

Master’s thesis

Domain-Specific Languages for Off-chain
UI in Decentralized Applications

Bc. Petr Ančinec

Department of Software Engineering
Supervisor: Ing. Marek Skotnica

May 1, 2021

Acknowledgements

I want to thank my supervisor Ing. Marek Skotnica, for his guidance, men-
toring, and consultations. I would also like to thank my family for supporting
me during my studies.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accor-
dance with Article 46 (6) of the Act, I hereby grant a nonexclusive authoriza-
tion (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity.

In Prague on May 1, 2021

Czech Technical University in Prague
Faculty of Information Technology
© 2021 Petr Ančinec. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Ančinec, Petr. Domain-Specific Languages for Off-chain UI in Decentralized
Applications. Master’s thesis. Czech Technical University in Prague, Faculty
of Information Technology, 2021.

Abstrakt

Tato práce se zabývá definováńım a automatickým vytvářeńım uživatelského
rozhrańı decentralizovaných aplikaćı. Hlavńım ćılem této práce je vytvořit
nový doménově specifický jazyk. Tento jazyk by měl umožnit návrh uživatelského
rozhrańı, které umı́ komunikovat s chytrými kontrakty.

Nově navržený doménově specifický jazyk je založený na standardńıch
př́ıstupech k deklarativńımu vývoji uživatelských rozhrańı zkoumaných v rámci
této práce a použ́ıvá upravenou verzi Extensible Markup Language. Tomuto
jazyku by mělo j́ıt jednoduše rozumět bez jakékoliv předchoźı znalosti. Ja-
zyk by nav́ıc měl umožnit definováńı uživatelských rozhrańı jak obyčejných
chytrých kontrakt̊u, tak chytrých kontrakt̊u z Das Contract projektu. Uživatelská
rozhrańı vytvořená t́ımto jazykem jsou implementačně nezávislá a umožňuj́ı
uživateli komunikovat s chytrými kontrakty nasazenými na libovolném blockcha-
inu.

V rámci této práce byly vytvořeny dvě aplikace na podporu práce s nově
navrženým jazykem. Editor formulář̊u umožňuje návrháři rychle vyv́ıjet, ověřovat
a zobrazovat formuláře vytvořené v novém jazyce. Druhá aplikace použ́ıvá
takto navržené formuláře ke komunikaci s chytrými kontrakty nasazenými na
Ethereum blockchainu. Tato aplikace zároveň slouž́ı jako referenčńı implemen-
tace interpretu nově navrženého jazyka. Funkčnost těchto aplikaćı je ukázána
na Das Contract kontraktu pro uzavřeńı decentralizované hypotéky.

Kĺıčová slova blockchain, doménově specifické jazyky, decentralizované apli-
kace, Das Contract, generováńı uživatelských rozhrańı

vii

Abstract

This thesis focuses on the definition and generation of decentralized appli-
cation’s user interfaces. The primary goal of this thesis is to create a new
domain-specific language that will allow users to design user interfaces. These
user interfaces should let the user interact with smart contracts.

The new proposed domain-specific language is based on standard ap-
proaches to declarative user interface development researched in this thesis.
The new proposed domain-specific language uses Extensible Markup Lan-
guage modified to be easily understandable without any prior knowledge. It
can be used to define user interfaces of both Das Contract and generic smart
contracts. User interfaces created with this language are implementation-
independent and allow users to interact with smart contracts deployed on any
blockchain.

Two proof of concept applications were created to support working with
the new domain-specific language. The forms editor allows a designer to de-
velop, validate and render forms in the new language quickly. The forms
wallet enables a user to use the forms to interact with smart contracts on the
Ethereum network. This application also serves as a reference implementa-
tion of the new proposed language. The functionality of both applications is
shown on a Das Contract mortgage contract, which allows a user to take out
a mortgage without any central authority.

Keywords blockchain, domain-specific languages, decentralized applications,
Das Contract, user interface generation

viii

Contents

Introduction 1

1 Theoretical foundations 3
1.1 Blockchain technology . 3
1.2 Blockchain properties . 4
1.3 Blockchain structure . 5
1.4 The benefits and dangers of using blockchain technology 7
1.5 Ethereum . 10
1.6 Ethereum wallets . 10
1.7 Smart contracts . 10
1.8 Tokens on the blockchain . 11
1.9 On-chain and off-chain interactions 13
1.10 Decentralized applications (DApps) 14
1.11 Das Contract . 16

1.11.1 Mortgage contract . 18
1.12 Chapter summary . 20

2 Standards and approaches to declarative user interface de-
velopment 21
2.1 Three-tier architecture and its relation to decentralized appli-

cations . 21
2.2 Model and view separation and communication approaches . . 22

2.2.1 Model View Controller 22
2.2.2 Model View Presenter 24
2.2.3 Model View ViewModel 24
2.2.4 Summary . 25

2.3 Declarative vs. procedural user interface 25
2.4 Domain-specific languages for declarative user interface 27

2.4.1 XML based domain-specific languages 28

ix

2.4.2 Domain-specific languages and declarative user interface 28
2.5 Interaction Flow Modeling Language 29
2.6 Chapter summary . 30

3 Towards a new domain-specific language for decentralized
application’s user interface 31
3.1 First look at the user interface 31
3.2 Creating Das Contract forms with Interaction Flow Modeling

Language . 34
3.2.1 Conclusion . 36

3.3 Creating Das Contract forms with XML-based domain-specific
language . 36
3.3.1 Conclusion . 39

3.4 Requirements for Das Contract domain-specific language 39
3.4.1 Creating forms . 39
3.4.2 Collecting user input . 40
3.4.3 Display Das Contract details 40
3.4.4 Validate user task roles and control flow 40
3.4.5 Basic support for smart contracts outside of the Das

Contract methodology 40
3.4.6 Easy to extend in the future 40

3.5 Redefining Das Contract forms model 41
3.6 Domain-specific language requirements evaluation 43

3.6.1 Creating forms . 43
3.6.2 Collecting user input . 43
3.6.3 Display Das Contract details 43
3.6.4 Validate user task roles and control flow 45
3.6.5 Easy to extend in the future 46

3.7 Forms model as a domain-specific language 47
3.8 Chapter summary . 47

4 Proof of concept 49
4.1 Used technologies . 49

4.1.1 Blazor WebAssembly . 49
4.1.2 Nethereum . 49
4.1.3 Monaco Editor . 50
4.1.4 Material Design . 50

4.2 Project scope . 50
4.3 Use cases . 53
4.4 Functional and non-functional requirements 54

4.4.1 Forms editor . 54
4.4.2 Forms wallet . 54

4.5 Architecture and design . 55
4.5.1 Forms model . 57

x

4.5.2 Forms editor . 58
4.5.3 Forms wallet . 59

4.6 Development process . 60
4.6.1 XML serialization . 60
4.6.2 ViewBind data binding 61
4.6.3 ParamBind data binding 62

4.7 Testing . 63
4.8 Project showcase - a decentralized mortgage contract 63

Conclusion 67

Bibliography 69

A Acronyms 73

B Contents of enclosed CD 75

xi

List of Figures

1.1 The network view of a blockchain 5
1.2 The structure of a generic blockchain block 6
1.3 Generic structure of a blockchain 7
1.4 Average monthly hashrate breakdown by country 9
1.5 A generic oracle data flow . 13
1.6 A generic model of an oracle and smart contract ecosystem 14
1.7 A concept architecture of the Das Contract 16
1.8 The Das Contract metamodel . 17
1.9 The Das Contract mortgage case study 19

2.1 Relationship between the three-tier design and MV* patterns . . . 23
2.2 Declarative HTML vs. procedural Java 26
2.3 Declarative Angular HTML vs. procedural DOM 26

3.1 Wireframe of the Das Contract wallet dashboard 32
3.2 Wireframe of the Das Contract mortgage contract - apply for a

mortgage . 32
3.3 Wireframe of the Das Contract mortgage contract - pay for a mort-

gage . 33
3.4 Wireframe of the Das Contract mortgage contract - cancel a mortgage 33
3.5 Subset of IFML elements that could be used for DApps UI 35
3.6 IFML diagram of the Das Contract wallet dashboard designed in

IFMLEdit . 36
3.7 UI of the Das Contract wallet dashboard generated from IFML by

IFMLEdit . 37
3.8 Example of syntactic noise in the apply for a mortgage form 38
3.9 Removing syntactic noise to increase information value 38
3.10 Apply for a mortgage form with minimal syntax noise 38
3.11 New Das Contract forms model . 41
3.12 ViewBind format examples . 44

xiii

3.13 A mapping of the forms model into the XML syntax 46
3.14 A form of the apply for a mortgage activity in the mortgage contract 47

4.1 Activity diagram of interaction with smart contract 51
4.2 Use case diagram for both applications 52
4.3 Package diagram showing essential parts of the project 56
4.4 Sequence diagram showing how the forms renderer works 57
4.5 Forms model classes with XML annotations 61
4.6 ViewToken class used to parse data from the blockchain 62
4.7 Final look of the forms editor . 64
4.8 Final look of the forms wallet while interacting with Das Contract 64
4.9 Final look of the forms wallet while interacting with generic smart

contract . 65
4.10 Final look of the forms wallet while showing Das Contract details . 65

xiv

List of Tables

1.1 Proof of Work 51% Attack Cost . 7

xv

Introduction

A recent surge of interest in blockchain technology has allowed decentralized
applications to be more popular. This thesis aims to propose a domain-specific
language that will effortlessly define user interfaces that can interact with
smart contracts. Most of the effort is put toward defining user interfaces
of Das Contract smart contracts, but generic smart contracts ought to be
supported as well.

Creating a way to define a decentralized application’s user interface quickly
has many advantages. It allows developers of decentralized applications to
interact with their deployed smart contracts without much effort. It gives users
an easy and clean way of concluding smart contract agreements, and together
with Das Contract, it should create a new innovative way of developing smart
contracts altogether.

This thesis aims to propose a domain-specific language that will allow
defining Das Contract and generic smart contract user interfaces in a stan-
dardized way and create applications supporting this new language.

The first chapter creates a theoretical basis for blockchain technology and
Das Contract, which will be used throughout the thesis. The second chapter
focuses on standards and approaches to declarative user interface development.
It proposes two approaches to defining user interfaces. In the third chapter,
those two approaches are examined and tested and based on the results, a new
domain-specific language is proposed. The last chapter deals with designing
and implementing the proposed language and two applications supporting it.

1

Chapter 1
Theoretical foundations

This chapter provides an introduction to blockchain technology. It describes
how a blockchain works in general, its benefits, and possible issues. Afterward,
more focus is put on the Ethereum blockchain and its wallets because the
thesis’s implementation part will use them. After that, the thesis goes over
smart contracts, tokens, decentralized applications, and how on-chain and off-
chain code and interactions work. At the end of this chapter, we go over the
Das Contract language since we need to propose a domain-specific language
that helps define its user interface.

1.1 Blockchain technology

Blockchain technology saw its first mention in 2008 in the ground-breaking
paper: Bitcoin: A Peer-to-Peer Electronic Cash System[1], in which Bitcoin
was born, using a chain of blocks (blockchain) as one of its underlying tech-
nologies to create a purely peer-to-peer electronic cash that does not need a
trusted third party to ensure double-spending does not happen.

Technical definition: Blockchain is a peer-to-peer, distributed ledger that
is cryptographically-secure, append-only, immutable (extremely hard to
change), and updateable only via consensus or agreement among peers.

Layman’s definition: Blockchain is an ever-growing, secure, shared record-
keeping system in which each user of the data holds a copy of the records,
which can only be updated if all parties involved in a transaction agree
to update.[2]

Blockchain has seen its first use in Bitcoin (peer-to-peer electronic cash).
As a result of this invention, other blockchain-based systems have quickly
emerged and given the blockchain technology other uses across all parts of
the economic sector. Nowadays, blockchain-based systems allow transferring

3

1. Theoretical foundations

anything of value securely and without the need for a trusted intermediary.
For a regular user, the blockchain provides a platform to send or exchange
valuable goods.[3]

A recent surge of interest in blockchain technology has allowed decen-
tralized applications to be more popular. Beyond its financial applications,
its potential has come to the foreground in many other sectors, such as trade
and supply chains, manufacturing, energy, creative industries, healthcare, and
government, public and third sectors. Starting from 2010, the number of new
start-ups entering the blockchain industry each year rose steeply worldwide
until 2017, at an average annual rate of 40%.[4]

1.2 Blockchain properties

If we simplify blockchain, it is almost like a big decentralized database, where
every peer is one database node that keeps full duplication of the data. How-
ever, as seen in the technical definition, the blockchain has many properties
that make it very interesting compared to a regular database. Blockchain is:

Peer-to-peer There is no central controller in the network. Participants talk
to each other and execute transactions directly. If some of the nodes shut
down or face an attack, the system remains functional (certain types of
attacks can temporarily put the system at risk, such as 51% attack).

Distributed ledger Every peer on the network holds a full copy of the ledger
(list of all transactions) same way as a database can be distributed into
every node to make sure that data are never lost.

Cryptographically-secure Cryptography techniques protect the ledger against
tampering. These include data integrity (unauthorized people cannot
modify the data), data origin authentication (only a person with the
private key can send the transaction), and non-repudiation (a person
that has initiated the transaction cannot do anything that would re-
verse this transaction, assuming the transaction is confirmed).

Append-only Transactions can only be added to the blockchain. They are
also in chronological order (the transaction can only be added to the
blockchain’s end). That means once a transaction is in the blockchain,
nobody can remove it or alter it by prepending the transaction before
it. In rare scenarios, a 51% attack could alter the blockchain.

