
Ing. Michal Valenta, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague December 14, 2019

ASSIGNMENT OF MASTER’S THESIS
 Title: Analysis of development practices concerning isometric 2D games

 Student: Bc. Jan Glaser

 Supervisor: Ing. Adam Vesecký

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of summer semester 2020/21

Instructions

The goal of the thesis is to analyze methods of isometric 2D games in terms of development, from the
viewpoint of game engines and all aspects that are related to the development of such games.
Furthermore, the next output of the thesis will be a working solution concerning the import/export of
isometric textures from modeling tools.

Requirements for the environment:
- create two applications
- a prototype for exporting isometric textures
- a prototype of a game that will demonstrate the usability of those textures

Requirements for functionality:
- import and export of isometric textures from a 3D model

Requirements for technological aspects:
- use TypeScript as the main programming language for the prototype of the game
- deploy the solution as a web application

Other requirements:
- all parts will contain automated tests
- design part of the thesis will follow SI methodologies

References

Will be provided by the supervisor.

Master’s thesis

Analysis of development practices
concerning isometric 2D games

Bc. Jan Glaser

Department of Software engineering
Supervisor: Ing. Adam Vesecký

April 12, 2021

Acknowledgements

I would like to express appreciation and thanks to Ing. Adam Vesecký for
his advices and consultations during working on this thesis. Without his
help and guidance, this work would have never been accomplished. Most
importantly, the creation of this thesis would have never been possible without
my father, Ing. Vladimír Glaser, Csc., who supported me through my entire
study. Thank you very much.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46(6) of the Act, I hereby grant a nonexclusive au-
thorization (license) to utilize this thesis, including any and all computer pro-
grams incorporated therein or attached thereto and all corresponding docu-
mentation (hereinafter collectively referred to as the “Work”), to any and all
persons that wish to utilize the Work. Such persons are entitled to use the
Work in any way (including for-profit purposes) that does not detract from its
value. This authorization is not limited in terms of time, location and quan-
tity. However, all persons that makes use of the above license shall be obliged
to grant a license at least in the same scope as defined above with respect to
each and every work that is created (wholly or in part) based on the Work, by
modifying the Work, by combining the Work with another work, by including
the Work in a collection of works or by adapting the Work (including trans-
lation), and at the same time make available the source code of such work at
least in a way and scope that are comparable to the way and scope in which
the source code of the Work is made available.

In Prague on April 12, 2021 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2021 Jan Glaser. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Glaser, Jan. Analysis of development practices concerning isometric 2D games.
Master’s thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2021.

Abstrakt

Tato práce se zaměřuje na analýzu vývoje izometrických 2D her. Důraz je
kladen na tvorbu izometrických 2D textur. Součástí práce je aplikace umožňu-
jící automatickou tvorbu takovýchto textur z 3D modelovacích nástrojů, a také
aplikace demonstrující užití těchto textur. Výstup této práce bude prospěšný
herním vývojářům.

Klíčová slova 2D, aplikace, Blender, hra, izometrické zobrazení

vii

Abstract

The primary goal of this thesis is to analyze the methods of isometric 2D
games in terms of development. Emphasis is laid on on creation of isomet-
ric 2D textures. Part of the thesis is also an application, allowing automatic
creation of such textures from 3D modeling tools and even a prototype, demon-
strating usage of such textures. The output of this thesis will be beneficial to
game developers.

Keywords 2D, application, Blender, game, isometric projection

ix

Contents

Introduction 1
The goal of the thesis . 2

1 Introduction to the topic 3
1.1 Game engine . 4
1.2 Visual representation of 2D games 5
1.3 Graphical projection . 5
1.4 What is an isometric 2D game 7
1.5 Blender . 8
1.6 Using 3D modeling tools for the creation of the isometric textures 9
1.7 The problem of creation of the isometric textures 9

2 Survey of existing solutions 11
2.1 Summary . 13

3 Realization 15
3.1 Used technology . 15
3.2 Exporting a 3D model to 2D images 16
3.3 Processing the Blender output 21
3.4 Other usage of the Spritesheet manager application 27

4 Testing 33
4.1 Blender rendering script . 33
4.2 Spritesheet manager . 33

5 Game prototype 35
5.1 Used technology . 35
5.2 Loading the textures and animation data to a game 36
5.3 Animation JSON . 36
5.4 Drawing the textures in a game 38

xi

Conclusion 39

Bibliography 41

A Acronyms 43

B User manual 45
B.1 Minimal requirements . 45
B.2 Using an existing 3D model in Blender and exporting to 2D

images . 47
B.3 Creating a 3D model in Blender and exporting in to 2D images 48
B.4 Creating a floorile texture . 52
B.5 Creating a sprite sheet and animation data using Spritesheet

manager . 54
B.6 Running the game prototype 59
B.7 Playing the game prototype . 59
B.8 Running the tests . 60

C Content of the data media, provided along with this thesis 65

xii

List of Figures

1.1 An example of pixel art image . 3
1.2 An example of a sprite sheet . 4
1.3 An overview of the entire sprite sheet creation process 4
1.4 A use case diagram . 5
1.5 An example of isometric game scene, simulating the 3D depth . . . 6
1.6 An overview of the projection groups 7
1.7 Examples of graphical projections 7
1.8 An example of a spider, displayed from the side orthographic view 8
1.9 An example of a spider, displayed from the top orthographic view 8
1.10 An example of a spider, displayed in axonometric projection 8
1.11 Screenshot of Blender software . 9

2.1 A screenshot of the Spine software 12
2.2 A screenshot of the DragonBones software 12
2.3 A screenshot of the Nima software 13
2.4 Character creation in the Nima software 14

3.1 Camera parented to an empty . 17
3.2 Hierarchy of objects in Blender scene 17
3.3 3D scene setup . 18
3.4 A panel with properties of the camera 19
3.5 A comparison of a cow model rendered using an orthographic cam-

era and perspective camera in Blender 19
3.6 An example of render output files from Blender 20
3.7 Animation of spider consisting of 6 frames. Only 3 angles (left,

right-down, down) are displayed 21
3.8 Output image with a lot of transparent pixels 21
3.9 Common rectangle for two images, used for cutting off the trans-

parent pixels . 22
3.10 Monster drawn using the upper-left corner as an origin point . . . 24

xiii

3.11 Monster drawn using the calculated origin point 24
3.12 The origin point mark, displayed as a green sphere 25
3.13 Minimal bounding box, highlighted with a white border 25
3.14 The position of the origin point . 26
3.15 The final sprite sheet for walk animation of human, facing left . . 26
3.16 The final sprite sheet for walk animation of human, facing up . . . 27
3.17 Image with-semi transparent pixels 28
3.18 An example of a water splash sprite sheet 28
3.19 Resulting render of a couch . 29
3.20 Cropped image of a couch . 29
3.21 Resulting isometric floor tile texture 30
3.22 Floor tile sprite sheet used in Diablo 2 30
3.23 Isometric tile in Blender . 31

4.1 The result of the Blender render script’s automated tests 33
4.2 An example of passing automated tests 34

5.1 UML diagram of a system using component architecture 36
5.2 Drawn monster using the calculated origin point 36
5.3 An example of a json file for model facing in 8 directions 37
5.4 An example of a json file for model seen from one angle 38

B.1 An error when the web browser does not support webGL 46
B.2 You can choose an axisting animation from the menu. 47
B.3 The cursor shows where the animation ends. On the right, the end

number must equal to the end frame of the animation, in this case
26. 48

B.4 Running the render script . 48
B.5 Prepared template.blend scene . 49
B.6 Created model must be facing left 50
B.7 Moving the camera by changing the Z position 51
B.8 Checking the final monster size for a game 51
B.9 Creating a new animation action 52
B.10 A dropdown menu with available materials for a floor tile 53
B.11 Rendering a floor tile . 53
B.12 Saving the rendered file as an image to a disc 54
B.13 Dragging the input images onto to the Spritesheet manager appli-

cation . 55
B.14 Spritesheet manager application interface 56
B.15 The Automatic angle processing tab 57
B.16 Final sprite sheet for non-isometric animation 58
B.17 The terminal output, when running the game prototype 59
B.18 The game prototype, when navigating to the localhost in a web

browser . 60

xiv

B.19 Using exec function to compile a script and run it 61
B.20 Running a script in Blender . 61
B.21 Showing a console window in Blender 62
B.22 Tests tab . 63
B.23 Tester interface . 63

xv

Introduction

Games have been a part of people’s lives since time immemorial. Over time,
they also found themselves in the field of information technology. Nowadays,
we can find many companies that develop video games for profit. The first
video game was called Tennis for Two and was released in the year 1948.
However, the game Pong was the first one that made it to the mainstream
and was released in 1972 by Atari company [1][p. 54].

There are usually some moving or stationary objects in a game, which
need to be displayed to the user on the computer screen. For displaying these
objects, textures and 2D imagery is used. Therefore, to create a game, textures
and animations are required.

