
Instructions

Explore the area of Recommender Systems with a focus on the online and offline evaluation of

recommendation models.

Examine and analyze the application of matrix factorization for implicit feedback datasets [1] for

recommendation using the k-NN algorithm.

Design an implement experimental framework for comparing the quality of offline metrics to the

online metrics for a kNN algorithm using A/B testing.

Implement the proposed framework with all the necessary optimizations to make the framework

capable of handling real-world, industrial datasets.

Perform a set of experiments on multiple different datasets and to compare the impact of different

hyperparameterizations on both the offline (recall, popularity-stratified recall, catalog coverage) and

online metrics (CTR).

Present, conclude the collected results and discuss their practical implications.

[1] Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for implicit feedback datasets.

Electronically approved by Ing. Karel Klouda, Ph.D. on 5 February 2021 in Prague.

Assignment of master’s thesis

Title: Porovnání online a offline evaluačních metrik v doporučovacích systémech

Student: Bc. Petr Kasalický

Supervisor: Ing. Tomáš Řehořek, Ph.D.

Study program: Informatics

Branch / specialization: Knowledge Engineering

Department: Department of Applied Mathematics

Validity: until the end of summer semester 2022/2023

Master’s thesis

Comparison of online and offline evaluation
metrics in Recommender Systems

Bc. Petr Kasalický

Department of Applied Mathematics
Supervisor: Ing. Tomáš Řehořek, Ph.D.

May 6, 2021

Acknowledgements

First of all, I would like to thank my supervisor Ing. Tomáš Řehořek, Ph.D.,
for his valuable time and pieces of advice. I equally thank Recombee for the
opportunity to use their system as part of the experiment and for renting
computing servers, and Ing. Ladislav Mart́ınek for help with the integration
of the resulting framework. I thank Ing. Karel Klouda, Ph.D., for advices
and proofreading of mathematical notation. A tremendous thank you also
goes out to my family and girlfriend for their support during my studies.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accor-
dance with Article 46 (6) of the Act, I hereby grant a nonexclusive authoriza-
tion (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity. However,
all persons that makes use of the above license shall be obliged to grant a
license at least in the same scope as defined above with respect to each and
every work that is created (wholly or in part) based on the Work, by modi-
fying the Work, by combining the Work with another work, by including the
Work in a collection of works or by adapting the Work (including translation),
and at the same time make available the source code of such work at least in a
way and scope that are comparable to the way and scope in which the source
code of the Work is made available.

In Prague on May 6, 2021

Czech Technical University in Prague
Faculty of Information Technology
© 2021 Petr Kasalický. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Kasalický, Petr. Comparison of online and offline evaluation metrics in Rec-
ommender Systems. Master’s thesis. Czech Technical University in Prague,
Faculty of Information Technology, 2021.

Abstrakt

Ćılem práce je prozkoumat doporučovaćı systémy a zp̊usoby jejich vyhodno-
ceńı. Je kladen d̊uraz na porovnáńı online a offline zp̊usob̊u vyhodnoceńı, ne-
bot’ jejich vztah je velmi sporný. Při výzkumu se běžně použ́ıvá recall pro opti-
malizaci doporučovaćıch algoritmů. Avšak recall může trpět r̊uznými problémy
a nemuśı vždy odpov́ıdat online metrikám, jako je mı́ra prokliku. Toto tvrzeńı
je experimentálně ověřeno za použit́ı produkčńıho doporučovaćıho systému
s ćılem změřit korelaci mezi recallem a mı́rou prokliku. Jak ukazuje sada
vyčerpávaj́ıćıch experiment̊u s velkým množstv́ım model̊u a metrik na několika
pr̊umyslových datasetech, tak korelace mezi recallem a mı́rou proklikou neńı
vždy zaručena. Vzniká tak velká otázka nad současnými metodami porovnáváńı
model̊u ve výzkumu. Jako částečné zlepšeńı offline metrik je představena nová
metoda měřeńı recallu, která lépe reflekujte sekvečnost interakćı stejně jako
jejich nenáhodné rozděleńı, a t́ım zvyšuje jej́ı podobnost s mı́rou prokliku.

Kĺıčová slova recall, mı́ra prokliku, korelace, vyhodnoceńı, implicitńı
interakce, maticová faktorizace

vii

Abstract

The goal of this work is to explore Recommender Systems and methods of
evaluating them. The focus is on comparing online and offline approaches of
evaluation, as their relationship is highly questionable. In research, recall is
commonly used to optimize recommendation algorithms. However, recall can
suffer from various problems and may not always correspond to online metrics
such as click-through rate. This claim is experimentally verified by measuring
the correlation between recall and the click-through rate using a production
Recommender System. As shown by a set of exhaustive experiments with
a large number of models and metrics on several industrial datasets, the cor-
relation between recall and the click-through rate is not always guaranteed.
This raises a big question about current methods of comparing models in
research. As a partial improvement of offline metrics, a new approach of mea-
suring recall is introduced to reflect better the sequence nature of interactions
as well as their non-random distribution and increase correlation with the
click-through rate.

Keywords recall, click-through rate, correlation, evaluation, implicit
interaction, matrix factorisation

ix

Contents

Introduction 1

1 Analysis of Recommender Systems 3
1.1 Interactions/feedback . 3
1.2 Recommendation algorithms . 5

1.2.1 Collaborative filtering 6
1.2.2 Top-K recommendation 8
1.2.3 Matrix factorisation . 9
1.2.4 Item-KNN . 13

1.3 Evaluation of RS . 13
1.3.1 Offline evaluation . 14

1.3.1.1 Evaluation data 14
1.3.1.2 Rating prediction-based evaluation 16
1.3.1.3 Ranking-based evaluation 17
1.3.1.4 Other standard methods 21

1.3.2 Online evaluation . 22
1.3.3 Comparison of online and offline evaluation metrics . . . 24

2 Proposed experiment 25
2.1 Hyperparametrization of recall metric 25
2.2 Experiment steps . 26
2.3 Description of experimental data 29

3 Implementation 31
3.1 Datasets . 31
3.2 Modules . 31

4 Results 37
4.1 Hyperparameters . 37
4.2 Collected data . 38

xi

4.3 Analysis of CTR . 39
4.4 The effect of hyperparameters on recall 42
4.5 Recall vs CTR . 49
4.6 Summary of results . 55

5 Discussion 57

Conclusion 59

Bibliography 61

A Acronyms 71

B Contents of enclosed CD 73

xii

List of Figures

1.1 Example of a rating matrix with interaction vectors [1] 8
1.2 Illustration of MF for two matrices inspired by [2] 9

3.1 Overview of the experiment . 36

4.1 Changes of CTR over time for dataset A 40
4.2 Changes of CTR over time for dataset B 40
4.3 Changes of CTR over time for dataset C 41
4.4 Changes of CTR over time for dataset D 41
4.5 Changes of CTR over time for dataset E 41
4.6 The development of recall over time for models 43
4.7 Comparison of β, validation method and recall for dataset A . . . 45
4.8 Comparison of β, validation method and recall for dataset B . . . 47
4.9 Comparison of β, validation method and recall for dataset C . . . 48
4.10 Comparison of β, validation method and recall for dataset D . . . 49
4.11 Comparison of β, validation method and recall for dataset E . . . 50

xiii

List of Tables

1.1 Overview of notation and terms defined for the RS 14
1.2 Confusion matrix for for general binary classification task 17

3.1 Description of datasets . 32

4.1 Hyperparameters of ALS embedding for used models 38
4.2 Hyperparameters of ALS embedding for used models 39
4.3 Comparison of LOO and LLOO recall for K = 5 and β = 1 44
4.4 Portion of models and parameters aggregated for each dataset

where LOO > LLOO recall . 44
4.5 Minimal, average and maximum correlation for selected parametriza-

tions of recall . 51
4.6 Comparison of correlation for each dataset 51
4.7 Minimal, average and maximum correlation for selected parametriza-

tions of recall for datasets A, D, E 52
4.8 Comparison of correlations for different validation methods 53
4.9 Comparison of correlations for popularity penalisation 53
4.10 The relation between penalisation, validation and corelation across

all datasets . 54
4.11 The relation between penalisation, validation and corelation across

datasets A, D, E . 54

xv

Introduction

Recommender Systems are very complex systems regarding the diversity of
data processed. Advanced Recommender System is able to process the in-
teractions of users, textual and binary attributes of items, or detailed user
properties such as their current GPS location. Another complex task is to
evaluate whether products identified as relevant are actually relevant. There
are a number of metrics describing the quality of the recommendation algo-
rithm. Most of them are taken from other areas, such as information retrieval
or machine learning. Only a few really reflect the nature of the Recommender
Systems from the perspective of practical application. Hundreds of researchers
of recommendation algorithms optimise their models by a metric that does not
always guarantee the practical use of the developed algorithm. This claim will
be supported by a detailed analysis from a theoretical perspective. An exper-
iment will then be conducted to confirm or refute this hypothesis.

First, this thesis will describe the Recommender Systems, with an em-
phasis on collected interactions and their problems. The category of recom-
mendation algorithms based on interactions and matrix factorisation will be
described in detail. Subsequently, the methods of evaluating Recommender
Systems will be presented in a detailed survey. The benefits and problems
of each evaluation method will be highlighted. Chapter 2 will introduce new
methods of evaluation. The proposed methods will be experimentally com-
pared, and it will be verified whether they are beneficial in optimising the
recommendation algorithms in practical applications. A framework capable
of processing large amounts of data will be implemented for the experiment.
The structure of the framework will be presented in Chapter 3. Finally, Chap-
ter 4 will present the results of the experiment and the conclusions on the
properties of the different methods of evaluation.

1

Chapter 1
Analysis of Recommender

Systems

The chapter will begin with a brief summary of the history and evolution
of the Recommender Systems (RS). Subsequently, the different types of user
interactions with the Recommender System will be detailed in Section 1.1.
In Section 1.2, the basic approaches and principles of recommendation al-
gorithms such as collaborative filtering, Top-K recommendation, and matrix
factorisation will be presented. These basic principles will be referred to in Sec-
tion 1.3 for a detailed explanation of the different ways how to evaluate the
RS.

According to [3], RS originate in the Usenet system, which was created
in 1980 to manage shared discussion groups. In the Usenet system, this first
RS was tasked with filtering users’ posts to highlight important ones. Today’s
modern RS handle far more use cases, both in system and user terms. They are
used as a tool for collecting ratings, as a trusted authority for selecting goods
(for example, concerning spare parts’ compatibility) or connecting multiple
users with the same interest [4, 5].

The scope of RS is truly enormous these days. As early as 1999, article [6]
described how large e-commerce platforms such as Amazon, eBay, or Levis
use RS to improve customer navigation between products. Since 2006, RS has
also started to appear in the field of online newspapers [7] and is now also
used in applications with user-generated content, where is no unification of
text, images, and other features [8].

1.1 Interactions/feedback

Feedback from users is an integral part of the Recommender System. The feed-
back, also called interaction, produced by a user for certain content (products,
songs, newspaper articles) serves as input for a whole category of recommen-

3

1. Analysis of Recommender Systems

dation algorithms called collaborative filtering. There are two distinguished
types of feedback: implicit feedback (IF) and explicit feedback (EF) [4, p. 293].

The actions the user natively performs when working with the system are
considered as implicit interactions. Types of IF vary from system to system,
domain to domain, and develop over time. For example, according to [9], the
following actions are common IF for the e-commerce domain: purchase, cart
addition, bookmarks, detail view. For a platform to read and buy electronical
books, publication [10] measures metrics such as reading time of a content or
duration of the session/content size. For streaming music, article [11] counts,
among other things, the number of times a song is played by a given user. The
large-scale experiment was conducted in [12], where a custom browser called
The Curious Browser was created, and the following feedback was collected
from test users: time spent on a page, time spent moving the mouse, the num-
ber of mouse clicks and time spent scrolling. The movement of the mouse as
the IF is also mentioned in [13]. Although it may seem from the listed cases
that implicit feedback is mainly collected in modern applications, it is not
true. The implicit feedback was also used in the Usenet mentioned above [14].
Likewise, the 2000 work [15] describes an Internet user’s analysis by pars-
ing website logs. While this diversity of interactions for individual systems
provides an advantage in better understanding user actions, it is less theo-
retically supported [11]. Moreover, there is no standard in the representation
of the IF. An interaction can be represented by a unary value, binary value,
integer, decimal, or a sequence of coordinates in case of mouse movement.
IFs by their definition are only positive or missing, never negative [16, 17].
Another drawback of implicit interactions is their not-uniform distribution.
Typically, popular products/songs/articles or products promoted by RS will
have far more implicit interactions because far more people have interacted
with them. This phenomenon is called a missing-not-at-random (MNAR)
problem and causes bias in recommendation algorithms. It needs to be taken
into account in the evaluation [18, 19]. The last major obstacle to be con-
sidered in the experiments described in this thesis is a large amount of noise
described in [20].

The second type of interaction is explicit feedback represented by a numeric
value. An example is a product rating using 1 - 5 stars. The paper [17] states
that explicit feedback expresses preferences, while implicit feedback shows
confidence. According to the article [21], the Likert scale is often used to
gain explicit feedback. It was introduced in 1932 in the publication [22] as a
five-value scale and is used to analyse preferences even in today’s sociological
surveys. Contrary to implicit interaction, explicit feedback has the advantage
that it can be both positive and negative (for example, rating a movie with
a star or two). It is also estimated that explicit feedback is generally more
accurate than implicit feedback to understand a user [23]. However, this is
not true in all cases. The paper [24] claims that EFs are less accurate than
IFs in some cases due to the fact that there are usually fewer of them and

4

1.2. Recommendation algorithms

they do not typically evolve over time. It also claims that while collecting
EFs using questionnaires, there is a psychological effect to be considered that
people “describe themselves more as what they would like to be than what they
actually are”. Similarly, EFs are inappropriate for reciprocal recommending,
that is, when users are recommended to other users, such as an online dating
site [25]. The (almost) consistent methodology for processing and evaluating
EFs makes them more suitable for academic research. In addition, most of
the commonly used benchmarks and datasets (e.g., MovieLens, Netflix Price)
for evaluating recommendation algorithms contain only explicit ratings.

For further explanations, it is necessary to formally denote interactions.
The set of interactions (both explicit and implicit) between users and items is
denoted as

F = {f1, . . . , fp}. (1.1)
A single interaction is denoted as

fj ∈ (U × I × Zt × Rv) for ∀j ∈ {1, . . . , p}, (1.2)

where:

• U = {u1, . . . , um} is a set of users of the RS,

• I = {i1, . . . , in} is a set of items which can be recommended,

• Zt is the set of integers expressing the timestamp when the interaction
was performed,

• Rv is the set of real numbers expressing the numerical value of the in-
teraction,

• p is a total number of interactions.

For a more practical approach to the individual components of an interaction,
the interaction can be also denoted as a tuple

fj = (uj , ij , tj , vj). (1.3)

As has been said, some implicit interactions should be represented by a unary
or binary value, but in this work, they will be converted into real numbers for
simplification purposes. A detailed list of the interactions distinguished by this
work, including their assigned numerical values, will be provided in Section 3.

1.2 Recommendation algorithms

The recommendation algorithms (RA) used in the practical part of this work
will be presented in this section. Specifically, an approach called collaborative
filtering will be described in detail first. Then it will be shown as this approach
can be combined with a task called Top-K recommendation. The end of this
section will be devoted to a technique called matrix factorisation.

5

1. Analysis of Recommender Systems

1.2.1 Collaborative filtering

The introduction of Section 1.1 mentioned a group of RAs based on interac-
tions called collaborative filtering (CF). It is not the only approach. There
are others, such as content-based recommendations, where item and user at-
tributes are used to calculate recommendations, but they are not relevant to
this work. However, CF is important to mention, as it is used in the practical
experiment of the thesis.

According to [26], the term collaborative filtering was first used in the
Tapestry system described in the 1992 article [27]. It is also sometimes called
people-to-people correlation, which better describes its principle [16, p. 12].
The basic idea behind CF is that the behaviour of an individual user is not
unique. There are groups of users that are interested in the same content.
Thus, if a new user comes in and RS recognised that the user belongs to the
particular group, RS will recommend items that other group members also
liked. This approach is called user-based collaborative filtering. An alternative
is item-based CF, where RS finds items similar to those that a user liked in
the past and recommend them [28, p. 38].

Both approaches are based on a rating matrix, which is also sometimes
called an interaction matrix or user-item matrix [29]. In this work, it will be
denoted as

R ∈ R|U |×|I|? , (1.4)

where R? = R∪{?} is an artificially extended set of real numbers by a value ?
representing an unknown (unobserved) value. Although the indexes of the
matrix should be integers in the range specificed by the size of the matrix, the
elements of the sets U and I are used as indexes for the matrix R. Namely,

ru,i ∈ R?

denotes the rating value for the user u ∈ U and the item i ∈ I. Expression

ru,: = (ru,i1 , . . . , ru,in)

represents a sequence of rating values of the user u ∈ U and similarly

r:,i = (ru1,i, . . . , rum,i)T

denotes a sequence of rating values of the item i ∈ I.
As defined at the end of Section 1.1, the RS can contain any number of

interactions for each unique user-item pair. However, the rating matrix R can
contain only one value for a user-item pair. If the RS recognises only one type
of explicit feedback, its value is typically also the matrix’s value. In the case
of a unary IF (such as the detail view), value ru,i could be the number of such
interactions for the user u and the item i [30]. When RS distinguishes more

6

1.2. Recommendation algorithms

types of interactions, it is common practice to take the set of all interactions
between the user u and the item i

Fu,i = {(uj , ij , tj , vj) | (uj , ij , tj , vj) ∈ F : uj = u ∧ ij = i}

and aggregate them into one value

ru,i = ζ(Fu,i),

where ζ is an aggregation function

ζ : {0, 1}|U |×|I|×Zt×Rv → R?. (1.5)

A simple example of function ζ is a sum of the values:

ru,i =

∑

(uj ,ij ,tj ,vj)∈Fu,i

vj if |Fu,i| > 0,

? otherwise.
(1.6)

Once the rating matrix was presented, it is possible to describe the rating
prediction (RP) task. Namely, for the RP defined as

τ : R|U |×|I|? → R|U |×|I|, (1.7)

the goal is to replace the missing (in the case of IF) or unknown (in the case
of EF) value ? in the rating matrix R by a value r̂u,i while trying to keep
r̂u,i ≈ ru,i for ru,i 6= ?.