Updateable Any update to the blockchain has to pass the criteria defined
in the blockchain protocol and a consensus, meaning all the peers have
to agree to this change. There are many different consensus algorithms.
The most prominent blockchains use Proof of Work (voting by compu-
tation power, also known as mining) or Proof of Stake (voting based on
the stake - the amount invested into the system).[2]

4

1.3. Blockchain structure

Figure 1.1: The network view of a blockchain[2]

1.3 Blockchain structure

Blockchain can be imagined as a layer of a peer-to-peer network that uses
the internet for communication; it is similar to HTTP running on top of
TCP/IP. Figure 1.1 shows the network view of the blockchain. The peer-to-
peer network hosts the blockchain system that contains transactions, blocks,
consensus mechanisms, state machines, and smart contracts. Finally, the
users connect to the blockchain and perform tasks like executing transactions,
verifying transactions, and voting.[2]

The blockchain consists of blocks chained together. Each block, as seen
in figure 1.2, consists of a header and a body. The body consists of many
transactions bundled together. A single transaction is a record of some event
that occurred, for example, a user sending money to another user. The header
contains information required to keep the blockchain valid. The blocks are
chained together using the previous block’s hash. The only exception is the
first block, which is hardcoded into the chain when it runs for the first time.
A nonce is a number that the miners need to find in the Proof of Work
consensus. When this number is found, the block is mined, and the miner
receives a reward. The Merkle root is a hash of all nodes in the Merkle tree;
this allows all transactions within the block to be verified at once, speeding up

5

1. Theoretical foundations

Figure 1.2: The structure of a generic blockchain block[2]

the verification process. The timestamp is used to calculate the time between
two blocks being mined; this allows the Proof of Work-based blockchain to
adjust mining difficulty according to the mining power.[2]

The blockchain consists of blocks chained together. Each block, as seen
in figure 1.2, consists of a header and a body. The body consists of many
transactions bundled together. A single transaction is a record of some event
that occurred, for example, a user sending money to another user. The header
contains information required to keep the blockchain valid. A nonce is a
number that the miners need to find in the Proof of Work consensus. When
this number is found, the block is mined, and the miner receives a reward. The
Merkle root is a hash of all nodes in the Merkle tree; this allows all transactions
within the block to be verified at once, speeding up the verification process.
The timestamp is used to calculate the time between two blocks being mined;
this allows the Proof of Work-based blockchain to adjust mining difficulty
according to the mining power.[2]

When a node needs to transfer something over a blockchain, it creates
a transaction and signs it with its private key. The transaction contains a
source and a destination address, plus other validation information. It can
also contain business logic, such as rules that need to be fulfilled or how the
value is transferred. The transaction is then propagated into the network
using a Gossip protocol to transaction validators. When multiple validators
validate the transaction, it is included in the next block, then propagated into

6

1.4. The benefits and dangers of using blockchain technology

Figure 1.3: Generic structure of a blockchain[2]

the network. The blocks are chained together using the previous block’s hash,
as seen in figure 1.3. The only exception is the first block, which is hardcoded
into the chain when it runs for the first time. Each time a new block is
added, all previous blocks receive one confirmation. When enough blocks
are appended after the block with the node’s transaction (in Bitcoin, this is
usually six blocks), the transaction is considered final and irreversible.[2][3]

1.4 The benefits and dangers of using blockchain
technology

The following section goes over some of the most notable benefits and draw-
backs of using blockchain technology. Since blockchain technology is still rel-
atively young, many challenges and problems arise, and it is crucial to keep
them in mind. As of right now, there are many different types of blockchain,
each one focusing on a different spectrum of problems. So while many of these
problems have been solved already, we still do not have a blockchain technol-
ogy, which would deal with most of the problems, same as we do not have
a universal programming language. Some of the most important advantages
are:

Table 1.1: Proof of Work 51% Attack Cost[5]

Name Market cap Hash rate 1h attack cost NiceHash
Bitcoin $355.17 B 114,915 PH/s $716,072 0%
Ethereum $67.76 B 253 TH/s $418,438 3%
Litecoin $5.81 B 227 TH/s $29,287 6%
BitcoinCash $5.44 B 1,374 PH/s $8,560 33%
Dash $1.04 B 7 PH/s $3,246 2%

7

1. Theoretical foundations

Transparency and trust Because changes to the ledger are visible to every-
one on the network, and the transactions cannot be altered or removed,
the system is fully transparent, and it is nearly impossible to commit
fraud by modifying the data.

Decentralization Removing the need for an intermediary further increases
trust in the system, as there is no central authority one would need
to trust not to commit fraud (in countries with significant corruption,
trusting central authority is a big problem). Another advantage of not
having an intermediary is the speedup of the transaction process.

Security Modifying or removing data in the blockchain is nearly impossible.
In the past, there have been many cases of fraud by manipulating the
data. In the blockchain, every transaction can be traced by anyone
on the network. Regular systems are prone to hacking because they
can be very complex and intertwined. While a 51% attack could alter
the blockchain, it is nearly impossible to execute 51% attacks on large
blockchains. Additionally, it could be quickly spotted by other nodes in
the network.

Cost-saving Having an intermediary usually involves additional fees when
transferring assets. There can be multiple intermediaries, each requiring
a fee to provide a service, maintain their ledger, and exchange data.

High-availability Blockchain is based on a peer-to-peer network with thou-
sands of nodes, each keeping its copy of the ledger. Even if many nodes
leave the network or are taken down, the blockchain will remain ac-
cessible. This extreme redundancy ensures the high availability of the
blockchain.[2][3]

Problems and challenges the blockchain technology needs to face are:

Lack of privacy Since everything on the blockchain is visible for everyone,
it is relatively easy to figure out an account’s identity after payment
is received from them. While this problem is being worked on and
some blockchains already offer nearly untrackable transactions, major
blockchains still do not have a solution implemented to protect the reg-
ular uninformed user.

Lack of central control While having no central control brings advantages
to the blockchain by giving control back to users, it also gives the users
responsibility to educate themselves and care for their assets. The user
needs to be aware of various scams and responsibilities, such as keeping
their private key safe, making sure he does not lose it, and at the same
time does not show it to anyone. The blockchain can be very unforgiving;
if a user gets scammed or sends assets to the wrong address, it will most
likely be gone forever.

8

1.4. The benefits and dangers of using blockchain technology

Figure 1.4: Average monthly hashrate breakdown by country (from September
2019 to April 2020)[6]

51% attack If a blockchain uses Proof of Work consensus, if an attacker
were to obtain more than 50% of computing power, he can control the
blockchain’s transactions, known as a 51% attack. Table 1.1 shows how
much would a 51% attack cost for an hour and what percentage of this
power could be borrowed from NiceHash (one of the most significant
rentable mining services). While it might look like big blockchains can-
not be vulnerable to this attack because of the price and coordination
required to pull it off, if we look at graph 1.4, we can see that China
owned roughly 72% of all Bitcoin’s hash rate on average from September
2019 to April 2020.

Scalability and cost Proof of Work requires proof that computing power
and resources were contributed to the network before a block is added.
Enormous amounts of electricity and computing power are required to
run the network, essentially wasting it on computing hashes. When there
is an exponential increase in transactions on the network, the cost per
transaction increases because it is not ready to handle this amount of
transactions. For example, a block is added into the Bitcoin blockchain
every 10 minutes and contains around 2000 transactions so the Bitcoin
network can handle approximately three transactions per second.[3]

9

1. Theoretical foundations

1.5 Ethereum

Ethereum is an open-source, globally decentralized computing infrastructure
that executes smart contracts. From another view, Ethereum is a deterministic
state machine with a globally accessible singleton state and a Turing-complete
virtual machine (EVM) that changes this state by executing code. Blockchain
technology allows keeping the history of state changes. Ethereum tracks the
state transitions of a general-purpose data store (anything that a key-value
pair can represent). It can store both code and data, meaning it can perform
more than just monetary transactions.[7]

The Ethereum Virtual Machine (EVM) can load code into its state ma-
chine and run it, storing its blockchain’s resulting state changes. Since it is
Turing-complete, it can compute any algorithm that any Turing machine can
compute. Running code in the EVM is very expensive because the code runs
on many nodes. It also introduces the halting problem, which proves that we
cannot determine if a program will stop running unless we run it. To ensure
there is not a smart contract that would run an infinite loop, halting the EVM
or just simply wasting resources, the EVM charges a fee for every instruction
executed on it. Every instruction has a predetermined cost in gas, which has
to be bought with ether (Ethereum’s main currency unit) to keep the code
running and reward nodes executing it.[7][8]

1.6 Ethereum wallets

In Ethereum, wallets can have multiple functionalities. A wallet is a software
application that serves as a primary user interface to Ethereum. Every wallet
allows its user to manage his keys, addresses, and balance. It also enables
him to create and sign transactions. On top of that, some Ethereum wallets
allow the user to interact with smart contracts. Therefore, they can serve as
an interface for decentralized applications. Wallets that allow DApp interac-
tions are usually either a browser extension or mobile app, allowing seamless
integration with websites providing DApps.[7]

MetaMask[9] is an example of an Etherum wallet that also serves as a
gateway to DApps. It allows users to store and send ethers and tokens. Users
can then connect the wallet to Etherum-based DApps and spend the ether
or tokens in games, gambling, or DeFi exchanges. Once the DApp connects
to the wallet, it can view the wallet address and ask the user for payment
through MetaMask.[7][10]

1.7 Smart contracts

Nick Szabo first defined smart contracts in an article called Formalizing and
Securing Relationships on Public Networks[11] in the 1990s:

10

1.8. Tokens on the blockchain

A smart contract is an electronic transaction protocol that exe-
cutes the terms of a contract. The general objectives are to satisfy
common contractual conditions (such as payment terms, liens, con-
fidentiality, and even enforcement), minimize exceptions both ma-
licious and accidental, and minimize the need for trusted interme-
diaries. Related economic goals include lowering fraud loss, arbi-
trations and enforcement costs, and other transaction costs.[11][12]

A typical example of automatic execution is a vending machine. It has an
internal state and behaves algorithmically, meaning the same instructions are
executed every time. Once a person inserts money and selects the goods, they
are released. The machine cannot decide not to follow the contract. Similarly,
a smart contract has to execute the programmed code.[13]

Blockchain technology plays a vital role in providing the necessary under-
lying network with security guarantees required to run the smart contracts.[12]
We will now focus only on Ethereum smart contracts, where smart contracts
usually refer to immutable computer programs that run on the EVM as part
of the Ethereum network protocol. The smart contract is:

Autonomous and immutable After the contract is launched and running,
nobody can stop it from automatically executing the agreement, and
the code of the smart contract cannot change unless a new instance is
deployed.[13][7]

Self-sufficient The contract can automatically gather required resources to
run itself (storage, processing power) by issuing equity, raising funds, or
providing services.[13]

Deterministic The outcome of the smart contract’s execution is the same
for every node that runs its code in the context of the transaction that
initiated it. Since executing smart contracts results in a change of state
of the Ethereum blockchain, all nodes need to agree on it using a con-
sensus mechanism. Therefore, it is required that there is no random
behavior and the execution is deterministic. If it were not, the nodes
would never agree on a state of the Ethereum blockchain.[7]

Decentralized The contract does not reside on a single node but is dis-
tributed and executing across network nodes in the EVM. Thanks to
the deterministic behavior, all instances of the EVM achieve the same
result, and therefore it seems like the system operates as a single global
computer.[13][7]

1.8 Tokens on the blockchain

A blockchain token is a coin-like item with a specific purpose. Tokens can
be programmed to serve many different functions. The most common use for

11

1. Theoretical foundations

a token is it being a currency. Other functionalities include asset ownership
(token representing an asset such as gold, oil, or energy), access (token rep-
resenting access rights, for example, a right to use a service), equity (token
representing shareholder equity), voting (token representing voting rights in a
legal system), identity (digital ID) and many others. Tokens can be fungible
and non-fungible.[7]

Fungible tokens are not unique, meaning we can substitute one token for
another of the same kind, and the value and function stay the same. Fungible
tokens can also be divided into smaller parts. The most obvious case of this
is currency. The value and functionality of one ether stay the same as any
other ether. Further, we can divide one ether into smaller units (gwei), and
they will be indistinguishable from others.[7][8]

On the other hand, non-fungible tokens each represent a unique item, and
one is not like the other. For example, a token representing a specific person’s
digital identity cannot be replaced with the same token type, depicting another
person’s digital identity. Therefore, non-fungible tokens need to have a unique
identifier, and they cannot be split into smaller parts.[7][8]

On the Ethereum platform, tokens are different from the ether because
the Ethereum protocol doesn’t know anything about them. Ether transac-
tions are an action of the Ethereum platform, but sending and owning tokens
is done only on the smart contract level. Every token needs to have an under-
lying smart contract handling the operations possible with this token. Once
the token is deployed, the smart contract manages everything and needs to
be programmed without errors. While a developer can write a token from
scratch, it is wiser to use existing standards to avoid creating unnecessary
code bugs.[7][8]

The first Ethereum token standard is called ERC-20. It is the most used
standard to date, and it is used for fungible tokens, meaning ERC-20 tokens are
interchangeable and have no unique properties. The ERC-20 standard defines
a common interface, which allows tracking balance for every token holder
address and provides the ability to manage this balance (send, receive). The
ERC-20 tokens create a simple way to create a cryptocurrency for a project
on top of the Ethereum network.[14][7]

For non-fungible tokens, there is the ERC-721 standard. It is inspired by
the ERC-20 standard, except it is changed to represent non-fungible tokens,
making it easy to create tokens representing unique items such as collectibles
or ownership. Since ERC-721 tokens are unique, the user doesn’t own tokens
just as a number but instead holds a particular set of identifiable tokens, each
one representing something else.[15][8]

12

1.9. On-chain and off-chain interactions

Figure 1.5: A generic oracle data flow[12]

1.9 On-chain and off-chain interactions

Blockchain is a closed ecosystem, meaning it cannot naturally interact with
the real world outside its network. When a smart contract is deployed and run-
ning, it executes on-chain code. On-chain code is typically small and contains
only the smart contract’s crucial parts as executing it is costly. Off-chain code
does not run on the blockchain and introduces additional required trust by
the users, as it does not have the same properties as on-chain code. We would
want to eliminate any off-chain code in an ideal scenario as it undermines the
smart contract’s trust. However, it is not possible because the blockchain does
not have access to the real-world, which is usually required for the smart con-
tract to be useful. Additionally, off-chain code allows us to reduce the amount
of code running on-chain, which drastically reduces the costs of running the
smart contract. Oracles allow us to address these issues.[12][7]

Oracles are trusted entities that use a secure channel to transfer off-chain
data to a smart contract to execute its business logic. For example, a smart
contract might need to access prices of stocks, cryptocurrency exchange rates,
random numbers, scores of matches, or if the other party has received property
or goods. They can also be used to relay data securely to the frontend of
the DApp. The steps of how an oracle works are shown in figure 1.5 and
below:[12][7]

1. A smart contract requests data from an oracle.

2. Oracle executes the request and retrieves the requested data from the
source.

3. The data are sent to a notary where they are digitally signed to prove
their authenticity. There are other techniques to provide trusted data
as well.

4. The signed data are sent back to the oracle.

13

1. Theoretical foundations

Figure 1.6: A generic model of an oracle and smart contract ecosystem[12]

5. Optionally, the signed data can be stored on a decentralized storage
system like Swarm if they are too big for the smart contract.

6. Finally, the signed data are sent to the smart contract.

While centralized oracles are good enough for many applications, they
present a security threat to the Ethereum network. For example, let’s take
a cryptocurrency exchange rate from a single centralized exchange and use it
to create a smart contract for decentralized exchange. There is no guarantee
that the service will have 100% availability at all times. Additionally, should
the exchange choose to or be subject to an attack, they could manipulate
the exchange rates sent to the smart contract for their own gain. Decen-
tralized oracles are trying to solve these issues by providing tamper-resistant
data.[7][16]

ChainLink has proposed a decentralized oracle network that serves as mid-
dleware between smart contracts and external data sources. It consists of three
smart contracts: a reputation contract, an order-matching contract, and an
aggregation contract. The reputation contract is meant to keep track of data
providers’ performance. The order matching contract is responsible for select-
ing bids from oracles using the reputation contract and creating a service-level
agreement based on the number of oracles required. The aggregation contract
then collects responses from multiple oracles, calculates the final result, and
feeds it back into the reputation contract.[7][16]

Instead of having a single data feed from a centralized exchange, there
would now be an oracle providing the smart contract with aggregated data
from multiple exchanges, based on their reputation and previous performance.

1.10 Decentralized applications (DApps)

A decentralized application (DApp) is an application that does not run on a
central server (or cluster). A typical application consists of frontend, back-

14

1.10. Decentralized applications (DApps)

end, and data store. On top of that, it might also communicate with other
applications or systems, and if a user wants to connect, he might need a
name resolution service. All of these parts can be somewhat centralized and
somewhat decentralized.[12]

In an ideal scenario, a DApp should be entirely open-source and au-
tonomous, meaning it can raise funds on its own to cover the costs of running
it. It would use a smart contract as a backend, with the data and records of
operations being stored on a public, decentralized blockchain or P2P storage.
Any changes to the DApp should be done via consensus, with nobody having
majority control over the application. The application’s front end should be
an app that runs directly on a device rather than a centralized server.[12][7]

Most of the DApps are only partially decentralized while still using central-
ized services where they are needed or convenient. Running code and storing
data on the Ethereum platform is expensive because of its current proof of
work consensus and high ether costs. That is why the smart contract is used
only for the core features, while everything else is computed off-chain.[7]

DApps have advantages that a typical centralized application cannot pro-
vide:

Resiliency Since a smart contract controls the business logic, a DApp is
distributed across the blockchain platform, it cannot be altered, and
its data and transactions are stored persistently. It will also have no
downtime as long as the platform is still operating.

Transparency Anyone can inspect the code of a smart contract on a blockchain
to ensure that it does what it is intended to do. All interactions with
the DApp are stored forever in the blockchain.

Censorship resistance As long as a user can access a blockchain node (or
run one), he can always interact with the DApp without interference.[7]

Generally, DApps provide different services. The main ones are finance,
gaming, gambling, social media, transportation, and shopping. Here are some
examples:

DeFi stands for Decentralized Finance, and it is one of the most attractive
concepts for DApps. Traditionally, finance is a business that was al-
most impossible to do without involvement from a third party and a fee
for their services. Users could be using decentralized exchanges to buy
cryptocurrencies, stocks, take loans, or get insured without a central
authority that needs to be trusted.[12]

OpenBazaar is a decentralized peer-to-peer network that allows sellers and
buyers to interact directly without a third party. While the network does
not run on a blockchain, it uses cryptocurrencies for payment.[12][13][17]

15

1. Theoretical foundations

Figure 1.7: A concept architecture of the Das Contract[25]

LaZooz is a decentralized version of Uber, allowing users to rideshare. There
are many similar projects, such as Eva and Drife.[18][19][20]

Twister is a social network similar to Twitter or Facebook, allowing its users
to microblog.[13][21]

MakerDAO is a decentralized lending platform built on Ethereum to allow
lending and borrowing of cryptocurrencies without the need for a middle
man using smart contracts.[22]

CryptoKitties is a game built around breeding and collecting virtual cat
pets.[23]

Decentraland is a virtual game world where users can buy land and vote
using DAO tokens.[24]

1.11 Das Contract

The Das Contract is a Domain Specific Language (DSL) for specifying blockchain
smart contracts. It uses a subset of BPMN 2.0 and other concepts specific to
blockchain technology to create platform-independent models. Using model-
driven engineering allows automatic generation of smart contracts for sup-
ported platforms from these models. According to the Das Contract paper
[25], its main focus is to deal with law and legal contract ambiguity, and its
approach to resolving contract ambiguity consists of three parts, as seen in
figure 1.7:

16

1.11. Das Contract

Figure 1.8: The Das Contract metamodel[26]

17

1. Theoretical foundations

Human Understanding part defines a contract between multi-
ple parties that they need to agree on. Such a contract is a com-
bination of legal text and formal ontological models. The legal
text in some form specifies the legal validity of the formal model.
The formal models need to be unambiguous, so only one possible
interpretation is allowed.
Technical Implementation part specifies how formal models
from the contract are transformed into a software executable code
and uploaded into a blockchain as a smart contract.
Digital Interaction is a part where people, companies and legal
authorities can interact with the agreed upon contracts. Since the
contract is in a blockchain, the interaction is fully digital, and
thanks to cryptography can also be legally binding. Blockchain
by design also provides an audit trail of all actions performed by
the parties and ensures that the agreed upon contract is executed
correctly.[25]

The Das Contract consists of three interconnected models, as seen in figure
1.8:

The process model is based on an extended subset of BPMN 2.0. It spec-
ifies the smart contract’s process activities, execution order, user roles,
and property mappings. It also supports working with both fungible
and non-fungible tokens.

The data model is based on a UML class diagram. It is used to specify
entities, properties, and relations between them. An entity may contain
primitive data types as well as addresses for token support. In the model,
tokens are represented as a special entity using inheritance.

The forms model specifies an interface for the user input. It is then gen-
erated into an on-chain code, which handles validations, user rights,
property bindings, and an off-chain model, which is interpreted by a
blockchain wallet that allows the user to interact with the smart con-
tract. The on-chain code is equivalent to server-side code, and the off-
chain code is equivalent to client-side code in a regular application.[28]

1.11.1 Mortgage contract

In the following chapters, we will be using the Das Contract mortgage con-
tract[27] as a practical example to show different approaches to defining its
UI. In figure 1.9, we can see the Das Contract diagram of the mortgage con-
tract. It depicts four roles: borrower, lender, insurer, and property owner,
each having different responsibilities and actions based on their roles. Some

18

1.11. Das Contract

Figure 1.9: The Das Contract mortgage case study[27]

19

1. Theoretical foundations

of these actions have a form attached to them. For example, the borrower can
apply for a mortgage, pay a mortgage fee and cancel a mortgage application
using the forms from the Das Contract forms model. The mortgage case di-
agram has been generated into a Solidity smart contract and can run on the
Ethereum blockchain.

1.12 Chapter summary

This chapter has gone over how blockchains work, their main advantages and
disadvantages, and how we can use them to transfer value and execute con-
tracts automatically. We have also shown different types of tokens, which can
represent valuable assets or voting rights, and wallets, which are used as a
gateway to decentralized applications. Near the end, we introduced the idea
of fully decentralized applications and how we can use oracles to deliver off-
chain information on-chain. Finally, the Das Contract language, which can
generate smart contracts from platform-independent models, was reviewed to
understand it better and propose a domain-specific language for generating
its user interface.

20

Chapter 2
Standards and approaches to

declarative user interface
development

This chapter describes standards and approaches to defining user interfaces
declaratively. In the first part, the three-tier architecture is quickly revised,
and a possible mapping to decentralized applications is shown. After that,
the MV* pattern family is discussed, its relation to decentralized applications
and three-tier architecture is shown. Afterward, domain-specific languages are
reviewed, showing their advantages and how we can use them to declare user
interfaces. In the end, the Interaction Flow Modeling Language is examined
to present another possible way of declaring user interfaces as a standardized
platform-independent model.

2.1 Three-tier architecture and its relation to
decentralized applications

Enterprise applications can be divided into three essential layers:

The presentation layer handles the interaction between the user and the
software. Its primary responsibility is to display information to the user
and interpret the user’s commands into actions.

The business layer , also known as business logic, represents the core func-
tionality of the domain. It works with both inputs and stored data,
validates them, enforces business rules on them, and uses them to pro-
vide the user service beneficial to him.

The data access layer is responsible for retrieving and storing data either
from a database or other systems.[29][30]

21

2. Standards and approaches to declarative user interface
development

These three layers can also be mapped to DApps. The more centralized a
DApp is, the easier it is to see. The presentation layer is usually the same as
in enterprise applications, whether it is a website or a standalone application.
The business logic consists of one or many smart contracts, and the data
access layer is represented by oracles and other storages, such as P2P storage
or blockchain data storage.

Currently, many DApps are still relatively centralized. We can look at
them as enterprise applications that use smart contracts only for a particu-
lar purpose, such as storing the essential data on a blockchain to maintain
transparency and provability. Therefore, when creating a DSL for DApp UI,
common patterns that allow separation of concerns should still be used so that
the UI can be exchanged for another one when needed.

2.2 Model and view separation and
communication approaches

Separating the model from the view is the first phase in developing larger
applications. Some of the most significant responsibilities - working with data
and presenting data - are now fenced off. However, this is usually not sufficient.
The view is not insulated from the model, and they rely on each other. A
mediator is required to provide communication between these two components
so they can be replaced when needed. The patterns from the MV* family are
well established and provide different approaches for separating the model and
the view of an application.[29][30]

2.2.1 Model View Controller

MVC is one of the oldest and most influential patterns that tried to solve
the view and model separation in response to a need for large-scale systems
with UI. In MVC, a model is an object that represents information about the
domain and state of the application. It contains all the data and behavior
that is not related to UI, is entirely ignorant of the UI, and can function
independently.[30][31]

The view has a single functionality of getting data from the model and
displaying it. The controller handles user input and manipulates the model.
Therefore, the MVC’s UI consists of the view and the controller, and the model
is not aware of them. When mapping the MVC components to the three-tier
architecture, the model and controller overlap across multiple tiers, as shown
in figure 2.1.[29][30]

One of the MVC pattern’s main issues is that large systems that use mul-
tiple view-controller pairs for a single model need a way of synchronizing the
view when the model changes. Since there is no data binding in the MVC pat-
tern, all view-controller pairs observe the model for changes. There is also a

22

2.2. Model and view separation and communication approaches

Figure 2.1: Relationship between the three-tier design and MV* patterns[29]

23

2. Standards and approaches to declarative user interface
development

potential for excessive updates if many views exist on the same model. Since
view-controller pairs make direct calls to the model, changes to the model
interface break both view and controller code. Creating a new view also re-
quires a new controller because they are closely coupled and usually cannot
be reused.[30][32]

The MVC pattern has several benefits. It is easy to create multiple views
running concurrently. Therefore, there can be both mobile and desktop appli-
cations running on the same model. There can also be multiple views within a
single application (for example, a view for a new user and a view for an expe-
rienced user). Since the view-controller pairs observe the model for changes,
all views are always synchronized. The separation of the view and the model
allows developers who program the model to focus on business logic, and they
do not have to consider how the UI will be done. The UI part of the appli-
cation can use different technology and platform, and it is relatively easy to
switch when the UI looks outdated.[30][32]

2.2.2 Model View Presenter

The MVP pattern is trying to address the shortcomings of the MVC. The
model remains the same. The controller is replaced by the presenter, which
still handles the user input and manipulates the model, but additionally, it
updates and synchronizes the view when needed. Therefore, the view does
not need to be aware of the model and can be tested independently. The
presenter can also store the state of the view, and it performs more complex
business logic; it also communicates with the view through an interface, so it
does not rely on implementation details. Overall, the three components have
looser coupling and more flexibility than in the MVC.[29][33]

2.2.3 Model View ViewModel

The MVVM pattern is an alternative to the MVC and MVP patterns. The
main reason for its creation was that the view’s state was still linked to the
model in both MVC and MVP patterns, which makes testing of individual
components harder and interferes with the principle of modular program-
ming.[29][34]

In MVVM, the view model replaces the presenter/controller, and its re-
sponsibilities change again. The model is still used to access data sources, but
it does not perform too much business logic, and it is not aware of the view or
the view model. The view typically uses very limited code-behind (usually, it
is only defined by a markup language), presents structured data to the user in
its current state, and collects user interaction and events. The view can then
forward events and trigger actions on the view model, and it also updates its
properties through two-way or one-way data binding (the data that change in
the view are automatically changed in the view model and vice versa). The

24

2.3. Declarative vs. procedural user interface

view model is not aware of the view, which makes testing and substitution
easier. It is responsible for passing data from the view to the model in a for-
mat the model can understand, and it makes the model data available to the
view through data binding. The view model is also responsible for view logic,
state changes, and data validation.[29][34]

The main advantage of the MVVM pattern is the complete separation of
the view and the view model. The view, view model, and model can all be
developed concurrently and tested independently. It is also easier to redesign
the UI when needed.[29][34]

2.2.4 Summary

There are three main approaches for separating the view from the model.
When fitting these patterns to the decentralized application approach, the
MVVM pattern is the best candidate. Let’s say that the smart contract of a
decentralized application is the model in the MV* pattern family. The MVP
and MVC approach might seem more fitting because in a truly decentralized
application, the smart contract should do all business logic and data-related
operations, and the off-chain code should consist of a simple view of the smart
contract. However, the current fees for running code on the blockchain (for
example, on the EVM) do not allow for truly decentralized applications. In-
stead, the smart contract should only contain the core functionality, and the
remaining business logic has to be done off-chain. For this approach, the
MVVM pattern is the most fitting. The model has fewer responsibilities; the
view model can serve for business logic and data validation that does not
have to be done on-chain, and it also handles the view’s state and logic. An-
other advantage of the MVVM pattern is that it is very easy to couple with
declarative UI, which allows us to create a simple declarative DSL for UI in
DApps.