Animations are traditionally created using the stop-motion technique, where
the displayed object is physically manipulated in small increments between
the photographed frames. Later, when the frames are played back in fast
succession, it appears to an observer that the object is moving. In the game
industry, a large image, called a sprite sheet, containing all the mentioned
frames is used, and a computer draws the individual frames with some time
delay.

Such a frame is called a sprite. Sprite is an image, which in a game can be
used as a 2D object in the world space, and therefore can be moved, during
a game. Texture is also an image, but is used to change an appearence of a
game object (for example background). However, it is not a game object and
can not be physically moved in a game.

If we would like to create sprite sheet textures for a monster or game effect,
it could be achieved by manually drawing them in some image editor, such as
Photoshop. Such a way would be very time-consuming, and considering that
we want to have the same animation for all the different directions the charac-
ter can be facing (left, right, etc.), it would probably not even be possible to
draw it manually. However, if such a model would be created in 3D software,
then using a script, it can be rendered and converted into 2D sprite sheets.

This thesis discusses the automated creation of 2D textures, which are

1

Introduction

created from 3D models. Blender was used as a 3D modeling tool.

The goal of the thesis
This thesis aims to analyze methods used in isometric 2D games in terms of de-
velopment and all aspects that are related to the development of such games.
The output of this thesis will be beneficial to game developers, because it
allows automatic creation of 2D animation sprite sheets from 3D model. Fur-
thermore, the next output of the thesis will be a prototype concerning the
import/export of isometric textures from modeling tools. The first part of
the thesis introduces the reader to the topic. The next chapter deals with the
survey of existing solutions. Another chapter follows, describing the realiza-
tion. The next chapter focuses on testing the output of this thesis. The last
chapter is dedicated to the game prototype [2, p. 20], which is also an output
of this thesis.

2

Chapter 1
Introduction to the topic

The output of this thesis are applications that create 2D sprite sheets from a
3D model. Such sprite sheets can be used in 2D isometric games. These tex-
tures are generated from a 3D model created in Blender. However, the system
can be used for creating textures for any 2D game, not only an isometric one.

Let’s imagine that we would like to create textures for some monster or
game effect, such as the sprite sheet displayed in figures 3.16 or 3.15. Drawing
such textures manually would be very time-consuming, especially for all the
different directions where the character might be facing (left, right, etc.).
However, if such a model would be created in 3D software, then, by using a
script, we could render it into separate images, and later on, we could create
one large sprite sheet. An example of a sprite sheet can be seen in figure
1.2. Also, the 3D model can be rotated adequately to be facing the requested
direction. An overview of the entire process is depicted in figure 1.3. The use
case of the entire system is further depicted by a UML[3] use case diagram
1.4. Nevertheless, for creating pixel art 1.1, it is better to draw it by hand
or create using some software like Photoshop, rather than using the rendering
method described.

Figure 1.1: An example of a pixel art image[4]

3

1. Introduction to the topic

Figure 1.2: An example of a sprite sheet

Blender

SpriteSheetManager

Blender

Game

python script
3D model

sprite sheets
and animation data

image files

Figure 1.3: An overview of the entire sprite sheet creation process

1.1 Game engine
The term ”game engine“ arose around the year 1990 and referred to first-
person shooter games (FPS), such as Doom by id Software [5, p. 30]. It is
an environment designed for developers to build video games. Usually, the
game engine’s core functionalities may include sound, animation, physics, or
networking (which are traditionally common for most games), and therefore,
the game developer does not have to implement these functionalities by him-
self/herself [6, p. 10].

Game engines can be divided into heavy game engines, light game engines,
toolkits, or libraries.

Heavy game engines, such as Unreal Engine, Unity, or CryEngine, offer the
most functionalities, and it is possible to create big games in a short time. On
the other hand, with libraries, the developer is provided with much fewer func-
tionalities and has to write most of the game-related code by himself/herself,
making the development much more demanding and time-consuming.

It depends on each game developer or company, which of the game engines
they choose.

4

1.2. Visual representation of 2D games

Blender

Spritesheet Manager application

Rendering script

User

Render 3D model
to 2D images

Convert 2D
images to sprite

sheet(s)

Use the textures and
data in a game
development

Create animation
data JSON<<include>>

Figure 1.4: A use case diagram, depicting the use case of the applications

1.2 Visual representation of 2D games

There are various visual representations for 2D games to be found. One of
the most common ones is the top-down projection, where the user views the
world from the above (bird’s eye) 1.8, or side-scroller, where the user sees the
world from the side 1.9 [7, p. 37]. Both of these views are using an orthogonal
projection. Another form of the visualization, which is commonly used in
games, is 2.5D (also called pseudo-3D), which allows simulating the 3D depth
on the final 2D screen. An example of such a visualization can be seen in
figure 1.5.

1.3 Graphical projection

Projection is a process that allows displaying a 3D object onto a 2D surface
[8][p. 12] . There are many available graphical projections such as perspective,
axonometric or oblique [9, p. 42]. For the sake of the thesis, we are interested
in isometric projection, which belongs to the axonometric projection group.
However, perspective projection can be used as well. An overview of the
projection groups can be seen in figure 1.6. A visualization of some graphical
projections is in figure 1.7.

5

1. Introduction to the topic

Figure 1.5: Isometric game scene, simulating the 3D depth

1.3.1 Isometric projection

Let’s imagine a cube in a 3D space. If such a cube would be viewed using an
isometric projection, then there would be an angle of 120 degrees [9, p. 42]
between the projected X, Y, and Z axes, as depicted by diagram 1.7.

1.3.2 Dimetric projection

In a dimetric projection, the angle between any two axes (after the projection
has been applied) is identical [9, p. 42]. An example of such a projection can
be seen in diagram 1.7.

1.3.3 Trimetric projection

In the trimetric projection, all three axes appear to have different lengths after
the projection. This means that all of the three angles between respective axes
are different [9, p. 42]. An example of such a projection can be seen in diagram
1.7.

As can be observed from the diagrams, all of the axonometric projections
allow simulating the 3D depth of the graphics in the final 2D image.

6

1.4. What is an isometric 2D game

Graphical
projections

Parallel Perspective

Multiview Axonometric

First-angle
Isometric

Dimetric

Trimetric

1-point

2-point

3-point

Figure 1.6: An overview of the projection groups

Figure 1.7: Examples of graphical projections

1.4 What is an isometric 2D game

Despite the name, the textures and graphics in an isometric 2D game do not
have to be isometric. The game can be using any anonometric projection (as
described in the previous chapter) to display the graphics. An example of a
3D spider displayed using an axonometric projection is shown in figure 1.10.
All the following game scenes and graphics in this thesis will be described
from the isometric projection point of view.

7

1. Introduction to the topic

Figure 1.8: Orthogonal projection (side)

Figure 1.9: Orthogonal projection (top-down)

Figure 1.10: Axonometric projection

1.5 Blender
For the 3D modeling tool, I chose Blender, which is free, open-source soft-
ware, which allows the creation of 3D models. The software is widely used by
students, developers, and even CG professionals [10][p. 17], and provides all
the basic features, such as modeling, sculpting, or animating. There are many
other 3D modeling tools, such as Autodesk Maya or ZBrush. However, these
are commercial software.

From this thesis’s perspective, the essential features are 3D modeling,
sculpting [10][p. 31], texturing, and any features connected to the 3D model
creation process. The software also allows to automate most of the actions,
which can be achieved by writing scripts in Python language. An example of

8

1.6. Using 3D modeling tools for the creation of the isometric textures

the Blender software can be seen in figure 1.11 and can be downloaded from
[11].

Figure 1.11: Screenshot of Blender software. In this example, with a model
of a chessboard.

1.6 Using 3D modeling tools for the creation of
the isometric textures

Suppose that we want to create an image of a spider, which can be used in
an isometric 2D world. For such a task, a 3D modeling tool, such as Blender,
can be used. We need to create the spider model, texture it, and position
the camera within the 3D modeling tool to match isometric projection (as
displayed in figure 3.3). Then, we can render the final image (as can be seen
in figure 1.10).

1.7 The problem of creation of the isometric
textures

Imagine the following 2D isometric scene 1.5. Focusing on the spider, we can
see that each one is rotated in a different direction. This rotation can not
be achieved by rotating the drawn 2D textures, but we must have a texture
set for all possible directions. This traditionally applies to any non-stationary
object in an isometric game world.

9

Chapter 2
Survey of existing solutions

This chapter focuses on exploring existing solutions that ease up the animation
or the texture creation for a game development.

Traditionally the game developers created their own tools for creating 2D
textures and graphics. For example, for Diablo 2, most of the in-game and
cinematic art was constructed and rendered in 3D Studio Max software. The
2D textures and GUI elements were created primarily using Photoshop [12,
p. 2].

According to the popularity list [13] of software for 2D skeletal animations,
as of the year 2021, Spine is ranked as the most popular, and behind it is
DragonBones software.

