




Master’s thesis

Automatic detection of malicious activity
in the internal network

Bc. Mikuláš Formánek
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Abstrakt

Práce se zabývá automatickou detekćı škodlivého chováńı na vnitřńı śıti,
srovnává nejnověǰśı metody pro detekci. Praktická část je zaměřená na de-
tekci útok̊u hrubou silou pomoćı strojového učeńı bez učitele. Navrhované
řešeńı bylo odzkoušenu na datové sadě, z dř́ıvěji použitého algoritmu v in-
frastruktuře firmy Showmax. Citlivostńı analýza ukázala, že řešeńı může být
použito v infrastruktuře Showmax.

Kĺıčová slova Strojové učeńı, automatická detekce, útoky hrubou silou

Abstract

The thesis focuses on automatic detection of malicious activity in the internal
network. The subject literature is reviewed, with emphasis on unsupervised
anomaly detection methods. The proposed algorithm was evaluated against a
threshold-based algorithm used at Showmax, on the same dataset. Sensitivity
analysis has been performed and supports the idea of applying the algorithm
on Showmax’s infrastructure.

Keywords Machine Learning, Deep learning, intrusion detection, brute force
attacks
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Introduction

“Good to all, evil only to whom seek it.”

– ancient wisdom from Don Quixote

A trend leading towards better protection against cyberattacks has taken
place since the dawn of the internet. It is especially true nowadays, for or-
ganisations that have access to large amounts of personal data of their users:
healthcare, governmental, financial, and large businesses [1]. For example,
66% of American healthcare providers have experienced ransomware attacks
in 2019 [1]. Similarly, a threefold increase in ransomware attacks has been
reported between 2018 and 2019 among larger businesses, accompanied by
a decrease of ransomware attacks on individual users, suggesting a trend of
cyberattackers to concentrate on larger organisations [2].

While the impact of attacks on the critical infrastructure (such as hospitals,
governmental institutions, or banks) is the most impactful for individual users,
large companies that were subject to a successful attack can suffer the loss of
trust of their partners and customers. Showmax is a video-on-demand service
that provides access to movies, series, and sport events, often produced by
third parties. As such, assuring appropriate security measures is a contractual
obligation to the third parties. Similarly, each security breach needs to be
reported publicly, due to GDPR regulations. Therefore, protection against
cyberattack is an important issue.

This thesis is conducted in cooperation with Showmax, and is focused on
an autonomous anomaly detection in the internal company network.

Detection of attacks becomes more challenging with higher amounts of
data that needs to be analysed. Unlike old-school firewalls used in PCs, net-
work attack detection has to deal with issues of scalability and real-time detec-
tion. Modern-day Detection Systems can operate on a model-based approach,
with machine learning algorithms aiding them with detecting coordinated at-
tacks across different networks, identifying infiltrated devices in the network,
or with quick detection of brute-force attacks.
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Goals and outline

The thesis is focused on detecting brute-force attacks at Showmax infrastruc-
ture, with the emphasis on unsupervised detection.

The goal of this thesis can be summarized in the following way:

• Provide a state of the art analysis of unsupervised anomaly detection
and detection system

• Prepare a data set for brute-force detection

• Propose a proof-of-concept of brute-force detection mechanism which
could detect brute force attacks

• Test the proof-of-concept on the prepared data set and discuss its and
accuracy

Structure of the works is the following. In the first chapter, we show how
Detection Systems can be categorised, how are anomalies and types of attacks
defined, and what are the basic techniques and theory of outlier detection.

In the second chapter, we provide a summary of state-of-the-art approaches,
from commercial products and community solutions to scientific papers and
the latest approaches from the last 6 years.

The third chapter contains the analysis of the Showmax’s environment,
data and feature availability, followed by the proposed solution for detecting
brute-force attacks. Afterwards, the realisation of the proposed solution and
its evaluation using sensitivity analysis, are presented.
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Chapter 1
Theory

“Space is only noise if you can see.
Grab a calculator and fix yourself”– Nicolas Jaar

1.1 Detection System Taxonomy

We can divide Detection systems into several cases (as shown at fig. 1.1):
response to the attack and its delay, architecture, source of data, the mecha-
nism for detection attacks. From a functional point of view, we have Intrusion
Detection System (IDS) and Intrusion Prevention System (IPS), IDS is try-
ing to alert for incoming attacks, possibly as soon as possible, IPS is trying
to protect the infrastructure by itself for: example with denying access for
the attacker or hacking attacker itself. However, such countermeasures could
easily balance on the edge of lawfulness.[3, p. 1]

The second view on Detection System can be based on the source of ac-
tivity, Network Intrusion Detection System (NIDS) is getting data from all
switches, routers, and Network Interface Card (NIC) in servers, whereas Host
Based Intrusion Detection System (HIDS) can look even to application logs,
File System (FS) logs as well to the application database and network devices,
therefore we call NIDS being a subset of HIDS.

The third dimension of Detection Systems is the mechanism of detection.
Firstly, the detection can be signature-based where we detect malicious activ-
ity by comparing parts of registered activity(in other words, using fingerprint-
ing) with already known attacks from the database of attacks. However, this
approach is limited to the current state of the database, so potentially zero-
day exploits can potentially remain undetected. The second option is anomaly
detection, where the algorithm is trying to detect outliers in infrastructure ac-
tivity, which provides more False Positive (FP)s but is capable of detecting
previously-unknown forms of attack. IDS based on Anomaly Detection will
be of the primary interest in the rest of this thesis.
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1. Theory

Figure 1.1: Taxonomy of detection systems

The fourth dimensions could be based on the architecture type: either
centralised or distributed. Yet another view in taxonomy could be based on
providing detection offline or in real time.

1.1.1 Anomaly detection

Stephen Hawking defines an outlier as “an observation which deviates so much
from the other observations as to arouse suspicions that it was generated by a
different mechanism.[4, slide 3]

There are many ways of anomaly/outlier definition. Since the data set
can be noisy, the best way of defining anomalies is based on analyst expertise:
especially taking advantage of the previously known examples of anomalies.[5,
p. 4]

To make a distinction between an outlier and anomaly, Aggarwal et al.
[5, p. 3] have concluded to the fact they are interchangeable(anomaly being
subset of outlier based on interest). The general definition could say that we
consider an instance to be an anomaly, if we haven’t seen such an instance
before, in terms of some measures.[6, p. 4]
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1.1. Detection System Taxonomy

1.1.1.1 Types of anomalies

There are several types of anomalies based on domain, therefore, only the
anomalies in the context of the network security domain will be considered
hereinafter (also shown at fig. 1.3).

The first type of anomaly is the point anomaly, which is extreme in terms
of irregularity or deviation. This anomaly is related to User2Root (when the
user tries to escalate his privileges) and Remote2Local (when an attacker tries
to obtain internal access from outside of the network) attacks.

The second type is a contextual anomaly, that is: an anomaly based on
surrounding-context data points. This can be related to probe attacks[7, p.
4], context attributes can be, for example, a time or location, opposite for
contextual attributes is the behavioral attribute for example temperature. [8,
p. 8]

The third type is a collective anomaly, which is connected to DOS attacks
and corresponds to a situation when multiple data-streams are abnormal to-
gether although individual values from each data-stream are not anomalous
on their own..

1.1.1.2 Attack classification

Although each cybersecurity attack is unique, they are usually classified by
several taxonomies, with the most common being provided in 2003 by Simon
Hansman [9, p. 31]. The first dimension of the classification is by the attack
vector, which represents the way attacks try to reach their target. When
performing such a classification, we should classify the attack vector by its
earliest behavior.

The second dimension describes the target of such a cyber attack. Hans-
man et al. [9, p. 32] provides a full table for each dimension, but most
importantly the target must be specified as much as possible. For example, a
virus destroys the firmware in a keyboard connected to our laptop, then we
should not classify the target as the operation system, but rather the hardware
itself.

The third dimension concentrates on the exploits and vulnerabilities which
has been used by the by the attacker. Many vulnerabilities are described
by Common Vulnerabilities and Exposures (CVE). It should be noted that
vulnerabilities are wide and varied and usually apply to specific versions of a
piece of software or operating systems. This means a classification scheme
would have to include every piece of software in use today.[9, p. 35]

The fourth dimension captures the effect of the attack into these categories:

• First dimension Attack

• Corruption of Information

• Disclosure of Information

7



1. Theory

• Theft of Service

• Subversion

Other dimensions such as: damage, costs, propagation or the defence
mechanism could be potentially added as well.

This taxonomy above is especially useful when reporting incidents, however
when trying to stop attackers, there has been proposed Intrusion Kill Cain
[10, p. 4], which is derived from the military model, where stages established
to identify, prepare to attack, engage, and destroy the target were converted
into (Shown at 1.2):

• Reconnaissance: research, selection, using any OSINT information about
target

• Weaponization: preparing adequate forms of attacks

• Delivery: sending attack into the desired environment

• Exploitation: running attack’s code on the target machine

• Installation: Obtaining backdoor access

• Command and Control: obtaining covert channel for further actions on
target

• Actions on Objectives: taking actions on objectives

Figure 1.2: Cyber Kill Chain

8



1.2. Data Modeling

Figure 1.3: Taxonomy of anomalies with network attacks

It should be noted that while point anomalies can occur in any data set, the
collective anomalies can occur only in data sets in which data instances are
related. In contrast, the occurrence of contextual anomalies depends on the
availability of context attributes in the data. A point anomaly or a collective
anomaly can also be a contextual anomaly if analyzed with respect to a con-
text. Thus a point anomaly detection problem or collective anomaly detection
problem can be transformed into a contextual anomaly detection problem by
incorporating the context information.[8, p. 10]

1.2 Data Modeling

In short, one can say that all outlier algorithms create a model of normal data
and then try to compare it with each new data point on the basis of devia-
tions from these patterns. Different data models create different assumptions
about normality in data. Therefore, choosing a good data model is crucial for
anomaly detection: inadequate data model leads to poorer performance.

1.2.1 Supervised and unsupervised models

Supervised learning assumes labels are available for each data point. In such
a framework, classification of new data points can be considered as equiva-
lent to an anomaly detection task. For example, let’s assume that an existing
data set consists of data mostly corresponding to the standard behaviour of
the system. Although it probably contains some anomalies, assumed to be in
minority, we can classify new data points based on based on their deviation
from the normal model behaviour. This deviation can be interpreted as as
outlier scores. Therefore we can use each classification algorithm as a super-
vised anomaly detection algorithm. [11, p. 25] One [6, p. 8] would say that
this kind of one class setting is equivalent to a multi-class setting, however,
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1. Theory

creating a distinction between two and more classes is much easier than com-
paring an unknown instance to a normal class. Many supervised algorithms
got their unsupervised replacement.

In unsupervised learning we do not have labels for instances available. In
supervised learning we can divide data set into training and testing for scor-
ing, comparing different algorithms. Without labels, the typical approach of
dividing the data set into the training and testing subsets becomes impossible.
Nevertheless, the influence of individual points on over-fitting is often small
in real-world settings because explicit generalization methods tend to create
a concise summary (i.e., generalized representation) of a much larger as the
training data errors made in the assumption of “pretending” that all training
data set. Since the same data D is used for training and testing, one can view
outlier scores points belong to the normal class.[11, p. 9]

1.2.2 Selecting features

Data sets can consist of multiple features, possibly of different variable types,
and, it is a key value of an analyst to determine which feature is useful and
some of them can even worsen the performance of the data model. Another
option is to introduce subsampling methods: which are used in ensemble tech-
niques and will be discussed later. Our set of features is divided into several
subsets and used with several instances of the same or various data models.

1.2.2.1 High dimensional issues

Data sets for anomaly detection can contain hundreds of features, causing the
problem to become a high dimensionality problem. Not every method can deal
with data of higher dimensions, as each data point becomes sparsely located
and therefore [5, p.149] can be equidistant from each other. This problem
is sometimes called the curse of dimensionality. There is also the possibility
that the most important dimensions are outnumbered by dimensions of lower
importance. One way out is to execute subspace analysis. Such an approach
filters out the additive noise effects of the large number of dimensions and
results in more robust outliers. An interesting observation is that such lower-
dimensional projections can often be identified even in data sets with missing
attribute values. This is quite useful for many real applications, in which
feature extraction is a difficult process and full feature descriptions often do
not exist. [5, p. 151] As shown in [12, p. 1] subspace analysis have advantage of
showing outliers in subspace view, however traditional full feature algorithms
or trying to detect deviations in global view, which could potentially hide
some anomalies(shown at fig. 1.4).
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1.3. Basic models for anomaly detection

Figure 1.4: Hidden anomalies in sub-views from [12, Figure 1.; Page 1]

Figure 1.5: Outliers on convex hull

1.3 Basic models for anomaly detection

1.3.1 Depth based methods

Depth-based methods can be treated as extreme-value analysis methods with
emphasis on convex hull analysis. The method assumes that the outlier is
most likely in a corner of the convex hull. Sets of points that are corners of
the convex hull in the data set are removed in an iterative manner, with the
iteration taking place over each i-th corner. The process takes place until the
data set is emptied, after which the sets of points with the highest depth are
reported as outliers. (shown at fig. 1.5 ).

Such a technique is scales badly with the number of dimensions and cannot
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1. Theory

find an inner outlier, due to the assumption that outliers are located around
the corners of the convex hull. Therefore, the method cannot be applied unless
the problem is of lower dimensions, and doesn’t have inner outliers[13, p. 225].

1.3.2 Proximity-based methods

Proximity-based techniques define a data point as an outlier when its locality
(or proximity) is sparsely populated. The proximity of a data point may be
defined in a variety of ways, which are subtly different from one another but
are similar enough to merit unified treatment within a single chapter.[5, p.
111]

Three-way of describing proximity are:

• Cluster based

• Distance based

• Density based

Cluster based methods use association within-cluster or distance from clus-
ter centroids as outlier score. The aim of clustering algorithms is to separate
data points into dense clusters. Outlier are naturally becoming a side product,
however, sometimes outliers are whole clusters or become a smaller cluster on
its own.

Therefore is introduced distance from data point into cluster centroid, a
distance of a data point to its closest cluster can be used as a proxy for outlier
score. [5, p. 113] Clustering is a fast method compared to distance based
methods. The main disadvantage of clustering methods is that they might not
always provide insights at the required level of detail in smaller data sets. The
granularity of outlier analysis methods is generally better when using distance
computations directly with respect to the original data points, rather than with
respect to aggregated representatives such as cluster centroids.[5, p. 118]

Distance-based methods use the distance of nearest k-th data-point as met-
ric for outlier score, where the underlying assumption is that larger distance
is related to the larger probability of being an outlier in data set as opposite
normal points should have lesser distance. Distance-based methods generally
have a higher granularity of analysis as compared to clustering-based methods.
This property of distance-based methods can enable a more refined ability to
distinguish between weak and strong outliers in noisy data sets. [5, p. 119]
However, in the base version of the k-nn algorithm, where we output outlier
scores, we need to compute N*N distances, which for large data sets very im-
practical. Therefore is introduced several options, to output just binary label
and prune a certain amount of computation:

• Threshold based data-point is outlier if its exact k-nearest neighbor dis-
tance is at least beta

12



1.3. Basic models for anomaly detection

• Cell based pruning - data-points are divided into cells at each dimension
and is independent of number of data-points

• Sample based pruning, where we limit pair-wise distance computation
on a subset of data set.

Density-based methods use the number of points in specific regions of the
space to define outliers. They are very closely related to clustering and distance-
based methods. In fact, some of these algorithms can be more easily considered
clustering or distance-based methods, depending on how they are presented.
This is because the notions of distances, clustering, and density are closely
related and inter-dependent.[5, p. 131]

1.3.3 Linear models

Linear models assume that normal data lies in lower-dimensional subspace
and focus on the use of dependencies between the features. Linear models can
be viewed as an orthogonal point of view to clustering- or nearest-neighbor
methods, which try to summarize the data horizontally (i.e., on the rows or
data values), rather than vertically (i.e., on the columns or dimensions). [5,
p. 65]

Well known algorithms for outliers detection are:

• Principal Component Analysis (PCA)

• One Class Support Vector Machine (OC-SVM)

• Deep Learning approach

PCA is dimension-reduction technique, output of PCA is set of vectors
which are called principal components. Vectors capture the highest variance in
the original data set. According to [14] the main assumption is that subspace
returned by number of k vectors corresponds to regular trends. According
to [5] PCA is quite robust technique for number of outliers in data set, but
[14, p. 110] points out, that PCA cannot always flag beginning of anomaly in
time-series detection.

OC-SVM is spatial setting for classic Support Vector Machine (SVM),
where it is assumed that all instances are having only normal data points label.
OC-SVM learns the boundary for normal data point, in classification phase,
anything which does not fall into boundary is classified as outlier. According
to [15, p. 52] is especially useful for high-dimensional data in semi-supervised
setting. Trying to apply OC-SVM in unsupervised setting puts validity of
results on stake, because in training data set can be outliers, which would be
lately classified as normal data-points.
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1. Theory

Figure 1.6: Architecture of Auto-Encoder available on: [16]

1.3.3.0.1 Auto-Encoders Deep Learning approach became popular in
last decade, with applications ranging from computer vision to generative ad-
versarial networks. Anomaly detection algorithm within the deep learning
framework have been proposed as well, with the most common being neural
networks called Autoencoder (AE). They consist of two parts - encoder and
decoder. The encoder tries to reduce set of feature to lower-dimensional sub-
space and when it is reduced decoder attempts to reconstruct reduced features
to original input, therefore training phase in unsupervised manner, where the
the label of x is x′ itself and the goal is to make reconstruction error x−x′ = 0.
Underlying assumption is that outliers are reconstructed with higher error ξ,
because outliers are resistant to compression. According to [5, p. 105] a sym-
metric architecture(shown in fig. 1.6) of AE provides hierarchically reduction
on different level of compression.

One of disadvantages of AE is the long training time due to complexity of
computations, but since GPU’s are well provided in cloud computing we can
use its potential for scaling. Next disadvantage is similar to OC-SVM, where
having noise in training data will cause overfitting when used on test data,
this could be partially solved with some level of cross-validation technique,
where just subset of data is used for training. Next factor is interpretability
issue, where we with lot of linear models we cannot provide reasoning to why
we consider data-point anomalous.

1.3.3.0.2 Boltzman machines Boltzman machine is special type of bi-
directional neural network, it has many specifics, they consist only of hidden
nodes and visible nodes (shown at fig. 1.7), which are the only we can interact
with. They lack the training phase [15, p. 180] and their purpose was to learn
data distribution. They are also able to create generative model: creating
new data according to data set. Each neuron has fixed weight and makes
probabilistic decision if it will fire or not. Their neurons are connected to each
other, therefore scaling the network up is difficult. Boltzman machines are
unsupervised deep learning aproach.

A much more scalable variant of Boltzman machines is Restricted Boltz-
mann Machine (RBM), which architecture is a bipartite-graph of two lay-
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Figure 1.7: Architecture of Boltzman Machine

ers (input and hidden), where nodes in one layer are not connected between
themselves. Similarly to Boltzman Machines it is generative model, but has
a training phase. Some RBM might also incorporate a feature known as mo-
mentum, which basically allows for an increase in learning speed and can be
thought of as simulating a ball rolling down a hill in terms of optimizing the
target function.[15, p. 186]

1.3.3.1 Convolutional Neural Networks

Convolutional Neural Networks (CNN) are special type of neural network.
They consist of multiple layers stacked together. Typical use case is in Com-
puter Vision, or together with AE, where we can benefit from unsupervised
setting, but as can be seen in section 2.1.1 the usage is much broader than
pixel-wise operations on images. Main block of CNN is convolutional layer,
which main objective is to extract high dimensional features. The next com-
mon layer is pooling layer, which can apply min or max function to certain
number of pixels like in the fig. 1.8 Dropout layer is used against overfitting,
where models tends to be too much focused on training data and generaliza-
tion fails. Dropout layers has one parameters, which says how many inputs
are going to be randomly set to 0.

1.3.4 Ensembles

In supervised setting we benefit from having labels, therefore calculating any
metrics such as F1, AUC, precision, recall or accuracy is very intuitive, allow-
ing easier minimisation of the bias or variance.
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1. Theory

Figure 1.8: Max pooling operation

While this is not possible in the unsupervised setting, there is an option to
treat one or more feature as unobserved and dependent, which does not tell
us the ground truth if such data-point is anomaly or not, but we have certain
possibility to measure our model.[11, p. 24]

Ensemble methods consist of joining several base detectors, which are in
some way united together for obtaining better results. According to [17] [5,
p.188] we can divide ensemble methods on several points of views:

• Independent ensembles

• Sequential ensembles

Independent ensembles consists one or more types of base detectors and
output of single base detector does not affect rest of detectors. Motivation is
to explore independence between base detectors, which can potentially lead
to better results.

Sequential ensembles consists also one or more types of base detectors and
their output affects each other, so when detector miss-classify data-points,
sequential detector can learn (boost) and obtain better results. This option is
[5, p. 29-30] hard to use in unsupervised setting, because missing the ground-
truth for awareness of getting worsen results.

Next dimension for ensemble methods is to divide them into:

• Model-centric

• Data-centric

Model-centric ensembles do consist of different models and their hyper-
parameters for example in a randomized manner.

Data-centric models are a subset of model-centric models, but they split
data sets by columns and each base detectors receives a different subset of
data set.

Three options [17] for improvement:

• Boosting for reducing bias, sequence ensemble

• Bagging for reducing variance, data-centric ensemble
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• Stacking for reducing bias and variance

Stacking methods are different that they have a meta estimator, which gets
as input the output of the base detector, such approach is currently very suc-
cessful for many data science competitions like https://www.kaggle.com/c/
otto-group-product-classification-challenge/discussion/14335 Us-
ing meta estimator could be seen as an alternative for independent ensemble
models, where the output of these is used for voting in classification, naturally
is also used some weighting average or some maximization function.

Outlier ensembles have seen an increasing interest from the research com-
munity in recent years, which is motivated, in part, by increasingly challenging
data sets that are resistant to accurate outlier discovery. An example of such
a challenging instantiation is the high-dimensional case in which no single
subspace can capture all the outliers. In spite of the superficial differences be-
tween the two problems, the theoretical foundations of outlier en- sembles are
similar to that in the supervised case.[5, p. 217]

1.4 Conclusion

In this chapter we introduced basic anomaly detection techniques, showed
their advantages and weak spots. Several machine learning concepts have been
shown, which will be used in the next State of the art chapter. Definition of
outliers was explained and presented in the context of cybersecurity attacks
types of anomalies and taxonomy of IDS. In the end, an overview of typical
ensemble methods has been shown.
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Chapter 2
State of the art of malicious

activity detection

Previous chapter shows basic methods for anomaly detection, this chapter
introduces state of the art techniques, that have been recently proposed by
research papers

Motivation for reviewing state-of-the-art is to collect useful approaches
which will in latter chapters enhance proposed algorithms. Well known tech-
niques were described in previous sections, but following chapter describes
innovative approaches.

Firstly anomaly detection models will be reviewed as main focus of theses
is on unsupervised learning, next part of this chapter will compare currently
used IDS commercially or open-source.

2.1 Recent techniques for anomaly detection

Techniques in this section are built on the foundation shown in Chapter 1,
showing mostly unsupervised of each paper/technique from the last 6 years.

2.1.1 Deep-Ant

Deep-Ant [18] tries to address periodically-changing data (i.e. seasonality in
data) that density-based models are unable to treat. Deep-Ant belongs to
family of time-series unsupervised detection. Consists of two modules: time-
series forecaster, and anomaly detection component. The latter can detect the
point and contextual anomalies, as well as discords shown atfig. 2.1.

The time-series predictor uses deep CNN, applying windows of time-series
as context, than generates the next time-stamp. The purpose of using CNN is
to reduce the number of training samples compared to LSTM. The predictor
consists of several convolutional layers (shown at fig. 2.2), each of them firstly
uses a convolution function and then applies a linear activation function. After
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2. State of the art of malicious activity detection

Figure 2.1: DeepAnT is capable of detecting time series discords: subsequence
(part) of time series which differs from other subsequences. Normal sub-
sequence time series are highlighted in blue, whereas discord sequences are
highlighted in red (a). Plot (b) shows point-wise anomaly score of a subse-
quence. [18] Reprinted from: [18]

Figure 2.2: Architecture of Deep-ant architecture predictor available from:
[18]

each convolutional layer is the max-pooling layer, which summarizes the out-
put of the convolutional network by max function with respect to neighbors.
The last layer in the architecture is a fully connected layer of neurons, which
are then used for computing the single output y then output is passed into the
Detector module. If needed, the predictor does not need to output a single
value but can forecast even further, just by adding more output neurons. The
outlier score is the Euclidean distance:

(yt, y
′
t) =

√
(yt − y′t)2

For each element in time-series has element xt its label xt+1, based on size
of window we incorporate number of data-points before Xt into account, also
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called history window for example

xt−3, xt−2, xt−1, xt

is used for predicting xt+1.
This distance based euclidean score is used in paper used within 15 different

detector modules. Authors rely on assumption that better prediction makes
better anomaly detection.

They evaluated on Numenta Anomaly Benchmark[19], Yahoo dataset, and
7 other datasets from UCI Machine Learning Repository and obtained outper-
forming results compared to iForest, OC-SVM, Local Outlier Factor, where the
metric was Area Under Curve (AUC). Authors claim that CNN are less hungry
than LSTM based predictor which obtained lower score in 3 sub-benchmarks
out of 4, sharing the same amount (40%) of data for training. The method is
capable of handling minor data contamination (less than 5%). This technique
is accurate even in the detection of small deviations/anomalies in time series
cycles which are generally overlooked by other distance based and density based
anomaly detection techniques[18, p. 2002] There is a 5% limitation of han-
dling anomalies in the training set, of the level is increased the Time-series
forecaster tries to forecast anomalous data-points as well, which then ruins
outlier score for Detector module. The size of the history window needs to be
defined in heuristic way, specifically to an applied domain, because selecting
a single size for each possible application is a comprehensive quest. All the
results have been obtained using two convolutional networks, but this can be
also extended with another layer, depending on the domain(for example size
of dataset).

2.1.2 EGADS

EGADS is a framework developed at Yahoo, the purpose of creating this
framework was to enhance the current state-of-the-art algorithms which suffer
from scalability and a large number of false positives [20].

Architecture (shown at fig. 2.3) consists of time-series forecaster and anomaly
detection similar to section 2.1.1 called an alerting module. The whole integra-
tion consists of storing data on a cluster, then having batch model generators
that learn models on stored data, which are then saved into the database.
Online data are processed by anomaly detection module, if detected there are
specific rules under the anomaly is an alert event.

The emphasis on scalability is done via precomputing models as soon as
possible, not storing them in hard drives and sharing them across multiple time
series, which saves I/O operations to model databases. Another possibility to
save some CPU time would be to use self-tuning models, which would change
according to incoming data, but this would lead [20, p. 1941] to higher I/O
to model databases.

EGADS detector is based on 9 features extracted from time-series:
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Figure 2.3: EGADS architecture: [20]

Frequency

Trend: rising, still or falling

Seasonality: measures if subsequences are repeating

Auto-correlation: measures correlation of delayed signal copy

Non-linearity: measures linearity of data

Skewness: measures symmetry

Kurtois: measures peaks

Hurst: measures long-term memory of time-series

Lyapunov Exponent: measures rate divergences

After the features of the time series are extracted, the sequence is divided into
subsequences, or clusters.

Division into clusters is dependent on thresholds. that need to be selected
prior. The first one with underlying assumption, that data are normally dis-
tributed and three-sigma(or k-sigma, where k is positive integer) rule, where
99.73% samples within three standard deviations of the mean. Therefore, de-
pending on the value of K in K-sigma, one can be confident as to the probability
of observing a sample at time t. Depending on the desired level of sensitivity,
one can measure if a given sample lies within the 95.45% or 68.27% of all the
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samples for K = 2 or 1 respectively. [20, p. 1942] Second approach is for cases
when the deviation metric is not normally distributed and uses density based
models called Local Outlier Factor.

The framework was tested in three variants against open-source mod-
els(Twitter Outlier,ExtremeI and II R Outlier, BreakOut Twitter CP, ChangePt1
R CP), using an F1 metric for evaluation. No single model has outperformed
all data sets, and Twitter outlier performed similar or better than each from
single EGADS models and on 2 datasets is EGADS not competitive, therefore
is not considered as good option. (fig. 2.4).

Figure 2.4: EGADS perfomance. Reprinted from: [20]

2.1.3 Numenta Anomaly Benchmark

Numenta Anomaly Benchmark (NAB) addresses issues specific for streaming
services, such as: a real-time anomaly detection allowing an early detection
of arising problems, or the difficulties with dividing the dataset into a train-
ing and testing sets. NAB corpus includes metrics like network utilization,
sensors from industrial machines to social media chatter as well as artificially
generated data.

NAB has a set of rules, which determines the quality of the anomaly de-
tector:

• Detect all anomalies

• Detect anomalies as soon as possible
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• No false positives

• No look ahead in data - real-time

• Data specific parameter tuning must be done online without human
intervention

Early detection is performed using anomaly windows. They are located around
these data points that were manually-labeled as anomalous. Then, a detec-
tor is trained to detect these anomalies within each window: the sooner the
detector announces the anomaly the better. Penalisation of late detections is
applied as well. The size of these windows is 10% of data points divided by
a number of anomalous instances but [19] points out that even the increased
size of windows to 20% or 5% does not affect the scoring function. If multi-
ple detections within single anomaly windows only the earliest is taken into
account. NAB scoring function requires weights for true and false positives
and negatives. Here they are noted as: WT P ,WF P ,WT N ,WF N : The scoring
function itself is sigmoidal (show at fig. 2.5), where y stands for a relative
position in the anomaly window:

fW (y) = (WT P −WF P )( 1
1 + ε5y

)− 1

Raw score for for data-file is:

SW = (
∑

fW (y)) +WF Nfd

and final score is then:

SW
NAB = 100 ∗ SW − SW

null

SA
perfect − SA

null

Where perfect and null refers to a detector that detects only TP and no
FP respective detector which does not detect anything.

The main advantages are the use of penalization for a late-detection of
anomalies, as well as the possibility of creating own profile based on a specific
domain. The critique of NAB approach has been presented in [18]

2.1.4 Extended Isolation Forest

This approach [21] improves upon technique for unsupervised learning: Isola-
tion Forest.

Isolation Forest creates multiple binary trees. Each node in binary tree
have at most 2 children and start in root node. Each splitting from parent node
to children divide set of datapoints by it’s feature values by comparing values
< or >. Leaf in binary tree has no child and represent datapoint, thus parent
represent this comparison. Isolation Forest improves upon assumption from
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Figure 2.5: Numenta scoring function from: [19]

distance-based techniques: outliers will be in lesser depth than normal points
fig. 2.6. Feature for splitting is randomly selected, as well as the partition
point.[21]. The process is repeated for each data point. When a new data
point appears, we insert it into n binary trees and calculate the mean depth
according to each tree and result is anomaly score.

Categorical values are transformed into binary values. One way is to
convert non-numerical values to numerical one true = 1 and false = 0.
Problematic part is they do not say how exactly convert data like different
browsers(multiple different strings) into numerical value. We can assume two
variants - creating one-hot binary label, therefore adding much more features
or create order and iterate from 0 to n, which is known from others field of
machine learning.

2.1.4.1 Conclusion

The paper showed results with enterprise data-set ”CA RiskMinder user pay-
roll access logs”, which is not publicly available. Results depends on selected
features, but overall 98% TP and 50% accuracy was obtained.

Isolation forest is a scalable option, does not need anomalous instances in
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Figure 2.6: On the left we can see all data points (each of them having x and
y axis) and right is one of the binary trees, where the red one is considered
an outlier. Isolation forest from: [21]

the training set, but requires a threshold based on the tree-depth: which is
independent from the data set.

2.1.5 C-LSTM

C-LSTM [7] created a novel idea for anomaly classification, although it is
a supervised neural network, where it connects CNN together with LSTM
networks.

2.1.5.1 Architecture

Architecture(shown at fig. 2.7) is created via CNN which takes as an input,
a time-series window, then uses LSTM network In the LSTM layers, we use
memory cells rather than simple recurrent units to store and output temporal
features of web traffic data. This capability makes it simpler to understand
temporal relationships on a large time scale.[7] After LSTM pass through is
full dense Neural Network (NN) applied with softmax classifier, then trained
and compared with KNN, SVM, MLP, Decision Tree, and Random Forests,
where C-LSTM outperformed rest. Several combinations of CNN, LSTM,
and Deep Neural Network were tried and all combination of were connected
together and overall obtained better results than rest of models.

C-LSTM shows superiority comparing to other conventional machine learn-
ing methods and is able to extract patterns from high dimensional spatial-
temporal information. But requires labels and only explanation of this model
is to visualize intermediate values.
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2.1.6 TadGAN

TadGan uses Generative Adversarial Networks (GAN) to perform anomaly
detection. GAN become known for being for deepfake video and pictures and
are evolving threats in social media and evidence manipulation.

Similarly to PCA and AE in sec 1.3.3.0.1 TadGan used assumption, where
reducing time-series to lower dimension and then reconstruction involves higher
reconstruction error, thus outliers are recognized by higher error.

Basic GAN architecture consists of two blocks Generator, which tries to
generate artificial samples, which are input to Critic which tries to classify
if the input is real data or artificially generated one. Part of GAN is fact
that input to Critic is also mixed with the real input from the data set.
The problematic part of GAN could be ineffective at learning the data-set
distribution. They also could suffer from collapse problem, which is when
Generator only outputs, which has fooled the Critic and not creating new
ones.

2.1.6.1 Architecture

In TadGAN architecture(shown at fig. 2.8) are used two Generators ε and G.
ε serves as encoder, maps to lower dimensions, and G as a decoder to the
original dimension. Next are two Critics Cx and Cz. Cx tries to discriminate
between artificially generated from G and real time-stamps inputs and Cz

measures the performance of the mapping.
Having two critics and two generators have a twofold advantage, Cx can

provide an outlier score because is trained to classify if data is fake or real.

Figure 2.7: C-LSTM architecture from: [7]
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Figure 2.8: TadGAN architecture. Reprinted from: [22]

Second, the two Generators trained with cycle consistency loss allow us to
encode and decode a time series sequence. The difference between the original
sequence and the decoded sequence can be used as a second anomaly detection
measure. [22]

To estimate anomaly score using reconstruction error was proposed:

point wise difference
st = |xt − x̂t|

area difference
st = 1

2 ∗ l |
∫ t+l

t−l
xt − x̂t|

is applied to window to measure similarity, good approach for windows
where exist small difference over long time

Dynamic time warping

min
W

1
K

√√√√ K∑
k=1

wk

also used for similarity between two windows. Involve using an matrix
W , where each element is distance measure between two points wij , then
aim is to find warp path W ∗ that defines minimum distance between two
curves and also can define

Critic’s anomaly score can be used directly, so applying kernel density
estimation with maximum function gives a smothered score. Authors have
shown that Critic outputs different scores to normal and anomalous windows.
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MSL SMAP A1 A2 A3 A4 Art AdEx AWS Traf Tweets Mean±SD
TadGAN 0.623 0.704 0.8 0.867 0.685 0.6 0.8 0.8 0.644 0.486 0.609 0.700±0.123
LSTM 0.46 0.69 0.744 0.98 0.772 0.645 0.375 0.538 0.474 0.634 0.543 0.623±0.163
Arima 0.492 0.42 0.726 0.836 0.815 0.703 0.353 0.583 0.518 0.571 0.567 0.599±0.148
DeepAR 0.583 0.453 0.532 0.929 0.467 0.454 0.545 0.615 0.39 0.6 0.542 0.555±0.130
LSTM AE 0.507 0.672 0.608 0.871 0.248 0.163 0.545 0.571 0.764 0.552 0.542 0.549±0.193
HTM 0.412 0.557 0.588 0.662 0.325 0.287 0.455 0.519 0.571 0.474 0.526 0.489±0.108
Dense AE 0.507 0.7 0.472 0.294 0.074 0.09 0.444 0.267 0.64 0.333 0.057 0.353±0.212
MAD-GAN 0.111 0.128 0.37 0.439 0.589 0.464 0.324 0.297 0.273 0.412 0.444 0.35±0.137
MS 0.218 0.118 0.352 0.612 0.257 0.204 0.125 0.066 0.173 0.166 0.118 0.219±0.145

Table 2.1: F1 Scores on several benchmarks
.

A combination of reconstruction and Critic’s scores is further used and
benchmarks shown that using just Critic’s score is unstable. Several datasets
for benchmarking have been used and in a lot of cases, TadGan outperformed
other baseline models as can be seen in Table table 2.1.

2.1.6.2 Conclusion

TadGan shows briliant results in comparision with other baseline models, how-
ever fails when used on synthetic datasets with point anomalies. Next results
also shown that using single Critic’s single output as anomaly score is not
stable and better results were with area difference or dynamic time-warping
approach.

2.1.7 Synthesis of anomaly detection approaches

Several approaches have been shown, comparing them together is complicated,
since they are not compared in a scientific manner or using the same dataset
and metrics in the original paper, but for further decisions in the next chapter,
there is a need to do that.

EGADS is based on nine different features, does not show significant su-
periority compared to other models, which means it can be used in any time-
series, but is limited to this feature set. C-LSTM, DeepAnt, and TadGAN out-
perform datasets in their papers, compared Extended Isolation Forests show
only 50% accuracy (but high TP rate), however, C-LSTM is supervised and
therefore not used for further comparison. DeepAnt states it is(CNN based) is
not data hungry opposed LSTM, thus could be compared on TadGAN which is
based on LSTM in both generators. Therefore for the next usage, we conclude
that DeepAnt is an optimal choice.

2.2 Current IDS solutions

In previous section various approaches for anomaly detection have been shown.
This section is dedicated to available tools closely related to attack detection or
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prevention by any means. Research on existing solutions could be potentially
useful when developing algorithm in next chapter.

