
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Science

Semantic Document Manager User
Interface

Valeryia Chyzhova

Supervisor: Ing. Martin Ledvinka
Subfield: Software Engineering and Technology
May 2021

ii

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

478038Osobní číslo:ValeryiaJméno:ChyzhovaPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra počítačů

Softwarové inženýrství a technologieStudijní program:

II. ÚDAJE K BAKALÁŘSKÉ PRÁCI

Název bakalářské práce:

Uživatelské rozhraní Sémantického správce dokumentů

Název bakalářské práce anglicky:

Semantic Document Manager User Interface

Pokyny pro vypracování:

Seznam doporučené literatury:
[1] M. Ledvinka, P. Křemen, L. Saeeda, M. Blaško: TermIt: A Practical Vocabulary
Manager, Proceedings of the 22nd International Conference on Enterprise
Information Systems, 2020
[2] M. Jaroš, Semantic Document Manager, Bachelor’s thesis, 2020
[3] J. J. Garrett, The Elements of User Experience: User-Centered Design for the Web
and Beyond, New Riders, 2010

Jméno a pracoviště vedoucí(ho) bakalářské práce:

Ing. Martin Ledvinka, skupina znalostních softwarových systémů FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) bakalářské práce:

Termín odevzdání bakalářské práce: 21.05.2021Datum zadání bakalářské práce: 15.02.2021

Platnost zadání bakalářské práce: 19.02.2023

prof. Mgr. Petr Páta, Ph.D.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedryIng. Martin Ledvinka

podpis vedoucí(ho) práce

III. PŘEVZETÍ ZADÁNÍ
Studentka bere na vědomí, že je povinna vypracovat bakalářskou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v bakalářské práci.

.
Datum převzetí zadání Podpis studentky

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

Acknowledgements
I would like to thank my supervisor Ing.
Martin Ledvinka for providing guidance
and feedback throughout this project.

Declaration
I declare that this work is all my own work
and I have cited all sources I have used in
the bibliography.

Prague, May , 2021

iii

Abstract
This bachelor thesis continues the develop-
ment of a document management system,
which is called the Document Manager.
The Document Manager is an application
that can structure and store files.

It was created as a part of the bachelor
thesis written by Martin Malinov. Then
the application back-end was extended by
Marek Jaroš in his bachelor thesis.

The purpose of this work is to create
the front-end of the Document Manager
application, which will have intuitive and
user-friendly interface.

The result of the bachelor thesis is a
React application, which allows a user to
easily manipulate the data within the ap-
plication, namely, to create the entities,
upload Files to a file system, change the
metadata of the entities, manage user ac-
cess rights, etc.

Keywords: document manager, web
application, front-end, software, REST
API, JavaScript, React, UI design, UX
design

Supervisor: Ing. Martin Ledvinka

Abstrakt
Tato bakalářská práce navazuje na vý-

voj správce dokumentů s názvem Docu-
ment Manager. Document Manager je
aplikace, která umí strukturovat a ukládat
soubory.

Document Manager byl vytvořený jako
součást bakalářské práce Martina Mali-
nova. Poté backendová část aplikace byla
rozšířena v rámci bakalářské práce Ma-
reka Jaroše.

Cílem této práce je vytvořit fronten-
dovou část aplikace Document Manager,
která bude mít intuitívní a uživatelsky
přívětivé rozhrání.

Výsledkem bakalářské práce je React
aplikace, která umožňuje uživateli snadno
manipulovat s daty v aplikaci, vytvářet
entity, nahrávat soubory do souborového
systému, měnit metadata entit, spravovat
přístupová práva uživatelů, atd.

Klíčová slova: document manager,
webová aplikace, frontend, software,
REST API, JavaScript, React, UI design,
UX design

iv

Contents
1 Introduction 1
1.1 Main functions of the Document
Manager . 1

1.2 Current situation 1
1.3 Aim of the work 2
2 Back-end analysis 3
2.1 Back-end overview 3
2.1.1 Architecture 4
2.1.2 Types of the Document
Manager entities 4

2.1.3 File versioning 5
2.1.4 User roles 5
2.1.5 Access rights 5

2.2 Document Manager API 6
2.2.1 REST API interface 6
2.2.2 Data formats 6
2.2.3 API endpoints for the front-end
implementation 7

2.2.4 Weaknesses in the REST API
implementation 9

2.3 Document Manager functionalities 10
2.4 Use Case Diagram 10
3 UX research 13
3.1 Motivation 13
3.2 Document Manager functionality 13
3.3 Usability . 13
3.4 The importance of a clear visual
hierarchy . 14
3.4.1 Main traits of a clear visual
hierarchy . 14

3.4.2 Adding a Document 15
3.4.3 Place of a logotype in a visual
hierarchy . 15

3.5 Web navigation 15
3.5.1 Home page button 16
3.5.2 Search button 17
3.5.3 Operation icons 17

4 Front-end plan 19
4.1 Concepts of front-end
development 19
4.1.1 Single-page application vs
Multi-page application 19

4.1.2 Server-side rendering vs
Client-side rendering 20

4.1.3 Conclusion 21

4.2 Technical approaches to the SPA
development 22
4.2.1 Vue.js . 23
4.2.2 Angular 23
4.2.3 React . 24
4.2.4 Conclusion 24

4.3 Application structure 25
4.3.1 Assets . 25
4.3.2 Helpers 26
4.3.3 Features 26
4.3.4 Components 27

5 UI design 29
5.1 Authorization 29
5.2 File system display 30
5.3 Operations implementation 30
5.3.1 Document and Folder
operations . 30

5.3.2 File operations 33
5.4 Access rights management 34
5.5 User management 34
6 Technical solution 37
6.1 Authorization 37
6.1.1 External authorization service 37
6.1.2 Token validity 37

6.2 Routing . 38
6.3 Hooks . 38
6.3.1 Custom hooks 38
6.3.2 useState 39
6.3.3 useEffect 39

6.4 Client/Server state
synchronization 40
6.4.1 React Query concepts 40

6.5 React.memo 41
6.6 Styling . 41
7 Usability testing 43
7.1 Usability Testing Method 43
7.2 Test scenarios 43
7.2.1 Basic functionality test 43
7.2.2 Access rights test 44

7.3 Results . 44
7.3.1 Folder user rights management
UI/UX problem 45

7.3.2 WRITE access level does not
work . 45

v

7.3.3 Filename does not update in a
file system . 45

7.3.4 File version does not update
after a new version is added 46

7.3.5 A new folder display. 46
7.3.6 Problem with changing a
filename . 46

7.3.7 File information window does
not close after the File is deleted 46

7.4 Changes . 47
8 Conclusion 49
A Bibliography 51
B List of abbreviations 55
C Instructions how to start the
Document Manager application 57
C.1 Back-end part 57
C.2 Front-end part 58
D Content of the electronic
attachment 59

vi

Figures
3.1 An example of a clear visual
hierarchy in the list of File versions 14

3.2 An example of a clear visual
hierarchy in the file system 15

3.3 An example of placing a logotype
on the page . 16

3.4 The initial state of the application 16
3.5 An example of placing a search
field on the page 17

4.1 A server-side rendering schema
(taken from [3]) 21
4.2 A client-side rendering schema
(taken from [3]) 22
4.3 The popularity scale of the six
most well-known Javascript
frameworks . 23

4.4 The structure of the Document
Manager front-end (taken from
Gitlab FEL) 26

5.1 The page shown to an
unauthorized user 29

5.2 KBSS Authorization Service, which
is used in the Document Manager
application . 30

5.3 The file system in the Document
Manager application 31

5.4 The operations that can be
performed on a Document or Folder 31

5.5 The modal window for adding a
new Document or Folder 31

5.6 The modal window for adding a
new File (before the File is chosen) 32

5.7 The modal window for adding a
new File (after the File is chosen) . 32

5.8 The operations that can be
performed on a File 33

5.9 The window with the information
about the File and its versions 34

5.10 The modal window, which
contains the user management
section . 35

Tables
2.1 The possible operations that can
be performed in the Document
Manager application 12

7.1 The problems identified while the
usability testing and their solutions 47

vii

Chapter 1
Introduction

This work is a front-end1 part of the application, which is called the Document
Manager. Back-end2 development was a part of the bachelor thesis written
by Martin Malinov [27], who created a basic application for storing files.
Then, the back-end was extended within the bachelor thesis of Marek Jaroš
[18], who added the possibility of user management and the Semantic Web
technology3.

The work describes the stages of building a front-end part of a modern web
application, including the back-end analysis, the comparison of technologies
for web development and UX4 research. The results of analysis are then
applied to the application design and implementation.

1.1 Main functions of the Document Manager

The Document Manager(DM) is an application that can structure and store
files. A user can manipulate the data within the application, i.e. add, change
or delete it. The application saves file versions (that are called file mementos)
and allows the user to get access to them. Additionally, the Document
Manager has access rights management and several access levels.

1.2 Current situation

Due to the fact that the Document Manager has only the back-end part, it is
not convenient to use it. It is much simpler to understand the application
possibilities, when it has User Interface to interact with.

1Everything a user may interact with to use a digital product or service
2Any part of a website or software that users do not see
3The goal of the Semantic Web is to structure the information on the Web so that it

was understandable not only to a human but also to a machine [18]
4UX is an acronym that stands for User eXperience. It is the study of the interaction

between users and a system [28]

1

1. Introduction
1.3 Aim of the work

The aim of the work is to analyze the back-end part of the Document Manager
application and its REST API; to study approaches to front-end development
and to choose the appropriate one; to design and implement the front-end of
the Document Manager and to conduct usability testing.

2

Chapter 2
Back-end analysis

The analysis of the already existing back-end is an integral research before
starting front-end development. The back-end and front-end work together
to create a full user experience. The data generated on the back-end side
is passed to the front-end and then presented to the user. That is why it is
necessary to study and analyze the back-end part thoroughly to efficiently
use gained information while implementing the front-end.

2.1 Back-end overview

The back-end part of the DM is written in Java using the Spring framework.
It is responsible for storing and organizing the DM data, uploading files to a
file system and managing user roles and their access rights.

Figure 2.1 illustrates how the back-end works.

Figure 2.1: The back-end overview (Made in Creately1)

1Creately is an easy to use diagram and flowchart software built for team collaboration.
Supports over 40+ diagram types and has 1000’s of professionally drawn templates [26].

3

2. Back-end analysis...................................
2.1.1 Architecture

The architecture is designed using a four-layered pattern, specifically it
contains Controller, Service, Persistence and Data layers. A layered
pattern allows the division of the responsibilities of individual layers by
separating the client interface from the business logic and the business logic
from the database one [30]. The diagram of the system architecture is shown
in Figure 2.2

Figure 2.2: The Document Manager architecture [27]

2.1.2 Types of the Document Manager entities

The majority of entities is of a type Node. Nodes can be divided into three
groups: Documents, Folders or Files - based on their properties. Nodes
have unique IDs within the whole application and associations with each other
(for example, a parent-child association between a Folder and its content).

The highest position in the DM hierarchy has a Document. It acts as a
container for Folders and Files and it always contains a root Folder. The
root Folder is the only Folder, which does not have a parent Folder.

A basic Folder has a lower-level position in the DM hierarchy. It can
contain other Folders and Files, but it always has a parent Folder.

The lowest position is held by a File. It can be uploaded by a user to a
Folder. A physical File is uploaded to the DM file system and its metadata,
which contain a path to the File, is saved to a database. Files can also have
several versions.

Figure 2.3 shows the Document Manager entities, their parameters and
relationships between entities.

4

.................................. 2.1. Back-end overview

Figure 2.3: The Document Manager entities and relationships between them [18]

2.1.3 File versioning

When a user wants to update File content, a new version of the File is created.
The initial upload is marked as a version zero, the second upload – version
one, etc. All File versions are saved in the DM file system and the user has a
possibility to download them.

2.1.4 User roles

There are two main roles in the DM application: User and Admin. A
User can create Documents, Folders and Files. An Admin is responsible for
managing users: only he has the rights to create, update or delete users [18].
Also the Admin can create groups, add users to them or remove users. For
example, in Listing 2.1 you can see the endpoint to add a user to a group.
This operation can be done only by the Admin.

1 POST groups / TestGroup /users? namespace =http:// example .cz/
UserGroup

2 Body: http:// onto.fel.cvut.cz/ ontologies / uzivatel /user -name

Listing 2.1: The endpoint to add a user to a group

2.1.5 Access rights

Access rights can be assigned only to Documents. The access rights are
divided into four groups:.None - a user has no rights to access this entity and it is not shown for

him in the DM hierarchy;.Read - a user can read the content of this entity, but he has no rights
to manipulate (change, delete, etc.) with it;

5

2. Back-end analysis...................................
.Write - a user can read, change and update the content of this entity;. Security - besides the possibility to read and update, a user can also

set the access rights to this entity for other users.

Every Document has his own list of users with corresponding access levels.
A Document creator has the highest Security level automatically and, as an
owner, he can manage access rights for other users.

Admin has the Security access to all Documents by default. It means, he
can manage users’ rights, subfolders and files inside Documents whether he is
the creator or not.

2.2 Document Manager API

The back-end side of the application contains the implementation of the
REST API and the REST API endpoints to enable access to the Document
Manager data.

An API endpoint is one end of a communication channel between the
back-end and front-end. By studying the API endpoints I can get an idea
about the application capabilities (what functionalities are implemented, what
request parameters are required, etc.) and a format for obtaining and sending
the data.

2.2.1 REST API interface

REST (Representational State Transfer) refers to a group of software archi-
tecture design constraints that bring about efficient, reliable and scalable
distributed systems [28].

The basic idea of REST is that data are transferred via well-recognized,
language-independent, and reliably standardized client/server interactions
[28]. RESTful web services provide an architectural style for developing the
web services and way of consuming those APIs for the client [23].

REST uses mainly the following four basic HTTP methods to get access
to data performing CRUD (Create, Read, Update, Delete) operations..POST: a method to send new data to a server;.GET: a method to receive data from a server;.PUT: a method to update or change the existing data;.DELETE: a method to delete data.

2.2.2 Data formats

The back-end side of the DM application allows to work with the data in
two different formats: in a regular JSON format and in JSON-LD. The data
format can be changed in the "Content-type" key in request headers via
content negotiation.

6

................................2.2. Document Manager API

JSON

JSON (JavaScript Object Notation) is a lightweight data-interchange format.
It is easy for humans to read and write and easy for machines to parse and
generate. JSON is a text format that is completely language-independent.
These properties make JSON an ideal data-interchange language [12].

1 {
2 "uri": "http :// example .cz/ Document / TestDocument ",
3 "name": "Test document ",
4 " description ": "A document created for testing purposes "
5 }

Listing 2.2: The body of a POST request in the JSON format

JSON-LD

JSON-LD (JavaScript Object Notation for Linked Data) is a JSON-based
format to serialize Linked Data2.

According to Google Search Central 3 JSON-LD better describes the content
of the website and makes a Google search engine to understand the content
more effectively, therefore the content of the website will be featured more
relevantly.

The Document Manager is an internal application that is why it is not
important to increase its visibility for relevant searches. For this reason, I
will use the JSON data format in front-end development.

1 {
2 "@id": "http :// example .cz/ Document / TestDocument ",
3 "@type": [
4 "http :// example .cz/ Document "
5],
6 "http :// example .cz/name": "Test document ",
7 "http :// example .cz/ description ": "A document created for

testing purposes "
8 }

Listing 2.3: The body of a POST request in the JSON-LD format

2.2.3 API endpoints for the front-end implementation

The goal of this subsection is to study and analyze the REST API of the
Document Manager and to describe the endpoints needed to create a dynamic
web service.

2Linked Data is simply about using the Web to create typed links between data from
different sources. Technically, Linked Data refers to data published on the Web in such
a way that it is machine-readable, its meaning is explicitly defined, it is linked to other
external data sets, and can in turn be linked to from external data sets [5].

3Google Search Central helps the right people to view the content with resources to
make the website discoverable to Google Search [8]

7

2. Back-end analysis...................................
Document management

As the application name suggests, the main function of the Document Manager
is managing documents. In our case, the data can be divided into three groups:
Documents, Folders and Files. A user can browse them if he has access,
create a new one, update or delete the existing ones. The DM API provides
the endpoints that enable the above-mentioned functionality for all the types
of data.

An example of the Document management is given below.

. get all Documents to which a user has access:
1 GET / documents

. create a new Document and add it to the list of user’s Documents:
1 POST / documents

Listings 2.2 and 2.3 (the only difference between them is the data format)
illustrate the structure of the request body.. update the specific document (namespace is an URL parameter):

1 PUT / documents / documentName ? namespace =http:// example .cz/
Document

The request body is the same as in the POST request.. delete the specific document (namespace is an URL parameter):
1 DELETE / documents / documentName ? namespace =http:// example .cz/

Document

Version control

Previous File versions are called File mementos. A user can get all File
mementos or a specific memento. It depends on the endpoint that will be
requested:

. get all mementos of a File:
1 GET /files/ TestFile / versions ? namespace =http:// example .cz/

File

. get the specific memento:
1 GET /files/ TestFile / versions /0? namespace =http:// example .cz/

File

The version is specified using a number (in this case, the version is 0).

8

................................2.2. Document Manager API

2.2.4 Weaknesses in the REST API implementation

During the analysis of the REST API endpoints I have found some things that
were not carefully considered in the back-end implementation. These weak
places in the back-end architecture caused problems in front-end development..Not convenient solution for a file system display

The only way to display a file system is to get the list of Documents as
a first step and then to make separate requests for getting the content of
every single Document. The more convenient way is to return all Folders
with defined relationships between entities..Different endpoints for getting Folder data
Imagine the situation when a Folder has both subfolders and Files. I
have to make two requests to get at first all the subfolders and then all
the Files.. get the list of the Folder subfolders:

1 GET / folders / folderName / subfolders ? namespace =http://
example .cz/ Folder. get the list of the Folder Files:

1 GET / folders / folderName /files? namespace =http:// example .
cz/ Folder

The better solution is to make one request that gets all the items stored
in the current folder..Different structure of a File and a File memento
There is an option for a user to change a filename when he uploads a
File to the file system. It does not matter if the user wants to upload a
new File or a new File version, he always has such a possibility.
The difficulties start when I want to get the name the user gave to the
File version, because unlike the File, the File version contains only the
initial file name. There are two API responses in the listings below:
when I request a File (Listing 2.4) and when I request one of its versions
(Listing 2.5).

1 {
2 "@id": "http :// example .cz/File/Test.html",
3 "@type": [
4 "http :// example .cz/File",
5 "http :// example .cz/Node"
6],
7 "http :// example .cz/ version ": 1,
8 "http :// example .cz/ fileType ": "image/png",
9 "http :// example .cz/ created ": 1620116546771 ,

10 "http :// example .cz/ fileSize ": 74176 ,
11 "http :// example .cz/ lastModified ": 1620116560959 ,
12 "http :// example .cz/name": "Test",

9

2. Back-end analysis...................................
13 "http :// example .cz/ fileName ": " schema .PNG"
14 }

Listing 2.4: The API response when a File is requested

1 {
2 "@id": "http :// example .cz/ FileMemento /Test. html_0 ",
3 "@type": [
4 "http :// example .cz/ FileMemento "
5],
6 "http :// example .cz/ fileType ": "image/png",
7 "http :// example .cz/ version ": 0,
8 "http :// example .cz/ created ": 1620116546771 ,
9 "http :// example .cz/ fileSize ": 74176 ,

10 "http :// example .cz/ fileName ": " schema .PNG"
11 }

Listing 2.5: The API response when a File version 0 is requested

The File version response does not have the "http://example.cz/name"
key, therefore I cannot get the name of the version given by the user.

2.3 Document Manager functionalities

Based on the analysis of the API endpoints, I defined the main operations
that can be performed in the Document Manager application. All of them
are represented in the Table 2.1.

2.4 Use Case Diagram

To map the functionalities of the DM application, I have created a use case
diagram, which demonstrates the different ways a user might interact with
the application.

A use case diagram consists of use cases, actors and relationships between
them. Actor is a role that communicates with individual use cases. A user or
an external system can participate in this role [6].

I can specify two actors in the DM application: an authorized user and an
admin. All the use cases of the Document Manager application can be found
in Figure 2.4

10

.................................. 2.4. Use Case Diagram

Figure 2.4: A Use Case Diagram

11

2. Back-end analysis...................................

Entity Operations

Document create a Document
view the Document content
edit the Document metadata
delete the Document
set the user permissions to the Doc-
ument
delete the user permissions to the
Document

Folder create a Folder
view the Folder content
edit the Folder metadata
delete the Folder

File create a File
edit the File name
view the File information
download the File
view the File versions
upload a new File version
download a specific File version
delete the File

Table 2.1: The possible operations that can be performed in the Document
Manager application

12

Chapter 3
UX research

3.1 Motivation

In my opinion, it is very important to do the UX research before starting
front-end development, because it can potentially save me from redoing the
parts of the application that were not sufficiently considered.

Also, as the UX is the study of the interaction between users and a system
[28], the UX research will give me an idea how to make the application easy
and intuitive from a user’s point of view.

3.2 Document Manager functionality

The success of any computer application is dependent on providing the
appropriate facilities for the task in a manner that enables users to exploit
them effectively [11].

The provision of facilities is an issue of functionality. In case of the
Document Manager, its functionality fully depends on the implemented API
endpoints and accordingly, the UI/UX1 will be also built based on them.

I need to study how well the application functionality accommodates users’
needs, and here I am directly concerned with one of the main components of
UX design – usability.

3.3 Usability

Usability is a measure of how well a user in a specific context can use a
product to achieve a defined goal effectively, efficiently and satisfactorily [15].
To reach a high level of usability the page is supposed to load fast and be
easy for understanding. To make it possible I need to create a clear visual
hierarchy and transparent web navigation.

1UI (User Interface) is anything that facilitates the interaction between a user and a
machine [28]. UX is an acronym that stands for User eXperience [28]

13

3. UX research
3.4 The importance of a clear visual hierarchy

It is necessary to make sure that the appearance of the elements on the
page clearly and accurately portray the relationships between them: which
elements are more important, which are similar and which are a part of other
elements. In other words, each page should have a clear visual hierarchy
[22].

3.4.1 Main traits of a clear visual hierarchy

A good visual hierarchy saves the work by "preprocessing" the page: organizing
and prioritizing its contents in a way that can be grasped almost instantly
[22]. Pages with a clear visual hierarchy have three traits:

.The more important something is, the more prominent it is

For example, the last version of a File in the list of versions is larger and
bolder because it is more important than the older ones (Figure 3.1).

Figure 3.1: An example of a clear visual hierarchy in the list of File versions

.The things that are related logically are also related visually

Documents, Folders and Files are related logically, that is why they
should be displayed in a similar visual style..Things are “nested” visually to show what is a part of what

For example, a Document should appear above a Folder because the
Folder is a part of that Document (Figure 3.2).

14

................................... 3.5. Web navigation

Figure 3.2: An example of a clear visual hierarchy in the file system

3.4.2 Adding a Document

Due to the fact that Documents have the highest position in the DM hierarchy
and they act as a starting point of a file system, the location of the Document
add-icon should be different from the others. Probably, it should be completely
moved out of a file system bounds.

3.4.3 Place of a logotype in a visual hierarchy

The application name or logotype represents the whole site, which means
that it is the highest element in the logical hierarchy of the site. In the same
way as we expect to see the name of a building over the front entrance, we
expect to see the logotype at the top of the page.

The best place for the logotype is in the upper left corner where it frames
the entire page and where it can be found without thinking (Figure 3.3) [22].

3.5 Web navigation

A visitor needs to know that he does not get lost on the website. That he
easily figures out where to find what he wants. Otherwise, the visitor will
leave the website.

To encourage a visitor to stay and subsequently create a positive user
experience it is necessary to make an organized and transparent web navigation
that will act as a road map to direct a visitor to various information on your
website.

The Navigation should explain how to use the website. If the navigation
fulfills its task it implicitly tells to the visitor where to start and what options
the website provides.

15

3. UX research

Figure 3.3: An example of placing a logotype on the page

3.5.1 Home page button

One of the most crucial items in the persistent navigation is a button or a
link that takes a visitor to the website’s Home page. There is an emerging
convention that the logotype doubles as such a button. Having a Home
button in sight at all times offers reassurance that no matter how lost the
visitor is, he can always start over. It is a useful idea that every site should
implement [22].

In Document Manager, when clicking on the logotype, the file system closes
and the visitor sees only the list of his documents, i.e. the initial state of the
application (Figure 3.4).

Figure 3.4: The initial state of the application

16

................................... 3.5. Web navigation

3.5.2 Search button

According to Econsultancy2 report [21], 30 percent of visitors use a search
field. Therefore, it is important to remember that when a large number of
users visit a page for the first time they look for the search field (Figure 3.5).

From the UX side it is necessary to have a search field, especially in a file
system, where a lot of folders and files are stored. But due to the fact that
the API does not have the endpoints for searching on the server, the search
field is not implemented on the front-end side.

Figure 3.5: An example of placing a search field on the page

3.5.3 Operation icons

A user can perform lots of operations within the Document Manager. For
instance, add, change, download, delete entities.

All these operations should be easily-recognizable and displayed on a page
in such a way that the user will have no problems with understanding how to
operate with them.

In case of an existing entity, the operation-icons should be situated near it,
to make it clear that the operations relate exactly to this entity.

2a source of intelligence for digital marketers [2]

17

18

Chapter 4
Front-end plan

Front-end is the presentation layer of an application. The front-end in-
cludes building intuitive and pleasant interfaces, as well as efficiently storing,
presenting, and updating data received from the back-end or API [34].

There are a lot of tools and techniques used to create the front-end of a
website. It is important to choose the most appropriate way of front-end
development based on the idea of the application and taking into account the
data provided by the DM API.

4.1 Concepts of front-end development

4.1.1 Single-page application vs Multi-page application

A key success factor for a web application is the design and architecture choices
a developer makes. There are two main design patterns for web applications:
multi-page application (MPA) and single-page application (SPA). Both models
have their pros and cons.

Single-page application (SPA)

A single-page application is an app that works inside a browser and does
not require page reloading during use. The SPA performs most of the user
interface logic in a web browser [20].

It communicates with the server using web APIs to retrieve data. Initially,
all UI resources (HTML, CSS, JavaScript) are retrieved by a single page load
once. Any update to the page happen dynamically in response to the user’s
actions. The page does not reload (or loads other pages) at any point in the
life span of the application[20]..Pros - the SPA is fast, as most resources (HTML, CSS, Scripts) are only

loaded once throughout the lifespan of an application.
The SPA provides better caching capabilities. It sends a request to
the server and then stores the received data locally in the client-side.
Therefore, the SPA can cache any local data efficiently and users can
work even offline [20].

19

4. Front-end plan
.Cons - Since the SPA loads the entire application at once, the initial

load can often take much longer than an MPA-loaded page at a time.
It happens, because heavy client frameworks are required to be loaded
to the client.
It requires JavaScript to be present and enabled. If a user disables
JavaScript in a browser, it will be impossible to present an application
and its actions correctly.

Multi-page application (MPA)

A Multiple-page applications work in a “traditional” way. Every change, e.g.
displaying the data or submitting the data back to server requests rendering
a new page from the server in the browser [4]..Pros - It is the perfect approach for users who need a visual map of

where to go in the application. Solid, few level menu navigation is an
essential part of traditional Multi-Page Applications [4].
Very good and easy for proper SEO management. It gives better
chances to rank for different keywords since an application can be opti-
mized for one keyword per page [4]..Cons - In the MPA, a browser reloads most of the UI resources with
every user interaction. It lowers speed and performance [20].
The development becomes quite complex. The developer needs to use
frameworks for both the client and the server side. This results in a
longer time of application development [4].

4.1.2 Server-side rendering vs Client-side rendering

Earlier, websites and web applications had a common strategy to follow. They
prepared HTML content to be sent to the browser at the server-side. Then,
this content was rendered as HTML with CSS styling in the browser [32].

JavaScript frameworks came in with a completely different approach to
web development. They allowed to render dynamic content right from the
browser [32].

That is why over recent years a lot of developers are into the dilemma of
having the two approaches to rendering websites: client-side and server-side.

Server-side rendering (SSR)

In server-side rendering when a user makes a request to a webpage, the server
prepares the HTML page by fetching user-specific data and sends it to the
user’s machine over the internet. The browser then constructs the content
and displays the page. This entire process of fetching data from the database,
creating the HTML page and sending it to the client happens in milliseconds
(Figure 4.1) [3].

20

........................... 4.1. Concepts of front-end development

SSR can speed up page load time. Search engines can crawl the website
for better SEO1 and rank it better in Google2 search results [3].

Figure 4.1: A server-side rendering schema (taken from [3])

Client-side rendering (CSR)

When we talk about client-side rendering, it is about rendering the content
in the browser using JavaScript. So instead of getting all the content from
the HTML document itself, the HTML document with a JavaScript file in
initial loading itself is received, which renders the rest of the site using the
browser (Figure 4.2) [3].

4.1.3 Conclusion

Among all the concepts of front-end development I have chosen the Single-
Page Application and Client-Side Rendering for the Document Manager
application development. When making the final decision, I based it on the
following factors:.Good SEO is not important - The Document Manager is an internal

application, so it is unnecessary to optimize the website and its content
to increase its visibility for relevant searches.. JavaScript - the SPA cannot work correctly without JavaScript instead
of the MPA. But it is not an essential problem, because by 21.04.2021

1SEO - Search engine optimization: the process of making your site better for search
engines [8]

2Google is a fully-automated search engine that uses software known as "web crawlers"
that explore the web on a regular basis to find sites to add to our index [8]

21

4. Front-end plan

Figure 4.2: A client-side rendering schema (taken from [3])

according to [9] 92.11 percent of web users use JavaScript..CSR ensures fast website rendering after the initial load - with
client-side rendering, the initial page loading is naturally a bit slow.
However, after that, every subsequent page loading is very fast [3]..No need to reload the entire UI - In the CSR approach, commu-
nication with the server happens only to get run-time data. It will be
more convenient for a user to see that only parts of the page are updated
and the entire UI is not reloaded after every call to the server [3]..Complexity - CSR is arguably easier to do.

4.2 Technical approaches to the SPA development

Modern web applications, due to the functionalities they provide in their user
interfaces, have a complex program structure. Because of the complexity of
the entire application, writing code manually can result in uneven quality
and content of individual application parts [19]. The maintenance of such
applications is also more difficult.

Because of this, web applications are often developed using different frame-
works. A framework allows structuring, simpler and more uniform program
script writing, and thus easier web application maintenance [19].

According to Stack Overflow3 trends [1] the three most popular JavaScript
frameworks in 2020 are Vue.js, Angular and React (Figure 4.3).

3the largest, most trusted online community for developers to learn, share their pro-
gramming knowledge, and build their careers [34]

22

...................... 4.2. Technical approaches to the SPA development

Figure 4.3: The popularity scale of the six most well-known Javascript frame-
works

4.2.1 Vue.js

Vue.js is a progressive framework used to build web interfaces and one-page
applications. It is small in size and offers two major advantages – it is
component-based and renders the UI using a virtual DOM [10].

This framework is increasingly popular in China, and a significant part of
its content and discussions are in Chinese. Moreover, most Vue.js plugins
are also written in Chinese [13]. This language difference can cause problems
during implementation.

Vue.js has a relatively low market share, which means that information
exchange in this framework is only in the early stages [37].

4.2.2 Angular

Angular is an application design framework and development platform for
creating efficient and sophisticated single-page apps [35].

Angular offers a wide range of features and benefits for developers. For
example, Angular is cross-platform, so it can be used for desktop-installed,
native or progressive web applications (PWA4).

It uses different design patterns, such as MVC5, Singleton, DI 6 and others,
4PWA - Progressive Web Apps: web apps that bring a native app-like user experience

to cross-platform web applications [28].
5MVC - Model-View-Controller: an application design pattern comprised of three

interconnected parts. They include the model (data), the view (user interface), and the
controller (processes that handle input) [7].

6Dependency Injection: a design pattern in which a class requests dependencies from
external sources rather than creating them [35].

23

4. Front-end plan
which provide easily recognizable solutions to common problems.

Angular also has tools for improving speed and performance. Notably, these
include a new Component Router, which delivers automatic code-splitting,
and Angular Universal technology for near-instant rendering in just HTML
and CSS (see 4.1.2 for more information about this type of rendering) [35].

In other words, Angular is a full-fledged framework for application devel-
opment. There is no need to import additional libraries, because all the
above-mentioned functions can be implemented by means of the Angular
package.

Taking into account the fact that the DM application is not very complex,
does not contain a lot of business logic, does not need a mobile application or
specific optimization, I can make a conclusion that Angular is a sophisticated
solution for the DM application front-end development.

4.2.3 React

React is a JavaScript library for building user interfaces [33].
React makes it painless to create interactive UIs. It allows to design simple

views for each state in an application, and then efficiently updates and renders
just the right components when the data changes [33].

React requires additional libraries for optimization, routing, styling, ani-
mations, etc. Therefore, a developer has to install the libraries and modules
he needs for the application.

JSX syntax

JSX is a JavaScript Extension Syntax used in React to easily write HTML
and JavaScript together.

For example, this tag syntax is neither a string nor HTML:
1 const element = <h1 >Hello , world !</h1 >;

Listing 4.1: An example of JSX syntax

React embraces the fact that rendering logic is tightly coupled with other
UI logic. That is why instead of separating technologies by putting markup
and logic in different files, React separates concerns with the units called
“components” that contain both [33].

Capitalized types indicate that the JSX tag is referring to a React compo-
nent (For instance, the component CustomButton in Listing 4.2). These tags
get compiled into a direct reference to the named variable [33].

1 return <CustomButton color="red" />;

Listing 4.2: The React component in JSX

4.2.4 Conclusion

Based on the comparison of the JavaScript frameworks, I can conclude that the
most suitable framework for the Document Manager front-end development

24

................................. 4.3. Application structure

is React. The key factors of such a choice are:. flexible development - I use only these necessary modules and libraries,
I need directly for the DM;. reusable components - this feature is very useful, for example, for the
implementation of modal windows, which have the same structure, but
are used in different parts of the application;. thriving community - React has a community of millions of developers.
There are many online forums, where I can find the answers to my
questions and discuss the best practices;. a lot of useful libraries - for instance, I use React Query library to
manage the data within the application (see the section 6.4 for more
details);.my own experience in React - and last but not least, I have already
written some small applications in React.

4.3 Application structure

I use a feature-based approach to React development. Feature folders
help eliminate some common development problems (for example, when a
project widens) by placing everything that is unique to one area of the code
together [24].

Benefits of this approach:.Code is structured in a way that reflects purpose
This makes it easier to find files and to understand where the things
belong to. Additionally, it helps to clarify how a bit of code contributes
to the overall goals of an application..Code is easier to refactor
If a feature has one entry point, it is clear that removing the feature will
have limited impact on the rest of the system.

You can see the structure of the Document Manager front-end in Figure
4.4.

4.3.1 Assets

Assets folder should contain the resources, which will be required by the
application. For example, files like images, icons, fonts, etc.

In my case, the assets folder contains only icons (Folder, File, add Folder,
delete Folder, etc. icons) in SVG7 format.

7Scalable Vector Graphics

25

4. Front-end plan

Figure 4.4: The structure of the Document Manager front-end (taken from
Gitlab FEL)

4.3.2 Helpers

Helpers, as the name suggests, help with different tasks. Each helper file is
simply a collection of functions in a particular category [14].

Helpers are not written in an Object-Oriented format. They are simple,
procedural functions. Each helper function performs one specific task, with
no dependence on other functions [14].

I have one helper function for making API requests. It takes several
arguments: url - an API endpoint,method - GET, POST, PUT or DELETE,
body and headers (Listing 4.3).

1 export const request = async (
2 url ,
3 method = "GET",
4 body = null ,
5 headers = {}) => {
6 const response = await fetch(url , {method , body , headers });
7 const data = await response .json ();
8 return data;
9 }

Listing 4.3: The helper function for making an API request

4.3.3 Features

My feature folder contains the following files:

26

................................. 4.3. Application structure

. api.js - the functions, which perform CRUD operations are situated in
api.js. For example, getDocuments(), addFolder(), updateFile()
and deleteUserPermission();. hooks.js - this file contains my custom hooks (you can find more infor-
mation about custom hooks in the section 6.3.1) with application logic
processing functions;. utils.js - here I place small snippets, which are used throughout the
application. For instance, the function that parses URLs (Listing 4.4).

1 export const getLinkInfo = (link , part) => {
2 if (! link) return null;
3 const url = new URL(link);
4 return ‘${url. pathname .split("/")[part]}‘;
5 };

Listing 4.4: The URL parser function

4.3.4 Components

React allows to create encapsulated components and make complex UIs by
composing them [33]. In the DM application I have several main components:.Document List component - it is a starting point of the application.

It shows the list of Documents;. Folder List component - it receives props from the Document List and
recursively shows the Folders and Files, which the Documents contain;.Modal component - it is the component, which helps to create di-
alogues. It is used when a user wants to add a Document, Folder or
File;. File Info component - this component is rendered when a user wants
to see the information about the File. It contains the list of File versions
and the basic File information.

Components are reusable, so it is enough to create a component once and
then just call it when it is needed. For example, the Modal component is
called when a user wants to add a Document, Folder or File. The structure
of these modals is different because of the different props that were passed,
but in fact it is the same Modal component.

27

28

Chapter 5
UI design

In this chapter the application flow is described in detail. To illustrate
the application functionalities the chapter contains the screenshots of the
Document Manager front-end, which was implemented based on the use cases
from the section 2.4.

The recommendations from the UX research (chapter 3) were also taken
into account.

5.1 Authorization

The Document Manager does not have its own internal authorization system
and uses an external one provided by the Knowledge-based and Software
Systems CTU FEE group.

A user cannot use the application without authorization. When the user is
unauthorized he is offered to log in by clicking on a link on a screen (Figure
5.1)

Figure 5.1: The page shown to an unauthorized user

Then, the user is redirected to the page with a log in form, where he needs
to fill in two inputs: "username" and "password" (Figure 5.2). After successful
authorization, the user is returned to the main page of the Document Manager
application, where the list of available for him Documents is situated.

29

5. UI design

Figure 5.2: KBSS Authorization Service, which is used in the Document Manager
application

Authorization is needed to define the user’s access level to show him only
these Documents he has the rights to interact with.

An authorized user can log out any time by clicking on the corresponding
button.

5.2 File system display

Documents are the highest entities in the DM hierarchy, therefore they should
be the first elements a user sees on the page. Documents contain Folders and
Files, which should be accessible by clicking on the Document, where they
are stored. The Folders inside Documents in turn can contain other Folders
and Files and so on (Figire 5.3)

This is called a recursive structure. The specific meaning of "recursive"
in this context is "operating on a directory and its contents, including the
contents of any subdirectories".

5.3 Operations implementation

As I inspected in the section 2.3, there is a set of operations that can be done
with all the DM entities. These operations can be divided into two groups:
Document or Folder operations and File operations.

5.3.1 Document and Folder operations

Documents and Folders act as containers for Folders and Files, that is why
first of all they need to have "Add a new Folder" and "Add a new File"

30

.............................. 5.3. Operations implementation

Figure 5.3: The file system in the Document Manager application

operations (Figure 5.4). Also, they can be edited and deleted.

Figure 5.4: The operations that can be performed on a Document or Folder

Add a Document or Folder

To add a new Document or Folder it is enough to fill in the field "name" in a
modal window, which will open after clicking on the add-icon (Figure 5.5).
The field "description" is optional. If a Document or Folder with such a name
already exists, a user will see an error message and will be offered to change
the name and try again.

Figure 5.5: The modal window for adding a new Document or Folder

31

5. UI design
Add a File

Files can be added to any Folder. A modal window, where a user is able to
choose a File to upload, also contains the "filename" input. It is hidden before
the File is chosen (Figure 5.6) and after it a user can change the filename
(Figure 5.7). By default, the File name corresponds to the File name on user’s
local device, but it can be changed before the uploading process starts. An
application checks if a File name is unique and if yes, the File will be added.

Figure 5.6: The modal window for adding a new File (before the File is chosen)

Figure 5.7: The modal window for adding a new File (after the File is chosen)

Edit

Documents and Folders have only two parameters, which can be edited: "name"
and "description". When a user wants to change the name or description, a
modal window with prefilled values opens. In case the new name coincides

32

.............................. 5.3. Operations implementation

with the name of the already existing Document or Folder, an error message
is shown and the changes are not saved.

Delete

If a user wants to delete a Document or Folder, an application will display
a delete confirmation dialog box to make sure that the delete-icon was not
clicked by mistake. Then, a Document or Folder will be deleted without a
possibility of being restored.

5.3.2 File operations

In comparison with Documents and Folders, Files have some unique opera-
tions, such as "Download", "View File information" and "View File versions".
Accordingly, due to its complex properties, a single File is shown separately
on the page to provide a user with the full File information (including all File
versions) in a user-friendly way.

Figure 5.8: The operations that can be performed on a File

View the File information

If a user clicks on the information-icon, all the information will be displayed
on the right side of a page (Figure 5.9). The structure of a File info section
will be the following: the last version of the File with the information about
file size, the date when it was created, etc., the list of previous File versions
in reversed order - from the newest version to the oldest. Also there will be a
possibility to change the file name, to add a new file version and to download
any of the versions.

Edit

A user can change both the File name and File content. To change the File
content means to upload a new File version. To make it understandable for
a user, an option to add a new version should be situated near the list of
File versions. To change the File name it is enough to enter the name that is
unique to prevent an error.

Download

A user can download a File by clicking on the download-icon, which is situated
on the right-hand side of it (Figure 5.8). Moreover, it is possible to download
all File versions.

33

5. UI design

Figure 5.9: The window with the information about the File and its versions

Delete

Files can be deleted in the same way like Documents and Folders.

5.4 Access rights management

As I mentioned in 2.1.5 it is possible to set the access rights only in Documents.
This automatically applies to the content of a Document. The Document
is not visible to the user with the insufficient access level, consequently the
content of the Document is also unavailable.

The access rights are managed in the Document modal window, which
opens when a user wants to create a new Document (Figure 5.10). This user
can set the access level for other users by clicking "Add user permissions" in
the Document modal window. To set the access rights it is necessarily to
choose the user’s URI in the list of users and one of the four (None, Read,
Write, Security) access levels.

Access rights can also be managed by clicking on the edit-icon near the
already existing Documents.

5.5 User management

The API contains some endpoints related to user management (for instance,
Listing 2.1), which are not used in the DM application. User management
implementation is not a part of my bachelor thesis, but it can be considered as
a future extension. Now user management is regulated by the authorization
service provided by CTU FEE.

34

.................................. 5.5. User management

Figure 5.10: The modal window, which contains the user management section

35

36

Chapter 6
Technical solution

6.1 Authorization

6.1.1 External authorization service

I am using an external service provided by Knowledge-based and Software
Systems CTU FEE group for user authorization. This service uses JSON Web
Tokens, which are able to transfer the information in JSON format. These
tokens can be digitally signed or even encrypted. Due to these properties
they are mostly used for authorization.

Working principle

The Document Manager application only needs to know the address of the
authorization service to redirect a user who wants to log in there. Then, the
user fills in his username and password, chooses ’document-manager’ in the
list of KBSS applications and presses login. The rest of the work, namely
validation, checking user credentials and setting the user access level, is done
by the authorization service.

After a successful authorization the service returns a unique token, which
I process and set it in Local Storage. The token contains the information
about the user’s access rights and is used in server requests.

6.1.2 Token validity

A token is valid for some period of time. The case of the token expiration
should be handled to prevent a user to see the error unknown to him.

When the token is not valid anymore, the request to the server fails and
returns the error with the status code 502 - Bad Gateway. My solution to
this issue is to check the status code of the request for getting the Documents
and once I get 502 - Bad Gateway, the user is automatically logged out.
Then, the user is redirected to a page with information that he needs to log
in again to continue.

37

6. Technical solution...................................
6.2 Routing

The routing is organized by the React Router library. React Router is a
collection of navigational components that compose declaratively with the
application [36].

The Document Manager application has two routes: the main route, where
the file system can be found and the authorization route, where a user can
log in. You can see the routes in the listing 6.1

1 export const Routes = () => {
2 return (
3 <Switch >
4 <Route path="/" exact component ={ DocumentTree } />
5 <Route path="/auth" exact component ={ TokenHandler } />;
6 </Switch >
7);
8 };

Listing 6.1: The Document Manager routes

6.3 Hooks

Hooks are a new addition to the React 16.8. They allow for using state and
other React features without writing a class [33].

With Hooks, it is possible to extract stateful logic from a component so it
can be tested independently and reused. Hooks allow you to reuse stateful
logic without changing your component hierarchy. This makes it easy to
share Hooks among many components [33].

6.3.1 Custom hooks

A custom Hook is a JavaScript function, which name starts with ”use” and
that may call other Hooks [33].

Unlike a React component, the custom Hook does not need to have a
specific signature. We can decide what it takes as arguments, and what it
should return. In other words, it is just like a normal function [33].

I have built custom hooks to extract the DM logic into reusable functions.
For example, the listing 6.2 is a hook, which contains the logic of adding a new
Document. A function handleAddFolderFetcher can be simply reused. On
lines 22 and 23 I call useQueryClient and useMutation hooks to manage
adding a new Document to the list of Documents displayed on the page.
These React Query hooks are described in section 6.4 in more detail.

1 export const useAddRootFolder = ({ onClose , modals }) => {
2 const handleAddFolderFetcher = async (data) => {
3 const { isRoot , parentFolderId , isOpen , isEdit } = modals .

folder ;
4 if (! isOpen || isEdit) return ;
5
6 const parentFolderName = getLinkInfo (parentFolderId , 2);

38

....................................... 6.3. Hooks

7
8 try {
9 const addedFolderResponse = await addFolder (

10 parentFolderId ? " Folder " : " Document ",
11 data.name ,
12 data. description ,
13 isRoot ,
14 parentFolderName
15);
16 }catch (error) {
17 throw (error);
18 }
19
20 const onSuccess = (response) => { ... }
21
22 const queryClient = useQueryClient ();
23 const { mutateAsync , isLoading , error } = useMutation (

handleAddFolderFetcher , {
24 onSuccess ,
25 });
26
27 return { addRootFolder : mutateAsync , isLoading , error };
28 };

Listing 6.2: The hook, which contains the logic of adding a Document

6.3.2 useState

useState is called inside a function component to add some local state to it.
React will preserve this state between re-renders [33]. In the listing 6.3 you
can see that useState returns a stateful value and a function to update it.

1 const [state , setState] = useState (initialState);

Listing 6.3: useState hook

I use this hook, for example, to manage the state of a Folder: if it has
children it can be opened.

1 const [isOpen , setOpen] = useState (false);
2 if (folderChilds . length > 0) setOpen (! isOpen);

Listing 6.4: An example of the useState hook in the Document Manager

6.3.3 useEffect

useEffect adds the ability to perform side effects from a function component.
It serves the same purpose as componentDidMount, componentDidUpdate,
and componentWillUnmount in React classes, but are unified into a single
API [33].

For instance, I use this hook to get the current user immediately after
render.

1 useEffect (()=> {

39

6. Technical solution...................................
2 getCurrentUser ().then(user => localStorage . setItem (’

currentUserUri ’, user[’uri ’]));
3 }, [])

Listing 6.5: An example of the useEffect hook in the Document Manager

6.4 Client/Server state synchronization

The client and server states should be synchronized to display the DM file
system correctly. The client state should include the last changes made on the
server and should be immediately updated after a successful server request,
that changes the structure of the file system. It is very important from the
UX side to show the user the result of his interaction with the application.

Let me give an example. A user wants to add a Folder or a File to the
file system. It is assumed he will see a new entity on the page right after he
successfully finishes the process of adding it. So, he will not need to refresh
the page to see the changes.

For this purpose, I have chosen the React Query library, which ideally fits
the requirements of the application. Namely, to update the file system in
case of adding, editing or deleting an entity.

6.4.1 React Query concepts

React Query makes fetching, caching, synchronizing and updating the data
in React applications easier. It can be customized as the application grows
and need zero configuration [25].

The three core concepts of React Query are queries, mutations and query
invalidation.

Queries

A query is a declarative dependency on an asynchronous source of data that
is tied to a unique key. A query can be used with any Promise-based method
(including GET and POST methods) to fetch data from a server [25].

1 export const useDocuments = () => {
2 const { data } = useQuery (" Documents ", getDocumentList);
3 return { documents : data };
4 };

Listing 6.6: An example of getting the Documents from the server

Mutations

Unlike queries, mutations are typically used to create, update or delete data.
For this purpose, React Query exports a useMutation hook [25].

I use it for adding, updating or deleting the DM entities. For example, if a
user successfully adds a new Folder he will immediately see it in the Folder
list.

40

..................................... 6.5. React.memo

1 const { mutateAsync } = useMutation (handleAddFolderFetcher , {
onSuccess });

2 return { handleAddFolderFetcher : mutateAsync }

Listing 6.7: An example of adding a Folder to the Folder list

OnSuccess function will be called when the mutation is successful and the
mutation’s result will be passed [25].

Query Invalidation

The QueryClient1 has an invalidateQueries method that lets mark queries as
stale when the query’s data are out of date [25].

1 const queryClient = useQueryClient ()
2 queryClient . invalidateQueries (’Documents ’)

Listing 6.8: An example of invalidation a ’Documents’ query

6.5 React.memo

React.memo is a higher order component2.
If a component renders the same result given the same props, it can be

wrapped in a call to React.memo for a performance boost by memorizing the
result. This means that React will skip rendering the component and reuse
the last rendered result [33].

This method exists for performance optimization purposes [33]. For ex-
ample, when I add a new Folder or File to the list, the other items do not
rerender because their props have not been changed.

1 const FolderItem = memo (({
2 folder ,
3 isRoot ,
4 setModals ,
5 setOpenFileInfoModal ,
6 setFileInfo ,
7 parentId
8 }) => { ... }

Listing 6.9: An example of a memo usage in the DM application

6.6 Styling

There are a lot of ways to style components in React. In the Document
Manager application, I use Styled-Components library for this purpose.

1The QueryClient can be used to interact with a cache[25]
2A higher-order component (HOC) is an advanced technique in React for reusing

component logic[33]

41

6. Technical solution...................................
Styled-Components is a CSS-in-JS library, that bridges the gap between

components and styling, offering numerous features to style React components
in a functional and reusable way.

It removes the mapping between components and styles. This means
that when a developer defines the styles, he actually creates a normal React
component, that has the styles attached to it (Figure 6.10) [16].

1 export const StyledIcon = styled .img ‘
2 height : 30px;
3 width: 30px;
4 position : absolute ;
5 cursor : pointer ;
6 right: ${(props) => props.right };
7 top: ${(props) => props.top };
8 position : ${(props) => props. position };
9 transform : ${(props) => props. transform };

10 ‘;

Listing 6.10: The CSS styles of the StyledIcon component

1 import StyledIcon from "./ styled ";
2 <StyledIcon
3 src ={ addVersionIcon }
4 title="Add a new file version "
5 position =" absolute "
6 right="0"
7 top=" -3px"
8 transform ="scale (0.6)"
9 onClick ={() => { ... }

10 \>

Listing 6.11: The usage of the StyledIcon component

The reasons why I use Styled-Components are:.Automatic critical CSS - styled-components keep track of which
components are rendered on the page and injects their styles fully auto-
matically [16];. Simple dynamic styling - adapting the styling of a component is
simple and intuitive, because a developer do not have to manually
manage lots of classes [16];.Developer experience - all of the core library and most popular pieces
of functionality are available right in the main import. This makes the
library easier to refactor, teach and understand [17].

42

Chapter 7
Usability testing

To design the user interface, which will meet the users’ needs, a developer
should understand what tasks the users will use their system for and how
those tasks will be performed. An understanding of tasks that the users will
perform gives developers an insight into the functionality which should be
provided and how it will be used [29].

The aim of usability testing is not to solve problems, or to enable a quanti-
tative assessment of usability. It provides the means of identifying problem
areas, and the extracting of information concerning problems, difficulties,
weaknesses and areas for improvement [29].

7.1 Usability Testing Method

For the Document Manager application, I have chosen a formal testing method:
data are collected as typical users are observed interacting with the system,
using predefined tasks. I prepared two test scenarios for three test users to
complete.

7.2 Test scenarios

Scenarios describe the stories and context behind why a specific user comes
to your site. They note the goals and questions to be achieved and sometimes
define the possibilities of how a user can achieve them on the site [31].

7.2.1 Basic functionality test

The goal of this test is to check if a user can easily understand how to add,
change and delete the basic Document Manager entities...1. Add a new Document with the name "New document" and the description

"This is my first document";..2. Add a new Folder with the name "New folder" and the description "This
is my first folder" to this Document;

43

7. Usability testing3. Change the name of this Folder to "Changed folder" ;..4. Delete this Folder;..5. Upload a new File with the name "New file" to the Document;..6. Change the name of this File to "Changed file";..7. View the File versions;..8. Add a new File version;..9. Download this File;...10. Delete the File;...11. Delete the Document;

7.2.2 Access rights test

The goal of this test is to check if a user can easily understand how to
manage the access rights of his own Documents and be able to distinguish
the documents with different access levels.

For this purpose, I have created the two Folders as the administrator and
gave the test user the READ and WRITE permission levels to these Folders
respectively...1. Add a new Document with the name "New document" and the description

"This is my first document";..2. View user permissions for this Document;..3. Add a new user permission with the userURI "test+user1" and the
permission level "READ";..4. Add a new user permission with the userURI "test+user2" and the
permission level "SECURITY";..5. Delete a permission for the user with the URI "test+user2";..6. Add a new Folder to the document "Read document";..7. Add a new Folder to the document "Write document";

7.3 Results

Practically all the instructions were done by the test users without serious
problems. I received positive application reviews and the UI/UX of the
Document Manager was highly valued.

But of course, there were some weak places in the application, where the
users did not understand if they act right. Some of these problems were not

44

....................................... 7.3. Results

critical and did not keep the test users from completing the scenario, but one
of the problem was really severe.

The detailed information about discovered application problems you can
find below.

7.3.1 Folder user rights management UI/UX problem.Problem description - when a test user added a wrong user permission,
clicked cancel in a modal window and opened user management section
again, he found out that the wrong user is still there. It was not clear
that there is no option to reset changes a user made in this section..Where - the front-end side;. Severity level - 1/51;. Solution - A possible solution is to change the UI/UX by separating
the user management section from the editing section, for example, by
displaying a new modal window with the list of permissions above the
opened one. Another solution is to add "submit" and "cancel" buttons to
the user management section, but in my opinion it is not an elegant way
to solve this issue, because it will cause the duplication of buttons.

7.3.2 WRITE access level does not work.Problem description - As an administrator I have created a folder with
WRITE access level for test users to check if test users easily recognize
the difference between access levels.
Test users found out that adding a folder or a file to a folder with access
level WRITE was impossible and returned an error 403 - forbidden.
It means that something went wrong on a back-end side and back-end
was not able to process this action..Where - the back-end side;. Severity level - 4/5;. Solution - this issue should be solved on the back-end side.

7.3.3 Filename does not update in a file system.Problem description - when a user changes a filename in the file
information window, the filename does not change in the file system
immediately. The filename is updated only after the page reloads..Where - a front-end side;. Severity level - 3/5;. Solution - update the filename in the file system using React Query.

11 - minor, 5 - critical

45

7. Usability testing
7.3.4 File version does not update after a new version is
added.Problem description - when a user uploads a new file version, the
number is not changed immediately in the file information window..Where - the front-end side;. Severity level - 2/5;. Solution - update the file version number in a file information window
using React state.

7.3.5 A new folder display.Problem description - when a user adds a new folder it is not displayed
in the file system, it remains hidden inside its parent Folder. A user
needs to click on the parent Folder to see the Folder he has just added..Where - the front-end side;. Severity level - 1/5;. Solution - open the parent Folder immediately after a user adds a new
Folder.

7.3.6 Problem with changing a filename.Problem description - when a user changes a filename he supposes
that the changes can be saved on enter, not on blur..Where - the front-end side;. Severity level - 2/5;. Solution - change the way of saving a new filename.

7.3.7 File information window does not close after the File
is deleted.Problem description - when a user has the window with the File
information opened and then deletes this File, the information window
remains open..Where - the front-end side;. Severity level - 3/5;. Solution - handle closing the information window when a user deletes
the File.

46

.......................................7.4. Changes

7.4 Changes

I solved some of the above-mentioned problems to improve the usability of
the Document Manager application. I described it in detail in the table 7.1

Problem Solution
Filename does not update in a
file system (subsection 7.3.3)

I changed the filename in cache using
the useQueryClient hook from the React
Query library.

File version does not update
after a new version is added
(subsection 7.3.4)

I solved this problem by changing the
states in the FileInfo component.

Problem with changing a file-
name (subsection 7.3.6)

I added the event listener for a global
window, checked if the event key equals
Enter and called the blur event for the
focused element.

File information window does
not close after the File is
deleted (subsection 7.3.7)

I change the state of the File information
window before the request to delete the
File is sent.

Table 7.1: The problems identified while the usability testing and their solutions

47

48

Chapter 8
Conclusion

In my opinion, the main goal of my bachelor thesis – to implement the user
interface for the Document Manager application – was reached. It is also
important to mention that the application can be considered not only as a
base for the bachelor thesis, but as a functional tool for practical use as well.

I had some experience with React application development beforehand,
but during the Document Manager front-end development I came across with
much more difficult tasks and certainly improved my knowledge. Moreover, I
gained experience as a UI/UX designer and did research how to make the
application intuitive and user-friendly.

All planned functionalities were implemented, but there is also a space for
improvement. For example, the admin panel, where it will be possible to
manage users, namely to add them to groups or to manage user permissions
in a more UX-friendly way, can be a future application extension. Also, a
search field is a necessity for such a type of application, where lots of files are
stored.

49

50

Appendix A
Bibliography

[1] Stack overflow trends. https://insights.stackoverflow.com/
trends, 2020. [Online; accessed 19-March-2021].

[2] Econsultancy. https://econsultancy.com/, 2021. [Online; accessed
17-January-2021].

[3] Yudhajit Adhikary. Client side rendering vs server side rendering
in react js and next js. https://yudhajitadhikary.medium.com/
client-side-rendering-vs-server-side-rendering-in-react-js-next-js-b74b909c7c51,
April 6th 2020. [Online; accessed 19-March-2021].

[4] Neoteric Software Development Agency. Single-page application
vs. multiple-page application. https://medium.com/@NeotericEU/
single-page-application-vs-multiple-page-application-2591588efe58,
09 2017. [Online; accessed 25-April-2021].

[5] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked data: The
story so far. International Journal on Semantic Web and Information
Systems, 5:1–22, 07 2009.

[6] David Capka. Lesson 2 - uml - use case diagram. "https://www.ict.
social/software-design/uml/uml-use-case-diagram, 2021. [On-
line; accessed 27-April-2021].

[7] Per Christensson. TechTerms The Computer Dictionary. TechTerms,
2020. Available at https://techterms.com, [Online; accessed 22-
February-2021].

[8] Google Developers. How to get your website on Google Search. Google,
2021. Available at https://developers.google.com/search, [Online;
accessed 15-March-2021].

[9] Alexis Deveria. Can i use javascript. https://caniuse.com/?search=
javascript, 2021. [Online; accessed 23-March-2021].

[10] Hiren Dhaduk. Best frontend frameworks of 2020 for web devel-
opment. https://www.simform.com/best-frontend-frameworks, 02
2020. [Online; accessed 15-March-2021].

51

https://insights.stackoverflow.com/trends
https://insights.stackoverflow.com/trends
https://econsultancy.com/
https://yudhajitadhikary.medium.com/client-side-rendering-vs-server-side-rendering-in-react-js-next-js-b74b909c7c51
https://yudhajitadhikary.medium.com/client-side-rendering-vs-server-side-rendering-in-react-js-next-js-b74b909c7c51
https://medium.com/@NeotericEU/single-page-application-vs-multiple-page-application-2591588efe58
https://medium.com/@NeotericEU/single-page-application-vs-multiple-page-application-2591588efe58
"https://www.ict.social/software-design/uml/uml-use-case-diagram
"https://www.ict.social/software-design/uml/uml-use-case-diagram
https://techterms.com
https://developers.google.com/search
https://caniuse.com/?search=javascript
https://caniuse.com/?search=javascript
https://www.simform.com/best-frontend-frameworks

A. Bibliography.....................................
[11] Andrew Dillon. User Interface Design. 01 2006.

[12] ECMA International. Introducing JSON, 2017. Available at https:
//www.ecma-international.org/publications-and-standards/
standards/ecma-404/l, 2nd edition [Online; accessed 15-March-2021].

[13] AltexSoft Software engineering. The good and the bad of vue.js
framework programming. https://medium.com/styled-components/
why-styled-components-2deeed757cfa, 09 2019. [Online; accessed
15-March-2021].

[14] CodeIgniter Foundation. Helper functions. https://codeigniter.com/
user_guide/general/helpers.html, 02 2021.

[15] The Interaction Design Foundation. What is usability? https://
www.interaction-design.org/literature/topics/usability, 2020.
[Online; accessed 17-February-2021].

[16] Phil Pluckthun Glen Maddern, Max Stoiber. Styled-components docu-
mentation, 2021. Available at https://styled-components.com/doc,
version 5.3.0 [Online; accessed 25-April-2021].

[17] Evan Jacobs. Why styled-components? - medium. https://medium.
com/styled-components/why-styled-components-2deeed757cfa, 04
2020. [Online; accessed 25-April-2021].

[18] Marek Jaroš. Sémantický správce dokumentů. May 2020. [Online;
accessed 14-February-2021].

[19] Marin Kaluža and Bernard Vukelic. Comparison of front-end frameworks
for web applications development. Zbornik Veleučilišta u Rijeci, 6:261–
282, 01 2018.

[20] Zeinab Khalifa. Multi-page, single-page, or a hybrid? - medium. https:
//medium.com/swlh/spa-mpa-or-a-hybrid-42fdf6b3415c, Jun 2020.
[Online; accessed 23-March-2021].

[21] Ornaith Killen. Four reasons why site search is vi-
tal for online retailers. https://econsultancy.com/
four-reasons-why-site-search-is-vital-for-online-retailert,
11 2013. [Online; accessed 17-January-2021].

[22] Steve Krug. Don’t Make Me Think: A Common Sense Approach to the
Web (2nd Edition). New Riders Publishing, USA, 2005.

[23] Chaitanya Kulkarni and Mukta Takalikar. Cseit183535 | analysis of rest
api implementation. 01 2020.

[24] Ryan Lanciaux. A feature based approach to react de-
velopment. https://ryanlanciaux.com/blog/2017/08/20/
a-feature-based-approach-to-react-development/, 08 2017.
[Online; accessed 04-May-2021].

52

https://www.ecma-international.org/publications-and-standards/standards/ecma-404/l
https://www.ecma-international.org/publications-and-standards/standards/ecma-404/l
https://www.ecma-international.org/publications-and-standards/standards/ecma-404/l
https://medium.com/styled-components/why-styled-components-2deeed757cfa
https://medium.com/styled-components/why-styled-components-2deeed757cfa
https://codeigniter.com/user_guide/general/helpers.html
https://codeigniter.com/user_guide/general/helpers.html
https://www.interaction-design.org/literature/topics/usability
https://www.interaction-design.org/literature/topics/usability
https://styled-components.com/doc
https://medium.com/styled-components/why-styled-components-2deeed757cfa
https://medium.com/styled-components/why-styled-components-2deeed757cfa
https://medium.com/swlh/spa-mpa-or-a-hybrid-42fdf6b3415c
https://medium.com/swlh/spa-mpa-or-a-hybrid-42fdf6b3415c
https://econsultancy.com/four-reasons-why-site-search-is-vital-for-online-retailert
https://econsultancy.com/four-reasons-why-site-search-is-vital-for-online-retailert
https://ryanlanciaux.com/blog/2017/08/20/a-feature-based-approach-to-react-development/
https://ryanlanciaux.com/blog/2017/08/20/a-feature-based-approach-to-react-development/

..................................... A. Bibliography

[25] Tanner Linsley. React Query documentation, 2020. Available at https:
//react-query.tanstack.com/quick-start, version 3.16.0 [Online;
accessed 20-April-2021].

[26] Cinergix Pty Ltd. About Creately. Creately, 2021. Available at https:
//creately.com, [Online; accessed 08-March-2021].

[27] Malinov Martin. Systém pro správu dokumentů, souborů a datových
zdrojů. May 2019. [Online; accessed 14-February-2021].

[28] Mozilla and individual contributors. Web technology for developers.
MDN Web Docs, 2021. Available at https://developer.mozilla.org/
en-US/docs/Web, [Online; accessed 19-March-2021].

[29] Christian Osterbauer, Monika Köhle, Manfred Tscheligi, and Thomas
Grechenig. Web usability testing - a case study of usability testing of
chosen sites (banks, daily newspapers, insurances). 07 2014.

[30] Mark Richards. Software Architecture Patterns. 2015.

[31] Toni Bonitto Sara Cope. Scenarios. https://www.usability.gov/
how-to-and-tools/methods/scenarios.html, 2021. [Online; accessed
07-May-2021].

[32] Karan Shah. Client-side v/s server-side rendering: What
to choose when? "https://dzone.com/articles/
client-side-vs-server-side-rendering-what-to-choose, Jan-
uary 10th 2020. [Online; accessed 19-March-2021].

[33] Facebook Open Source. React official documentation. Facebook, 2021.
Available at https://reactjs.org, version 17.0.2 [Online; accessed
15-March-2021].

[34] Stack overflow. Stack Overflow. For developers, by developers, 2021.
Available at https://stackoverflow.com, [Online; accessed 15-March-
2021].

[35] Google Angular Core team. Angular features and benefits. Google, 2021.
Available at https://angular.io, version 11.2.12 [Online; accessed
15-March-2021].

[36] React Training and hundreds of contributors. React Router documen-
tation, 2021. Available at https://reactrouter.com/, version 5.2.0
[Online; accessed 25-April-2021].

[37] Vinay Hegde Vinuta Hutagikar. Analysis of front-end frameworks for
web applications. 07(4), April 2020.

¨

53

https://react-query.tanstack.com/quick-start
https://react-query.tanstack.com/quick-start
https://creately.com
https://creately.com
https://developer.mozilla.org/en-US/docs/Web
https://developer.mozilla.org/en-US/docs/Web
https://www.usability.gov/how-to-and-tools/methods/scenarios.html
https://www.usability.gov/how-to-and-tools/methods/scenarios.html
"https://dzone.com/articles/client-side-vs-server-side-rendering-what-to-choose
"https://dzone.com/articles/client-side-vs-server-side-rendering-what-to-choose
https://reactjs.org
https://stackoverflow.com
https://angular.io
https://reactrouter.com/

54

Appendix B
List of abbreviations

DM Document Manager
UI User Interface
UX User Experience
REST Representational State Transfer
API Application Programming Interface
HTTP Hypertext Transfer Protocol
CRUD Create, Read, Update, and Delete
JSON JavaScript Object Notation
JSON-LD JavaScript Object Notation for Linked Data
KBSS Knowledge-Based and Software Systems
CTU Czech Technical University
FEE Faculty of Electrical Engineering
URI Uniform Resource Identifier
MPA Multi-Page Application
SPA Single-Page Application
HTML Hypertext Markup Language
CSS Cascading Style Sheets
SSR Server-Side Rendering
CSR Client-Side Rendering
SEO Search Engine Optimization
DOM Document Object Model
PWA Progressive Web Application
MVC Model, View, Controller
DI Dependency Injection
JSX JavaScript Extension Syntax
SVG Scalable Vector Graphics
URL Uniform Resource Locator

55

56

Appendix C
Instructions how to start the Document
Manager application

C.1 Back-end part

The instructions how to run the back-end part were taken from the bachelor
thesis of Marek Jaroš.

To run the Document Manager back-end you need to have installed the
following technologies:. Java 8. Apache Maven 3 (or newer)

Before compiling, you need to change the application configuration file,
which is located in the application\semantic-document-manager\src\main\resources
directory.. To connect your own SQL database, you need to uncomment the rows

under the External database section and comment the rows under the
Local file database section. Then, you need to set your SQL database
address, username and password.. To connect your own RDF database, you need to change the repositoryUrl
in the Spring DATASOURCE - SEM section.. The profile where the application will run is defined in spring.profiles.active.
The sem profile means that the application will use the RDF database
and the jpa profile – the SQL database respectively.. To define the security.authorization-point you need to use this value
https://kbss.felk.cvut.cz/authorization-service/api/v1/users/current

Then, compile the application and run it in your IDE. Alternatively, follow
these steps:..1. Open a command prompt in the main project directory and enter the

command
mvn clean package

57

C. Instructions how to start the Document Manager application..................2. A new document-manager-0.0.1-SNAPSHOT.jar file will be created in
the target directory..3. The file can be started with the command
java -jar document-manager-0.0.1-SNAPSHOT.jar

C.2 Front-end part

To run the application front-end you need to have installed the following
technologies:. Node 12.13 (or newer)

The front-end part can be started with the commands:..1. npm install to install the needed packages..2. npm start to start the web application

58

Appendix D
Content of the electronic attachment

The electronic attachment contains the reference to the Gitlab repository
where the source code of the Document Manager front-end is stored and the
hash of the final commit.

59

	Introduction
	Main functions of the Document Manager
	Current situation
	Aim of the work

	Back-end analysis
	Back-end overview
	Architecture
	Types of the Document Manager entities
	File versioning
	User roles
	Access rights

	Document Manager API
	REST API interface
	Data formats
	API endpoints for the front-end implementation
	Weaknesses in the REST API implementation

	Document Manager functionalities
	Use Case Diagram

	UX research
	Motivation
	Document Manager functionality
	Usability
	The importance of a clear visual hierarchy
	Main traits of a clear visual hierarchy
	Adding a Document
	Place of a logotype in a visual hierarchy

	Web navigation
	Home page button
	Search button
	Operation icons

	Front-end plan
	Concepts of front-end development
	Single-page application vs Multi-page application
	Server-side rendering vs Client-side rendering
	Conclusion

	Technical approaches to the SPA development
	Vue.js
	Angular
	React
	Conclusion

	Application structure
	Assets
	Helpers
	Features
	Components

	UI design
	Authorization
	File system display
	Operations implementation
	Document and Folder operations
	File operations

	Access rights management
	User management

	Technical solution
	Authorization
	External authorization service
	Token validity

	Routing
	Hooks
	Custom hooks
	useState
	useEffect

	Client/Server state synchronization
	React Query concepts

	React.memo
	Styling

	Usability testing
	Usability Testing Method
	Test scenarios
	Basic functionality test
	Access rights test

	Results
	Folder user rights management UI/UX problem
	WRITE access level does not work
	Filename does not update in a file system
	File version does not update after a new version is added
	A new folder display
	Problem with changing a filename
	File information window does not close after the File is deleted

	Changes

	Conclusion
	Bibliography
	List of abbreviations
	Instructions how to start the Document Manager application
	Back-end part
	Front-end part

	Content of the electronic attachment