2.0.1 Spine

Spine is a 2D skeletal animation commercial software for games. It allows to
define a skeleton for a 2D model (in 2D space only), and then, by moving these
bones, the character is animated. The final animation data can be exported
and used in a game. However, the resulting graphics are not using an isometric
projection but an orthogonal one.

The main problem with this approach is that the parts of the character
(arms, legs, body, head) still have to be created (usually by drawing them
manually). Furthermore, if compared to a 3D modeling tool, such as Blender,
if we render a 3D model to a 2D image, we have much more realism and
3D depth. An example of the Spine software can be seen in figure 2.1. The
website where Spine software can be accessed can be found at [14].

11

2. Survey of existing solutions

Figure 2.1: A screenshot of the Spine software [15]

2.0.2 DragonBones

DragonBones is a free, open source software, which allows creation of 2D skele-
tal animations for games. It provides similar features as the Spine software,
and it also allows importing imagery and animation data from other software,
such as Cocos, or Spine. A screenshot of the DragonBones software is visible
in figure 2.2. The software can be downloaded from [16].

Figure 2.2: A screenshot of the DragonBones software [17]

12

2.1. Summary

2.0.3 Nima

Nima is a 2D animation software. It uses a skeletal system to animate the
characters, allows dynamic manipulation with the created characters, and runs
in real-time. It can run in a web browser, making it very easy to use. However,
it is not suitable for creating isometric graphics. An example of a character
with a skeleton, created in the Nima software, can be seen in figure 2.4, and
the screenshot of the software is in figure 2.3.

The website where Nima can be accessed can be found at [18].

Figure 2.3: A screenshot of the Nima software.

2.1 Summary
I have not found any application, nor a Blender module, which would allow
the creation of 2D isometric animations and the creation of sprite sheets for
characters, which can be seen from different angles.

13

2. Survey of existing solutions

Figure 2.4: Character creation in the Nima software. The character was
created by Luigi Rosso.

14

Chapter 3
Realization

The entire project is divided into multiple sub-projects. The first one is the
script, allowing to render the 3D model from Blender to 2D images. The
second one is an application that allows the processing of the Blender’s out-
put and creating sprite sheets and JSON files containing animation data. The
third one is the game prototype, demonstrating the usage of the created tex-
tures.

3.1 Used technology

In order to accomplish the task, knowledge of the following programming
languages was required:

HTML, CSS, Typescript

These are the languages necessary for developing the web application, demon-
strating the usage of the textures created. Typescript is a programming lan-
guage and is a type superstructure of JavaScript. It allows easier development
of JavaScript applications [19].

Blender

Experience with Blender is required, including modeling, rigging, animating,
texturing, and scripting.

Python

Python [20] programming language is in this thesis used for creating scripts
in Blender.

15

3. Realization

C#

This programming language [21] was used for writing the Spritesheet manager
application, which is part of the output of this thesis. The reason for choosing
C# is that it’s libraries allow to effectivelly work with images and pixel data,
and also allow to create user-friendly GUI. The language is not dynamically-
typed, such as Python, and makes a larger amount of code more maintainable.

3.2 Exporting a 3D model to 2D images
This chapter explains how the 3D model is exported to 2D images and dis-
cusses the in-depth view of how the system works and how the scene is set
up. For 3D modeling software, I have used Blender. The presented rendering
script, which is a part of an output of this thesis, was created for Blender of
the latest version, which at the time of writing this thesis is 2.82.

3.2.1 Setting up the Blender scene

A scene must be set up in a particular way to make it work with the written
rendering script.

A collection, named modelCollection, must be created, containing all
objects related to the 3D model itself. Furthermore, in the root of the scene, a
sphere object called originReference must be created. The camera is set as
a child to an empty object. That empty object is then angled and placed at
the desired location, which creates the isometric effect when viewing through
the camera. The rotation of the empty object can be adjusted to rotate the
camera. This situation is depicted in figure 3.1.

16

3.2. Exporting a 3D model to 2D images

Figure 3.1: Camera parented to an empty. The empty object is displayed
using the orange color.

The collection hierarchy tree is captured in image 3.2. In that illustration,
a modelCollection contains all objects related to the model, which will be
rendered. OriginReference object is in the scene collection.

Figure 3.2: Hierarchy of objects in Blender scene. ModelCollection contains all
objects related to the model, which will be rendered. OriginReference object
is in the scene collection

The 3D scene can be seen in image 3.3.
However, it is not needed to create the scene manually, as a part of this

thesis is a template Blender file, which is already set up.
As can be seen, the rotation of the camera can be changed by the user to

17

3. Realization

Figure 3.3: 3D scene setup

match the desired final angle of the render. It is important to say that if the
camera object is selected, Upon selecting the camera object in the viewport,
a camera setup panel becomes available in the Blender GUI, as seen in figure
3.4. In that panel can be seen a type of camera, which, as depicted by figure
3.4 is set to perspective. Users can change it to orthographic. This depends on
whether the final graphics will look better using the orthographic camera type
or perspective camera type. For the characters (spider, human), a perspective
type of camera was used, as the resulting render was better looking.

18

3.2. Exporting a 3D model to 2D images

Figure 3.4: A panel with properties of the camera

Figure 3.5: A comparison of a cow model rendered using an orthographic
camera and perspective camera in Blender

19

3. Realization

3.2.2 The rendering script

The rendering is done using Pyhton script. This script can be found in the
gitlab repository [22, 1] or on the data media, provided along with this thesis,
in path \bin\blender\renderAllSides.py.

The script automatically rotates the root of the camera by a fixed constant
angle. Each time, after the rotation, all the animation frames are rendered. As
a result, we get a directory with output image files. Each image file contains
one animation frame. In illustration 3.6 is a directory with the rendered
output, where there is no movement animation of the spider (so each angle
has only one frame). There is also an origin point image file. The origin point
is discussed in the chapter The origin point in this thesis.

Figure 3.6: Render output files from the Blender

The idea is that in the script is defined in such a way that the character will
be rendered from 8 angles. Then, the script renders the current animation of
the model, creating output animation frames, and then it rotates the camera
root by 45 degrees and renders again. The rotating and rendering actions are
repeated until a full turn of 360 degrees is done.

An alternative approach would be to rotate the model instead of the cam-
era root, and the result would be the same. However, this would be a bit more
complicated if there were multiple objects from which the 3D model consists,
as all the parts would have to be rotated with respect to one shared point in
the 3D scene (rotation origin point).

As a result of running the render script, there is a sequence of images for
the animation of the model in all eight angles. In the next example output
illustration 3.7, there is an animation of a spider, consisting of 6 frames. In
the illustration, there are only three angles of the spider (for the sake of the
demonstration). Each line is devoted to one rotation angle and contains six
frames of an animation for that angle.

Once the script has rendered the model, it will be hidden from the ren-
dering camera. Instead, it would render an origin point sphere. The rendered
sphere image is saved to a file called originReference.png. The importance
of the origin point is discussed in the chapter The origin point.

20

3.3. Processing the Blender output

Figure 3.7: Animation of spider consisting of 6 frames. Only 3 angles (left,
right-down, down) are displayed

3.3 Processing the Blender output

Having the image sequence rendered from the Blender, if all the images (with
the exception of the originReference.png) would be placed next to each
other in one final image (sprite sheet), it could be used in a game to display
the monster animation. However, there are many transparent pixels in each
image, and a bounding rectangle can be found to cut off the transparent pixels,
and therefore reduce the final size of the sprite sheet. Figure 3.8 illustrates
how many transparent pixels are there in one image. The transparent pixels
are depicted by green color to make it visible in the illustration.

The application that is part of this thesis’s output and allows the process-
ing of the Blender output will be referred to as Spritesheet manager from now
on.

Figure 3.8: Output image with a lot of transparent pixels.

21

3. Realization

3.3.1 Creating a minified sprite sheet

The task is to find the smallest rectangle, of the same size for all frames. Such
a rectangle should cut off as many transparent pixels as possible from all the
frames but not any non-transparent pixels.

The algorithm checks for transparent pixels and then creates the final
sprite sheets. A sprite sheet for each direction of the character is then created.
Each sprite sheet contains sprites for only one direction of the character. This
is because traditionally, in a game, the animation (walking left/right, etc.)
doesn’t change as often as an animation frame. This allows the programmers
to load only the needed sprite sheet for a particular direction.

An example of a common rectangle for two frames can be seen in illus-
tration 3.9. This is possible because all the images have the same resolution,
thanks to the way how the Blender rendering works.

Figure 3.9: Common rectangle for two frames, used for cutting off the trans-
parent pixels. The grey area marks the portion of the images, which is re-
moved, and not used in the final sprite sheet. The green line illustrates where
one image ends and the other begins in this illustration.