2.2.1 Cisco Secure Network Analytics

Cisco Secure Network Analytics (CSNA) (formerly Stealthwatch) is a complex
tool protecting against compromising the network. From first sight it takes
Network logs as data, however, the source of input is broad including Routers,
Switches, Firewalls, Datacenter logs, VPN endpoints, Cisco Identity Services
Engine, and many others with the possibility to incorporate external third
tool. They divide their core function into three parts:

• Behavioral modeling, which collects data from each device on network
and logs from other Cisco Modules

• Multilayer machine learning modeling

• Global Threat Intelligence

Multilayer machine learning modeling Machine Learning here is used
in both settings, unsupervised for anomaly detection and supervised for clas-
sification. They claim to use over 70 unsupervised anomaly detectors, which
are then used for ensembles that produce a single anomaly score. Three parts
are involved:

Layer 1 - trust modeling and anomaly detection, used for filtering out 99%
of undesirable data, and only anomalies are passed to next layers.

Layer 2 - Event classification, classifies only output from Layer 1, involving
ML algorithms are Neyman-Pearson-based linear models, SVM and NN.
They are classified into one of 100 threat categories. Cisco [23] claims
they have 90% accuracy. Also in this layer is done entity modeling,
basically creating a hypothesis of threat in the existing network.

Layer 3 - Relationship modeling, for taking view from a global perspective, if
also other companies are possibly involved in such incident. They label
them with confirmed 99-100% confidence because they have been seen
before and detected, which is a unique and targeted attack.

One big advantage of CSNA is the fact it can detect malware in encrypted
traffic, but with special hardware. Secure Network Analytics has the ability
to detect malware in encrypted traffic without any decryption - an industry
first. Telemetry from the next-generation Cisco network as well as the Secure
Network Analytics. On Flow Sensor produces two new data elements: the
sequence of packet lengths and times and the initial data packet. The initial
data packet is a treasure trove of metadata, because, remember, all encrypted
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Figure 2.9: Snort-Suricata perfomance from: [24]

sessions start out unencrypted initially. Cisco’s unique Application-Specific
Integrated Circuit (ASIC) architecture provides the ability to extract these data
elements without slowing down the data network[23]

2.2.2 Snort and Suricata

Snort is one of the oldest IDS, become developed in 1998 as open source IDS.
Snort is based on recognizing patterns in-network, therefore he cannot detect
any novelties in attacks, unlike anomalous-based ones. There are commercially
IDS based on Snort, where updates receive immediately only those who have
subscriptions and after 30 days everyone who is registered. Suricata is IDS
from 2009 with a similar approach as Snort, however is available only as a
community version.

One advantage [24] of Suricata over Snort is multithreading support, where
outperforms (see fig. 2.9) Snort in until version 3(January 2021) was available
only in multi-instance setting, but Suricata gets higher throughput even on a
single core. With recent version 3 lot of changes, Snort gets multithreading
support, but no valid performance comparison was found.

Qualitative comparison for signature-based IDS mainly depends on the
database of rules and signatures. But in [25] evaluated Snort and Suricata in
terms of memory, throughput, and accuracy, where build virtualized network
and emulate their intrusion data with Python script, which send there 54 at-
tacks in 9 categories. Overall, Snort had 16 false negatives, 10 false positives,
1720 ”gray positives” (including 1640 ”evasion techniques”), and 44 true pos-
itives. Suricata had 12 false negatives, 8 false positives, 1449 gray positives
(including 1275 evasion techniques), and 81 true positives. The evasion tech-
niques involved five port scans, so the amount of traffic generated for this test
was significantly more than that of any other test. The recall fraction was 0.73
for Snort and 0.87 for Suricata in our third experiment. We can calculate two
kinds of precision, one excluding the grey positives as false positives and one
including them. We got 0.81 for Snort and 0.91 for Suricata excluding them,
and 0.036 and 0.052 including them. [25] Grey positives refer to alerts for
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different attacks than currently operated on the network.

2.2.2.1 Conclusion

Altough Snort and Suricata show differences in architecture, rules, and dif-
ferences in some features, for example, automatic traffic detection on uncom-
mon ports, according to [24] and [25] seem to be very close to each other in
both Qualitative and Quantitative comparison, however, these systems are
still developing and for obtaining precise results, we would need to compare
up-to-date version.

2.2.3 Zeek

Zeek is a network traffic analyzer but can be also used as IDS for investigating
anomalous activity on the network. Zeek collects multiple types of logs in the
network on different levels from layer 3 of the OSI model up to application-
level including HTTP requests, MIME types, DNS requests, and responses
which are then written into JSON log file. Zeek also provides many built-
in functions for analysis like extracting files from HTTP sessions, detecting
malware by interfacing to external registries, reporting vulnerable versions of
software seen on the network, identifying popular web applications, detecting
SSH brute-forcing, validating SSL certificate chains.

2.2.3.1 Zeek’s architecture

Zeek’s architecture can be seen onfig. 2.10, basically, network packets are
displaced into events, which are passed through special Zeek’s policy scripting
language: which captures the semantic of events, where can be written domain
specific policies what to further if any occurrence of events happened, therefore
Zeek is not typical signature-based IDS but a superset of IDS.

Custom policies can even trigger external programs, Zeek can take proac-
tive measures against potential attackers.
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Figure 2.10: Zeek’s architeture available: https://docs.zeek.org/en/
master/about.html

2.2.4 Network Measurements Analysis - NEMEA

Network Measurements Analysis (NEMEA) [26] is CESNET’s open-source
detection system for network traffic analysis. NEMEA is focused on stream-
wise and flow-based detection and built in modular way.

NEMEA architecture(shown at 2.11 ) is in modular fashion, each module
communicates via communication interfaces. Each module is run as indepen-
dent process, modules are connected together usually in tree manner in logical
order based on various purposes of module such as:

Processing modules: Flow Counter, Logger, Anonymizer, Entropy, Email-
Reporter, IPFIXcol and many others. Used for processing information
about the flow.

Analytical modules: PCA, Astute (looks for changes between two time win-
dows), IP Spoofing Detector, Blacklist Filters, Botnet Detector, Host-
Stats(computes statistical measurments about flows) and others.
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input modules, alert modules, detector modules. Modules are possible shut-
down or even hot-swap depending on actual situation and can be written in
any programming language.

Two principles differs from other solutions: firstly each input is processed
separately unless module rules are explicitly overridden and no data are stored
in hard drive. This leads to fast data processing and fast analysis. Input
into NEMEA is usually nfdump, csv or pcap or UniRec(data format) which
converts IPFIX fields, processed by IPFIX collector, to NEMEA.

Figure 2.11: NEMEA’s architeture available: https://
nemea.liberouter.org/

2.3 Conclusion

Several approaches from the last few years have been shown, interestingly
use of CNN shown in section 2.1.1 for forecasting value of next timestamp
or C-LSTM architecture. Also, a new way of evaluation section 2.1.3 has
been shown by incorporating a time window. TadGan section 2.1.6 obtained
promising results, where worse performance has been observed on artificial
dataset with point anomalies.

Few IDS or similar tools were also shown in this chapter. Performance and
partial feature comparison was provided in section 2.2.2, where they stand
closely to each other, but in compared version the Surricata was better option
due to higher throughput and multithreading.

CSNA shows how complex are state-of-the-art IDS, where using over 70
machine learning methods with ensembles are connected across different com-
panies for tackling with global threats. Next advantage of this approach are
datasets(of attacks) for perfoming supervised machine learning.
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2.3. Conclusion

NEMEA and ZEEK are tools interested more in network analyzer than
pure IDS system, however in case of NEMEA the difference is thin. Both
tools analyze network, provides tools for alerting, enables writing policies or
modules. Architecture seems perform better on NEMEA side, and described
performance seems to be ready to challenge large scale networks.

Research on this will be used in next chapters for designing and imple-
menting algorithm for detecting bruteforce attacks.
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Chapter 3
Analysis and Evaluation

“You get hit by Kafka, in the morning woke up broke.”

– J.Cole, free translation

The previous chapter showed IDS overview with the current state-of-the-
art techniques for anomaly detection, this knowledge serves as a basis for
choosing a solution adequate for the environment at Showmax.

3.1 Analysis of Showmax data

Showmax’s data is spread on over hundreds servers and instances on Ama-
zon’s AWS platform therefore obtaining IP flows would result in an increased
amount of computer power and also needs high amount of memory on each
server and problems with synchronizing over several locations.

3.1.1 Available data sources

Showmax stores network data in different places and within the different levels
of views, first storage in is ELK stack, which is ElasticSearch with Kibana
interface, but data there are stored just for the last 30 days and then are
moved for backups into compressed-gzipped files. The contained information
is divided into:

• Logs on a lower level

• Events on a high programming level

• Alerts

• Proxy communication between servers
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3. Analysis and Evaluation

Most useful category appeared to be Logs, firstly because they contain
much more datapoints than events, which sometimes could contain interest-
ing attributes of data. Logs particularly contain information about possible
bruteforce attacks within filtered-out out unsuccessful attempts on login:

• http code: returned http code for request

• service

• normalized url simple: shortened url

• http headers.rx.showmax-int-ua-os: user agent operation system

• http headers.rx.showmax-int-ua-class: category of user device

• http headers.rx.showmax-int-platform: used platform

• http headers.rx.user-agent: user agent string

• client ip

• client geopoint: json containing latitude and longitude

• country - country code

• ip address

Especially interesting are logs with HTTP error code 403, which shows
unauthorized access and normalized URL simple to adequate sign-in URL. For
obtaining these data from ELK stack elasticsearchdsl https://elasticsearch-
dsl.readthedocs.io/en/latest/ was used.

3.1.2 Limitation of dataset

The existing dataset consists of logs about activity coming from various IP
addresses. It is, however, unbalanced, due to existing services, that count
these unauthorized requests and blocks certain IP address if the number of
received requests exceeds the threshold, therefore once is IP address blocked
there won’t be next datapoint in next time period, so obtained data set is
distorted. Obtaining non-distorted data was not possible due to the security
policy in the company. No labels of brute force attacks were provided, the
only option was to look for banned IP addresses, but using them as labels
would yield machine learning techniques trained in detecting the threshold,
rather than anomalies in general, which would not be the desired goal.

38

https://elasticsearch-dsl.readthedocs.io/en/latest/
https://elasticsearch-dsl.readthedocs.io/en/latest/


3.1. Analysis of Showmax data

Figure 3.1: Confussion matrix

3.1.3 Feature engineering

Data points were aggregated together, depending on features, within time-
windows. Firstly we needed to choose the time period, in similar approaches
we were able to find value varying from few seconds to one minute. One
minute interval was chosen and the following features were used:

• timestamp as index for Time-series

• Number of unique user agent strings

• Number of unauthorized requests

• Number of unique ip addresses

• Number of unique geopoint locations

• Modest ip address within interval

3.1.4 Evaluation and model choosing

Since no labels were provided as ground-truth, this leads naturally to an un-
supervised setting for anomaly detection. According to [5] the only way to
evaluate unsupervised anomaly detection is to compare it within the ensem-
ble of other methods. Thus we consider the output of the ensemble to be the
ground truth and we can compare the following metrics for binary classifica-
tion, which are based on the Confusion Matrix shown at fig. 3.1.

Precision = TP

TP + FP
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Recall = TP

TP + FN

Accuracy = TP + TN

TP + TN + FN + FP

However metrics above are not very suitable for heavily imbalanced data-
sets such as anomaly detection, thus F1 measure has been proposed for this
purpose:

F1 = 2 ∗ Precision ∗Recall
Precision+Recall

We decided to use a voting ensemble, which could be realized in the hard
and soft settings. Hard setting simply treats each model equally, whether soft
setting uses:

argmax
∑

i

pi

for decision.
We have chosen these models for anomaly detection:

• Deep-Ant from section 2.1.1, as proposed optimal model from previous
chapter, should not be data hungry.

• Isolation Forests, where it can be connected to Subspace analysis sec-
tion 1.2.2.1. One can limit number of features for fitting as well as
proportion of data.

• OC-SVM from section 1.3.3 as representative of linear models, could
provide insight into dependencies between features.

• Local Outlier Factor (LOF) as representative from Proximity method
section 1.3.2 , this method mentioned in EGADS framework.

• EllipticEnvelope, as statistical method, which assumes data are Gaus-
sian distributed.

3.2 Dataset

Dataset for training and evaluation data were obtained and stored in parquet
files using pandas. The collected dataset was containing data from 1.1.2021
to 18.3.2021 and can be seen at fig. 3.2. Such a time range was selected
because it was considered as a good compromise between model accuracy
and computation complexity: taking a longer range would result in a longer
period of processing, but from observation, we could say that the only feature
which vary across different months is the number of unauthorized requests
(doc count). This could be due to it being a combined metric: last month
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of data has been taken from Kibana, while the rest from backup files. The
rest of the features behaves in consistent manner, in the figure we can see
some empty discords in last month, probably indicating missing information
in the database. There is clearly day-seasonality visible, where more people
are using service during a certain period. Several spikes are also visible: these
can be related either to brute force attacks, or higher usage of service taking
place, for example, while streaming sport events.

Figure 3.2: Dataset visualization. Dataset visualization. Vertical axis has the
values removed due to confidentiality reasons.

3.3 Machine Learning

For Isolation Forests, OC-SVM, Elliptic Envelope and LOF the scikit library
has been used https://scikit-learn.org/stable/. VotingAnomalyEnsem-
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ble (shown at fig. 3.3) was developed as a class, which takes as input list of
models and then extracts anomaly scores and provides hard majority voting.

DeepAnt was selected as fifth model, firstly requires less datapoints com-
pared to other deep learning approach, shows good performance on several
datasets even with NAB scoring function.

Figure 3.3: Proposed ensemble

3.3.1 Evaluation within Voting Ensemble

F1, balanced accuracy, recall, and precision were used for evaluation, output
from VotingEnsemble was used as proxy for the ground truth, then a particular
metric was computed against each model. The table is shown at table 3.1,
we can see that no single model leads on each metric, mostly differs results
in recall metric, especially OC-SVM obtained only 0.43 recall, where most
gets over 0.9. Most stable results across metrics has EllipticEnvelope. All
hyperparameters were heuristically selected, or left to the default value.

f1 balanced accuracy recall precision
DA 0.994847 0.521352 0.999434 0.990302
IF 0.996161 0.684469 0.998746 0.99359
OC 0.604851 0.71677 0.433539 1
EE 0.952418 0.953388 0.90918 0.999973
LOF 0.959637 0.780235 0.925854 0.995979

Table 3.1: Evaluation within to VotingEnsemble

3.3.2 Evaluation within known banned IP addresses

We were able to obtain banned IP addresses within the period and decided
to compare each single model against them. These banned IPs are shown at
fig. 3.4, where banned IPs are the red vertical lines, we can see that banned IPs
are related to point anomalies, in many cases, which is coherent with anomaly
to attacks taxonomy shown at fig. 1.3.
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Figure 3.4: Banned IPs visualization. Red vertical lines shows ban at the
moment

3.3.2.1 Model parameters sensitivity

Each model incorporates several hyperparameters since no ground truth is
provided, hyperparameter optimization is a difficult task because we don’t
know how good we made the selection, thus it is rely on the knowledge and
desired outcome of an expert to choose them carefully and according to the
domain. The subset of relevant hyperparameters can be seen at table 3.2

We decide to perform sensitivity to parameters, to see if the metric changes
rapidly on different parameters, such observation would mean that results are
parameter dependent and not data dependent. For this evaluation, we took
banned IP addresses from a current banning scriptsection 3.1.2. We took them
as ground truth, to see if anomaly detection can replace current solution, then
output from anomaly detection models would result in TP or FN. A similar
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DeepAnt number epochs threshold
IsolationForests contamination n estimators max samples max features
EllipticEnvelope contamination assume centered support fraction
OC-SVM kernel degree gamma
LOF contamination n neighbors algorithm

Table 3.2: Hyper parameters of each model

approach was shown at section 2.1.3. Ten minutes interval within banned IP
was chosen for deciding if anomaly detection was TP or FN. GridSearchCV
class from scikit was used for this, but since the cross-validation option was
disabled by unsupervised modeling of our problem.