The rating prediction task is a stand-alone recommendation task but also
an optional step for item-based CF, which will be now presented in more
detail. As previously described, the item-based CF approach takes a set of
items that were interacted by the user u according to the R rating matrix
and finds similar items to them. The most common method to measure the
similarity of items is to measure the similarity of vectors representing items.
An example of a vector representing an item is the vector r:,i that is also
illustrated in Figure 1.1 and called item’s interaction vector. It should be
recalled that the r:,i vector is taken directly from the R rating matrix and
is therefore typically very sparse. A very similar example of this is vector
τ(R):,i = (τ(ru1,i), . . . , τ(rum,i)), which is dense due to the fact that missing
values were predicted. More examples of how to represent an item based on
its interactions will be given in Section 1.2.3.

There are several commonly used ways to measure the similarity of vectors.
Popular metric for very sparse vectors like r:,i is a cosine similarity [31, 32]
calculated according to [33] as

cos(i1, i2) =

∑
u∈U

ru,i1 6= ?
ru,i2 6= ?

ru,i1 ru,i2

√√√√ ∑
u∈U

ru,i1 6= ?

r2
u,i1

√√√√ ∑
u∈U

ru,i2 6= ?

r2
u,i2

. (1.8)

7

1. Analysis of Recommender Systems

Figure 1.1: Example of a rating matrix with interaction vectors [1]

Following the MNAR problem (see Section 1.1), the article [31] describes
that a similarity metric should be normalised so that popular items are not
favoured. Cosine similarity does that, which is also one of the reasons why it
is commonly used.

1.2.2 Top-K recommendation

A Top-K recommendation is an algorithm, where recommendable items are
scored, but only K items with the highest score are recommended to the user
[34]. It is a prevalent task in industrial applications of RS. An example is
an e-shop website where each product has a detailed page. Below the product
description there is an area with K places where recommended similar prod-
ucts are displayed. Score for each item does not have to be measured only
by the cosine similarity of the interaction vectors. For example, the article
[35] represents a Top-K recommendation based on implicit interactions using
graphs.

However, this work will focus on item-based CF as it is used in the practical
part of the thesis. Item-based CF has several advantages over user-based CF,
such as better explainability [17] or scalability, but it is less accurate [31].
Moreover, according to the article [36], it suffers from long-tail effect described
in [37].

8

1.2. Recommendation algorithms

PT

puT

f

mRm

n

ru,i

n

f Q qi

Figure 1.2: Illustration of MF for two matrices inspired by [2]

1.2.3 Matrix factorisation

In addition to item-based and user-based approaches of CF, there are other
two commonly recognised approaches: neighbourhood methods and latent
factor models (LFMs). The latter is built on the assumption that there is a
“low-dimensional representation of users and items where user-item affinity
can be modelled accurately” [38]. A problem when working with a rating
matrix is its size, sparsity and noise caused by the noise of interaction data (see
Section 1.1). LFM partially solves these problems by attempting to explain
the values in the rating matrix “by characterising both items and users on, say,
20 to 100 factors inferred from the rating patterns”. In some cases, according
to [26], found low-dimensional factors may contain explainable features such
as the film genre. The article [39] argues that latent vectors obtained by LFM
are extremely hard to interpret. The most popular LFM model according to
[39] is matrix factorisation (MF), which has gained popularity thanks to the
Netflix Prize contest [40]. As the name suggests, MF is based on the idea that
the rating matrix R is factorised into two or more matrices. According to [41],
the main representative of MF techniques for more than two matrices is the
Singular Value Decomposition (SVD) method presented in [42], but since it
will not be used in this thesis, it will not be described in detail. In the case
of two matrices, the predicted rating for the item-user pair is calculated as
r̂u,i = f(pu, gi), where

• pu ∈ Rf is a low-dimensional latent vector for user u,

• qi ∈ Rf is a low-dimensional latent vector for item i,

• f can be a dot product but also some nonlinear function.

The basic idea of decomposing the matrix R into two smaller matrices de-
noted as P ∈ Rf×m and Q ∈ Rf×n is also shown in Figure 1.2. The book

9

1. Analysis of Recommender Systems

[43, p. 152] points out that even a MF with a linear function can be repre-
sented by a neural network. This architecture can be generalised even further
into the approach called Generalized Matrix factorisation (GMF), in which
a multilayer perceptron is used instead of the dot product [44].

Until here, it has been mentioned how to predict the rating r̂u,i value once
the latent vectors pu and qi are known. Now it will be shown how to get
those latent vectors. For now it is assumed that the function f is the dot
product, f(pu, gi) = pTu gi. The goal is to minimise the difference between
the predicted rating r̂u,i and the actual rating ru,i for known values ru,i 6= ?
of the rating matrix. In the case of matrix factorisation, the difference between
the predicted value and the actual value of the rating is commonly measured
using a Mean Squared Error (MSE):

EMSE
u,i = (ru,i − r̂u,i)2 = (ru,i − pTu gi)2.

The article [17] mentions that some papers use modified MSE to prevent
overfitting:

eMSE−λ
u,i = (ru,i − pTu gi)2 + λ(‖pu‖2 + ‖gi‖2),

where λ is a hyperparameter setting the degree of regularization. For matrices
P = (p1, . . . , pm) and Q = (q1, . . . , qn) the loss function is then

L(P,Q) =
∑
u∈U
i∈I

ru,i 6= ?

[(ru,i − pTu gi)2 + λ(‖pu‖2 + ‖gi‖2)]

and the optimisation task is

P,Q = argmin
P∈Rf×m

Q∈Rf×n

L(P,Q). (1.9)

The two most popular methods to solve (1.9) are Stochastic Gradient Descent
(SGD) and Alternating Least Squares (ALS). Only the latter is relevant to
the practical experiments described in this work, and so SGD will not be
explained in more detail.

ALS is based on a simple algorithm that the first matrix P is fixed and
the second matrix Q is optimised. Then Q is fixed and P is optimised. These
two steps are repeated. For the first step, when the Q matrix is optimised,
the following applies:

∂L

∂qi
= −2

∑
u∈U
ru,i 6= ?

(ru,i − pTu qi)pu + 2λqi. (1.10)

For vector r 6= ?
:,i for the item i defined as:

r 6= ?
:,i = (r 6= ?

u1,i
, r 6= ?
u2,i

, . . . , r 6= ?
um,i

)T ∈ Rm×1,

10

1.2. Recommendation algorithms

r 6= ?
u,i =

{
ru,i ru,i 6= ?,
0 ru,i = ?,

can be (1.10) calculated as:

∂L

∂qi
= −2P (r 6= ?

:,i − P
T qi) + 2λqi. (1.11)

Since the matrix P is constant in the first step of the ALS algorithm described
by (1.11), qi vector that minimises the function L can be found in the closed
form:

−P (r 6= ?
:,i − P

T qi) + λqi = 0

−Pr 6= ?
:,i + PP T qi + λqi = 0

PP T qi + λqi = Pr 6= ?
:,i

(PP T + λI)qi = Pr 6= ?
:,i

qi = (PP T + λI)−1Pr 6= ?
:,i ,

where I is an identity matrix with dimensions f × f . Similarly as the first
step, the second step of ALS consists of the optimisation of matrix P while
matrix Q is fixed:

r 6= ?
u,: = (r 6= ?

u,i1
, r 6= ?
u,i2

, . . . , r 6= ?
u,in

) ∈ R1×n

∂L

∂pu
= −2

∑
i∈I

ru,i 6= ?

(ru,i − pTu qi)qi + 2λpu

∂L

∂pu
= −2Q(r 6= ?T

u,: −QT pu) + 2λpu (1.12)

−Q(r 6= ?T

u,: −QT pu) + λpu = 0

−Qr 6= ?T

u,: +QQT pu + λpu = 0

QQT pu + λpu = Qr 6= ?T

u,:

(QQT + λI)pu = Qr 6= ?T

u,:

pu = (QQT + λI)−1Qr 6= ?T

u,: .

(1.13)

First and second steps are repeated until the convergence criterion is met:

qi ← (PP T + λI)−1Pr 6= ?
:,i , (1.14)

pu ← (QQT + λI)−1Qr 6= ?T

u,: . (1.15)

The ALS algorithm has been described for factorisation of a rating matrix
composed of explicit interactions. As mentioned in Section 1.1, properties of

11

1. Analysis of Recommender Systems

implicit interactions differ from explicit ones in many things. One important
is that IFs are never negative, just positive, or missing. Article [17] takes this
into account and describes how to calculate matrix factorisation for a rating
matrix containing implicit interactions. Specifically, the article proposed a
method for checking and setting of confidence in the rating matrix. For that
purpose, the preference matrix was created to indicate the positions of ratings
in the rating matrix. Using already defined variables in this work with the
notation inspirated by Thesis [2], preference matrix Z ∈ {0, 1}|U |×|I| can be
defined by the formula:

zu,i = sgn(
∣∣ Fu,i ∣∣). (1.16)

If user u interacted at least once with item i, then zu,i is equal to 1, otherwise
it is 0. The confidence matrix C ∈ R|U |×|I| is defined in a similar way:

cu,i = 1 + αr 6= ?
u,i , (1.17)

where α ∈ R is a hyperparameter determining the confidence of zu,i observa-
tion. Subsequently, the matrix factorisation can be calculated using the ALS
method, but with some adjustments. Specifically, the loss function is defined
as:

Limp(P,Q) =
∑
u∈U
i∈I

cu,i(zu,i − pTu gi)2 + λ(
∑
u∈U
‖pu‖2 +

∑
i∈I
‖gi‖2) (1.18)

and the optimisation task to find matrices of latent vectors for users and items
is:

P,Q = argmin
P∈Rm×f

Q∈Rf×n

Limp(P,Q). (1.19)

Similar to (1.10) and (1.12), one matrix can be fixed and the other minimised.
In this case, publication [17] shows that the update steps are:

pu = (QCuQT + λI)−1QCuzTu , (1.20)

qi = (PCiP T + λI)−1PCizTi , (1.21)
where Cu ∈ R|I|×|I| is a diagonal confidence matrix for users with values
Cui,i = cu,i and similarly Ci ∈ R|U |×|U | is a diagonal confidence matrix for
items with values Ciu,u = cu,i. (1.20) contains a calculation of QCuQT which is
usually expensive to compute. To accelerate the computation, an improvement
is proposed:

QCuQT = QQT +QT (Cu − 1)Q,
because QQT does not depend on u and thus can be precomputed. Further-
more computation of QT (Cu − I)Q is cheaper since Cu − I has only∣∣ {zu,i | u ∈ U, i ∈ I : zu,i > 0}

∣∣ non-zero values. The similar optimisation of
calculation can be used for PCiP T from (1.21). These optimisations are im-
plemented in the Python package Implicit, which was used in the experimental
part of this thesis to calculate ALS embeddings for items.

12

1.3. Evaluation of RS

1.2.4 Item-KNN

Embeddings of items calculated using ALS can be used for Top-K recommen-
dation algorithms. (1.8) presented how to calculate the cosine similarity of
two items using their interaction vectors from the rating matrix. However, the
similarity of items can also be measured as the similarity of ALS embeddings.
The measured similarities can be then used as a distance metric for K near-
est neighbours (NN) algorithm. An instance of the Top-K recommendation
algorithm called item-KNN works as follows:

• A set of items I ′ interacted by the user u is collected.

• For each item i ∈ I ′, similarities to all other items are measured. The
calculated similarities are summed up across all items in set I ′.

• K items with the highest overall similarity are selected for a Top-K rec-
ommendation. Selected items are declared relevant, and the remaining
items are declared not relevant.

1.3 Evaluation of RS

This section will first explain the motivation behind the importance of exam-
ining the evaluation of RS. Subsequently, the two approaches of evaluation
(offline, online) will be listed and described in detail in separate subsections.
At the end of the section, the two approaches will be compared.

The RS consists of input data (interactions), recommendation algorithms,
and evaluation metrics that evaluate the quality of the algorithms created. It
is not possible to systematically create an excellent RA when the evaluation
metric is wrong. There is no universal RA that works well on all different
datasets and users. Every time a RA is created, its quality has to be mea-
sured. There are many RAs, even infinitely many, when the hyperparameters
of individual algorithms are included. Evaluation metrics can be used to se-
lect the best algorithm. If the metric is more accurate (it will be specified
later what it means), then the RAs are more successful in real applications,
often resulting in increased profits of the platform running the RS [45]. Ideal
evaluation metrics should evaluate the entire system and take into account the
platform’s high-level goals such as the number of clicks on items, the number
of items purchased, the number of advertisements viewed, customer lifetime
value, etc. [33]. However, these metrics are really hard to define, they are
domain-dependent, and their results are unreproducible. Therefore, they are
not suitable for research.

There are two commonly recognised approaches for the evaluation of RS.
Namely, they are: offline evaluation of static data and corresponding evalu-
ation metrics, and online evaluation using a live system and monitoring the
implicit interactions of a real user or asking them to use popup surveys for

13

1. Analysis of Recommender Systems

explicit ratings of the recommended items [46]. There are alternatives where
real users are not needed to evaluate a live system. For example, article [47]
presents a framework in which recommendations are generated and evaluated
using reinforcement learning (RL) based on historical data. In an oversimpli-
fied interpretation, RL creates an artificial user that can generate feedback for
a recommendation engine instead of a real user.

1.3.1 Offline evaluation

The first approach to evaluate a recommendation algorithm is called offline
evaluation. It is based on the idea that the evaluation metric uses the already
collected and fixed set of interactions F defined in Section 1.1. The work [41]
describes two possible situations: rating prediction-based evaluation (RPBE)
and ranking-based evaluation (RBE). However, it is necessary to first describe
what data must be used to evaluate the RA.

1.3.1.1 Evaluation data

Care must be taken to ensure the correct selection of the data used in the
evaluation of the Recommender System. The methodology for evaluating RA
using offline methods is the same as for other models trained with supervised
learning. The basic rule is that the evaluation of RA should never be done on
the data (interactions) that were used to create the RA. With that in mind,
the interactions need to be divided into a training set and a test set.

Due to a large number of notations and defined terms in the previous
sections, which now need to be adjusted, there is Table 1.1 repeating their
meaning.

Notation Description Defined by
F set of all interactions available in the RS (1.1)
I set of items which can be recommended (1.2)
U set of users of the RS (1.2)
R rating matrix (1.4)
ζ function aggregating a subset of interaction

to one number
(1.5)

Table 1.1: Overview of notation and terms defined for the RS

Until now, the recommendation algorithms have been described in Sec-
tion 1.2, and defined symbols were repeated along with its description in
Table 1.1. For simplicity, algorithms were trained (for example, by the ALS
method) on a set of all interactions. Similarly, (1.8) describes how to measure
the similarity of two vectors that contain all available interactions. However,
if the goal is also to evaluate an algorithm, then some interactions must be

14

1.3. Evaluation of RS

left aside to be used in the evaluation. Therefore, it is necessary to split the
data before creating a RA.

How the data is split depends on the tested RA, as well as on the technique
of evaluation. Different evaluation metrics require different data. For example,
one metric requires raw interactions including timestamps and other metadata.
In that case, the split can be made for individual interactions:

F = F train ∪ F test for F train ∩ F test = ∅, (1.22)

which means that for the user u and the item i, there may be an interaction
at time t1 that belongs to the training set and another interaction at time
t2 belonging to the test set. This approach is appropriate for RA aimed at
recommending items that the user has already interacted with. One example
is a model called reminder, which recommends the user to buy the same
pastry he bought a week ago. However, it is not suitable for evaluation of
rating prediction task defined in (1.7), because for Rtrain = ζ(F train) and
Rtest = ζ(F test) with aggregation function ζ defined in (1.5), there is no
guarantee that Rtrain ∩Rtest = ∅. To properly split the data for evaluation of
the rating-prediction task, a constraint must be added to (1.22):

F = F train ∪ F test for ζ(F train) ∩ ζ(F test) = ∅, (1.23)

which means that once a fi interaction for the user u and the item i is added
to the test set, then all other interactions between u and i must also be added
there. The same goes for the training set.

Besides interactions, users can be split too. This is particularly useful for
the evaluation of Top-K recommendations:

U = U train ∪ U test for U train ∩ U test = ∅. (1.24)

Interactions are then assigned to the set in which their author (user) is:

F train =
⋃

u∈Utrain

i∈I

Fu,i, (1.25)

F test =
⋃

u∈Utest

i∈I

Fu,i. (1.26)

All mentioned cases and methods of evaluation will be presented in the
following sections. There are also cases where no test interactions are needed
to evaluate an algorithm, in which case the RA can be trained on all available
interactions and F train = F . In all cases, there is the assumption that the
set of items I is the same for training and test subset: I = Itrain = Itest.
The commonly used third set, called the validation set, is intentionally not
mentioned here. If a validation set is needed for the RA, e.g., to optimise its
hyperparameters, then it can be separated from the training data according
to the same rules as the test data.

15

1. Analysis of Recommender Systems

1.3.1.2 Rating prediction-based evaluation

The RPBE assumes that the recommendation task is defined as a rating pre-
diction task presented in (1.7). RPBE compares the values of predicted ratings
r̂u,i with actual ratings ru,i where ru,i ∈ Rtest : ru,i 6= ? and Rtest was split
using (1.23). To simplify the denotation in the following definitions, let

T = {(r̂u,i, ru,i) | i ∈ I, u ∈ U : ru,i 6= ? ∧ ru,i ∈ Rtest}

be a set of ratings that were predicted. The difference between the predicted
and actual values is usually measured using one of the following functions [48].
The first and probably most popular function for that is the Mean Square
Error (MSE) with a formula:

EMSE(T) =

∑
r̂u,i,ru,i∈T

(r̂u,i − ru,i)2

∣∣ T ∣∣ .

This function is mostly used in optimisation tasks as it is easy to derive it as
shown in Section 1.2.3. A modified version called Root Mean Square Error
(RMSE) is more commonly used for evaluation:

ERMSE(T) =
√

(EMSE(T)).

RSME version is more suitable for evaluation than MSE as it has the same
scale as the original ratings and is, therefore, more interpretable. According
to [49], RMSE gained popularity for evaluating the RAs used in competitions
such as Netflix Price [50] or KDD-Cup 11 [51]. Another function is Mean
Average Error (MAE) calculated as

EMAE(T) =

∑
(r̂u,i,ru,i)∈T

∣∣ r̂u,i − ru,i ∣∣∣∣ T ∣∣
that is less penalising than MSE when the difference is bigger than 1. MAE
used to be popular in the early days of RS, but it was replaced by RMSE
in around 2006. There is another version of MAE called Normalized Mean
Average Error (NMAE) presented in article [52] that solves the problem of
comparing results across datasets that have predicated values at different in-
tervals [33]:

ENMAE(T) = EMAE(T)
max

(r̂u,i,ru,i)∈T
ru,i − min

(r̂u,i,ru,i)∈T
ru,i

.