Now, let’s describe the I/O specification for the Spritesheet manager ap-
plication:

Input

In case of animation of a character, displayed from 8 directions, it is a fi-
nite sequence of images of one animation (for example, character walking),
displayed from eight directions. The animation directions go in the following
order: right, right-up, up, left-up, left, left-down, down, right-down, as defined
by the rendering Python script. All the images in such a sequence have the
same resolution. Additionally, an image containing the origin reference mark
is also an input to the application. In other cases, which form the additional
usage of the Spritesheet manager, the input is described in the chapter Other
usage of the Spritesheet manager application.

22

3.3. Processing the Blender output

Output

Eight sprite sheet images, where each is representing the character direction
described above. A JSON file that contains information about the size of
a frame, the amount of frames per line, and the amount of frames in total
for each animation angle. The file also includes the origin point, which is
described in the chapter The origin point in this thesis.

3.3.2 The algorithm

This chapter describes the algorithm that finds the minimal common rectangle
for given image files. Suppose that we want to find the X position of the left
side of the final rectangle. The idea is that the algorithm starts at the top-left
corner of the image and iterates over all image pixels. The algorithm keeps
a variable for remembering the X offset of the left side of the final rectangle.
Let’s refer to that variable as X position. In the beginning, the X position
is set to the INTEGER_MAX value. Once a non-transparent pixel is encountered
during the pixel iterating, its X position is saved to the X position variable,
if it is smaller than the currently found X position. After all the pixels were
iterated, the X position is the desired rectangle’s left side’s X position.

This approach is also used for calculating the top side of the rectangle. For
calculating the location of the bottom and right side of the rectangle, the same
algorithm is used with an exception, where the position variable is initially
set to INTEGER_MIN value, and during iteration, the algorithm checks whether
the acquired position is greater than the one in the variable position.

For all input images, this algorithm is used for determining the minimal
common rectangle’s side’s positions. However, for the left and top side, the
smallest offset is chosen in the end. For the bottom and right side of the
rectangle, the largest offset found among all images is chosen.

This algorithm takes N images, where each has the same resolution of
A · B. The asymptotic complexity of calculating a minimal common rectangle
for given N images is O(N · A · B).

3.3.3 The origin point

This chapter describes what the origin point is and why is it needed. Al-
though the technique above allows automation of processing of any animation
desired, it is not enough, and unfortunately, for certain animation sheets, an
origin point must be defined in order to make sure that the final graphics are
displayed correctly. Let’s simplify the problem to only one frame per anima-
tion. Imagine we have two sprite sheets for two angles (down and left-up).

If we draw both images in one position, using the upper left corner as
an origin, the monster would appear to be standing in a different place, as
illustrated by image 3.10.

23

3. Realization

Figure 3.10: Monster drawn using the upper-left corner as an origin point

However, with correct origin points defined for both images, the monster
would appear to be standing in the same position when drawn, as shown by
figure 3.11.

Figure 3.11: Monster drawn using the calculated origin point

An origin point is an X, Y coordinate, which is added to the target draw
position to shift the resulting graphics in a particular direction.

It is essential to realize that having two sprite sheets, they do not have to
have the same size, and therefore, the frame size can differ. This means that
the origin point must be calculated separately for each sprite sheet.

24

3.3. Processing the Blender output

3.3.4 Calculating the origin point

The origin point could be defined manually or using a WYSIWYG editor, but
it can be calculated automatically. It is worth noting that the exact, precise
position is not required, as it would not be notable by the client in the game
anyway, thus an approximation suffices.

As discussed earlier, a sphere object is added to the Blender scene. The
reason for using a sphere is that it’s a 3D object, which will always project as
a circle in 2D, no matter the projection (does not matter, where the camera
is and at what angle). The origin sphere mark is illustrated by image 3.12.

Figure 3.12: The origin point mark, displayed as a green sphere

When the model is rendered using the automated script, the sphere is
hidden from the render. After the model is rendered, the model is hidden,
and the sphere is shown. Later, one image containing only the green sphere
is rendered.

Now, considering that we find the minimal bounding rectangle for the
model image (as seen in illustration 3.13),

Figure 3.13: Minimal bounding box, highlighted with a white border

25

3. Realization

also the minimal bounding rectangle for the sphere image is calculated,
and its center is calculated to get the center of the sphere, which is the final
origin point. Such an origin point’s coordinates are relative to the frame
size (calculated minimal common rectangle bounding box). The situation is
depicted by an illustration 3.14.

Figure 3.14: The coordinates of the origin point are depicted by blue lines,
and the minimal bounding box, displayed using a white line

This is easy to calculate, since all rendered image files have the same res-
olution. The calculated origin point is saved into a JSON file, which contains
the animation data. Such a point must be calculated for each 3D model ro-
tation. The reason is that sprite sheets for different model rotation can have
different resolution and frame size, as can be seen in figures 3.15 and 3.16.
The first sprite sheet has a resolution of 990 x 417 pixels, and the second has
680 x 510 pixels. Therefore, the calculated origin point will be different for
each of these sprite sheets.

Figure 3.15: The final sprite sheet for a walk animation of a human, facing
left. Resolution of such a sprite sheet is 990 x 417 pixels

26

3.4. Other usage of the Spritesheet manager application

Figure 3.16: The final sprite sheet for walk animation of human, facing up.
Resolution of such a sprite sheet is 680 x 510 pixels

3.3.5 Alpha sensitivity lower bound

This chapter explains how the Spritesheet manager application allows to set
a threshold for determining transparent pixels. Suppose that a fireball image
containing semi-transparent pixels was rendered as a final image from the
Blender. Considering RGBA color model, semi-transparent pixels are pixels,
which alpha channel is not 255 (fully transparent), but might be, for example,
160, so the pixel has color, but a user can see through it. Thus, it is vital
to set the threshold, which is used for determining whether a pixel will be
considered transparent by the algorithm. As displayed in figure 3.17, on the
left, we can find the input image for the Spritesheet manager. The middle
image shows the output when the alpha sensitivity lower bound was set to
value of 255. As can be seen, such an output isn’t visually pleasing and could
not be used in a game. The image on the right displays a result where the
value was set to 100. The value 100 is set as a default value in the Spritesheet
manager application and works well for a majority of inputs. However, it can
be configured by the user as needed. A pixel is considered transparent by the
program if its alpha channel value is greater than the alpha sensitivity value.
The correct value for particular image inputs must be determined by the user,
traditionally by a trial and error.

3.4 Other usage of the Spritesheet manager
application

3.4.1 Usage for a classic animation

This chapter discusses how the application and the idea of image processing
can be used for other purposes. Suppose that we want to create an anima-
tion, which will be viewed from a static angle. An example could be a water

27

3. Realization

Figure 3.17: Image with-semi transparent pixels. On the left is an input to
the Spritesheet manager

splash, which could be seen in figure 3.18. Such an animation can be used,
for example, in a naval game, and it is not needed to rotate for eight or more
angles.

Figure 3.18: An example of a water splash sprite sheet

These textures are called billboard textures and are always rotated towards
a camera under 90 degrees in a game. In order to create such a sprite sheet,
the model in Blender is created first, using a fluid simulation. The fluid is
animated, and then the animation is rendered classically through the Blender
interface (not using the render script described in this thesis) to produce series
of images. Such a series of images is then used as an input for the Spritesheet
manager application, which will create only one sprite sheet with a JSON
animation data. This process is described more in detail in the user manual’s
chapter Creating data for any animation seen from only one angle.

3.4.2 Cutting off the transparent pixels for a single image

Suppose that we want to create a couch texture for an isometric game.
Once the model is created and the camera is positioned and angled ap-

propriately, an image is rendered using the Blender interface. A render result
can be seen in figure 3.19. In this figure, the transparent pixels are depicted

28

3.4. Other usage of the Spritesheet manager application

with a pink color for the sake of the example. As can be seen, there are lots of

Figure 3.19: Resulting render of a couch. Transparent pixels are depicted with
pink color for the sake of the example

transparent pixels. The Spritesheet manager application can be used to find
the minimal bounding rectangle and cut off the transparent pixels to mini-
mize the image size. The result after cropping is displayed in figure 3.20. The
transparent pixels are depicted with pink color for the sake of the example.

Figure 3.20: Cropped image of a couch. Transparent pixels are depicted with
pink color for the sake of the example

3.4.3 Creation of a floor tile

This chapter describes how a floor tile texture was created for the game pro-
totype.

Suppose we want to create an isometric tile (as seen in figure 3.21) for a
game.

29

3. Realization

Figure 3.21: Resulting isometric floor tile texture

First of all, a plane is created, and the camera is positioned in a way so
that the resulting rendered image would be tileable. For this, I have used
sprites from the game Diablo 2 [23, 1] as a reference. In figure 3.22 is an
example of a sprite sheet for floor tiles, which was originally used in Diablo 2.

Figure 3.22: Floor tile sprite sheet used in Diablo 2

Then, the task is to position the camera in such a way that the result-
ing render will have the same shape. The scene can be seen in figure 3.22.
The camera angle could be calculated mathematically. However, it would be
more time-consuming. Instead of that, I positioned and angled the camera
manually, using the sprite sheet as a reference, which was faster.