2.3 Declarative vs. procedural user interface

The main difference between declarative and procedural UI and programming,
in general, is the approach. In procedural programming, we are describing how
to achieve a goal. In declarative programming, we describe what we want, and
the interpreter has to figure out how to achieve it for us. Declarative UI also
provides a higher level of abstraction. The prime example of declarative UI
is HTML. In HTML, we declaratively specify how the view should look and
what elements should be placed where. It is up to the web browser to parse
the HTML elements and create a view for us. To modify the view further, we
can also use CSS.[35]

An excellent example of procedural UI creation is Java Swing (figure 2.2)
or JavaScript’s Document Object Model manipulation (figure 2.3). Instead of
describing how the view should look, a code is written to tell the interpreter

25

2. Standards and approaches to declarative user interface
development

Figure 2.2: Declarative HTML vs. procedural Java[35]

Figure 2.3: Declarative Angular HTML vs. procedural DOM[35]

26

2.4. Domain-specific languages for declarative user interface

precisely what to do (create an element, insert an element into another one, ap-
pend an element to the end of the list). The result of both of these approaches
can be the same. However, the declarative approach is more abstract, and it
is easier to change and develop the UI since it is easier to understand, and
parts of the code can be made into templates and reused in other projects.[35]

While HTML, Java Swing, and JavaScript DOM manipulation are great
and clear examples of the main differences between procedural and declarative
UI, most of these are surpassed and are not used in modern web development
anymore. In the modern web, it is common to combine declarative UI with the
MVVM pattern because the MVVM provides two-way data binding, allowing
easy dynamic data display and state changes in the declared view. Many
frameworks, such as React, Angular, and Blazor, use modified HTML to define
a view and support two-way data binding between the view and the underlying
view model. These components then use dependency injection to get required
data, closely resembling the MVVM pattern.

2.4 Domain-specific languages for declarative user
interface

In the book Domain-Specific Languages[36], Martin Fowler defines DSL as
follows:

DSL is a programming language of limited expressiveness focused
on a particular domain.
The definition consists of four key elements:

Computer programming language Humans use a DSL to in-
struct a computer to do something. Its structure is designed
to make it easy for humans to understand, but it should still
be executable by a computer.

Language nature A DSL should have a sense of fluency. The
expressiveness comes not only from individual expressions but
also from the composition of these elements.

Limited expressiveness A general-purpose programming lan-
guage provides many expressions, which makes it harder to
learn and use. A DSL supports a bare minimum of features
needed to support its domain. A DSL should be used for one
particular aspect of a system, not the entirety of it.

Domain focus A limited language is only applicable if it focuses
on a small domain. The focus is what makes it worthwhile.[36]

The DSLs can be further divided into internal and external DSLs. Inter-
nal DSL is based on using a subset of a general-purpose language in a way

27

2. Standards and approaches to declarative user interface
development

that feels like a custom language. A typical example of this is Ruby and its
frameworks (for example, Rails), which use Ruby and its duck-typing to solve
a specific problem. External DSL is a language separate from the main lan-
guage of the application. It has a custom syntax or uses a syntax of another
language. The most common example of this is XML, which is used as a
language for many other DSLs. The most important feature of an external
DSL is its clarity for the reader. It should be designed so that anyone with
programming knowledge can understand it just by looking at it. On the other
hand, it should not try to mimic natural language, as it adds a lot of syntactic
sugar, which makes the semantics harder to understand, and after all, the
DSL is intended for programmers.[36]

2.4.1 XML based domain-specific languages

Extensible Markup Language is a markup language. It is a syntactic structure
without semantics, and many external DSLs use it as a carrier syntax. Many
project configuration files could be looked at as DSLs (not to confuse with
property lists, which serve only for storing key-value pairs with a structure to
them).[36]

XMLs main disadvantage is its rather noisy syntax. There are many angle
brackets, quotes, slashes, and its nesting elements require opening and closing
tags, resulting in a poor text to actual content ratio. However, XML has its
advantages too. It strongly resembles HTML; most programmers are familiar
with its format and can read it, and there are many available parsers and
other tools for working with the format.[36]

XML is a good carrier syntax candidate for a DSL that will define DApps
UI, mainly because of its HTML resemblance and the fact that Das Contract
mainly consists of forms. Additionally, XML comes with technologies that
allow checking the XML without executing it by comparing it to a schema;
this might come in handy when validating the forms.

2.4.2 Domain-specific languages and declarative user
interface

Extensible Application Markup Language (XAML) is an XML implementation
for specifying user interfaces. It is used to organize passive objects into a
structure. XAML is an excellent example of a DSL, which uses declarative
programming to layout UI without any reference to control flow, separating
the screen layout from code. MVVM pattern can then be used to connect the
XAML-based view with the underlying view model, allowing it to fill the view
with data from the model using data binding.[33][36]

XAML has been used extensively by Microsoft, and it has been adapted
to several technologies within the .NET Framework. It has also been used
for defining the layout of UIs within the Windows Presentation Foundation,

28

2.5. Interaction Flow Modeling Language

Silverlight, the Windows Runtime, the Universal Windows Platform, and Xa-
marin Forms. It is well suited to be used with the MVVM pattern for defining
UIs declaratively.[37]

2.5 Interaction Flow Modeling Language

The Interaction Flow Modeling Language (IFML) is a modeling language for
defining platform-independent descriptions of graphical user interfaces, sup-
porting desktop, laptop, phone, and even tablet and PDA systems. The
description of the application UI focuses on the structure and behavior as
perceived by the end-user and is limited to aspects that directly influence
the user’s experience.[38] In other words, the IFML describes the view of the
MV* pattern family with a single Interaction Flow Diagram in the following
perspectives:

The view structure specification consists of the definition of view con-
tainers, their nesting, visibility, and reachability.

The view content specification consists of the definition of view compo-
nents (content and data contained within view containers).

The events specification consists of the definition of events that affect the
UI’s state (events produced by user interaction, application, or an ex-
ternal system).

The event transition specification consists of defining an event’s effects
on the UI (dynamic change of the displayed content and actions being
triggered).

The parameter binding specification consists of defining the input-output
dependencies between view components (data propagation and flow within
the view).[38]

Using a platform-independent model brings several benefits. It allows ex-
plicit representation of the front-end’s different perspectives (content, interface
organization, interaction, navigation, connection with business logic). It raises
the abstraction level of the front-end specification, isolating it from implemen-
tation specifics and allowing better coordination of work in the development
process. It enables communication of the UI and its interactions to stakehold-
ers through the Interaction Flow Diagram or its automatic generation into UI,
allowing early validation of business requirements.[39]

29

2. Standards and approaches to declarative user interface
development

2.6 Chapter summary

This chapter has shown a possible mapping of the three-tier architecture to
semi-decentralized applications and how we can view the presentation layer as
if it was an enterprise application. We have concluded that the MVVM pattern
is the best candidate from the MV* pattern family to be used in decentralized
applications. We have also shown how we can use external domain-specific
languages to declare user interfaces, either through XML-based formats or
other platform-independent models such as IFML. We will use most of these
findings in the next chapter to propose a way to define user interfaces of
decentralized applications in a platform-independent manner.

30

Chapter 3
Towards a new domain-specific

language for decentralized
application’s user interface

This chapter shows and analyzes two possible approaches to defining decen-
tralized application’s user interface. Afterward, requirements for the domain-
specific language are described, and based on those requirements, a new forms
model is proposed, and its functionalities are explained. Based on the forms
model, a new domain-specific language is introduced, meeting the specified
requirements. The end of the chapter describes how the forms model can be
converted into the previously examined notations.

3.1 First look at the user interface

At the end of chapter one, we have introduced the Das Contract and its
mortgage case study. In the following chapters, we will use the mortgage
case to demonstrate different approaches to creating the Das Contract UI.
Figures 3.1, 3.2, 3.3, and 3.4 show wireframes of the Das Contract wallet.
The wireframes should help us identify which elements need to be supported
by the DSL and give us a general idea of how the application should function
and look.

Figure 3.1 shows the dashboard of the application. The dashboard shows
activities that the user needs to do based on their due date. Everything we can
see in figure 3.1 should not be described by the DSL but created based on the
current contracts the user is subscribed to. The left menu shows all contracts
the user currently deals with and allows searching within them, creating new
ones, and joining existing ones. The dashboard shows activities from those
contracts that have the earliest due date.

Figures 3.2, 3.3, and 3.4 show activities the borrower role can perform in

31

3. Towards a new domain-specific language for decentralized
application’s user interface

Figure 3.1: Wireframe of the Das Contract wallet dashboard

Figure 3.2: Wireframe of the Das Contract mortgage contract - apply for a
mortgage

32

3.1. First look at the user interface

Figure 3.3: Wireframe of the Das Contract mortgage contract - pay for a
mortgage

Figure 3.4: Wireframe of the Das Contract mortgage contract - cancel a mort-
gage

33

3. Towards a new domain-specific language for decentralized
application’s user interface

the Das Contract mortgage contract. The borrower can apply for a mortgage,
pay for a mortgage and cancel a mortgage application. Each of these activities
has its form the user needs to fill. The proposed DSL should allow creating
these forms in a platform-independent way. According to the Das Contract
paper[25], the forms only support primitive data types such as int, bool, dou-
ble, string, and more complex ones like enums, arrays, time, and blockchain
addresses.

3.2 Creating Das Contract forms with Interaction
Flow Modeling Language

In chapter two, we had a look at IFML and its UI modeling capabilities. IFML
is an OMG standard for modeling UI into platform-independent models. It
also supports UI generation from the platform-independent model, and so,
might seem like a good candidate for our DSL if we cut out things we need
out of it.

The IFML packs the entire model into a single diagram called the Interac-
tion Flow Diagram, unlike UML, which is split across many purpose-specific
diagrams.[39] While it is nice to have everything in one place, it also brings
increased complexity, and many elements and concepts are being mixed. Fig-
ure 3.5 shows a subset of elements from the IFML notation that could be used
for a DSL to represent DApps UI. Figure 3.6 shows a simplified representation
of the Das Contract wallet dashboard in the IFML notation (seen before as
wireframe in figure 3.1). Figure 3.7 shows how the IFML model looks when
converted into code by IFMLEdit (note that IFML does not support additional
graphical information, and therefore, the wireframe looks quite different from
the generated code).

Using a subset of IFML as DSL for modeling UI would allow us to create a
platform-independent model, which can then be used for generating code of the
application. Several tools that can generate code from IFML already exist[40];
however, they usually have limited support for the notation, hinting that it
might be challenging to implement correctly and according to the standard.
Additionally, the IFML standard is created to do what UML does, except
for the UI. It purposely disallows presentation aspects in its diagram because
it does not adhere to the abstraction level the model aims to provide. The
main goal is modeling UI, thus documenting it for other developers in a group
project and allowing an easier understanding of the UI and interaction flow.
The code generation and model interpretation, which is the core requirement
for our use-case, is more of a side effect, similar to using UML diagrams to
generate code. The primary purpose of generating code from UML diagrams
is to quickly provide a skeleton of the project we can build upon, whereas we
need a DSL to write simple UI with forms.[39][38]

34

3.2. Creating Das Contract forms with Interaction Flow Modeling Language

Figure 3.5: Subset of IFML elements that could be used for DApps UI[38]

35

3. Towards a new domain-specific language for decentralized
application’s user interface

Figure 3.6: IFML diagram of the Das Contract wallet dashboard designed in
IFMLEdit[40]

3.2.1 Conclusion

IFML is a powerful UI modeling language. It allows modeling the UI of an
entire application along with its data bindings and navigation flow. IFML
needs to be very complex to fulfill its role, making it a bad fit for our use-
case of modeling smart contract forms. Additionally, the code generation is
something extra the IFML offers, rather than being the primary concern. We
should look for simple solutions that are easily customizable for our needs and
are a better fit for generating UI.

3.3 Creating Das Contract forms with XML-based
domain-specific language

In chapter 2, we also had a look at domain-specific languages that use XML
as carrier syntax. XML’s main disadvantage is its noisy syntax. Other than
that, it has excellent language support (many parsers exist in every program-
ming language, it allows validation through XML schemes, and it has XPath
and XQuery, which are potent languages for navigating and querying XML

36

3.3. Creating Das Contract forms with XML-based domain-specific
language

Figure 3.7: UI of the Das Contract wallet dashboard generated from IFML
by IFMLEdit[40]

documents). Additionally, XML syntax has been used to specify user inter-
faces before in the .NET framework, it is very similar to HTML, and many
web developers are familiar with it.

To see if XML is a suitable syntax, we can try modeling the Das Contract
apply for a mortgage form shown in Figure 3.2. The left part of figure 3.8
shows how this form could look in XML syntax. Most software developers
should see that the form has a name and six fields the user can fill without
any prior knowledge of our made-up syntax. Therefore, the syntax would be
easy to learn and understand at first sight. However, from the 24 lines in the
XML document, only 7 carry unique information, such as the field names,
making the noise prevalent.

If we add some additional attributes, such as data type, or field description,
we will get more content over the noise, as seen in the middle part of figure 3.8,
but we can reduce the noise even further. Since the language is specific to our
domain, we can start bending the XML syntax to our particular use. First,

37

3. Towards a new domain-specific language for decentralized
application’s user interface

Figure 3.8: Example of syntactic noise in the apply for a mortgage form

Figure 3.9: Removing syntactic noise to increase information value

Figure 3.10: Apply for a mortgage form with minimal syntax noise

38

3.4. Requirements for Das Contract domain-specific language

we can remove the unnecessary encoding meta-information and the Fields tag,
which is meant to surround array elements. Doing this will get us to the left
part of figure 3.9. Now, the most significant noise consists of each element
being a pair of opening and closing tags. Additionally, the Field tag, which
only works as a surrounding tag, does not carry any information.

We can replace the Field tag by making it into a field specialization, rep-
resenting input data type. Such change removes the need for a DataType
element, and it also makes the syntax closer to how HTML handles element
types. The result can be seen in the right part of figure 3.9. Finally, to get
rid of the closing tags, we can define the properties as attributes instead of
a standalone element, which will also allow us to use the short notation for
XML tags. The final result can be seen in figure 3.10. We have successfully
removed almost all the XML syntax noise while keeping the XML format stan-
dard enough to resemble HTML and be supported by common XML parsers
and query languages.

3.3.1 Conclusion

Using XML-based DSL to specify user interfaces has many advantages, such
as similarity to HTML, easy understanding, and existing software support.
XML’s main issue is significant syntax noise overhead, which we were able to
deal with by modifying the syntax without removing its advantages. There-
fore, we will use the modified XML as a carrier syntax for our domain-specific
language.

3.4 Requirements for Das Contract
domain-specific language

In the previous chapter, we have pointed out that domain-specific languages
are helpful only when they have a limited scope. Therefore, we need to define
the required functionalities the DSL should support. The following subsections
describe which functionalities the DSL should support, and together, they
form the DSL’s domain.

3.4.1 Creating forms

As noted in chapter 1, the Das Contract consists of the process model, the
data model, and the forms model. The core functionality of the DSL is to
allow creating the user interface for the forms model. The form is bound to
a user task, and it should allow the user to accomplish his task in the smart
contract through the form. The form can be divided into multiple sections
called field groups for clarity, and each field group can have various fields.

39

3. Towards a new domain-specific language for decentralized
application’s user interface

3.4.2 Collecting user input

Most user tasks require user input. The form should collect this input, format
it so that the smart contract understands it, and send it to the smart contract.
The form collects user input through its fields. As mentioned at the start of
this chapter, there is a limited amount of supported data types: Address,
String, Date and Time, Integer, Decimal, Bool, Array, and Enum. To collect
all user inputs correctly, the DSL should gather all of the above data types in
a user-friendly way and send them to the smart contract.

3.4.3 Display Das Contract details

Since we expect the user to interact with the smart contract, the DSL should
support providing feedback to the user. Therefore, the DSL should support
pulling information from the blockchain and displaying it to the user to help
him decide on his actions.

3.4.4 Validate user task roles and control flow

The Das Contract is defined by a limited BPMN diagram, which controls the
flow of user tasks and activities in general. Additionally, each user task has a
role that can complete this task. While the generated smart contract checks
this for us and will reject a transaction if it is not valid, we want to make
the user experience better. Therefore, the DSL should only display forms the
current user can complete at the given contract state to guide the user through
the contract.

3.4.5 Basic support for smart contracts outside of the Das
Contract methodology

To complete the user tasks, the user might sometimes need to interact with
other smart contracts that were not made with the Das Contract methodology
(for example, interacting with a property token for a mortgage contract).
While this thesis’s primary goal is to define the UI of Das Contract, the DSL
can go a bit further and allow defining the UI of any smart contract available
on the blockchain. While the interaction will be limited to forms only, it is
often enough to accomplish essential smart contract interactions.

3.4.6 Easy to extend in the future

The Das Contract methodology has been in development for multiple years,
and it has changed a lot from its initial state. Since there are plans to de-
velop this methodology further, the DSL should be easily extendable if new
requirements arise (for example, if new data types were needed).

40

3.5. Redefining Das Contract forms model

Figure 3.11: New Das Contract forms model

3.5 Redefining Das Contract forms model

Forms model specifies a user form required to fill by the user in a process user
task. The forms provide a way to interact with smart contracts.[26] Figure 3.11
shows a new forms model designed to be part of the Das Contract metamodel
shown in figure 1.8. It is designed to fulfill the requirements specified in the
previous section and allow seamless interaction with a blockchain focusing on
user experience.

41

3. Towards a new domain-specific language for decentralized
application’s user interface

In the new forms model, the Form1 consists of FieldGroups, which consist
of Fields. The Form holds Label as its attribute, which serves as a display
name, and a FuncBind, which allows interaction with smart contracts out-
side of the Das Contract methodology. The FieldGroup is meant to separate
groups of fields that serve one functionality (for example, personal details).
Separating fields by functionality allows the user to accomplish his goals and
navigate within the form faster. The FieldGroup can have a Label, which
should tell the user the purpose of the fields. Its fields can be rendered ver-
tically (separated by a newline) or horizontally (next to each other) based on
the Vertical attribute. The group can also be hidden and shown on-demand
based on the Displayed attribute to display new details to fill in gradually.

The Field represents an abstract class that each input element must in-
herit. This approach allows anyone to easily extend the forms UI by simply
implementing the Field methods and defining how it should be rendered into
HTML by the interpret. A Field must allow getting and setting the input
data through a generic object. If the provided object cannot be converted to
the data type the field works with, an exception should be thrown. The Field
has a Label attribute to tell the user what should be filled in. It can have a
Description attribute, which is used as a tooltip if a user needs help filling in
the field, and it can have a ReadOnly attribute, which specifies if the user can
modify the field data.

The remaining two attributes in the Field class are bindings. The View-
Bind allows retrieving information from the smart contract deployed on the
blockchain and will be explained later. The ParamBind is used to bind input
data into the smart contract transaction call parameters. If we interact with a
smart contract transaction that takes parameters named first and second, the
Form has to contain two Fields, one having ParamBind set to first and the
other to second. The ParamBind can have a special construct: const:payValue.
If a Field contains this value, it means that the Field contains an amount of
cryptocurrency to be sent to the smart contract. This construct allows exe-
cuting smart contract transactions that require payment to be made to the
contract address.

Several specializations of the Field class exist. These specializations are
meant to cover the basic data types declared in the previous section. If a field
contains a Currency attribute, it means that the data should be formatted
according to the blockchain’s base currency (for example, for Ethereum, the
data coming from the blockchain are in Wei, but they should be converted into
Ether for user convenience). The ComboBoxField has an Options attribute,
which can be used to declare fixed values the user can select from (for example,
male or female). Also, the Indexed attribute is true, the field returns the index
of selected data instead of returning the selected value, which is used to pass

1In this text, Form refers to the Form class from the new forms model, whereas form
refers to an element that allows collecting data from the user.

42

3.6. Domain-specific language requirements evaluation

selected value from an enum.

3.6 Domain-specific language requirements
evaluation

Section 3.4 specifies essential requirements our DSL needs to support. This
section explains how the new forms model helps us meet the specified require-
ments. It also provides insight into how the features are expected to behave
when implemented.

3.6.1 Creating forms

The forms model allows the designer to create a broad scope of forms. Each
form can be separated into multiple sections through FieldGroups. Each sec-
tion can have fields laid out vertically or horizontally. Each element in the
form can have its label, which helps the user navigate the form faster. Each
instance of the forms model is bound to one smart contract (usually tied to a
Das Contract through the UserTask), meaning one form cannot communicate
with multiple deployed smart contracts.

3.6.2 Collecting user input

Each Field has to implement the GetData and SetData methods, allowing
parsing user input into smart contract format. Many specializations of the
Field class exist to support the required data types. Besides the apparent
specializations, the MultiLineField can display big blocks of text such as de-
scriptions or string arrays. The DropDownField can be used to select one
from many, and the EnumField can be used to select one from a few. The
Field specializations provide a user-friendly interface because each specializa-
tion can be rendered as a different HTML element. This way, the user does
not have to fill in all data into a simple input text field and can instead be
presented with various input options.

3.6.3 Display Das Contract details

Each Field can have a ViewBind attribute, which allows the designer to pull
data from the smart contract on the blockchain and present them to the
user. Since each Form is bound to one smart contract, the Field can only
pull data from this contract. The ViewBind follows a format similar to an
object-oriented language but is severely limited.

The ViewBind format is as follows: name(param1, param2, ...).attribute
[index]. The only required symbol is the name, which specifies which function
or public attribute to fetch from the smart contract. If the name refers to
a smart contract call, parameters can be provided to pass into the function

43

3. Towards a new domain-specific language for decentralized
application’s user interface

Figure 3.12: ViewBind format examples

44

3.6. Domain-specific language requirements evaluation

call. If there are no parameters or the name refers to a public attribute, the
(param1, param2, ...) can be completely left out. If the data received from
the call are structured, we can use .attribute to access a specific attribute
within those data. The attributes cannot be chained (for example, mort-
gage.payment.amount cannot be used to access a structure within a struc-
ture), and if such access is needed, the smart contract should provide a getter
for it. If the received data or attribute are enumerable, [index] can point to
a specific position within those data. If an index is not provided, the entire
array is returned, and appropriate Field specialization should be used (Drop-
DownField, EnumField, or MultiLineField). Figure 3.12 shows an example of
Solidity smart contract data and how ViewBind can be used to access those
data.

The ViewBind format can also be const:name. If that is the case, the name
either refers to a known constant or a filler value. In a ViewBind, there are
currently two supported constants: myAccountAddress, which refers to the
currently active account address, and myContractAddress, which refers to the
deployed smart contract address. If the name refers to anything else, it will be
used as a value set into the Field when the form is loaded. This is most useful
with the ReadOnly attribute, as the designer can define constant values the
user cannot change (for example, the designer can set an interest rate field to
const:5, which will fix the applied for mortgage rate to 5%).

3.6.4 Validate user task roles and control flow

Every Form is associated with a single UserTask from the Das Contract. Since
UserTask is a specialization of the ProcessElement, it is easy to see if the User-
Task can be currently completed using the SequenceFlow. The UserTask has
CandidateRoles, such as borrower, lender, insurer, and property owner, who
possess the right to execute this UserTask. When it comes to implementation,
both role and current flow state need to be retrieved from the blockchain.
Multiple participants can operate the smart contract, which can move the
sequence forward, and also new addresses can enter the contract and get a
role assigned. In the generated Das Contract, the addressMapping property
provides a role to address mapping, and the ActiveStates property tells us
whether the ProcessElement is currently executable.

Basic support for smart contracts outside of the Das Contract methodology
Fields can pull data from any smart contract using the ViewBind attribute,
which is not exclusive to Das Contract. Suppose the application wants to
send data to the smart contract (execute a transaction). In that case, it is not
straightforward since the Form is supposed to be bound to a Das Contract
through UserTask, which provides the application with function names for
transaction execution. If a designer wants to execute a transaction on a generic
smart contract, he can provide the Form with a FuncBind, which tells what

45

3. Towards a new domain-specific language for decentralized
application’s user interface

Figure 3.13: A mapping of the forms model into the XML syntax

function to execute within the smart contract. The Field’s ParamBind should
match the function arguments so that the data are passed correctly.

These three bindings together allow complete communication with generic
smart contracts, as long as the supported Fields can represent the data. Fur-
ther research on this is out of the scope of this thesis, but the main functional-
ity is to communicate with smart contracts that work along with Das Contract
(for example, working with tokens that can be used in Das Contract).

3.6.5 Easy to extend in the future

The forms model was designed so that new Field specializations can be added
if needed to be. Adding a new Field specialization is as easy as creating a
class implementing the abstract getter and setter and telling the application
renderer how to render such Field into HTML. Also, since communication with
generic smart contracts is supported, it should always be possible to execute
Das Contract even if a new version is released.

46

3.7. Forms model as a domain-specific language

Figure 3.14: A form of the apply for a mortgage activity in the mortgage
contract

3.7 Forms model as a domain-specific language

The forms model is sufficient for creating decentralized application’s user in-
terface. However, there has to be a way to instantiate it at runtime for inter-
pretation to the user. In section 3.3, we have defined an XML format that we
can use as a carrier syntax for our domain-specific language. The advantage of
this format is that it has minimal syntax noise, making it easy to work with.
Also, the forms model is represented by a class diagram, which can be easily
converted into classes in an object-oriented language. These classes can then
be instantiated by deserializing the XML into them, the only difference being
the slight XML format adjustments.

Figure 3.13 shows how the forms model is mapped into the proposed XML
syntax. Figure 3.14 shows the apply for a mortgage form designed in the XML
syntax. The whole mortgage contract form can be found on Github2.

3.8 Chapter summary

This chapter concluded that the Interaction Flow Modeling Language is not
a good fit for defining decentralized application’s user interface. Instead, we
have proposed an XML-based domain-specific language that should be easy
to understand without any prior knowledge. The domain-specific language is
based on the new proposed forms model and uses XML as its carrier syntax.
The syntax rules were adjusted for minimal overhead and maximal information
value. The domain-specific language should fully support Das Contract and
also partially generic smart contract interaction.

2https://github.com/ancinpet/thesis-wallet/tree/main/src/thesis-
wallet/Contracts/Forms

47

https://github.com/ancinpet/thesis-wallet/tree/main/src/thesis-wallet/Contracts/Forms
https://github.com/ancinpet/thesis-wallet/tree/main/src/thesis-wallet/Contracts/Forms

Chapter 4
Proof of concept

This chapter describes the implementation process of the forms editor and
forms wallet applications. In the beginning, the used technologies and the
project scope and use cases are described. Afterward, both applications’ func-
tional and non-functional requirements are defined along with their architec-
ture and design. Near the end, implementation details, testing, and deploy-
ment are described. In the end, the whole project is showcased, including a
complete walkthrough of the Das Contract mortgage contract.

4.1 Used technologies

4.1.1 Blazor WebAssembly

Blazor is a single-page application (SPA) web framework, which allows build-
ing interactive UI in C# instead of JavaScript. There are currently two ver-
sions available: server-side and WebAssembly. The server-side version runs
C# code on the server and communicates with the client through SignalR.
The WebAssembly version is downloaded to the client when the web is first
loaded, and after that, C# code is running directly in the browser. The server-
side version requires a stable connection to the server but offers compatibility
on older browsers since the C# code is running on the server and not in
the browser. We will use the WebAssembly version for this project because
once it is downloaded, the application can run without any connection to the
server, meaning we do not rely on a central server in a decentralized applica-
tion. Using Blazor allows us to use most of the .NET framework libraries and
functionalities, such as Nethereum or various XML serializers.[41][42]

4.1.2 Nethereum

Nethereum is a .NET integration library for Ethereum. It simplifies interac-
tion with the blockchain and smart contracts deployed on it.[43] It also offers

49

4. Proof of concept

a Blazor interoperability template with MetaMask integration[44], which will
be used in the forms wallet to communicate with the Ethereum network.

4.1.3 Monaco Editor

The Monaco Editor is Microsoft’s code editor that powers VS Code. It sup-
ports the most significant web browsers, and it is licensed under the MIT
license. It offers the same functionalities as VS Code in the web browser, giv-
ing us access to a full-featured code editor without implementing anything.[45]
In this project, we will use BlazorMonaco[45], which is a Blazor component
of the Monaco Editor. BlazorMonaco will allow us to use the Monaco Editor
without worrying about JavaScript interoperability.

4.1.4 Material Design

Material is a design system created by Google to help teams build
high-quality digital experiences for Android, iOS, Flutter, and the
web. Material Design is inspired by the physical world and its tex-
tures, including how they reflect light and cast shadows. Material
surfaces reimagine the mediums of paper and ink.[46]

Material Design will be used to create good looking and responsive UI. We
will use MatBlazor, which provides Material Design components for Blazor.[47]
It will allow us to use uniform input elements, menus, and buttons the user
is used to from the modern web. Having the same look and feel as Google
and other modern websites should make the user experience much better, and
filling in the data should be more intuitive.

4.2 Project scope

In the previous chapter, we have defined the new forms model and how it
is expected to behave. Figure 3.11 shows the forms model, and figure 3.13
shows how it is represented in an XML syntax. To make the model usable, we
need to create two applications. The first application’s purpose is to design
the forms model in a user-friendly way. This application will be referred to as
the forms editor. The second application will be referred to as forms wallet.
Its primary purpose will be to interpret provided forms and allow the user
to interact with Das Contract contracts and generic smart contracts deployed
on the Ethereum blockchain. Both of these applications will use the forms
model and its renderer as a shared functionality. The forms editor will use it
to provide a visual preview of the designed form, and the forms wallet will use
it as a user interface.

50

4.2. Project scope

Figure 4.1: Activity diagram of interaction with smart contract

51

4. Proof of concept

Figure 4.2: Use case diagram for both applications

52

4.3. Use cases

4.3 Use cases

To get more insight into how the forms wallet will be used, figure 4.1 shows
how a user can interact with a smart contract within the application. It is also
good for identifying use cases for the forms wallet. Figure 4.2 shows use cases
for both applications. There are two roles, the user role represents anyone
who wishes to interact with smart contracts, and the designer is the person
responsible for creating the forms in the forms editor. The use cases are:

UC1 Create a form The editor can create an empty form from a default
template.

UC2 Upload a form The editor can upload an already existing form from
local storage instead of using the default template.

UC3 Save a form The editor can save the form to local storage.

UC4 Validate a form The editor can validate a form against the forms
model on demand. Other use cases can trigger validation automatically.

UC5 Render a form The editor can preview the form he is currently edit-
ing. The form needs to be valid to be rendered. When a user wants to
interact with a smart contract, the form needs to be rendered.

UC6 Edit a form The editor can edit forms in a user-friendly text editor.

UC7 Show watched contracts The user can display all watched smart
contracts conveniently.

UC8 Watch a contract The user can add a smart contract to interact with
to the forms wallet.

UC9 Connect MetaMask The user needs to connect the forms wallet to
MetaMask to communicate with an Ethereum blockchain.

UC10 Deploy a new contract The user can watch a smart contract by de-
ploying it to the Ethereum blockchain. He needs to provide its bytecode,
constructor parameters, and a forms XML.

UC11 Join an existing contract The user can watch an existing smart
contract by providing an Ethereum address and a forms XML.

UC12 Interact with a contract The user can interact with a smart con-
tract on an Ethereum blockchain if he is watching it.

53

4. Proof of concept

4.4 Functional and non-functional requirements

We can specify software requirements based on the use cases shown in the
previous section and the model specification discussed in the previous chapter.
Requirements are classified as functional (F) and non-functional (NF), and out
of scope (OS).

4.4.1 Forms editor

F1 Forms model creation The application has to allow creating the new
forms model in the XML syntax (using text editor). The application
should make sure that the produced model is valid and can be rendered.
If the model is not valid, it should inform the designer in a console why
it is not valid. It should also show a preview to the designer for faster
designing.

F2 Exporting and importing the model The application has to allow sav-
ing the created forms model as an XML file. Files created this way can
also be loaded into the application for editing or preview. The applica-
tion should also allow creating new model with basic structure already
provided.

NF1 Text editor usability The application’s text editor has to provide ad-
vanced text editing functionalities such as undo, redo, multi-line editing,
XML syntax highlighting, and automatic completion.

NF2 Support for large models The application should be able to process
new forms models of any size. Scrolling in the text editor should be fast
and responsive.

OS1 Live preview The application will not show live preview of the forms
model. Rendering and validation of the model has to be done on-
demand.

OS2 Preview only The application will only render the visual aspects of
the forms model. Any bindings and interaction with the smart contract
will be ignored and not processed by the editor.

4.4.2 Forms wallet

F1 Contract watching The application has to allow the user to watch both
generic and Das Contract smart contracts. The application can either
deploy the contract on its own if it does not exist yet, or it can watch
an Ethereum address where the contract is deployed. The application
should ask the user for the forms model associated with the watched con-
tract and any other information required for its deployment or watching.

54

4.5. Architecture and design

F2 Contract listing All watched contracts and its actions should be avail-
able to the user in a menu. The menu should group actions from the
same contract together for faster naviagation. Additionally, a dashboard
should exist that shows all actions available to the user. The dashboard
should not group actions based on contract. It should instead allow sort-
ing the actions based on their priority, name or due date. The dashboard
should be used as a front page of the application.

F3 Contract interaction The application has to allow the user to interact
with any smart contract on the Ethereum blockchain that has a correct
forms model and is watched by the application. The application should
render the form, fill it with data from the blockchain according to the
bindings and allow the user to submit this form and interact with smart
contracts this way.

F4 Das Contract flow and roles validation The application has to only
show actions, that are currently available to the user based on his ad-
dresses’ role and current state of the smart contract. Actions declared in
the forms model that are currently not executable on the smart contract
should be hidden from the user as they will fail if he tries to execute
them.

NF1 MetaMask integration The application should handle all blockchain
communication through the MetaMask web extension, making it inde-
pendant on the currently selected Ethereum network.

NF2 Serverless mode Once the application is downloaded to the host (usu-
ally from a server), it should work even if the server is not available
anymore. The application should be decentralized and work as long as
it is able to connect to the Ethereum network.

OS1 Other blockchains The application will only support Ethereum blockchain.
Should the application ever need to work with other blockchains, the
data parsing and communication with the network need to be adjusted.

4.5 Architecture and design

The whole project consists of two applications (forms editor and forms wallet),
which share the forms model and its renderer. Figure 4.3 shows a package
diagram of the entire project, how different parts of the applications work on
the highest abstraction level, and how they use the forms model.

55

4. Proof of concept

Figure 4.3: Package diagram showing essential parts of the project

56

4.5. Architecture and design

Figure 4.4: Sequence diagram showing how the forms renderer works

4.5.1 Forms model

The forms model consists of the forms model classes and the forms renderer.
The forms model classes were created from the new Das Contract forms model
discussed in the previous chapter and shown in figure 3.11. The forms renderer
is a component that can convert the forms model classes into a usable input
form in the browser. Figure 4.4 shows a sequence diagram of a view using the
forms renderer to create an input form also described below.

The forms renderer creates an instance of the Das Contract forms model
and passes it to the Form component. The Form component then renders
itself (label, visuals, border) and places a FieldGroup component for each
FieldGroup within the forms model instance. It also injects the FieldGroup
class from the forms model instance into the FieldGroup component. This
approach is then recursive. The FieldGroup component renders itself the same
way the Form does and places a Field component for each Field specialization
within the forms model instance. The FieldGroup component has to follow the
specified Displayed and Vertical rules so that the Fields get rendered correctly.
The Field component is then injected with the Field instance from the forms
model.

The Field component determines the type of the Field instance and creates

57

4. Proof of concept

a specific Material Design HTML input element for it, following all parameters
specified within the Field instance. In the end, all Field components are two-
way data bound to the Fields in the forms model instance. We can iterate over
the Form component and access the underlying forms model due to this data
binding. Once the recursion calls return to the Forms component, a submit
button is created at the bottom, assuming the associated Form instance has
a smart contract interaction. The submit button has an on-click event that
notifies its subscribers when it was clicked. This subscription is used only in
the forms wallet, as the functional requirements specified that the forms editor
would not interact with the Ethereum network. Once the forms renderer is
finished, it notifies components using it that the form is ready to be used.

4.5.2 Forms editor

The forms editor consists of the view and the editor. The editor contains a
control panel and an embedded Monaco editor, which is used to create the
XML forms. The view imports the forms renderer, allowing it to render the
form from any provided Das Contract XML file.

The forms editor is an effortless application consisting of already created
components. The only new code is the action panel, which consists of five
buttons. The buttons allow the user to create a new model, upload an existing
model, save the model, render it and validate it. The action panel propagates
these actions to the editor. The editor can access and set the content of the
Monaco editor in a string format and call the view to render and validate such
a string.

The new model and upload model actions set the content of the editor
to the provided string. For a new model, the string is taken from a default
template. For an existing model, the string is parsed from the uploaded file.
Three actions use the validation of the model: save, render and validate.
The validation is as simple as taking a string representing the Das Contract
XML and instantiating the forms model with it through the view. If it fails,
an exception is thrown, and appropriate steps are taken. If it succeeds, the
instantiated forms model can be used for rendering.

The save model action gets the content of the Monaco editor, validates it,
and saves it as an XML file. The validation action does the same, except it
displays if the model is valid next to the button instead of saving the model.
The render action creates the forms model by trying to validate its string
representation. Afterward, it tells the view to render it. The view has the
rendering functionality imported from the forms renderer described in the
previous section. Since this application does not have to interact with the
Ethereum network, any events and calls regarding the form are ignored.

58

4.5. Architecture and design

4.5.3 Forms wallet

The overall architecture of the forms wallet strongly resembles the MVVM
design pattern. Chapter 2 discussed the MV* design patterns for decentral-
ized applications and how we can map the decentralized applications into the
MVVM, and it has been applied here. The model is represented by the smart
contract on the Ethereum network. The view is represented by the menu and
the view components. At last, the view model is represented by the contract
processor component and contains all business logic. The menu is used mainly
for navigation between contracts and their activities. The contract processor
encapsulates a view of the smart contract’s form and has the most impor-
tant functionalities - processing form bindings and communicating with the
Ethereum network.

The menu is separated into two components: the contract controls and the
contract list. The contract controls contain logic regarding contract watching
and contract deployment. They allow the user to deploy a new contract and
also join an already deployed contract. If a new contract is supposed to
be deployed, the contract controls overlay an input dialog for the contract
parameters. Once the user provides all parameters, the contract controls
use the contract processor to deploy the contract through MetaMask. If the
deployment is successful, the join an existing contract functionality is called
and filled automatically. Users can also join an existing contract manually if
it is already deployed.

Joining an existing contract is as simple as adding it to the contract list
and local storage. The contract is represented by a key-value element, where
the key is the contract’s Ethereum address and the value is the contract’s XML
form. The last functionality of the contract controls is the dashboard action.
It simply tells the contract processor to switch its view to the dashboard. It
will be explained in more detail below.

When the application loads, the contract list loads all contracts from local
storage and displays them in a tree view. The tree view has two layers, the
first layer being the contract itself and the second layer being the activities the
user can currently do within the contract. The contract list also keeps track
of the currently displayed smart contract activity (form). If the dashboard is
displayed, the currently displayed activity is set to null.