RPBE approach was used until about 2010 when several experiments
showed that minimising RSME may not improve the quality of recommen-
dation algorithms in practical applications. However, Discounted cumulative

16

1.3. Evaluation of RS

gain (DCG) and Normalized Discounted cumulative gain (nDCG) remain pop-
ular metrics in benchmarks. Since nDCG is designed to measure the quality
of ranking, it is also suitable for the RS. The formulas are [53]:

DCGp =
p∑
j=1

relj
log2(j + 1) ,

NDCGp = DCGp
IDCGp

,

where relj denotes the relevance of an item that was recommened as j-nth
by the RA, p is a number indicating the number of recommended items and
IDCGp is the ideal Discounted cumulative gain:

IDCGp =

∣∣RELp

∣∣∑
j=1

2relj − 1
log2(j + 1) .

1.3.1.3 Ranking-based evaluation

The RBE approach is more in line with practical tasks like the Top-K recom-
mendation task described in Section 1.2.2. RPBE focuses on predicting the
correct rating for each user-item pair, but real users do not care about the
ratings, only about the items recommended to them. The RBE approach re-
spects this fact and, thanks to that, has gained popularity and has become the
main offline evaluation approach. By being a Top-K recommendation defined
as a binary classification task, when K items should be classified as relevant
for the user u, then the commonly used metrics for classification tasks can be
used for evaluation of recommendations as well.

A common practice to evaluate binary classification tasks is to create a con-
fusion matrix representing the number of samples classified as positive or neg-
ative with respect to whether they are truly positive or negative, as illustrated
in Table 1.2.

classified as positive classified as negative
truly positive true-positive (TP) false-negative (FN)
truly negative false-positive (FP) true-negative (TN)

Table 1.2: Confusion matrix for for general binary classification task

There is a list of metrics based on the variables defined in a confusion
matrix (TP, FP, FN, TN). The basic two metrics are called recall and precision
defined by formulas:

precision = TP

TP + FP
and recall = TP

TP + FN
. (1.27)

17

1. Analysis of Recommender Systems

Recall is also called sensitivity or true positive rate and, as defined in (1.27),
is calculated as the portion of samples that have been correctly classified as
positive to the number of all positive samples. Precision is calculated similarly
as the portion of correctly classified as positive to all classified as positive.
The general problem with recall and precision is that they can be greatly
affected by the unbalanced representation of classes in the measured set. For
example, if the ratio of class positive to negative was 1 : 99, the constant model
that classifies everything as positive would have a recall equal to 100%, but
precision would be 1%. Similarly, if the measured set contains only positive
samples and the model classified them as negative in 99% of the cases, then it
would still have a precision equal to 100% while recall would be 1%. Neither
of these two metrics can guarantee that the classifier is always of good quality.
However, together they make a more robust metric called F-score. Specifically,
it is a harmonic mean of recall and precision defined as:

F-scoreγ = (1 + γ2) precision× recall
(γ2 × precision) + recall

,

where γ is parameter determining the weight of recall. For γ = 1, the weights
of recall and precision are the same. For γ = 2, recall is twice as important
as precision. The most popular setting of γ for F-score is γ = 1:

F-score1 = (1 + 12) precision× recall
(12 × precision) + recall

= 2 precision× recall
precision+ recall

. (1.28)

The evaluation metrics described in Table 1.2 and (1.27) and (1.28) can
be used for the binary classification task for which the ground truth is known.
However, typically there is no ground truth in Recommender Systems, only
interactions. There are several approaches for defining the ground truth for
the interactions.

In the case of IF with unary data type such as purchase or detail view,
the approach is straightforward. If the item i has been bought by user u,
it is relevant to him. Otherwise, i is not relevant for u. When a dataset
contains multiple types of IF, it is possible to distinguish whether i for u is
relevant for purchase, relevant for detail view, etc.. In that case, it is possible
to measure quality of RA for predicting particular interaction. Another option
is to aggregate interactions, as described in (1.6), and declare i as relevant for
u if ru,i 6= ?∧ ru,i > 0. The set of relevant items for the user u will be denoted
as:

RIu = {i | i ∈ I : ru,i 6= ? ∧ ru,i > 0}.

If the dataset was split according to (1.23), RIu can contain items relevant
according to the test data and not according to training data and vice versa.
Therefore, RIu needs to be split into two subsets:

RItrainu = {i | i ∈ RIu : ru,i ∈ Rtrain},

18

1.3. Evaluation of RS

RItestu = {i | i ∈ RIu : ru,i ∈ Rtest}.

If the dataset has been split by (1.24), then all interactions of u are either
training or testing, and there is no need to split the user’s relevant items.

For commonly used benchmarks, there are standard approaches to consider
item i as relevant for user u. For example, for MovieLens and Netflix, article
[54] sets that movie i is relevant for u if u rated i with 4 or 5 stars. In the
case of one, two, or three stars, i is considered not to be relevant for u. This
approach was adapted by other articles such as [55, 56].

Once the interactions are converted to a binary classification task with
relevant (positive) and not relevant (negative) classes, it is possible to measure
the listed metrics such as recall, precision, or F1 score for a given RA. The
simplest way is to use RA to classify for each user-item pair if an item is
relevant for a user and then calculate recall:

recall =

∑
u∈Utest

∣∣ RA(u) ∩RItestu

∣∣∑
u∈Utest

∣∣ RItestu

∣∣ , (1.29)

where Utest denotes a set of test users that was described in Section 1.3.1.1.
However, this method does not take into account the real use of RS as de-
scribed in Section 1.2.2. For the rest of this section, assume the goal is to
evaluate the quality of RA using a recall metric for a Top-K recommendation
task.

A completely different approach for measuring recall called leave-one-out
recall was presented in article [57]. This method is inspired by leave-one-out
cross-validation and works as follows: one user is selected and declared as
the active user. Subsequently, one item relevant to the active user is hidden,
and the RA’s goal is to recommend it in Top-K recommendation task. If the
hidden item is included in the K recommended items, the recommendation is
classified as successful. This process is repeated for all relevant items of the
active user and for all users. The leave-one-out recall is then calculated as
the portion of the number of successful recommendations to the number of
recommendations [33], calculated as:

recall@KLOO =

∑
u∈Utest

∑
i∈RItest

u

∣∣ {i} ∩ Top(K,RItestu \ {i})
∣∣

∑
u∈Utest

∣∣ RItestu

∣∣ , (1.30)

where Top(K,M) is a RA that is recommending K items based on items in
set M , such as item-KNN algorithm described in Section 1.2.4.

Leave-one-out recall provides a better simulation of the user than (1.29),
but still not well enough. It does not follow the user’s behavior over time,
which is essential for a good offline evaluation, according to [58, 49, p. 262].

19

1. Analysis of Recommender Systems

When an item is hidden, the RA tries to recommend it using the rest of
interacted items. However, some of the items were interacted by the user
later than the hidden item, which means that the RS should not know that the
user has interacted with them. Thesis [2] noted this drawback and proposed
a solution called leave-last-one-out recall:

recall@KLLOO =

∑
u∈Utest

(i1,t1)∈F test
u

∣∣ {i1} ∩ Top(K, {i2 | (i2, t2) ∈ Fu : t2 < t1})
∣∣

∑
u∈Utest

∣∣ RItestu

∣∣ ,

(1.31)
where Fu is a list of interactions of user u defined as:

Fu = {(ij , tj) | (uj , ij , tj , vj) ∈ F : uj = u}

and the expression
{i2 | (i2, t2) ∈ Fu : t2 < t1}

represents the set of items that were interacted by the user u before times-
tamp t1. The benefit of the leave-last-one-out recall is that it uses only in-
teractions that were available at the time when the hidden item should have
been recommended.

Thesis [33] mentions another drawback of leave-one-out recall, this time
from a business perspective. Users with many interactions have much higher
weight when computing recall than those with a few interactions. This causes,
among other things, considerable susceptibility to the presence of robots and
crawlers in the data. Once a robot with a huge number of interactions appears
in the data and is not properly filtered out, the measured leave-one-out recall
is misleading. Thesis [33] suggests that all test users should have equal weight
and defines the formula:

recall@KUN
LOO =

∑
u∈Utest

∑
i∈RItest

u

∣∣ {i} ∩ Top(K,RItestu \ {i})
∣∣

∣∣ RItestu

∣∣ , (1.32)

which is called user-normalised leave-one-out recall@K.
However, the evaluation of RA for Top-K recommendation task using

leave-one-out or leave-last-one-out recall has a major drawback with regard
to the long-tail effect. In order to maximise (1.29), it is far more important to
correctly recommend the popular items at the expense of the unpopular ones.
As a result, the RA optimised using this metric may recommend only a few of
the most popular products. This means that algorithms optimised using (1.30)
or (1.31) only magnify the impact of the MNAR problem (see Section 1.1). It
is natural that some items are more popular than others, according to a num-
ber of interactions, but this could be due to something completely different

20

1.3. Evaluation of RS

than being really relevant to more people. For example, the e-commerce plat-
form ran a huge advertising campaign for the item i, a lot of people bought
i, making i the most popular item of all. Subsequently, the recommendation
algorithm is optimised on this data, and the algorithm learns that everyone
wants the item i and no longer takes into account other items that might be
more appropriate for them, but they were not that advertised at the begin-
ning. The existence of the bias was experimentally verified in article [59]. One
way to partially address the problem with bias in the data is with an appro-
priate sampling strategy [60]. Article [61] noted this problem and offered a
solution called popularity-stratified recall. According to it and [33], popular
items should be penalised with a formula:

recallβPS =
∑

u∈Utest

wβ(u)

∑
i∈RItest

u ∩RA(u)
p(i)−β∑

i∈RItest
u

p(i)−β , (1.33)

where p : I → [0, 1] denotes relative item popularity computed as

p(i) =

∑
u∈Utrain

∣∣ Fu,i ∣∣∑
j∈I

∑
u∈Utrain

∣∣ Fu,j ∣∣
and β ∈ [0, 1] is the parameter that determines how much popular items
should be penalised and wβ(u) ∈ [0, 1] is a weight of user u. Sum of weights
for all users must sum up to one, ∑

u∈Utest

wβ = 1, with suggested:

wβ(u) = 1∣∣ U test ∣∣
∑

i∈RIu

p(i)−β∑
v∈Utest

∑
i∈RIv

p(i)−β .

It is interesting to note that for β = 0 all the p(i)−β are equal to one and (1.33)
and (1.29) are the same.

1.3.1.4 Other standard methods

In addition to recall and other metrics listed in the previous section, there is
one more commonly used metrics called catalog coverage (CC). However, CC
does not measure the success of recommendations, but calculates a portion
of recommended items to all items, which means it is an indicator how many
items is the recommendation algorithm capable of recommending [5]. For the
set of test users U test and RA(u) returning set of relevant items for user u,
CC is defined as:

catalog−coverage =

⋃
u∈Utest

RA(u)∣∣ I ∣∣ .

21

1. Analysis of Recommender Systems

Besides CC, there are metrics dedicated to the evaluation of RS in specific use
cases. For example, [58] also mentions other theoretically described metrics
such as Novelty, Confidence, Trust, Serendipity, and Diversity.

1.3.2 Online evaluation

Another approach to evaluate a RA is based on the feedback of real users.
Specifically, items are recommended to the real user, and the RS collects the
user’s reactions to the recommended items. An example of a reaction is when
the user clicks on the recommended item. The reactions observed depend on
the domain of the platform. For example, for a web search domain, feedback
called time to click on search result page is measured [62].

The evaluation of the quality of the RA is based on the collected feedback.
As mentioned in Section 1.1, feedback can be implicit or explicit. Both types
of feedback can be used for online evaluation, although metrics based on IF
are more widely used. Metrics based on explicit feedback also exist but are less
common. The most commonly used metric based on the IF for its universality
is the click-through rate (CTR). Article [63] claims that the CTR measures
how often recommendations are accepted by users. Therefore, the CTR can
be calculated as:

CTR = number of accepted recommendations
number of recommendations .

The recommendation was accepted by the user if he clicked on at least one
recommended item. The fact that a user has clicked on a recommended item
must be made explicit to the Recommender System. If the Recommender
System has explicit information that the user clicked on an item as a result
of the recommendation, then an explicit CTR is measured. If the Recom-
mender System does not have explicit information that the item has been
clicked through based on the recommendation, then the implicit CTR can be
measured based on interactions. Specifically, it is observed whether a user
interacted with a recommended item immediately after a recommendation.
Formally:

REC : Zt × U × {0, 1}I

defines a set of recommendations where each recommendation is represented
by a timestamp t ∈ Zt, user u ∈ U and by a set of recommended items I ′ ⊂ I:

recj = (tj , u, I ′).

When assuming that the set of interactions F contains only detail view inter-
actions, then the implicit CTR (iCTR) can be calculated as:

iCTR(d) =

∑
(t,u,I′)∈REC

sgn(
∣∣ I ′ ∩ Fu(t, d)

∣∣)∣∣ REC ∣∣ , (1.34)

22

1.3. Evaluation of RS

where Fu(t, d) is a set of items interacted by the user u within time [t, t + d]
defined as

Fu(t, d) = {ij | (ij , tj) ∈ Fu : (tj >= t) ∧ (t+ d >= tj)},

where d is a parameter determinating how long after the recommendation the
user has to interact with the recommended item to mark the recommendation
as successful. Other metrics based on other types of interactions can be defined
in a similar way. For example, a cart conversion rate (CCR) measures what
proportion of a recommendation is followed by the addition of items to a cart,
or a conversion rate (CR) is defined as the proportion of the recommendation
that led to the purchase of an item.

The CTR is an example of a short-term reward that can be part of a
long-term reward (e.g. sales) [64]. The downside of the CTR is that it is
significantly influenced by other factors and not just the quality of the RA
[65]. Articles [66, 67] present a large number of factors that influence whether
a user notices a recommendation. An example of these external factors is the
layout of the page or the format in which the recommendation is presented.
For example, if a list of recommended items is presented in the footer of a long
page, the RA’s CTR will be lower than for the recommendations presented
as the main content of the page. Therefore, a CTR cannot be used to obtain
an exact number indicating the quality of the recommendation algorithm.
However, it is ideal for comparing two or more algorithms using an A/B test.

The A/B test is a common way to compare different versions of the system
(web applications, desktop applications, Recommender System) by dividing
users into groups. Each user group is presented with a different version of the
system, and the A/B test evaluates which user group has responded better
to their version of the system [45]. In the case of the Recommender System,
the different versions of the system are represented by different RAs. At the
beginning of the A/B test, it is necessary to define the different versions of the
system (for example, different parameters of the RA) and their proportion of
users. At the end of the A/B test, an assessment is made of which group of
users have the largest CTR, and the corresponding recommendation algorithm
is declared the best. The A/B test requires considerable engineering effort [62].
One of the tasks the A/B test administrator must address is to assign new users
to individual groups to maintain the desired ratio of users between groups. It
is also necessary to be aware of robots, scrapers, and other nonhuman users, as
they can significantly affect the results of the A/B test [68]. A/B tests are also
suitable for testing hypotheses about RAs. The length of the A/B test is then
typically determined by the number of users required to reach statistically
significant results.

23

1. Analysis of Recommender Systems

1.3.3 Comparison of online and offline evaluation metrics

Offline and online metrics such as recall and CTR have been described in
Sections 1.3.1 and 1.3.2. Now, these metrics will be compared.

The main advantages of offline evaluation are that it is simpler to imple-
ment, repeatable, fast and can compare any number of models. The downside
of offline evaluation is that it does not describe real RS, as well as online
evaluation [69]. Another problem with offline evaluation is the bias in the
interactions described in Section 1.3.1.3. Therefore, offline evaluation should
be used to find a few well-functioning RAs to be subsequently compared using
online evaluation [58, p. 261]. A similar process is described in [70, p. 401],
where an offline evaluation of the RA is performed to test the hypothesis, and
if the hypothesis is not disproved, the RA is tested using an A/B test.

The online evaluation of the RA is also better from a business perspective,
as it can take into account different business rules (e.g., the requested diversity
of recommended items) [70, p. 401]. The downside of online evaluation is
the required time to get results. In the case of offline evaluation, the only
resource required is computing power, which can be easily obtained if needed
to speed up the evaluation. For online evaluation, the most valuable resource
is the real users, who are typically available in limited numbers. Therefore, an
online evaluation of RA using an A/B test may take several weeks to collect
the necessary data. It also means that the results of an online evaluation are
unreproducible.

There are only a few (compared to offline evaluation) articles describing
online evaluation since it takes real users working with a live Recommender
System to make an online evaluation. However, there are some articles com-
paring online and offline metrics. Probably the most interesting article is [71],
which compares offline and online metrics on the Swiss news website swiss-
info.ch. Specifically, they optimise RAs based on their own offline metric
called success@K and measure the CTR of the created RAs further in the
online environment. As a result, RAs dominating according to offline metrics
are no longer as good in the online environment because they favour popular
items. In contrast, the RA recommending random items comes out far better
in online evaluation than offline because it helps a user to explore content.

Article [49] seeks to combine online and offline evaluation and describes
how to measure recall in the online environment using real users. It refers
to a technique called prequential evaluation described in [72] and notes that
it can be used for content that changes very frequently (such as streaming
platforms). The work also mentions that the difference between offline and
online evaluation is not clear and defines that offline evaluation is any evalu-
ation computed using static data and local computer, while online evaluation
is done in real RS.

24

Chapter 2
Proposed experiment

In Chapter 1, Recommender Systems were introduced with emphasis on differ-
ent types of interactions, matrix factorisation, and, most importantly, evalua-
tion. At the end of Section 1.3.3, the advantages and disadvantages of offline
and online evaluation were described. In Section 1.3.1.3, problems with the
recall metric were pointed out and more options how to calculate recall were
presented. Specifically, the following versions of recall were defined:

• leave-one-out recall defined in (1.30) measuring the success of Top-K
recommendation algorithm using leave-one-out validation,

• leave-last-one-out recall defined in (1.31) measuring the success of Top-K
recommendation algorithm using leave-one-out validation considering
the sequential nature of interactions,

• user-normalised leave-one-out recall defined in (1.32) for penalising ac-
tive users and as protection against robots,

• popularity-stratified recall defined in (1.33) with parameter β penalising
popular items to remove bias in data.

The chapter will present the methodology of the experiment proposed in this
work. The individual steps of the experiment will be described in detail,
including an emphasis on the issues that were solved. In addition, other
versions of recall created as a combination of already described versions of
recall will be introduced.