It is also possible to take the existing sprite sheet from Diablo 2 and
edit it in image editing software, such as Photoshop, and place a custom
photo of grass or wall over it to create custom floor texture, but keep the tile
dimensions. This is a more precise method, but it is more time-consuming,
and in the end, even if few pixels are off in the final tile render, it is barely
noticeable in the final game.

Once the 3D plane is positioned correctly in the Blender, any tileable
texture (material) can be applied to it, in order to create the final tileable
floor tile.

30

3.4. Other usage of the Spritesheet manager application

Figure 3.23: Isometric tile in Blender

The chapter Creating a floorile texture in the user manual explains how
to render the floor tile images from the Blender.

31

Chapter 4
Testing

This chapter describes how the created applications were tested to ensure
correct behavior. The game prototype was tested manually by playing the
game.

4.1 Blender rendering script

The tests for the Blender rendering script test the proper functionality of
the hideRender() function, which allows to hide or show an object from the
render. The next test tests the hideRenderCollection() function and its
correct behavior when a non-existent collection name is passed as an argument.
Because of the nature of the script, the rendering functionality was tested
manually by running the script to render various models and then checking
the result. A more detailed explanation on how to run the tests can be found
in the appendix. The output of running the tests can be seen in figure 4.1.

Figure 4.1: The result of the Blender render script’s automated tests

4.2 Spritesheet manager

For testing the Spritesheet manager application, automated tests were im-
plemented. These tests are testing the correct creation of a JSON file for

33

4. Testing

animation, and also the correct calculation of the minimal bounding box. The
proper sprite sheet creation was tested manually by using the application and
validating the output. The output of running the tests can be seen in figure
4.2.

Figure 4.2: An example of passing automated tests

Additional tests can be performed manually by navigating to the directory
.\data\isometricCharacters in the provided sources. Each subdirectory
contains an input directory, with input files to the Spritesheet manager and
output directory, containing an example of expected output. A more detailed
explanation of how to work with the application is in the user’s manual.

34

Chapter 5
Game prototype

This chapter describes the game prototype web application, which is a part
of the output of this thesis. The game prototype demonstrates the usage of
created textures. It also demonstrates how the character animation can be
switched for all eight angles.

For example, if the main character is supposed to move to the left, then the
walk animation (facing left) will be displayed. If the character is stationary,
an idle animation is displayed for the character’s direction. Depending on the
game state, an animation of walk, idle, or attack is chosen and displayed for
the character. The world also contains trees, bags, and floor tiles (which can
be seen as grass) or a spider. All of these graphics were created using the
system described in this thesis. An illustration B.18 shows the game, accessed
using a web browser.

5.1 Used technology

For creating the game prototype application, a Typescript programming lan-
guage was used. Also, the PixiJS [24] toolkit was used.

PixiJS is an HTML5 creation engine that already contains some function-
alities, which make game development faster [25]. The game prototype is using
component-based architecture and messaging system for notifying the game
objects. The main objective of such an architecture is to ensure component
reusability. A component is a replaceable functionality, which is attached to
a simple game object. Because the behaviors are separated from the game
object (encapsulated in a component), the entire system is much more main-
tainable and flexible [26, p. 18]. A UML diagram, depicting a component
architecture is in figure 5.1.

35

5. Game prototype

Component 2

Component 1 Component 30..*

0..1

0..1

Game Object

+ addComponent(a): void
+ removeComponent(a): void

0..*

Figure 5.1: A game object can have multiple components attached to it in a
component architecture

5.2 Loading the textures and animation data to a
game

This chapter describes how the textures and animation data are loaded into
the game system. To be able to load and use one animation of a character in
a game, a JSON file containing the animation data must be loaded along with
all of the texture sheets for all angles. An example where the JSON file is
loaded, along with all the sprite sheets (up, down, left, right, up-right, down-
right, up-left, down-left), can be seen in illustration 5.2. In that illustration,
this.engine.app.loader (which is a part of the PixiJS toolkit) is used to
load the resources.

Figure 5.2: JSON file is loaded, along with all the sprite sheets (up, down,
left, right, up-right, down-right, up-left, down-left)

5.3 Animation JSON
This chapter describes the use and structure of the animation JSON file,
which is an output of the Spritesheet manager application. There are two
variants of such a JSON file. The first one is when the Spritesheet manager
is used for processing output from the described Blender rendering script,
whereas the model is facing in eight different directions. The other JSON file

36

5.3. Animation JSON

structure is created in any other case and is described in chapter Other vari-
ant. The attribute which decides, which JSON variant will be created, is the
automatic angle processing feature available in the Spritesheet manager
application. The automatic angle processing is a feature that, if enabled,
tells the Spritesheet manager application that the output shall be divided into
eight sprite sheets, each for one character direction. This is explained more
in-depth in user manual’s chapter Creating data for isometric characters.

5.3.1 Variant for model facing in 8 directions

Only one JSON file is created for one model animation, and it contains in-
formation about all the sprite sheets for all model directions. Each of the
model directions is referred to using shortcut letter(s) in the JSON: L - left,
R - right, U - up, D - down, LD - left-down, LU - left-up, RD - right-down,
RU - right-up.

Here is an example part of the JSON data related to the left rotation:

Figure 5.3: An example of a json file for model facing in 8 directions

An example of the full file is available in the gitlab repository [22, 1] or on
the data media, provided along with this thesis, in path

\data\isometricCharacters\player walk\output\walk.json.
The animationSpeed is set with a default value of 100 and can be used

for defining time delay (preferably in milliseconds) between each frame of the
final animation in the game. This attribute should be defined manually or
can be ignored completely. That depends on the final game implementation.
The framesTotal is the total number of frames of the animation (in the case
of this discussed example, for the left rotation of the model). The frameSize
is the width and height (in pixels) of each frame in the sprite sheet. The
framesPerLine is the number of frames per line in the sprite sheet, under-
standing that if an animation consists of 12 frames and ten frames per line
in the image, then the last line will contain only two frames. The origin
denotes the X and Y coordinates of the calculated origin point. This argu-
ment, however, might not be present if the origin point was not requested to
be calculated by the user.

37

5. Game prototype

5.3.2 Other variant

This chapter explains the structure of the animation JSON file, which is cre-
ated when automatic angle processing is disabled in Spritesheet manager.

Here is an example of the full JSON file:

Figure 5.4: An example of a json file for model seen from one angle

An example of the file is available in the gitlab repository [22, 1] or on
the data media, provided along with this thesis, in path \data\frames to
spritesheet\output\output.json.

5.4 Drawing the textures in a game
To draw a character animation, there must be a system in the game, that
chooses, which variation of the animation to display with respect to the char-
acter orientation. Having loaded all sprite sheets, we create an animation
instance of the class GraphicsAnimation for each animation angle. Then, ac-
cording to the situation (when a character moves), we switch to an appropriate
animation for the movement direction.

The GraphicsAnimation class takes the animation data as an argument
in a constructor. Namely, it is the total amount of frames in the sprite sheet,
width and height of one frame (in pixels), number of frames per line in the
sprite sheet and the animation speed (in milliseconds). The class instance can
be then used for getting the current frame’s x and y position, which can be
used for drawing the specific frame. The class also allows to automatically
advance to the next frame of the animation, based on the elapsed time.

A certain animation frame is changed in CharacterAnimationBase.ts,
when an appropriate message is received in the onMessage() function. The
origin point is applied in Character class, in function updateRenderPosition().

38

Conclusion

This thesis aimed to analyze methods of isometric 2D games in terms of de-
velopment and all aspects related to the development of such games. The
thesis’s output is a working solution concerning the import/export of isomet-
ric textures from modeling tools.

In the thesis, I analyzed the methods of isometric 2D games in terms of
development along with a task of creating isometric 2D textures from a 3D
modeling tools. Based on that, I designed and implemented three applications,
the first one allowing the export of 3D models to 2D images. The second
application creates minified sprite sheets from the imagery output and the
third application is a game prototype, deployable as a web application, which
is demonstrating the usage of created texture sprite sheets. I also implemented
automated tests which ensure that the applications are working correctly. This
thesis’s output will be beneficial to game developers, as it provides automated
creation of 2D isometric textures from 3D modeling tools. Therefore, there is
no need to manually draw the final sprite sheets but only create a 3D model
and later export it to the final sprite sheets.

All the requirements of the thesis’s assignment were met.

39

Bibliography

[1] Wolf, M. J.: The video game explosion: a history from PONG to Playsta-
tion and beyond. ABC-CLIO, 2008.

[2] Aleem, S.; Capretz, L. F.; Ahmed, F.: Game development software en-
gineering process life cycle: a systematic review. Journal of Software
Engineering Research and Development, ročník 4, č. 1, 2016: s. 1–30, doi:
10.1186/s40411-016-0032-7.

[3] Pender, T.: UML bible. John Wiley & Sons, Inc., 2003.

[4] An example of pixel art image. https://www.hugovela.com/daily-
directions/pixel-art-an-intro-to-digital-art, [Online; accessed
25-March-2021].

[5] Gregory, J.: Game engine architecture, 3rd Edition. crc Press, 2018.

[6] Kelly, C.: Programming 2D games. CRC press, 2012.

[7] Larochelle, A.: A new angle on parallel languages: The contribution of
visual arts to a vocabulary of graphical projection in video games. G| A|
M| E Games as Art, Media, Entertainment, ročník 1, č. 2, 2013.

[8] Napieralla, J.: Comparing Graphical Projection Methods at High Degrees
of Field of View. 2018, diva2: 1229190.

[9] Camba, J. D.; Otey, J.; Contero, M.; aj.: Design Graphics.

[10] Mullen, T.: Mastering blender. John Wiley & Sons, 2011.

[11] Blender. https://www.blender.org/, [Online; accessed 16-January-
2021].

[12] Schaefer, E.: Postmortem: Blizzard Entertainment’s Diablo II. URl:
http://www. gamasutra. com/view/feature/3124/postmortem_blizzards_
diablo_ii. php, 2000.

41

10.1186/s40411-016-0032-7
https://www.hugovela.com/daily-directions/pixel-art-an-intro-to-digital-art
https://www.hugovela.com/daily-directions/pixel-art-an-intro-to-digital-art
1229190
https://www.blender.org/

Bibliography

[13] List of the best 2D skeletal animation software. https://www.slant.co/
topics/588/~best-2d-skeletal-animation-tools, [Online; accessed
25-March-2021].

[14] Spine. http://esotericsoftware.com/, [Online; accessed 16-January-
2021].

[15] Screenshot of the Spine software. http://fresh-softs-
4u.blogspot.com/2015/03/download-esoteric-software-spine-
pro-21.html, [Online; accessed 16-January-2021].

[16] DragonBones. http://dragonbones.com/, [Online; accessed 16-January-
2021].

[17] Screenshot of the DragonBones software. http://
brasilgamedev.blogspot.com/2016/11/crie-animacoes-2d-com-
software-gratuito.html, [Online; accessed 16-January-2021].

[18] Nima. https://www.rive.app/, [Online; accessed 16-January-2021].

[19] Bierman, G.; Abadi, M.; Torgersen, M.: Understanding typescript. In
European Conference on Object-Oriented Programming, Springer, 2014,
s. 257–281.

[20] Summerfield, M.: Programming in Python 3: a complete introduction to
the Python language. Addison-Wesley Professional, 2010.

[21] Perry, S. C.: Core C# and. NET. Prentice Hall PTR, 2005.

[22] Glaser, J.: Gitlab repository with sources. https://gitlab.com/
glaseja1/masterthesisrepo, 2021, [Online; accessed 16-January-2021].

[23] Diablo sprites. https://www.spriters-resource.com/pc_computer/
diablo2diablo2lordofdestruction/?source=genre, [Online; accessed
16-January-2021].

[24] PixiJS. https://www.pixijs.com/, [Online; accessed 16-January-2021].

[25] Van der Spuy, R.: Learn Pixi. js. Apress, 2015.

[26] Porter, N.: Component-based game object system. Carleton University,
2012.

[27] Wittern, E.; Suter, P.; Rajagopalan, S.: A Look at the Dynamics of the
JavaScript Package Ecosystem. In Proceedings of the 13th International
Conference on Mining Software Repositories, MSR ’16, New York, NY,
USA: Association for Computing Machinery, 2016, ISBN 9781450341868,
str. 351–361, doi: 10.1145/2901739.2901743.

42

https://www.slant.co/topics/588/~best-2d-skeletal-animation-tools
https://www.slant.co/topics/588/~best-2d-skeletal-animation-tools
http://esotericsoftware.com/
http://fresh-softs-4u.blogspot.com/2015/03/download-esoteric-software-spine-pro-21.html
http://fresh-softs-4u.blogspot.com/2015/03/download-esoteric-software-spine-pro-21.html
http://fresh-softs-4u.blogspot.com/2015/03/download-esoteric-software-spine-pro-21.html
http://dragonbones.com/
http://brasilgamedev.blogspot.com/2016/11/crie-animacoes-2d-com-software-gratuito.html
http://brasilgamedev.blogspot.com/2016/11/crie-animacoes-2d-com-software-gratuito.html
http://brasilgamedev.blogspot.com/2016/11/crie-animacoes-2d-com-software-gratuito.html
https://www.rive.app/
https://gitlab.com/glaseja1/masterthesisrepo
https://gitlab.com/glaseja1/masterthesisrepo
https://www.spriters-resource.com/pc_computer/diablo2diablo2lordofdestruction/?source=genre
https://www.spriters-resource.com/pc_computer/diablo2diablo2lordofdestruction/?source=genre
https://www.pixijs.com/
10.1145/2901739.2901743

Appendix A
Acronyms

WYSIWYG What you see is what you get

GUI Graphical User Interface

JSON JavaScript Object Notation. It is a standard file format

URL Uniform Resource Locator

43

Appendix B
User manual

All the sources discussed can be found in the GitLab repository [22] or on
the data media provided along with this thesis. As some of the files in the
repository are quite large (such as .blend files), it is recommended to clone
using SSH instead of the HTTP protocol, as cloning using the HTTP protocol
mas maximum file size limits and may cause troubles.

B.1 Minimal requirements

This chapter describes the minimal requirements for running all the applica-
tions, which are the output of this thesis.

B.1.1 Spritesheet manager

Application Spritesheet manager is written in C# for Windows operating
system. The binary executable provided is compiled for 64-bit Operating
System, and it was tested and worked with on a machine with Windows 10
operating system. If you want to run the binary application on a 32-bit system,
you need to compile the binary from sources for the target platform. The
source code was written and compiled using Microsoft Visual Studio C#
2010 Express environment. To run the provided Spritesheet manager binary
application, .NET Framework is required. However, it is not always necessary
to install these libraries. On a freshly installed operating system, Windows 10,
these libraries were already part of the system. However, if needed, the .NET
Framework libraries can be downloaded from https://www.microsoft.com/
net/download/dotnet-framework-runtime.

B.1.2 Exporting 3D model to 2D textures using Blender

To be able to export the 3D model to 2D textures, using the way described in
this thesis, Blender needs to be installed on a system. It can be downloaded

45

https://www.microsoft.com/net/download/dotnet-framework-runtime
https://www.microsoft.com/net/download/dotnet-framework-runtime

B. User manual

for free from [11, 1].

It is possible to perform the export from Blender to images on a Linux or
Windows operating system, and then for using Spritesheet manager, move to
a windows operating system. However, it is recommended to use Windows for
all of these actions because you do not need to copy the output images from
one system to another.

B.1.3 Game prototype

For running the game prototype application, a machine with Linux operating
system is required. Also, an application npm is needed. npm stands for Node
Package Manager, which is a large repository of various JavaScript-based pack-
ages [27]. The package manager will figure out all the needed dependencies,
and allow to later download all the packages, needed by the project. For
installing that program, run the command apt-get install npm in the ter-
minal. As the game prototype is a web application, a web browser is needed to
play the game. The web browser must support WebGL. Otherwise, the user
will see a black screen with an error in the developer console, as displayed
in figure B.1. The game was tested with both firefox and chrome browsers.
However, chrome seems to be a better choice.

Figure B.1: An error when the web browser does not support webGL

46

B.2. Using an existing 3D model in Blender and exporting to 2D images

B.2 Using an existing 3D model in Blender and
exporting to 2D images

This chapter explains how to use an existing model, provided along with this
thesis, to export it to 2D images. Open a provided file with an existing model.
In this example, we will use the .\bin\blender\playerModel*.blend file.
As all the camera positioning, a model position, origin reference object, and
sizing is already set up, along with an animated, rigged model, you can directly
navigate to the Animation tab and make sure that you are in DopeSheet and
Action Editor, as seen in figure B.2.

Figure B.2: You can choose an axisting animation from the menu.

From the drop down menu, select an animation by name, as displayed in
figure B.2. It is important to select an animation, which has F in front of the
name. In this example, we choose an animation with the name Walk. Such
an animation can be already selected, however, upon opening the file.

Set the end of the animation properly to the number of frames of your
animation, as displayed in figure B.3.

The number of frames can be discovered by moving the cursor to the last
set of keyframes, and the cursor will display a number, with the total number
of frames of the animation. In the case of the discussed figure, it is number
26. Such a number must be set as the end value, which can be seen in the
right-bottom part of the figure.

Select the Scripting tab, and click on the arrow to run the script, as seen
in figure B.4.

Please note that Blender will freeze until the rendering has finished. There
seems to be no way to deal with that from the python script, so wait until the

47

B. User manual

Figure B.3: The cursor shows where the animation ends. On the right, the
end number must equal to the end frame of the animation, in this case 26.

Figure B.4: Running the render script

Blender window unfreezes.
The script will create a directory C:\tmp (if not yet exists), and the re-

sulting images will be saved there. While the script is rendering, you may
open the output directory and explore the images as they are being cre-
ated. If you want to change the output directory, you have to open the
renderAllSides.py script, and at the beginning of the file, change the vari-
able outDir = str(Path(’/tmp’)); value to the requested output directory.
If the output directory does not exist, it is created by the Blender application,
which runs the script.

B.3 Creating a 3D model in Blender and
exporting in to 2D images

This chapter explains how to create your 3D model, along with all the setup.
This chapter expects you to create a 3D model, animate and rig it in Blender,
and have some experience with Blender or 3D software. If you only want to try

48

B.3. Creating a 3D model in Blender and exporting in to 2D images

out the rendering system on an existing 3D model file, navigate to the Using
an existing 3D model in Blender and exporting to 2D images chapter instead.
To create a new model for a game, navigate to the .\bin\blender\template
directory in the provided sources, and create a new copy of the template direc-
tory. The new copy of the template directory must be in the .\bin\blender
directory so that the relative path to the rendering script is valid.

Upon opening the copied template.blend file, you will see a scene with a
cube, as displayed by figure B.5.

Figure B.5: Prepared template.blend scene

Delete the cube object, and create, texture, and rig your own model. En-
ter camera perspective mode by hitting the 0 key on a Numpad. The cre-
ated model must be facing left, as shown in figure B.6. Also, your model
must be inside the modelCollection collection. In the illustration, the model
cow is a child of the ArmatureNew, which is in the modelCollection. The
template.blend file also contains originReference object, which is a sphere

49

B. User manual

with green material. Please do not delete the object and keep it in the scene.
Also, change its position to mark the position of the feet of the model. The
material of the object is not important. The only important thing is that the
originReference object does not have transparent material.

Figure B.6: Created model must be facing left

If the model does not fit the camera view (as in figure B.6), move the
camera further away (or closer) by changing the Z position of the camera
object, as shown in figure B.7.

Press the F12 key to preview the render. This allows you to see the result
you got so far. The rendered output reflects how large the monster image will
be in your final game (not considering the transparent pixels). This can be
seen in figure B.8.

If you want to make the monster smaller or larger, there is no need to scale
the model. You can only change the render resolution percentage, which can
be seen on the right in the figure.

Select the Animation tab, and make sure that you are in DopeSheet and
Action Editor as seen in figure B.2. Create a new action by clicking on the
button displayed in the figure B.9.

Then, animate your model. Make sure that the animation is linked to the
model’s armature before rendering. This is important in the case of having
more animation actions for one model. Then, every time before rendering, you
need to select the animation from the action drop-down menu. Now having the
model, you can follow the tutorial described in the chapter Using an existing
3D model in Blender and exporting to 2D images.

50

B.3. Creating a 3D model in Blender and exporting in to 2D images

Figure B.7: Moving the camera by changing the Z position

Figure B.8: Checking the final monster size for a game. On the right can be
seen the resolution percentage, which is 50 percent

B.3.1 Expected limitations

This chapter discusses the expected limitations for the rendering script used
in the Blender. The script’s main objective is to automate compilated render
process and is not created for dealing with all possible scenarios, so it is

51

B. User manual

Figure B.9: Creating a new animation action

possible that the script can fail if the user does not follow the manual precisely.
As there are many possible situations that can happen in Blender scene setup,
it is impossible to check for all of them, such as when the character model,
which we want to render, would be a child of the rotated cameraRoot object.
In such a case, the rotation during the rendering process would cancel out,
and the resulting 2D image of the model would always be facing in only one
direction. To use the script without complications, it is vital to follow the
instructions in the user manual and, ideally, use the provided template.blend
file, as described in the instructions.

B.4 Creating a floorile texture

This chapter explains how the floor tile texture can be created. Creation of the
floor tile results in having one tileable image, as displayed in figure 3.21. Open
the provided Blender file in .\data\floortile\floortiles.blend. In the
opened window (Shader editor), select from the drop-down menu any available
material, as displayed in figure B.10.

Hit the F12 key for rendering, and you will see a window with the final
image, as displayed in figure B.11.

The image is in the final real size and does not have to be resized when
drawn in a game. From the top menu, choose Image and Save as to save the
render as an image, as displayed in figure B.12.

Then, it is only the matter of the game implementation, on how to draw
these textures. It is also a good idea to use the Spritesheet manager application
to merge multiple floor tile images into one sprite sheet so that the game
client would load one file instead of more files. It is not needed to cut off any
transparent pixels from the floor tile image.

52

B.4. Creating a floorile texture

Figure B.10: A dropdown menu with available materials for a floor tile

Figure B.11: Rendering a floor tile

53

B. User manual

Figure B.12: Saving the rendered file as an image to a disc

B.5 Creating a sprite sheet and animation data
using Spritesheet manager

This chapter explains how to use the Spritesheet manager application to create
final sprite sheets and animation data.

B.5.1 Creating data for isometric characters

This chapter describes the process for the case when the input consists of 2D
images, which contain some character, facing different directions. This is al-
ways output from the Blender rendering script described in this thesis. An ex-
ample of such input is available in the .\data\isometricCharacters\player
walk\input directory. This data can be used right away, when following this
tutorial, if you do not want to render any 3D model to 2D images.

Run the application SpriteSheetmanager1.0.2.exe. Select all the ren-
dered images from the Blender, with exception of the originReference.png
file, and drag and drop these files onto the application, as depicted by figure
B.13.

It is crucial that when you are drag and dropping the files, you drag and
drop the first file in the sequence. The reason is that windows will pass the file
you drag with the mouse as the first one to the application event. This causes
that all the files will be sorted by name in the application, except the first
one. The application might sort the files automatically, but there are cases
when the user wants to define the order of the files by himself by dragging and
dropping the files manually, one by one. That is the reason why automatic
sorting was not implemented in the application.

54

B.5. Creating a sprite sheet and animation data using Spritesheet manager

Figure B.13: Dragging the input images onto to the Spritesheet manager
application

Tick the checkbox, which reads Calculate origin, and drag and drop the
origin image containing the green circle, onto the textbox, as depicted by
figureB.14.

The text in the textbox should change to the filename after drag and
dropping it there successfully.

Go to the Automatic angle processing tab, as depicted by figure B.15,
and tick the checkbox, which reads enable.

This means that the application will later create a sprite sheet for each
rotation angle of the character and calculate the relevant animation data, as
discussed in this thesis. If that checkbox would not be checked, then only one
sprite sheet would be created from all the input data. The Number of frames
of animation is the number of images per one rotation of the animation. As
the input images are sequenced by numbers, have a look at the last image that
was rendered to the final directory by Blender. Suppose that the last monster
frame file has the name 7_0026.png. Because the first frame is numbered
from 0, then the number of frames of the animation is 26 + 1, which is 27.
Write the number into the discussed field in the Spritesheet manager. If the
number is incorrect, the application will display an error.

The Spritesheet name prefix defines how the final sprite sheet file name
will start. This is only for orientation purposes. It is advised to use a text
which will describe the animation, such as walk, attack, death, etc.

The resulting final files will be created in the current directory, from where
the Spritesheet manager is running, overwriting any already existing files.
Suppose that prefix run was chosen in the previous step, then the following
files will be created: run.json, runD.png, runL.png, runR.png, runU.png,
runLU.png, runLD.png, runRU.png, runRD.png. If you are not sure, move the
SpriteSheetmanager1.0.2.exe to a different directory, which is empty, and

55

B. User manual

Figure B.14: Spritesheet manager application interface

run it from there.
If the input images contain semi-transparent pixels, change the alpha

sensitivity lower bound value in the window. The importance of that
value was described in the Alpha sensitivity lower bound chapter.

Go to the Default tab again, and hit the Ok button.

B.5.2 Creating data for any animation seen from only one
angle

This chapter explains how to use the application to create an animation, which
is not rotated to different angles. An example of such input can be seen in
.\data\frames to spritesheet\input.

56

B.5. Creating a sprite sheet and animation data using Spritesheet manager

Figure B.15: The Automatic angle processing tab

Drag and drop all the input images, with the exception of the
originReference.png file, onto the application, as displayed in figure

B.13 (the figure displays different image data, but the idea of the drag and
dropping process is the same). As described in the chapter Creating data for
isometric characters, it is important to drag the first image with the mouse. If
an origin point is calculated, you may provide the originReference.png file
to the application in the same way as described in the chapter Creating data
for isometric characters. In the directory described in this tutorial, there is
no such file present, as it was not needed, so we will not check the calculate
origin checkbox nor drag and drop the originReference.png file. As this is
non-isometric animation, navigate to the tab Automatic angle processing
and make sure that the enable checkbox is unticked. Then, navigate back to

57

B. User manual

the default tab and press the OK button. In this case, the result will be one
spriteSheet.png (displayed in figure B.16) and one spriteSheet.json file.

Figure B.16: Final sprite sheet for non-isometric animation. Transparent
pixels are displayed as pink color in this illustration

B.5.3 Cutting off transparent pixels from one image

This chapter explains how to use Spritesheet manager to cut off unnecessary
transparent pixels from a single image. Suppose that the input image is a
couch, as displayed in figure 3.19.

This file can be found in .\data\cutTransparent\input directory. Run
the Spritesheet manager application. Drag and drop the one image onto
the application, in the same way as described in previous chapters. In this
case, no origin reference point is needed, so calculate origin checkbox shall
be unticked. Similarly, in the tab Automatic angle processing, checkbox
enable shall be unticked. In tab Default, click the OK button. In this case,
the result will be one spriteSheet.png (displayed in figure 3.20) and one
spriteSheet.json file. As in this case, the spriteSheet.json file is not
needed and can be deleted. However, if you choose to calculate the origin
point, then the JSON file’s data can be used later on.

B.5.4 Expected limitations

This chapter discusses the expected limitations for the Spritesheet manager
application. The application’s main objective is to help the user create sprite
sheets and animation data, which would be a very difficult task if done manu-
ally. Considering input data, sometimes the origin point might be outside the
minimal bounding box, calculated by the application. However, there can be

58

B.6. Running the game prototype

cases when this is the correct input. So the application processes it anyway.
In short, the user needs to input logical data to get a logical result.

B.6 Running the game prototype

This chapter explains how to run the game prototype application. To run the
application, a Linux operating system must be used. Concretely, the Linux dis-
tributions used were both Ubuntu Desktop 20.04.2.0 LTS and Kali Linux.

In order to run the game prototype, navigate to the .\src\gamePrototype
directory in the provided sources, using the Linux terminal. Using a termi-
nal, execute command npm install. This command downloads all necessary
libraries that are needed to run the project. If you are unsure whether the
installation is necessary, better run the command anyway. After the libraries
are downloaded, run npm start command to run the server. The output can
be seen in figure B.17. An alternative is to run the compile.sh script, which
does the same as the npm start command.

Figure B.17: The terminal output when running the game prototype

Now, a web server will start on your computer, and the game will be
accessible through a web browser. Navigate to the URL 127.0.0.1:1234
using your web browser, and you will be able to see the game, as seen in figure
B.18.

B.7 Playing the game prototype

To move the main character, perform a left-click on the game area. The
character will then move to the target place. The objective of the game is
to collect all three brown bags, which are lying on the ground. When the
character moves to the tile with a bag, the bag is collected automatically. A
message about the collection event will appear in the game console, which can
be seen on the screen’s bottom-left corner. Upon collecting all three bags, a
message window will pop up. If you click on the spider, the character will go

59

B. User manual

Figure B.18: The game prototype, when navigating to the localhost in a web
browser

and attack the spider. The spider, however, can not die, so the fight will last
until you click on the world again to navigate the character somewhere else.
This feature displays the character’s attack animation and a change between
the walk animation and attack animation.

B.8 Running the tests

This chapter describes how to run the tests.

B.8.1 Blender rendering script

This chapter explains how to run the tests for the Blender rendering script.
Here is described how the script which allows the automatic rendering from
Blender was tested and how to run the tests.

Automated tests

This chapter explains the automated tests work, and how to run them. Blender
itself does not provide any features that would allow testing a script code. Tra-
ditionally, a custom script is written to test some correct implemented func-
tionality. Having the script renderAllSides.py that we want to test, one

60

B.8. Running the tests

possible way to implement the test would be to add the tests to the script,
and based on a command-line argument, and a test would be run.

This would, however, require running the script from the command line
and not from the Blender interface, as I have not found a way to pass a
command-line argument to an exec function, when the script is compiled and
run from the GUI, as depicted by figure B.19.

Figure B.19: Using exec function to compile a script and run it

The other way, which is the way I chose, was to create a new script, which
would implement only the tests. Such a script is called tests.py, and contains
a copy of functions from the renderAllSides.py script. The tester tests these
functions. The reason for such a solution is that there is no way to include the
functions from the other script. It would be possible to use the compile()
function, which returns the specified source as a code object, which can be
executed. Such an execution would allow to run the entire script and not only
various selected functions.

For running the tests, Blender must be installed. Then open the file
.\bin\blender\test\test.blend, which can be found in the sources. Then
navigate to the scripting tab. From here, press the button with an arrow to
run the script, as depicted in figure B.20.

Figure B.20: Running a script in Blender

For showing the Blender’s console, click on the Window tab and select the
Toggle System Console option, as shown in figure B.21. A console window
should appear. If it does not show up, choose that option again, and the
window will show up. The reason is that probably, for the first time, the
console window is shown but is hidden behind the Blender window. The
second command brings the console window to the front.

The test result will be printed to the console. An example output can be
seen in figure 4.1.

61

B. User manual

Figure B.21: Showing a console window in Blender

Manual tests

This chapter explains how manual tests can be executed. This process re-
quires you to use the rendering script to render the model. Then there are
already provided reference data so that you can compare whether the ren-
der output matches the expected one. To do so, navigate to the directory
.\bin\blender\playerModel in the provided sources. In such a directory is
a directory output_walk, which contains the expected output. Render the
model, which can be found in file .\bin\blender\playerModel\player1_0,
and render the walk animation. The process of rendering is explained in the
chapter Using an existing 3D model in Blender and exporting to 2D images.
After the process is done, the resulting data shall match the data which can
be found in the mentioned output_walk directory.

B.8.2 Tests for the Spritesheet manager

To run the Spritesheet manager’s tests, you need to run the application
.\bin\SpriteSheetManager1.0.2.exe, which can be found in the sources.
For running the tests, you need to select the tests tab, as displayed in figure
B.22.

After that, upon clicking on the button, a tester window will open, as
displayed in figure B.23. The tester features are not directly in the tab to
separate the tester user interface from other user interfaces for easier usage
and clarity. After clicking on the button which reads Run test, automated
tests will run, and the result will be printed to the window.

62

B.8. Running the tests

Figure B.22: Tests tab

Figure B.23: Tester interface

In figure 4.2 can be seen an output of passing automated tests.

63

Appendix C
Content of the data media,

provided along with this thesis

For more detailed description of the data media content provided along with
this thesis, please read README.md, which can be found on such a media.
Also, please note that the content of the provided data media and the GitLab
repository [22, 1] is the same.

65

C. Content of the data media, provided along with this thesis

README.md................................Description of the respository
data........Contains input data for the Spritesheet manager application

frames to spritesheetData for when classic frames shall be
converted to a sprite sheet. Does not involve isometric characters

input ...The input data
output*...............................The expected output data

isometricCharacters..Data for when frames of a isometric haracter
shall be converted to multiple sprite sheets (for all 8 angles)

player walk/input..............................The input data
player walk/output..................The expected output data

floortile.....................Data related to the floor tile creation
floortiles.blend Blender file containing a scene from which floor
tiles can be rendered
output/*.png.....................The resulting floortile textures

cutTransparentData which can be used to cut off unnecessary
transparent pixels from the image, using the Spritesheet manager

input/*..The input files
output/*......The expected output from the Spritesheet manager

binContains executable form of the Spritesheet manager, and also blender
files, which can be used for exporting the 3D model to a 2D images

blender
playerModelModel of a player

output_walk.The expected output, after rendering the player’s
model’s walk animation, using the rendering script. This serves
as a reference for manual testing

templateA file which can be copy pasted to create any new model,
and keep the scene setup
testContains blender file which can run the tests
renderAllSides.py The rendering script, which is referred to from
the blender files

SpriteSheetManager1.0.2.exe........The binary of the Spritesheet
manager application. The newest version

src..........................Contains the implementation source codes
gamePrototype.....................................Source code for
the game prototype. This also can be run (as the game prototype is a
small game server, which will run locally)
spriteSheetManager.......Source codes for the Spritesheet manager
application

66

	Introduction
	The goal of the thesis

	Introduction to the topic
	Game engine
	Visual representation of 2D games
	Graphical projection
	What is an isometric 2D game
	Blender
	Using 3D modeling tools for the creation of the isometric textures
	The problem of creation of the isometric textures

	Survey of existing solutions
	Summary

	Realization
	Used technology
	Exporting a 3D model to 2D images
	Processing the Blender output
	Other usage of the Spritesheet manager application

	Testing
	Blender rendering script
	Spritesheet manager

	Game prototype
	Used technology
	Loading the textures and animation data to a game
	Animation JSON
	Drawing the textures in a game

	Conclusion
	Bibliography
	Acronyms
	User manual
	Minimal requirements
	Using an existing 3D model in Blender and exporting to 2D images
	Creating a 3D model in Blender and exporting in to 2D images
	Creating a floorile texture
	Creating a sprite sheet and animation data using Spritesheet manager
	Running the game prototype
	Playing the game prototype
	Running the tests

	Content of the data media, provided along with this thesis

