesis text directory

thesis.pdf...........................the thesis text in PDF format
thesis.ps..............................the thesis text in PS format
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