The contract processor contains most of the application’s business logic.
It contains a dynamic view that shows either a dashboard or the currently
selected smart contract activity. The wireframes introduced in figures 3.1,
3.2, 3.3, and 3.4 show how the dynamic view changes between the dashboard
and the currently selected smart contract activity in the left tree view menu
(when an activity is selected, it is highlighted). The information representing
this is stored in the contract list, as explained above. If the dashboard is
active, the contract processor retrieves all smart contract activities from the
contract list and passes them to the dashboard, displaying them in a list that

59

4. Proof of concept

can be sorted by their name, due date, and priority.
If a smart contract activity is selected, the contract processor passes the

activity’s XML form into its view. The view then uses the forms renderer the
same way the forms editor does (shown in figure 4.4). However, after the form
is done being rendered, the contract processor subscribes to the form’s submit
button, and it also processes its ViewBinds. These two core functionalities
will be explained extensively in the following sections. The communication
with the Ethereum network is done through the Nethereum component, which
provides Blazor components for connecting to the MetaMask extension and
interfaces for different smart contract interactions. Suppose the MetaMask is
not connected to the application. In that case, the Nethereum component will
automatically overlay the entire application with a connection dialog, making
it impossible to use the application without MetaMask connected.

4.6 Development process

The previous sections describe how the application works on higher abstraction
levels. This section should give us a closer look at some implementation details
in the forms wallet application.

4.6.1 XML serialization

The problem of converting the forms model into XML format has been men-
tioned many times in this thesis. In section 3.3, a format with minimal syntax
overhead was proposed, which should be used in the implementation. The
format was designed to be supported by XML parsers, even though it does
not adhere to all formal XML rules. Since we are using Blazor, which supports
most .NET libraries, we can use the XMLSerializer from the .NET API.

Figure 4.5 shows some of the forms model classes with XML annotations.
By annotating a List of objects as XMLElement instead of XMLArray and
XMLArrayItem, we can remove the need for tags surrounding the array items.
We are also using the XMLElement to specify that the List of Fields can
contain only specializations representing a specific input element. Trying to
pass a specialization that does not belong to the annotations or does not
inherit from the Field class will fail while serializing. This way, we can rely
on the Field interface while also having only elements that can be rendered.

The Currency attribute is ignored in the base class and only annotated
in classes that support it in the forms model. This way, the XML format
can contain the Currency property only with Fields that support it. The last
concept is the Data attribute, which can only be set in runtime through the
SetData accessor. The Data attribute is two-way bound into the rendered
Material Design component, following the Blazor data binding. When a user
changes the data in the input field, it gets propagated directly into the Field

60

4.6. Development process

Figure 4.5: Forms model classes with XML annotations

within the forms model. This allows us to separate the view from the view
model and its business logic.

4.6.2 ViewBind data binding

Section 3.6.3 describes the ViewBind format and specifies how to use this
format to retrieve information from the blockchain. Whenever the form is
rendered within the forms wallet, a function responsible for loading the forms
model with data from the blockchain. Since the forms model is data-bound
to the rendered input fields, the retrieved values get propagated to the view
and shown to the user as soon as the loading is finished.

When the form is finished rendering, the loading function iterates over
every field and checks if it has a ViewBind parameter. If it does, it converts

61

4. Proof of concept

Figure 4.6: ViewToken class used to parse data from the blockchain

this parameter from a string into a ViewToken. The ViewToken is shown in
figure 4.6. The application uses the Nethereum interface to invoke a call (call
on the blockchain is used to get data from it and does not cost any fees).
The call requires a function name to be called and its parameters if it accepts
any. These are stored in the ViewToken. Suppose such a variable or function
exists on the Ethereum blockchain (public variables have a getter with the
same name automatically generated). In that case, it is called, and we receive
a complex Nethereum structure representing the data received.

The Nethereum structure allows us to check if we can iterate over the data.
In case the data are iterable, and the index is in bounds and specified, we use
the string representation of the data at the provided index. If the index is not
specified, we use either the first value or the entire array based on the field
class (MultiLineField and ComboBoxField types use the whole collection). If
the data is structured, we use the Property from the ViewToken to get the
correct attribute to put into the input field. Suppose the designer makes an
invalid ViewBind that our application cannot interpret or the data do not
exist on the blockchain. In that case, it is silently ignored because, in most
cases, being unable to see a specific field from the blockchain will not stop the
user from completing the activity.

4.6.3 ParamBind data binding

The ParamBind attribute specifies which inputs should be used to execute a
smart contract transaction. Suppose we have a Das Contract activity bound to
our form, and it takes parameters a, b, and c to execute it (in a generic smart
contract, this is equivalent to calling transaction func(a, b, c)). When the user
submits the form, we need to iterate over all Fields within the forms model
instance and retrieve parameters a, b, and c. For this purpose, we use the
ParamBind attribute. Therefore, we are looking for fields whose ParamBind
is set to a, b, and c, respectively. Once we find these fields, we can use
the GetData method to get an untyped object. The Nethereum interface for
calling transactions unknown at compile time takes an array of objects as an
argument to call such transaction. We just need to make sure that the order
of the parameters matches the transaction call. The Nethereum interface

62

4.7. Testing

then converts these objects into the correct format, calculates the associated
transaction fees, and sends the transaction to the MetaMask extension, where
the user has to confirm it. Using ParamBind allows us to interact with both
Das Contract and generic smart contracts. It also allows the designer to order
the input fields however he wants to, thus allowing him to make a more user-
friendly interface.

4.7 Testing

The project uses bUnit for conducting unit tests. bUnit is a testing library for
Blazor Components. It allows both code and component testing and interac-
tion with the components and mockup of common Blazor services.[48] Most
of the focus was put on the ViewBind parsing in the unit tests as it is most
prone to errors. The unit tests make sure that the syntax is fully supported
and gets parsed into tokens correctly. Besides that, another functionality be-
ing used extensively throughout the application is the validation of Ethereum
addresses. This functionality is used primarily when an existing contract is
added by the user and in other cases where we work with Ethereum addresses.

A lot of the critical functionalities are executed by external components.
For example, the XML serialization uses the standard .NET library, making
sure that the conversion is always correct. The Nethereum library provides
a communication interface with the blockchain and MetaMask integration.
Using the Nethereum library solves many problems, such as converting data
types to blockchain-specific format and parsing raw values. Those functional-
ities would typically have to be tested, but since the projects are popular and
established, our test would probably never find a new bug if it existed.

The project functionality and smart contract interaction were tested man-
ually on the Ganache blockchain. Ganache is a personal Ethereum blockchain
made for rapid DApp development.[49] The results will be presented in the
following section. We were able to execute the entire Das Contract mortgage
contract, including interaction with smart contracts outside of the Das Con-
tract project. Afterward, the same steps were reproduced on the Ropsten
testnet, which closely resembles the main Ethereum blockchain.

4.8 Project showcase - a decentralized mortgage
contract

Both applications are released under the MIT license on Github3,4 and also
deployed on Azure5,6. To demonstrate the functionality of the project, we will

3Forms wallet source code: https://github.com/ancinpet/thesis-wallet
4Forms editor source code: https://github.com/ancinpet/thesis-forms-editor
5Forms wallet release: https://witty-bay-09186f103.azurestaticapps.net
6Forms editor release: https://yellow-beach-0c4abc503.azurestaticapps.net

63

https://github.com/ancinpet/thesis-wallet
https://github.com/ancinpet/thesis-forms-editor
https://witty-bay-09186f103.azurestaticapps.net
https://yellow-beach-0c4abc503.azurestaticapps.net

4. Proof of concept

Figure 4.7: Final look of the forms editor

Figure 4.8: Final look of the forms wallet while interacting with Das Contract

64

4.8. Project showcase - a decentralized mortgage contract

Figure 4.9: Final look of the forms wallet while interacting with generic smart
contract

Figure 4.10: Final look of the forms wallet while showing Das Contract details

65

4. Proof of concept

use the Das Contract mortgage contract introduced in section 1.11.1 and figure
1.9. The mortgage contract allows a user to take out a mortgage without any
central authority. In our scenario, the mortgage contract will use an ERC-721
house token explicitly created for testing the contract.

The forms model has to be designed in the forms editor to interact with
both smart contracts. Figure 4.7 shows the final look of the forms editor while
modeling the mortgage contract in it. The resulting forms model is released on
Github7. The Source folder contains Solidity source codes of both contracts.
The Forms folder contains the forms model for interacting with them, and
the Build folder contains compiled sources to provide bytecode for contract
deployment.

The following YouTube video8 shows a full walkthrough of the Das Con-
tract mortgage contract, including interaction with the house token contract,
which is not part of the Das Contract project. The video can also be found on
the enclosed DVD. In the walkthrough, we use the Ganache blockchain over
a live testnet blockchain so that we do not have to wait for transactions to be
mined. Figures 4.8, 4.9, and 4.10 show the wallet’s final look while interacting
with both generic and Das Contract smart contracts.

7https://github.com/ancinpet/thesis-wallet/tree/main/src/thesis-wallet/Contracts
8https://www.youtube.com/watch?v=Z3dTFiMwZTU

66

https://github.com/ancinpet/thesis-wallet/tree/main/src/thesis-wallet/Contracts
https://www.youtube.com/watch?v=Z3dTFiMwZTU

Conclusion

The goal of this thesis was to propose a domain-specific language that would
allow defining decentralized application’s user interfaces compatible with the
Das Contract language without much effort.

Chapter 1 provided the essential blockchain and Das Contract knowledge
required to propose such domain-specific language. In chapter 2, the standard
and approaches to declarative user interface were reviewed. Chapter 2 re-
vealed that the MVVM design pattern is the most suitable one from the MV*
pattern family when it comes to decentralized applications. It also revealed
two possible approaches for declaring user interfaces in a standardized way.
The first approach uses the Interaction Flow Modeling Language, an OMG
standard for describing user interface structure and behavior. The second ap-
proach consists of using XML-based domain-specific language, which has been
used extensively to describe user interfaces, for example, XAML in the .NET
framework.

Chapter 3 examined both approaches and tried using them to describe
the theoretical user interface of our decentralized application. Based on this
examination, we were able to conclude that the XML-based domain-specific
language is more suitable for our use case, and we were able to propose a new
forms model for the Das Contract language. The new forms model uses mod-
ified XML syntax with minimal overhead. It allows describing user interfaces
that can interact with both Das Contract and generic smart contracts. It is
relatively easy to understand and design in at first sight because it closely re-
sembles HTML. At the end of chapter 3, we designed the entire Das Contract
mortgage contract in our new proposed forms model.

During this thesis, two applications were created and described in chapter
4. The forms editor is an application for designing user interfaces in the new
domain-specific language. It consists of a fully-featured code editor and a
forms model renderer and validator, making the designing process easier. The
second application is the forms wallet. It is a proof of concept implementation
of the forms model interpret used to interact with both Das Contract and

67

Conclusion

generic smart contracts on the Ethereum network. The end of chapter 4
showcases the entire project, including a complete walkthrough of the Das
Contract mortgage contract.

In the future, the forms model could be extended to allow the designer to
create forms with multiple steps, either through pagination or by displaying
new fields gradually as previous sections are filled. The forms editor could
be extended to validate forms in real-time against an XML scheme. Addi-
tionally, the forms editor could implement a custom IntelliSense, which would
create complete fields with a single button press and offer better code com-
pletion. The forms wallet could be extended to add implementation for other
blockchains, and it could also automatically create a forms model from a smart
contract’s source or an ABI.

68

Bibliography

1. NAKAMOTO, Satoshi. Bitcoin: A Peer-to-Peer Electronic Cash System
[online]. 2008 [visited on 2021-02-19]. Tech. rep. Available from: https:
//bitcoin.org/bitcoin.pdf.

2. BASHIR, Imran. Mastering Blockchain: Distributed ledger technology,
decentralization, and smart contracts explained. 2nd ed. Packt Publish-
ing, 2018. isbn 978-1788839044.

3. GATES, Mark. Blockchain: Ultimate guide to understanding blockchain,
bitcoin, cryptocurrencies, smart contracts and the future of money. Cre-
ateSpace Independent Publishing Platform, 2017. isbn 978-1547090686.

4. NASCIMENTO, S.; PÓLVORA, A.; ANDERBERG, A.; ANDONOVA,
E.; BELLIA, M.; CALÈS, L.; INAMORATO DOS SANTOS, A.; KOUNELIS,
I.; NAI FOVINO, I.; PETRACCO GIUDICI, M.; PAPANAGIOTOU, E.;
SOBOLEWSKI, M.; ROSSETTI, F.; SPIRITO, L. Blockchain Now And
Tomorrow: Assessing Multidimensional Impacts of Distributed Ledger
Technologies. Luxembourg: Publications Office of the European Union,
2019. isbn 978-92-76-08977-3.

5. DICKMAN, Tom. Crypto51 [online]. 2020 [visited on 2020-12-02]. Avail-
able from: https://www.crypto51.app/.

6. CAMBRIDGE. Bitcoin Mining Map [online]. 2021 [visited on 2021-02-
01]. Available from: https://cbeci.org/mining_map.

7. ANTONOPOULOS, Andreas. Mastering Ethereum: Building Smart Con-
tracts and DApps. O’Reilly Media, Inc, 2018. isbn 978-1491971949.

8. PALLADINO, Santiago. Ethereum for Web Developers: Learn to Build
Web Applications on top of the Ethereum Blockchain. Apress, 2019. isbn
978-1-4842-5278-9.

9. INC., ConsenSys Software. A crypto wallet & gateway to blockchain apps
[online] [visited on 2021-02-02]. Available from: https://metamask.io/.

69

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://www.crypto51.app/
https://cbeci.org/mining_map
https://metamask.io/

Bibliography

10. HUSSEY, Matt; PHILLIPS, Daniel. MetaMask: What It Is and How To
Use It [online] [visited on 2021-02-02]. Available from: https://decrypt.
co/resources/metamask.

11. SZABO, Nick. Formalizing and Securing Relationships on Public Net-
works. First Monday. 1997, vol. 2, no. 9. Available from doi: 10.5210/
fm.v2i9.548.

12. BASHIR, Imran. Mastering Blockchain: A deep dive into distributed
ledgers, consensus protocols, smart contracts, DApps, cryptocurrencies,
Ethereum, and more. 3rd ed. Packt Publishing, 2020. isbn 978-1-83921-
319-9.

13. SWAN, Melanie. Blockchain: Blueprint for a New Economy. O’Reilly,
2015. isbn 978-1491920497.

14. VOGELSTELLER, Fabian; BUTERIN, Vitalik. EIP-20: ERC-20 Token
Standard [online]. 2015 [visited on 2021-02-25]. Available from: https:
//eips.ethereum.org/EIPS/eip-20.

15. ENTRIKEN, William; SHIRLEY, Dieter; EVANS, Jacob; SACHS, Nas-
tassia. ERC-721 Non-Fungible Token Standard [online]. 2018 [visited on
2021-02-25]. Available from: https://eips.ethereum.org/EIPS/eip-
721.

16. ELLIS, Steve; JUELS, Ari; NAZAROV, Sergey. ChainLink: A Decentral-
ized Oracle Network [online]. 2017-09 [visited on 2021-02-24]. Tech. rep.
Available from: https://link.smartcontract.com/whitepaper.

17. OPENBAZAAR. TRULY DECENTRALIZED, PEER-TO-PEER ECOM-
MERCE [online] [visited on 2021-02-02]. Available from: https://openbazaar.
org/features/.

18. LAZOOZ. A value system designed for sustainability [online] [visited on
2021-02-02]. Available from: http://lazooz.org/.

19. CORP., Eva Global. Coop ridesharing [online] [visited on 2021-02-02].
Available from: https://eva.coop/.

20. DRIFE - Taxi 3.0 [online] [visited on 2021-02-02]. Tech. rep. DRIFE.
Technologies. Available from: https://www.drife.one/docs/DRIFE-
WhitePaper.pdf.

21. TWISTER. Peer-to-peer microblogging [online] [visited on 2021-02-02].
Available from: http://twister.net.co/about/.

22. The Maker Protocol: MakerDAO’s Multi-Collateral Dai (MCD) System
[online] [visited on 2021-02-02]. Tech. rep. Maker Community. Available
from: https://makerdao.com/en/whitepaper/.

23. INC., Dapper Labs. CryptoKitties [online] [visited on 2021-02-02]. Avail-
able from: https://www.cryptokitties.co/.

70

https://decrypt.co/resources/metamask
https://decrypt.co/resources/metamask
https://doi.org/10.5210/fm.v2i9.548
https://doi.org/10.5210/fm.v2i9.548
https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-721
https://eips.ethereum.org/EIPS/eip-721
https://link.smartcontract.com/whitepaper
https://openbazaar.org/features/
https://openbazaar.org/features/
http://lazooz.org/
https://eva.coop/
https://www.drife.one/docs/DRIFE-WhitePaper.pdf
https://www.drife.one/docs/DRIFE-WhitePaper.pdf
http://twister.net.co/about/
https://makerdao.com/en/whitepaper/
https://www.cryptokitties.co/

Bibliography

24. FOUNDATION, The Decentraland. Decentraland DAO - The virtual
world in your hands [online] [visited on 2021-02-02]. Available from:
https://dao.decentraland.org/en/.

25. SKOTNICA, Marek; PERGL, Robert. Das Contract - A Visual Do-
main Specific Language for Modeling Blockchain Smart Contracts. In:
Advances in Enterprise Engineering XIII. Cham: Springer International
Publishing, 2020, pp. 149–166. isbn 978-3-030-37933-9.

26. SKOTNICA, Marek; KLICPERA, Jan; PERGL, Robert. Towards Model-
Driven Smart Contract Systems – Code Generation and Improving Ex-
pressivity of Smart Contract Modeling. In: Proceedings of the 20th CIAO!
Doctoral Consortium, and Enterprise Engineering Working Conference
Forum 2020 co-located with 10th Enterprise Engineering Working Con-
ference (EEWC 2020) [online]. CEUR Workshop Proceedings (CEUR-
WS.org), 2020 [visited on 2021-04-17]. Available from: http://ceur-
ws.org/Vol-2825/paper1.pdf.

27. SKOTNICA, Marek. Das Contract mortgage case study [online]. 2020
[visited on 2021-03-27]. Available from: https://github.com/CCMiResearch/
DasContract/tree/master/DasContract.CaseStudies/mortgage.

28. SKOTNICA., Marek; APARÍCIO., Marta; PERGL., Robert; GUER-
REIRO., Sérgio. Process Digitalization using Blockchain: EU Parliament
Elections Case Study. In: Proceedings of the 9th International Confer-
ence on Model-Driven Engineering and Software Development - Volume
1: MODELSWARD, SciTePress, 2021, pp. 65–75. isbn 978-989-758-487-
9. Available from doi: 10.5220/0010229000650075.

29. KOURAKLIS, John. MVVM in Delphi: Architecting and Building Model
View ViewModel Applications. 1st ed. Apress, 2016. isbn 978-1-4842-
2214-0.

30. FOWLER, Martin. Patterns of Enterprise Application Architecture. 1st ed.
Addison-Wesley Professional, 2002. Addison-Wesley. isbn 978-0-3211-
2742-6.

31. FOWLER, Martin. GUI Architectures [online]. 2006 [visited on 2021-03-
13]. Available from: https://martinfowler.com/eaaDev/uiArchs.
html.

32. BUSCHMANN, Frank; MEUNIER, Regine; ROHNERT, Hans; SOM-
MERLAD, Peter; STAL, Michael. Pattern-oriented software architecture.
Wiley, 1996. isbn 978-0-471-95869-7.

33. HALL, Gary. Pro WPF and Silverlight MVVM: Effective Application
Development with Model-View-ViewModel. 1st ed. Apress, 2010. Expert’s
Voice in WPF. isbn 978-1-4302-3162-2.

34. The MVVM Pattern [online]. 2012 [visited on 2021-03-13]. Available
from: https://msdn.microsoft.com/en-us/library/hh848246.aspx.

71

https://dao.decentraland.org/en/
http://ceur-ws.org/Vol-2825/paper1.pdf
http://ceur-ws.org/Vol-2825/paper1.pdf
https://github.com/CCMiResearch/DasContract/tree/master/DasContract.CaseStudies/mortgage
https://github.com/CCMiResearch/DasContract/tree/master/DasContract.CaseStudies/mortgage
https://doi.org/10.5220/0010229000650075
https://martinfowler.com/eaaDev/uiArchs.html
https://martinfowler.com/eaaDev/uiArchs.html
https://msdn.microsoft.com/en-us/library/hh848246.aspx

Bibliography

35. MILLER, Robert C. Lecture 9: Declarative UI. 2006. Available also from:
http://courses.csail.mit.edu/6.831/archive/2006/lectures/
L9.pdf.

36. FOWLER, Martin. Domain-Specific Languages. Addison-Wesley Profes-
sional, 2010. isbn 978-0-1321-0754-9.

37. Xamarin.Forms XAML Basics [online]. 2017 [visited on 2021-03-21].
Available from: https : / / docs . microsoft . com / en - us / xamarin /
xamarin-forms/xaml/xaml-basics/.

38. Interaction Flow Modeling Language [online]. 2015 [visited on 2021-03-
22]. Available from: https://www.omg.org/spec/IFML/1.0/PDF.

39. BRAMBILLA, Marco; FRATERNALI, Piero. Interaction Flow Modeling
Language: Model-Driven UI Engineering of Web and Mobile Apps with
IFML. Elsevier, 2015. isbn 978-0-1280-0108-0.

40. BERNASCHINA, Carlo. IFMLEdit.org - A web based tool for prototyping
and developing web and mobile apps. 2020. Available also from: https:
//www.ifmledit.org/.

41. Blazor: Build client web apps with C#: .NET [online]. Microsoft [visited
on 2021-04-24]. Available from: https://dotnet.microsoft.com/apps/
aspnet/web-apps/blazor.

42. TOMASSETTI, Gabriele. Blazor: .NET in the Browser [online]. Stru-
menta, 2021-01 [visited on 2021-04-24]. Available from: https://tomassetti.
me/blazor-net-in-the-browser/.

43. BLANCO, Juan. What is Nethereum [online]. Nethereum Documentation
[visited on 2021-04-24]. Available from: http://docs.nethereum.com/
en/latest/.

44. BLANCO, Juan. Nethereum Metamask Blazor [online]. GitHub [visited
on 2021-04-24]. Available from: https : / / github . com / Nethereum /
Nethereum.Metamask.Blazor.

45. About Monaco Editor [online]. Microsoft [visited on 2021-04-24]. Avail-
able from: https://microsoft.github.io/monaco-editor/.

46. About Material Design [online]. Google [visited on 2021-04-24]. Available
from: https://material.io/design/introduction#principles.

47. SAMOILENKO, Vladimir. MatBlazor [online]. GitHub [visited on 2021-
04-24]. Available from: https://www.matblazor.com/.

48. HANSEN, Egil. bUnit [online]. GitHub [visited on 2021-04-25]. Available
from: https://github.com/bUnit-dev/bUnit.

49. Ganache [online]. EgilConsenSys Software Inc. 2021 [visited on 2021-04-
25]. Available from: https://www.trufflesuite.com/ganache.

72

http://courses.csail.mit.edu/6.831/archive/2006/lectures/L9.pdf
http://courses.csail.mit.edu/6.831/archive/2006/lectures/L9.pdf
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/xaml/xaml-basics/
https://docs.microsoft.com/en-us/xamarin/xamarin-forms/xaml/xaml-basics/
https://www.omg.org/spec/IFML/1.0/PDF
https://www.ifmledit.org/
https://www.ifmledit.org/
https://dotnet.microsoft.com/apps/aspnet/web-apps/blazor
https://dotnet.microsoft.com/apps/aspnet/web-apps/blazor
https://tomassetti.me/blazor-net-in-the-browser/
https://tomassetti.me/blazor-net-in-the-browser/
http://docs.nethereum.com/en/latest/
http://docs.nethereum.com/en/latest/
https://github.com/Nethereum/Nethereum.Metamask.Blazor
https://github.com/Nethereum/Nethereum.Metamask.Blazor
https://microsoft.github.io/monaco-editor/
https://material.io/design/introduction#principles
https://www.matblazor.com/
https://github.com/bUnit-dev/bUnit
https://www.trufflesuite.com/ganache

Appendix A
Acronyms

ABI Application Binary Interface

BPMN Business Process Model and Notation

DApp Decentralized Application

DOM Document Object Model

DSL Domain-Specific Language

ETH Ether

EVM Ethereum Virtual Machine

IFML Interaction Flow Modeling Language

MVC Model–View–Controller

MVP Model–View–Presenter

MVVM Model–View–Viewmodel

NFT Non-Fungible Token

OMG Object Management Group

POW Proof of Work

UI User Interface

UML Unified Modeling Language

XML Extensible Markup Language

XAML Extensible Application Markup Language

73

Appendix B
Contents of enclosed CD

readme.txt the file with CD contents description
src.......................................the directory of source codes

wallet...................implementation sources of the forms wallet
editor...................implementation sources of the forms editor
thesis..............the directory of LATEX source codes of the thesis

text..the thesis text directory
thesis.pdf...........................the thesis text in PDF format

other ... other thesis resources
showcase.mp4 video showcasing the forms wallet application

75

	Introduction
	Theoretical foundations
	Blockchain technology
	Blockchain properties
	Blockchain structure
	The benefits and dangers of using blockchain technology
	Ethereum
	Ethereum wallets
	Smart contracts
	Tokens on the blockchain
	On-chain and off-chain interactions
	Decentralized applications (DApps)
	Das Contract
	Mortgage contract

	Chapter summary

	Standards and approaches to declarative user interface development
	Three-tier architecture and its relation to decentralized applications
	Model and view separation and communication approaches
	Model View Controller
	Model View Presenter
	Model View ViewModel
	Summary

	Declarative vs. procedural user interface
	Domain-specific languages for declarative user interface
	XML based domain-specific languages
	Domain-specific languages and declarative user interface

	Interaction Flow Modeling Language
	Chapter summary

	Towards a new domain-specific language for decentralized application's user interface
	First look at the user interface
	Creating Das Contract forms with Interaction Flow Modeling Language
	Conclusion

	Creating Das Contract forms with XML-based domain-specific language
	Conclusion

	Requirements for Das Contract domain-specific language
	Creating forms
	Collecting user input
	Display Das Contract details
	Validate user task roles and control flow
	Basic support for smart contracts outside of the Das Contract methodology
	Easy to extend in the future

	Redefining Das Contract forms model
	Domain-specific language requirements evaluation
	Creating forms
	Collecting user input
	Display Das Contract details
	Validate user task roles and control flow
	Easy to extend in the future

	Forms model as a domain-specific language
	Chapter summary

	Proof of concept
	Used technologies
	Blazor WebAssembly
	Nethereum
	Monaco Editor
	Material Design

	Project scope
	Use cases
	Functional and non-functional requirements
	Forms editor
	Forms wallet

	Architecture and design
	Forms model
	Forms editor
	Forms wallet

	Development process
	XML serialization
	ViewBind data binding
	ParamBind data binding

	Testing
	Project showcase - a decentralized mortgage contract

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD

