
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering

The design of a system for transmission
condition analysis

Yevheniy Tomenchuk

Supervisor: Ing. Martin Košťál, MSc.
Supervisor–specialist: Jan Pospíšil
May 2021

ii

Acknowledgements
First and foremost, I would like to

thank my supervisor Ing. Martin Košťál,
MSc. for his valuable advice and pa-
tient guidance. I am also grateful to my
supervisor-specialist Jan Pospíšil, lead-
developer at Eaton European Innovation
Center in Prague, for lots of assistance,
constructive comments and research ma-
terials. Many thanks to the EEIC for
the internship work experience. Finally, I
thank my family for the support during
my studies.

Declaration
I hereby declare that the presented the-

sis is my own work and that I have cited
all sources of information in accordance
with the Guideline for adhering to eth-
ical principles when elaborating a final
academic thesis.

I acknowledge that my thesis is subject
to the rights and obligations stipulated
by the Act No. 121/2000 Coll., the
Copyright Act, as amended, in particular
that the Czech Technical University in
Prague has the right to conclude a license
agreement on the utilization of this thesis
as a school work under the provisions of
Article 60 (1) of the Act.

In Prague on 21.05.2021

iii

Abstract
The present thesis deals with the de-

velopment of a client-server application
based on the analysis of the existing com-
ponent of the application(IntelliConnect)
for vehicle faults evaluation and evalua-
tion rules modification. The .NET Core
framework, in pair with C# language, is
used for the server-side of the application,
while ReacJs is used for its client-side to
achieve the set goals.

The elaborated client-server application
has successfully eliminated the shortcom-
ings of the existing system found dur-
ing the analysis. The developed client
application that communicates with the
server using public API has substituted
the method of changing evaluation rules
within the OOXML tables and manual
transfer. A new website provides a tool
for modification and automated correct-
ness checking of evaluation rules, simpli-
fying their definition process. Moreover,
it makes it possible to simulate vehicle
faults, thus check the rules logic correct-
ness. Having saved the original tool for
importing rules in OOXML format, it has
been advanced and expanded with the
possibility to export evaluation rules in
the same format. All manual processes
connected with modifying rules and eval-
uating faults have been automated.

Keywords: CAN bus, J1939 protocol,
Eaton, IntelliConnect, remote
diagnostics, .NET Core, REST API,
ReactJs

Supervisor: Ing. Martin Košťál, MSc.
Jugoslávských partyzánů 1580/3
Room A-526

Abstrakt
Daná práce se zabývá vývojem klient-

server aplikace na základě analýzy stá-
vající komponenty aplikace (IntelliCon-
nect) pro hodnocení chybových hlašek vo-
zidla a úpravou pravidel jejich hodnocení.
.NET Core framework, ve dvojici s jazy-
kem C#, se používá na straně serveru, za-
tímco ReacJs se používá na straně klienta
k dosažení stanovených cílů. Vypracovaná
klient-server aplikace úspěšně odstranila
nedostatky nalezené během analýzy stá-
vajícícho systému.

Vyvinutá klientská aplikace, která ko-
munikuje se serverem pomocí veřejného
API, nahradila metodu změny pravidel
hodnocení v tabulkách OOXML a jejich
manuální přenos. Nový web poskytuje ná-
stroj pro úpravu a automatické ověřování
správnosti pravidel hodnocení, což zjed-
nodušuje jejich definiční proces. Kromě
toho umožňuje simulovat chyby vozidla,
a tak kontrolovat správnost logiky pra-
videl. Původní nástroj pro import pra-
videl ve formátu OOXML byl vylepšen
a rozšířen o možnost exportovaní vyhod-
nocovacích pravidel ve stejném formátu.
Všechny manuální procesy spojené s úpra-
vami pravidel a vyhodnocením chyb byly
automatizovány.

Klíčová slova: CAN sběrnice, J1939
protokol, Eaton, IntelliConnect, vzdálená
diagnostika, .NET Core, REST API,
ReactJs

Překlad názvu: Návrh systému pro
analýzu stavu převodovky

iv

Contents
Introduction 1
1 Preliminaries 3
1.1 CAN - Control Area Network . . . 3
1.1.1 Description 4
1.1.2 Protocol extensions 5
1.1.3 A brief history 7

1.2 Standardized vehicle diagnostics . 7
1.2.1 Diagnostic message 8
1.2.2 Diagnostic Trouble Code 9

1.3 Vehicle Diagnostics by Eaton 9
1.3.1 Eaton IntelliConnect™ 10

2 Analysis 13
2.1 AS-IS vs TO-BE State 13
2.2 Basic definitions of the analysis . 13
2.2.1 Service Activity Report 13
2.2.2 Evaluation rule 14
2.2.3 Rule group 15

2.3 A typical cycle of using the
application . 16

2.4 Requirements 16
2.4.1 Functional requirements 16
2.4.2 Non-functional requirements . 17

2.5 Use-case model 17
3 Design and implementation 21
3.1 Network architecture 21
3.2 Using technologies 22
3.2.1 Back-end(Server) 22
3.2.2 Front-end(Client) 23
3.2.3 Database 23
3.2.4 Summing-up 24

3.3 Components 24
3.4 Development environment 26
3.5 Project structure 26
3.6 Configuration management 26
3.7 Dependency injection 27
3.8 Layers realization 27
3.9 Authentication & Authorization 28
3.10 EvaluationClient 28
Conclusion 31
Bibliography 33
A Acronyms 37
B Contents of attached CD 39

v

Figures
1.1 Vehicle ECUs network without
CAN vs. with CAN 4

1.2 ISO/OSI Reference Model 4
1.3 CAN message frame 5
1.4 J1939 29-Bit message identifier . . 8
1.5 Vehicle fault code life cycle without
IntelliConnect 10

1.6 Vehicle fault code life cycle with
IntelliConnect 10

2.1 Service Activity Report Entity
Model . 14

2.2 Evaluation Rule Entity Model . . 15
2.3 Use-Case Diagram 18

3.1 Client-Server vs Peer-to-Peer . . . 21
3.2 Component Diagram 25
3.3 Use of the dependency injection 26
3.4 Configuration of the dependency
injection . 27

3.5 Architecture 27
3.6 Root Evaluation Rule Group . . . 29
3.7 Single/Non-Complex Evaluation
Rule Group . 29

3.8 Multiple/Complex Evaluation Rule
Group . 29

3.9 Complex Evaluation Rule
Example . 30

3.10 Service Activity Report
Evaluation . 30

Tables

vi

Introduction

Motivation. The automotive industry has been consistently developing
since the first car was invented by Karl Benz in 1886 [1]. In slightly more
then a century the vehicle has evolved from an almost mechanical metal
box with wheels into the car with a driver assistance system referred to
as Autopilot like Tesla. Nowadays, automobile manufacturers are facing
real and pressing challenges in the industry that has to react swiftly to the
expectations of modern customers. The main concern has been shifted from
just fast and well-designed cars to vehicles equipped with the continuously
increasing amount of advanced technologies that are able to guarantee safety,
uptime and efficiency. The integration of hardware and software into cars
helps to improve their functionality, however, it requires additional analysis
of the working order under different conditions and loads. As a result, the
complexity of vehicles increases and it leads to product failures, which are
hard to reduce and foresee. The development of advanced diagnostic tools
might help to find some solutions to solve this problem. That accounts for
the topicality of this thesis.

The bachelor work has been carried out under the supervision of the Eaton
European Innovation Center (EEIC) whose specific focus areas include vehicle
powertrains, industrial automation, power distribution, hydraulics, electronics
and IT [2].

Problem statement. Due to the fact that the increasing number of electronic
products are being incorporated on trucks, automobiles and other vehicles,
the complexity of troubleshooting the product has become unmanageable
without maintaining the computational diagnostic capability of on-board and
off-board controllers.

In fact, several different diagnostic tools have been developed in the auto-
motive industry. One of the tools Diagnostics 4.0 was provided by Softing,
which offers remote and cloud diagnostics for vehicles with huge amounts of
Electronic Control Units (ECU) [3, 4]. Another tool X-TRAILERPULSE
was developed by Wabco [5]. It is trailer telematics solutions that capture a
maximum of data from trailers with limited electronics, such as curtain siders
[6]. Adding to this, Eaton provides IntelliConnect [7], that is a tool for remote
diagnostics that provides near real-time monitoring of vehicle fault codes,
prioritizes the critical events and provides accurate and comprehensive action

1

..
plans by technical experts that will increase uptime by reducing unplanned
downtime and quicker repair diagnosis [7, 8].

The present thesis deals with the analysis of the existing component of
the application(IntelliConnect) for evaluation of fault codes from the CAN
bus and the design of an upgraded one. The new implementation makes it
possible to integrate with other components and to modify the evaluation
rules for technical staff.

Goals. The aim of the thesis involves performing the following specific tasks:. to study works on the research topic that serve as a theoretical basis of
the thesis;. to examine and describe the main notions of the research;. to analyze the existing solution (IntelliConnect);. to substitute the current process of the OOXML table manual trans-
fer and create a public Application Programming Interface (API), i.e.
microservice;. to develop a User Interface (UI);. to simplify evaluation rule definitions (logical operators AND, OR and
nested conditions) and verify their correctness (duplication, unavailability,
etc.);. to provide a dynamic view of fault codes (simulate a group of fault codes
and calculate a given severity);. to advance the import/export of evaluation rules in OOXML format;. to allow a connection with new clients (HTTP endpoint).

Thesis outline. The thesis consists of the Introduction, 4 chapters, general
conclusions, the references and the appendix.

The introduction presents the aim of this study, the research goals, focuses
on the motivation and topicality as well as the problem statement.

Chapter 1 deals with the necessary theoretical basics and ideas on which
this thesis is based.

Chapter 2 focuses on the analysis of the existing solution.
Chapter 3 offers a suitable architecture and design for the application. In

addition, provides the practical part, where the development of the application
is described.

In conclusion, the theoretical and practical results are summed up, the
main goals of the study are substantiated as well as prospects for further
investigation are outlined.

The appendix presents the acronyms used in the thesis.

2

Chapter 1
Preliminaries

The initial step of the thesis begins with the review of the Control Area
Network, vehicle applications and truck diagnostics. It covers the necessary
theoretical basics and ideas on which this thesis is based.

1.1 CAN - Control Area Network

One of the most crucial parts of the vehicle is Electronic Control Units (ECU).
They can be defined as specific embedded systems that are accountable for
handling electrical systems of the car such as windows, engine, brakes or
doors etc [9].

It was not until the early 80s when electronic units started to equip vehicles
[10]. There was a gradual rise in the demand for real-time data transmission
within a vehicle. However, it was soon impossible to add more dedicated
signal lines, due to costs, safety and repair issues. For instance, the cable
length of some advanced European vehicles from the late 1980s was more
than 2km [11]. To satisfy this pressing need for multiplexed communication,
at the beginning the 80s the “Robert Bosch GmbH” company invented the
CAN [11].

The Controller Area Network (CAN) is referred to as a multi-master,
message broadcast system, i.e. a robust serial bus communication protocol
[12]. It sets a standard for efficient and robust communication between
devices, ECUs, actuators and other nodes in real-time applications within
the CAN bus. Originally the aim was to make vehicles more fuel-efficient,
secure and safe as well as to reduce wiring weight and complexity. The CAN
protocol has obtained great popularity in the automotive industry since its
appearance. Various trucks, automobiles, spacecraft, boats, ships and other
vehicle types use it. Moreover, the protocol has widely been integrated into
industrial automation and other fields of networked embedded control, being
applied in different goods such as weaving machines, wheelchairs, medical
equipment, building automation, and production machinery.

In the automotive industry, embedded control has developed from separate
systems to networked and integrated control systems. Furthermore, introduc-
ing networks in vehicles enables to perform diagnostics more efficiently and
to coordinate the operation of the stand-alone subsystems more accurately

3

1. Preliminaries
(see Figure 1.1).

Figure 1.1: Vehicle ECUs network without CAN vs. with CAN

1.1.1 Description

The CAN specification determines the protocols for two layers of the OSI
model: data link and physical (see Figure 1.2), that allow communication
between the network nodes [13]. The application process of a node decides
when the message frame should be transmitted. The message frame is made
up of an identifier, data, and control fields. Considering the fact that the
application processes are asynchronous, the CAN bus provides a conflict
resolving mechanism.

Thus, the CAN protocol is included in the CSMA/CD class of protocols.
The CSMA stands for Carrier Sense Multiple Access [14]. Every network node
has to control the bus during the inactive period before transmitting a message
(Carrier Sense). Furthermore, for the period of no activity, each network
node has an equal opportunity to send a message (Multiple Access) [13].
The CD stands for Collision Detection [14]. In case two network nodes start
sending messages simultaneously, the collision is detected and consequently,
the appropriate action is taken.

Figure 1.2: ISO/OSI Reference Model

Message formats. CAN distinguishes four messages also referred to as CAN
frame types [15]:.Data frame a frame that contains data for transmission;.Remote frame a frame that requests the specific identifier transmission;. Error frame a frame that signalizes the error occurrence detected by

the node;

4

............................. 1.1. CAN - Control Area Network

.Overload frame a frame that injects delay between either data or
remote frames.

The standard data frame is presented in Figure 1.3. It begins with the
Start of Frame (SOF) bit, which is used to synchronize transmissions on a
CAN bus and is followed by an 11-bit Identifier. The latter sets the priority
of the message(lower binary value means higher priority). Next comes the
Remote Transmission Request (RTR) bit, which is set for remote frames.
The Control field is a length code that represents how many bytes of data
are transmitted. The Data field contains message payload of size up to 64
bits. The Cyclic Redundancy Checksum (CRC) contains a checksum that
enables the receiver to detect the error occurrence. The Acknowledgement
(ACK) field is sent by the receiver when accepting a valid message. The
message ends with End of Frame (EOF), which signals the end of a CAN
frame.

Figure 1.3: CAN message frame

In addition to the standard data frame, there is an extended one. At
present, these are two formats defined in ISO 11989 standard – Standard
CAN and Extended CAN [16]. They differ in the length of the identifier
(11-bits and 29-bits, respectively). The identifier field performs the function
of a descriptor of the data transmitted by the CAN frame.

1.1.2 Protocol extensions

The majority of network applications are based on the layered approach to
system implementation. This layer-organized approach enables compatibility
among products manufactured by different companies. The International
Standards Organization (ISO) created a certain standard considered as a
template to be followed within this systematic approach. It is referred to as
the ISO Open Systems Interconnection (OSI) Network Layering Reference
Model and is presented in Figure 1.2.

While the CAN protocol defines only the lowest two ISO/OSI model layers
(see Figure 1.2), in numerous situations, it is necessary to use standardized
protocols that specify the other higher layers. Existing higher-layer protocols
are often adapted to a particular application domain. Examples of such
protocols include SAE J1939, CANopen, DeviceNet and CANKingdom.

SAE J1939. The one that is specially developed for vehicle applications is
SAE J1939. In the last few years, efforts have been made to join CAN and
Ethernet, which is the leading technology for local area networks (LAN) as
well as the common connecting source to the Internet. J1939 protocol was

5

1. Preliminaries
developed by the Society of Automotive Engineers [17] for the automotive
industry purposes to define the higher-layer communication control. It is a
significant advantage to have a standard because the latter allows autonomous
development of the separate networked components, which leads to the
compatibility of components for vehicle manufactures provided by different
suppliers. For example, the J1939 protocol determines rules for reading and
writing data as well as calibrating certain subsystems. K. Etscherberger
states that the data rate of SAE J1939 is about 250 kbps, which gives up to
about 1850 messages per second [18]. J1939 protocol has got a wide range of
applications like truck communication, machinery in forestry and agriculture,
marine navigation systems etc.

CANopen. Another standardized application is CANopen, which is on top
of CAN and is used in industrial automation across Europe. The standard
was specified by CAN in Automation (CiA), the international organization
that develops and supports CAN-based higher-layer protocols [19]. CANopen
defines device and communication profiles, allowing independent use of CAN.
While the communication profile determines the fundamental communication
mechanism, the device profile is used by the common devices in industrial
automation, e.g. digital and encoders, controllers and analogue I/O compo-
nents. The device profile can be configured autonomously of its manufacturer
by means of CANopen, which differentiates between real-time and less critical
data exchange. CAN open provides standardized communication objects for
various data(real-time, configuration, network management) as well as certain
special functions (timestamp and synchronization messages).

DeviceNet. Another standardized application is DeviceNet, which is pri-
marily used for distributed industrial automation in the U.S.A and Asia. It
was originally developed by Rockwell Automation [20]. DeviceNet, as well
as Transmission Control Protocol/Internet Protocol (TCP/IP), are defined
as open network technologies. Sharing upper layers of the communication
protocol they are based on lower layers. While DeviceNet is built on top of
CAN, TCP/IP is built on top of Ethernet.

CANKingdom. One more standardized high-layer protocol based on CAN is
CANKingdom provided by Kvaser [21]. It is used for motion control systems.
By means of this protocol network behaviour can be changed anytime, even
while the system is operating. For example, when a failure occurs CANKing-
dom makes it possible to turn off individual network nodes. The CAN node
identifiers and message sending triggers can be altered while the system is
operating. Real-time network reconfiguration is used when a failure occurs,
e.g. a failure of a radio link ECU in a marine application. The network
monitor, also referred to as the King, in that situation firstly turns off the
radio node to prevent it from sending any further commands, and secondly
instructs the relevant nodes to obtain data from the King. Thus, the problem
of a node receiving two simultaneous but conflicting commands and the
problem of two nodes sending the same CAN id are eliminated [22].

6

............................ 1.2. Standardized vehicle diagnostics

Having analyzed the higher-layers protocols it becomes obvious that they
have been developed for different purposes and with different applications
taking into account various demands. It is reflected, for instance, in their
real-time control support. Though J1939 protocol is used for control algo-
rithms implementation, it does not support time-limit communication. As
opposed to CANKingdom and CANopen that implements such functionalities
and provide inter-node synchronization support. Moreover, CANKingdom
and CANopen enable static and dynamic network configuration, whereas the
J1939 protocol has less flexibility.

1.1.3 A brief history

The evolution of microelectronics has paved the way for the appearance of
distributed control systems in vehicles. However, there was no standardized
and low-cost protocol that was appropriate for real-time control systems in
the early 1980s. Therefore, the development of a new serial bus system was
critically important and started at Bosch in 1983 [23]. As a result, CAN
was launched in 1986 at the SAE Congress in Detroit [24]. The creation of
CAN was primarily driven by the need for new functionalities, but the need
for wiring was also considerably reduced (see Figure 1.1). The Bosch CAN
Specification 2.0 was released in 1991 [25] and the CAN protocol was then
standardized internationally as ISO 11898-1 in 1993 [26]. There was early
awareness of the need for higher-layer protocols. In 1991, Kvaser launched
CANKingdom [10]. Another higher-layer protocol DeviceNet was defined by
Allen-Bradley in 1994 [27]. The subsequent protocol CANopen was presented
by CAN in Automation (CiA) in 1995 [28]. Initially, CAN was applied only
for engine control, but nowadays there is a wide spectrum of applications for
chassis and powertrain control as well as for body electronics and infotainment
systems.

1.2 Standardized vehicle diagnostics

As it was outlined in the previous section, nowadays the majority of vehicles
use the CAN for ECU communication. However, the CAN can be compared
to a "telephone" that serves as an instrument for communication while the
"language" for conversation is not provided. The solution appears and the
standardized CAN communication method("language") for vehicles, as well as
the principles for the exchange of the information and diagnostic data between
ECUs, are described in J1939 protocol developed by SAE. But originally the
protocol was developed for vehicles built after 1985 and it was the J1587
[29]. Starting from 2007, it was displaced in favour of the new and upgraded
J1939 protocol to make the most of the CAN features in modern multi-ECU
vehicles.

J1939 is a highly advanced protocol that requires the specific message’s
format, thus it takes advantage of the Extended CAN Identifier (29-bit) [30].

7

1. Preliminaries
J1939 frame identifier contains the following parts (see Figure 1.4):

Figure 1.4: J1939 29-Bit message identifier

. Priority - establishes the message priority, the highest priority being 0
and the lowest is 7;. EDP - Extended Data Page together with DP differentiates message
definitions;. DP - Data Page together with EDP differentiates message definitions;. PDU Format - Protocol Data Unit Format determines the parameter
group the message belongs to and distinguishes the type of data;. PDU Specific - Protocol Data Unit Specific defines the message’s desti-
nation ECU address;. Source Address - defines the message’s source ECU address.

The Parameter Group Number (PGN) is the concatenation of PDU Format
and PDU Specific (see Figure 1.4), used to differentiate between types of
messages. Parameter Groups and their numbers (PGN) are listed in SAE
J1939 and defined in SAE J1939/71 [31]. Another lookup table of ISO CAN
Bus standard items can be found on the web [32].

1.2.1 Diagnostic message

In J1939 diagnostic data are represented as Diagnostic Messages(DM), that
are used to monitor, test and clear diagnostic information in devices on the
network. There are 19 different diagnostic messages defined in J1939. The
examples of some of them are described beneath:. DM1 Message provides a list of Diagnostic Trouble Codes (DTC) that

report the diagnostic condition of the vehicle ECU over the CAN network.
These DTCs are currently active on the device and are referred to as
Active Diagnostic Trouble Codes [33];.DM2 Message provides the list of DTCs that report the diagnostic
condition of the vehicle ECU over the CAN network with the same
details. These DTCs are not currently active but were active at some
time in the past and are referred to as Previously Active Diagnostic
Trouble Codes [33];

8

..............................1.3. Vehicle Diagnostics by Eaton

. DM3Message is the message indicating that all the diagnostic information
concerning the Previously Active DTCs should be cleared or Inactive
DTCs should be reset. This guarantees that the Active DTCs present in
ECU are not impacted. This message is referred to as Diagnostics Data
Clear [33].

1.2.2 Diagnostic Trouble Code

The Diagnostic Trouble Code (DTC) also sometimes referred to as Fault
Code is not a single value or code, but a set of information which is used
to specify a problem in the device [34]. The DTC structure consists of the
following parts:. Suspect Parameter Number (SPN) defines the source of the issue. An

SPN is assigned to each J1939 parameter [35].. Failure Mode Indicator (FMI) determines the data parameter that is the
type of the issue [36]..Occurrence Count (OC) defines the data parameter that indicates the
number of times the issue has occurred;. Conversion Method (CM) specifies how the SPN and FMI should be
handled or translated, primarily used to deal with older diagnostic
protocols.

1.3 Vehicle Diagnostics by Eaton

Eaton is one of the world’s leading producers of automated, constant mesh
and synchronized manual transmissions [37]. Original vehicle manufacturers
all over the world count on Eaton’s solutions that improve the overall vehicle
drivability, efficiency, reliability and safety. Eaton offers a wide spectrum
of transmissions, that were created with different applications in mind for
different purposes. The Eaton Transmission Families are listed below:. Endurant [38];. Fuller Advantage [39];. UltraShift Plus [40];. Procision [41];. AutoShift / UltraShift [42].

As it was mentioned before, Eaton just not only creates vehicle commercial
components but also provides a suite of connected solutions designed to enable
their products to perform at their optimal capacity.

9

1. Preliminaries
1.3.1 Eaton IntelliConnect™

Taking into account the fact that nowadays many trucks worldwide are hitting
the road to places of their destinations, someone should take responsibilities
for securing drivers’ safety and maximizing vehicles’ uptime. That’s why fleet
owners much depend on telematics systems, which provide important data for
monitoring the current state of the vehicles, e.g. GPS, sensor and fault code
data. But it is not an easy task to understand collected data when you have
several fault codes for multiple vehicles or per one vehicle. Consequently, this
accumulation of fault codes becomes a burning issue, which IntelliConnect
by Eaton [7] can help to settle by providing expert guidance via remote
diagnostics.

IntelliConnect is the platform that Eaton is building up for connected
solutions. The key piece of this platform is a remote diagnostics of Eaton
automated transmissions. It prioritizes the critical events and provides
accurate and comprehensive action plans by technical experts, that will
increase vehicle uptime by reducing unplanned downtime and quicker repair
diagnosis [8].

Let’s compare the vehicle fault life cycles with and without IntelliConnect.
The fault life cycle without IntelliConnect is shown in Figure 1.5. Initially,

transmission sets a fault code, which is afterwards transmitted to the existing
telematics provider. From there, the fault code is sent directly to the fleet
with no analysis or immediate, actionable subsequent steps.

Figure 1.5: Vehicle fault code life cycle without IntelliConnect

Figure 1.6: Vehicle fault code life cycle with IntelliConnect

The fault life cycle with IntelliConnect is shown in Figure 1.6. As soon as
the transmission sets a fault code, it is sent to the telematics company. But
now instead of being sent directly to the fleet, the fault code data are sent
to the Eaton knowledge management system. IntelliConnect monitors all
the fault codes of the vehicle, determines the ones that impact the driveline

10

..............................1.3. Vehicle Diagnostics by Eaton

and ranks them by severity. It analyzes the code data and provides a fault
code action plan [43]. Further on the processed action plan is sent back to
the telematics company and uploaded to the Eaton IntelliConnect portal site
[44], where it can be accessed by the fleet owner. Finally, the fleet owner sets
the recommended action plan to the driver.

Using a comprehensive systems approach, IntelliConnect takes into account
data from other vehicle components to trace potential root causes and suggest
solutions. It doesn’t focus solely on transmissions, but it attempts to evaluate
the overall state/health of a vehicle.

11

12

Chapter 2
Analysis

As mentioned in the previous chapter, the rules for faults evaluation are
currently passing and modifying with OOXML tables by Eaton specialists.
This work aims to optimize this manual process using the Rest API application
for editing and debugging evaluation rules with UI on top of it. This chapter
seeks to analyze the current state.

2.1 AS-IS vs TO-BE State

AS-IS. Currently, Eaton specialists edit rules in OOXML files and update
the database using a simple console application to import it. They cannot
automatically check the validity of changes made in evaluation rules, except
for checking their accuracy manually. The human factor can easily lead to
mistakes in rules. Furthermore, changing rules priority is really hard because
they should manually specify each rule’s unique priority in the rule group.

TO-BE. The final application should enable users to provide all needed
operations with rules and automate all manual processes like changing rules
priority and indicating invalid operations and data. Moreover, the system
should enable the user to generate Service Activity Report request and
evaluate it to check the rules logic flow.

2.2 Basic definitions of the analysis

This section explains all definitions that are needed to further analysis.

2.2.1 Service Activity Report

It is Eaton’s specific request format for transferring data to be evaluated. It
contains several blocks of data (see figure 2.1), including a vehicle with a list
of its components and a list of faults, which are in the focus of the analysis
since every evaluation rule is based on either a component or fault data.

13

2. Analysis

ServiceActivityReport

+ Id: long

+ Origin: Origin

+ Vehicle: Vehicle

+ Faults: List<Fault>

+ Location: Location

Origin

+ OriginType: string

SR4 = ServiceRanger
OTS = Omnitracs
PPN = PeopleNet

etc

Vehicle

+ Id: int

+ Components: List<Components>

Fault

+ Id: long

+ Protocol: int

+ Source: int

+ FaultCode: string

+ SPN: string

+ FMI: int

+ SessionDate: DateTime?

+ Latitude: decimal?

+ Longitude: decimal?

+ IsActive: bool

+ LampStatus: byte

Component

+ Protocol: int

+ SourceAddress: int

+ Make: string

+ Mode: string

+ SerialNumber: string

+ IsEaton: bool?

+ ProductFamilyId: int?

+ ProductCode: int?

1 = J1587
2 = J1939

A fault within a
Service Activity

Report

The Source Address of
the component with the

fault

The Eaton-translated
fault code

The PID/SID/SPN
(Protocol Specific Parameter)

The FMI of the fault code

Timestamp of when the fault
reading session started

Location

+ Country: string

Figure 2.1: Service Activity Report Entity Model

2.2.2 Evaluation rule

An evaluation rule (see figure 2.2) is a group of data used for SAR evaluation
that can be divided into the following sub-groups:.Rule Group: this is the name of the rule group to which the rule

belongs..Rule logic: these are the data about the rule priority number in the
rules hierarchy, prefix and suffix used for writing complex rules for
doing logical operations with other rules..Origin Type: this is a Service Activity Report origin type used to
identify when an evaluation request comes from the predefined sources
which are not supposed to be dealt with..Vehicle component data: these are the numbers representing com-
ponent source address, product family id, product code and the
indicator defining Eaton production component.. Fault data: these are the numbers representing fault source address,
fault code, FMI, SPN and the indicator defining the active state of
the fault.

14

.............................2.2. Basic definitions of the analysis

. Evaluation result data: this is a combination of two parameters. The
result type indicator can be either "Evaluate" or "Action Plan". If it is
"Evaluate", the result key will refer to the next rule group for further
evaluation. If it is an "Action Plan", the evaluation process is finished
with a definite action plan key.

EvaluationRule

+ Id: type

+ RuleGroup: string

+ Priority: int?

+ Prefix: string

+ Suffix: string

+ OriginType: string

+ Component: Compone

+ Fault: Fault

+ ResultType: byte

+ ResultKey: string

Fault

+ SourceAddress: type

+ Spn: string

+ Fmi: byte?

+ IsActive: bool?

+ IsPrimaryFault: int?

Component

+ ComponentSourceAddress: byte?

+ IsEaton: bool?

+ ProductFamilyId: short?

+ ProductCode: int?

Figure 2.2: Evaluation Rule Entity Model

Three types of evaluation rules exist:.Root: the rule contains component data if the result type is "Evaluate"
and does not include fault data..Non-complex/single: the rule contains no component data but does
have fault data..Complex/multiple: the set of rules that contain no component data
but have fault data and create a complex expression using prefix and
suffix.

2.2.3 Rule group

Rule group is the set of evaluation rules with the same rule group parameter.
There are three different types of rule groups:.Root evaluation: the leading rule group that points to single evaluation

rule groups using result key parameter.. Single evaluation: the rule group that goes after root evaluation
contains non-complex rules and points to the multiple evaluation rule
group..Multiple evaluation: this is the final rule group that contains a set of
complex evaluation rules.

15

2. Analysis
2.3 A typical cycle of using the application

Initially, the database is empty, and the user does not have an account. For
using the application, the user creates a new account with a username and
a password. The user authenticates in the application using his credentials.
After the authentication and authorization process, the user sees the page
with an empty table of evaluation rules. The user can initialize a new empty
root rule group or import the existing one from the OOXML file. After
initializing the root, the user can add, update, delete evaluation rules and
change their priority by dragging and dropping table rows.

Furthermore, the user can import or initialize a new single rule group in
the root. The new root evaluation rule that points to the newly created rule
group will be added to the root evaluation rule group. Every evaluation rule
with the result type "Evaluate" points to the rule group with the same name
as the rule’s result key.

In addition, the user can switch between different rule groups by clicking
the open button that appears in the rules with the result type "Evaluate"
in a table. The latter has a specific structure, and its contents dynamically
change according to the type of a rule group.

Finally, the user can also opt to create a SAR request and evaluate it to
check evaluation rules validity.

2.4 Requirements

The requirements are of two types:

2.4.1 Functional requirements..1. Sign-in: The user must be able to sign in to the system using a username
and a password...2. Sign-in validation: The system must be able to validate the user’s
sign-in input data...3. Sign-up: The user must be able to create a new account with a username
and a password...4. Sign-up validation: The system must be able to validate the sign-up
input data...5. Sign out: The user must be able to log out from the account...6. Read evaluation rules: The user must be able to read all evaluation
rules within the same rule group...7. Create evaluation rules: The user must be able to create new evalu-
ation rules within the same rule group.

16

................................... 2.5. Use-case model..8. Import evaluation rules: The user must be able to import new
evaluation rules to the same rule group using the OOXML file...9. Update evaluation rules: The user must be able to update evaluation
rules within the same rule group....10. Delete evaluation rules: The user must be able to delete evaluation
rules within the same rule group....11. Create rule group: The user must be able to initialize a new rule
group or import an existing rule group from the OOXML file....12. Delete rule group: The user must be able to delete the whole rule
group....13. Evaluation rules validation: The system must validate any evaluation
rules changes within the same rule group. Every evaluation rule has a
different format depends on the rule group type....14. Evaluation rules priority: The user must be able to change evaluation
rule priorities within the same rule group using drag and drop. Priority
must be changed automatically by the system....15. Export evaluation rules: The user must be able to export evaluation
rules with the same rule group as an OOXML file....16. Debug evaluation rules: The user should be able to debug the evalu-
ation rules logic by creating and evaluating a Service Activity Report
request....17. Optimistic database concurrency: The systems must detect all
invalid or unexpected changes. Multiple users cannot edit the same rule
group simultaneously.

2.4.2 Non-functional requirements..1. ASP.NET Core or ASP.NET: Server side of the application must
be implemented using ASP.NET Core or ASP.NET framework in C
language...2. Client UI: The client’s application must have a simple and user-friendly
UI.

2.5 Use-case model

The use-case model (see figure 2.3) defines and clarifies functional requirements
from the previous section.

Actors. The application has only one role, that is, the user.

17

2. Analysis

User

EvaluationClient

Read evaluation

rules

Sign in

Sign up

Sign out

Create evaluation

rules

Import evaluation

rules

Update evaluation

rules

Delete evaluation

rules
Create rule groupDelete rule group

Export evaluation

rules

Debug evaluation

rules

<<include>> <<include>> <<include>> <<include>>

<<include>>

<<include>>

<<include>>

<<include>>

<<include>>

Figure 2.3: Use-Case Diagram

UC1: Sign-in. Use-case that enables the user to sign in to the system using
a username and a password.

The main scenario: Classic sign in..1. The user enters a username and a password...2. The system checks the validity of the username and the password and if
the data are valid, authorize the user.

The secondary scenario: First sign in..1. It starts from step 2 of the main scenario, where the system successfully
authenticates the user for the first time...2. The user is directed to the main page of the application with the evalua-
tion rules table.

UC2: Sign-up. Use-case that enables the user to create a new account for
further authentication.

The main scenario: Classic sign up..1. The user enters a username and a password...2. The system checks the validity of the username and the password...3. The user is directed to the sign-in page for further authentication.

18

................................... 2.5. Use-case model

The secondary scenario: Alternative sign up..1. It starts from step 2 of the main scenario, where the system has checked
the validity of the input data...2. The user already exists, and the system warns the user.

UC3: Sign-out. Use-case enables the user to sign out from the account.
After the sign-out process, the user is directed to the sign-in page.

UC4: Read evaluation rules. Use-case enables the user to read evaluation
rules in the table, changing dynamically in accordance with the rule group
type.

UC5: Create evaluation rules. Use-case enables the user to create new
evaluation rules. The evaluation rule type changes depending on the rule
group type. The system will validate all changes and estimate their impact
on the current rule group.

UC6: Import evaluation rules. Use-case enables the user to import eval-
uation rules from the OOXML file with a predefined format. A temporary
rule that points to the new rule group will be added to the current rule
group. The system’s ability to import a rule group depends on the current
rule group. The system validates imported evaluation rules and their impact
on the current rule group.

UC7: Update evaluation rules. Use-case enables the user to change evalu-
ation rules data. The system will detect all changes and disable the saving
option while data are invalid. The rule’s priority can be changed by dragging
and dropping rules in the table.

UC8: Delete evaluation rules. Use-case enables the user to delete evaluation
rules. The system will validate the impact of the deletion on the current rule
group.

UC9: Create a rule group. Use-case enables the user to create a new rule
group. The temporary rule that points to the newly created rule group will
be added to the current rule group. The system will validate the impact of
creation on the current rule group.

UC10: Delete the rule group. Use-case enables the user to delete the rule
group. The user must have a list of all possible rule groups to be deleted.

UC12: Evaluation rules priority. Use-case enables the user to change rules
priority by dragging and dropping rules within table context. The system
will change data automatically depending on the current rule group type.

UC13: Export evaluation rules. Use-case enables the user to export the
rule group as the OOXML file with a predefined format. The user must have
a list of all possible rule groups to be exported.

19

2. Analysis
UC14: Debug evaluation rules. Use-case enables the user to create and
evaluate Service Activity Report.

The main scenario: Debug..1. The user adds faults and components data to be evaluated...2. The system validates the SAR request...3. The system evaluates the request if SAR is valid.

20

Chapter 3
Design and implementation

3.1 Network architecture

Different architectures for designing a network are available. They spec-
ify network’s physical components, operational principles and procedures,
functional organization and configuration and communication protocols. In
the bachelor thesis, two of them have been analyzed: Peer-to-Peer and
Client-Server architectures (see figure 3.1). Though both Client-Server and
Peer-to-Peer approaches have their pros and cons and one is not better than
other, the Client-Server architecture provides us with certain advantages over
the Peer-to-Peer model. That is why it has been chosen for the thesis.

Figure 3.1: Client-Server vs Peer-to-Peer

The Client-Server model offers easier maintenance, security, and adminis-
tration. As all data are stored on servers, they are more secure. Access is
controlled by servers ensuring that only screened clients can use the applica-
tion and change the data. One of the Client-Server model main advantages is
centralization. i.e. all data are gathered in a single location. As a result, the
data are well protected, and any problem occurring in the entire network can
be solved in one place. While in P2P models, updates must be applied and
copied to network’s peers, which requires a lot of work and leads to errors.
Furthermore, the updating data process has become more manageable in the
Client-Server model. It is easier to authorize users of the network by requiring
credentials like the username and the password. Client-Server networks are

21

3. Design and implementation...............................
also highly scalable, i.e. it is possible to expand the network by adding
new nodes or to improve the server-side without any interruptions. Thanks
to the centralization, even when the network is expanded, no issues with
resources arise. Therefore, a small amount of stuff is required for the network
configurations. Thanks to encapsulation it is possible to repair, upgrade, or
replace servers without clients being involved. Encapsulation is the process
by which an object can hide its data and methods without revealing them to
users [45]. Finally, regardless of the platform or the location, each client is
able to sign into the system.

On the other hand, there are some possible disadvantages. Firstly, in the
Client-Server network with frequent simultaneous client requests. The server
gets severely overloaded, which leads to traffic congestion. In P2P models,
however, it is not an issue, because network resources are strictly proportional
to the quantity of peers in the network. However, it is a minor issue for
the project under research because Eaton’s evaluation rules are hardly ever
changed. Secondly, if a critical server error occurs, it will not process the
client’s requests due to its centralized character. Moreover, Client-Server
architecture is short of the robustness of the P2P paradigm. Robustness
refers to a network’s ability to bounce back or continue functioning if one of
the components fails [45]. Once in the Client-Server models a server fails,
the requests fail too. Whereas in P2P networks, if a node fails or abandons
the request, other nodes are not effected and can successfully finish their
operations.

After considering the advantages and disadvantages of the Client-Server
architecture and functional requirements described in the previous section, it
has been decided to use this architecture in the thesis.

3.2 Using technologies

This section describes the technologies used for the application implementa-
tion, their advantages and disadvantages and explains the choices.

3.2.1 Back-end(Server)

Two options have been considered for the back-end, known as the server-side
of the application: ASP.NET Core [46] and ASP.NET [47]. ASP.NET
Core is a brand new, rewritten, and modern replacement of the ASP.NET
Framework. Being a cross-platform framework, it can work on multiple
platforms such as Windows, Linux and macOS, which is not supported by
ASP.NET Framework. ASP.NET Core is open-source, while the ASP.NET
framework is not. Moreover, ASP.NET Core is faster, lighter, more modular,
scalable and designed to work with modern libraries and languages. For
example, Entity Framework Core has better mappings, migrations, and query
performance than the Entity Framework used in ASP.NET Framework. While
both frameworks support WPF andWindows Forms to build modern Windows
client applications, ASP.NET Core is still immature and under development.

22

.................................. 3.2. Using technologies

ASP.NET Core lacks the functionalities present in the ASP.NET framework
so far.

All things considered, both frameworks can be successfully used for building
applications. However, much depends on the goals set for the developer. If
a brand new application is being built and ASP.NET Core provides all the
functionalities needed, it is a more promising option, as it is continuously
improved and updated. Concerning existing applications using some libraries
that ASP.NET Core does not yet support, it is much more reasonable to
continue using ASP.NET Framework. Thus, if there is an existing application
in the ASP.NET framework, there is no need to migrate it to ASP.NET Core.

3.2.2 Front-end(Client)

Two options have been considered for the front-end, known as the client-side
of the application: ReactJs [48] and VueJs [49]. Both frameworks have
got some advantages and drawbacks. ReacJs offers maximum flexibility and
responsiveness. However, due to the complicated setup process, functions,
properties and structure, extensive knowledge is needed to develop an appli-
cation. At the same time, VueJs offers detailed documentation that can easily
be learnt and basic knowledge of HTML and JavaScript is enough to do the
job. Thus, VueJs is easier to use and upgrade an existing application. This
framework occupies much less space and operates much better than others.
Without the whole system being affected, Vue.js offers easier integration of
smaller parts, both in a complex web interface and a single-page application.

Furthermore, the document object model form the basis of ReactJs and
allows the browser-friendly management of documents in HTML, XML or
XHTML formats. Vue.js embraces only standard HTML-based templates.
Due to its scalability and flexible structure ReactJs is much better for large-
scale apps. By contrast, while using VueJs for large-scale apps some develop-
ment issues may occur. React is supported by professional developers who
continuously search for possible improvements by putting in the effort to add
more features. Even though VueJs elaborate design and architecture make it
a leading JavaScript framework, it still has a minimal market share compared
to React.

ReactJs and Vue.js can reach milestones in the development of the web
applications thanks to their considerable flexibility, top speed, and modern
features. However, considering the project’s functional requirements, the first
one has been chosen as more appropriate for the goals to be achieved.

3.2.3 Database

Two options of the database have been considered to be used in the project,
namely PostgreSQL [50] and Microsoft SQL Server [51]. Both are very
popular, but PostgreSQL is cheaper than MSSQL. Organizations with a
tight budget would rather select PostgreSQL’s interface. As one of the first
database systems ever developed, it is often used for the creation of web
databases allowing users to deal with either structured or unstructured data.

23

3. Design and implementation...............................
Being able to handle terabytes of data PostgreSQL is a scalable database
management engine that supports JSON. It has got a wide range of predefined
functions, and several interfaces are available.

However, some minor flaws have been identified. Firstly, the configuration
appears to be somewhat confusing. Moreover, spotty documentation can be
difficult to deal with. Finally, while processing the large bulk of operations or
reading queries, it is not easy to maintain the high speed. contrast, MSSQL
is very fast and stable. Its engine’s ability to track and adjust levels of
performance leads to resource reduction. This database engine works on both
cloud-based and local servers, with the possibility to work simultaneously.
Besides, the latest version allows dynamic data masking, guaranteeing the
access of authorized individuals to sensitive data.

Many organizations can not afford the MSSQL, because the enterprise
pricing is too high. Moreover, MSSQL is over-resource consuming, despite
the performance tuning. Nevertheless, for large organizations with enough
resources that use several Microsoft products, it is the best option.

3.2.4 Summing-up

Following the requirements of the company for which the application has been
developed I had to chose from limited options of back-end, front-end and
database, despite the fact that there far more existing ones. For implementing
the server-side of the application, ASP.NET Core with relational database
MSSQL has been used. The client-side of the application is developing
with ReactJs and Semantic-UI-React [52]. The latter is the framework for
creating responsive web pages using HTML attribute classes. To deal with
a relational database the Oriented Relational Mapping (ORM) has been
used by applying the Entity Framework Core predetermined by the choice
of ASP.NET Core for the server. This technology enables mapping from
Object-Oriented Programming to relational database tables. For requesting
and manipulating the database data, Language Integrated Query (LINQ) is
used.

All technologies used in the current implementation are part of the .NET
Core. As a result, all code on the server-side is written in C#.

3.3 Components

The whole system has a multi-layer architecture and is divided into five
components: REST API, Business logic and Repository, placed on the
server, EvaluationClient, a web page in the browser on the client-side and
EvaluationDb. All components are shown in figure 3.2.

EvaluationDb. As was mentioned in the previous section, the relational
database MSSQL has been chosen, which is accessed by using an objective-
oriented mapping from Entity Framework Core.

24

.....................................3.3. Components

All database tables are generated from entity classes with code first strategy
that works in the following way. Firstly, entity classes with proper annotations
are created and, finally, the framework is left to generate tables.

Persistence. This component represents the application’s data layer using
ORM (Object Relational Mapping) and enables access to the relational
database MSSQL. The technology used in this component is ASP.NET Core
with Entity Framework Core.

Business logic. This component contains all the business logic of the appli-
cation. It is dependent on the Persistence component, which provides access
to the database.

REST API. This component represents the presentation layer of the server
implemented as a simple REST API with ASP.NET Core framework and
relies on the use of the Service component.

EvaluationClient. This component contains UI implemented with ReactJs
in collaboration with Semantic-UI-React. It represents the client-side of the
application and depends on the communication with the server using REST
API controllers defined in the Controller component.

EvaluationAPI

EvaluationClient

EvaluationDb

Business logic Persistence

REST API

AuthRepository

EvaluationRuleRepository

EvaluationRuleService

EvaluationService

EvaluationRuleController EvaluationController AuthController

Web Browser

MSSQL

Figure 3.2: Component Diagram

25

3. Design and implementation...............................
3.4 Development environment

The vast majority of server-side code is written in programming language
C# using ASP.NET Core. Visual Studio Enterprise Edition [53] has been
chosen as a primary IDE for the server-side of the application. For working
with database, Microsoft SQL Server Management Studio [54] has been used.
As far as the client-side of the application is written in JavaScript language
using ReactJs framework, it has been decided to use Intellij Idea Webstorm
[55] as IDE.

3.5 Project structure

The first task of the implementation is to create a project with a readable
structure. The latter is based on the design of the components defined in the
previous chapter, i. e. each component has its folder or project..Repository - the data/persistence layer.. Service - business logic..Controller - REST API controllers.. EvaluationClient - client-side of the application.

Finally, models and data transfer objects for REST API communication are
added.

3.6 Configuration management

For configuration management, Azure DevOps [56] is used, which provides
a Version Control System (VCS). One programmer has written the project,
and there is no need to follow any rules while working with VCS, but the
situation can change in the future, and Azure DevOps can easily handle this.

public class MyClass {
private Dependency dependency_ ;

public MyClass (Dependency
dependency) {

dependency_ = dependency ;
}

}

Figure 3.3: Use of the dependency injection

26

................................. 3.7. Dependency injection

3.7 Dependency injection

Dependency injection is a pattern that enables the inversion of control between
class and his dependencies. As a dependency, any object needed to the class
for its operation is considered.

void ConfigurationService (IServiceCollection s) {
s.AddScope <Dependency >();

}

Figure 3.4: Configuration of the dependency injection

While creating a class using dependency injection, the dependencies are
defined in the class constructor. After instances of dependency are specified.
All dependencies are defined as parameters of the constructor, and then de-
pendency injection injects required instances while creating the class instance.
The use of this pattern is shown in figure 3.3 and configuration example is
shown in figure 3.4.

Dependency injection is used almost everywhere in the project, and .NET
Core supports it perfectly.

3.8 Layers realization

The architecture (see figure 3.5) and design described above have a goal
to make the system easy extendable, and testable. The following section
describes the steps of the implementation of different layers, patterns, and
techniques used.

EvaluationAPI

EvaluationClient
EvaluationDb

ASP.NET core

Rest Controllers

REST
API

ASP.NET core identity

EvaluationRule
Repository

Auth
Repository

EvaluationRule
Service

Evaluation
Service

Data
layer Persistence

Figure 3.5: Architecture

Data/Persistence layer. The data layer is located in the "Repository" folder
of the project and enables access to the database named as EvaluationDb.
The only layer that has access to the database by using Entity Framework
Core.

27

3. Design and implementation...............................
For every module of the application, the NameRepository is created, where

the Name refers to the specific part of the application. For example, the
evaluation rules database maps to EvaluationRuleRepository. For every
repository, the data layer dependency injection is configured.

Business logic layer. The business logic layer is located in the "Service"
folder and aims to handle all business logic of the application. Every REST
API controller has its business logic class, NameService, where the Name is
the controller’s name.

REST API layer. REST API layer is located in the "Controller" folder and
was created as ASP.NET Core Web API Controllers to define routings to be
called to process the operations. To every Controller, the appropriate Service
class is injected using dependency injection, which carries all business logic.

Presentation layer. A presentation layer is a client web page application
named as EvaluationClient that communicates with the server using REST
API.

3.9 Authentication & Authorization

This section describes the solution to the authentication and authorization
problem in the application using the default ASP.NET Core Identity frame-
work [57] with the Bearer access token technology [58].

The Bearer token is a string acting as the authentication of an API request,
which is sent in the HTTP header as "Authorization" parameter. This string
has no meaning to clients using it and no predetermined length. Requiring
no cryptographic signing, Bearer tokens prove to be one of the simplest ways
of making API requests. Due to the fact that a request includes a token as
plaintext which once intercepted can be used by anyone, it must use HTTPS
connection. The Bearer token offers an obvious advantage for both clients
and servers as it does not require complex libraries to make requests and is
easy to use.

The fact that there is nothing preventing other applications from using
the Bearer token is a distinct disadvantage. Despite this common criticism,
most providers still use the Bearer token anyway. Due to the fact that under
normal circumstances, when application is properly protected, i.e. the access
token is under its control, this is not an issue. However, technically the Bearer
token is less secure.

3.10 EvaluationClient

This section deals with different evaluation rule types in the client application,
the coherence and sequencing between different rule group types.

Figure 3.6 shows the initial state of the application. In this state the user
can define root evaluation rules. There is a six-icon toolbar above the table

28

...................................3.10. EvaluationClient

Figure 3.6: Root Evaluation Rule Group

of rules that enables the user to initialize new rule group, enter edit mode,
refresh rules, delete particular rule group, import or export rules. Moreover,
next to the toolbar goes overview of the current state of the application. Its
use-case is vivid in figure 3.9, where the sequencing and sub-sequencing of
the rule groups are shown.

Figure 3.7: Single/Non-Complex Evaluation Rule Group

The priority of rules can be changed by using the "Edit" icon in the toolbar
by dragging and dropping rules in the table. The "Action" column in the
table contains "Edit" and "Delete" icons for every rule, but for rule with
Result Type "Evaluate" "Open" icon is added. By clicking the latter the user
is directed to the rule group with the same name as rule’s Result Key, i.e. to
the table with Single/Non-Complex Evaluation Rules shown in figure 3.7.

Figure 3.8: Multiple/Complex Evaluation Rule Group

If by clicking "Open" button, the application detects no rule in opened rule
group it offers to initialize it in two possible ways: simply initialize an empty
rule or import rule(s) from an OOXML file. After successful initialization the
application directs the user to the newly created rule group. If evaluation
sequence requires complex rules, the user can create a Complex Evaluation

29

3. Design and implementation...............................
Rule Group shown in figure 3.8. This type of rule group represents the set of
complex rules where each rule can be opened using "Open" button for further
definition process. Figure 3.9 shows how each complex rule is represented in
the application.

Figure 3.9: Complex Evaluation Rule Example

The complex rule is the set of non-complex rules that together define complex
expression using Prefix and Suffix. The application automatically generates
right Suffix so that the user just needs to choose appropriate Operand/Prefix.

Figure 3.10: Service Activity Report Evaluation

After defining the evaluation rules and their sequence and interdependence the
user is able to create and evaluate SAR request presented on the "Evaluation"
page shown in figure 3.10, i.e. simulate vehicle components and faults to
check the rules correctness.

30

Conclusion

The present thesis has set as its aim the analysis of the existing part of
the application(IntelliConnect) for evaluation of vehicle components faults
and the design of an improved version with UI. In order to do so, it was
necessary to explore what drawbacks exist, what functional and non-functional
requirements are, and define architecture and technologies to be used.

Having analyzed the existing solution several drawbacks have been detected:. The evaluation rules are modifying in OOXML files. The database is
changed using a simple console application that enables just to import
evaluation rules from an OOXML file.. The priority of evaluation rules is changing manually. In case that there
is a lot of rules this process can take a while.. There is no option to automatically validate the correctness of the
evaluation rules.. There is no UI.

The new implementation that has been created within the project makes it
possible to eliminate the drawbacks mentioned above. The current process of
the OOXML table manual transfer has been substituted for client application
with a user interface that communicates with the server using public API.
Evaluation rule definition has been simplified by adding a website tool for their
modifications and automated correctness verification. Moreover, a dynamic
view of fault codes has been developed. Now it is possible to simulate a
group of fault codes and calculate a given severity. The old option to import
rules in OOXML format has been saved and advanced. Additionally, the
possibility to export evaluation rules in the same format has been added.
Finally, simulation of fault codes to check the correctness of evaluation rules
logic has been developed.

Even though there is still some possibility to improve the implemented
solution, the results of the work have been done in the right direction to a
sustainable and scalable system that the company Eaton can use to optimize
and automate the process of modifying and evaluating rules.

31

3. Design and implementation...............................
From an architectural perspective, it is a system consisting of three layers:

presentation layer, business logic and data layer. The layered architecture
has been followed to achieve sustainability, scalability and testability of the
application.

The application website page is designed to be used by technical staff.
Intuitive and simple operation together with a clear interface ensures easy
use of the system. The client application aims to enable technical staff to
manage, evaluate, and validate rules, thus optimize and automate all manual
processes. In terms of functionality, the client application meets the specified
requirements and is completely usable.

The results obtained have led us to think about some possible future
improvements. Realizing that the biggest shortcoming of this work is the
absence of automated testing, which is beyond this project’s scope, we still
believe that its development would greatly contribute to the application’s
reliability and sustainability. Another possibility for further development is
to upgrade faults evaluation outcomes. This can be achieved by improving
the present results of the evaluation process, i.e. action plan key may be
provided with a detailed action plan. One of the other future enhancements is
adding the admin’s role, who would manage user’s roles and perform advanced
operations on rule groups, including deleting all rule groups and migration of
original rules to the new database.

32

Bibliography

[1] Steven Parissien. The life of the automobile: the complete history of the
motor car. Macmillan, 2014.

[2] Life in Roztoky. https://www.eaton.com/cz/en-gb/company/
careers/life-at-eaton/life-in-roztoky.html.

[3] Softing. https://company.softing.com/.

[4] Markus Steffelbauer. Security challenges in diagnostics 4.0.

[5] Wabco. https://www.transics.com/.

[6] TX-TRAILERPULSE. https://www.transics.com/product/
tx-trailerpulse/.

[7] Eaton IntelliConnect™ - remote diagnostics. https://www.eaton.com/
Eaton/ProductsServices/Vehicle/intelliconnect/index.htm.

[8] IntelliConnect. https://www.eaton.com/Eaton/ProductsServices/
Vehicle/tools/IntelliConnect/index.htm.

[9] Christof Ebert and Capers Jones. Embedded software: Facts, figures,
and future. Computer, 42(4):42–52, 2009.

[10] Karl Henrik Johansson, Martin Törngren, and Lars Nielsen. Vehicle
applications of controller area network. In Handbook of networked and
embedded control systems, pages 741–765. Springer, 2005.

[11] N. Navet. Controller area network [automotive applications]. IEEE
Potentials, 17(4):12–14, 1998.

[12] Steve Corrigan HPL. Introduction to the controller area network (can).
Application Report SLOA101, pages 1–17, 2002.

[13] Keith Pazul. Controller area network (can) basics. Microchip Technology
Inc, 1, 1999.

[14] Alison Quine, January 2008. Carrier Sense Multiple Access Col-
lision Detect (CSMA/CD) Explained. https://www.itprc.com/
carrier-sense-multiple-access-collision-detect-csmacd-explained/.

33

https://www.eaton.com/cz/en-gb/company/careers/life-at-eaton/life-in-roztoky.html
https://www.eaton.com/cz/en-gb/company/careers/life-at-eaton/life-in-roztoky.html
https://company.softing.com/
https://www.transics.com/
https://www.transics.com/product/tx-trailerpulse/
https://www.transics.com/product/tx-trailerpulse/
https://www.eaton.com/Eaton/ProductsServices/Vehicle/intelliconnect/index.htm
https://www.eaton.com/Eaton/ProductsServices/Vehicle/intelliconnect/index.htm
https://www.eaton.com/Eaton/ProductsServices/Vehicle/tools/IntelliConnect/index.htm
https://www.eaton.com/Eaton/ProductsServices/Vehicle/tools/IntelliConnect/index.htm
https://www.itprc.com/carrier-sense-multiple-access-collision-detect-csmacd-explained/
https://www.itprc.com/carrier-sense-multiple-access-collision-detect-csmacd-explained/

3. Design and implementation...............................
[15] H. Chen and J. Tian. Research on the controller area network. In 2009

International Conference on Networking and Digital Society, volume 2,
pages 251–254, 2009.

[16] Peter Bagschik. An introduction to can. Braunschweig, Alemanha.
Checked in: http://www. ime-actia. com/can_intro. htm. Last access,
11:28, 2001.

[17] www.sae.org, homepage of the organization SAE International.

[18] Konrad Etschberger, Roman Hofmann, Joachim Stolberg, Christian
Schlegel, and Stefan Weiher. Controller area network: basics, protocols,
chips and applications. IXXAT Automation, 2001.

[19] www.can-cia.de, homepage of the organization CAN in Automation
(CiA).

[20] www.rockwellautomation.com, homepage of the organization Rockwell
Automation.

[21] www.kvaser.com, homepage of the organization Kvaser.

[22] Controller area network. can history. https:
//technodocbox.com/Computer_Networking/
70891460-Controller-area-network-can-history.html. (Accessed
on 11/28/2020).

[23] Jaykrishna Joshi, Dattatray Bade, and Sanjay Hundiwale. Car automa-
tion using controller area network.

[24] Uwe Kiencke, Siegfried Dais, and Martin Litschel. Automotive serial
controller area network. SAE transactions, pages 823–828, 1986.

[25] CAN Specification. Bosch. Robert Bosch GmbH, Postfach, 50, 1991.

[26] Joaquim Ferreira and José Fonseca. Controller area network. Industrial
Electronics Handbook, Industrial Communication Systems, 2011.

[27] Dan Noonen, Stuart Siegel, and Pat Maloney. Devicenettm application
protocol. 1994.

[28] Olaf Pfeiffer, Andrew Ayre, and Christian Keydel. Embedded networking
with CAN and CANopen. Copperhill Media, 2008.

[29] Yelizaveta Burakova, Bill Hass, Leif Millar, and André Weimerskirch.
Truck hacking: An experimental analysis of the SAE j1939 standard. In
10th USENIX Workshop on Offensive Technologies (WOOT 16), Austin,
TX, August 2016. USENIX Association.

[30] Wilfried Voss. SAE J1939, Serial Control and Communications Vehicle
Network. esd electronics, Inc. http://www.esd-electronics-usa.com/
online-seminars.html.

34

www.sae.org
www.can-cia.de
www.rockwellautomation.com
www.kvaser.com
https://technodocbox.com/Computer_Networking/70891460-Controller-area-network-can-history.html
https://technodocbox.com/Computer_Networking/70891460-Controller-area-network-can-history.html
https://technodocbox.com/Computer_Networking/70891460-Controller-area-network-can-history.html
http://www.esd-electronics-usa.com/online-seminars.html
http://www.esd-electronics-usa.com/online-seminars.html

...................................3.10. EvaluationClient
[31] PGNs and SPNs look up table. https://www.isobus.net/isobus/

pGNAndSPN.

[32] Souce Addresses look up table. https://www.isobus.net/isobus/
sourceAddress.

[33] Yang Jiansen, Guo Konghui, Ding Haitao, Zhang Jianwei, and Xiang Bin.
The application of sae j1939 protocol in automobile smart and integrated
control system. In 2010 International Conference on Computer, Mecha-
tronics, Control and Electronic Engineering, volume 3, pages 412–415,
2010.

[34] Xuan Shao, Xingwu Kang, Xuping Wang, and Xiaojing Yuan. Design of
special vehicle condition monitoring system based on j1939. In Journal of
Physics: Conference Series, volume 1549, page 032092. IOP Publishing,
2020.

[35] Suspect Parameter Numbers (SPN) on J1939 data link.
https://lnx.numeralkod.com/wordpress/docs/errors-index/
suspect-parameter-numbers-spn/.

[36] Failure Mode Identifier (FMI) Codes on J1939 data link.
https://lnx.numeralkod.com/wordpress/docs/errors-index/
failure-mode-identifier-fmi-codes-on-j1939-data-link/.

[37] Eaton Transmission Families. https://www.eaton.com/Eaton/
ProductsServices/Vehicle/Transmissions/index.htm.

[38] Eaton Endurant automated transmission. https://www.eatoncummins.
com/us/en-us/catalog/transmissions/endurant.html.

[39] Eaton Fuller Advantage automated manual transmission. https:
//www.eatoncummins.com/us/en-us/catalog/transmissions/
fuller-advantage-automated.html.

[40] Eaton UltraShift PLUS automated manual transmission. https:
//www.eatoncummins.com/us/en-us/catalog/transmissions/
ultrashift-plus-mhp.html.

[41] Eaton Procision https://www.eaton.com/Eaton/ProductsServices/
Vehicle/Expertise/expert-articles/procision-delivers/index.
htm.

[42] Eaton AutoShift https://www.eaton.com/Eaton/ProductsServices/
Vehicle/Transmissions/heavy-duty-automated/autoshift/index.
htm.

[43] IntelliConnect: IoT innovation at every turn. https://www.eaton.
com/us/en-us/company/news-insights/internet-of-things/
intelliconnect.html.

35

https://www.isobus.net/isobus/pGNAndSPN
https://www.isobus.net/isobus/pGNAndSPN
https://www.isobus.net/isobus/sourceAddress
https://www.isobus.net/isobus/sourceAddress
https://lnx.numeralkod.com/wordpress/docs/errors-index/suspect-parameter-numbers-spn/
https://lnx.numeralkod.com/wordpress/docs/errors-index/suspect-parameter-numbers-spn/
https://lnx.numeralkod.com/wordpress/docs/errors-index/failure-mode-identifier-fmi-codes-on-j1939-data-link/
https://lnx.numeralkod.com/wordpress/docs/errors-index/failure-mode-identifier-fmi-codes-on-j1939-data-link/
https://www.eaton.com/Eaton/ProductsServices/Vehicle/Transmissions/index.htm
https://www.eaton.com/Eaton/ProductsServices/Vehicle/Transmissions/index.htm
https://www.eatoncummins.com/us/en-us/catalog/transmissions/endurant.html
https://www.eatoncummins.com/us/en-us/catalog/transmissions/endurant.html
https://www.eatoncummins.com/us/en-us/catalog/transmissions/fuller-advantage-automated.html
https://www.eatoncummins.com/us/en-us/catalog/transmissions/fuller-advantage-automated.html
https://www.eatoncummins.com/us/en-us/catalog/transmissions/fuller-advantage-automated.html
https://www.eatoncummins.com/us/en-us/catalog/transmissions/ultrashift-plus-mhp.html
https://www.eatoncummins.com/us/en-us/catalog/transmissions/ultrashift-plus-mhp.html
https://www.eatoncummins.com/us/en-us/catalog/transmissions/ultrashift-plus-mhp.html
https://www.eaton.com/Eaton/ProductsServices/Vehicle/Expertise/expert-articles/procision-delivers/index.htm
https://www.eaton.com/Eaton/ProductsServices/Vehicle/Expertise/expert-articles/procision-delivers/index.htm
https://www.eaton.com/Eaton/ProductsServices/Vehicle/Expertise/expert-articles/procision-delivers/index.htm
https://www.eaton.com/Eaton/ProductsServices/Vehicle/Transmissions/heavy-duty-automated/autoshift/index.htm
https://www.eaton.com/Eaton/ProductsServices/Vehicle/Transmissions/heavy-duty-automated/autoshift/index.htm
https://www.eaton.com/Eaton/ProductsServices/Vehicle/Transmissions/heavy-duty-automated/autoshift/index.htm
https://www.eaton.com/us/en-us/company/news-insights/internet-of-things/intelliconnect.html
https://www.eaton.com/us/en-us/company/news-insights/internet-of-things/intelliconnect.html
https://www.eaton.com/us/en-us/company/news-insights/internet-of-things/intelliconnect.html

3. Design and implementation...............................
[44] Eaton IntelliConnect portal site. https://eatonintelliconnect.com/.

[45] Peer-to-Peer and Client-Queue-Client Architecture
http://www.exforsys.com/tutorials/client-server/
peer-to-peer-and-client-queue-client-architecture.html.

[46] ASP.NET Core https://dotnet.microsoft.com/learn/aspnet/
what-is-aspnet-core.

[47] ASP.NET https://dotnet.microsoft.com/apps/aspnet.

[48] ReactJs https://reactjs.org/.

[49] VueJs https://vuejs.org/.

[50] PostgreSQL https://www.postgresql.org/.

[51] Microsoft SQL Server https://www.microsoft.com/en-us/
sql-server/sql-server-2019.

[52] Semantic-UI-React https://react.semantic-ui.com/.

[53] Visual Studio Enterprise Edition https://visualstudio.microsoft.
com/vs/enterprise/.

[54] Microsoft SQL Server Management Studio
https://docs.microsoft.com/en-us/sql/ssms/
download-sql-server-management-studio-ssms?view=
sql-server-ver15.

[55] Intellij Idea Webstorm https://www.jetbrains.com/webstorm/.

[56] Azure DevOps https://azure.microsoft.com/en-us/services/
devops/.

[57] ASP.NET Core Identity https://docs.microsoft.com/en-us/
aspnet/core/security/authentication/identity?view=
aspnetcore-5.0&tabs=visual-studio.

[58] Bearer Token Authentication in ASP.NET
Core https://devblogs.microsoft.com/aspnet/
bearer-token-authentication-in-asp-net-core/.

36

https://eatonintelliconnect.com/
http://www.exforsys.com/tutorials/client-server/peer-to-peer-and-client-queue-client-architecture.html
http://www.exforsys.com/tutorials/client-server/peer-to-peer-and-client-queue-client-architecture.html
https://dotnet.microsoft.com/learn/aspnet/what-is-aspnet-core
https://dotnet.microsoft.com/learn/aspnet/what-is-aspnet-core
https://dotnet.microsoft.com/apps/aspnet
https://reactjs.org/
https://vuejs.org/
https://www.postgresql.org/
https://www.microsoft.com/en-us/sql-server/sql-server-2019
https://www.microsoft.com/en-us/sql-server/sql-server-2019
https://react.semantic-ui.com/
https://visualstudio.microsoft.com/vs/enterprise/
https://visualstudio.microsoft.com/vs/enterprise/
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/ssms/download-sql-server-management-studio-ssms?view=sql-server-ver15
https://www.jetbrains.com/webstorm/
https://azure.microsoft.com/en-us/services/devops/
https://azure.microsoft.com/en-us/services/devops/
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity?view=aspnetcore-5.0&tabs=visual-studio
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity?view=aspnetcore-5.0&tabs=visual-studio
https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity?view=aspnetcore-5.0&tabs=visual-studio
https://devblogs.microsoft.com/aspnet/bearer-token-authentication-in-asp-net-core/
https://devblogs.microsoft.com/aspnet/bearer-token-authentication-in-asp-net-core/

Appendix A
Acronyms

API. Application Programming Interface

CAN. Control Area Network

CSMA/CD. Carrier Sense Multiple Access with Collision Detection

ECU. Electronic Control Unit

EEIC. Eaton European Innovation Center in Prague

EKMS. Eaton Knowledge Management System

HTML. HyperText Markup Language

HTTP. Hypertext Transfer Protocol

HTTPS. Hypertext Transfer Protocol Secure

ISO. International Standard Organisation

JSON. JavaScript Object Notation

LAN. Local Area Network

LINQ. Language Integrated Query

MSSQL. Microsoft SQL Server

OOXML. Office Open XML

ORM. Object–Relational Mapping

OSI. Open Systems Interconnection

P2P. Peer-to-Peer

REST. Representational State Transfer

SAE. Society of Automotive Engineers

37

A. Acronyms
SAR. Service Activity Report

SQL. Structured Query Language

UI. User Interface

VCS. Version Control System

WPF. Windows Presentation Foundation

XHTML. Extensible HyperText Markup Language

XML. Extensible Markup Language

38

Appendix B
Contents of attached CD

The contents of CD is organized into the following files and folders. evaluationapi.zip - ASP.NET Core server-side of the application.. evaluationclient.zip - ReactJs client-side of the application.. bachelor_thesis.pdf - bachelor thesis in pdf format.

39

	Introduction
	Preliminaries
	CAN - Control Area Network
	Description
	Protocol extensions
	A brief history

	Standardized vehicle diagnostics
	Diagnostic message
	Diagnostic Trouble Code

	Vehicle Diagnostics by Eaton
	Eaton IntelliConnect™

	Analysis
	AS-IS vs TO-BE State
	Basic definitions of the analysis
	Service Activity Report
	Evaluation rule
	Rule group

	A typical cycle of using the application
	Requirements
	Functional requirements
	Non-functional requirements

	Use-case model

	Design and implementation
	Network architecture
	Using technologies
	Back-end(Server)
	Front-end(Client)
	Database
	Summing-up

	Components
	Development environment
	Project structure
	Configuration management
	Dependency injection
	Layers realization
	Authentication & Authorization
	EvaluationClient

	Conclusion
	Bibliography
	Acronyms
	Contents of attached CD