Results for each model are shown at fig. 3.5. Isolation Forest mostly de-
pends on with contamination parameter, which is in other words threshold for
outliers. Interestingly also maximal features peaks at 50% (2 features) which
shows how important is subspace analysis (described at section 1.2.2.1), some-
times the outliers are hidden in higher dimensionality, but are visible in lower.
Max samples and the number of estimators do not affect the recall-like met-
ric, bit higher score with lower number of estimators are probably caused by
in-equally splitted feature set, with high number of estimators this does not
hold.

OC-SVM clearly performs better with gamma equal to auto rather than set
to scale option. Also linear and polynomial kernel performs poorly although
of not that much high dimensionality. Linear kernel could be expected since
we are not having linear data. Degree(for polynomial kernel only) does not
affect the results at all.

Elliptic Envelope shows very robust results, where the only affecting pa-
rameter was contamination, thus there is hypothesis that dataset is Gaussian
distributed.

And DeepAnt from section 2.1.1 shows the lower correlation between banned
IPs from the script and detected anomalies. This could be caused by several
reasons:

1. Low number of training samples

2. Low dimensionality, hence kernel size in the convolutional layer cannot
be modified

3. Feature rescaling before fitting, although is usually approach for deep
learning

Since all models were most prone for contamination or other named param-
eter which corresponds to threshold(gamma in OC-SVM) we conclude that
finding these potential brute force attacks is mostly data-dependent which
means we can focus on desired outcome(number of expected anomalies in
dataset) the detected outliers are expected to be brute force attacks.
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(a) Isolation Forest, contamination parameter sets the proportion of outliers in dataset, should be
in range [0,0.5], but we used [0,0.3] for having less FP and result shows linear dependency, so for
next models we focused on range [0,0.1]. Max features defines number of features used in each tree.
Max samples tells proportion of dataset used for tree construction. N estimators defines number of
trees used for computing outlier score.
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(b) One Class SVM, degree is parameter just for polynomial model, gamma is kernel coeficient for
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(c) Elliptic Envelope, assume centered for setting if data are closely to zero but not exactly, if False
than it is covariance recomputed without any treatment. Contamination parameter defines proportion
of outliers in data. Support fraction [0,1] as proportion of points to be included in the support of the
raw Minimum Covariance Determinant estimate.
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(d) Local Outlier Factor, algorithm chooses the way how proximity will be computed. Contamination
parameter defines proportion of outliers in data. N neighbors as number of neighbours
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(e) DeepAnt. Lookback defines number of previous timestamps included for forecasting, threshold
defines how outliers will be selected.

Figure 3.5: Sensitivity Analysis
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3.4 Results, scalability and future work

All results in this chapter were more than promising, having the ”recall-like”
score in higher than 10% was desired internal result. In case of bruteforce at-
tacks, we are mainly aware of false negatives i.e not detected attacks, however
false positives are important too, banning innocent ip address results in impos-
sible access for many users, because of NAT. Absence of having groundtruth
labels does not provide confidence in the obtained results, but we can conclude
our approach works even on such distorted data.

Scalability comes play important role, it was one of the reasons of selecting
highly aggregated data from central database, independently how Showmax
infrastructure will grow, this approach could remain untouched. But caveat in
aggregation is to choose proper time window and brings limitation of possible
banning single ip address in one time window.

3.4.1 Future work

Although the results are promising, they can be possibly further enhanced,
using meta machine learning, trying to increase speed time of models via
supervised way. Using proposed VotingEnsemble for generating data set with
labels, then train supervised model on such network should yields in lower
predicting time, thus selecting higher period for time window.
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Conclusions

Protecting the network from attacks has been necessary from the beginning
of the Internet itself, and every company which operates on the internet needs
to address the issue of cybersecurity. In case of Showmax, the importance of
assuring that malicious activity in network is stopped, stems from the legal
reasons. Showmax is a video-on-demand service providing access to movies,
series, and sport events that are often produced by third parties. As such,
assuring appropriate security measures is a contractual obligation to the third
parties. Brute force attacks which try to get unauthorized access to the Show-
max site can result in stealing private information about users, breaking trust
with third party studios and stealing intellectual property.

This thesis is dedicated to the automatic detection of malicious activity
within the internal network of Showmax. A preexisting implementation used
in Showmax has been done in a threshold-based approach: if too many re-
quests are received, the given IP address is blocked. Methods proposed in this
thesis aim to extend this idea with the use of unsupervised anomaly detection.

The thesis reviews state of the art of malicious activity detection yielding
in proposed unsupervised models, combined together in ensemble method of
these models:

• DeepAnt, state-of-the-art model, based on deep learning with CNN

• Isolation Forest

• OC-SVM linear based model

• EllipticEnvelope a statistical model based on Gaussian distribution

• LOF a density-based model

Unsupervised detection of brute force attacks has been performed on a
dataset corresponding to a typical traffic occurring on Showmax’s onboarding
pages. Unsupervised settings bring the absence of need for the label of data,
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which is especially useful when reliable labels cannot be obtained, but with
drawbacks on the reliability of results. We propose a solution based on aggre-
gated features, arranged in time-windows. The proposed solution is scalable
due to the use of host aggregated features. Therefore, any additional work on
improving accuracy can be done in an infrastructure-agnostic way. Moreover,
the recall-like metric of the whole ensemble reaching up 60% in evaluation
proves that anomaly detection based on aggregated features can detect and
help to prevent brute-force attacks.

Results have shown the proposed algorithm is capable of detecting brute
force attacks via aggregated features. The proposed algorithm can be imple-
mented after necessary tweaks in the enterprise environment. Its evaluation
was tested on banned IP addresses via the baseline models. The proposed
solution has been developed with the limitations stemming from the possible
testing options: shadow infrastructure does not exist and brute force attacks
would create a bad user experience for customers, since using the aggregated
features creating a data set in a virtual environment would not bring addi-
tional value. A possible limitation in use are lower response time, but this
could be enhanced via a shorter aggregation time window.
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Appendix A
Acronyms

AE Autoencoder.

AUC Area Under Curve.

CNN Convolutional Neural Networks.

CSNA Cisco Secure Network Analytics.

CVE Common Vulnerabilities and Exposures.

FP False Positive.

FS File System.

GAN Generative Adversarial Networks.

HIDS Host Based Intrusion Detection System.

IDS Intrusion Detection System.

IPS Intrusion Prevention System.

LOF Local Outlier Factor.

NAB Numenta Anomaly Benchmark.

NEMEA Network Measurements Analysis.

NIC Network Interface Card.

NIDS Network Intrusion Detection System.

NN Neural Network.
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Acronyms

OC-SVM One Class Support Vector Machine.

PCA Principal Component Analysis.

RBM Restricted Boltzmann Machine.

SVM Support Vector Machine.
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Appendix B
Contents of enclosed media

readme.txt ........................... the file with contents description
src.......................................the directory of source codes

dip.zip.................................... implementation sources
thesis..............the directory of LATEX source codes of the thesis

text..........................................the thesis text directory
thesis.pdf...........................the thesis text in PDF format
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