2.1 Hyperparametrization of recall metric

As mentioned, there are doubts that maximising recall also maximises CTR.
This work aims to explore more deeply the relation between recall and CTR
in real applications. Different versions (hyperparametrizations) of recall will
be measured, and it will be determined which version of recall is the best for

25

2. Proposed experiment

evaluating the RA to maximise the CTR. Specifically, the versions of recall
proposed and examined are:

• popularity-stratified user-normalised leave-one-out recall
(PS-UN-LOO recall) defined by (2.1),

• popularity-stratified user-normalised leave-last-one-out recall
(PS-UN-LLOO recall) defined by (2.2).

Both proposed versions of recall have hyperparameter β determining how
much popular items should be penalised. Furthermore, (2.1) and (2.2) differ
only in the method of cross-validation, where the leave-last-one-out version
takes account of the sequence of interactions as described in Section 1.3.1.3.
Settings of the cross-validation method can also be taken as a hyperparameter
with values

VAL ∈ {leave-one-out (LLO), leave-last-one-out (LLOO)}. (2.3)

Another hyperparameter is K expressing the number of recommended items in
the Top-K recommendation. Including the parameter K is slightly speculative
since K is a setting of the RA and not the evaluation metric. However, it will
also be included in the experiment as it may show a link between the order of
the recommended item and its click-through rate. During the experiment, it
will be determined how adjusting of K, VAL, β affects the value of recall.

2.2 Experiment steps

The idea behind the experiment is to create several different models (RAs),
deploy them in a real RS, and measure their recall (for individual hyperpa-
rameters) and CTR. The proposed experiment consists of the following steps:

1. First, there are several models to be found that will vary in performance
(measured using recall). An item-KNN algorithm with the similarity of
items measured by the cosine similarities of ALS embeddings was chosen
as the model. As described in Thesis [2], the performance of this model
depends on its hyperparameters. Specifically:

• factors - number of dimensions of the latent space,
• λ - regularisation parameter used in (1.18),
• BM25b - parameter of BM25 weighting,
• pruning-item - the minimum number of items a user had to interact

with to avoid being filtered out of the rating matrix,
• pruning-user - the minimal number of users who had to interact

with an item in order to not be filtered out.

26

2.2.
Experim

ent
steps

recall@Kβ,UN
LOO,PS =

∑
u∈Utest

wβ(u)

∑
i∈RItest

u

∣∣ {i} ∩ Top(K,RItestu \ {i})
∣∣ p(i)−β∑

i∈RItest
u

p(i)−β (2.1)

recall@Kβ,UN
LLOO,PS =

∑
u∈Utest

wβ(u)

∑
(i1,t1)∈F test

u

∣∣ {i1} ∩ Top(K, {i2 | (i2, t2) ∈ Fu : t2 < t1})
∣∣ p(i)−β∑

i∈RItest
u

p(i)−β (2.2)

27

2. Proposed experiment

This step of the experiment involves exploring a part of the space of
these hyperparameters to find hyperparameters of models with different
performances.

2. Once hyperparameters are found for several models with different values
of recall, a further step can be taken. The next step is splitting the users
into a training and test set. Because recall will be measured on the test
set, users assigned to the test set have to have at least two interactions.
On a user with only one interaction, it is not possible to measure recall
of item-KNN algorithm using the LOO or LLOO technique. Due to
the emphasis on the precision of the measured recalls, there is an effort
to set the size of the test set of users larger than it is normally used.
Specifically, the experiment was designed so that the set of test users
was either 10% of all users with a maximum of 100,000 users. The split
of users into training and test is done once before the next step as it
simulates the standard approach of measuring recall on static data.

3. Once the test users are separated, it is possible to train the models on
the rest of the users. These models, which will be called production
models, differ from the normal models created in the first step of the
experiment. The first specificity of the production model is that it is
automatically deployed to a real RS to recommend for real customers,
and thus its CTR can be measured. The second specificity is that the
model is constantly receiving new interactions from customers and it
is re-trained periodically to include them. Interactions may also come
from new users who have not been in a source rating matrix before.
New users are added to the set of training users, and their interactions
are used for creating production models. The test set of users remains
unchanged. Constantly re-training the model is a key part of the ex-
periment because, without re-training, the model could quickly become
obsolete, with negative consequences for CTR and thus business. In
addition, the experiment would need to take into account how quickly
the model becomes obsolete on the selected domains. For example, the
model would become obsolete far more quickly for the platform with on-
line news than for e-commerce with a fixed assortment. By periodically
updating the production model, the proposed experiment can be carried
out for any length of time without negative consequences for a business.

4. Created production models that generate recommendations for real cus-
tomers are also used in the next step to measure recall on the set of
test users. But since production models are recalculated periodically,
recall has to be measured repeatedly as well. Specifically, recall must
be measured again when the production model is changed (updated),
and the production model can be changed only when recall was already
measured. Therefore it is necessary to implement a non-trivial mech-

28

2.3. Description of experimental data

anism to ensure the synchronisation of these two parallel processes. A
description of the implementation will be given in Chapter 3. With re-
peated measurements of recall, it is also necessary to take into account
new interactions of recommended items because new interactions change
the popularity of items p(i) and, as a result, have an impact on recall as
described by (2.1) and (2.2).

2.3 Description of experimental data

Once the individual steps of the experiment are fulfilled and implemented,
the experiment is performed on several datasets. Result of the experiment is,
among other things, a sequence of measured CTRs along with the number of
users (nu) that interacted with the model during the individual time periods:

sAl = {
(CTR(t1, t2,mA

l,1), nu(t1, t2))
(CTR(t2, t3,mA

l,2), nu(t2, t3))
. . .

(CTR(to, to+1,m
A
l,o), nu(to, to+1))

},

(2.4)

where model mA
l is one of the production models for dataset A defined by

hyperparameters listed in the first step of the experiment and (t1, t2) indicates
the time period when the ml,1 model was a production model and therefore
recommended to real users. For each dataset, there are L sequences like this,
since l ∈ {1, . . . , LA} where LA is the number of models deployed for real users
from dataset A. Recall is also measured for each deployed model for a list of
hyperparameters K, VAL, β:

eAl = {
recall@Kβ,UN

VAL,PS(t1, t2,mA
l,1)

recall@Kβ,UN
VAL,PS(t2, t3,mA

l,2)
. . .

recall@Kβ,UN
VAL,PS(to, to+1,m

A
l,o)

}.

(2.5)

Both sequences are a good source of data to observe changes in CTR and recall
over time, as well as to study the impact of recall’s individual hyperparameters.
For further analysis to determine the CTR and recall relation, sAl and eAl
sequences are needed to be aggregated. In the case of recall, just calculate

29

2. Proposed experiment

a simple average, i.e.:
EAl = 1

o

∑
j∈{1,...,o}

eAlj . (2.6)

In the case of CTR, the number of users involved in the measuring of CTR
should also be taken into account. Each period is about the same length and
is equal to the time needed for recall measurement, with the result that sAl
sequences include the CTR of users at different times of the day. For example,
sAl4 can be measured between 2 a.m. and 4 a.m., when the number of users is
very low compared to daily traffic. Therefore, it is appropriate to calculate a
weighted average when calculating the average CTR, where the weight is set
by the number of users:

SAl =

∑
j∈{1,...,o}

CTR(tj , tj+1,m
A
l,j) nu(tj , tj+1)∑

j∈{1,...,o}
nu(tj , tj+1) . (2.7)

Subsequently, the vector of average CTRs can be taken for dataset A and
its L models:

SA = (SA1 , SA2 , . . . , SAL)

and similarly for the vector of average recall values:

EA = (EA1 , EA2 , . . . , EAL).

One EA vector is measured for each combination of hyperparameters VAL, β
and K. Until now, these hyperparameters have not been explicitly written to
clarify the notation, but now they will be. Therefore, the entire list of vectors
of recall is measured according to their hyperparameters:

ELA = {EAVAL1,β1,K1 , E
A
VAL2,β2,K2 , . . . , E

A
VALV ,βV ,KV

}, (2.8)

where V is the total number of hyperparameter combinations and VALj , βj ,
Kj are the individual hyperparameter values. A Spearman correlation coeffi-
cient (ρ) is computed between each hyperparameterization of vector of average
recall values EAVALj ,βj ,Kj

and the vector of average CTRs SA:

corrAj = ρ(EAVALj ,βj ,Kj
, SA). (2.9)

(2.9) results in a correlation coefficient indicating whether there is a mono-
tonically increasing function between the recall values and CTRs measured on
dataset A. To determine whether the obtained results are domain-dependent,
multiple datasets are included in the experiment. The set of tested hyperpa-
rameters of recall must be the same for all datasets. Analogically, there will
be corrBj , corrCj , etc.

30

Chapter 3
Implementation

The chapter will first present the datasets used in the conducted experiment.
Following the size of the selected datasets as well as the existing software
solution to collect user feedback, the implementation of the experiment will
be presented. The method of synchronising the production model with the
measurement of recall, as already outlined in Section 2.3, will be explained.
A large number of optimisations that were needed to be done will be men-
tioned.

3.1 Datasets

Commonly used datasets for research of RS such as MovieLense or Last.fm
cannot be used in the experiment since real users are required for online eval-
uation. Because of this, the work was created thanks to the generosity of
SaaS RS called Recombee using their customers. Specifically, the customers
described in Table 3.1 were selected.

There are four types of collected implicit interactions for the listed datasets.
Their description and assigned values as described in (1.3) are:

• an item was viewed in detail with assigned value v = 0.25,

• an item was added to a cart with assigned value v = 0.5,

• an item was bookmarked with assigned value v = 0.5,

• an item was purchased with assigned value v = 1.

3.2 Modules

The experiment is implemented as a series of modules that can be connected
to the internal interface of the production RS. The vast amount of data to be
processed is taken into account in the implementation. Emphasis is placed on

31

3.
Im

pl
em

en
ta

ti
on

Name Description # Interactions # Users # Items Recommendations per day
Dataset A Philippine liquor e-shop 2.8m 1.3m 3k 6 - 12k
Dataset B English pet store 16.8m 6.9m 20k 75 - 115k
Dataset C Brazilian fashion e-shop 30.4m 3.1m 19.3k 6 - 8k
Dataset D B2B supplier of African goods 13.9m 70k 1k 15 - 40k
Dataset E Dutch videostream service 30.7m 1.8m 5.3k 16 - 80k

Table 3.1: Description of datasets

32

3.2. Modules

efficient storage of interactions as well as on the implementation of the mea-
surement of recall. The Python language was chosen for the implementation
of the module, so it can cooperate with already existing modules of the used
RS.

The modules and interfaces of the existing RS at the start of the experi-
ment were:

• The Factorisation module is responsible for computing matrix fac-
torisation, resulting in ALS embeddings. On input, it is given a hy-
peparametrization described in the first step of the proposed experi-
ment described in Section 2.2, and the output is an embedding for each
item. It runs in the background and periodically accepts new users and
recalculates ALS embeddings.

• The EmbeddingSimilarityComputer (ESC) is responsible for cal-
culating the NNs for each item. The metric of similarity is the cosine
similarity defined in (1.8). The input is a set of embeddings of all items,
and the output is a dictionary containing a list of K nearest neighbours
along with the distances to them.

• The BasicStorage (BS) is a connector to a database that contains
information about users, items, interactions, and other necessary tables
used by the Recommender System.

• The Worker is the component responsible for creating recommenda-
tions. The input to the component is a table of nearest neighbours
created using ESC, and the output is recommendations for individual
users created using the item-KNN algorithm.

These modules were used in the experiment as separate modules or as part
of other modules that were developed for the experiment. Specifically, the
following classes have been implemented:

• The InteractionPreparator loads interactions from the database using
BS on-demand and contains a caching mechanism to effectively store
them in the memory for future requests. It is also responsible for clearing
data from robots, pruning them to eliminate noise, or aggregating them
into an interaction matrix.

• The GSheetLogger is for logging results into Google Sheet. It was
developed to find the right hyperparameters for the ALS method. It is
possible to monitor the progress of a calculation that takes several days,
the intermediate results of it, and in the end, the effect of hyperparam-
eters on the result. Its saved data is also used to restore the calculation
after an unexpected application crash.

33

3. Implementation

• The RecallMeter is the most important class implemented in this the-
sis. It contains highly optimised methods capable of measuring recall for
large amounts of hyperparametrization at once. For example, for the re-
quirement to measure recall defined by (2.2) for the Cartesian product of
many values of hyperparameter K with many values of hyperparameter
β, it takes only one request to RA. The hardest part was implementing
a method that allowed multiple users to be evaluated in parallel. Most
of the calculations were vectorised, but for some parts, parallel methods
of calculation had to be used, which are very problematic in Python
because of GIL. A number of parallel approaches have been tried, re-
sulting in the use of the pandarallel library. Because of the enormous
size of the set of test users, the parallelization of the calculation was ab-
solutely crucial, and the experiment would have been far less accurate
in its measured values without it.

The classes described are used in four modules. Each runs in the back-
ground as an own application. These are:

• The DataSplitter module is responsible for splitting users into prede-
fined sets (such as training and test subsets). It can also take account
of new users of the RS. It uses an instance of the InteractionPrepara-
tor to load interactions and then performs a split of users according
to specified criteria (for example, the test user must have at least two
interactions). The user split is saved using BS to the database.

• The AutoALS module aims to search the hyperparameter space and
find high-quality but different ALS embeddings for the experiment. It
loads interactions using an instance of InteractionPreparator and
logs the progress of the search using a GSheetLogger instance. To
evaluate the created embeddings, ESC and the instance of RecallMe-
ter are used with the settings β = 5, VAL = leave-last-one-out and
K = 5. It is optimised to cache intermediate results for faster search of
the space.

• The MeasureRecall module is a wrapper around an instance of Re-
callMeter. Its responsibility is to load the table of nearest neighbours
with BS and prepare the interactions of test users with Interaction-
Preparator. It also makes sure to measure recall for all currently
used models, which means he has to know when the production model
changed and starts measuring recall for it. It also needs to ensure that
this model is not overwritten until recall is measured. This produces
pairs of CTR and recall corresponding to the same model as described
in Steps 3 and 4 of Section 2.2. Once recall is measured, the model
is marked as obsolete and can be overwritten with a new one. In the
meantime, the module is measuring recall of the next model.

34

3.2. Modules

The implementation of the listed classes and modules is attached to this thesis.
The code follows the PEP 8 Style Guide for Python and contains documen-
tation according to NumpyDoc Style Guide.

The overview and communication of these modules can be seen in Fig-
ure 3.1. In the beginning, there is a search for hyperparameters of ALS em-
beddings, which took about a week for one dataset. Once the hyperparameters
have been found, a series of calculations are triggered, constantly running in
infinite loops. Specifically, it is:

1. Factorisation calculates new ALS embeddings,

2. ESC takes embeddings and finds nearest neighbours,

3. MeasureRecall evaluates the model represented by a table of nearest
neighbours, saves recall and informs ESC that it can already rewrite
the table of nearest neighbours for a particular model.

Individual modules can run independently on an own computing server.
The longest-lasting operation was the recall measurement due to the vast
number of hyperparameters tested and the abnormally large number of test
users. Therefore, most of the cores were assigned to the MeasureRecall
module. Because all modules used for one dataset fully stressed all threads of
the computing server, each dataset was processed in parallel on its own server.
Specifically

• 2x server with 256GB RAM and Intel Xeon E5-165 (12 threads, 3.5GHz),

• 3x server with 64GB RAM and Intel Core i7-7700 (8 threads, 3.6GHz)

were used in the experiment. Since the individual modules were deployed
as separate processes, they had to communicate using an external resource,
such as the database. Using BS a table is created and individual modules
write into it in producer-consumer format. For example, ESC writes that it
has produced a new table of its nearest neighbors and knows that it cannot
rewrite it until it has been consumed by the MeasureRecall model. The
same applies to Factorialisation and ESC in case of ALS embeddings.

35

3.
Im

pl
em

en
ta

ti
on

BasicStorage

RecallMeter

Rating matrix & test users

Recall for all
hyperparametrizations

AutoALS

GSheetLogger

Factorization ESC MeasureRecall

Interactions

Best hyperparametrizations

ALS embeddings Items'
nearest

 neighbours

Recall
results

Interactions

Test users

Measure recall
for given

parameters

InteractionPreparator InteractionPreparator

DB
Worker

Recommendations Items'
nearest

 neighbours

Figure 3.1: Overview of the experiment

36

Chapter 4
Results

First, the chapter will present the values of the hyperparameters of ALS em-
beddings described in Section 2.1 and then the tested values of hyperparame-
ters of recall measurement in Section 2.2. The data collected in the experiment
will be presented then. For a better understanding of the studied metrics, the
evolution of CTR and recall over time will be plotted and described, as well
as the impact of the hyperparameters on the measured recall. The chapter
will be completed by analysing the relation of recall and CTR, as described
by (2.4)-(2.9).

4.1 Hyperparameters

In Section 2.3, the LA variable was defined as the number of models used
for recommendation to real users in dataset A. For the experiment, the values
were set to LA = LB = LC = LD = LE = 5, so the first step of the experiment
looked for five hyperparameterization of ALS embeddings. Hyperparametriza-
tions found are illustrated in Table 4.1 along with the labels of the individual
models in the Notation column.

The RS split users for each model equally. Once the user was assigned to
the model during the first recommendation, then any further recommendation
was generated by the same model.

The values of the β and K hyperparameters for which recall was measured
during the test were:

β ∈ {0.05j | j ∈ {0, 1, . . . , 20}},

K ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 50}.

The VAL hyperparameter described in (2.3) containing two values was intro-
duced for the cross-validation method. A Cartesian product was used to get
the βi, VALi,Ki triples as described in (2.8) resulting in 588 different versions
of recall measured for each model in Table 4.1.

37

4. Results

Dataset Notation factors λ BM25b pruning-user pruning-item
A MA1 32 0.1 0.75 2 5
A MA2 128 0.1 0.75 2 5
A MA3 256 0.1 0.75 2 5
A MA4 256 0.1 0.75 5 5
A MA5 1024 0.1 0.75 2 5
B MB1 32 1.0 0.75 5 5
B MB2 128 1.0 0.75 2 15
B MB3 256 1.0 0.75 2 20
B MB4 1024 1.0 0.75 2 20
B MB5 1024 1.0 0.75 3 10
C MC1 32 1.0 0.75 2 5
C MC2 64 1.0 0.75 2 5
C MC3 128 1.0 0.75 10 2
C MC4 512 1.0 0.75 5 2
C MC5 1024 10.0 0.75 5 2
D MD1 32 0.1 0.75 2 2
D MD2 64 0.1 0.75 2 2
D MD3 128 0.1 0.75 2 2
D MD4 256 0.1 0.75 2 2
D MD5 1024 10.0 0.75 2 2
E ME1 32 10.0 0.75 2 2
E ME2 64 0.1 0.75 20 2
E ME3 256 1.0 0.75 2 2
E ME4 1024 1.0 0.75 10 2
E ME5 1024 10.0 0.75 2 2

Table 4.1: Hyperparameters of ALS embedding for used models

4.2 Collected data

The time taken to measure all versions of recall is various for each model.
A number of things have affected the calculation, such as the number of rec-
ommendable items, the amount of interaction of test users, or the number
of server cores. The longer it took to measure recall, the more obsolete the
model became because it could not be recalculated to take account of new in-
teractions. Therefore, the number of measurements of recall (denoted as o in
Section 2.3) differs for each model. For each model, CTR was also measured,
namely, the implicit CTR (iCTR) defined in (1.34) with a parameter d = 10.
The number of users and the number of their recommendations participating
in the iCTR depends on the length of recall measurement, dataset and other
external circumstances such as the time of day. The measurements took place
over 18 days. All these values are shown in Table 4.2.

38

4.3. Analysis of CTR

duration of one iCTR iCTR
Model o iteration [hh:mm] # users # interactions
MA1 28 14:43 7.012 29.444
MA2 29 14:31 7.122 14.767
MA3 28 14:45 6.986 13.650
MA4 28 14:43 7.117 34.821
MA5 28 14:42 7.102 20.622
MB1 39 10:44 70.155 133.462
MB2 38 10:43 67.147 127.785
MB3 39 10:44 70.061 210.716
MB4 39 10:43 68.680 130.597
MB5 39 10:43 67.749 128.969
MC1 12 33:51 6.522 19.881
MC2 11 36:02 6.341 19.875
MC3 11 34:57 6.279 18.946
MC4 11 34:56 6.028 18.242
MC5 12 33:17 6.106 18.454
MD1 12 32:22 19.529 66.680
MD2 12 32:22 20.023 67.615
MD3 13 30:57 19.103 66.836
MD4 12 32:20 20.253 71.063
MD5 12 32:22 17.939 62.907
ME1 8 50:14 21.106 75.974
ME2 8 48:07 19.862 71.941
ME3 7 48:11 16.503 56.311
ME4 8 45:42 19.875 71.642
ME5 9 45:38 20.853 72.628

Table 4.2: Hyperparameters of ALS embedding for used models

A large amount of data will now be analysed. In particular, the develop-
ment of the CTR over time will be shown first, then the effect of the hyperpa-
rameters on recall will be shown, and finally, the relation between recall and
the CTR will be analysed.

4.3 Analysis of CTR

The CTR is generally an insufficiently theoretically researched metric com-
pared to recall. For example, common sense would suggest that the CTR will
not change significantly over time. The model can at most become obsolete,
and thus the quality of its recommendations deteriorate. However, the pe-
riod appears in the data collected, as seen in Figure 4.1 for dataset A and in
Figure 4.2 for dataset B. If these periodic changes were due to model obsoles-

39

4. Results

02
-04

-20
21

03
-04

-20
21

04
-04

-20
21

05
-04

-20
21

06
-04

-20
21

07
-04

-20
21

08
-04

-20
21

09
-04

-20
21

10
-04

-20
21

11
-04

-20
21

12
-04

-20
21

13
-04

-20
21

14
-04

-20
21

15
-04

-20
21

16
-04

-20
21

17
-04

-20
21

18
-04

-20
21

19
-04

-20
21

20
-04

-20
21

12
:00

12
:00

12
:00

12
:00

12
:00

12
:00

12
:00

12
:00

12
:00

12
:00

12
:00

12
:00

12
:00

12
:00

12
:00

12
:00

12
:00

12
:00

0.00

0.05

0.10

0.15

0.20

0.25

0.30

CT
R

M_A1 M_A2 M_A3 M_A4 M_A5

CTR of ALS models for dataset A

Figure 4.1: Changes of CTR over time for dataset A

cence, the CTR should increase after a model update. However, that is not
happening. After the update, the CTR gets lower or higher depending on the
time of day.

The explanation for this phenomenon is not straightforward and is likely
to be domain-dependent. It can be assumed to be related to user behaviour at
certain times of the day. Dataset A shows about a 1-day period in the CTR,
which could mean that users who visit an e-shop with alcohol during the day
behave differently from night visitors. The highest CTR is measured for the
model operating in the afternoon (UTC), which represents the late evening in
the Philippines. It means that late-evening customers of the e-shop are more
likely to click on recommended items than morning users.

Similarly, for dataset B containing interactions from an English pet store,
the daily period can be seen. The interesting thing about dataset B is the
increase in recall of all models that occurred around 08/04/2021. Based on the
collected data, it is not possible to estimate with certainty the reason for this
phenomenon. For example, a potential reason could be to change the form
the recommendation was presented in, as described in Section 1.3.2. Another
reason for such a rapid and significant change could be the social events in
Britain caused by the coronavirus, such as the new regulations.

02
-04

-20
21

03
-04

-20
21

04
-04

-20
21

05
-04

-20
21

06
-04

-20
21

07
-04

-20
21

08
-04

-20
21

09
-04

-20
21

10
-04

-20
21

11
-04

-20
21

12
-04

-20
21

13
-04

-20
21

14
-04

-20
21

15
-04

-20
21

16
-04

-20
21

17
-04

-20
21

18
-04

-20
21

19
-04

-20
21

20
-04

-20
21

12
:00

12
:00

12
:00

12
:00

12
:00

12
:00

12
:00

12
:00

12
:00

12
:00

12
:00

12
:00

12
:00

12
:00

12
:00

12
:00

12
:00

12
:00

0.00

0.05

0.10

0.15

0.20

0.25

0.30

CT
R

M_B1 M_B2 M_B3 M_B4 M_B5

CTR of ALS models for dataset B

Figure 4.2: Changes of CTR over time for dataset B

The progress of the CTR measured on dataset C is shown in Figure 4.3.
Dataset C, the e-shop with T-shirts and other clothes, shows no signs of any
periodical changes. Still, the CTR can be seen to change over time and may
increase by as much as 50% in a few days for no apparent reason.

40

4.3. Analysis of CTR

02
-04

-20
21

03
-04

-20
21

04
-04

-20
21

05
-04

-20
21

06
-04

-20
21

07
-04

-20
21

08
-04

-20
21

09
-04

-20
21

10
-04

-20
21

11
-04

-20
21

12
-04

-20
21

13
-04

-20
21

14
-04

-20
21

15
-04

-20
21

16
-04

-20
21

17
-04

-20
21

18
-04

-20
21

19
-04

-20
21

20
-04

-20
21

12
:00

12
:00

12
:00

12
:00

12
:00

12
:00

12
:00

12
:00

12
:00

12
:00

12
:00

12
:00

12
:00

12
:00

12
:00

12
:00

12
:00

12
:00

0.00

0.05

0.10

0.15

0.20

CT
R

M_C1 M_C2 M_C3 M_C4 M_C5

CTR of ALS models for dataset C

Figure 4.3: Changes of CTR over time for dataset C

Figure 4.4 shows the CTR of B2B supplier of African goods represented
by dataset D. It follows a similar trend to dataset B but with a weekly and
not a daily period. The highest CTR is achieved on weekends, which is a little
surprising because the customers are companies. It can be assumed that the
companies (users) are looking for goods for the following week.

02
-04

-20
21

03
-04

-20
21

04
-04

-20
21

05
-04

-20
21

06
-04

-20
21

07
-04

-20
21

08
-04

-20
21

09
-04

-20
21

10
-04

-20
21

11
-04

-20
21

12
-04

-20
21

13
-04

-20
21

14
-04

-20
21

15
-04

-20
21

16
-04

-20
21

17
-04

-20
21

18
-04

-20
21

19
-04

-20
21

20
-04

-20
21

12
:00

12
:00

12
:00

12
:00

12
:00

12
:00

12
:00

12
:00

12
:00

12
:00

12
:00

12
:00

12
:00

12
:00

12
:00

12
:00

12
:00

12
:00

0.00

0.05

0.10

0.15

0.20

CT
R

M_D1 M_D2 M_D3 M_D4 M_D5

CTR of ALS models for dataset D

Figure 4.4: Changes of CTR over time for dataset D

Figure 4.5 shows no significant trend in the development of CTR for the
dataset E representing the video streaming platform. However, the number
of measurements for this dataset was not as large, and therefore, the daily
fluctuations of CTR caused by the viewing of TV in the evening may not be
captured on the plot.

02
-04

-20
21

03
-04

-20
21

04
-04

-20
21

05
-04

-20
21

06
-04

-20
21

07
-04

-20
21

08
-04

-20
21

09
-04

-20
21

10
-04

-20
21

11
-04

-20
21

12
-04

-20
21

13
-04

-20
21

14
-04

-20
21

15
-04

-20
21

16
-04

-20
21

17
-04

-20
21

18
-04

-20
21

19
-04

-20
21

20
-04

-20
21

12
:00

12
:00

12
:00

12
:00

12
:00

12
:00

12
:00

12
:00

12
:00

12
:00

12
:00

12
:00

12
:00

12
:00

12
:00

12
:00

12
:00

12
:00

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

CT
R

M_E1 M_E2 M_E3 M_E4 M_E5

CTR of ALS models for dataset E

Figure 4.5: Changes of CTR over time for dataset E

The exact reasons for changes and fluctuations in the CTR can only be
guessed. There are a number of reasons why changes may have occurred,

41

4. Results

ranging from social, economical to technical. The experiment cannot be re-
produced with a goal to get identical results. This is one of the fundamental
characteristics of CTR and a major problem for theoretical research. However,
it is good to keep these changes in mind. That is why A/B tests usually take
a number of weeks. There must be enough interaction and in a wide variety of
circumstances to be able to tell which model is better. Why the CTR changes
is not so important for this work, but it is important that it changes. This
represents a big difference with recall that will be analysed now.

4.4 The effect of hyperparameters on recall

A new method of measuring recall called popularity-stratified user-normalised
leave(-last)-one-out recall was introduced in (2.1), and (2.2), and contains
three hyperparameters: β, VAL, K. Since there are no other parameters in
some models, these hyperparameters will be called parameters in this section.

It will now be examined how these parameters affect the value of recall.
During the experiment, 588 different parametrizations of recall for each model
were measured, and each model was measured several times depending on
how quickly the model changed. Therefore, the resulting dataframe contains
289,884 rows and cannot be presented here in full, but it is attached to this
thesis.

First, the development of recall over time for the model with the highest
number of factors (which should be most susceptible to overfitting) for each
dataset was analyzed. It is important to remember that recall was repeatedly
measured on the same set of test users who were separated before the exper-
iment began. This is a big difference from CTR, which is measured largely
on new users. For the experiment, the possibility that the test set of users
will change during the experiment was also considered. However, this option
would not reflect the demand for an offline evaluation metric that works with
static data. Even if a relation between recall and CTRs is found, it would not
be relevant for subsequent evaluation measured by recall.

As can be seen in Figure 4.6, recall remains more or less constant. The
model changes between iterations but not enough to significantly change recall.
The popularity of items is changing, both for the model and for the measure-
ment of recall. Although recall in Figure 4.6 was measured with β = 1 and
popularity is heavily penalised, changes of popularity do not have a significant
effect in the short term when measuring recall. The popularity of items does
not change so much because if the dataset has 30m interactions and there
are 10k interactions per day, then the average popularity of an item changes
by 0.3% per day. To monitor the effect of changes in popularity over time
on recall, it would be useful to calculate popularity only from more recent
interactions. This option was not explored in the experiment because the ex-
periment focuses on using popularity penalisation for debiasing the data, and

42

4.4. The effect of hyperparameters on recall

02
-04

-20
21

03
-04

-20
21

04
-04

-20
21

05
-04

-20
21

06
-04

-20
21

07
-04

-20
21

08
-04

-20
21

09
-04

-20
21

10
-04

-20
21

11
-04

-20
21

12
-04

-20
21

13
-04

-20
21

14
-04

-20
21

15
-04

-20
21

16
-04

-20
21

17
-04

-20
21

18
-04

-20
21

19
-04

-20
21

20
-04

-20
21

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Re
ca

ll
Validation: leave-one-out; k: 5; : 1

M_A5 M_B5 M_C5 M_D5 M_E5

Figure 4.6: The development of recall over time for models

for that, it is better to calculate the overall popularity.
Another parameter that will be studied is the method of validation. Av-

erage recall for K = 5 and β = 1 for both validations tested can be seen in
Table 4.3. It can be seen that leave-one-out recall is almost always greater
than leave-last-ne-out recall. That is because of how the evaluated algorithm
works. The whole experiment of based on recommendations created by the
item-KNN algorithm, which is a nonsequential algorithm. On the input of the
algorithm is a list of items interacted by the user, and similar items are recom-
mended. The order of interactions is not taken into account in the item-KNN
algorithm as opposed to algorithms such as the LSTM recommendation de-
scribed in Thesis [2]. Item-KNN validated with LOO always uses at least that
many interactions as LLOO for creating a recommendation, and thus makes
sense that recall is greater.

Similar results can be found for any β and K values in the collected data.
Comparing the average LOO recall of the model with the average LLOO recall,
regardless of other parameters, it can be found that in 6081/7350 = 82.73% of
cases the LOO recall is higher than the LLOO recall. This number, equal to
about 1/5, may indicate that one of the datasets is different from the others
and that the LLOO recall is greater than the LOO recall for that dataset.
And indeed it is, namely, the dataset D, as can be seen in Table 4.4. The
cause of this phenomenon is unknown, but it may be related to the fact that
dataset D is very specific. It contains only about 1k items, 70k users but
13.9m interactions. Therefore, it has a very dense rating matrix compared to
other datasets.

The effect of the β parameter on recall will now be investigated. For the
analysis, the results of measured recall were also analysed separately according

43

4. Results

Model average leave-one-out recall average leave-last-one-out recall
MA1 11.93% 6.53%
MA2 15.33% 10.0%
MA3 16.82% 12.62%
MA4 16.07% 12.22%
MA5 14.17% 11.36%
MB1 6.71% 3.56%
MB2 10.64% 5.63%
MB3 11.59% 6.26%
MB4 13.25% 7.98%
MB5 13.35% 7.92%
MC1 2.77% 1.96%
MC2 3.59% 2.52%
MC3 3.79% 2.71%
MC4 4.8% 3.66%
MC5 5.57% 4.22%
MD1 3.89% 3.03%
MD2 4.18% 4.08%
MD3 4.92% 4.96%
MD4 9.12% 6.65%
MD5 1.15% 2.89%
ME1 2.59% 1.9%
ME2 2.81% 2.32%
ME3 4.21% 3.72%
ME4 5.64% 4.96%
ME5 6.01% 5.08%

Table 4.3: Comparison of LOO and LLOO recall for K = 5 and β = 1

Dataset A Dataset B Dataset C Dataset D Dataset E
#Samples 1470 1470 1470 210 1461
Portion 100% 100% 100% 14.29% 99.39%

Table 4.4: Portion of models and parameters aggregated for each dataset
where LOO > LLOO recall

to the method of validation to capture any difference between penalisation
with the LOO and LLOO validation.

Figure 4.8 shows the relation between recall and the β parameter for in-
dividual values of the K parameter. Moreover, the plot is divided into two
columns according to the validation method. In the left column, the recall
values are measured using leave-one-out validation, while the recall values
measured using leave-last-one-out validation are located in the right column.
Each MAj model for j ∈ {1, 2, 3, 4, 5} is plotted in a separate row. Values of

44

4.4. The effect of hyperparameters on recall

recall in the figure are calculated as the average values of recall for a given
parametrization over time. The analogous description also applies to Fig-
ures 4.8, 4.9, 4.10 and 4.11 showing the same analysis, but for other datasets.
The objective of the analysis is to examine how recall relates to β and if this
relation depends on a domain, on a validation method, or on the K parameter.

0.0

0.1

0.2

0.3

0.4

0.5

LO
O

Re
ca

ll

leave-one-out validation of M_A1
K=1
K=2
K=3
K=4
K=5
K=10
K=25
K=50

0.0

0.1

0.2

0.3

0.4

0.5

LL
OO

 R
ec

al
l

leave-last-one-out validation of M_A1
K=1
K=2
K=3
K=4
K=5
K=10
K=25
K=50

0.0

0.1

0.2

0.3

0.4

0.5

LO
O

Re
ca

ll

leave-one-out validation of M_A2
K=1
K=2
K=3
K=4
K=5
K=10
K=25
K=50

0.0

0.1

0.2

0.3

0.4

0.5

LL
OO

 R
ec

al
l

leave-last-one-out validation of M_A2
K=1
K=2
K=3
K=4
K=5
K=10
K=25
K=50

0.0

0.1

0.2

0.3

0.4

0.5

LO
O

Re
ca

ll

leave-one-out validation of M_A3
K=1
K=2
K=3
K=4
K=5
K=10
K=25
K=50

0.0

0.1

0.2

0.3

0.4

0.5

LL
OO

 R
ec

al
l

leave-last-one-out validation of M_A3
K=1
K=2
K=3
K=4
K=5
K=10
K=25
K=50

0.0

0.1

0.2

0.3

0.4

0.5

LO
O

Re
ca

ll

leave-one-out validation of M_A4
K=1
K=2
K=3
K=4
K=5
K=10
K=25
K=50

0.0

0.1

0.2

0.3

0.4

0.5

LL
OO

 R
ec

al
l

leave-last-one-out validation of M_A4
K=1
K=2
K=3
K=4
K=5
K=10
K=25
K=50

0.0 0.2 0.4 0.6 0.8 1.00.00

0.05

0.10

0.15

0.20

0.25

LO
O

Re
ca

ll

leave-one-out validation of M_A5
K=1
K=2
K=3
K=4
K=5
K=10
K=25
K=50

0.0 0.2 0.4 0.6 0.8 1.00.00

0.05

0.10

0.15

0.20

0.25

LL
OO

 R
ec

al
l

leave-last-one-out validation of M_A5
K=1
K=2
K=3
K=4
K=5
K=10
K=25
K=50

Figure 4.7: Comparison of β, validation method and recall for dataset A

Analysis in Figure 4.7 shows that neither the validation method nor theK pa-

45

4. Results

rameter is important for the direction of the curve between β and recall.
However, it appears that when measured using leave-one-out validation (left
column), recall is more influenced by β than in the case of leave-last-one-out
validation (right column), where a change in β does not affect recall that
much. It is not clear if there is any dependency between recall and β across
models. For the MA1 model, a negative correlation is seen between the β and
recall, which means the bigger β results in the smaller recall. However, in
the case of the MA5, the trend is exactly the opposite, and there is a positive
correlation between β and recall. It should be noted that at the beginning of
the experiment, the models were ordered according to the number of factors
that indicate computing capacity but also the susceptibility to overfitting.
It means that the MA1 model, consisting of latent vectors with dimension
32, should be forced to generalize far more than the MA5 model, containing
1024-dimensional embeddings. Therefore, based on dataset A, it can be hy-
pothesized that the effect of the β penalisation parameter is related to the
computational capacity of the model.

Figure 4.8 displaying the analysis of the dataset B agrees with the state-
ment that β has a greater impact on recall measured using the LOO method.
However, the hypothesis of the relation between β and the number of factors
is neither supported nor refuted. For all five models and both methods of
validation, the bigger the β, the less recall. The model MB5 recommends on
the basis of 1024-dimensional embeddings, but there is no repetition of the
situation that increasing β increases recall. This may be due to the much
larger dimension of the rating matrix that has been factorized into latent vec-
tors with 1024 dimensions. Dataset A has about five times fewer users and
seven times fewer items, so the rating matrix is much smaller than the rating
matrix for dataset B, and the information compression to 1024-dimensional
space can more easily end overfitted. No other dependencies or unexpected
relations between parameters occurred on dataset B.

The plot of parameters (Figure 4.9) for dataset C more or less replicates
the Figure 4.8 for dataset B and yields nothing new. Again, for all five models,
there is a negative correlation between β and recall.

However, dataset D brings big changes. The first observation that has
already been made before in Table 4.4 is now visually confirmed. LLOO recall
is higher than the LOO recall for dataset D. There is also seen how much
recall increases with the increasing K parameter. This is because the dataset
has very few items, and it is therefore easy to recommend the relevant item
for a growing K. What is very interesting is the effect of β on recall. For four
of the five models, there is a negative correlation between β and recall, which
has also been observed on other datasets. The MD4 model is an exception,
as the LOO recall shows a positive correlation with β, and the LLOO recall
first declines with increasing β, but then reverses and begins to slowly grow.
Although, the MD4 model does not differ significantly in its parameters from
others and the reason for this phenomenon is unknown.

46

4.4. The effect of hyperparameters on recall

0.0

0.1

0.2

0.3

0.4

LO
O

Re
ca

ll

leave-one-out validation of M_B1
K=1
K=2
K=3
K=4
K=5
K=10
K=25
K=50

0.0

0.1

0.2

0.3

0.4

LL
OO

 R
ec

al
l

leave-last-one-out validation of M_B1
K=1
K=2
K=3
K=4
K=5
K=10
K=25
K=50

0.0

0.1

0.2

0.3

0.4

LO
O

Re
ca

ll

leave-one-out validation of M_B2
K=1
K=2
K=3
K=4
K=5
K=10
K=25
K=50

0.0

0.1

0.2

0.3

0.4

LL
OO

 R
ec

al
l

leave-last-one-out validation of M_B2
K=1
K=2
K=3
K=4
K=5
K=10
K=25
K=50

0.0

0.1

0.2

0.3

0.4

LO
O

Re
ca

ll

leave-one-out validation of M_B3
K=1
K=2
K=3
K=4
K=5
K=10
K=25
K=50

0.0

0.1

0.2

0.3

0.4

LL
OO

 R
ec

al
l

leave-last-one-out validation of M_B3
K=1
K=2
K=3
K=4
K=5
K=10
K=25
K=50

0.0

0.1

0.2

0.3

0.4

0.5

LO
O

Re
ca

ll

leave-one-out validation of M_B4
K=1
K=2
K=3
K=4
K=5
K=10
K=25
K=50

0.0

0.1

0.2

0.3

0.4

0.5

LL
OO

 R
ec

al
l

leave-last-one-out validation of M_B4
K=1
K=2
K=3
K=4
K=5
K=10
K=25
K=50

0.0 0.2 0.4 0.6 0.8 1.00.0

0.1

0.2

0.3

0.4

0.5

LO
O

Re
ca

ll

leave-one-out validation of M_B5
K=1
K=2
K=3
K=4
K=5
K=10
K=25
K=50

0.0 0.2 0.4 0.6 0.8 1.00.0

0.1

0.2

0.3

0.4

0.5

LL
OO

 R
ec

al
l

leave-last-one-out validation of M_B5
K=1
K=2
K=3
K=4
K=5
K=10
K=25
K=50

Figure 4.8: Comparison of β, validation method and recall for dataset B

The results of the dataset E shown in Figure 4.11 are uninteresting com-
pared to dataset D. They are similar to datasets B and C. Although dataset E
has a similar number of items and used as dataset A, there is no phenomenon
that there is a positive correlation between β and recall for a 1024-dimensional
model. Therefore, the hypothesis that increasing β could serve as a regular-
ization to prevent overfitting seems to be false.

47

4. Results

0.00

0.05

0.10

0.15

0.20

0.25

LO
O

Re
ca

ll

leave-one-out validation of M_C1
K=1
K=2
K=3
K=4
K=5
K=10
K=25
K=50

0.00

0.05

0.10

0.15

0.20

0.25

LL
OO

 R
ec

al
l

leave-last-one-out validation of M_C1
K=1
K=2
K=3
K=4
K=5
K=10
K=25
K=50

0.00

0.05

0.10

0.15

0.20

0.25

0.30

LO
O

Re
ca

ll

leave-one-out validation of M_C2
K=1
K=2
K=3
K=4
K=5
K=10
K=25
K=50

0.00

0.05

0.10

0.15

0.20

0.25

0.30

LL
OO

 R
ec

al
l

leave-last-one-out validation of M_C2
K=1
K=2
K=3
K=4
K=5
K=10
K=25
K=50

0.00

0.05

0.10

0.15

0.20

0.25

0.30

LO
O

Re
ca

ll

leave-one-out validation of M_C3
K=1
K=2
K=3
K=4
K=5
K=10
K=25
K=50

0.00

0.05

0.10

0.15

0.20

0.25

0.30

LL
OO

 R
ec

al
l

leave-last-one-out validation of M_C3
K=1
K=2
K=3
K=4
K=5
K=10
K=25
K=50

0.0

0.1

0.2

0.3

LO
O

Re
ca

ll

leave-one-out validation of M_C4
K=1
K=2
K=3
K=4
K=5
K=10
K=25
K=50

0.0

0.1

0.2

0.3

LL
OO

 R
ec

al
l

leave-last-one-out validation of M_C4
K=1
K=2
K=3
K=4
K=5
K=10
K=25
K=50

0.0 0.2 0.4 0.6 0.8 1.00.0

0.1

0.2

0.3

LO
O

Re
ca

ll

leave-one-out validation of M_C5
K=1
K=2
K=3
K=4
K=5
K=10
K=25
K=50

0.0 0.2 0.4 0.6 0.8 1.00.0

0.1

0.2

0.3

LL
OO

 R
ec

al
l

leave-last-one-out validation of M_C5
K=1
K=2
K=3
K=4
K=5
K=10
K=25
K=50

Figure 4.9: Comparison of β, validation method and recall for dataset C

The effect of the β parameter on PS-UN-LOO and PS-UN-LLOO recall
was analyzed in this section. It has been experimentally verified that for most
datasets and models, it is advisable to use LOO validation and not penalise
popular items (β=0) to maximise recall. It will now be investigated how
these hypeparametrizations relate to the online metric CTR and if higher
recall implies higher CTR.

48

4.5. Recall vs CTR

0.0

0.1

0.2

0.3

0.4

0.5

0.6

LO
O

Re
ca

ll

leave-one-out validation of M_D1
K=1
K=2
K=3
K=4
K=5
K=10
K=25
K=50

0.0

0.1

0.2

0.3

0.4

0.5

0.6

LL
OO

 R
ec

al
l

leave-last-one-out validation of M_D1
K=1
K=2
K=3
K=4
K=5
K=10
K=25
K=50

0.0

0.2

0.4

0.6

LO
O

Re
ca

ll

leave-one-out validation of M_D2
K=1
K=2
K=3
K=4
K=5
K=10
K=25
K=50

0.0

0.2

0.4

0.6

LL
OO

 R
ec

al
l

leave-last-one-out validation of M_D2
K=1
K=2
K=3
K=4
K=5
K=10
K=25
K=50

0.0

0.1

0.2

0.3

0.4

0.5

0.6

LO
O

Re
ca

ll

leave-one-out validation of M_D3
K=1
K=2
K=3
K=4
K=5
K=10
K=25
K=50

0.0

0.1

0.2

0.3

0.4

0.5

0.6

LL
OO

 R
ec

al
l

leave-last-one-out validation of M_D3
K=1
K=2
K=3
K=4
K=5
K=10
K=25
K=50

0.0

0.1

0.2

0.3

0.4

0.5

LO
O

Re
ca

ll

leave-one-out validation of M_D4
K=1
K=2
K=3
K=4
K=5
K=10
K=25
K=50

0.0

0.1

0.2

0.3

0.4

0.5

LL
OO

 R
ec

al
l

leave-last-one-out validation of M_D4
K=1
K=2
K=3
K=4
K=5
K=10
K=25
K=50

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

LO
O

Re
ca

ll

leave-one-out validation of M_D5
K=1
K=2
K=3
K=4
K=5
K=10
K=25
K=50

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

LL
OO

 R
ec

al
l

leave-last-one-out validation of M_D5
K=1
K=2
K=3
K=4
K=5
K=10
K=25
K=50

Figure 4.10: Comparison of β, validation method and recall for dataset D

4.5 Recall vs CTR

As described in Section 2.3, the CTR was aggregated by (2.7) to obtain an av-
erage value of CTR for each model. Similarly, recall was averaged over time
by (2.6) and one value of recall was gained for each model and each parame-
terization.

49

4. Results

0.0

0.1

0.2

0.3

LO
O

Re
ca

ll
leave-one-out validation of M_E1

K=1
K=2
K=3
K=4
K=5
K=10
K=25
K=50

0.0

0.1

0.2

0.3

LL
OO

 R
ec

al
l

leave-last-one-out validation of M_E1
K=1
K=2
K=3
K=4
K=5
K=10
K=25
K=50

0.0

0.1

0.2

0.3

0.4

LO
O

Re
ca

ll

leave-one-out validation of M_E2
K=1
K=2
K=3
K=4
K=5
K=10
K=25
K=50

0.0

0.1

0.2

0.3

0.4

LL
OO

 R
ec

al
l

leave-last-one-out validation of M_E2
K=1
K=2
K=3
K=4
K=5
K=10
K=25
K=50

0.0

0.1

0.2

0.3

0.4

LO
O

Re
ca

ll

leave-one-out validation of M_E3
K=1
K=2
K=3
K=4
K=5
K=10
K=25
K=50

0.0

0.1

0.2

0.3

0.4

LL
OO

 R
ec

al
l

leave-last-one-out validation of M_E3
K=1
K=2
K=3
K=4
K=5
K=10
K=25
K=50

0.00

0.05

0.10

0.15

0.20

0.25

0.30

LO
O

Re
ca

ll

leave-one-out validation of M_E4
K=1
K=2
K=3
K=4
K=5
K=10
K=25
K=50

0.00

0.05

0.10

0.15

0.20

0.25

0.30

LL
OO

 R
ec

al
l

leave-last-one-out validation of M_E4
K=1
K=2
K=3
K=4
K=5
K=10
K=25
K=50

0.0 0.2 0.4 0.6 0.8 1.00.00

0.05

0.10

0.15

0.20

0.25

0.30

LO
O

Re
ca

ll

leave-one-out validation of M_E5
K=1
K=2
K=3
K=4
K=5
K=10
K=25
K=50

0.0 0.2 0.4 0.6 0.8 1.00.00

0.05

0.10

0.15

0.20

0.25

0.30

LL
OO

 R
ec

al
l

leave-last-one-out validation of M_E5
K=1
K=2
K=3
K=4
K=5
K=10
K=25
K=50

Figure 4.11: Comparison of β, validation method and recall for dataset E

A Spearman correlation coefficient was chosen to describe the correlation
between CTR and recall. The commonly used Pearson correlation coefficient
was not used since it does not recognize other than linear correlation. The
aim of the experiment was to verify that the CTR and recall are monotonic,
and thus the maximization of recall corresponds to the maximization of the
CTR. The Spearman correlation coefficient (also called Rank coefficient) is

50

4.5. Recall vs CTR

more appropriate for this case because it does not describe the correlation
between actual values but only between the order of values. The correlation
was calculated between the average CTR and the average value of recall (for
each parametrization) across the models of each dataset.

First, it was investigated whether there was any parameterization for which
recall correlated with CTR for all datasets. The minimal, average, and max-
imum correlations across the datasets for selected parameterizations can be
found in Table 4.5.

Correlation
β VAL K minimal average maximum

0.30 leave-last-one-out 2 -0.4 0.34 0.9
0.35 leave-last-one-out 4 -0.4 0.34 0.9
0.90 leave-last-one-out 50 -0.4 0.34 0.8
0.15 leave-last-one-out 2 -0.4 0.34 0.9
0.15 leave-last-one-out 3 -0.4 0.34 0.9
0.15 leave-last-one-out 4 -0.4 0.34 0.9
0.20 leave-last-one-out 1 -0.4 0.34 0.9
0.20 leave-last-one-out 2 -0.4 0.34 0.9
0.20 leave-last-one-out 3 -0.4 0.34 0.9
0.20 leave-last-one-out 4 -0.4 0.34 0.9

Table 4.5: Minimal, average and maximum correlation for selected
parametrizations of recall

Shown parametrizations are sorted by average correlation. At first glance,
one can see that there is no parametrization that correlates for all datasets. For
all parameter values in Table 4.5, recall significantly correlates with the CTR
for one or more datasets, but not for all datasets. Parametrization of recall
that correlates well with the CTR for one dataset may no longer correlate
with the CTR of a second dataset. This finding implies the fundamental
shortcomings of recall in the evaluation of RA and that maximising of recall
does not always imply maximising CTR. This claim will now be investigated,
and it will be determined on which dataset this does not apply. Another
observation based on the Table 4.5 will be discussed later.

Correlation [-1.0, -0.5] (-0.5, 0.0] (0.0, 0.5] (0.5, 1.0]
Dataset A 7 (1.19%) 37 (6.29%) 451 (76.7%) 93 (15.82%)
Dataset B 0 (0%) 588 (100%) 0 (0%) 0 (0%)
Dataset C 0 (0%) 588 (100%) 0 (0%) 0 (0%)
Dataset D 9 (1.53%) 61 (10.37%) 334 (56.8%) 184 (31.29%)
Dataset E 69 (11.73%) 39 (6.63%) 58 (9.86%) 422 (71.77%)

Table 4.6: Comparison of correlation for each dataset

51

4. Results

Table 4.6 shows that there are datasets for which recall does not correlate
with CTR at all or even correlates negatively. For datasets B and C, maxi-
mization of recall could lead to a smaller CTR. The remaining datasets show
a mostly positive correlation between recall and CTR. For all three remaining
datasets, there are recall parameterizations, which correlate significantly (in
(0.5 - 1]) with CTR. It will now be examined what those parametrizations are
and if there is any relation between them across the datasets.

Table 4.7 plots the same information as Table 4.5, but is only based on
datasets A, D, and E. Datasets B and C were temporarily omitted. Both
average and minimum correlations can be seen to increase significantly.

Correlation
β VAL K minimal average maximum

0.20 leave-last-one-out 2 0.5 0.77 0.9
0.25 leave-last-one-out 7 0.5 0.77 0.9
0.35 leave-last-one-out 3 0.5 0.77 0.9
0.15 leave-last-one-out 2 0.5 0.77 0.9
0.15 leave-last-one-out 3 0.5 0.77 0.9
0.15 leave-last-one-out 4 0.5 0.77 0.9
0.35 leave-last-one-out 4 0.5 0.77 0.9
0.35 leave-last-one-out 5 0.5 0.77 0.9
0.30 leave-last-one-out 5 0.5 0.77 0.9
0.30 leave-last-one-out 4 0.5 0.77 0.9

Table 4.7: Minimal, average and maximum correlation for selected
parametrizations of recall for datasets A, D, E

For both Tables 4.5 and 4.7, the parameters with the highest average
correlation include VAL = LLOO and β > 0. Although not seen due to a large
number of parametrizations, the highest average correlation of 0.77 occurs in
25 parametrizations and for all of them is the validation set to LLOO, and
β is in the range [0.15 − 0.4]. Therefore, the LLOO validation appears to
be a more appropriate method of validation than the LOO. Penalisation of
popularity also seems to be successful.

A closer examination of these dependencies can be seen in Table 4.8 that
shows the number of hyperparameterizations for which the correlation coeffi-
cient of the LOO validation was greater, equal to, or less than the correlation
coefficient of the LLOO validation. The table also shows that the choice of val-
idation method depends on a specific dataset. An extreme case is dataset C,
which holds that the correlation coefficient between recall and CTR is virtually
independent of the validation method, as it is the same for both methods in
99.32% of cases. A second interesting example is dataset D, for which LLOO
recall is far better for CTR prediction. The opposite is dataset A, for which
the LLOO recall is better than the LOO recall only in less than 5 per cent

52

4.5. Recall vs CTR

LOO > LLOO LOO = LLOO LOO < LLOO
Dataset A 150 (51.02%) 130 (44.22%) 14 (4.76%)
Dataset B 51 (17.35%) 243 (82.65%) 0 (0%)
Dataset C 2 (0.68%) 292 (99.32%) 0 (0%)
Dataset D 32 (10.88%) 47 (15.99%) 215 (73.13%)
Dataset E 9 (3.06%) 144 (48.98%) 141 (47.96%)
Dataset A + D + E 191 (21.66%) 321 (36.39%) 370 (41.95%)
Total 244 (16.6%) 856 (58.2%) 370 (25.2%)

Table 4.8: Comparison of correlations for different validation methods

of parametrizations. For a new unknown dataset, it would be recommended
to validate it using the LLOO method, as in 83.04% of cases, the correlation
between recall and CTR will be greater or equal than for LOO validation.

β=0 > β>0 β=0 = β>0 β=0 < β>0
Dataset A 248 (44.29%) 178 (31.79%) 134 (24.93%)
Dataset B 0 (0%) 475 (84.82%) 85 (15.18%)
Dataset C 40 (7.14%) 520 (92.86%) 0 (0%)
Dataset D 61 (10.89%) 93 (16.61%) 406 (72.5%)
Dataset E 23 (4.11%) 110 (19.64%) 427 (76.25%)
Dataset A + D + E 332 (19.76%) 381 (22.68%) 967 (57.56%)
Total 372 (13.29%) 1376 (49.14%) 1052 (37.57%)

Table 4.9: Comparison of correlations for popularity penalisation

Table 4.9 shows the effect of penalisation of popular items. Columns con-
tain a number of parametrizations for

1. which no penalisation (β = 0) is better than some penalisation (β > 0),

2. which no penalisation and some penalisation have no effect on correla-
tion,

3. which some penalisation is better than no penalisation.

Cases when parameterization with β = 0 was better for maximising the corre-
lation coefficient between CTR and recall, are only 13.29% overall. However,
as can be seen, the setting of β is domain-dependent because it is not recom-
mended to penalise items in dataset A. However, in case of nothing is known
about the dataset, it is recommended to use a penalisation.

The correlation between penalisation, validation, and correlation can be
seen in Table 4.10, which contains the percentage of parametrizations (com-
bination of K and dataset) according to the criteria specified in columns and
rows. It can be seen that for the largest proportion of parametrisations (38%)

53

4. Results

LOO > LLOO LOO = LLOO LOO < LLOO Total
β=0 > β>0 6.69% 4.49% 2.11% 13.29%
β=0 = β>0 6.04% 38.28% 4.83% 49.15%
β=0 < β>0 3.87% 15.46% 18.24% 37.57%
Total 16.6% 58.23% 25.18% 100%

Table 4.10: The relation between penalisation, validation and corelation across
all datasets

there is no relation between correlation, validation method and penalisation.
However, the second-largest portion already shows that the correlation of CTR
and recall is greater for LLOO and β > 0 combinations at 18%. This value
may be increased. If datasets B and C are excluded from the analysis, then
the use of penalisation and LLOO validation is appropriate to increase the
correlation of recall with CTR, as shown in Table 4.11. Excluding dataset B,
C simulates the situation that it is known that recall correlates at least a little
with CTR, and the aim is to increase the correlation. In the case of a totally
unknown dataset, when it is not known, what is the relation between recall
and the CTR, it is also recommended to use LLOO and penalisation. This pa-
rameterization does not worsen the correlation between CTR and recall with
probability 77%, and with probability 38.53% improves it.

LOO > LLOO LOO = LLOO LOO < LLOO Total
β=0 > β>0 11.03% 5.22% 3.51% 19.76%
β=0 = β>0 5.19% 9.44% 8.04% 22.67%
β=0 < β>0 5.43% 21.73% 30.4% 57.56%
Total 21.65% 36.39% 41.95% 100%

Table 4.11: The relation between penalisation, validation and corelation across
datasets A, D, E

It should be noted here that the PS-UN-LLOO recall presented in this work
is precisely what seems to be best for finding the CTR-recall correlation. It
beats previously published versions of recalls such as the popularity-stratified
recall presented in article [61] or the LLOO recall described in Thesis [2]. PS-
UN-LLOO combines both these approaches with additional user normalization
as described in Thesis [33], and is experimentally verified to be appropriate for
an unknown dataset as well as for a dataset with confirmed CTR-recall cor-
relation where there is an intention to maximise the correlation. The analysis
was based on data collected during the experiment. All this data is attached
to the work for validation of the analysis as well as for analysing other re-
lations. For example, in the experiment, catalog coverage was measured in
addition to recall, so one can see the method of validation affects the overall
catalog coverage.

54

4.6. Summary of results

4.6 Summary of results

During the chapter, the development of recall and CTR over time was shown.
The finding is that while recall remains more or less constant over time, the
CTR is very fluctuant. It was found that for some datasets, CTR oscillated
periodically. The effect of hyperparameters on recall over time was subse-
quently analysed. It has been shown that the LOO validation achieves higher
values of recall than LLOO validation. The cause of this phenomenon has also
been explained for the item-KNN algorithm. Subsequently, it was shown for
each dataset separately that for most models, recall decreases with increasing
penalisation of popularity defined by β. Once the relation of hyperparameters
and recall was analyzed, the impact of hyperparameters on the correlation of
recall and CTR was investigated. It has been proven that greater recall does
not always imply a greater CTR. Specifically, for two of the five datasets, the
correlation (measured using a Spearman correlation coefficient) was between -
0.5 and 0, i.e., the greater recall (regardless of hyperparameters) corresponded
to the same or lower CTR. A slight positive correlation was shown for the re-
maining datasets. This correlation can be increased by correctly setting the
hyperparameters of the recalls. In particular, the use of leave-last-one-out
cross-validation and the penalisation of popular items by the β parameter has
been found to improve the correlation between recall and CTR.

55

Chapter 5
Discussion

In industrial RS, the quality of the RA is measured using CTR as it is mostly
correlated with business requirements. However, CTR metric is hard to mea-
sure without a live RS, so hundreds to thousands of researchers measure the
quality of their RA using recall. It is widely assumed that there is a correla-
tion between recall and CTR, and maximizing recall implies maximizing CTR.
However, the thesis has shown that it is not always true. Recall is not an ideal
metric for evaluating RAs. There are versions of recall described in this thesis
that seem more suitable for evaluating RAs but still not good enough. The
challenge for researchers remains to find a better metric that will be more
relevant for industrial RSs, but with the possibility of repeatable evaluation
without the need for real users. For the new evaluation method, it will be
essential to correctly select test users to suppress the bias contained in most
of the datasets. Another fundamental problem remains the question: “What
would the user do if he would receive another recommendation?”. Understand-
ing users’ motivation and analysis of users’ choices is far more important than
blindly optimizing models to recall using increasingly computationally expen-
sive models.

57

Conclusion

The work described the basic principles of Recommender Systems, with an
emphasis on the evaluation of recommendation algorithms. It has been ex-
plained what interactions the Recommender System collects and how can RS
recommend based on interactions. A recommendation algorithm based on
matrix factorisation and an item-KNN algorithm has been described. Prob-
lems with interactions such as the MNAR problem and its implications for
recommendation algorithms and evaluation have been pointed out. Two ap-
proaches of evaluation of recommendation algorithms were described in detail:
offline and online. Both of them were compared theoretically and in practice.
A framework was implemented capable of finding quality but different models
for recommending items to real users. The models created were then recal-
culated periodically and evaluated using the implemented framework. In the
implementation, emphasis was placed on the optimised representation of in-
teractions in memory, as well as the efficient measurement of recall to handle
large non-academic datasets. Thanks to this implementation, an extensive
experiment was conducted to research the relation between recall and CTR.

The data collected in the experiment and the analysis performed confirmed
that recall does not always correlate with CTR and is not suitable for opti-
mizing recommendation algorithms used in industrial Recommender Systems.
It was shown that on two out of five datasets, recall is not correlated at all
with the CTR and on the other three datasets, it is only partially correlated.
A version of recall called popularity-stratified user-normalised leave-last-one-
out recall was presented. According to the results of the experiment, the pro-
posed version of recall increases the correlation between recall and CTR for
some datasets. However, even this modification could not reverse the proven
fact that recall is not a good approximation of CTR. Finding a better metric
remains a key problem for the research of Recommender Systems because it
is not possible to systematically create quality recommendation algorithms
without quality metrics.

59

Bibliography

[1] Kasalický, P. Content-Based Recommendation Model Trained Using In-
teraction Similarity. Accepted: 2018-06-19T21:57:26Z Publisher: České
vysoké učeńı technické v Praze. Vypočetńı a informačńı centrum. Avail-
able from: https://dspace.cvut.cz/handle/10467/76817

[2] Mart́ınek, L. Doporučovaćı modely založené na rekurentńıch neuronových
śıt́ıch. Accepted: 2020-06-14T10:41:02Z Publisher: České vysoké učeńı
technické v Praze. Vypočetńı a informačńı centrum. Available from:
https://dspace.cvut.cz/handle/10467/87990

[3] Bhatnagar, V. Collaborative Filtering Using Data Mining and Analysis.
IGI Global, ISBN 978-1-5225-0489-4.

[4] Schafer, J. B.; Frankowski, D.; et al. Collaborative filtering recommender
systems. In The adaptive web: methods and strategies of web personaliza-
tion, Springer-Verlag, ISBN 978-3-540-72078-2, pp. 291–324.

[5] Herlocker, J. L.; Konstan, J. A.; et al. Evaluating collaborative filter-
ing recommender systems. volume 22, no. 1: pp. 5–53, ISSN 1046-8188,
doi:10.1145/963770.963772. Available from: https://doi.org/10.1145/
963770.963772

[6] Schafer, J. B.; Konstan, J.; et al. Recommender systems in e-commerce.
In Proceedings of the 1st ACM conference on Electronic commerce, EC
’99, Association for Computing Machinery, ISBN 978-1-58113-176-5, pp.
158–166, doi:10.1145/336992.337035. Available from: https://doi.org/
10.1145/336992.337035

[7] Karimi, M.; Jannach, D.; et al. News recommender systems – Sur-
vey and roads ahead. volume 54, no. 6: pp. 1203–1227, ISSN
0306-4573, doi:10.1016/j.ipm.2018.04.008. Available from: https://
www.sciencedirect.com/science/article/pii/S030645731730153X

61

https://dspace.cvut.cz/handle/10467/76817
https://dspace.cvut.cz/handle/10467/87990
https://doi.org/10.1145/963770.963772
https://doi.org/10.1145/963770.963772
https://doi.org/10.1145/336992.337035
https://doi.org/10.1145/336992.337035
https://www.sciencedirect.com/science/article/pii/S030645731730153X
https://www.sciencedirect.com/science/article/pii/S030645731730153X

Bibliography

[8] Xu, Y.; Chen, Z.; et al. Learning to Recommend with User Generated
Content. In Web-Age Information Management, edited by X. L. Dong;
X. Yu; J. Li; Y. Sun, Lecture Notes in Computer Science, Springer
International Publishing, ISBN 978-3-319-21042-1, pp. 221–232, doi:
10.1007/978-3-319-21042-1 18.

[9] Liu, S.; Wu, Q.; et al. Personalized Recommendation Considering Sec-
ondary Implicit Feedback. In 2018 IEEE International Conference on
Agents (ICA), pp. 87–92, doi:10.1109/AGENTS.2018.8460053.

[10] Núñez-Valdéz, E. R.; Cueva Lovelle, J. M.; et al. Implicit feedback tech-
niques on recommender systems applied to electronic books. volume 28,
no. 4: pp. 1186–1193, ISSN 0747-5632, doi:10.1016/j.chb.2012.02.001.
Available from: https://www.sciencedirect.com/science/article/
pii/S0747563212000325

[11] Jawaheer, G.; Szomszor, M.; et al. Comparison of implicit and ex-
plicit feedback from an online music recommendation service. In Pro-
ceedings of the 1st International Workshop on Information Hetero-
geneity and Fusion in Recommender Systems, HetRec ’10, Association
for Computing Machinery, ISBN 978-1-4503-0407-8, pp. 47–51, doi:
10.1145/1869446.1869453. Available from: https://doi.org/10.1145/
1869446.1869453

[12] Claypool, M.; Le, P.; et al. Implicit interest indicators. In Proceedings of
the 6th international conference on Intelligent user interfaces, IUI ’01, As-
sociation for Computing Machinery, ISBN 978-1-58113-325-7, pp. 33–40,
doi:10.1145/359784.359836. Available from: https://doi.org/10.1145/
359784.359836

[13] Koren, Y.; Bell, R. Advances in Collaborative Filtering. In Recommender
Systems Handbook, edited by F. Ricci; L. Rokach; B. Shapira; P. B.
Kantor, Springer US, ISBN 978-0-387-85820-3, pp. 145–186, doi:10.1007/
978-0-387-85820-3 5. Available from: https://doi.org/10.1007/978-0-
387-85820-3_5

[14] Oard, D. W.; Kim, J. Implicit Feedback for Recommender Systems:
p. 3. Available from: https://www.aaai.org/Papers/Workshops/1998/
WS-98-08/WS98-08-021.pdf

[15] Mobasher, B.; Cooley, R.; et al. Automatic personalization based on
Web usage mining. volume 43, no. 8: pp. 142–151, ISSN 0001-0782,
doi:10.1145/345124.345169. Available from: https://doi.org/10.1145/
345124.345169

[16] Ricci, F.; Rokach, L.; et al. Recommender Systems: Introduction and
Challenges. In Recommender Systems Handbook, edited by F. Ricci;

62

https://www.sciencedirect.com/science/article/pii/S0747563212000325
https://www.sciencedirect.com/science/article/pii/S0747563212000325
https://doi.org/10.1145/1869446.1869453
https://doi.org/10.1145/1869446.1869453
https://doi.org/10.1145/359784.359836
https://doi.org/10.1145/359784.359836
https://doi.org/10.1007/978-0-387-85820-3_5
https://doi.org/10.1007/978-0-387-85820-3_5
https://www.aaai.org/Papers/Workshops/1998/WS-98-08/WS98-08-021.pdf
https://www.aaai.org/Papers/Workshops/1998/WS-98-08/WS98-08-021.pdf
https://doi.org/10.1145/345124.345169
https://doi.org/10.1145/345124.345169

Bibliography

L. Rokach; B. Shapira, Springer US, ISBN 978-1-4899-7637-6, pp. 1–
34, doi:10.1007/978-1-4899-7637-6 1. Available from: https://doi.org/
10.1007/978-1-4899-7637-6_1

[17] Hu, Y.; Koren, Y.; et al. Collaborative Filtering for Implicit Feedback
Datasets. pp. 263–272, doi:10.1109/ICDM.2008.22.

[18] Marlin, B. M.; Zemel, R. S.; et al. Collaborative filtering and the missing
at random assumption. In Proceedings of the Twenty-Third Conference
on Uncertainty in Artificial Intelligence, UAI’07, AUAI Press, ISBN 978-
0-9749039-3-4, pp. 267–275.

[19] Marlin, B. M.; Zemel, R. S. Collaborative prediction and ranking with
non-random missing data. In Proceedings of the third ACM conference
on Recommender systems, RecSys ’09, Association for Computing Ma-
chinery, ISBN 978-1-60558-435-5, pp. 5–12, doi:10.1145/1639714.1639717.
Available from: https://doi.org/10.1145/1639714.1639717

[20] Anand, S. S.; Kearney, P.; et al. Generating semantically enriched user
profiles for Web personalization. volume 7, no. 4: pp. 22–es, ISSN 1533-
5399, doi:10.1145/1278366.1278371. Available from: https://doi.org/
10.1145/1278366.1278371

[21] Jawaheer, G.; Weller, P.; et al. Modeling User Preferences in Rec-
ommender Systems: A Classification Framework for Explicit and Im-
plicit User Feedback. volume 4, no. 2: pp. 1–26, ISSN 2160-6455, 2160-
6463, doi:10.1145/2512208. Available from: https://dl.acm.org/doi/
10.1145/2512208

[22] Likert, R. A technique for the measurement of attitudes. volume 140: pp.
1–55.

[23] Amatriain, X.; Pujol, J. M.; et al. I Like It... I Like It Not: Evaluating
User Ratings Noise in Recommender Systems. In User Modeling, Adap-
tation, and Personalization, edited by G.-J. Houben; G. McCalla; F. Pi-
anesi; M. Zancanaro, Lecture Notes in Computer Science, Springer, ISBN
978-3-642-02247-0, pp. 247–258, doi:10.1007/978-3-642-02247-0 24.

[24] Gadanho, S. C.; Lhuillier, N. Addressing uncertainty in implicit pref-
erences. In Proceedings of the 2007 ACM conference on Recommender
systems, RecSys ’07, Association for Computing Machinery, ISBN 978-
1-59593-730-8, pp. 97–104, doi:10.1145/1297231.1297248. Available from:
https://doi.org/10.1145/1297231.1297248

[25] Koprinska, I.; Yacef, K. People-to-People Reciprocal Recommenders.
In Recommender Systems Handbook, edited by F. Ricci; L. Rokach;
B. Shapira, Springer US, ISBN 978-1-4899-7637-6, pp. 545–567,

63

https://doi.org/10.1007/978-1-4899-7637-6_1
https://doi.org/10.1007/978-1-4899-7637-6_1
https://doi.org/10.1145/1639714.1639717
https://doi.org/10.1145/1278366.1278371
https://doi.org/10.1145/1278366.1278371
https://dl.acm.org/doi/10.1145/2512208
https://dl.acm.org/doi/10.1145/2512208
https://doi.org/10.1145/1297231.1297248

Bibliography

doi:10.1007/978-1-4899-7637-6 16. Available from: https://doi.org/
10.1007/978-1-4899-7637-6_16

[26] Koren, Y.; Bell, R.; et al. Matrix Factorization Techniques for Recom-
mender Systems. volume 42, no. 8: pp. 30–37, ISSN 1558-0814, doi:
10.1109/MC.2009.263, conference Name: Computer.

[27] Goldberg, D.; Nichols, D.; et al. Using collaborative filtering to weave
an information tapestry. volume 35, no. 12: pp. 61–70, ISSN 0001-0782,
doi:10.1145/138859.138867. Available from: https://doi.org/10.1145/
138859.138867

[28] Ning, X.; Desrosiers, C.; et al. A Comprehensive Survey of Neighborhood-
Based Recommendation Methods. In Recommender Systems Handbook,
edited by F. Ricci; L. Rokach; B. Shapira, Springer US, ISBN 978-1-
4899-7637-6, pp. 37–76, doi:10.1007/978-1-4899-7637-6 2. Available from:
https://doi.org/10.1007/978-1-4899-7637-6_2

[29] Collaborative Filtering. In Encyclopedia of Machine Learning, edited
by C. Sammut; G. I. Webb, Springer US, ISBN 978-0-387-30164-8,
pp. 189–189, doi:10.1007/978-0-387-30164-8 138. Available from: https:
//doi.org/10.1007/978-0-387-30164-8_138

[30] Hofmann, T. Latent semantic models for collaborative filtering. vol-
ume 22, no. 1: pp. 89–115, ISSN 1046-8188, doi:10.1145/963770.963774.
Available from: https://doi.org/10.1145/963770.963774

[31] Karypis, G. Evaluation of Item-Based Top-N Recommendation Al-
gorithms. In Proceedings of the tenth international conference on In-
formation and knowledge management, CIKM ’01, Association for
Computing Machinery, ISBN 978-1-58113-436-0, pp. 247–254, doi:
10.1145/502585.502627. Available from: https://doi.org/10.1145/
502585.502627

[32] Lee, T. Q.; Park, Y.; et al. A time-based approach to effective recom-
mender systems using implicit feedback. volume 34, no. 4: pp. 3055–3062,
ISSN 0957-4174, doi:10.1016/j.eswa.2007.06.031. Available from: https:
//www.sciencedirect.com/science/article/pii/S0957417407002357

[33] Řehořek, T. Manipulating the Capacity of Recommendation Models in
Recall-Coverage Optimization. Accepted: 2019-04-05T11:19:10Z Pub-
lisher: České vysoké učeńı technické v Praze. Vypočetńı a informačńı cen-
trum. Available from: https://dspace.cvut.cz/handle/10467/81823

[34] Deshpande, M.; Karypis, G. Item-based top-N recommendation al-
gorithms. volume 22, no. 1: pp. 143–177, ISSN 1046-8188, doi:
10.1145/963770.963776. Available from: https://doi.org/10.1145/
963770.963776

64

https://doi.org/10.1007/978-1-4899-7637-6_16
https://doi.org/10.1007/978-1-4899-7637-6_16
https://doi.org/10.1145/138859.138867
https://doi.org/10.1145/138859.138867
https://doi.org/10.1007/978-1-4899-7637-6_2
https://doi.org/10.1007/978-0-387-30164-8_138
https://doi.org/10.1007/978-0-387-30164-8_138
https://doi.org/10.1145/963770.963774
https://doi.org/10.1145/502585.502627
https://doi.org/10.1145/502585.502627
https://www.sciencedirect.com/science/article/pii/S0957417407002357
https://www.sciencedirect.com/science/article/pii/S0957417407002357
https://dspace.cvut.cz/handle/10467/81823
https://doi.org/10.1145/963770.963776
https://doi.org/10.1145/963770.963776

Bibliography

[35] Ostuni, V. C.; Di Noia, T.; et al. Top-N recommendations from im-
plicit feedback leveraging linked open data. In Proceedings of the 7th
ACM conference on Recommender systems, RecSys ’13, Association
for Computing Machinery, ISBN 978-1-4503-2409-0, pp. 85–92, doi:
10.1145/2507157.2507172. Available from: https://doi.org/10.1145/
2507157.2507172

[36] Ren, Y.; Zhu, T.; et al. Top-N Recommendations by Learning User Pref-
erence Dynamics. In Advances in Knowledge Discovery and Data Mining,
edited by J. Pei; V. S. Tseng; L. Cao; H. Motoda; G. Xu, Lecture Notes
in Computer Science, Springer, ISBN 978-3-642-37456-2, pp. 390–401,
doi:10.1007/978-3-642-37456-2 33.

[37] Celma, O. The Long Tail in Recommender Systems. In Music Recom-
mendation and Discovery: The Long Tail, Long Fail, and Long Play in
the Digital Music Space, edited by O. Celma, Springer, ISBN 978-3-642-
13287-2, pp. 87–107, doi:10.1007/978-3-642-13287-2 4. Available from:
https://doi.org/10.1007/978-3-642-13287-2_4

[38] Latent Factor Models and Matrix Factorizations. In Encyclopedia of
Machine Learning, edited by C. Sammut; G. I. Webb, Springer US,
ISBN 978-0-387-30164-8, pp. 571–571, doi:10.1007/978-0-387-30164-8
887. Available from: https://doi.org/10.1007/978-0-387-30164-8_
887

[39] Cheng, W.; Shen, Y.; et al. Explaining Latent Factor Models for
Recommendation with Influence Functions: pp. 885–893. doi:10.1145/
3292500.3330857, 1811.08120. Available from: http://arxiv.org/abs/
1811.08120

[40] Bell, R. M.; Koren, Y. Lessons from the Netflix prize challenge. volume 9,
no. 2: pp. 75–79, ISSN 1931-0145, doi:10.1145/1345448.1345465. Avail-
able from: https://doi.org/10.1145/1345448.1345465

[41] Amatriain, X.; Pujol, J. M. Data Mining Methods for Recommender
Systems. In Recommender Systems Handbook, edited by F. Ricci;
L. Rokach; B. Shapira, Springer US, ISBN 978-1-4899-7637-6, pp.
227–262, doi:10.1007/978-1-4899-7637-6 7. Available from: https://
doi.org/10.1007/978-1-4899-7637-6_7

[42] Golub, G. H.; Reinsch, C. Singular Value Decomposition and Least
Squares Solutions. In Handbook for Automatic Computation: Volume II:
Linear Algebra, edited by J. H. Wilkinson; C. Reinsch; F. L. Bauer; A. S.
Householder; F. W. J. Olver; H. Rutishauser; K. Samelson; E. Stiefel, Die
Grundlehren der mathematischen Wissenschaften, Springer, ISBN 978-3-
642-86940-2, pp. 134–151, doi:10.1007/978-3-642-86940-2 10. Available
from: https://doi.org/10.1007/978-3-642-86940-2_10

65

https://doi.org/10.1145/2507157.2507172
https://doi.org/10.1145/2507157.2507172
https://doi.org/10.1007/978-3-642-13287-2_4
https://doi.org/10.1007/978-0-387-30164-8_887
https://doi.org/10.1007/978-0-387-30164-8_887
1811.08120
http://arxiv.org/abs/1811.08120
http://arxiv.org/abs/1811.08120
https://doi.org/10.1145/1345448.1345465
https://doi.org/10.1007/978-1-4899-7637-6_7
https://doi.org/10.1007/978-1-4899-7637-6_7
https://doi.org/10.1007/978-3-642-86940-2_10

Bibliography

[43] Holeňa, M.; Pulc, P.; et al. Important Internet Applications of Classi-
fication. In Classification Methods for Internet Applications, edited by
M. Holeňa; P. Pulc; M. Kopp, Studies in Big Data, Springer Interna-
tional Publishing, ISBN 978-3-030-36962-0, pp. 1–68, doi:10.1007/978-3-
030-36962-0 1. Available from: https://doi.org/10.1007/978-3-030-
36962-0_1

[44] He, X.; Liao, L.; et al. Neural Collaborative Filtering. 1708.05031. Avail-
able from: http://arxiv.org/abs/1708.05031

[45] Gilotte, A.; Calauzènes, C.; et al. Offline A/B testing for Recommender
Systems: pp. 198–206. doi:10.1145/3159652.3159687, 1801.07030. Avail-
able from: http://arxiv.org/abs/1801.07030

[46] Cañamares, R.; Castells, P.; et al. Offline evaluation options for rec-
ommender systems. volume 23, no. 4: pp. 387–410, ISSN 1573-7659,
doi:10.1007/s10791-020-09371-3. Available from: https://doi.org/
10.1007/s10791-020-09371-3

[47] Liu, F.; Tang, R.; et al. Deep Reinforcement Learning based Recom-
mendation with Explicit User-Item Interactions Modeling. 1810.12027.
Available from: http://arxiv.org/abs/1810.12027

[48] Koren, Y. Factorization meets the neighborhood: a multifaceted collab-
orative filtering model. In Proceedings of the 14th ACM SIGKDD inter-
national conference on Knowledge discovery and data mining, KDD ’08,
Association for Computing Machinery, ISBN 978-1-60558-193-4, pp. 426–
434, doi:10.1145/1401890.1401944. Available from: https://doi.org/
10.1145/1401890.1401944

[49] Vinagre, J.; Jorge, A. M.; et al. Evaluation of recommender systems in
streaming environments. doi:10.13140/2.1.4381.5367, 1504.08175. Avail-
able from: http://arxiv.org/abs/1504.08175

[50] Bennett, J.; Lanning, S.; et al. The Netflix Prize. In In KDD Cup and
Workshop in conjunction with KDD.

[51] Dror, G.; Koenigstein, N.; et al. The Yahoo! Music Dataset and KDD-
Cup’11. In Proceedings of the 2011 International Conference on KDD
Cup 2011 - Volume 18, KDDCUP’11, JMLR.org, pp. 3–18.

[52] Goldberg, K.; Roeder, T.; et al. Eigentaste: A Constant Time Collab-
orative Filtering Algorithm. volume 4, no. 2: pp. 133–151, ISSN 1573-
7659, doi:10.1023/A:1011419012209. Available from: https://doi.org/
10.1023/A:1011419012209

66

https://doi.org/10.1007/978-3-030-36962-0_1
https://doi.org/10.1007/978-3-030-36962-0_1
1708.05031
http://arxiv.org/abs/1708.05031
1801.07030
http://arxiv.org/abs/1801.07030
https://doi.org/10.1007/s10791-020-09371-3
https://doi.org/10.1007/s10791-020-09371-3
1810.12027
http://arxiv.org/abs/1810.12027
https://doi.org/10.1145/1401890.1401944
https://doi.org/10.1145/1401890.1401944
1504.08175
http://arxiv.org/abs/1504.08175
https://doi.org/10.1023/A:1011419012209
https://doi.org/10.1023/A:1011419012209

Bibliography

[53] Järvelin, K.; Kekäläinen, J. Cumulated gain-based evaluation of IR
techniques. volume 20, no. 4: pp. 422–446, ISSN 1046-8188, doi:
10.1145/582415.582418. Available from: https://doi.org/10.1145/
582415.582418

[54] Liang, D.; Krishnan, R. G.; et al. Variational Autoencoders for Collab-
orative Filtering. 1802.05814. Available from: http://arxiv.org/abs/
1802.05814

[55] Zhu, Z.; Wang, J.; et al. Improving Top-K Recommendation via JointCol-
laborative Autoencoders. In The World Wide Web Conference, WWW
’19, Association for Computing Machinery, ISBN 978-1-4503-6674-8,
pp. 3483–3482, doi:10.1145/3308558.3313678. Available from: https:
//doi.org/10.1145/3308558.3313678

[56] Kim, D.; Suh, B. Enhancing VAEs for Collaborative Filtering: Flexible
Priors & Gating Mechanisms. doi:10.1145/3298689.3347015, 1911.00936.
Available from: http://arxiv.org/abs/1911.00936

[57] Campochiaro, E.; Casatta, R.; et al. Do Metrics Make Recommender
Algorithms? In 2009 International Conference on Advanced Informa-
tion Networking and Applications Workshops, pp. 648–653, doi:10.1109/
WAINA.2009.127.

[58] Shani, G.; Gunawardana, A. Evaluating Recommendation Systems.
In Recommender Systems Handbook, edited by F. Ricci; L. Rokach;
B. Shapira; P. B. Kantor, Springer US, ISBN 978-0-387-85820-3, pp.
257–297, doi:10.1007/978-0-387-85820-3 8. Available from: https://
doi.org/10.1007/978-0-387-85820-3_8

[59] Rehorek, T.; Biza, O.; et al. Comparing Offline and Online Evaluation
Results of Recommender Systems: p. 5.

[60] Carraro, D.; Bridge, D. Debiased offline evaluation of recommender sys-
tems: a weighted-sampling approach. In Proceedings of the 35th An-
nual ACM Symposium on Applied Computing, SAC ’20, Association
for Computing Machinery, ISBN 978-1-4503-6866-7, pp. 1435–1442, doi:
10.1145/3341105.3375759. Available from: https://doi.org/10.1145/
3341105.3375759

[61] Steck, H. Item popularity and recommendation accuracy. In Proceedings
of the fifth ACM conference on Recommender systems, RecSys ’11, As-
sociation for Computing Machinery, ISBN 978-1-4503-0683-6, pp. 125–
132, doi:10.1145/2043932.2043957. Available from: https://doi.org/
10.1145/2043932.2043957

67

https://doi.org/10.1145/582415.582418
https://doi.org/10.1145/582415.582418
1802.05814
http://arxiv.org/abs/1802.05814
http://arxiv.org/abs/1802.05814
https://doi.org/10.1145/3308558.3313678
https://doi.org/10.1145/3308558.3313678
1911.00936
http://arxiv.org/abs/1911.00936
https://doi.org/10.1007/978-0-387-85820-3_8
https://doi.org/10.1007/978-0-387-85820-3_8
https://doi.org/10.1145/3341105.3375759
https://doi.org/10.1145/3341105.3375759
https://doi.org/10.1145/2043932.2043957
https://doi.org/10.1145/2043932.2043957

Bibliography

[62] Li, L.; Kim, J. Y.; et al. Toward Predicting the Outcome of an A/B Ex-
periment for Search Relevance. In Proceedings of the Eighth ACM Inter-
national Conference on Web Search and Data Mining, WSDM ’15, Associ-
ation for Computing Machinery, ISBN 978-1-4503-3317-7, pp. 37–46, doi:
10.1145/2684822.2685311. Available from: https://doi.org/10.1145/
2684822.2685311

[63] Beel, J.; Genzmehr, M.; et al. A comparative analysis of offline and
online evaluations and discussion of research paper recommender sys-
tem evaluation. In Proceedings of the International Workshop on Repro-
ducibility and Replication in Recommender Systems Evaluation, RepSys
’13, Association for Computing Machinery, ISBN 978-1-4503-2465-6, pp.
7–14, doi:10.1145/2532508.2532511. Available from: https://doi.org/
10.1145/2532508.2532511

[64] Chagniot, P.; Vasile, F.; et al. From Clicks to Conversions: Recom-
mendation for long-term reward. 2009.00497. Available from: http:
//arxiv.org/abs/2009.00497

[65] Zhou, R.; Khemmarat, S.; et al. The impact of YouTube recommen-
dation system on video views. In Proceedings of the 10th ACM SIG-
COMM conference on Internet measurement, IMC ’10, Association
for Computing Machinery, ISBN 978-1-4503-0483-2, pp. 404–410, doi:
10.1145/1879141.1879193. Available from: https://doi.org/10.1145/
1879141.1879193

[66] Chen, L.; Pu, P. Eye-Tracking Study of User Behavior in Recommender
Interfaces. In User Modeling, Adaptation, and Personalization, edited
by P. De Bra; A. Kobsa; D. Chin, Lecture Notes in Computer Science,
Springer, ISBN 978-3-642-13470-8, pp. 375–380, doi:10.1007/978-3-642-
13470-8 35.

[67] Pu, P.; Chen, L.; et al. A user-centric evaluation framework for recom-
mender systems. In Proceedings of the fifth ACM conference on Recom-
mender systems, RecSys ’11, Association for Computing Machinery, ISBN
978-1-4503-0683-6, pp. 157–164, doi:10.1145/2043932.2043962. Available
from: https://doi.org/10.1145/2043932.2043962

[68] Kohavi, R.; Longbotham, R.; et al. Controlled experiments on the
web: survey and practical guide. volume 18, no. 1: pp. 140–181,
ISSN 1573-756X, doi:10.1007/s10618-008-0114-1. Available from: https:
//doi.org/10.1007/s10618-008-0114-1

[69] Peska, L.; Vojtas, P. Off-line vs. On-line Evaluation of Recommender Sys-
tems in Small E-commerce: pp. 291–300. doi:10.1145/3372923.3404781,
1809.03186. Available from: http://arxiv.org/abs/1809.03186

68

https://doi.org/10.1145/2684822.2685311
https://doi.org/10.1145/2684822.2685311
https://doi.org/10.1145/2532508.2532511
https://doi.org/10.1145/2532508.2532511
2009.00497
http://arxiv.org/abs/2009.00497
http://arxiv.org/abs/2009.00497
https://doi.org/10.1145/1879141.1879193
https://doi.org/10.1145/1879141.1879193
https://doi.org/10.1145/2043932.2043962
https://doi.org/10.1007/s10618-008-0114-1
https://doi.org/10.1007/s10618-008-0114-1
1809.03186
http://arxiv.org/abs/1809.03186

Bibliography

[70] Amatriain, X.; Basilico, J. Recommender Systems in Industry: A Net-
flix Case Study. In Recommender Systems Handbook, edited by F. Ricci;
L. Rokach; B. Shapira, Springer US, ISBN 978-1-4899-7637-6, pp.
385–419, doi:10.1007/978-1-4899-7637-6 11. Available from: https://
doi.org/10.1007/978-1-4899-7637-6_11

[71] Garcin, F.; Faltings, B.; et al. Offline and online evaluation of
news recommender systems at swissinfo.ch. In Proceedings of the 8th
ACM Conference on Recommender systems, RecSys ’14, Association
for Computing Machinery, ISBN 978-1-4503-2668-1, pp. 169–176, doi:
10.1145/2645710.2645745. Available from: https://doi.org/10.1145/
2645710.2645745

[72] Gama, J.; Sebastião, R.; et al. Issues in evaluation of stream learning
algorithms. In Proceedings of the 15th ACM SIGKDD international con-
ference on Knowledge discovery and data mining, KDD ’09, Association
for Computing Machinery, ISBN 978-1-60558-495-9, pp. 329–338, doi:
10.1145/1557019.1557060. Available from: https://doi.org/10.1145/
1557019.1557060

69

https://doi.org/10.1007/978-1-4899-7637-6_11
https://doi.org/10.1007/978-1-4899-7637-6_11
https://doi.org/10.1145/2645710.2645745
https://doi.org/10.1145/2645710.2645745
https://doi.org/10.1145/1557019.1557060
https://doi.org/10.1145/1557019.1557060

Appendix A
Acronyms

ALS Alternating Least Squares

CC Catalog coverage

CF Collaborative Filtering

CTR Click-through rate

iCTR Implicit click-through rate

EF Explicit Feedback

IF Implicit Feedback

LFM Latent factor models

LLOO Leave-last-one-out

LOO Leave-one-out

MF Matrix factorisation

MNAR Missing-not-at-random

MSE Mean Square Error

NN Nearest neighbours

PS Popularity-stratified

RA Recommendation Algorithm

RBE Ranking-based evaluation

RMSE Root Mean Square Error

RPBE Rating prediction-based evaluation

71

A. Acronyms

RS Recommender System

SVD Singular Value Decomposition

UN User-normalised

72

Appendix B
Contents of enclosed CD

src
implementation............source codes of the framework in Python
thesis..source codes of the thesis in LATEX format along with images

results
thesis.pdf...................................thesis in PDF format
recall.csv ... CSV file with 289.885 rows containing measured recall
ctr.csv...........CSV file with 494 rows containing measured CTR
ctr-recall-example.ipynb...Example of work with recall and CTR

73

	Introduction
	Analysis of Recommender Systems
	Interactions/feedback
	Recommendation algorithms
	Collaborative filtering
	Top-K recommendation
	Matrix factorisation
	Item-KNN

	Evaluation of RS
	Offline evaluation
	Evaluation data
	Rating prediction-based evaluation
	Ranking-based evaluation
	Other standard methods

	Online evaluation
	Comparison of online and offline evaluation metrics

	Proposed experiment
	Hyperparametrization of recall metric
	Experiment steps
	Description of experimental data

	Implementation
	Datasets
	Modules

	Results
	Hyperparameters
	Collected data
	Analysis of CTR
	The effect of hyperparameters on recall
	Recall vs CTR
	Summary of results

	Discussion
	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD

