
Ing. Karel Klouda, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague January 29, 2020

ASSIGNMENT OF MASTER’S THESIS
 Title: Instance segmentation and object tracking accuracy comparison on real and virtual

scenarios
 Student: Bc. Adam Simek

 Supervisor: Ing. David Hurych, Ph.D.

 Study Programme: Informatics

 Study Branch: Knowledge Engineering

 Department: Department of Applied Mathematics

 Validity: Until the end of summer semester 2020/21

Instructions

1. Study state of the art machine learning methods for visual instance segmentation and tracking.
2. Pre-process the real dataset, create training, validation and testing splits. Pre-annotate the real data by
some publicly available instance segmentation method. In VOSSTREX system model the scenes that
correspond to testing set scenarios and render testing set images with various amount of details. Render
the fisheye distorted images as well as the corrected ones.
3. Discuss the instance segmentation and object tracking models with respect to the model complexity.
Select a suitable subset of methods and implement their training algorithm and inference, or use freely
available codes, if possible.
4. Train the models (or just fine-tune) for methods selected in step 3) for instance segmentation and
tracking on the training set (real captures). Evaluate segmentation and tracking accuracy (potentially also
other metrics) on real and artificial testing sets and compare the results.

References

Will be provided by the supervisor.

Master’s thesis

Instance segmentation and object tracking
accuracy comparison on real and virtual
scenarios

Bc. Adam Simek

Department of Knowledge Engineering
Supervisor: Ing. David Hurych, Ph.D.

February 12, 2021

Acknowledgements

Special thanks to supervisor David Hurych for extensive support,
Ondřej Zeman from Valeo for help with the Vosstrex and CTU RCI cluster
admins for providing valuable resources for efficient training of CNN models.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on February 12, 2021

Czech Technical University in Prague
Faculty of Information Technology
© 2021 Adam Simek. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Simek, Adam. Instance segmentation and object tracking accuracy comparison
on real and virtual scenarios. Master’s thesis. Czech Technical University in
Prague, Faculty of Information Technology, 2021.

Abstrakt

Tématem této práce je porovnání algoritmu detekce a trackingu několika tříd
objektů v konfiguraci 4 fisheye kamer a v ekvivalentní konfiguraci virtuální
reality, v rámci projektu od firmy Valeo. S tímto srovnáním bude možné ohod-
notit použitelnost virtuálního systému Vosstrex pro testování dalších systemu
detekce a trackingu.

Klíčová slova Detekce, Tracking, Fisheye, Virtuální Realita

Abstract

This thesis focuses on comparison of detection and tracking various types of
object classes on configuration of four fisheye car-mounted cameras in reality
and equivalent car system in virtual reality in project Vosstrex by Valeo com-
pany. The goal is to compare performance of various detection and tracking
systems on both real and virtual data. With this comparison it will be possible
to evaluate usability of VR system Vosstrex for validation of other detection
and tracking systems.

Keywords Detection, Tracking, Transfer learning, CNN, Kalman Filter,
Reidentification, Fisheye, Virtual Reality, Multi-camera

vii

Contents

Introduction 1
Problem statement . 2
Tasks of visual information retrieval 2
VOSSTREX Virtual Reality . 3
Valeo Drive4U® prototype . 4
Fisheye camera . 5

Fisheye undistort . 7
Related work . 9
Thesis contribution . 9

1 State-of-the-art 11
1.1 Object detection . 11

1.1.1 Backbone . 12
1.1.2 Region Proposal Network 14
1.1.3 Region of Interest Pooling 14
1.1.4 ROI Heads . 14
1.1.5 One-stage detector . 15
1.1.6 The choice of detectors 15

1.2 Tracking . 16
1.2.1 Kalman filter . 16
1.2.2 Localization prediction 16
1.2.3 Re-identification . 16

1.3 Multiple object tracking . 17

2 Dataset 19
2.1 Automatically generated annotations 19
2.2 Dataset format . 20
2.3 Dataset split . 20

2.3.1 Dataset balancing . 22

ix

2.4 Vosstrex VR scene generation 25

3 Implementation 27
3.1 Programming language and software 27
3.2 Deep learning libraries . 28
3.3 The dataset editing tool . 28

4 Experiments 31
4.1 Fisheye and state of the art detection 31

4.1.1 The unsucessful experiments 32
4.2 Annotation generation experiments 33

4.2.1 Automated tracking annotations 35
4.2.2 Panoptic Merge . 36
4.2.3 Random Custom Bugs 38

4.3 Training . 39
4.3.1 Training process . 39
4.3.2 Validation process . 40
4.3.3 Training Tracker . 42
4.3.4 Data augmentations . 43
4.3.5 Uncertain instance blocking 43
4.3.6 Class balancing . 44

4.4 Evaluation . 45
4.4.1 Perfect matching . 46
4.4.2 Class mapping . 46
4.4.3 Evaluation metrics . 50
4.4.4 Precision-Recall curve 51
4.4.5 Average Precision . 52
4.4.6 Mean Average Precision 52
4.4.7 Pixel TN . 53
4.4.8 False Positive Rate . 53
4.4.9 Receiver operating characteristic 53
4.4.10 Gaussian localization error 54
4.4.11 Gaussian Precision-Recall curve 58
4.4.12 Gaussian Receiver operating characteristic 59
4.4.13 Gaussian Average Precision 59
4.4.14 Mean Gaussian Average Precision 59
4.4.15 Tracking Evaluation . 62
4.4.16 Multi-Camera Multi-Object Tracking 62
4.4.17 Gaussian localization error in tracking 63

4.5 Introduction to graph system 64
4.6 The legend to detection models 67
4.7 Unmodified detector experiment 68
4.8 Undistorted and distorted experiment 69
4.9 Experiments on distorted images 79

x

4.9.1 Experiment on separate cameras 79
4.9.2 Experiment on different models and annotation cleaning

methods . 81
4.10 Experiment on Virtual Reality scenes 82
4.11 Detection results overview . 92
4.12 Tracking results . 93

Conclusion 97

Bibliography 99

A YoloV4 distorted images comparison 105

B Contents of enclosed CD 115

xi

List of Figures

0.1 Valeo Drive4U prototype . 4
0.2 Valeo Drive4U sensors . 4
0.3 Fisheye and pinhole . 5
0.4 Fisheye aberrations . 6
0.5 Fisheye side camera distortion . 7
0.6 Vosstrex fisheye cameras . 8

1.1 Generalized R-CNN . 12
1.2 ResNet backbones . 13

2.1 Dataset layout . 20
2.2 HSV color detection . 24
2.3 Dataset color split . 24

3.1 Annotation Editor Tool . 29
3.2 Tracking Task . 29

4.1 Panoptic merge . 38
4.2 Simplified frame matching algorithm 49
4.3 Average Precision . 51
4.4 The Annotation Error . 55
4.5 The 3-sigma rule . 56
4.6 Bounding box Gaussian error . 57
4.7 Mask Gaussian error . 58
4.8 Simplified Gauss Precision Recall 60
4.9 Simplified Gauss Receiver Operating Characteristic 61
4.10 ROC curve graph . 65
4.11 IoU distribution graph . 65
4.12 PR curve graph . 66
4.13 Results of unmodified detector model 68
4.14 Results of undistorted and distorted comparison experiment 69

xiii

4.15 Instance evaluation tables distorted and undistorted 70
4.16 The person graph results undistorted vs distorted data 71
4.17 The bicycle graph results undistorted vs distorted data 72
4.18 The car graph results undistorted vs distorted data 73
4.19 The motorcycle graph results undistorted vs distorted data 74
4.20 The bus graph results undistorted vs distorted data 75
4.21 The train graph results undistorted vs distorted data 76
4.22 The truck graph results undistorted vs distorted data 77
4.23 The traffic light graph results undistorted vs distorted data 78
4.24 The experiments on separate cameras 80
4.25 The experiments on different models and annotation generation . . 81
4.26 Vosstrex evaluation without size filters 82
4.27 Vosstrex evaluation with tiny size filter 83
4.28 Vosstrex instance evaluation table with small size filter 83
4.29 Vosstrex evaluation with small size filter and bicycle IoU condition 84
4.30 The person graph results VR vs Real data 85
4.31 The bicycle graph results VR vs Real data 86
4.32 The car graph results VR vs Real data 87
4.33 The bus graph results VR vs Real data 88
4.34 The train graph results VR vs Real data 89
4.35 The truck graph results VR vs Real data 90
4.36 Vosstrex objects . 91
4.37 Results on testing dataset . 92
4.38 Results on Vosstrex testing dataset with 1:1 matching scenes . . . 92
4.39 Tracking on real scenes . 93
4.40 Tracking on VR scenes . 94
4.41 Tracking on VR scenes with only re-identification 94
4.42 Tracking on VR scenes 5× frame rate 95
4.43 Multi-camera Tracking . 95

xiv

List of Tables

2.1 Data split . 22
2.2 Training object instances count . 23
2.3 Validation object instances count 23
2.4 Test object instances count . 23

4.1 Image rotation experiment . 32
4.2 Crop classes experiment . 33
4.3 Experiment basic . 33
4.4 Experiment NMS . 34
4.5 Experiment Tracker . 35
4.6 Experiment Panoptic Merge . 36
4.7 Experiment ResNet 101 . 41
4.8 Experiment ResNet 50 . 41
4.9 Experiment YoloV4 . 42
4.10 Experiment Dontcare . 44
4.11 Experiment Purge . 44

xv

Introduction

Computer vision is scientific discipline simulating the visual system of living
species as well as further processing of collected information and analysis. Ar-
tificial intelligence as one of leading research fields is deeply intertwined with
computer vision since visual data usually provide crucial information to nav-
igate AI.

There is an incredible demand for automated image and video processing
in industry for increasing the quality of analysis tasks, speed of the processing
tasks and reduction of the production cost. Furthermore autonomous driving
is extremely popular topic, where computer vision grants interaction of AI
with reality, providing whole task of extraction and processing of digital data.

The virtual data are much easier to generate than manually collecting
data for each developed system for validation of experiments, furthemore the
accessibility of digital data for computer vision tasks have been always prob-
lematic form ethical perspective and more strict GDPR [1] protection rules,
therefore many researchers started to use Virtual Reality to gain easier access
to datasets for research on projects [2].

This thesis was developed in cooperation with the company Valeo. ”World-
leader in producing sensors that enable vehicles to understand their environ-
ment.” [3] Valeo company provided data from car-mounted system with four
fisheye cameras and VR simulator Vosstrex with matching visual setup.

1

Introduction

Problem statement
The major goal is to compare the performance of detection/tracking models
on real and virtual scenarios with registered sequences of tracking instances,
split into training and testing dataset and creating approximate detailed VR
scenes reflecting testing scenes 1:1 for comparison.

The comparison is to be performed with model trained on training part of
real scenes with automatically generated annotations and tested on (a) test-
ing part of the real dataset and (b) on VR scenes semantically matching their
real counterparts. The difference in results will show if and when VR scenes
may be used to validate a particular system instead of real data, which are
expensive to capture and annotate.

Additional goal is to tackle detection on fisheye distorted scenes and create
unified tracking system across all cameras, since there is not a lot of research
material on these topics.

Tasks of visual information retrieval
This section describes computer vision tasks, which are used to obtain visual
information from scenes. The instance will be referring to an actual object
in image, described with location, category (class) and shape approximation
(mask). The instances are categorized by their classes and only classes asso-
ciated with traffic are being focused. Most important classes are pedestrians,
vehicles (car, truck, train, bus), bicycles, motorcycles and traffic lights, every-
thing else is labeled as background in this experiment. The characteristics of
the instances are described in following four popular computer vision tasks:

Classification is categorization process, where each instance is being labeled
with information of human realm representation with possibility of score de-
scribing confidence of the prediction.

Localization is used to discover locations of objects in image to improve
effect of classification.

Object detection combines classification and localization to find multiple
objects. The most popular method of defining the object is bounding box
(bbox) - rectangular area around instance of the object.

2

VOSSTREX Virtual Reality

Semantic segmentation makes prediction of class for each pixel of the im-
age, in result finds all object classes and their exact location and shape, how-
ever this discipline does not differentiate between individual instances, there-
fore it is not possible to recover one instance from clustered class detection.

Instance segmentation consist of all previously mentioned tasks with mod-
ification for semantic segmentation to apply locally for each object found by
object detection resulting in instance labeled pixels creating a mask.

Tracking links instances in dimension of spacetime in video sequence of im-
ages. Tracks provide information about positions of detected objects and
provides insight into object state defined by tracked parameters of interest.

Intersection over Union (IoU) is method that determines the overlap be-
tween a pair of bounding boxes or masks. Usually ground truth bounding box
and a detected bounding box. With IoU metric it is possible to determine
matching detection to ground, depending on overlap and chosen threshold.
IoU is a confidence type metric, in range IoU ∈< 0, 1 >. This method is
computed by obtaining area of both bounding boxes and dividing intersection
of both areas by union between them. This method is good for finding overlap
of two equally sized areas, however it ignores most cases where one bounding
box is significantly larger than the other since the smaller (e.g. car door vs
car).

VOSSTREX Virtual Reality
”Purpose of Vosstrex is mainly to be used as real-time simulation system for
hardware in the loop benches [3]. It should simulate the environment, the ego
vehicle and all of its sensors.” [3]

In this thesis Vosstrex is being used as editor tool for creating VR scenes
as well as simulating them. Editor provides building blocks of terrains and
roads, which means roads are straight, 90◦ turns or crossroads. Furthermore
there is a moderate choice of decorations, buildings and vegetation. However
the most important elements are pedestrians, cyclists and vehicles Fig. 4.36.

Most of the pedestrians have predefined functions for running, walking
and changing directions with point to point navigation system, while cars
have more simulation-like approach, providing acceleration, deceleration and
steering wheels. Additionally Vosstrex provides physics engine, for physics of
car motion simulation. Unfortunately there are few bugs with diminishing
effects for purpose of VR scene creation, since it is still work in progress.

3

Introduction

For simulation of the created scenes, Vosstrex offers fully realistic virtual
copies of cars with camera systems. In this work Mercedes-Benz [4] W213
Daimler model is used with four fisheye cameras Fig. 0.6 setup providing full
visual cover of surrounding objects.

Valeo Drive4U® prototype
Valeo Drive4U is a prototype of autonomous car which is famous for navigat-
ing trough streets of Paris while using only production-available sensors.

Mentioned autonomous car is used as reference for camera configuration
on car in this work. The cameras used to generate data are four fisheye cam-
era cocoon models placed at front, back and both sides of the car as seen in
Fig. 0.2. These cameras provide fisheye distorted vision of area around the
car with effective distance of 25m (pink area on image).

Figure 0.1: Valeo Drive4U® prototype thumbnail.

Figure 0.2: Valeo Drive4U® prototype sensors layout, the fisheye cameras used
in this thesis are labeled as camera cocoon.

4

Fisheye camera

Fisheye camera
Fisheye is a special camera setup providing very wide field of view (FOV),
usually above 180◦, Valeo cocoon cameras Fig. 0.2 have FOV 192◦. The main
benefit of fisheye camera setup is large cover of surrounding area, with four
cameras it is possible to obtain full cover (360◦), especially when cameras are
strategically placed on outer positions of car for maximizing vertical and hori-
zontal coverage. The main disadvantage is heavy barrel distortion, all objects
increase their size significantly but not in uniform scaling, when approaching
center of camera and suffer with rotation, while reaching the edges of camera.
Effects of fisheye distortion on state of the art detection frameworks will be
discussed at experiments 4.8 part. Because of the extreme distortion a fisheye
lens produces, the pinhole model cannot model a fisheye camera.

Figure 0.3: Projection model difference between pinhole and fisheye,
from Matlab manual for fisheye calibration. [5]

In terms of optical aberrations [6], cameras slightly suffer from vignetting
in combination with reflection from metalic nest of camera on car, which are
dealt with by masking out critical areas, also the sides and other parts of car
itself are masked out for simplification of visual information retrieval tasks.
Camera is well fine-tuned in terms of chromatic aberration and diffraction and
obviously suffer from heavy barrel distortion since it has fisheye lens.

5

6 Introduction

(a) Vignetting on the left side and reflection causing errors for detection on the blue car

(b) Masked area displayed with monochrome filter suppressing aberrations

Figure 0.4: Masking solution displayed on right-side fisheye camera. The
Valeo car was masked out as well to avoid possibility of overfitting in deep
learning algorithms.

Fisheye camera

Fisheye undistort
Affected by distortion defects and rotations, preprocessing methods for elimi-
nation of distortion are common step in most fisheye camera systems. Undis-
tortion is process where algorithm tries to straighten lines which have curved
shape in distorted images. Usually everything is focused into suppressing at
least the vertical distortion.

There are many algorithmic solutions using nonlinear least-squares [5] and
deep learning methods [7] to find distortion parameters from distorted lines in
image, but these methods might be challenging for such heavy distortion as
fisheye. Another popular method is Scaramuzza’s [6] chessboard calibration,
which is implemented in many computer vision libraries, however this method
needs possibility of live interaction with cameras and cannot be done ”offline”.

Fortunately Valeo company provided undistort parameters for building
mapping functions between distorted and undistorted image space. Parame-
ters are divided into extrinsic and intrinsic, where extrinsic is used to describe
camera in 3-D world system and intrinsic describe radial and tangential dis-
tortion as well as center of camera on image.

(a) Left view distorted (b) Left view undistorted

Figure 0.5: Example of transformation from distorted to undistorted state.

7

8 Introduction

(a) Front view distorted (b) Rear view distorted

(c) Front view undistorted (d) Rear view undistorted

(e) Left view distorted (f) Right view distorted

(g) Left view undistorted (h) Right view undistorted

Figure 0.6: Distorted and undistorted Vosstrex fisheye cameras with masked
vehicle.

Related work

Related work
Besides the literature describing specifically problems of object detection, in-
stance segmentation and multi-object tracking alone, there are not many works
describing problems for tracking with multiple (mostly single camera) cameras
mounted on car (moving object). Most of the available literature is dealing
with problem of tracking people with multiple cameras with fixed positions.

As for detection with fisheye cameras most of works focus on surveillance
top-view cameras [8], there are some works similar, to this with fisheye config-
uration for detection [9, 10, 11] and tracking [12, 13], most of these articles are
focused in subsections of this work, therefore they are used as helpful reference
for some experiments, but not covering full scale of this work.

Most of literature sources for this work are related to recent state of the art
techniques in fields of real-time object tracking and theirs origins [14] either
without re-identification [15, 16, 17], or with re-identification of objects with
help of CNN embedded features [18, 19, 20, 21, 22].

As for virtual reality the Vosstrex VR is work in progress and not publicly
available, making this task more unique. However using VR data from com-
puter games with highly realistic graphic such as GTA [23] for computer vision
tasks is not a new idea, benefits of using the VR are well discribed in article [2].

The detection task is achieved with mask R-CNN [24] architecture and
popular YOLOv4 one-shot detector [25], the final choices will be described in
following chapter Sec. 1.

Thesis contribution
This work adds interesting ideas how to automatically generate dataset from
data, when the state of the art trained models are not very familiar with its
configuration (unique fisheye distortion).

The additional perk of this work is successful experiment of fine-tuned
CNN model 4.7 which works even with distorted images without the need of
undistortion 4.8 which is computationally heavy operation.

And finally this work is valuable for Valeo and Vosstrex developers to
evaluate state of art detection and tracking on theirs VR system.

9

Chapter 1
State-of-the-art

Convolutional Neural Network (CNN) is deep learning (DL) [26] algorithm
used in computer vision designed with inspiration of the connectivity pattern
of Neurons in the human brain [27]. CNN is capable of processing multidimen-
sional data such as images, assign importance (learnable weights and biases)
to various aspects/objects in the image and be able to differentiate one from
the other [26].

The computer vision sector made major progress over the last couple of
years, especially in the computation time performance. Object detection,
segmentation and re-identification [21] have been very popular for task such
as face recognition, autonomous driving, surveillance and many more fields in
computer vision.

1.1 Object detection
This part of thesis will describe the building blocks of the architecture of
detection framework and their purpose, rather than reaching depths of imple-
mentation of the innermost parts of the CNN.

Recently, the CNN [26] models have obtained more generalized structure
especially the Faster R-CNN [28] to provide better building foundation in the
computer vision tasks, this architecture is usually referred as ”Generalized
R-CNN” [29].

There are two popular meta-architectures of CNN: two-stage detectors and
one-stage detectors, the differences will be mentioned through this chapter.
The Generalized R-CNN (Region based CNN, since first stage propose regions)
is relied to two-stage detectors which will be described first.

11

1. State-of-the-art

1.1.1 Backbone
The core part of every deep learning image processing method is feature ex-
traction. Feature extraction is special kind of image preprocessing, which is
fully orchestrated by R-CNN. The preprocessing might be in simplified version
compared to preprocessing image with filters such as first or second derivative
kernel used for sharpening or edge detection, however the rules of these filters
are learned and defined automatically by R-CNN and all filters can have much
more possibilites than mentioned filters.

Feature extraction mostly breaks concept of three color channels (Red,
Green, Blue) and creates new channels describing features, which R-CNN con-
siders to be useful, trough backbone the original image content is constantly
reduced in dimension of width and height, while the channel dimension rapidly
increases, nowadays R-CNN backbones usually contribute 256-1024 channels.

Figure 1.1: Generalized R-CNN architecture used in Detectron 2 [29] with
ResNet 50 backbone architecture from article [30].

The backbones can be different than ResNet 50 (e.g. VGG [31]) or hav-
ing more depth (more parameters which can be learned) resulting in better
performance, there is whole article about experiments with various ResNet
convolution block depths [32], however with increasing depth of blocks, the
computation time increases as well. Fortunately the proposed ResNets Fig.
1.2 are balanced to get best combination of performance and time efficiency.

12

1.1. Object detection

50-layer ResNet is the middle way of ResNet architectures, the table
Fig. 1.2 can be associated with Fig. 1.1 conv1 is input block and res2 equals
conv2_x etc., this backbone is used in experiment 4.9.2.

101-layer ResNet was used for vast majority of detection tasks in this
work, this configuration have 7.6 billion FLOPs (FLOPs in this case are op-
erations needed to do one iteration of algorithm, FLOPS are used for time
performance), which is twice the amount of ResNet 50, this is achieved by
deeper conv4_x (res4) block of ResNet backbone, which have more layers.

152-layer ResNet was used for automated annotation generation, to
maximize performance with 11.3 billion FLOPs on behalf of computation time,
which is less important for annotation generation.

Figure 1.2: ResNet backbone configurations from article [32].

Feature Pyramid Network
Detecting objects in different scales is challenging in particular for smaller ob-
jects. However rescaling and cloning image to create mutiple inference tasks
with different sizes would be time inefficient. Another solution would be to
acquire features not only from the output of the backbone but also from other
blocks (e.g. res4, res3, res2 from Fig. 1.1), the problem is that the features
might not be fully processed in these stages since they are closer to actual im-
age. To improve this solution in efficient way the Feature Pyramid Network
(FPN) is used.

The FPN [33] is pyramid structure interacting with pyramid structure of
backbone, the previously mentioned solution had problem with features not
being completely processed, to help with this the FPN receives output of
backbone and use it to upsample ”half-done” features from blocks res5 up

13

1. State-of-the-art

to res2 in backward-way, where each block with more processed information
enriches his parent block. From Fig. 1.1 the FPN description shows, that on
top of original output of backbone the R-CNN now have 4 additional outputs
with functionality of representing different sizes, helping with smaller objects.

1.1.2 Region Proposal Network
The RPN [28] are convolution layers which provide time efficient search for
possible objects on feature map. Given feature map as input from backbone
(and FPN) the R-CNN has to learn whether there is an object present on
every point of feature map. This task is achieved by placing ”anchors” on
every point, each anchor can represent object with box of finite options for
size and aspect ratios (usually 3 sizes and 3 ratios, resulting in 9 possibilities),
each anchor also provides confidence of object being present (in Fig. 1.1 called
objectness).

The possibilities are finite to ensure process of RPN is time efficient, the
RPN does not find perfect locations of objects this is achieved by bbox regres-
sor 1.1.4, the RPN only estimates objects and backrounds on feature map so
following parts of R-CNN have less work to do and can focus more on precise
predictions.

The RPN usually have fixed amount of proposals which can be proposed,
to ensure there are not many duplicities since anchors next to each other might
propose the same object, the Non-maximum Suppression (NMS) [34] which is
simple algorithm removing area duplicities with intersection over union over
chosen threshold.

1.1.3 Region of Interest Pooling
The RPN proposals will be input for following part of R-CNN, however these
proposals have only information of location and objectness, therefore they
must be reunited with features from backbone once again, this is achieved
by ROI Pooling, furthemore ROI Pooling also reshapes all proposals (now
features from location) to have same fixed size, making their processing more
time efficient for GPU systems.

1.1.4 ROI Heads
The ”heads” are final branches of R-CNN, these branches provides every de-
sired task which is requested on each object, usually there is head for clas-
sification and head called bbox regressor providing more accurate bounding
box than RPN for task of object detection. The task of mask segmentation
of mask R-CNN [24] have also Segmentation head which uses the same inputs
as other heads.

14

1.1. Object detection

1.1.5 One-stage detector
This part will focus particularly on YoloV4 [25] as the newest addition of You
Look Only Once family of detectors (at the time of writing project YoloV5
still have not proved its superiority and originality).

The one-shot detectors were very poplar choice of detectors especially if
speed of inference (prediction) is more valuable than accuracy of predictions,
the Yolo projects have been always on top of speed performance especially
thanks to theirs efficient implementation and lightweight model.

The major difference between one-stage detectors and two-stage detectors
is the lack of RPN, Yolo does not use RPN to predict region proposals and
solves inference as regression problem straight from backbone to estimation of
bounding box and class. This method saves lot of computation time, making
Yolo good candidate for real-time detection (speed can over 60 FPS, depend-
ing on configuration).

The YoloV4 version also implements most of the good ideas from Faster
R-CNN backbone such as its own version of FPN and many other state of the
art methods.

1.1.6 The choice of detectors
The detector for generation of automatically annotated data should be focus-
ing more on accuracy of prediction, rather than on speed, therefore the best
choice was two-stage detector, which was trained to provide good performance.

Detectron 2 [29] have many perks making it good choice for experiments in
this project, first reason is the quality of pretrained models, which made good
baseline for automated data annotation, second reason is quality of implemen-
tation and options of training, to train networks easily on cluster GPUs and
being on of the fastest among two-stage detectors. And last reason is good
documentation of code, to easily make modifications to code needed to enable
this project.

The YoloV4 was picked for experiments as well, since it provides valuable
insight how would the the experiment work if there was necessity for real time
detection.

15

1. State-of-the-art

1.2 Tracking
The final tracking algorithm is based on DeepSORT [18] tracking algorithm
which is a modification of the Simple Online Realtime Tracking (SORT) [16]
with deep-learning method for obtaining feature embeddings for re-identification
[21]. This tracking algorithm has two important elements the first is localiza-
tion prediction and the second is re-identification, which support each other
in order to fortify their weaknesses. The tracking algorithm uses detections
from detectors to define tracking instances

1.2.1 Kalman filter
It is an iterative mathematical process that uses a set of equations and con-
secutive data inputs, which allows to quickly estimate position and velocity
when the predicted values contain random error, uncertainty or variation [35].

With difference to machine learning models which need many inputs from
data to interact with to be able to predict properly, Kalman filter can nar-
row down to possible solution, which is usually close to optimal solution with
requirement of very few inputs by understanding theirs uncertainty and vari-
ation. This ability is extremely valuable for tracking, since Kalman filter can
predict behaviour of the new object very fast and in not so many iterations
(frames passed).

1.2.2 Localization prediction
The previously mentioned Kalman filter is the core of localization prediction,
this algorithm is used to predict positions of centers of the bounding boxes
and with these predictions it improves predictions of next bounding box loca-
tion for each frame if the track was not lost in the process.

This part of tracking algorithm is performing very well on slow moving or
static objects or any objects with stable behaviour, also on scenes with high
framerate detections, which makes object movement to appear slower. How-
ever any sudden changes in object trajectory, speed or object hiding behind
another object can be hard cases for this algorithm to deal with.

1.2.3 Re-identification
The re-identification is used for comparing image information of two objects
and making decision, whether the objects are similar to each other (possibly
the same) or if they are completely different. Re-identification has possibility
to reinstate track which has been lost by Kalman filter, but in some cases the
matching potential still is not that powerful to be used alone.

16

1.3. Multiple object tracking

Instead of methods like pixel-wise comparison of two images, this method
transforms image cropped to focus the object (crop is provided by detector)
into feature embeddings, which are vectors of information, which can be com-
pared to test similarity. The embeddings can be created by encoder [26]
working with cropped images directly, which was used to automatically gen-
erate tracking data or getting features from ResNet backbone, which is better
approach since it uses the features computed by detection and saves time. The
modification for Detectron 2 was inspired by feature extractor GLAMOR [36]
which is designed for ResNet backbones.

1.3 Multiple object tracking
To make localization predicition and re-identification to work together, there
is need for Tracker which will control the life cycle of tracks. The Tracker
is modified implementation of DeepSORT [18], with custom re-identification
layer.

The life cycle of Tracker:

1. Initialize Tracker

2. Obtain feature embeddings from detection and gather previous tracks

3. Compute the distances d1 between new positions of objects from detec-
tion and Kalman Filter predictions

4. Compute the distances d2 between new feature embeddings from detec-
tion and last feature embeddings of active tracks

5. Compute weighted distance c combined from Kalman prediction distance
and feature embeddings:

ci,j = λd1(i, j) + (1 − λ)d2(i, j) (1.1)

6. Use Hungarian MaximumMatching algorithm 4.4.1 to get perfect match-
ing from weighted distance matrix c

7. Update tracks and Kalman Filter with matches

8. Initialize new tracks and eliminate inactive tracks and goto 2)

17

1. State-of-the-art

There are important initial variables to control lifecycle of Tracks, first is
maximum age for track elimination (25 frames is value being used) threshold,
which eliminates inactive tracks, when theirs inactivity reaches this threshold,
second is λ balancing weighting between Kalman filter and re-identification
(set to 0.7 favoring re-identification).

The last is distance function, author of DeepSORT [18] uses Mahalanobis
distance, however it is mentioned that, this metric is more favourable for
short-term predictions and cosine metric is considered better for recovering
in long term predictions. Since Kalman filter is used to deal with short-term
predictions, cosine metric is being used as distance function d2 for computing
difference between feature embeddings.

The following equation describes cosine distance function for two feature
embedding vectors A and B.

cos(θ) = A · B
∥A∥∥B∥

=

n∑
i=1

AiBi√
n∑

i=1
A2

i

√
n∑

i=1
B2

i

, (1.2)

18

Chapter 2
Dataset

The data provided by Valeo [3] company had form of ”.dat” binary files with
ADTF (Automotive Data and Time-Triggered Framework) [37] format, due
to large size of original dataset (6.8 TB), binary images were transformed to
”.jpeg” format with 90% compression.

Images of constant size 1280 × 960 group into video sets, further referred
as scenes. The total count of original scenes is 900, each scene has 4 cameras:
FV (front), RV (rear), MVL (left), MVR (right) and each camera has up to
1000 frames, with framerate 30 FPS resulting in videos long around 30 seconds
depending on number of frames.

2.1 Automatically generated annotations

The data were issued as only images, there were no annotations, therefore it
was necessary to generate the dataset with an existing trained model, to make
task easier the images were first undistorted Fig. 0.5, then the annotation was
executed and finally the mask was transformed into polygon format and the
polygon points were transformed to distorted version. For the distorted poly-
gons, new bounding box had to be created by enclosing object mask, after-
wards boxes were described with top-left, bottom-right corner points format.

The annotations were saved in Detectron 2 [29] and YoloV4 [25] format
to ensure fast data loading for training. The experiments with automated
annotation generation are described in section 4.2.

For tracking, the tracks were obtained with original DeepSORT [18] Tracker,
the data were saved as unique track identifiers in annotation each object in-
stance.

19

2. Dataset

2.2 Dataset format
The dataset annotations were saved in both ”.json” for easier access and later
in ”.pickle” binary format for speed performance. The annotation file is always
on the same directory level as the folder containing all images.

Dataset
Scene

[FV|RV|MVL|MVR] Camera.....Folder with images for each camera
*.jpeg... Images

[FV|RV|MVL|MVR] Annotations.json....Annotations file for each
camera

Figure 2.1: Tree structure of dataset folders and files.

To make dataset usable on memory limited computing cluster enviroment,
the data had to be reduced by using only 6 FPS scenes, this was achieved by
saving only images with scene id value modulo 5 (final size 350 GB). This data
modification, might increase the difficulty of tracking task, where longer inter-
vals between images have higher chance of spontaneously changing direction,
weakening Kalman filter [35] predictions 1.2.2. Despite the task becoming
slightly harder for inference, this modification does not influence heavily any
training task of selected deep-learning models, not even re-identification, since
positives in triplet loss are getting harder with greater distance 4.3.3.

2.3 Dataset split
The very important data preprocessing step before application of any machine
learning method of machine learning is dataset spliting. In most cases data
are divided into three parts: training, validation and test dataset.

The training part of dataset is being used for the training phase 4.3, usually
called model fitting. This part is in most cases the largest part of all, since for
training it is important to have great amount of data to train complex models
to fit the data. With low amount of data trained models might suffer from
underfitting, which means the data are too simple or not in enough quantity.
Underfitting might also occur when trained model is too complex fro the data.

20

2.3. Dataset split

To eliminate the underfitting, the most straightforward approach is to
repeat epoch multiple times, however this approach usually can suffer from
another problem, which is overfitting, describing state in which model predicts
extremely well on training cases and similar cases, yet the test cases have poor
detection performance, because the model was trained on similar data so much
that its weights are overtuned towards this particular case, or the data splits
are not well designed [26].

Canonical machine learning tasks often prefer random splitting methods
and more balanced train-test split, usually 50-75% for training part, since
tasks other than image processing have generally much more samples it is rel-
atively forgiving to use random dataset sampling methods.

This is definitely not the case for deep learning in image processing, for
image detection the smallest sample unit is image, which can have multiple
instances of objects (actual samples which are grouped), unfortunately for
tracking tasks, the smallest sample unit is actually one video, resulting in
very small number of samples, where each scene usually has its unique char-
acteristics e.g. brightness, dominance of the object class or dynamics of the
scene.

Aforementioned grouped sampling requires more supervised care for dataset
splitting for obtaining better results as described further below in this chapter.
Another trend for deep learning in image processing is creating larger training
parts, mostly because the data are very costly in terms of computer memory
and their capturing, therefore researchers try to acquire as much possible in-
formation from training [38].

The testing part is the part of dataset with very strict rule, that model
can never interact with testing data in training phase, only in final evalua-
tion. This part describes the unseen cases when the trained model is being
applied in practical use, therefore the rule of interaction with training is very
important. From previously mentioned reasons, this part is very small in com-
parison to other parts, the main reason is the cost of high quality annotations
and starving for quantity in testing phase. While being the smallest part, the
test part must be balanced with most delicate care to reflect as many real
scenarios as possible.

For dataset provided by Valeo with 900 scenes, data were split into 750
training, 100 validation and 50 test scenes. After removing scenes which were
corrupted or not usable (there were some scenes with open car doors, which
were not compatible with camera masks) the final state of Valeo dataset is
743 training samples, 98 validation scenes, 45 test scenes. The reasons of this
split will be described in following section 2.3.1.

21

2. Dataset

training validation test
frames 493524 56224 31728

Table 2.1: Dataset split frames count

2.3.1 Dataset balancing
For deep learning tasks it is very important to balance dataset parts to pro-
vide roughly equivalent distribution of object classes, colors or other specific
characteristics of images and objects. The approach for this work was to cre-
ate categories of interest, which would act as the deciding factor of dataset
split.

All color based categories were accomplished with hue saturation value
(HSV) [6] color spectrum, which is very popular in image processing for color
analysis. The frequently used red green blue (RGB) or blue green red (BGR,
used in detectors) have three color channels each working with one color as the
name suggests. HSV has three channels as well, however only hue describes
color with 360◦ spectrum divided into six overlapping major colors: red, yel-
low, green, cyan, blue and magenta, while saturation resembles brightness of
the color, fully saturated meaning most colorful and lowly saturated meaning
pale color and finally value resembling interaction with white and black color.

The HSV spectrum provides much more intuitive splitting of color re-
gions, to analyze color characteristics. The hue color can be simply split into
six parts on 60◦, however starting from −30◦ shift, resulting in more accurate
color split e.g. there is more red color detections mapping to 330−360◦ sector
than 30−60◦ sector which is actually orange.

By reason of saturation and value being free of color element, these chan-
nels are perfect for analysis of brightness of scenes, usually brightness corre-
sponds to value, however the saturation value reacts specially to sunlight and
sunrays, helping to detect very bright images on sunny days [39]. The met-
rics used are mean and standard deviation, mean describes average of channel
values, while standard deviation indicates spread of values. The strategy is
to apply binning on mean of the value channel, while being thresholded by
mean of the saturation channel and finally sorted by standard deviation of
value channel.

Bright scenes usually occupy high value channel mean and lowest bin of
saturation, final results are selected according to standard deviation, the lower
the better (low means that most of values are similar to the bright tone).

22

2.3. Dataset split

Dark scenes have low value channel, saturation is not that decisive in
this case the strategy with mean and standard deviation is similar.

Saturated scenes represent color contrast images with high saturation,
providing another extreme case.

Class dominant scenes are separated by object class, all available classes
are related to traffic in some way due to trimming of classes in detection
models.

person car bicycle motorcycle bus train truck traffic light
FV 387858 802353 11545 4246 14141 4218 55527 59719
RV 379710 822273 9514 4624 10586 3250 50456 19658
MVL 318417 707573 6458 3438 7986 2235 44737 2729
MVR 340625 515945 10600 3159 6620 738 24347 5739

Table 2.2: Train object instance occurrences across all cameras.

The different counts in cameras are caused by different camera angles and
position as well as some traffic rules e.g. Tram (train) almost always ride in
the middle of street, therefore MVL (left) camera is going to see the tram
more times than MVR (right), if cars drive on the right side.

person car bicycle motorcycle bus train truck traffic light
FV 81802 136649 3303 1298 5265 1803 14143 7611
RV 82636 143457 2802 1112 3014 1219 9304 3851
MVL 61470 131894 1849 873 1639 680 9628 226
MVR 84192 96787 3296 1252 2630 188 5622 196

Table 2.3: Validation object instance occurrences across all cameras.

person car bicycle motorcycle bus train truck traffic light
FV 39831 74382 2737 935 1884 376 5521 4321
RV 39927 70877 2760 840 863 431 3458 604
MVL 36086 59965 1394 209 791 354 3956 478
MVR 35122 48401 3805 1019 1091 41 3092 180

Table 2.4: Test object instance occurrences across all cameras.

From previously displayed tables it is apparent that dataset split is bal-
anced across classes, actually despite the smaller size of test data, it holds
significant representation in each class.

23

2. Dataset

Color balance is the last category of interest, it deals only with car,
person and truck instances and balances their color split. Other classes are
way too similar or starving on sample size (train, bus, bikes).

The colors are detected as previously mentioned six colors in the hue spec-
trum and theirs full, light, dark variant accompanied by black, grey and white.

Hue

0 25 50 75 100 125 150 175
Saturation

0
50

100
150

200
250

Va
lu

e

0
50

100

150

200

250

(a) HSV representation of pixels (b) Sample purple car [40]

Figure 2.2: Distribution of HSV channels on masked car object.

For detection of color, the HSV color space Fig. 2.2 (a) is separated
into small color subspaces with four equidistant cuts across value as well as
saturation and twelve cuts across hue, colors are detected by thresholding
precentage on merged cubical bins color spaces created by channel cuts, the
strategies are similar to previously mentioned methods.

(a) Train data person (b) Train data car (c) Train data truck

(d) Test data person (e) Test data car (f) Test data truck

Figure 2.3: Balanced color split distribution of training and testing dataset.

24

2.4. Vosstrex VR scene generation

The Graph Fig. 2.3 shows percentage distribution of colors in dataset,
collected from the front camera, each detected color means, there was at least
20% of object visible surface reflecting this particular color. For balancing
colors in the test dataset, simple iterative algorithm was used, which selects
scene, which fix the most colors at time of each iteration, resulting in fairly
balanced split.

The rest of dataset was filled with scenes which were considered interesting
for VR scenes, mostly dynamic scenes and scenes with exclusive environment
e.g. cobble stone road.

2.4 Vosstrex VR scene generation
The Vosstrex VR simulator scene editor allows to build scenes and save them
as objects into ”.xml” document, because Vosstrex project is still work in
progress, it allows building only straight roads, crossroads and 90◦ turns, be-
cause of this fact the most of scenes were generated from similar seed ground
scene, and are quite similar in terms of surroundings, however the most im-
portant part of generated scenes is traffic, specifically cars and pedestrians.

Vosstrex provides considerable selection of car and pedestrian models, un-
fortunately though vehicles like train and bus or truck, do not have yet imple-
mented kinematics, therefore are usable only as static objects. Even despite
these problem it is still achievable to create approximate copy of reality into
virtual reality.

The final scenes are approximate copies of their real counterpart, meaning
the behavior of all moving objects in real scene was replicated to VR scene.
All cars have approximately the same trajectories, most of pedestrian as well
unless the pedestrians are clustered, then the exact count might not be pre-
cise. The same is applied for clustered cars, like parking lots and car lines in
side alleys, only the most visible ones are replicated to VR scene.

The types and colors of cars are not matching, since the choices of color
and car type were very limited. The final count of Vosstrex scenes used in
experiments is 25, the results compared to Vosstrex used these 25 scenes as
well.

25

Chapter 3
Implementation

It is always necessary to carefully pick the right tools for the job, for deep
learning tasks there are many interesting choices, however it is not good idea
to mix too many deep learning frameworks together, because most of these
frameworks provide backpropagation systems which are not compatible be-
tween different libraries. Because of the large data it is crucial to select an
efficient solution to all data movements as well as calculation. In deep learning
the last decade is heavily dominated by graphic card (GPU) computations,
since they offer much more parallel processing power than nowadays CPU
units.

3.1 Programming language and software
For most of the machine learning and deep learning projects, python [41]
language is obvious choice, the main reasons are:

1. Simplicity of code - the python with numpy [42] library provides very
useful array and tensor operators, which allow to create codes for mod-
ification of large multidimensional data with ease.

2. The numpy library and OpenCV [6] library are C, C++ language based
libraries, providing functions with very good performance for most math-
ematical and image processing tasks.

3. Deep learning support - considering previous statements, it is not supris-
ing fact that most of the researchers use python for data processing tasks,
also python has the most machine learning and deep learning libraries
available.

4. Platform independency is another useful quality of python, since Vosstrex
is not multiplatform.

5. CUDA [43] support, allowing efficient parallel computation on GPU.

27

3. Implementation

3.2 Deep learning libraries
The two most popular deep-learning frameworks are Tensorflow [44] and Py-
Torch [45]. Tensorflow is project provided with great history in the world
of deep learning, however being very popular and developed by many AI re-
searchers, the first version of Tensorflow slowly changed into slightly chaotic
direction. Not even mentioning the static computation graph approach mean-
ing, that the computation is build for specific data before computations and
is used repeatedly, which might seem like a good idea until the input changes
or requires some complex data structures. The final disadvantage was debug-
ging, since Tensorflow does not support many python functionalities, because
its own compiling system.

The other alternative is PyTorch which is designed to fully interact with
python and use dynamic computation graph, allowing to change parts of deep
learning system during execution. Not to mention that PyTorch framework is
much more organised and very popular in most image processing tasks. An-
other quality of PyTorch is performance, there are many projects rewritten
from Tensorflow to Pytorch with aim to improve performance.

In response to PyTorch rising popularity, Tensorflow developed second
version TF2, which acomplishes most of things that PyTorch already provided.
However there are still some very good functions, for example parts of training
module in this projects such as Kalman Filter are realized with TF2, however
the learning parts of PyTorch and TF2 never interact with each other as it
should be.

3.3 The dataset editing tool
For exploration of generated scenes or other examinations of dataset, it was
necessary to create simple editor capable of showing four frames at once and
walk through scene, the dataset editing tool is capable of listing frames with
keyboard arrow buttons.

Another functionality is selection with mouse, which finds all objects at
small area around mouse click position, the selected item can be then deleted,
the editor also provides tracking with possibility of modifying tracks however
this functionality is highly experimental, it was designed to help with track
annotation. The editor was created with pygame library [46].

28

3.3. The dataset editing tool 29

Figure 3.1: Annotation Editor Tool

Figure 3.2: Tracking Task

Chapter 4
Experiments

In this part of thesis, all conducted experiments are described. Most of the
experiments describe challenging task of training SOTA detectors on fisheye
camera, automated annotation generation experiment, tracking experiments
and methods to evaluate the level of performance similarity on real and virtual
data. The score in experiment tables evaluates experienced efficiency of tasks.

4.1 Fisheye and state of the art detection
The fisheye camera as previously mentioned 0.3 provides greater field of view
with the cost of massive barrel distortion. The most feasible solution would be
to train state of the art detection model to work on distorted images despite
barrel distortion or with undistorted images. The rotation of objects is still
extremely challenging feature of object detection, even tough size difference
problems were mostly dealt with by FPN 1.1.1. There are many projects such
as CapsNet [47], which try to deal with this problem, but stable solution is
still out of reach.

The lack of rotation robust model does not mean that this problem is in-
solvable, most popular solution is data augmentation [26], it is speculative
if this approach is really the best solution. The model with some rotation
reduction might deal with rotation problem and let CNN deal with the rest,
on the other hand the augmentation might just try to fit model on multiple
rotation cases while lowering the quality of original weights, therefore the ro-
tation upsampling must be executed with utmost care. For fisheye problem
simple rotation augmentation is much more complex than it seems. The radial
distortion with combination of extrinsic parameters create very unique distor-
tion especially nearing center point and rotating and moving this object to
for example edge of scene might seriously damage learning process of model’s
understanding of the fisheye.

31

4. Experiments

Another great problem with object detection on fisheye are bounding
boxes, the rectangular form is useful for covering convex polygon objects like
cars, however complex objects like people usually do not have that much den-
sity of theirs objectness in resulting bounding box, still in the end model
usually learns how to deal with people objects, expecting them to cover much
less area than object like car.

The very interesting cases on fisheye cameras are very long objects such
as train, while seen from afar, their shape usually does not differ very much
from car, when seen from front side. Still when such long objects gets close
for example on side camera Fig. 0.5, the bounding box get from situation
of tightly enclosing train to enclosing large object, while having more than
50% of inner area empty. Trains are probably most problematic objects, they
are usually detected on most trained models, but have lot of problems with
estimating length of train and approximating its mask.

4.1.1 The unsucessful experiments

Table 4.1: Image rotation experiment

model Mask Scoring R-CNN [48] GT
method angle rotation of objects
score

The idea was to use one of the highest performance ranking detectors at
the time with trained model and help the detector by augmentation of images
with rotation, even if rotation was helping slightly the models was primarly
trained for competition in COCO [49] dataset, which reflected to real perfor-
mance on random dataset.

The detections were stable only with certain angles and using more angles
was too time consuming on top of the already slow model even for mask RCNN.
Also the algorithm to merge masks, find the best ones (usually the ones at
the angle of object center) and suppress others was very hard to fine-tune and
the mask quality was very low from distorted positions.

32

4.2. Annotation generation experiments

Table 4.2: Crop classes experiment

model Detectron2 X152 FPN [29] GT
method undistort, filter classes
score

This model used in future successful generation experiments with undistort
had small modification of removing unnecessary classes, however by removing
classes most of remaining classes started to push into detections of deprecated
classes, therefore this idea was banished.

4.2 Annotation generation experiments
The most impactful method in automated annotation generation was using
undistort on images before feeding them to the CNN, reduction of distortion
helped extremely for rotated objects and deformed long objects like trains and
busses.

The final choice of detector model is Detectron2 X152 FPN [29] (also
called ResNeXt) trained on ImageNet-5k [50]. This model also has cascade
R-CNN functionality, which makes more detections sequentially, the model
was obviously much slower then most others mask R-CNN models, however
the quality of detections even on undistorted fisheye datasets was much better
than previous choice.

Table 4.3: Experiment basic

model Detectron2 X152 FPN [29] GT
method undistort, low score threshold 0.3
score

The cascade feature has small disadvantage and that is generating multiple
detections on the same object with highly tolerant score threshold 0.3, the low
score threshold is used in future experiments, since it is better to start with
more objects and filter them, than have small amount which might possibly
be wrong, also the models usually get small scores on datasets which have
never been seen by them before.

33

4. Experiments

There are two popular metrics to find overlapping objects:

1. The bounding box intersection over union is very fast and simple method,
unfortunately it is not very precise and because of fisheye, which causes
very large bounding boxes, creating larger chance of overlap and elimi-
nation of actual valid object instance.

2. The mask intersection over union is slow but much more precise, since
the processed are is actual area of the object and not surroundings like
in case with bounding box. There is possibility to improve speed of mask
IoU performance using RTree [6] indexing, creating sorted x, y interval
values to decide possibility of intersection of the polygons.

Table 4.4: Experiment NMS

model Detectron2 X152 FPN [29] GT
method undistort, bbox nms
score

The first chosen method was bounding box intersection, the total process
is called non maximum suppression for bounding boxes (bbox nms), picking
highest scoring object among others within chosen limit of IoU, this method
reduces duplicities, however there is problem that the duplicities are mostly of
different classes, and if the wrong class gets disabled, the detection becomes
confusing in training.

Cleaning masks and tiny detections
To improve data cleanliness and avoid future errors form masks with shape of
point or line, it is important to clean data first. For every mask it is necessary
to delete small shards, which usually only make problems in all IoU tasks,
also deleting very small objects with low score helps a lot in all tasks. This
method was used in all following experiments.

34

4.2. Annotation generation experiments

4.2.1 Automated tracking annotations
Tracking has one big advantage over detection in automated annotation gen-
eration and that is Track mining. The track mining finds tracks of reasonable
size (at least 5 frames) and uses them for training process. Since the training
algorithm is mostly interested into these mined tracks and not into overall
correctness of all tracks in annotations, this method is much simpler then cre-
ating annotations for detection.

The only problem would be if Batch hard Triplet Loss 4.3.3 would receive
tracks having Positive and Negative of the same object in reality. This means
that one real track would be divided into more tracks and these tracks would
have been learned as different even if they are the same track. This problem
is mostly avoided by choosing the threshold on length of Track according to
framerate.

The tracks are saved as unique identifiers which are globally generated.

Table 4.5: Experiment Tracker

model DeepSORT [18] Track GT
method Kalman Filter + Re-Id 1.2.2
score

The Track annotations in this work were automatically generated with
DeepSORT algorithm [18], the re-id part of DeepSORT [18] was also used to
find and save some tracks, which are unified over cameras (same object in
different cameras).

35

4. Experiments

4.2.2 Panoptic Merge

Table 4.6: Experiment Panoptic Merge

model Detectron2 X152 FPN + R101 FPN (panoptic) [29] GT
method undistort, panoptic merge
score

The bbox nms was very fast in execution, but the quality was not that
outstanding, even though panoptic merge focuses mostly on removing random
false detections in background, it deals with overlapping objects much better
than bbox nms 4.9.2.

The panoptic segmentation uses semantic segmentation to detect back-
grounds and instance segmentation to detect object instances as it can be seen
on image 4.1. The panoptic merge idea came from using merge with semantic
segmentation, however none of trained semantic segmentation models could
decently detect background objects in undistorted image. This is because the
undistorted side camera Fig. (0.5) has the road still heavily distorted and
semantic segmentation has problems to deal with this. Fortunately most of
the upper backgrounds of image are recognizable by semantic segmentation,
since the distortion is lower in these areas.

The panoptic segmentation trained by Detectron 2 [29] uses semantic seg-
mentation combined with secondary instance segmentation, the instance seg-
mentation provided by this model is only used to balance mask borders be-
tween instance and background and provide valuable backgrounds such as
buildings, trees, grass, wall which can block most of objects detected by pri-
mary instance segmentation detector. The detections from panoptic segmen-
tation will be referred as semantics (instances and backgrounds).

The primary instance segmentation (X101 cascade mask R-CNN) is much
superior [29] in terms of predictions, however there is no version of panoptic
segmentation with this model, also multiple detectors bring more information
to work with, even though primary detector is prioritized, some masks might
be used from secondary detector under certain conditions.

The panoptic merge works as instance competition to find best combina-
tion of instances to be used as ground truth, this method also deals with classes
which are not desired, some of them can be kept as ”dontcares” described in
training, but only if their presence influences some desired instances.

36

4.2. Annotation generation experiments

The panoptic merge instance tournament:

1. Match all detections by mask IoU from primary detector with secondary
detector semantics

2. For all semantics if semantic is secondary instance:

a) Sort all instance matches to semantic by IoU (descending order)
b) Put previously sorted instances into queue as candidates
c) While there are candidates:

The process is to use best candidate and then try to fill the re-
maining area of semantic with best solution
i. Pop first candidate from queue and assign it to solution
ii. For each other candidate and their neighbour instances fill so-

lution, but ignore instances, which have large intersection over
minimum area with instances already in solution (currently
used threshold 0.7):

intersectionarea/min(instancearea, semanticarea) > threshold

his can be combined with condition to avoid if class is person
(used in this work), if it is desirable to keep person detections
inside vehicles and not substract from semantic area, otherwise
it is great tool to remove person detections form vehicles

iii. Record solution, compute solution score:

solutionscore =
∑

s∈solution

sscore (1 if wanted class else 0)

d) Get solution with highest score as final and mark instance to keep
it, notice that objects with class, which is not desired have no score,
therefore they lose against solution with more desired classes

e) If solution is only one instance it means that it can compete with
secondary instance, this part is mostly customizable by experiences
with dataset, in this case if primary instance had at least 20% of its
mask detected as surrounding objects, then use secondary instance,
this helped to fix many masks e.g. trains and busses can usually
be detected as buildings (because of windows and shape), and if
there was building behind train, the mask of primary detection
had tendency to assume the building is part of train, these were
tho only cases where secondary instances outclassed primary ones,
because the building background already suppresed the train mask
misdetections

37

4. Experiments

3. For all semantics if semantic is background:

a) For all instance matches, if the match has high score (used > 0.5)
and is desired class mark to keep it, otherwise mark as deprecated
it if it has not been marked to keep it

Figure 4.1: Example of panoptic merge, the most left car (not actually car)
with score 47% which has building overlapping as background will be depre-
cated, the person, if semantic is person too will be kept despite low score

4.2.3 Random Custom Bugs

There are some random bugs whose
patterns have been learned and
the matching masks with same
class are systematically removed
from dataset in all experiments,
for example this light-person bug,
which occurs on side of cameras un-
der certain lightning conditions as
shown on image to the right.

38

4.3. Training

4.3 Training
The important part of every deep-learning project is the training phase (also
called learning), the process to create dataset was described in previous sec-
tions and this section will descirbe the training process itself.

In section (2.3) the dataset sections were defined. Each pipeline (process)
of training consist of training, validation and testing phase. The training phase
describe process of learning model on annotated data with ground truths, with
chosen hyper-parameters for training. The hyper-parameters are variables
which influence the speed of learning, magnitude of learning and other special
settings to improve learning.

There are two popular methods of training NN.

• Learning from random initialization is the standard method, the NN is
learning from scratch, this process takes longer time to learn, however
it may sometimes bring better results.

• Fine-tuning from pre-trained model is another approach, the benefits
are shorter time to learn and more consistent results, however the model
might inherit errors of its basic configuration. This approach was chosen
for training on automatically generated data, due to possible lower qual-
ity of dataset, to extend standard working models to fisheye distorted
images.

4.3.1 Training process
Deep-learning neural networks are trained using the Gradient Descent algo-
rithm [26]. The training of neural network consist of two phases:

1. Forward phase where input is processed trough network, this phase is
almost the same as inference, however all the outputs of all layers are
saved for second phase

2. Backward phase where the output is compared to ground truth and
the error is calculated by loss function and backpropagated through the
layers of network to improve the internal model parameters (weights and
bias), each layer will receive gradient of loss with respect to its outputs
and and return the gradient of loss with respect to its inputs

39

4. Experiments

Loss function is a function used in optimization problems. The loss func-
tion given predictions and ground truths computes error value of predictions
and in the training task the aim is to minimize this error.

Learning rate is a hyper-parameter influencing the magnitude of learning
potential from each input, learning rate is from interval [0, 1], usually closer to
0, value too large might cause overlearning, state of model, where it starts to
focus its performance towards particular case and loses its robustness towards
other cases.

Batch size is a hyper-parameter that defines the number of samples to
work through before updating the internal model parameters. There are three
batch methods used in Gradient Descent.

• Batch Gradient Descent Batch size = size of training set

• Stochastic Gradient Descent Batch size = 1

• Mini-Batch Gradient Descent 1 < Batch size < size of training set

The Mini-Batch is the most popular nowadays, since it provides best bal-
ance between training time and performance. The sizes of Mini-Batch are
usually determined by hardware architecture of machine which computes the
training process, this work used Batch size = 8 per GPU (2× GPU = 16), the
Batch size was mostly optimized for the time speed of training to be able to
try more experiments.

Epoch describes iteration through whole dataset. The number of epochs
hyper-parameter is deeply linked with the learning rate, while lowering number
of epochs it might be necessary to increase learning rate to get similar results.

One epoch in COCO [49] 2017 dataset has approximately 118k training
images the Detectron 2 [29] models are trained with ∼37 COCO epochs (4366k
iterations of images) or ∼12 COCO epochs (1416k iterations) for quick research
iteration, one epoch of training dataset from this work has 493k iterations of
images (∼4 COCO epochs).

4.3.2 Validation process
In the validation process, the validation part of dataset is used to tune the
hyper-parameters, the validation is similar to evaluation (4.4), but does not
use the testing dataset. Validation was performed after every 100k iterations,
to decide if the training should continue, it was used only to find hyper-
parameters, most experiments were then used with same parameters to have
the equality of opportunity.

40

4.3. Training

The validation process:

1. Divide validation set (100 scenes) into 10 groups

2. Training of 100k iterations of images

3. Evaluate 1 random group if results are better record results for this
group continue with training

4. Start evaluating all the groups evaluated before, if any one of them gets
better result continue training otherwise stop

This method was used to estimate 4 epochs of training from Detectron 2,
the algorithm stopped on 2100k iterations, therefore 4 epochs (1972k itera-
tions) to round the epochs for training balance.

Since YoloV4 was the only experiment with this model, it was spared the
cropping after reaching 1600k iterations.

Table 4.7: Experiment ResNet 101

model Detectron 2 R101 FPN [29] experiments training
learning rate 0.05
batch size 8 per GPU
epochs 4 (1972k iterations)

Table 4.8: Experiment ResNet 50

model Detectron 2 R50 FPN [29] experiments training
learning rate 0.05
batch size 8 per GPU
epochs 4 (1972k iterations)

To find the right learning rate for fine-tuning the experiments started on
half of the originally used learning rate (0.02 to 0.01), however this configura-
tion ended too quickly overfitting, the learning rate 0.001 was too unimpactful,
the good balance was achieved on quarter of originally used learning rate.

Similar to the Detectron 2 experiment, YoloV4 was trained with the fine-
tuning approach, however the pre-trained models for Yolo were too bad at
performance, the learning rate was set just slightly lower than standard train-
ing (0.0013 to 0.001) the model took over 3 epochs before starting to overfit.

41

4. Experiments

Table 4.9: Experiment YoloV4

model YoloV4 [25] training
learning rate 0.001
batch size 16
epochs 3+ (1600k iterations)

4.3.3 Training Tracker
With tracking annotations which were mined from dataset 4.2.1, the Re-Id
1.2.3 part of tracker is trained to differentiate between two feature embed-
dings.

The difference is calculated with loss function [26], which compares feature
embeddings. For this work, the Triplet Loss was selected [51].

For Triplet Loss function, the first step is to create triplets Anchor, Positive
and Negative. The Anchor is the object which is actually being processed in
learning phase. The Positive is the same object as Anchor, however in different
time frame of the track. The Negative is any object, which is not the same
object as Anchor (and Positive). There are important relations between these
three elements. Anchor is close in terms of similarity to Positive, meaning
there will be small distance between A and P, the distances used are usually
Cosine similarity, Euclidean distance [51] or Mahalanobis [18]. On the other
hand Negative is distant from Anchor.

L (A, P, N) = max
(
∥ f (A) − f (P) ∥2 − ∥ f (A) − f (N) ∥2 + α, 0

)
(4.1)

Equation (4.1) describes Triplet Loss function, where f is feature embed-
ding and α is margin between P and N. The goal for learning is to optimize
the loss function for Re-Id feature generation in way, such as A and P are
close, A and N are distant.

The strategy to create triplets from mined Tracks is Batch hard also from
article [51]. In mining the triplets are measured by their loss and categorized
as easy - loss is 0, hard loss is greater than margin and semi-hard - loss is
inside margin. The Batch hard strategy selects for each A the hardest P and
the hardest N to create triplets for learning.

42

4.3. Training

4.3.4 Data augmentations
Data augmentations are very popular method to achieve better results with
smaller datasets, the method uses images from original dataset and tries to
augment the image by resizing, rotations, crops and other creative ideas.

Despite augmentation being recommended in most of the CNN training
tasks, it was after abandoned after few unsuccessful attempts. The
theory for bad success on this dataset is the fisheye distortion, after trying
out some manual attempts for fisheye examples the augmentation does not
make that much sense, since each position of fisheye distorted image has its
own unique way of modifying object, when resizing the image breaks the rules
of distortion, the same with rotations.

The undistorted version did not have attempts that much unsuccessful,
but not particularly improving, the measure of improvement was decided from
training loss.

4.3.5 Uncertain instance blocking
The experiment panoptic merge Sec. (4.2.2) was extended into this experi-
ment of instance blocking using mentioned deprecated instances. The uncer-
tain instance blocking means that the deprecated instances, have potential to
influence the training in negative way and the training decides to ignore these
instances. These deprecated instances reintroduced as ”dontcare” instances
are instances with low score from automated annotation generation or unde-
sired class to be deleted. There are two ways of dealing with these instances,
either delete them or keep them as instances which both exist and do not
exist.

When prediction does not match dontcare instance or place where it was
deleted, then there is no effect, their benefit applies in case when the prediction
actually match dontcare instance or place where it was deleted, because if
it was deleted (and it is assumed that there might be something other than
background possibly even desired class), it is learned incorrectly as background
an possibly harming trained model, however if there is dontcare instance,
gradient learning completely ignore fact that this prediction ever happened,
in summary dontcare instance exists yet it does not.

Obviously this way reduces data the same way as deletion, even so the
benefit to not propagate possible desired classes as background is very powerful
as seen in results 4.2.

43

4. Experiments

4.3.6 Class balancing
When training it is desirable to have balanced classes distribution, this way
the model does not start ”forgetting” any class during learning process. Unfor-
tunately this dataset have some classes like train, bus, motorcycle and bicycle,
which are very rare and augmentation is not really working out to upsample
these classes. The remaining solution is to boost the loss for these particular
classes to improve their learning contribution. To try to avoid boosting un-
correct generated instances, only loss of ground truths with score > 0.7 is 3×
boosted, for score > 0.8 is 5× boosted and for score > 0.9 is 10× boosted.
The truck class have also low count of samples, however this class usually gets
confused with cars and boosting trucks rate could overthrow balance between
these two classes.

Table 4.10: Experiment Dontcare

model Detectron2 X152 FPN + R101 FPN (panoptic) [29] GT
method panoptic merge, class balancing, uncertain instance deleted
score

Table 4.11: Experiment Purge

model Detectron2 X152 FPN + R101 FPN (panoptic) [29] GT
method panoptic merge, class balancing, uncertain instance blocking
score

44

4.4. Evaluation

4.4 Evaluation
Important part of any machine-learning or deep-learning project is properly
chosen evaluation method for results. Most of the nowadays object detection
and instance segmentation projects use well established evaluators assigned to
the datasets being evaluated, such as COCO [49] or Pascal VOC [52].

Likewise automatically generated Valeo dataset 2 requires evaluation meth-
ods focusing on problems which come with automated annotation generation.
The evaluation methods are based on established baseline calculating confi-
dence threshold precision-recall metric with average and mean features which
is used by COCO [49], Pascal VOC [52] and many other evaluators, however
two major features are introduced: class mapping and Gaussian localization
error evaluation 4.4.10.

Classification differentiates the classes of objects, rather than multi-class
classification, multiple binary classification instances for each class are used,
since most of the evaluation methods (e.g. precision, recall) are designed for
binary classification and the class group sizes are mostly imbalanced, which
makes it harder to balance these evaluation methods [26].

For utilizing binary classifier each class is evaluated separately for binary
parameters: is classi and is not classi, for classi ∈ classes. The upcoming
detection and ground truth terms will describe each class as separate problem
unless it is specified otherwise.

Localization is measured by the overlapping areas of the objects, the fastest
and the most popular approach is to use bounding boxes, however mask over-
lapping might provide much better results on clustered objects, especially on
fisheye distorted images, where bounding boxes might cover less than half
of area e.g. on Fig. 0.5, the disadvantage of masks are longer computation
speeds.

45

4. Experiments

True Positive (TP) defines correct detection matching ground truth by lo-
calization metric e.g. IoU.

False Positive (FP) represents wrong detection, either not matching any
ground truth labeled as misdetected FP or scored with localization metric
below threshold labeled as supressed FP (also case if outmatched by other
detection).

False Negative (FN) specify ground truth annotated sample not matched
with any detection.

True Negative (TN) represent every part of image which was correctly
not detected, which is usually hard to interpret, it can be defined as pixels,
which were correctly not detected, or some another unit representing image
space not detected, for two stage detector, the anchors Sec. 1.1.2 might be
good candidate.

4.4.1 Perfect matching
While matching detections and ground truths, two or more detections might
be considered as TP candidates, furthermore some of these detections might
have even better matching with another ground truths, therefore it is necessary
to match results as good as possible.

To solve this assignment problem of maximum (for IoU) bipartite graph
matching the Hungarian Maximum Matching Algorithm [53] is used. This
algorithm finds perfect maximum matching between detections and ground
truths and requires adjacency matrix as input, each adjacency means match-
ing between detection and ground truth instance in form of localization metric,
which is IoU (no matching: IoU = 0) and therefore the matching is being max-
imized for the best result. The final result of the algorithm are TP candidates
(might be denied by low IoU), while the rest of instances are considered FP
for detections and FN for ground truths.

4.4.2 Class mapping
In the manually annotated dataset it is assumed that all ground truths have
correct class, therefore it is meaningful to evaluate matching on each class
separately. However automatically annotated dataset might sometimes see
only lower part of truck in image and classify it as car, this results in these
classes to more likely influence each other in training and then cause some class

46

4.4. Evaluation

mismatches in testing. This is unavoidable negative part of automated anno-
tations, which might lead into poor evaluation results, with low background
knowledge on reasons for such performance.

Naive improved solution is to create all class matching at once, which is
on the other hand too misleading, because it is different when car is detected
as truck or van than car being detected as person, which is much worse case.

The solution is class mapping which allows each class ground truths to
accept not only the detections of the same class but also detections of another
classes specified in class mapping.

The mapping is usually decided by class functionality in real world, for
example it is reasonable to map vehicles, but leave person as separate.

The current mapping used in Valeo dataset:

Ground truth Detection
Person Person
Bicycle Bicycle, Motorcycle

Motorcycle Motorcycle, Bicycle
Car Car, Truck
Truck Truck, Car, Train, Bus
Train Train, Truck, Bus
Bus Bus, Truck, Train

Traffic light Traffic light

The reason for mapping the bicycle and motorcycle is because generating
detector has problems with differentiating between these classes, since they
might be sometimes challenging even for human from longer distance or low
knowledge of exact bike model.

The car and truck overlap because most of the detectors classify van (might
be seen as small truck) as a car, however truck when seen as big truck might
overlap with train and bus, although there might be case where car is a train,
these cases are not that desirable to tolerate their misclassification, therefore
the mapping does not include them.

The person and traffic light are more unique cases thus there is no mapping
to them.

47

4. Experiments

The last problem with class mapping is modified prefect matching to
ensure no instance is repeatedly considered as any TP, FP or FN. To address
this problem, the matching is considered for each cluster of classes instead of
each class separately.

To obtain cluster of classes, simple depth first search (DFS) [41] is used to
get graph components which describe all classes which have some relation to
any class in this group for aforementioned mapping one such cluster would be
”Car, Truck, Bus, Train”.

For each cluster all matches are recorded in adjacency IoU table, however
to disable mapping of unmapped adjacencies, for each class c in cluster all
unmapped classes (cluster − map[c]) adjacencies are filled with zeros in adja-
cency IoU table. With this modification perfect matching will result in only
mapped prefect matching for all classes in cluster.

It is worth mentioning that if cluster consisted of all classes, result would
be same as previously mentioned naive improved solution, clustering allows
problem to be divided into smallest possible subproblems to be computed
more efficiently due lowered matching between cross class instances.

Python pseudocode 4.2 shows general implementation of matching algo-
rithm, which takes detections and ground truths as input, as well as class
clusters (if there is no class mapping each cluster equals each separate class)
and returns instances of true positives, false positives and false negatives,
which are used in evaluation methods precision and recall.

48

1 def match_frame(gt_frame, # gt instances in frame
2 det_frame, # det instances in frame
3 clusters): # list of class clusters
4

5 for cluster in clusters:
6

7 gt = []
8 det = []
9 # data interval separator of classes in cluster

10 gt_sep = [0]
11 det_sep = [0]
12

13 for c_i in cluster:
14

15 gt += [x for x in gt_frame.instances if x.cls is c_i]
16 det += [x for x in det_frame.instances if x.cls is c_i]
17 gt_sep.append(len(gt))
18 det_sep.append(len(det))
19

20 # get IoU adjacency matrix
21 iou = match(gt, det)
22

23 # hungarian algorithm need square matrix
24 iou = square_matrix(iou)
25

26 for i, c in enumerate(cluster):
27

28 if gt_sep[i] < gt_sep[i+1]:
29 # get set of classes to be unmapped
30 to_zeros = [cluster.index(x) \
31 for x in (cluster - class_map[c])]
32

33 for x in to_zeros: # fill unmapped with zeros
34 if det_sep[x] < det_sep[x+1]:
35 zeros(iou[gt_sep[i]:gt_sep[i+1], \
36 det_sep[x]:det_sep[x+1]])
37

38 # perfect matching
39 TP = maximum_hungarian_algorithm(iou)
40 # detections which are not in perfect matching
41 FP = det - TP
42 # ground truths which are not in perfect matching
43 FN = gt - TP

Figure 4.2: Simplified frame matching algorithm

4. Experiments

4.4.3 Evaluation metrics
Following metrics are meant to be used for each class separately.

Accuracy is the percentage of correctly predicted examples out of all pre-
dictions (class detections but also background).

Accuracy = TP + TN

TP + FP + FN + TN
(4.2)

Because Accuracy uses TN which was described as problematic, this met-
ric which is popular in other machine-learning tasks is not reliable metric
for object detection and instance segmentation, due to inconsistency of TN
value which might easily outshadow other values.

Precision is being used to provide rate of sucessful detections.

Precision = TP

TP + FP
= TP

all detections of class
(4.3)

Precision scores range from 0 to 1, a high precision implies that most detected
objects match ground truth objects. For example if precision is 0.8, then 80%
of the time the detector is correct, when an object is detected.

Recall express the ability of a model to find all the relevant cases
(all ground truth bounding boxes).

Recall = TP

TP + FN
= TP

all ground truths of class
(4.4)

Recall ranges from 0 to 1 where a high recall score means that most ground
truth objects were detected. For example recall is 0.6, then the model detects
60% of the objects correctly.

50

4.4. Evaluation

4.4.4 Precision-Recall curve
Usually with precision and recall there can be scenarios where precision is per-
fect and recall is miserable, that means detections were correct but there were
not enough detections, likewise if recall is prefect and precision is miserable,
then all ground truths have been matched by detections, however there were
too many extra detections ruining precision.

To better understand trade-off between precision and recall the Precision-
Recall (PR) curve - yellow line on Fig. 4.3 is very popular way to evaluate
object detector performance. Models that involve confidence score can trade-
off precision for recall by adjusting the level of confidence needed to make a
prediction. If the model is in a situation where avoiding false positives is more
important than avoiding false negatives, it can set its confidence threshold
higher to encourage the model to only produce high precision predictions at
the expense of lowering its amount of coverage (recall).

The PR metric is calculated by iterative process over sorted detection in-
stances by confidence score, which allows detector to emphasise his confidence
in detected object throughout evaluation of PR metric.

On each iteration precision and recall are calculated with cumulative sum
of TP, FP and FN.

Throughout the process of the PR curve, it is desirable to keep high preci-
sion score, on high confidence samples it means that detector was well trained
to recognize this class, the prefect scenario keep precision 1 while reaching
recall 1, which is highly improbable. For decently trained model usually pre-
cision decreases with small jagged jumps over iterations of the lowering con-
fidence score with increasing recall.

Figure 4.3: Example of computation of smoothened AP from PR curve. [54]

51

4. Experiments

4.4.5 Average Precision
PR curve is very good metric to analyze performance on classes, however for
faster interaction with evaluated observations, it is very convenient to group
PR curve into some scalar value for smoother interpretation. This method is
called Average Precision (AP), the general definition is that AP is the area
under the PR curve p(r) where p is precision and r is recall.

AP =
∫ 1

0
p(r)dr (4.5)

Since the PR curve might have jagged pattern caused by random misdetection
streaks, most SOTA evaluators smoothen PR curve to be less suspectable to
small variations in the confidence ranking. Smoothening is a form of interpo-
lation in which the precision value for recall r̃ is replaced with the maximum
precision for any recall ≥ r̃, resulting in monotonically decreasing smoothened
PR curve.

pinterp(r) = max
r≥r̃

p(r̃) (4.6)

To calculate smoothened AP it is necessary to find all occurences of maximum
precision value droping beforehand and write them down as interval edges
{r1, r2, ...} Then the aforementioned interpolation equation is redefined as:

pinterp(rn+1) = max
r̃≥rn+1

p(r̃) (4.7)

AP =
∑

(rn+1 − rn) pinterp(rn+1) (4.8)

Efficiently calculating sum of square area of each interval as shown in Fig. 4.3
where yellow line is PR curve and green is smoothened PR curve.

4.4.6 Mean Average Precision
To further generalize model performance it is possible to obtain mean average
precision (mAP) from all AP across all N classes:

mAP = 1
N

N−1∑
i=0

APi (4.9)

52

4.4. Evaluation

4.4.7 Pixel TN
True negatives in image processing are much more complex than in most of the
other machine learning disciplines. It is hard to define one unit of background
compared to one instance of object, the solution in this case was to use pixel as
the units defining size of all the objects in image and also the backround (TN).

Through process of evaluation TP, FP and FN are obtained with prefect
matching 4.4.1, in each image frame the rest of pixels which are not TP, FP
or FN are considered TN. To ensure that the computation of TN is precise
by subtracting TP, FP and FN, it is necessary to ensure that all masks of de-
tections (TP + FP) do not overlap with other detections, which would cause
some pixels to be counted twice. The ground truths use the same rule, how-
ever ground truths should never be overlapping in the first place.

To fix possible detections overlaps, the detection masks are being added
to image in one iteration and each detection cannot claim pixels which have
already been allocated by another detection mask. The order of detections
in the iteration of adding masks is very important, since it is desirable to
keep masks of the best detections with good IoU from matching. To achieve
this, all detections are sorted by IoU, where the detections with high IoU are
added first. The TP, FP and FN keep the sizes of cropped masks for following
evaluations with TN.

4.4.8 False Positive Rate
False Positive Rate (FPR) also known as false alarm rate is proportion of
wrong detections FP to all negative instances in binary classification, which
in this case are FP and TN (background).

FPR = FP

FP + TN
(4.10)

The pixel TN value is usually much larger than pixel FP since, there is
lot of background pixels on image, therefore results of the pixel FPR are very
small numbers. The following mentions of FPR will be meant as pixel FPR.

4.4.9 Receiver operating characteristic
Receiver operating characteristic (ROC) is trade-off between True Positive
Rate (TPR) which is another term for previously defined Recall and False
Positive Rate (FPR). The ROC curve for pixel TPR and FPR is computed
similarly to PR curve, it is being calculated by iterating over sorted detections
computing FPR and TPR for each step. The examples of ROC curve can
be seen in 4.5 and in experiments. The implementation will be shown with
Gaussian error included 4.4.12.

53

4. Experiments

4.4.10 Gaussian localization error
With automated generation of bounding boxes and masks it is expected for
boxes to have small localization (affecting IoU) error being slightly shifted or
having different size than a bounding box manually placed by an annotator.
The mask also suffers the same errors also with possibility of malformation of
shape. To propagate these errors in final evaluation this work presents Gaus-
sian localization error to describe the uncertainty of automatically generated
bounding boxes and mask instances.

Gaussian distribution from probability theory is a type of continuous prob-
ability distribution for a real-valued random variable. This distribution is
usually used for random values whose distribution is not known, therefore its
application is also very popular in many problems outside computer science
fields, where is commonly known as ”normal distribution”.

Because annotation localization error is caused by detections of deep neural
network model, and therefore the distribution of error in detection is unde-
fined, this distribution is the best choice for modeling localization error into
evaluation.

The Gaussian distribution has important parameters mean µ and standard
deviation σ, which influence distribution shape.

g(x) = 1
σ

√
2π

e− 1
2

(
x−µ

σ

)2

(4.11)

Annotation error Let λi be the annotation detection of object i created
by model, which was used to automatically generate annotations (in this case
4.2).
Let αi be annotation of the object i which is 100% accurate (perfect mask,
bbox). Then the annotation error δ is calculated as normalized (by 4.15)
euclidean distance between centers of mass [6] of these objects (4.16). The
Gaussian localization error can be estimated from accumulated annotation er-
rors.

By definition of Central Limit Theorem [5] the Gaussian localization
error would be more precise with increasing amount of objects i and their
respective annotation errors δ. This work uses 50 manually annotated objects
for each class to collect δ errors from which the Gaussian error is estimated
for each class separately.

54

4.4. Evaluation

Figure 4.4: The annotation error

The center of mass (4.12, 4.13, 4.14) can be used for both bounding boxes
and masks.

Mpq =
∞∫

−∞

∞∫
−∞

(x − x̄)p(y − ȳ)qf(x, y) dx dy (4.12)

For p, q = 0, 1, 2, ... adapting to digital image f(x, y) with pixel intensities the
previous equation becomes:

Mpq =
∑

x

∑
y

(x − x̄)p(y − ȳ)qf(x, y) (4.13)

The center of mass can be obtained from moments with following formula:

cx, cy =
{

M10
M00

,
M01
M00

}
(4.14)

cmax = max
wi,hi,w̄i,h̄i ∈ bounding boxes of objects (4.15)

δ =

√√√√(|cx − c̄x|
cmax

)2

+
(∣∣cy − c̄y

∣∣
cmax

)2

(4.16)

55

4. Experiments

After accumulating normalized annotation errors δi for all objects i the
data are used to generate Gaussian distributions by fitting these data with
Gaussian.

For computations with this distribution it is necessary to cut the tails
which have too low information value to justify their memory consumption
in implementation, for this cut 3-sigma (σ) rule is used, this rule states that
Gaussian distribution has approximately 99.73% information within area of
3 lenghts of standard deviation to each direction from mean value (center of
distribution).

Figure 4.5: The 3-sigma rule from [55]

The obtained distributions are now represented with µ and σ, to obtain
error data usable with evaluation it is necessary to get array which represents
areas of distribution in bins, the bins are mapping unit to IoU, optimal choice
is to use width of each bin corresponding to 1% recall for balance between
precision and computational performance.

For faster understanding it is recommended to explore graphs of results
with IoU distributions 4.5, where it can be seen how each IoU is applied with
Gaussian error 4.6.

56

4.4. Evaluation

To obtain error area for each bin, the Cumulative Distribution Function
(CDF) [5] is applied on 3-sigma area of distribution and binned to 1% bins, this
method is representing actual computation using python [41] functions. CDF
also rescales the total area to [0, 1] which is important to simulate contribution
of instance, prefectly annotated instance would have only one bin with value
1 (100%), as in example on result data 4.5.

For example class car with Gaussian error distribution µ = 0.031 and
σ = 0.019 will have 3-sigma binned CDF:

[0.007, 0.027, 0.083, 0.198, 0.379, 0.591, 0.779, 0.904, 0.967, 0.991, 0.998]

To get areas from CDF each bin except first one subtract his left neighbour bin.

[0.007, 0.021, 0.056, 0.115, 0.181, 0.212, 0.188, 0.126, 0.063, 0.024, 0.007]

The result array is Gaussian localization error which will be used in Gaus-
sian PR, the sum of this array is approximately 3-sigma rule value, the error
should be symmetric from center of array, in this example machine precision
makes this slightly inaccurate, however it is symmetrical with certain tolerance
as it can be seen on graphs Fig. 4.6, 4.7.

0.0

0.2

Er
r

car person

0.00
0.05Er

r

bicycle motorcycle

0.0

0.1

Er
r

bus train

10 0 10
% IoU

0.0

0.2

Er
r

truck

10 0 10
% IoU

traffic light

Figure 4.6: Bounding box Gaussian error

57

4. Experiments

0.0

0.2

Er
r

car person

0.00

0.05

Er
r

bicycle motorcycle

0.0
0.1

Er
r

bus train

10 0 10
% IoU

0.0
0.1Er

r

truck

10 0 10
% IoU

traffic light

Figure 4.7: Mask Gaussian error

From collected errors on Fig. 4.6, 4.7, there is evidence that cars have
the lowest Gauss Localization Error and classes such as person, bicycle and
motorcycle have the highest error, this information is not unforseen, since the
person masks are always very complex and bikes usually are very thin and
sensitive to segmentation, also sometimes person rides bike, which can make
segmentation even more chaotic.

4.4.11 Gaussian Precision-Recall curve
Previous section explained process of obtaining Gaussian localization error,
this section will describe how to use it in evaluation of PR curve. The PR curve
decides if the match with non-zero IoU of detection and ground truth should
become TP or FP. The quality of annotation (localization error) influences
this part heavily, since one percent of IoU can make great difference if value
falls below threshold and becomes FP.

58

4.4. Evaluation

However with Gaussian localization error as the collected distributions
Fig. 4.6, 4.7, the cumulative sum of TP and FP can be represented array with
length 101 working as histogram for collected IoUs obtained during iterative
PR curve process, which are added to histogram on the index that is IoU of
match (with center of Gaussian to index).

The following code Fig. 4.8 shows implementation of Gaussian PR, theres
small modification for time performance, to avoid heavy code branching for
cases of adding Gaussian on sides of histogram (e.g. match with IoU 100%
could overflow with right half of Gaussian), therefore the length 101 is in-
creased by length of Gaussian to represent overflow areas below 0 Iou (misde-
tected FP) and over 100% (TP), this modification needs to remember offset
to IoU point 0 which is represented as iou_0 in the code.

The result of code is standard PR curve with calculated Gaussian local-
ization error.

4.4.12 Gaussian Receiver operating characteristic
The Gaussian ROC uses the Gaussian localization error in the same way as
Gaussian Precision-Recall, the Recall (TPR) is calculatedin the same way,
however there is new input variable all pixels, which is sum of all pixels across
all images in dataset, from this value the TN is calculated by subtracting TP,
FP and FN.

The final values are always reduced by sigma3rule which is the maximum
amount which Gaussian error distribution can contribute 4.5.

The pseudocode for Gaussian ROC is on Fig. 4.9.

4.4.13 Gaussian Average Precision
Gaussian Average Precision (gAP) has the same definition as AP 4.4.5, with
the difference that the gAP source data are obtained from Gaussian Precision-
Recall implemented in Fig. 4.8 instead of standard Precision-Recall.

4.4.14 Mean Gaussian Average Precision
Mean Gaussian Average Precision (mgAP) has the same definition as mAP
4.4.6. The class data used are gAP 4.4.13 instead of AP.

59

1 def gaussian_precision_recall(matches, # data table with TP, FP, FN
2 gauss_loc_err, # Gauss localization errors
3 iou_threshold):
4

5 precision = {cls:[] for cls in classes}
6 recall = {cls:[] for cls in classes}
7 # cumulative sum + tails
8 false_true_positive = {cls:zeros(101+len(gauss_loc_err[cls])) \
9 for cls in classes}

10 # FP which didnt hit any GT
11 false_positive_miss = {cls:0 for cls in classes}
12 ground_truth = {cls:len(gts from matches) \
13 for cls in classes}
14 sigma3rule = {cls:sum(gauss_loc_err[cls]) \
15 for cls in classes}
16 # tail offset for cumulative sum array
17 iou_0 = {cls:int(len(gauss_loc_err[cls]) / 2) \
18 for cls in classes}
19

20 for (gt_class, det_class, score) \
21 in sorted(detections from matches, key=score):
22

23 cls = det_class
24

25 if iou == 0:
26 # false positive missed all gt,
27 # reduced by 3 sigma rule sum ~ 99.7%
28 false_positive_miss[cls] += sigma3rule[cls]
29 else:
30 if cls != gt_class:
31 cls = gt_class # mapped detection, added to gt class
32 # add gausssian into detection cumulative sum (TP + FP)
33 # works as array addition with IoU offset
34 false_true_positive[cls] \
35 [int(iou*100):int(iou*100) + len(gauss_loc_err[cls])] \
36 += gauss_loc_err[cls]
37

38 # TP is everything above IoU threshold + tail offset
39 TP = sum(false_true_positive[cls] \
40 [int(iou_threshold*100) + iou_0[cls]:])
41

42 # TP / (TP + FP)
43 precision[cls].append(\
44 TP / (sum(false_true_positive[cls]) + false_positive_miss[cls]))
45

46 # TP / (TP + FN), ground_truth is reduced by 3 sigma rule
47 recall[cls].append(\
48 TP / (sigma3rule[cls] * ground_truth[cls]))
49

50

51

Figure 4.8: Simplified Gauss Precision Recall

1 def gaussian_roc(matches, # data table with TP, FP, FN
2 gauss_loc_err, # Gauss localization errors
3 iou_threshold,
4 all_pixels):
5

6 false_positive_rate = {cls:[] for cls in classes}
7 true_positive_rate = {cls:[] for cls in classes}
8 false_true_positive = {cls:zeros(101+len(gauss_loc_err[cls])) \
9 for cls in classes}

10 false_positive_miss = {cls:0 for cls in classes}
11 ground_truth = {cls:sum(fn_area of gts from matches) \
12 for cls in classes}
13 sigma3rule = {cls:sum(gauss_loc_err[cls]) \
14 for cls in classes}
15 iou_0 = {cls:int(len(gauss_loc_err[cls]) / 2) \
16 for cls in classes}
17

18 TN = all_pixels - sum(tp_area, fp_area, fn_area from all in matches)
19

20 for (gt_class, det_class, score, tp_area, fp_area, fn_area) \
21 in sorted(detections from matches, key=score):
22

23 cls = det_class
24

25 # same as PR but multiplied by area
26 if iou == 0:
27 false_positive_miss[cls] += sigma3rule[cls] * fp_area
28 else:
29 if cls != gt_class:
30 cls = gt_class # mapped detection, added to gt class
31 false_true_positive[cls] \
32 [int(iou*100):int(iou*100) + len(gauss_loc_err[cls])] \
33 += gauss_loc_err[cls] * tp_area
34

35 # TP is everything above IoU threshold + tail offset
36 TP = sum(false_true_positive[cls] \
37 [int(iou_threshold*100) + iou_0[cls]:])
38

39 FP = false_positive_miss[cls] + sum(false_true_positive[cls] \
40 [:int(iou_threshold*100) + iou_0[cls]])
41

42 # FP / (FP + TN)
43 false_positive_rate[cls].append(\
44 FP / (FP + sigma3rule[cls] * TN))
45

46 # TP / (TP + FN), ground_truth is reduced by 3 sigma rule
47 true_positive_rate[cls].append(\
48 TP / (sigma3rule[cls] * ground_truth[cls]))
49

50

51

Figure 4.9: Simplified Gauss Receiver Operating Characteristic

4. Experiments

4.4.15 Tracking Evaluation
For evaluation of tracking the Multi-Object Tracking (MOT) and Segmenta-
tion [56] project was used. The MOTS project defines very good baseline for
tracking evaluation in this work.

The main metrics in MOTS are MOTS Accuracy (MOTSA) and MOTS
Precision (MOTSP).

MOTSA = 1 −
(

FP + FN + IDS

TP + FN

)
(4.17)

In equation 4.17 The TP, FP and FN are known from detection evaluation
4.3 and the IDS are ground truths, whose first predecessor was tracked with
different track id, meaning that the Tracker lost the old track and started new
Track (unless it has returned to the correct track).

MOTSP =
∑

t∈T P IoUt

TP
(4.18)

The MOTSP is quite straightforward, this metric measure how precise was
the prediction in regards to all TP values with their respective IoUs.

MT (Mostly Tracked), these are all Tracks which were tracked at least 80%
of their lifetime.

ML (Mostly Lost), these are all Tracks which were tracked at most 20%
of their lifetime.

4.4.16 Multi-Camera Multi-Object Tracking
The multi-camera version is evaluated by modified MOTS [56] for multiple
cameras.

From all track detections which are affiliated with objects of ground truth
multi-track, group of detection tracks with matching track id must be cho-
sen as alpha track, which is the correct matching of detection multi-track to
ground truth and all the tracks with id not matching alpha track are consid-
ered mismatches. In the best scenario all the track detections are in group
matching id with the alpha track. Since the choice of alpha track is important
for final evaluation, the alpha track is a group of detection tracks with match-
ing id across all cameras, which has the most track id instances matched to
multi-track ground truth across all time frames - images in video sequences
(concept similar to perfect matching of IoU 4.4.1).

62

4.4. Evaluation

The single camera MOTS uses the first predecessor track as alpha track
and all identity switches are resolved by comparing track id to this alpha
track. Therefore the multi-camera MOTS will keep all aspects of the original
MOTS metric, the multi-camera MOTS can achieve at most the same score as
MOTS across all cameras evaluated without multi-track. That would be sce-
nario when all tracks are perfectly matched across all the cameras, including
all identity switches occurring simultaneously across all the cameras. In the
most scenarios the multi-camera MOTS will have worse results since increas-
ing the complexity of matching across all the cameras and also possibility of
track on camera, which does not match the alpha track along its whole lifespan.

The MOTSA (4.17) is influenced by the change of identity switches affect-
ing variable IDS. The difference to single camera MOTSA is, that each track
may not start as alpha track, therefore it can be counted towards IDS from
beginning of the track. The conversion to correctly matched alpha track is
valid, since even in single camera version, the track can switch identity and
return back to the alpha track identity later.

MOTSP (4.18) is not influenced by multiple cameras.

The multi-camera MOTS was resolved with minimal changes to original
algorithm with introduction of alpha track and is still viable for comparison
with single camera MOTS. The only implementation changes are finding the
alpha track and setting zero predecessor (track with no time frames) instead
of first predecessor (4.17) of track as alpha track.

4.4.17 Gaussian localization error in tracking
The Gaussian localization error in MOTSA (4.17) is defined by lower and
upper error bound of accuracy with TP and FP uncertainty σ Sec. 4.5 which
is standard deviation of Gaussian of accumulated Gaussian errors for PR 4.5.
From the 4 combinations of all σ uncertainties, the min and max are chosen
as the error interval.

MOTSGAError = 1 −
(

FP ± σF P + FN + IDS

TP ± σT P + FN

)
(4.19)

Since MOTSP (4.18) uses only TP, the Gaussian localization error is sim-
ply defined by previously mentioned standard deviation σ applied on MOTSP
to get the error lower and upper bound interval.

MOTSGPError = MOTSP ± σT P (4.20)

63

4. Experiments

4.5 Introduction to graph system
TP uncertainty is variable reliable on Gaussian localization error, it is cal-
culated from TP IoU. The uncertainty is defined as standard deviation of
Gaussian fitting all TP IoUs, which can be seen as purple Gaussian fit in IoU
graph Fig. 4.11 calculated from all TP in dataset. The TP uncertainty shows
possible margin of error of TP detection.

FP uncertainty is similar to TP uncertainty, it works with all FP, the FP
displayed in IoU graph are only those with positive IoU. The FP with IoU 0
usually outshadow FP with non-zero IoU. This creates Gaussian with mean
very close to 0 and standard deviation (FP uncertainty) being also small value,
therefore the FP uncertainty are not plotted on IoU graphs.

Predicted labeled curves with green color in graph are computed with stan-
dard metrics without Gaussian error, these are being used in all Vosstrex
evaluations 4.10, since Vosstrex does not use Gaussian localization error, be-
cause the annotations are 100% accurate. In the PR graphs Fig. 4.12 the
predicted version is also displayed to show difference between Gaussian and
predicted curve.

Gaussian labeled dashed curves with blue color in graph are computed with
Gaussian versions of metrics 4.8, 4.9, including Gaussian localization error.

64

4.5. Introduction to graph system

There first graph explained Fig. 4.10 is the ROC curve graph with Gaus-
sian localization error 4.4.17. This graph plots the ROC curve with True
Positive Rate (TPR = Recall) on y axis with (0, 1) scale and False Positive
Rate (FPR) on x axis proportional to all pixels in all images which are scaled
to value 1 (100% pixels). The TP uncertainty is calculated in each step of
ROC computation, representing error margin of ROC curve.

0 1 2 3
Pixel FPR 1e 5

0.0

0.2

0.4

0.6

0.8

1.0
TP

R
(R

ec
al

l)

Gaussian
TP uncertainty

Figure 4.10: ROC curve graph

The second graph Fig. 4.11 is graph describing histogram of TP and
non-zero FP values, with discretized IoU with bins of size 1% an x axis and
cumulative sum on y axis.

0 20 40 60 80 100 120
IoU

0

20

40

60

80

100

IoU mask undistorted
Gauss fit
Predicted
Gaussian

Figure 4.11: IoU distribution graph

The histogram was achieved with code 4.8, the blue bins represent accu-
mulated Gaussians with the help of Gaussian localization error 4.4.10 and the
error distribution arrays Fig. 4.6. The green bins describe IoU without error,
which have been accumulated with the same method, but with array of size
with value 1 (zero error spread). In most cases the bins without error are
just for comparison and explanation of what Gaussian version does, however
Vosstrex uses only this version because of the perfect annotations.

65

4. Experiments

The light red area below chosen IoU 50% are FP with non-zero IoU. The
light green area are TP and the aforementioned Gauss Fit describes the TP
uncertainty across only the TP area. The mean value (center) of fitted Gaus-
sian is good indicator how to set strict IoU threshold for inference.

The last graph Fig. 4.12 the PR curve shows trade-off between Precision
on y axis and Recall on x axis on scale (0, 1) for both standard metric previ-
ously mentioned as Predicted (green) and Gaussian (blue) metric 4.5.

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

PR mask distorted

Figure 4.12: PR curve graph

The error margin is not displayed in PR graph since it is already included
in IoU graph 4.11, which displays the last step of PR computation with all
TP and FP values and the final error margin is standard deviation of Gauss fit.

Another reason is because these graphs were made small so all graphs can
be showed at one page for comfortable comparison, therefore the error margins
would make the results too overcrowded and confusing.

66

4.6. The legend to detection models

4.6 The legend to detection models
This small subsection serves as crossroad for all model configurations. The
tables use gAP 4.4.13 as metric for separate classes and mgAP 4.4.14 for sum-
mary.

The models consist of word or two word tags of the major experiments used
to create them. The most common tag is un which means that model was
trained on undistorted data opposing to distorted which is represented by
missing the tag un, the difference between these two configurations can be
seen in Fig. 0.5. Valid for all experiments.

The tag seg clean stands for segmentation clean, it describes that the exper-
iment of 4.2.2 was used. This version has two modifications dontcare 4.10
and purge 4.11. From experiments [4.8, 4.9.1, 4.9.2, 4.10].

The tag standard stands for very low data modification 4.4. From exper-
iments [4.9.2].

The tag YoloV4 is self explanatory 4.9. From experiment [4.9.2].

There are also tags for backbones 1.1.1 r50, r101 for ResNet 50 respective
101. All experiments.

The rare tag vanilla for model which was not modified, in this case Detectron
2 [29] model. From experiment [4.7].

And finally vosstrex tag for the VR scenes 2.4. From experiment [4.10].

67

4. Experiments

4.7 Unmodified detector experiment
The first stage of tracking algorithm is detection. The detector must be well
trained to successfully recognize objects from image, if there is a case of weak
detector, it will most likely influence tracking in negative way, either not pro-
viding enough detections or detecting random objects.

To properly start detection, it is necessary to define starting point, and
goal. The starting point will be Detectron 2 R101 mask R-CNN publicly
available trained model, the goal was to train it to perform on undistorted
images and additional task was to try if it is possible to train it to perform
on distorted images. The following table with Average Precision per class and
mean AP show the performance of ResNet 101 model with configuration 4.7,
but not trained on this dataset.

The model configurations and addtional information for following AP table
can be found in legend Sec. 4.6.

person bicycle car motorcycle bus train truck traffic light mgAP

vanilla r101 bbox 0.292 0.243 0.348 0.326 0.237 0.308 0.452 0.436 0.320
vanilla r101 mask 0.273 0.228 0.348 0.304 0.240 0.301 0.457 0.430 0.312
vanilla r101 un bbox 0.425 0.357 0.566 0.386 0.399 0.565 0.634 0.446 0.461
vanilla r101 un mask 0.410 0.346 0.565 0.367 0.401 0.563 0.634 0.438 0.454

Figure 4.13: Results of unmodified detector model

The results show that even the model trained by Detectron 2 [29] on com-
pletely different dataset can perform decently on undistorted images, however
on distorted data the performance is much lower, this explains why undistorted
images were so important for automated annotation generation, to compare
staring point model with other models, visit results overview Sec. 4.11.

68

4.8. Undistorted and distorted experiment

4.8 Undistorted and distorted experiment
The undistorted detection model works with images from fisheye cameras,
which have been converted to undistorted version reducing fisheye distortion
Fig. 0.3. The undistorted detection model should be stronger in evaluation
on generated data, since the data were generated by this method.

The model and training configurations and addtional information form
following AP table can be found in legend Sec. 4.6.

person bicycle car motorcycle bus train truck traffic light mgAP

seg clean dontcare r101 bbox 0.494 0.316 0.601 0.415 0.649 0.639 0.752 0.527 0.549
seg clean dontcare r101 mask 0.470 0.309 0.602 0.390 0.652 0.632 0.758 0.514 0.541
seg clean dontcare r101 un bbox 0.529 0.405 0.634 0.461 0.681 0.742 0.756 0.493 0.588
seg clean dontcare r101 un mask 0.480 0.394 0.618 0.441 0.682 0.739 0.758 0.451 0.570

Figure 4.14: Results of undistorted and distorted comparison experiment

The distorted detection model completely skips the step of removing dis-
tortion, resulting in having little bit of disadvantage, however the distorted
detection would be success even if only this model could hold up to the undis-
torted model, the other configurations of the distorted detection model are
the same as the ones the undistorted model use.

The following table describes TP, FP and FN statistics in this experiment.
The FP miss is FP which completely missed all GT, the FP hit is used for all
FP which have non-zero IoU but are FP.

True Postive False Positive hit False Positive miss False Negative

person person 53647 4110 21457 15715

bicycle motorcycle 29
bicycle 2284 345 1479 1108

car truck 878
car 161100 11051 42421 29873

motorcycle bicycle 36
motorcycle 853 121 280 414

bus
train 91
truck 184
bus 2173 46 436 595

train
bus 98
truck 41
train 389 4 106 89

truck

car 1176
bus 182
train 4
truck 6414 289 1374 825

traffic light traffic light 6290 817 3845 2199
235869 16783 71398 50818

69

4. Experiments

True Postive False Positive hit False Positive miss False Negative

person person 50585 4438 21573 18777

bicycle motorcycle 47
bicycle 1827 459 1041 1547

car truck 1022
car 159292 12566 49597 31537

motorcycle bicycle 54
motorcycle 748 113 260 501

bus
train 90
truck 537
bus 1716 71 423 700

train
bus 136
truck 31
train 300 20 110 150

truck

car 1302
bus 118
train 4
truck 6205 249 1187 972

traffic light traffic light 6310 727 3263 2179
230324 18643 77454 56363

Figure 4.15: Instance evaluation tables, the first one is for undistorted data,
the second one represents distorted data

The instance evaluation tables between models actually look very similar,
the upper table have obviously better results, however when all fields are
compared the distorted detection model does not show any major difference.
This result is very good, although before drawing final conclusion it is better
compare other data.

Another very interesting part in this evaluation is always the class map-
ping from Sec. 4.4.2. This model achieved to keep most detections within
theirs classes and misclassification even among vehicles is rare, only trucks
got little bit mixed with cars but this is very common.

The following 8 (1 for each class) pages show the PR graphs, the legend to
these graphs is in Sec. 4.5. In following PR curve graphs on top will start with
undistorted detection model and interleave with distorted detection model.
The PR curves are displayed together in comparison with distorted model.
There are always 4 per page, showing results for undistorted detection model
for bbox, then distorted detection for bbox and then mask for both in the
same order.

70

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Pixel FPR 1e 4

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

(R
ec

al
l)

ROC undistorted
Gaussian
TP uncertainty

0.0 0.2 0.4 0.6 0.8 1.0
Pixel FPR 1e 3

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

(R
ec

al
l)

ROC distorted
Gaussian
TP uncertainty

0.0 0.5 1.0
Recall

0.0

0.5

1.0

Pr
ec

isi
on

PR bbox undistorted

0.0 0.5 1.0
Recall

0.0

0.5

1.0

Pr
ec

isi
on

PR bbox distorted

0 20 40 60 80 100
IoU

0

250

500

750

1000

1250

1500

1750

IoU bbox undistorted
Gauss fit
Predicted
Gaussian

0 20 40 60 80 100
IoU

0

250

500

750

1000

1250

1500

1750
IoU bbox distorted

Gauss fit
Predicted
Gaussian

0.0 0.5 1.0
Recall

0.0

0.5

1.0

Pr
ec

isi
on

PR mask undistorted

0.0 0.5 1.0
Recall

0.0

0.5

1.0

Pr
ec

isi
on

PR mask distorted

0 20 40 60 80 100
IoU

0

250

500

750

1000

1250

1500

1750
IoU mask undistorted

Gauss fit
Predicted
Gaussian

0 20 40 60 80 100
IoU

0

250

500

750

1000

1250

1500

1750

IoU mask distorted
Gauss fit
Predicted
Gaussian

person

Figure 4.16: The ROC curve has good trade-off between TPR and FPR for
undistorted images, however for distorted there is area with stable increase
of FPR. This means, there is lot of FP with high score, since samples were
sorted by score and this phenomenon is in the left side of ROC curve. This is
partly due to detecting objects which have been removed in data generation 2.1
and were evaluated as FP. This theory is supported by fact that distribution
of matched IoUs and recall is very similar, therefore most of the FP in the
distorted version mostly miss all ground truths. This experiment is great
success, the detection of distorted persons without undistortion of image is
achievable.

0.0 0.2 0.4 0.6 0.8 1.0
Pixel FPR 1e 4

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

(R
ec

al
l)

ROC undistorted
Gaussian
TP uncertainty

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Pixel FPR 1e 4

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

(R
ec

al
l)

ROC distorted
Gaussian
TP uncertainty

0.0 0.5 1.0
Recall

0.0

0.5

1.0

Pr
ec

isi
on

PR bbox undistorted

0.0 0.5 1.0
Recall

0.0

0.5

1.0

Pr
ec

isi
on

PR bbox distorted

0 20 40 60 80 100 120
IoU

0

20

40

60

80

100
IoU bbox undistorted

Gauss fit
Predicted
Gaussian

0 20 40 60 80 100 120
IoU

0

20

40

60

80

100

IoU bbox distorted
Gauss fit
Predicted
Gaussian

0.0 0.5 1.0
Recall

0.0

0.5

1.0

Pr
ec

isi
on

PR mask undistorted

0.0 0.5 1.0
Recall

0.0

0.5

1.0

Pr
ec

isi
on

PR mask distorted

0 20 40 60 80 100 120
IoU

0

20

40

60

80

100

IoU mask undistorted
Gauss fit
Predicted
Gaussian

0 20 40 60 80 100 120
IoU

0

10

20

30

40

50

60

70

IoU mask distorted
Gauss fit
Predicted
Gaussian

bicycle

Figure 4.17: For bicycle there is not much difference on graphs, only on PR
curve for bboxes, there is small difference in IoU distribution, this might be
caused by larger empty spaces in bbox of distorted bike.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Pixel FPR 1e 3

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

(R
ec

al
l)

ROC undistorted
Gaussian
TP uncertainty

0.0 0.5 1.0 1.5 2.0
Pixel FPR 1e 3

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

(R
ec

al
l)

ROC distorted
Gaussian
TP uncertainty

0.0 0.5 1.0
Recall

0.0

0.5

1.0

Pr
ec

isi
on

PR bbox undistorted

0.0 0.5 1.0
Recall

0.0

0.5

1.0

Pr
ec

isi
on

PR bbox distorted

0 20 40 60 80 100
IoU

0

1000

2000

3000

4000

5000

6000

IoU bbox undistorted
Gauss fit
Predicted
Gaussian

0 20 40 60 80 100
IoU

0

1000

2000

3000

4000

5000

6000

IoU bbox distorted
Gauss fit
Predicted
Gaussian

0.0 0.5 1.0
Recall

0.0

0.5

1.0

Pr
ec

isi
on

PR mask undistorted

0.0 0.5 1.0
Recall

0.0

0.5

1.0

Pr
ec

isi
on

PR mask distorted

0 20 40 60 80 100
IoU

0

1000

2000

3000

4000

5000

6000
IoU mask undistorted

Gauss fit
Predicted
Gaussian

0 20 40 60 80 100
IoU

0

1000

2000

3000

4000

5000

6000

7000

IoU mask distorted
Gauss fit
Predicted
Gaussian

car

Figure 4.18: The car results show the same phenomenon as persons on dis-
tortion, most of the background cars are now detected as FP with high score,
causing stable increase of FPR. This time even model trained on undistorted
data is influenced. Otherwise all graphs are almost identical, resulting in
another success.

0 1 2 3 4 5 6 7 8
Pixel FPR 1e 5

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

(R
ec

al
l)

ROC undistorted
Gaussian
TP uncertainty

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Pixel FPR 1e 4

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

(R
ec

al
l)

ROC distorted
Gaussian
TP uncertainty

0.0 0.5 1.0
Recall

0.0

0.5

1.0

Pr
ec

isi
on

PR bbox undistorted

0.0 0.5 1.0
Recall

0.0

0.5

1.0
Pr

ec
isi

on

PR bbox distorted

0 20 40 60 80 100
IoU

0

5

10

15

20

25

30

35

IoU bbox undistorted
Gauss fit
Predicted
Gaussian

0 20 40 60 80 100
IoU

0

5

10

15

20

25

30
IoU bbox distorted

Gauss fit
Predicted
Gaussian

0.0 0.5 1.0
Recall

0.0

0.5

1.0

Pr
ec

isi
on

PR mask undistorted

0.0 0.5 1.0
Recall

0.0

0.5

1.0

Pr
ec

isi
on

PR mask distorted

0 20 40 60 80 100
IoU

0

5

10

15

20

25

30

35
IoU mask undistorted

Gauss fit
Predicted
Gaussian

0 20 40 60 80 100
IoU

0

5

10

15

20

25

30

IoU mask distorted
Gauss fit
Predicted
Gaussian

motorcycle

Figure 4.19: The motorcycles have behaviour similar to bicycles, which is not
surprising, since both object classes have many similarities.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Pixel FPR 1e 4

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

(R
ec

al
l)

ROC undistorted
Gaussian
TP uncertainty

0.0 0.2 0.4 0.6 0.8 1.0
Pixel FPR 1e 4

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

(R
ec

al
l)

ROC distorted
Gaussian
TP uncertainty

0.0 0.5 1.0
Recall

0.0

0.5

1.0

Pr
ec

isi
on

PR bbox undistorted

0.0 0.5 1.0
Recall

0.0

0.5

1.0

Pr
ec

isi
on

PR bbox distorted

0 20 40 60 80 100
IoU

0

50

100

150

200

250
IoU bbox undistorted

Gauss fit
Predicted
Gaussian

0 20 40 60 80 100
IoU

0

50

100

150

200

250

IoU bbox distorted
Gauss fit
Predicted
Gaussian

0.0 0.5 1.0
Recall

0.0

0.5

1.0

Pr
ec

isi
on

PR mask undistorted

0.0 0.5 1.0
Recall

0.0

0.5

1.0

Pr
ec

isi
on

PR mask distorted

0 20 40 60 80 100
IoU

0

50

100

150

200

250

IoU mask undistorted
Gauss fit
Predicted
Gaussian

0 20 40 60 80 100
IoU

0

100

200

300

400

500

IoU mask distorted
Gauss fit
Predicted
Gaussian

bus

Figure 4.20: The buses are very similar, the IoU for mask might seem different
on graph, but that is only because lot of buses luckily hit the same IoU and
rescaled graph. The distributions are otherwise similar.

0 1 2 3 4 5 6
Pixel FPR 1e 4

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

(R
ec

al
l)

ROC undistorted
Gaussian
TP uncertainty

0 1 2 3 4 5 6
Pixel FPR 1e 4

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

(R
ec

al
l)

ROC distorted
Gaussian
TP uncertainty

0.0 0.5 1.0
Recall

0.0

0.5

1.0

Pr
ec

isi
on

PR bbox undistorted

0.0 0.5 1.0
Recall

0.0

0.5

1.0

Pr
ec

isi
on

PR bbox distorted

0 20 40 60 80 100
IoU

0

10

20

30

40

50

60

70

80
IoU bbox undistorted

Gauss fit
Predicted
Gaussian

0 20 40 60 80 100
IoU

0

10

20

30

40

50

60

IoU bbox distorted
Gauss fit
Predicted
Gaussian

0.0 0.5 1.0
Recall

0.0

0.5

1.0

Pr
ec

isi
on

PR mask undistorted

0.0 0.5 1.0
Recall

0.0

0.5

1.0

Pr
ec

isi
on

PR mask distorted

0 20 40 60 80 100
IoU

0

20

40

60

80

100

IoU mask undistorted
Gauss fit
Predicted
Gaussian

0 20 40 60 80 100
IoU

0

10

20

30

40

50

60

70
IoU mask distorted

Gauss fit
Predicted
Gaussian

train

Figure 4.21: The trains also show stable increase in FPR, because the FP are
counted as all FP pixels and trains are large especially when close to cameras.
Also the closer the trains get, the harder is the detection due to distortion.
Since this is the case of most of the FP, the ROC curve does not seem that
good in comparison with PR curve which counts only objects and not pixels.
In terms of similarity there are no problems.

0 1 2 3 4 5
Pixel FPR 1e 4

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

(R
ec

al
l)

ROC undistorted
Gaussian
TP uncertainty

0 1 2 3 4 5 6
Pixel FPR 1e 4

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

(R
ec

al
l)

ROC distorted
Gaussian
TP uncertainty

0.0 0.5 1.0
Recall

0.0

0.5

1.0

Pr
ec

isi
on

PR bbox undistorted

0.0 0.5 1.0
Recall

0.0

0.5

1.0

Pr
ec

isi
on

PR bbox distorted

0 20 40 60 80 100
IoU

0

100

200

300

400

500

600

700
IoU bbox undistorted

Gauss fit
Predicted
Gaussian

0 20 40 60 80 100
IoU

0

100

200

300

400

500

600

IoU bbox distorted
Gauss fit
Predicted
Gaussian

0.0 0.5 1.0
Recall

0.0

0.5

1.0

Pr
ec

isi
on

PR mask undistorted

0.0 0.5 1.0
Recall

0.0

0.5

1.0

Pr
ec

isi
on

PR mask distorted

0 20 40 60 80 100
IoU

0

100

200

300

400

500

600

IoU mask undistorted
Gauss fit
Predicted
Gaussian

0 20 40 60 80 100
IoU

0

100

200

300

400

500

600

700

IoU mask distorted
Gauss fit
Predicted
Gaussian

truck

Figure 4.22: The trucks have large overlaps with cars since most of vans are
considered a truck by detector. The conclusion for trucks is the same as for
cars, since most of the graphs are almost identical.

0 1 2 3 4
Pixel FPR 1e 5

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

(R
ec

al
l)

ROC undistorted
Gaussian
TP uncertainty

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Pixel FPR 1e 5

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

(R
ec

al
l)

ROC distorted
Gaussian
TP uncertainty

0.0 0.5 1.0
Recall

0.0

0.5

1.0

Pr
ec

isi
on

PR bbox undistorted

0.0 0.5 1.0
Recall

0.0

0.5

1.0

Pr
ec

isi
on

PR bbox distorted

0 20 40 60 80 100
IoU

0

50

100

150

200

250

300
IoU bbox undistorted

Gauss fit
Predicted
Gaussian

0 20 40 60 80 100
IoU

0

50

100

150

200

250

300

IoU bbox distorted
Gauss fit
Predicted
Gaussian

0.0 0.5 1.0
Recall

0.0

0.5

1.0

Pr
ec

isi
on

PR mask undistorted

0.0 0.5 1.0
Recall

0.0

0.5

1.0

Pr
ec

isi
on

PR mask distorted

0 20 40 60 80 100
IoU

0

50

100

150

200

250
IoU mask undistorted

Gauss fit
Predicted
Gaussian

0 20 40 60 80 100
IoU

0

50

100

150

200

250

300
IoU mask distorted

Gauss fit
Predicted
Gaussian

traffic light

Figure 4.23: The traffic lights have another set of almost identical graphs,
also showing good results on trade-off with ROC and PR.

In conclusion the the training of distorted model was a success, enabling
encouragement for more similar experiments in the future.

4.9. Experiments on distorted images

4.9 Experiments on distorted images
4.9.1 Experiment on separate cameras
The experiment in this section make detection model focus on only certain
cameras.

In this experiment there will be defined new tags for cameras:

• FV stand for forward view and decribes front camera

• RV stand for back view and decribes rear camera

• MVR is used for right view and decribes right camera

• MVL is used for left view and decribes left camera

• MVX is used for side view and decribes left and right camera

Each AP table on page 80 have experimented camera in leftmost top cor-
ner of table.

The tags in table will match previously explained car views model, config-
urations and addtional information can be found in legend Sec. 4.6.

All the cameras had the best performance when trained focusing only on
theirs respective view. Only left camera showed different behavior and gained
better training from both sides and suprisingly for masks preferred model
trained on distorted images, being left view in country where cars drive on
the right side, that means there were probably some trams in the middle
preferring this way.

79

4. Experiments

FV person bicycle car motorcycle bus train truck traffic light mgAP

seg clean dontcare r101 bbox 0.500 0.390 0.611 0.435 0.784 0.789 0.779 0.692 0.623
seg clean dontcare r101 mask 0.488 0.394 0.603 0.408 0.783 0.789 0.785 0.690 0.618
seg clean dontcare r101 un bbox 0.526 0.482 0.657 0.424 0.805 0.859 0.783 0.647 0.648
seg clean dontcare r101 un mask 0.497 0.485 0.641 0.394 0.804 0.859 0.785 0.632 0.637
seg clean dontcare r101 fv bbox 0.506 0.475 0.637 0.499 0.788 0.823 0.795 0.701 0.653
seg clean dontcare r101 fv mask 0.492 0.477 0.628 0.481 0.788 0.823 0.799 0.695 0.648
seg clean dontcare r101 un fv bbox 0.535 0.532 0.659 0.420 0.826 0.852 0.800 0.703 0.666
seg clean dontcare r101 un fv mask 0.506 0.534 0.643 0.393 0.828 0.852 0.801 0.686 0.655

RV person bicycle car motorcycle bus train truck traffic light mgAP

seg clean dontcare r101 bbox 0.481 0.289 0.621 0.399 0.545 0.757 0.792 0.223 0.513
seg clean dontcare r101 mask 0.457 0.280 0.619 0.380 0.551 0.760 0.798 0.196 0.505
seg clean dontcare r101 un bbox 0.507 0.366 0.648 0.413 0.575 0.849 0.800 0.217 0.547
seg clean dontcare r101 un mask 0.470 0.352 0.633 0.407 0.578 0.849 0.800 0.173 0.533
seg clean dontcare r101 rv bbox 0.503 0.321 0.637 0.472 0.605 0.830 0.823 0.284 0.559
seg clean dontcare r101 rv mask 0.480 0.312 0.635 0.428 0.607 0.832 0.823 0.242 0.545
seg clean dontcare r101 un rv bbox 0.513 0.378 0.661 0.470 0.552 0.870 0.825 0.232 0.563
seg clean dontcare r101 un rv mask 0.472 0.372 0.644 0.440 0.565 0.870 0.827 0.188 0.547

MVL person bicycle car motorcycle bus train truck traffic light mgAP

seg clean dontcare r101 bbox 0.465 0.373 0.615 0.781 0.608 0.485 0.736 0.343 0.551
seg clean dontcare r101 mask 0.425 0.374 0.620 0.786 0.614 0.460 0.741 0.308 0.541
seg clean dontcare r101 un bbox 0.518 0.491 0.641 0.812 0.649 0.563 0.747 0.219 0.580
seg clean dontcare r101 un mask 0.436 0.478 0.624 0.804 0.647 0.557 0.744 0.070 0.545
seg clean dontcare r101 mvl bbox 0.520 0.494 0.648 0.823 0.620 0.511 0.758 0.199 0.572
seg clean dontcare r101 mvl mask 0.481 0.488 0.650 0.839 0.624 0.510 0.761 0.187 0.568
seg clean dontcare r101 mvx bbox 0.500 0.381 0.636 0.764 0.575 0.546 0.743 0.428 0.572
seg clean dontcare r101 mvx mask 0.466 0.388 0.639 0.790 0.576 0.546 0.750 0.359 0.564
seg clean dontcare r101 un mvl bbox 0.523 0.509 0.657 0.800 0.637 0.568 0.743 0.240 0.585
seg clean dontcare r101 un mvl mask 0.436 0.503 0.636 0.819 0.638 0.566 0.747 0.151 0.562
seg clean dontcare r101 un mvx bbox 0.518 0.529 0.648 0.794 0.609 0.578 0.762 0.305 0.593
seg clean dontcare r101 un mvx mask 0.436 0.518 0.629 0.774 0.610 0.567 0.760 0.178 0.559

MVR person bicycle car motorcycle bus train truck traffic light mgAP

seg clean dontcare r101 bbox 0.532 0.297 0.553 0.378 0.576 0.240 0.724 0.218 0.440
seg clean dontcare r101 mask 0.507 0.277 0.559 0.342 0.588 0.240 0.730 0.226 0.434
seg clean dontcare r101 un bbox 0.567 0.368 0.589 0.498 0.708 0.520 0.727 0.280 0.532
seg clean dontcare r101 un mask 0.511 0.349 0.572 0.470 0.722 0.520 0.734 0.222 0.512
seg clean dontcare r101 mvr bbox 0.572 0.356 0.596 0.503 0.573 0.496 0.753 0.324 0.522
seg clean dontcare r101 mvr mask 0.550 0.339 0.602 0.464 0.592 0.496 0.760 0.335 0.517
seg clean dontcare r101 mvx bbox 0.561 0.352 0.580 0.486 0.588 0.493 0.743 0.305 0.513
seg clean dontcare r101 mvx mask 0.538 0.338 0.586 0.442 0.581 0.493 0.752 0.309 0.505
seg clean dontcare r101 un mvr bbox 0.572 0.393 0.602 0.566 0.703 0.538 0.758 0.329 0.558
seg clean dontcare r101 un mvr mask 0.515 0.375 0.583 0.555 0.690 0.538 0.762 0.249 0.534
seg clean dontcare r101 un mvx bbox 0.564 0.394 0.598 0.541 0.662 0.439 0.756 0.258 0.526
seg clean dontcare r101 un mvx mask 0.509 0.372 0.579 0.533 0.673 0.444 0.756 0.169 0.505

Figure 4.24: The experiments on separate cameras

80

4.9. Experiments on distorted images

4.9.2 Experiment on different models and annotation
cleaning methods

This experiment is bit of unorganized collection of all secondary detection
models which have been trained in this work, with presence of smaller speed
performance models such as the YoloV4 1.1.5, which will be interesting com-
parison to larger models, especially since this experiment is trained exclusively
on distorted data only.

The model configurations and addtional information for following AP table
can be found in legend Sec. 4.6.

person bicycle car motorcycle bus train truck traffic light mgAP

seg clean dontcare r101 bbox 0.487 0.270 0.616 0.518 0.645 0.741 0.726 0.537 0.567
seg clean dontcare r101 mask 0.469 0.270 0.615 0.522 0.648 0.741 0.729 0.534 0.566
standard r101 bbox 0.485 0.346 0.610 0.378 0.590 0.678 0.760 0.502 0.544
standard r101 mask 0.461 0.336 0.609 0.355 0.591 0.670 0.767 0.490 0.535
standard r50 bbox 0.470 0.334 0.608 0.414 0.560 0.666 0.753 0.485 0.536
standard r50 mask 0.446 0.326 0.608 0.381 0.562 0.667 0.756 0.484 0.529
seg clean purge r101 bbox 0.490 0.305 0.602 0.379 0.653 0.640 0.751 0.531 0.544
seg clean purge r101 mask 0.467 0.298 0.602 0.356 0.656 0.638 0.755 0.520 0.537
YoloV4 bbox 0.372 0.153 0.416 0.133 0.517 0.443 0.641 0.334 0.376

Figure 4.25: The experiments on different models and annotation generation

The YoloV4 detailed comparison to Resnet 101 distorted data model is
included in the appendix A.

Unfortunately the YoloV4 did not perform too well in this experiment
it might be because it works only with bounding boxes, which might not
be optimal for some distortion cases, the smaller ResNet 50 architecture did
actually fine despite having much smaller backbone and the panoptic merge
4.2.2 and dontcare 4.10 were the best from data cleaning techniques.

81

4. Experiments

4.10 Experiment on Virtual Reality scenes

The greatest difference between automatically generated scenes and VR scenes
is that VR scenes have absolutely correct ground truth. Therefore the Gauss
localization error will not be used for evaluation on VR scenes. However the
perfect ground truths have small inconvenience which is being too precise over
limitations of human eye and detector with small sizes of ground truths.

The models evaluated on reality do not use objects with area lower than
96, since these objects are too small to notice theirs presence (meaning that
such small person or car would be too far away).

From table below it is noticeable what is the main problem of these some-
times even one pixel size objects. These tables describe statistics for bboxes
on undistorted VR images.

True Postive False Positive hit False Positive miss False Negative

77078 22799 7242 103814

The balance between TP and all FP is reasonable, however the number of
FN - missed ground truths is devastating. Obviously after calculating AP for
all objects, the recall will be very bad and is going to influence the results,
these will be shown only in Average Precision for now, the PR curves will be
show on better experiment configuration.

person bicycle car bus train truck mgAP

seg clean dontcare r101 vosstrex bbox 0.202 0.042 0.370 0.317 0.249 0.233 0.235
seg clean dontcare r101 vosstrex mask 0.172 0.178 0.361 0.353 0.251 0.239 0.259
seg clean dontcare r101 un vosstrex bbox 0.184 0.084 0.362 0.336 0.238 0.287 0.249
seg clean dontcare r101 un vosstrex mask 0.142 0.155 0.332 0.344 0.240 0.288 0.250

Figure 4.26: Vosstrex evaluation without size filters

Both undistorted and distorted detection task have very low AP scores,
this experiment shows problems that might happen while not thresholding
small objects. For second experiment the objects with area of bbox lower
than 32 were disabled to see which of the TP, FP or FN lose the most objects.
The area of 32 pixel is extremely tiny, the final threshold will be 96, this
threshold just demonstrates how many tiny object can be present.

True Postive False Positive hit False Positive miss False Negative

74582 16591 6007 46282

82

4.10. Experiment on Virtual Reality scenes

The table shows that after droping tiny objects the FN lose more then
half objects which is extremely large difference. The TP and FP were not
influenced that much.

area > 32 person bicycle car bus train truck mgAP

seg clean dontcare r101 vosstrex bbox 0.407 0.054 0.534 0.355 0.286 0.253 0.315
seg clean dontcare r101 vosstrex mask 0.353 0.231 0.526 0.396 0.289 0.260 0.343
seg clean dontcare r101 un vosstrex bbox 0.372 0.109 0.525 0.371 0.274 0.311 0.327
seg clean dontcare r101 un vosstrex mask 0.293 0.201 0.484 0.381 0.276 0.312 0.324

Figure 4.27: Vosstrex evaluation with tiny size filter

With confusing tiny objects away the AP of all classes rapidly increased,
for example person doubled, which is not unforeseen since there are usually
many people in background, far away from road which makes their area very
tiny. The final reduction of data will be achieved with threshold 96 of area
size, after this modification the VR evaluation will have same conditions as
the other evaluations.

True Postive False Positive hit False Positive miss False Negative

person person 9056 1531 668 4457
bicycle bicycle 235 91 24 434

car truck 4180
car 47319 7046 2468 15350

bus
train 2
truck 890
bus 385 26 122 1144

train
bus 189
truck 14
train 102 1 2 541

truck

car 43
bus 6
train 0
truck 502 328 172 959

62923 9023 3455 22885

Figure 4.28: Vosstrex instance evaluation table with small size filter

The final drop of small objects halved FN again, also great amount of FP
and TP was reduced, this table also descirbes the class mapping to see which
classes are confusing in VR. Because VR simulator Vosstrex does not have
motorcycles implemented, they will not influence bicycles. The bicycles have
also one major problem in Vosstrex and that is their masks being shared with
the person riding the bike (bicycle is the bike and person counted as one in
Vosstrex).

83

4. Experiments

To deal with this very unfortunate problem the ground truths of bicycles
were cloned and labeled as person, however this still leaves them in disad-
vantage, because they need almost perfect IoU to barely pass even the 50%
threshold. To give chance to bicycles theirs IoU will be exclusively thresholded
at 25%.

Returning to class mapping cars are mostly cars, but truck is also pop-
ular choice, which is usual behaviour, also trucks sometimes identify as car
however in VR trucks rarely confuse themselves with train and bus, which is
interesting. The train and bus however gets mixed way too much, this might
be caused by very low quality models of these objects Fig. (4.36).

The model configurations and addtional information for following AP table
can be found in legend Sec. 4.6.

area > 96 person bicycle car bus train truck mgAP

seg clean dontcare r101 vosstrex bbox 0.625 0.084 0.686 0.408 0.355 0.298 0.409
seg clean dontcare r101 vosstrex mask 0.530 0.263 0.662 0.457 0.358 0.304 0.429
seg clean dontcare r101 un vosstrex bbox 0.602 0.170 0.675 0.427 0.338 0.346 0.426
seg clean dontcare r101 un vosstrex mask 0.486 0.242 0.631 0.439 0.340 0.346 0.414

area > 96 & bicycle IoU thr = 0.25 person bicycle car bus train truck mgAP

seg clean dontcare r101 vosstrex bbox 0.625 0.466 0.686 0.408 0.355 0.298 0.464
seg clean dontcare r101 vosstrex mask 0.530 0.471 0.662 0.457 0.358 0.304 0.459
seg clean dontcare r101 un vosstrex bbox 0.602 0.459 0.675 0.427 0.338 0.346 0.468
seg clean dontcare r101 un vosstrex mask 0.486 0.456 0.631 0.439 0.340 0.346 0.445
seg clean dontcare r101 bbox 0.487 0.270 0.616 0.645 0.741 0.726 0.567
seg clean dontcare r101 mask 0.469 0.270 0.615 0.648 0.741 0.729 0.566
seg clean dontcare r101 un bbox 0.529 0.359 0.643 0.689 0.820 0.729 0.598
seg clean dontcare r101 un mask 0.486 0.351 0.629 0.689 0.820 0.729 0.586

Figure 4.29: Vosstrex evaluation with small size filter and bicycle IoU condi-
tion

The two tables with calculated AP show performance after thresholding
area size below 96, with the second table addressing the bicycle problem men-
tioned before. The IoU benevolence for bicycle shows that the matching were
there waiting just below the border and now the AP of bicycle is improved.

The second table also includes models evaluated on 1:1 real data scenarios,
for the AP and mAP the reality scene still win, due to Vosstrex bad perfor-
mance on busses, trains and trucks, however these objects are very low quality
and that might be the decisive factor for that low performance, the examples
of these objects might be seen in Fig. 4.36. On the other hand the cars in VR
have very good AP score, same with persons and bicycles, which got little bit
of handicap as mentioned before.

84

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Pixel FPR 1e 4

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

(R
ec

al
l)

ROC vosstrex
Predicted

0.0 0.5 1.0 1.5 2.0 2.5
Pixel FPR 1e 4

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

(R
ec

al
l)

ROC real
Gaussian
TP uncertainty

0.0 0.5 1.0
Recall

0.0

0.5

1.0

Pr
ec

isi
on

PR bbox vosstrex

0.0 0.5 1.0
Recall

0.0

0.5

1.0

Pr
ec

isi
on

PR bbox real

0 20 40 60 80 100
IoU

0

50

100

150

200

250

300

350

IoU bbox vosstrex
Predicted

0 20 40 60 80 100
IoU

0

100

200

300

400

500

600

700
IoU bbox real

Gauss fit
Predicted
Gaussian

0.0 0.5 1.0
Recall

0.0

0.5

1.0

Pr
ec

isi
on

PR mask vosstrex

0.0 0.5 1.0
Recall

0.0

0.5

1.0

Pr
ec

isi
on

PR mask real

0 20 40 60 80 100
IoU

0

50

100

150

200

250

300

350
IoU mask vosstrex

Predicted

0 20 40 60 80 100
IoU

0

100

200

300

400

500

600

IoU mask real
Gauss fit
Predicted
Gaussian

person

Figure 4.30: The person results are interesting, the VR scene has much less
people, mostly because of simplification of scene and making clusters of people
smaller, but despite the number difference, both IoU distributions are almost
the same and both are closer to mean of 80% IoU which is very nice result. The
equivalence in this case is better than VR outperforming real life detection,
because for purpose of training models offline in VR to work in real world, it
is necessary to know if the models will perform relatively the same in both
cases.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Pixel FPR 1e 5

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

(R
ec

al
l)

ROC vosstrex
Predicted

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Pixel FPR 1e 5

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

(R
ec

al
l)

ROC real
Gaussian
TP uncertainty

0.0 0.5 1.0
Recall

0.0

0.5

1.0

Pr
ec

isi
on

PR bbox vosstrex

0.0 0.5 1.0
Recall

0.0

0.5

1.0
Pr

ec
isi

on

PR bbox real

0 20 40 60 80 100 120
IoU

0

10

20

30

40

50

60

70

IoU bbox vosstrex
Predicted

0 20 40 60 80 100 120
IoU

0

5

10

15

20

IoU bbox real
Gauss fit
Predicted
Gaussian

0.0 0.5 1.0
Recall

0.0

0.5

1.0

Pr
ec

isi
on

PR mask vosstrex

0.0 0.5 1.0
Recall

0.0

0.5

1.0

Pr
ec

isi
on

PR mask real

0 20 40 60 80 100 120
IoU

0

10

20

30

40

50

60

70

80
IoU mask vosstrex

Predicted

0 20 40 60 80 100 120
IoU

0

5

10

15

20

25
IoU mask real

Gauss fit
Predicted
Gaussian

bicycle

Figure 4.31: The bicycles preform decently, if it is accounted for the problems
of shared bicycle with person ground truths of Vosstrex.

0 1 2 3 4 5 6 7
Pixel FPR 1e 4

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

(R
ec

al
l)

ROC vosstrex
Predicted

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Pixel FPR 1e 3

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

(R
ec

al
l)

ROC real
Gaussian
TP uncertainty

0.0 0.5 1.0
Recall

0.0

0.5

1.0

Pr
ec

isi
on

PR bbox vosstrex

0.0 0.5 1.0
Recall

0.0

0.5

1.0

Pr
ec

isi
on

PR bbox real

0 20 40 60 80 100
IoU

0

250

500

750

1000

1250

1500

1750
IoU bbox vosstrex

Predicted

0 20 40 60 80 100
IoU

0

500

1000

1500

2000

2500

3000

3500

IoU bbox real
Gauss fit
Predicted
Gaussian

0.0 0.5 1.0
Recall

0.0

0.5

1.0

Pr
ec

isi
on

PR mask vosstrex

0.0 0.5 1.0
Recall

0.0

0.5

1.0

Pr
ec

isi
on

PR mask real

0 20 40 60 80 100
IoU

0

200

400

600

800

1000

1200

1400

IoU mask vosstrex
Predicted

0 20 40 60 80 100
IoU

0

500

1000

1500

2000

2500

3000

3500
IoU mask real

Gauss fit
Predicted
Gaussian

car

Figure 4.32: The cars have very good performance and similarity of results,
this is mostly because cars have the most detailed models to match the real
world. The FPR is approximately 70% larger for real data than for VR data,
this is because the real data can have more background car objects than VR
data as it is mentioned in 2.4 (the 70% is still viable size difference for this
hypothesis), therefore the trade-off curve and its shape and slope are better
for comparison than the FPR total size, the shape and slope of ROC curve
shows similarity in this case.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Pixel FPR 1e 4

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

(R
ec

al
l)

ROC vosstrex
Predicted

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Pixel FPR 1e 4

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

(R
ec

al
l)

ROC real
Gaussian
TP uncertainty

0.0 0.5 1.0
Recall

0.0

0.5

1.0

Pr
ec

isi
on

PR bbox vosstrex

0.0 0.5 1.0
Recall

0.0

0.5

1.0

Pr
ec

isi
on

PR bbox real

0 20 40 60 80 100
IoU

0

20

40

60

80

IoU bbox vosstrex
Predicted

0 20 40 60 80 100
IoU

0

25

50

75

100

125

150

175

200

IoU bbox real
Gauss fit
Predicted
Gaussian

0.0 0.5 1.0
Recall

0.0

0.5

1.0

Pr
ec

isi
on

PR mask vosstrex

0.0 0.5 1.0
Recall

0.0

0.5

1.0

Pr
ec

isi
on

PR mask real

0 20 40 60 80 100
IoU

0

20

40

60

80

100

120
IoU mask vosstrex

Predicted

0 20 40 60 80 100
IoU

0

50

100

150

200

IoU mask real
Gauss fit
Predicted
Gaussian

bus

Figure 4.33: For the bus detection matches (FP + TP) even Vosstrex has good
good IoU distribution, however the recall is very low meaning lot of GT were
not detected, these are probably the cases when the VR car gets too close to
object when the low resolution starts to hurt detection Fig. 4.36.

0.0 0.5 1.0 1.5 2.0 2.5
Pixel FPR 1e 5

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

(R
ec

al
l)

ROC vosstrex
Predicted

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Pixel FPR 1e 4

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

(R
ec

al
l)

ROC real
Gaussian
TP uncertainty

0.0 0.5 1.0
Recall

0.0

0.5

1.0

Pr
ec

isi
on

PR bbox vosstrex

0.0 0.5 1.0
Recall

0.0

0.5

1.0

Pr
ec

isi
on

PR bbox real

0 20 40 60 80 100
IoU

0

5

10

15

20

25

IoU bbox vosstrex
Predicted

0 20 40 60 80 100
IoU

0

5

10

15

20

25

30

35

IoU bbox real
Gauss fit
Predicted
Gaussian

0.0 0.5 1.0
Recall

0.0

0.5

1.0

Pr
ec

isi
on

PR mask vosstrex

0.0 0.5 1.0
Recall

0.0

0.5

1.0

Pr
ec

isi
on

PR mask real

0 20 40 60 80 100
IoU

0

5

10

15

20

25

30

IoU mask vosstrex
Predicted

0 20 40 60 80 100
IoU

0

10

20

30

40

50

IoU mask real
Gauss fit
Predicted
Gaussian

train

Figure 4.34: The trains also suffer from very low recall, but also low occur-
rences of FP resulting in not very informative ROC curve. The trains are
already hard to detect in reality and low quality VR models makes this task
even harder 4.36.

0.0 0.5 1.0 1.5 2.0 2.5
Pixel FPR 1e 4

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

(R
ec

al
l)

ROC vosstrex
Predicted

0 1 2 3 4 5
Pixel FPR 1e 4

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

(R
ec

al
l)

ROC real
Gaussian
TP uncertainty

0.0 0.5 1.0
Recall

0.0

0.5

1.0

Pr
ec

isi
on

PR bbox vosstrex

0.0 0.5 1.0
Recall

0.0

0.5

1.0

Pr
ec

isi
on

PR bbox real

0 20 40 60 80 100
IoU

0

10

20

30

40

50

60

70

80

IoU bbox vosstrex
Predicted

0 20 40 60 80 100
IoU

0

50

100

150

200

250

300

350

IoU bbox real
Gauss fit
Predicted
Gaussian

0.0 0.5 1.0
Recall

0.0

0.5

1.0

Pr
ec

isi
on

PR mask vosstrex

0.0 0.5 1.0
Recall

0.0

0.5

1.0

Pr
ec

isi
on

PR mask real

0 20 40 60 80 100
IoU

0

20

40

60

80

IoU mask vosstrex
Predicted

0 20 40 60 80 100
IoU

0

50

100

150

200

250

300

IoU mask real
Gauss fit
Predicted
Gaussian

truck

Figure 4.35: The trucks have problems mostly identical to buses and trains,
except the ROC curve, which has better trade-off in this case, but this might
be caused by overlapping with the car class.

4.10. Experiment on Virtual Reality scenes

In conclusion for Real and Virtual data comparison, The results were over-
all very similar and that is very good for successful completion of goal of this
work. In statistics Vosstrex was performing slightly better on some classes
and a bit worse on the others, what was even more confusing, was that the
model trained on distorted data running on VR was slightly outperforming
model trained on undistorted data running on real data, bringing nice twist
to results in this experiment.

Figure 4.36: Samples of Vosstrex classes, most of the cars, people and bike have
high quality models, unfortunately the buses, trains and trucks, are mostly to
fill the class place and there are problems with their detection.

91

4. Experiments

4.11 Detection results overview

person bicycle car motorcycle bus train truck traffic light mgAP

vanilla bbox 0.292 0.243 0.348 0.326 0.237 0.308 0.452 0.436 0.320
vanilla mask 0.273 0.228 0.348 0.304 0.240 0.301 0.457 0.430 0.312
vanilla un bbox 0.425 0.357 0.566 0.386 0.399 0.565 0.634 0.446 0.461
vanilla un mask 0.410 0.346 0.565 0.367 0.401 0.563 0.634 0.438 0.454
seg clean dontcare r101 bbox 0.494 0.316 0.601 0.415 0.649 0.639 0.752 0.527 0.549
seg clean dontcare r101 mask 0.470 0.309 0.602 0.390 0.652 0.632 0.758 0.514 0.541
seg clean dontcare r101 un bbox 0.529 0.405 0.634 0.461 0.681 0.742 0.756 0.493 0.588
seg clean dontcare r101 un mask 0.480 0.394 0.618 0.441 0.682 0.739 0.758 0.451 0.570
standard r101 bbox 0.485 0.346 0.610 0.378 0.590 0.678 0.760 0.502 0.544
standard r101 mask 0.461 0.336 0.609 0.355 0.591 0.670 0.767 0.490 0.535
standard r50 bbox 0.470 0.334 0.608 0.414 0.560 0.666 0.753 0.485 0.536
standard r50 mask 0.446 0.326 0.608 0.381 0.562 0.667 0.756 0.484 0.529
seg clean purge r101 bbox 0.490 0.305 0.602 0.379 0.653 0.640 0.751 0.531 0.544
seg clean purge r101 mask 0.467 0.298 0.602 0.356 0.656 0.638 0.755 0.520 0.537
YoloV4 bbox 0.372 0.153 0.416 0.133 0.517 0.443 0.641 0.334 0.376
YoloV4 mask 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Figure 4.37: Results on testing dataset

person bicycle car bus train truck mgAP

seg clean dontcare r101 vosstrex bbox 0.625 0.466 0.686 0.408 0.355 0.298 0.464
seg clean dontcare r101 vosstrex mask 0.530 0.471 0.662 0.457 0.358 0.304 0.459
seg clean dontcare r101 un vosstrex bbox 0.602 0.459 0.675 0.427 0.338 0.346 0.468
seg clean dontcare r101 un vosstrex mask 0.486 0.456 0.631 0.439 0.340 0.346 0.445
seg clean dontcare r101 bbox 0.487 0.270 0.616 0.645 0.741 0.726 0.567
seg clean dontcare r101 mask 0.469 0.270 0.615 0.648 0.741 0.729 0.566
seg clean dontcare r101 un bbox 0.529 0.359 0.643 0.689 0.820 0.729 0.598
seg clean dontcare r101 un mask 0.486 0.351 0.629 0.689 0.820 0.729 0.586

Figure 4.38: Results on Vosstrex testing dataset with 1:1 matching scenes

92

4.12. Tracking results

4.12 Tracking results
The tracking was evaluated with MOTS [56] metrics described in Sec. 4.4.15,
only the tracking on real data was evaluated with Gaussian localization error
4.4.17, since the VR annotations have no uncertainty.

As for tracking results, there were small complications with the evaluation
on real data, because the trackers such as DeepSORT [18] are still not per-
forming too well for automatically generated track annotations, even if this
tracker is probably the most universal towards unseen datasets.

% person bicycle car motorcycle bus train truck traffic light

MOTSA 53.7 48.3 59.1 49.4 53.4 51.8 52.3 49.7
MOTSA +Error +6.1 +6.5 +7.6 +6.7 +2.7 +1.8 +1.7 +6.5
MOTSA −Error −6.8 −7.8 −8.1 −7.2 −3.0 −2.1 −1.9 −7.1
MOTSP 64.2 48.5 58.9 43.8 67.1 58.4 65.3 53.6
MOTSP ±Error ±12.2 ±14.1 ±15.4 ±13.2 ±5.3 ±3.1 ±5.2 ±13.6
Mostly Tracked 64.6 41.6 64.8 49.3 57.8 59.6 53.7 47.3
Mostly Lost 15.3 18.5 2.3 14.3 12.7 13.5 12.1 18.7

Figure 4.39: Tracking on real scenes

The results for the tracking on real scenes Fig. 4.39 look very good, how-
ever this is because of the annotations were far from perfect and it was checked
in tracking video as well. If the Tracker creating the annotations make the
same mistakes as inference tracker, then it can have these misleading results.
The automatically generated track annotations had good enough quality to
train the re-identification, however the inconsistency of tracks makes them
not viable for testing, especially compared to VR, which has 100% accurate
tracks. Since it was not possible to obtain automatically generated testing
data to 1:1 match VR scenes, the 1:1 comparison of tracking was deprecated
in this work. For planned tracking experiments only Vosstrex was used, since
the Vosstrex generated testing track annotations are very good benchmark for
trained tracker.

93

4. Experiments

% person bicycle car bus train truck

MOTSA 32.5 24.7 35.1 29.8 24.8 27.3
MOTSP 55.2 35.5 60.3 36.3 38.9 37.6
Mostly Tracked 8.5 11.6 17.8 11.3 10.3 13.6
Mostly Lost 36.2 32.3 29.3 32.3 38.7 37.1

Figure 4.40: Tracking on VR scenes

Tracking on Vosstrex ended up worse in score, but at least it was much
better evaluation of tracking then the real testing data. Most likely the only
metric to uncover the bad performance of tracker which have good accuracy is
that the Mostly Tracked were suspiciously good in the real data case. However
The VR has also the problem with great amount of GT which are badly
detectable and which might be reason for low Mostly Tracked metric on VR.

% person bicycle car bus train truck

MOTSA 26.8 18.3 26.0 23.2 19.7 22.4
MOTSP 55.2 35.5 60.3 36.3 38.9 37.6
Mostly Tracked 4.8 8.3 9.9 4.8 6.7 8.3
Mostly Lost 38.1 34.5 28.9 33.7 39.0 39.3

Figure 4.41: Tracking on VR scenes with only re-identification

In comparison between VR and reality the detection is the main task which
needs to be properly compared. The proposed tracking method 1.2 interacts
with VR only with the re-identification, the other parts are not interacting
directly with image data where the reality and VR differs. This experiment
was about setting the weighting between Kalman Filter and re-identification
to 100% 1.3 for re-identification to see if the re-identification trained on real
data works on VR data.

With bit worse results for discarding Kalman Filter, the tracker is still
capable to find tracks, however the Mostly Tracked rating is much worse, that
could be because lot of identity switches on some re-id matches, most likely
when the object rotates and changes its appearance, these cases usually are
guessed correctly with Kalman Filter, since it is interested in position and not
appearance.

94

4.12. Tracking results

% person bicycle car bus train truck

MOTSA 39.7 28.3 50.1 31.2 38.7 39.4
MOTSP 57.3 36.7 62.5 38.4 41.2 39.7
Mostly Tracked 12.8 13.1 25.8 20.3 24.7 25.0
Mostly Lost 28.4 27.6 15.2 22.7 18.9 19.3

Figure 4.42: Tracking on VR scenes 5× frame rate

The experiment of tracking with 30 FPS instead of 6 FPS (the tracked
objects are closer to each other which is easier) is showing, that the theories
about trying to track fast to increase performance [15] have some truth in
them. Especially cars started to get good tracking results, but these are
probably the easiest to track by Kalman Filter.

% person bicycle car bus train truck

MC MOTSA 20.3 18.4 27.9 22.3 20.4 19.8
MOTSP 55.2 35.5 60.3 36.3 38.9 37.6
Mostly Tracked 7.8 9.3 13.9 10.0 8.6 11.4
Mostly Lost 37.3 35.8 31.2 44.8 39.0 38.5

Figure 4.43: Multi-camera Tracking

The last experiment was multi-camera tracking which has the worst results,
this task would have been much easier if this dataset had some distance mea-
sure from surroundings, this way the tracker relied only on re-identification,
therefore the results are not that amazing.

Overall the tracking results were lesser success because the comparison
between real and virtual data was not achievable in conditions when it is not
possible to obtain good real testing data. In conclusion the 1:1 comparison
of tracking was not successful, however there were experiments on VR data
which proved that re-identification which is the part of tracker most sensitive
to changing from reality to VR still achieved acceptable results.

95

Conclusion

To conclude finished work in this thesis, the dataset annotations were automat-
ically generated and new data cleaning techniques were tested, the detectors
ended up trained very well, the secondary project of detection on distorted
images was success as well.

Convenient tools for tasks similar to this one were created and new evalu-
ator capable of including Gaussian localization error of annotation misplace-
ment to evaluation was explained and implemented.

The trained detection models on both virtual and real testing data per-
formed very well and the patterns in their results were very similar, which is
good for claiming that the detection comparison was a success.

The tracking was tested as well in many experiments, including multi-
camera tracking. Unfortunately the automatically generated real testing data
track annotations did not have very good quality for testing dataset. Only
the tracking learning algorithm was usable on real data, due to mining triplets
from training dataset instead of being forced to require full tracks. This re-
sulted in deprecating the full 1:1 tracking comparison. Instead the tracking
was at least tested on VR and the re-identification part of tracker was func-
tional even on VR images, which is also considered success.

The final conclusion is that VR project Vosstrex is viable for validation of
detection systems. For tracking the re-identification, which is the only part
of tracker vulnerable to difference between real and VR data proved to be
working on VR as well, however to completely certify viability of tracking it
would require better real tracking testing data.

97

Bibliography

[1] Council of European Union. Council regulation (EU) no 269/2014. 2014,
http://eur-lex.europa.eu/legal-content/EN/TXT/?qid=
1416170084502&uri=CELEX:32014R0269.

[2] Richter, S. R.; Vineet, V.; et al. Playing for Data: Ground Truth from
Computer Games. 2016, 1608.02192.

[3] VALEO. https://www.valeo.com/.

[4] Daimler: Mercedes Benz. 2020. Available from: https:
//www.daimler.com/company/business-units/mercedes-benz-cars/

[5] The Mathworks, Inc., Natick, Massachusetts. MATLAB version
9.3.0.713579 (R2017b). 2017.

[6] OpenCV. https://www.learnopencv.com/color-spaces-in-opencv-
cpp-python/.

[7] Roxas, M.; Oishi, T. Real-Time Variational Fisheye Stereo without Rec-
tification and Undistortion. 2019, 1909.07545.

[8] Zhu, J.; Zhu, J.; et al. Object detection and localization in 3D
environment by fusing raw fisheye image and attitude data. Jour-
nal of Visual Communication and Image Representation, volume 59,
2019: pp. 128 – 139, ISSN 1047-3203, doi:https://doi.org/10.1016/
j.jvcir.2019.01.005. Available from: http://www.sciencedirect.com/
science/article/pii/S1047320319300069

[9] Deng, L.; Yang, M.; et al. CNN based semantic segmentation for urban
traffic scenes using fisheye camera. In 2017 IEEE Intelligent Vehicles
Symposium (IV), 2017, pp. 231–236, doi:10.1109/IVS.2017.7995725.

99

http://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1416170084502&uri=CELEX:32014R0269
http://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1416170084502&uri=CELEX:32014R0269
1608.02192
https://www.valeo.com/
https://www.daimler.com/company/business-units/mercedes-benz-cars/
https://www.daimler.com/company/business-units/mercedes-benz-cars/
https://www.learnopencv.com/color-spaces-in-opencv-cpp-python/
https://www.learnopencv.com/color-spaces-in-opencv-cpp-python/
1909.07545
http://www.sciencedirect.com/science/article/pii/S1047320319300069
http://www.sciencedirect.com/science/article/pii/S1047320319300069

Bibliography

[10] Álvaro, S.; M., B. L.; et al. Real-Time Semantic Segmentation for Fisheye
Urban Driving Images Based on ERFNet. 2017, 1705.04608.

[11] Goodarzi, P.; Stellmacher, M.; et al. Optimization of a CNN-based Object
Detector for Fisheye Cameras. In 2019 IEEE International Conference on
Vehicular Electronics and Safety (ICVES), 2019, pp. 1–7, doi:10.1109/
ICVES.2019.8906325.

[12] Baek, I.; Davies, A.; et al. Real-time Detection, Tracking, and Classifi-
cation of Moving and Stationary Objects using Multiple Fisheye Images.
2018, 1803.06077.

[13] Bertozzi, M.; Castangia, L.; et al. 360° Detection and tracking algorithm
of both pedestrian and vehicle using fisheye images. 2015 IEEE Intelligent
Vehicles Symposium (IV), 2015: pp. 132–137.

[14] Wang, Z.; Zheng, L.; et al. Towards Real-Time Multi-Object Tracking.
2020, 1909.12605.

[15] Bergmann, P.; Meinhardt, T.; et al. Tracking without bells and whistles.
2019, 1903.05625.

[16] Bewley, A.; Ge, Z.; et al. Simple online and realtime tracking.
2016 IEEE International Conference on Image Processing (ICIP),
Sep 2016, doi:10.1109/icip.2016.7533003. Available from: http://
dx.doi.org/10.1109/ICIP.2016.7533003

[17] Beyer, L.; Breuers, S.; et al. Towards a Principled Integration of Multi-
Camera Re-Identification and Tracking through Optimal Bayes Filters.
2017, 1705.04608.

[18] Wojke, N.; Bewley, A.; et al. Simple Online and Realtime Tracking with
a Deep Association Metric. 2017, 1703.07402.

[19] Chen, L.; Ai, H.; et al. Real-Time Multiple People Tracking with Deeply
Learned Candidate Selection and Person Re-Identification. 2018 IEEE
International Conference on Multimedia and Expo (ICME), Jul 2018,
doi:10.1109/icme.2018.8486597. Available from: http://dx.doi.org/
10.1109/ICME.2018.8486597

[20] Chen, L.; Ai, H.; et al. Real-Time Multiple People Tracking with Deeply
Learned Candidate Selection and Person Re-Identification. 2018 IEEE
International Conference on Multimedia and Expo (ICME), Jul 2018,
doi:10.1109/icme.2018.8486597. Available from: http://dx.doi.org/
10.1109/ICME.2018.8486597

100

1705.04608
1803.06077
1909.12605
1903.05625
http://dx.doi.org/10.1109/ICIP.2016.7533003
http://dx.doi.org/10.1109/ICIP.2016.7533003
1705.04608
1703.07402
http://dx.doi.org/10.1109/ICME.2018.8486597
http://dx.doi.org/10.1109/ICME.2018.8486597
http://dx.doi.org/10.1109/ICME.2018.8486597
http://dx.doi.org/10.1109/ICME.2018.8486597

Bibliography

[21] Zheng, Z.; Zheng, L.; et al. A Discriminatively Learned CNN Em-
bedding for Person Reidentification. ACM Transactions on Multimedia
Computing, Communications, and Applications, volume 14, no. 1, Jan
2018: p. 1–20, ISSN 1551-6865, doi:10.1145/3159171. Available from:
http://dx.doi.org/10.1145/3159171

[22] Liu, W.; Liao, S.; et al. High-Level Semantic Feature Detection: A New
Perspective for Pedestrian Detection. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), June
2019.

[23] Grand Theft Auto V. New York, NY: Rockstar Games, 2014.

[24] He, K.; Gkioxari, G.; et al. Mask R-CNN. 2018, 1703.06870.

[25] Bochkovskiy, A.; Wang, C.-Y.; et al. YOLOv4: Optimal Speed and Ac-
curacy of Object Detection. 2020, 2004.10934.

[26] Goodfellow, I.; Bengio, Y.; et al. Deep Learning. MIT Press, 2016, http:
//www.deeplearningbook.org.

[27] Quian, Q. R.; L., R.; et al. Invariant visual representation by single
neurons in the human brain. volume 435, 2005: pp. 1102 – 1107, doi:
https://doi.org/10.1038/nature03687.

[28] Ren, S.; He, K.; et al. Faster R-CNN: Towards Real-Time Object Detec-
tion with Region Proposal Networks. 2016, 1506.01497.

[29] Wu, Y.; Kirillov, A.; et al. Detectron2. https://github.com/
facebookresearch/detectron2, 2019.

[30] Honda, H. Digging into Detectron2 [online]. https://medium.com/
@hirotoschwert/digging-into-detectron-2-47b2e794fabd, 2020.

[31] Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for
Large-Scale Image Recognition. 2015, 1409.1556.

[32] He, K.; Zhang, X.; et al. Deep Residual Learning for Image Recognition.
2015, 1512.03385.

[33] Lin, T.-Y.; Dollár, P.; et al. Feature Pyramid Networks for Object De-
tection. 2017, 1612.03144.

[34] Hosang, J.; Benenson, R.; et al. Learning Non-Maximum Suppression.
In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), July 2017.

[35] Welch, G.; Bishop, G. An Introduction to the Kalman Filter. Technical
report, USA, 1995.

101

http://dx.doi.org/10.1145/3159171
1703.06870
2004.10934
http://www.deeplearningbook.org
http://www.deeplearningbook.org
1506.01497
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2
https://medium.com/@hirotoschwert/digging-into-detectron-2-47b2e794fabd
https://medium.com/@hirotoschwert/digging-into-detectron-2-47b2e794fabd
1409.1556
1512.03385
1612.03144

Bibliography

[36] Suprem, A.; Pu, C. Looking GLAMORous: Vehicle Re-Id in Hetero-
geneous Cameras Networks with Global and Local Attention. 2020,
2002.02256.

[37] Data Definition Language Library - the ADTF data description lan-
guage (Automotive Data and Time-Triggered Framework). https://
github.com/audi/ddl.

[38] Jacob Solawetz. https://blog.roboflow.com/train-test-split/.

[39] Bora, D.; Gupta, A.; et al. Comparing the Performance of L*A*B* and
HSV Color Spaces with Respect to Color Image Segmentation. 06 2015.

[40] Purple Range Rover. 2020. Available from: http://
www.iluxurystyle.com/luxury/cars/purple-people-eater.html/

[41] Van Rossum, G.; Drake Jr, F. L. Python tutorial. Centrum voor Wiskunde
en Informatica Amsterdam, The Netherlands, 1995.

[42] Harris, C. R.; Millman, K. J.; et al. Array programming with NumPy.
Nature, volume 585, no. 7825, Sept. 2020: pp. 357–362, doi:10.1038/
s41586-020-2649-2. Available from: https://doi.org/10.1038/s41586-
020-2649-2

[43] NVIDIA; Vingelmann, P.; et al. CUDA, release: 10.2.89. 2020. Available
from: https://developer.nvidia.com/cuda-toolkit

[44] Abadi, M.; Barham, P.; et al. Tensorflow: A system for large-scale ma-
chine learning. In 12th {USENIX} Symposium on Operating Systems De-
sign and Implementation ({OSDI} 16), 2016, pp. 265–283.

[45] Paszke, A.; Gross, S.; et al. PyTorch: An Imperative Style, High-
Performance Deep Learning Library. In Advances in Neural Information
Processing Systems 32, Curran Associates, Inc., 2019, pp. 8024–8035.
Available from: http://papers.neurips.cc/paper/9015-pytorch-an-
imperative-style-high-performance-deep-learning-library.pdf

[46] Pygame contributors. Pygame Front Page — Pygame v1.9.2 docu-
mentation. Available online: http://www.pygame.org/docs/ [Accessed
14/01/2018], 2018.

[47] Mukhometzianov, R.; Carrillo, J. CapsNet comparative performance eval-
uation for image classification. 2018, 1805.11195.

[48] Huang, Z.; Huang, L.; et al. Mask Scoring R-CNN. In CVPR, 2019.

[49] Lin, T.-Y.; Maire, M.; et al. Microsoft COCO: Common Objects in Con-
text. 2015, 1405.0312.

102

2002.02256
https://github.com/audi/ddl
https://github.com/audi/ddl
https://blog.roboflow.com/train-test-split/
http://www.iluxurystyle.com/luxury/cars/purple-people-eater.html/
http://www.iluxurystyle.com/luxury/cars/purple-people-eater.html/
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://developer.nvidia.com/cuda-toolkit
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://www.pygame.org/docs/
1805.11195
1405.0312

Bibliography

[50] Deng, J.; Dong, W.; et al. ImageNet: A Large-Scale Hierarchical Image
Database. In CVPR09, 2009.

[51] Hermans, A.; Beyer, L.; et al. In Defense of the Triplet Loss for Person
Re-Identification. 2017, 1703.07737.

[52] Everingham, M.; Van Gool, L.; et al. The PASCAL Visual Ob-
ject Classes Challenge 2012 (VOC2012) Results. http://www.pascal-
network.org/challenges/VOC/voc2012/workshop/index.html, 2012.

[53] Kuhn, H. W.; Yaw, B. The Hungarian method for the assignment prob-
lem. Naval Res. Logist. Quart, 1955: pp. 83–97.

[54] Hui, J. Mean average Precision for object detection. 2020. Avail-
able from: https://jonathan-hui.medium.com/map-mean-average-
precision-for-object-detection-45c121a31173

[55] MIT: The 3-sigma rule. 2020. Available from: https://news.mit.edu/
2012/explained-sigma-0209

[56] Voigtlaender, P.; Krause, M.; et al. MOTS: Multi-Object Tracking and
Segmentation. 2019, 1902.03604.

103

1703.07737
https://jonathan-hui.medium.com/map-mean-average-precision-for-object-detection-45c121a31173
https://jonathan-hui.medium.com/map-mean-average-precision-for-object-detection-45c121a31173
https://news.mit.edu/2012/explained-sigma-0209
https://news.mit.edu/2012/explained-sigma-0209
1902.03604

Appendix A
YoloV4 distorted images

comparison

105

0 1 2 3 4 5
Pixel FPR 1e 4

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

(R
ec

al
l)

ROC YoloV4
Gaussian
TP uncertainty

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Pixel FPR 1e 3

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

(R
ec

al
l)

ROC seg clean dontcare r101
Gaussian
TP uncertainty

0.0 0.5 1.0
Recall

0.00

0.25

0.50

0.75

1.00

Pr
ec

isi
on

PR YoloV4

0.0 0.5 1.0
Recall

0.00

0.25

0.50

0.75

1.00

Pr
ec

isi
on

PR seg clean dontcare r101

0 20 40 60 80 100
IoU

0

200

400

600

800

IoU YoloV4
Gauss fit
Predicted
Gaussian

0 20 40 60 80 100
IoU

0

200

400

600

800

1000

1200

IoU seg clean dontcare r101
Gauss fit
Predicted
Gaussian

person

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Pixel FPR 1e 3

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

(R
ec

al
l)

ROC YoloV4
Gaussian
TP uncertainty

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Pixel FPR 1e 4

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

(R
ec

al
l)

ROC seg clean dontcare r101
Gaussian
TP uncertainty

0.0 0.5 1.0
Recall

0.00

0.25

0.50

0.75

1.00

Pr
ec

isi
on

PR YoloV4

0.0 0.5 1.0
Recall

0.00

0.25

0.50

0.75

1.00

Pr
ec

isi
on

PR seg clean dontcare r101

0 20 40 60 80 100 120
IoU

0

10

20

30

40

50

60

70

80

IoU YoloV4
Gauss fit
Predicted
Gaussian

0 20 40 60 80 100 120
IoU

0

20

40

60

80

100

IoU seg clean dontcare r101
Gauss fit
Predicted
Gaussian

bicycle

0 1 2 3 4 5 6
Pixel FPR 1e 3

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

(R
ec

al
l)

ROC YoloV4
Gaussian
TP uncertainty

0 1 2 3 4 5
Pixel FPR 1e 3

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

(R
ec

al
l)

ROC seg clean dontcare r101
Gaussian
TP uncertainty

0.0 0.5 1.0
Recall

0.00

0.25

0.50

0.75

1.00

Pr
ec

isi
on

PR YoloV4

0.0 0.5 1.0
Recall

0.00

0.25

0.50

0.75

1.00

Pr
ec

isi
on

PR seg clean dontcare r101

0 20 40 60 80 100
IoU

0

250

500

750

1000

1250

1500

1750

2000
IoU YoloV4

Gauss fit
Predicted
Gaussian

0 20 40 60 80 100
IoU

0

500

1000

1500

2000

2500

3000

3500
IoU seg clean dontcare r101

Gauss fit
Predicted
Gaussian

car

0.0 0.5 1.0 1.5 2.0 2.5
Pixel FPR 1e 4

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

(R
ec

al
l)

ROC YoloV4
Gaussian
TP uncertainty

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Pixel FPR 1e 4

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

(R
ec

al
l)

ROC seg clean dontcare r101
Gaussian
TP uncertainty

0.0 0.5 1.0
Recall

0.00

0.25

0.50

0.75

1.00

Pr
ec

isi
on

PR YoloV4

0.0 0.5 1.0
Recall

0.00

0.25

0.50

0.75

1.00

Pr
ec

isi
on

PR seg clean dontcare r101

0 20 40 60 80 100
IoU

0

2

4

6

8

10

12

IoU YoloV4
Gauss fit
Predicted
Gaussian

0 20 40 60 80 100
IoU

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

IoU seg clean dontcare r101
Gauss fit
Predicted
Gaussian

motorcycle

0 1 2 3 4 5 6 7
Pixel FPR 1e 4

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

(R
ec

al
l)

ROC YoloV4
Gaussian
TP uncertainty

0 1 2 3 4 5
Pixel FPR 1e 5

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

(R
ec

al
l)

ROC seg clean dontcare r101
Gaussian
TP uncertainty

0.0 0.5 1.0
Recall

0.00

0.25

0.50

0.75

1.00

Pr
ec

isi
on

PR YoloV4

0.0 0.5 1.0
Recall

0.00

0.25

0.50

0.75

1.00

Pr
ec

isi
on

PR seg clean dontcare r101

0 20 40 60 80 100
IoU

0

20

40

60

80

IoU YoloV4
Gauss fit
Predicted
Gaussian

0 20 40 60 80 100
IoU

0

20

40

60

80

100

120

140

IoU seg clean dontcare r101
Gauss fit
Predicted
Gaussian

bus

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Pixel FPR 1e 5

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

(R
ec

al
l)

ROC YoloV4
Gaussian
TP uncertainty

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Pixel FPR 1e 3

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

(R
ec

al
l)

ROC seg clean dontcare r101
Gaussian
TP uncertainty

0.0 0.5 1.0
Recall

0.00

0.25

0.50

0.75

1.00

Pr
ec

isi
on

PR YoloV4

0.0 0.5 1.0
Recall

0.00

0.25

0.50

0.75

1.00

Pr
ec

isi
on

PR seg clean dontcare r101

0 20 40 60 80 100
IoU

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

IoU YoloV4
Gauss fit
Predicted
Gaussian

0 20 40 60 80 100
IoU

0

10

20

30

40

IoU seg clean dontcare r101
Gauss fit
Predicted
Gaussian

train

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Pixel FPR 1e 3

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

(R
ec

al
l)

ROC YoloV4
Gaussian
TP uncertainty

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Pixel FPR 1e 3

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

(R
ec

al
l)

ROC seg clean dontcare r101
Gaussian
TP uncertainty

0.0 0.5 1.0
Recall

0.00

0.25

0.50

0.75

1.00

Pr
ec

isi
on

PR YoloV4

0.0 0.5 1.0
Recall

0.00

0.25

0.50

0.75

1.00

Pr
ec

isi
on

PR seg clean dontcare r101

0 20 40 60 80 100
IoU

0

25

50

75

100

125

150

175

200

IoU YoloV4
Gauss fit
Predicted
Gaussian

0 20 40 60 80 100
IoU

0

50

100

150

200

250

300

350

400

IoU seg clean dontcare r101
Gauss fit
Predicted
Gaussian

truck

0.0 0.5 1.0 1.5 2.0 2.5
Pixel FPR 1e 5

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

(R
ec

al
l)

ROC YoloV4
Gaussian
TP uncertainty

0 1 2 3 4
Pixel FPR 1e 5

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

(R
ec

al
l)

ROC seg clean dontcare r101
Gaussian
TP uncertainty

0.0 0.5 1.0
Recall

0.00

0.25

0.50

0.75

1.00

Pr
ec

isi
on

PR YoloV4

0.0 0.5 1.0
Recall

0.00

0.25

0.50

0.75

1.00

Pr
ec

isi
on

PR seg clean dontcare r101

0 20 40 60 80 100
IoU

0

20

40

60

80

100

120

140
IoU YoloV4

Gauss fit
Predicted
Gaussian

0 20 40 60 80 100
IoU

0

50

100

150

200

IoU seg clean dontcare r101
Gauss fit
Predicted
Gaussian

traffic light

Appendix B
Contents of enclosed CD

readme.txt.........................the file with CD contents description
src...the directory of source codes

thesis...............the directory of LATEX source codes of the thesis
trackframework. the directory of detection and tracking source codes

text.. the thesis text directory
thesis.pdf............................the thesis text in PDF format

115

	Introduction
	Problem statement
	Tasks of visual information retrieval
	VOSSTREX Virtual Reality
	Valeo Drive4U® prototype
	Fisheye camera
	Fisheye undistort

	Related work
	Thesis contribution

	State-of-the-art
	Object detection
	Backbone
	Region Proposal Network
	Region of Interest Pooling
	ROI Heads
	One-stage detector
	The choice of detectors

	Tracking
	Kalman filter
	Localization prediction
	Re-identification

	Multiple object tracking

	Dataset
	Automatically generated annotations
	Dataset format
	Dataset split
	Dataset balancing

	Vosstrex VR scene generation

	Implementation
	Programming language and software
	Deep learning libraries
	The dataset editing tool

	Experiments
	Fisheye and state of the art detection
	The unsucessful experiments

	Annotation generation experiments
	Automated tracking annotations
	Panoptic Merge
	Random Custom Bugs

	Training
	Training process
	Validation process
	Training Tracker
	Data augmentations
	Uncertain instance blocking
	Class balancing

	Evaluation
	Perfect matching
	Class mapping
	Evaluation metrics
	Precision-Recall curve
	Average Precision
	Mean Average Precision
	Pixel TN
	False Positive Rate
	Receiver operating characteristic
	Gaussian localization error
	Gaussian Precision-Recall curve
	Gaussian Receiver operating characteristic
	Gaussian Average Precision
	Mean Gaussian Average Precision
	Tracking Evaluation
	Multi-Camera Multi-Object Tracking
	Gaussian localization error in tracking

	Introduction to graph system
	The legend to detection models
	Unmodified detector experiment
	Undistorted and distorted experiment
	Experiments on distorted images
	Experiment on separate cameras
	Experiment on different models and annotation cleaning methods

	Experiment on Virtual Reality scenes
	Detection results overview
	Tracking results

	Conclusion
	Bibliography
	YoloV4 distorted images comparison
	Contents of enclosed CD

