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Abstrakt

Tato práce se zabývá analýzou potřeb pro automatizovanou proceduru k
určeńı měřeńı luminosity ATLAS (CERN) pomoćı zař́ızeńı TPX a TPX3.
Práce se také zabývá návrhem a implementaćı softwaru, který čte TPX a
TPX3 data, odstraňuje závadné pixely a vytvář́ı r̊uzné výkonnostńı grafy
týkaj́ıćı se měřeńı luminosity. Součást́ı práce je také návrh a implementace
webového rozhrańı, které zpř́ıstupńı výsledky.

Kĺıčová slova zpracováńı dat, analýza dat, Timepix, Timepix3, luminosita,
ATLAS

vii





Abstract

This thesis deals with an analysis of the needs for an automatic procedure
to determine the ATLAS (CERN) luminosity measurements using TPX and
TPX3 devices. The thesis also deals with design and implementation of soft-
ware that reads the TPX and TPX3 data, performs noisy pixel removal, and
produces various performance plots regarding luminosity measurements. Fur-
thermore, design and implementation of a web interface, which makes the
resulting distributions available, is part of this thesis.

Keywords data processing, data analysis, Timepix, Timepix3, luminosity,
ATLAS
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Introduction

As particle physics is moving forward, particle accelerators have to operate
on higher energy levels in order to observe rare high-energy interactions. To
detect more of the rare events, data-taking has to be improved. New detectors,
sensors, and chips are being developed, and the old ones are being improved.
Such detectors are Timepix (TPX) [1, 2] and Timepix3 (TPX3) [3] developed
as part of the Medipix Collaborations.

These devices were installed in A Toroidal LHC Apparatus (ATLAS) [4]
cavern at the European Organization for Nuclear Research (CERN). They take
data to measure and study the composition of the radiation field, induced ra-
dioactivity of surrounding material, particle and dose rates at different places
in the ATLAS cavern, as well as the luminosity delivered by the Large Hadron
Collider (LHC).

I have been working with these devices for about three years, and my work
focuses on luminosity measurements. This work started with my bachelor’s
thesis [5], and continued with a CERN Summer Studentship [6]. During that
time, various software was developed. Most of the software were single-use ap-
plications developed to produce distributions of physical parameters. These
applications were usually created by copying one of the already existing appli-
cations and modifying it to suit the needs. However, there were some applica-
tions which were needed to be used repeatedly. As the existing software was
developed by physicists with no special programming skills, its maintainability
and performance were rather poor.

This thesis aims to replace all the previous software by a single application,
which is easy to maintain and is high in performance. The goal is also to make
the application highly scalable and configurable, so it can be easily extended
to provide new functionality, and various aspects of its functionality can be
changed without a need to edit its code.
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Chapter 1
Context overview

1.1 Devices

The purpose of this chapter is to provide an overview of the physical structure
of the devices, their functionality, and the physics behind. The chapter is
based on and combines information from [1], [7], [3], [8], and [9].

1.1.1 Timepix

Figure 1.1: Schematics of the TPX device layout. [7, Figure 1(a)]

Sixteen two-layer TPX devices were installed in ATLAS cavern during the
second run of LHC (Run-2) which took place from the 3rd of June 2015 [10, 11]
until the 3rd of December 2018 [10, 12]. Each of the sixteen TPX devices
consists of two hybrid silicon pixel sensors stacked facing each other. In be-
tween the sensors, a set of thermal neutron and fast neutron converters is
placed. Each of the silicon sensors has a matrix of 256 × 256 pixels of size

3



1. Context overview

55 µm× 55 µm. One sensor has a thickness of 300 µm and the other of 500 µm.
The schematics of the device is shown in Figure 1.1. The thinner sensor is
referred to as layer-1 and the thicker one as layer-2.

The area of the sensors is divided into four regions defined by the posi-
tion of the neutron converters. One region is without any neutron converter.
Two regions are covered by a 1.2 mm thick layer of polyethylene (PE), and
one of them (referred to as PE+Al) has an 80 µm thick aluminum filter in-
serted below the PE layer. The last region is covered by a 1.6± 0.3 mg/cm2

(i.e. 6.1± 1.1 µm) thick lithium-6 fluoride (6LiF) foil with the 80 µm thick
aluminum filter over it. The layout of the converters is shown in Figure 1.2.

Figure 1.2: Schematics of converter layout in a TPX device. [7, Figure 1(b)]

When ionizing radiation interacts with the active sensor layer, electrons are
displaced from atoms. The displaced electrons and the newly created holes
are carriers of free charge. These carriers drift in the applied electric field
towards the pixel electrodes, where the carriers are collected. During the drift
and the collection of the free charge carriers, an electric current is induced at
the electrodes of the corresponding pixel. The induced current is observed as
an analog signal. The signal is amplified and compared to a global threshold,
which is equalized for each pixel independently. If the voltage output signal
crosses the threshold, a pulse with a width corresponding to duration when
the output voltage remains over the threshold is sent into the logic circuits.
The pulse is evaluated in different ways depending on the mode of operation
and the result is stored in a 14-bit counter. Each pixel of each sensor can
operate independently of each other in one of the following three modes:

• Counting mode — Every pulse increments the counter by one. The
width of the pulse is ignored.

• Time-over-threshold (ToT) — The counter starts continuously incre-
menting with the start of the pulse and it stops increasing with the end
of the pulse.

• Time-of-arrival (ToA) — From the moment the pulse starts, the counter
is incremented until a global shutter signal is received.

4



1.1. Devices

When the global shutter signal is activated, the data acquisition in the whole
chip stops and the data from the counters are read out. This effectively
groups the data into frames. The period when the chip acquires data is called
acquisition time and the period between two frames when the chip does not
collect data is called dead-time. The average dead-time of TPX devices is
about 90–100 ms [6].

The sixteen TPX devices are spread across the ATLAS cavern. As their
locations differ, they are exposed to different conditions and therefore they
use different configurations. The devices are labeled as TPX01 to TPX16 and
they are being collectively referred to as TPX Network. Their locations are
shown in Figure 1.3 and they are precisely described in Table 1.1. Twelve of
the sixteen devices are installed in such a way that the sensor surfaces are
perpendicular to the beam axis. The exceptions are devices TPX08, TPX09,
TPX15, and TPX16. The devices TPX08 and TPX09 are installed horizon-
tally, and the devices TPX15 and TPX16 are installed vertically parallel to
the beam axis. [13]

Figure 1.3: Schematics of locations of the TPX devices in the ATLAS cavern.
The devices TPX01 to TPX16 are indicated as T1 to T16. [14, Figure 1]

Twelve of the sixteen devices are installed directly in the ATLAS detector.
Devices TPX09 and TPX10 are installed on the shielding of the beam pipe.
The device TPX15 is installed on the south wall of the ATLAS cavern, dividing
the hall UX15 hosting the ATLAS detector from a neighboring service hall
USA15. Lastly, the device TPX16 is installed in the service hall USA15.

To make the data consistent, there is a constraint on the setting of the
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1. Context overview

TPX devices in the ATLAS cavern. All pixels in a single TPX device are
set in the same mode. To make things simpler, it is said that a device is
set in some mode instead of that pixels of a device are set in some mode.
Pixels of different devices are set to different modes to enable us collect more
types of data. Twelve of the sixteen devices are set into the ToT mode, i.e.
they have all the pixels set into the ToT mode. Devices in ToT mode usually
use acquisition times of tenths of a second. Devices TPX02 and TPX12 are
set into the hit counting mode. They use acquisition times of one second.
Because of this, their frames are purposefully overexposed. This enables to
count the hits with much higher precision as the ratio of dead time to active
time is minimized. Finally, the devices TPX03 and TPX13 are set into the
ToA mode. They use acquisition times of fractions of a millisecond. The same
acquisition times are used also by TPX01 and TPX11 which are in the ToT
mode. [13]

device X [mm] Y [mm] Z [mm] ρ [mm] R [mm]
TPX01 670 880 3540 1106 3709
TPX02 −1100 180 3540 1115 3711
TPX03 150 −1130 3540 1140 3719
TPX04 −3580 970 2830 3709 4665
TPX05 1320 −494 7830 1409 7956
TPX06 2370 −1030 7830 2584 8245
TPX07 3300 −1590 7830 3663 8644
TPX08 −6140 0 7220 6140 9478
TPX09 0 1560 15390 1560 15469
TPX10 230 440 18859 496 18857
TPX11 660 900 −3540 1116 3712
TPX12 −930 670 −3540 1146 3721
TPX13 90 −1100 −3540 1104 3708
TPX14 −3580 970 −2830 3709 4665
TPX15 −16690 50 5020 16690 17429
TPX16 −18900 50 5020 18900 19555

Table 1.1: Overview of locations of the TPX devices in the ATLAS cavern.
All coordinates are relative to the interaction point with an uncertainty of
10 mm. The X-axis is perpendicular to the beam axis in the horizontal plane.
The Y-axis is perpendicular to the beam axis in the vertical plane. The Z-axis
is equivalent to the beam axis. The ρ is the distance to the beam axis. The
R is the overall distance to the interaction point. [15]

As the devices are exposed to a harsh environment, they sometimes stop
working and need to be replaced or fixed. There are only six devices that have
worked for the whole time and these are TPX02, TPX05, TPX06, TPX07,
TPX12, and TPX14. The device TPX10 has never worked as its cables got
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1.1. Devices

damaged during the assembly of nearby detectors and the device’s position
did not allow for its repair. The other detectors have experienced outages in
their functionality or have been replaced. The device TPX04 was replaced by
a pair of TPX3 devices in 2018.

1.1.2 Timepix3

A TPX3 device was developed as the successor of the TPX device. A sum-
mary of the differences between TPX and TPX3 is in Table A.1. Four TPX3
devices were installed in ATLAS cavern in January 2018 during the 2017/2018
extended year-end technical stop in addition to the TPX devices which were
already there. The four devices were installed in two pairs. The devices in-
stalled in a pair are stacked facing each other. Each of the devices has a
500 µm thick sensor with matrix of 256× 256 pixels of size 55 µm× 55 µm.

An analog signal from pixel is amplified, compensated for current leakage,
and compared to a global threshold, which is equalized for each pixel indepen-
dently. If the signal crosses the threshold, a pulse with a width corresponding
to duration when the output voltage remains over the threshold is sent into the
logic circuits. The pulse is evaluated using two in different ways depending on
the mode of operation and the results are stored in two different counters, one
14-bit counter and one 10-bit counter. Each pixel can operate independently
of each other in one of the following three modes:

• ToA/ToT — The rising edge of the pulse starts a 640 MHz clock. The
clocks is stopped by the rising edge of a 40 MHz clock. The ToT is
measured from this moment on. At the same time, the ToA is measured.
The ToT is stored in the 10-bit counter and the ToA is stored in the
14-bit counter.

• Only ToA — Same as the ToA/ToT mode, but only the ToA is measured.

• Event counting — Every pulse increments the 10-bit counter by one.
The ToT is measured the same way as in the ToA/ToT mode, but it
added to the 14-bit counter where the integrated ToT is stored.

The chip has two different readout modes. The first mode is called a
data-driven mode. In this mode, the data are sent off the chip as fast as pos-
sible without any external command. When a pixel contains data, it sends a
request signal to be read out. The data are shifted into a buffer which is shared
by eight pixels. The buffer has storage capacity for data from two pixels. From
there, the data are read out by communication done using an asynchronous
2-phase handshake protocol. The dead-time for each pixel is about 475 ns and
maximum data rate the device is able to read out is 40 Mhits/s cm2. The sec-
ond mode is called a sequential readout mode. In this mode, data stays in the
pixel counters until an external readout command is received. Any number of
columns can be read out in parallel according to the command.
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1. Context overview

The TPX3 pairs are labeled TPX3 4 and TPX3 9. In each pair, the device
closer to the interaction point has suffix A and the other one has suffix B.
The devices are also often referred to by the first part of their chip ID, they
are shown in Table 1.2.

The pair TPX3 9 is installed on the eastern wall (A-side) of the ATLAS
cavern next to the shielding of the beam pipe and the pair TPX3 4 is located
in the Central Barrel of ATLAS where it has replaced the TPX04 device. The
locations are shown in Figure 1.4 and they are precisely described in Table 1.2.

Figure 1.4: Schematics of locations of the TPX3 devices in the ATLAS cavern.
The green spot is the pair TPX3 4A and TPX3 4B, and the red spot is the
pair TPX3 9A and TPX3 9B. [8, Figure 4]

device chip ID X [mm] Y [mm] Z [mm] ρ [mm] R [mm]
TPX3 4A J04-W0036 −3580 970 2830 3709 4665
TPX3 4B I04-W0036 −3580 970 2830 3709 4665
TPX3 9A I03-W0036 4000 3400 22900 5250 23494
TPX3 9B H03-W0036 4000 3400 22900 5250 23494

Table 1.2: Overview of locations of the TPX3 devices in the ATLAS cavern [9,
Table 1]

In each TPX3 pair, the only device with neutron converters is the one
further away from the interaction point, that are TPX3 4B and TPX3 9B.
The same layout as for TPX devices was used. For comparison, the TPX3
layout is shown in Figure 1.5 and the TPX layout is shown in Figure 1.2.

The TPX3 devices installed in the ATLAS cavern are set in the ToA/ToT
operational mode and data-driven readout mode. They are also synchronized
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1.2. Physics

with the LHC orbit clock and consequently with each other. The combination
of the synchronization and the resolution of 1.5625 ns allows measurements of
LHC fill bunch structures (section 1.2). The devices acquire data in 3-hour
long periods. They are interrupted by 5–15 s long dead time periods when the
devices are reconfigured.

Figure 1.5: Schematics of converter layout in TPX3 devices. [9, Figure 1]

1.2 Physics

When the LHC is running, bunch trains are injected into the LHC. The in-
jected bunches usually consists of either protons (hydrogen ions), or lead ions.
A consecutive sequence of bunch trains forms a beam. An uninterrupted pe-
riod when beams are circulated in the LHC machine is called a fill. Each
fill has its own unique identification number. The first fill producing sta-
ble beams during the LHC Run-2 was fill 3819 [10, 11] and the last one was
fill 7492 [10, 12]. The fill number have been four-digits long positive integer.
However, it will have to be longer in the future, as Run-3 is being prepared
and Run-4 is planned.

An LHC fill can be from a few minutes up to tens of hours long. Because
the ATLAS experiment produces a lot of data and the data-taking and pro-
cessing is costly and consumes a lot of energy, ATLAS is collecting data only
when it is triggered. That happens when both beams are stable and ready to
be collided. The collisions cause high-voltage ramp up in Pixel, Semiconductor
Tracker, and muon system. Once the pixel system is turned on, ATLAS is de-
clared “ready for physics”. Each data-set taken while ATLAS is continuously
recording is referred to as an ATLAS run. Because the ATLAS data acquisi-
tion system could sometimes interrupt during data-taking, a new ATLAS run
is started, and therefore there could be more than one run in a single LHC
fill. Similar to LHC fills, each ATLAS run has its own unique identification
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1. Context overview

number, too. The first ATLAS run with stable beams during the LHC Run-2
was run 266904 [11] and the last one was run 367384 [12]. The run number is
six-digits long positive integer. [16]

When particles in the opposite beams collide, a shower of other particles
is created. Although the particles collide very often, the collisions are actually
quite rare relatively to the number of particles in the beams. The efficiency of
the collisions is measured as luminosity. That is the collision rate of particles
per the size of the cross-section of the beams [17]. For physics purposes, the
luminosity is integrated for some well-defined data samples. The sample is
called luminosity block (LB) and it is defined by its time. During one LB,
instantaneous luminosity, detector and trigger configuration, and data quality
conditions are assumed to be constant. In general, duration of one LB is
approximately 60 s, however, the duration of an LB is flexible and actions
that might alter one of the constant properties mentioned above trigger the
start of a new LB before a minute has passed. The boundaries of each LB
are defined in real time by the ATLAS Central Trigger Processor [18] during
data-taking. [16, 19]

From the number of particles that have hit the sensor area, luminosity can
be calculated. There are two different approaches how to do it, one approach
calculates so-called absolute luminosity and the other one calculates so-called
relative luminosity. The absolute luminosity is calculated [20] by computing a
normalization factor from special ATLAS runs used for so-called van-der-Meer
scan [21]. The calculation of the relative luminosity is much simpler, the num-
ber of particles per LB are normalized to luminosity as measured by another
detector. This is usually done by taking the ratio between the number of
particles and the reference luminosity as the normalization factor.

When a particle hits the sensor area of a pixel detector, it releases its energy
into one or more pixels. The pixels that are hit by the particle constitute a
cluster. The clusters are always coherent, that means there cannot be a gap
between the pixels. The clusters are categorized into six classes based on
their shape. The classes are dot, small blob, curly track, heavy blob, heavy
track, and straight track. Examples of these clusters are shown in Table 1.3.
A dot consists from only a single pixel, and it is created by low energy photons
(< 20 keV) and electrons. A small blob is a small round cluster, and it is left
by x-ray photons (∼ 50 keV) and electrons. A curly track is a curly non-linear
line, and it is left by gamma rays (> 50 keV) and electrons with energy in
orders of MeV. A heavy blob (HB) is round and relatively big cluster, and it is
made by heavy ionising particles with short range, such as α-particles (4He —
helium atom with two neutrons), protons, slow neutrons, etc. A heavy track is
a linear and relatively thick line, and it is left by heavy ionising particles, such
as protons, ions, etc. A straight track is a linear thin line, and it is created by
energetic light charged particles, such as minimum ionizing particles (mips),
muons, etc. [7, 22]

Because the number of cluster should be the same as the number of parti-
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cles which hit the sensor area, luminosity can be calculated from the number
of cluster. This approach is called cluster counting. It might happen that
the cluster data are not available, then an approach called hit counting can
be used. If the device is in hit counting mode, then each particle increments
counters of all the pixels it hits. The idea is that the average number of pixels
in a cluster is constant. Then the sum of the numbers of hits over all pixels
can be used to calculate luminosity, too, as it is larger than the number of
clusters by the factor of the average number of pixels in a cluster. Another
approach is to filter the clusters by the cluster type, by type of the particle,
or by properties of the particle. One of these which is used is the thermal
neutron counting, that means that only thermal neutrons are counted, that
are neutrons with kinetic energy around 25 meV.

1) Dot Low energy photons and electrons

2) Small blob X-ray photons and electrons

3) Curly track Gamma rays and electrons (MeV)

4) Heavy blob Heavy ionising particles with short
range (α-particles, protons, . . .)

5) Heavy track Heavy ionising particles (protons,
ions, . . .)

6) Straight track Energetic light charged particles
(mips, muons, . . .)

Table 1.3: Overview of cluster types. [7, Figure 2(a)]

When thermal neutrons hit the 6LiF converter, they sometimes react with
it as n+ 6Li→ α+ 3H. That means that when the neutron hits the lithium
atom, it delivers enough energy so the lithium atom splits into an α-particle
and triton (hydrogen atom with two neutrons). The neutron is consumed in
the process and it is contained in one of the two newly created particles. The
particles are then registered by the silicon sensor, and they are observed as HB
clusters. The probability that a thermal neutron interacts with the converter
and it is detected with the correct signature is 0.475± 0.006 %. [7]

Nonetheless, thermal neutrons are not the only particles leaving behind
the HB cluster. There are plenty of other particles that constitute background
signal. It might be neutrons with different energy or even different particle
altogether. However, the other neutrons and particles interact with silicon in
the sensor. This background can be measured by counting the HB clusters in
the part of the sensor that is not covered by any neutron converter. The rate
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of the HB clusters produced by reactions in the 6LiF converter is obtained by
subtracting the rate of the background from the rate of the HB clusters in the
6LiF region. The effect of the neutron converters on a number of HB clusters
are shown in Figure 1.5.

1.2.1 Luminosity curve

When the beams are colliding over and over again, they gradually loose their
intensity as they contain less and less particles. Beam particles can also be
lost in collisions with remaining gas in the LHC tube. Due to the decline
of intensity, luminosity decreases, too. The luminosity curve describes the
development of luminosity in time during a single run. The curve is shown in
Figure 1.6(a).

(a) Luminosity curve (b) Fitted part of the lumi-
nosity curve

(c) Deviations from the fit-
ted curve

(d) Residuals (e) Pull distribution

Figure 1.6: Distributions in the luminosity curve analysis. The data were
acquired by TPX05 layer-1 during LHC fill 6677 and luminosity was estimated
using the cluster-counting method. [6]

The analysis is based on data from TPX and TPX3 devices. It is performed
to cross-check results of other ATLAS luminometers. A function describing
the development of luminosity is fitted onto one or more parts of the luminosity
curve. Usually, the function shown in equation 1.1 is used. The value of µ(t)
describes the average number of interactions per bunch-crossing at time t, and
the value of µ0 is the average number of interactions per bunch-crossing on
the beginning of the run i.e. in time 0. The values of λbb and λg describe the
rate at which the beams collide with each other or with residual gas in the
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LHC tube [23].

µ(t) = µ0
e−2λgt

[1 + λbb
λg

(1− e−λgt)]2
(1.1)

The luminosity curve is divided into parts by small dips in luminosity.
These LBs are shorter than the usual 60 seconds. They are caused by LHC
tuning of the beams. That is why luminosity raises after the dips. In the ideal
case, each part would be fitted separately. However, for technical reasons only
a part of the luminosity curve, where the jumps are not significant, were used
and it was fitted with a single curve as seen in Figure 1.6(b).

When one has one or more fitted curves, one can use them to determine
precision of our measurements. If one subtract the fitted curves from the data
and then divide it by the values of the curves, one obtains the relative de-
viations from the fit. They are shown in Figure 1.6(c). The deviations can
be projected to the y-axis and binned to make a histogram. This histogram
shows residuals. It has a Gaussian distribution, so when it is fitted with Gaus-
sian function. The mean of the function should be 0. The width (standard
deviation) of the function tells the precision of the measurements. A fitted
histogram of residuals is shown in Figure 1.6(d).

It is good practice to close almost every type of analysis by calculating
a pull distribution [24]. It describes whether errors in the measurements are
statistical or systematic. For this type of analysis, it is calculated by sub-
tracting the fitted curves from the data and then each data point is divided
by its uncertainty. The result is projected to the y-axis. The histogram is
then fitted with a Gaussian function. The mean of the function should be 0.
The width of the function describes significance of systematic uncertainties.
When the width is exactly or very close to 1, the measurement is dominated
by statistical uncertainties and that means that there is no space for improve-
ment. However, if the width is significantly greater than 1, the measurement
is dominated by systematic uncertainties and that means that there is room
for improvement. There could be several reasons which cause the systematic
errors. It could be either analysis, software, or the LHC itself. Examples
are insufficient description of data by the luminosity curve, saturation effects,
or fluctuations in the proton collision rates. An example pull distribution is
shown in Figure 1.6(e).

1.2.2 Short-term precision

In order to determine the internal consistency of the TPX and TPX3 mea-
surements, a short-term precision analysis is performed. It is measured by
calculating the spread of relative differences in luminosity. The formula is in
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equation 1.2, where L1(t) and L2(t) are luminosities from different TPX layers
or TPX3 devices in time t.

∆Lrel(t) = 2L1(t)− L2(t)
L1(t) + L2(t) (1.2)

First, the differences are plotted in time. In the ideal case the data are
spread around 0, however, it can happen that there is a slope. A slope in this
stability plot indicates that the relation between data from the two sources is
not linear. This case is shown in Figure 1.7(a).

(a) Internal stability be-
tween layers

(b) Residuals (c) Pull distribution

Figure 1.7: Example plots of short-term precision analysis. The compared
devices are layers of TPX05. The data were acquired during LHC fill 6677
and luminosity was estimated using the cluster-counting method. [6]

The next step is to project the data to the y-axis. The resulting histogram
should have a Gaussian distribution, so, it is fitted with a Gaussian function.
The width of the fit describes the spread of the differences. An example of
the fitted residual histogram is shown in Figure 1.7(b).

Finally, the pull distribution is calculated. As it is a ratio of data and their
uncertainties, it does not need to be calculated for the relative difference but
just for the absolute differences. The pull distribution would be the same for
both, as there is no new source of uncertainty when the relative differences
are calculated from the absolute ones. Because the formula for the absolute
differences is ∆Labs = L1 − L2, and L1 and L2 are not correlated, one can
calculate the uncertainty as σabs =

√
σ1 + σ2 using the uncertainty propaga-

tion formula. An example pull distribution for short-term precision is shown
in Figure 1.7(c).

1.2.3 Linearity

A normalization factor can be used to calculate luminosity only if the mea-
surement is linearly dependent on it. Because of this, linearity analysis is
performed. It is similar as the short-term precision analysis. It is done by
plotting the difference between luminosity measured by the examined detec-
tor and luminosity measured by a reference detector relative to luminosity
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measured by the reference detector on the y-axis, and µ on the x-axis where
µ is the average number of collisions per bunch crossing described by equa-
tion 1.1. The formula for the values on the y-axis is ∆L = L

Lref
− 1. The plot

is then fitted by a linear function. If the slope of the function is small, the
measurement is linearly dependent on luminosity, otherwise, the dependence
is not linear or the measurement depends also on some other factors. An ex-
ample of this plot is shown in Figure 1.8(a). The figure shows that there is
linearity within 0.029± 0.012 %.

(a) Linearity (b) Residual (c) Pull distribution

Figure 1.8: Example plots of linearity analysis. The data were acquired by
TPX05 layer-1 during ATLAS run 328099 and luminosity was estimated using
the hit-counting method. The reference detector is LUCID.

In order to quantify the agreement, the width of residuals is measured.
In this analysis, residuals with respect to zero are used, i.e. the data in the
linearity plot are projected to the y-axis and binned. The resulting histogram
is fitted with a Gaussian function. The width of the function also determines
whether the measurement is linearly dependent on luminosity. An example of
the residual plot is shown in Figure 1.8(b).

As always, the analysis is closed by production of the pull distribution.
For this kind of analysis, it is very simple. Because it is assumed that the
reference detector has no uncertainty, therefore, all uncertainties originate in
the examined measurement. As the pull distribution is the same for absolute
differences as for the relative ones, the absolute differences are used to calculate
the distribution. Therefore, the formula is L−Lref

σ . An example of the pull
distribution is shown in Figure 1.8(c).

The most common detector used as the reference detector is Luminos-
ity Cherenkov Integrating Detector (LUCID) [25] which was developed as
the main ATLAS luminometer. There are detectors which have non-linear
dependence on luminosity, for example ATLAS Forward Proton (AFP) detec-
tors [26].

1.2.4 Long-term stability

The devices in the ATLAS cavern are exposed to extremely harsh conditions
due to a large amount of radiation produced by the collisions and the LHC
itself. Because of the radiation, the devices take damage over time and their
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measurement capabilities deteriorate. The closer the devices are to the inter-
action point, the higher the radiation doses, and the higher the damage. The
long-term effects of the damage can be observed with a long-term stability
analysis.

(a) Long-term stability (b) Residuals

Figure 1.9: Example plots of long-term stability analysis. The data were
acquired by TPX12 layer-2 during 2016 and luminosity was estimated using
the hit-counting method. The reference run is indicated by the arrow. [6]

Luminosity is determined from a single device, or in case of TPX a single
layer, and it is summed over the whole runs. The same is done for some other
detector, device, or layer. The relative differences in the integrated luminosity
are plotted. The one relative to which is the difference serves as reference
detector. The formula is ∆L = L

Lref
−1, where L is luminosity measured by the

analysed device and Lref is luminosity measured by the reference detector. The
difference is fitted vs time with a linear function and its slope determines the
device deterioration relative to the reference detector. The example stability
plot is shown in Figure 1.9(a). There is a red arrow, it shows the ATLAS run
that was used to calculate the normalization factor.

The spread of the runs around the fitted curve is also measured. For this
reason, the relative differences of the data to the fit are calculated and the
results are binned. The created residual histogram has a Gaussian distribution
and so it is fitted with a corresponding function. The width of the function
determines the spread of the data around the fitted line and therefore, how
stable is the effect of the radiation damage.

For some detectors, it can happen that the stability plot cannot be fitted
with a linear function because the long-term effect of the radiation damage
and the resulting degradation is too large and it is no longer linear. This effect
was observed for TPX02 and TPX12 in 2017 and 2018. When this is the case,
there should be no fit in the stability plot and therefore no residual plot.

1.3 Data and processing

All TPX and TPX3 devices installed in ATLAS store the data in text files.
The procedure of processing the data and preparing it for use to perform
analysis differs for the TPX and TPX3 devices. The TPX3 devices creates a
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new file every three hours as they are reconfigured. Each file is processed by a
noisy pixels detection software and a map of noisy pixels is created. The map
is then used when each file is processed by clustering software. The software
creates a so-called cluster files and thanks to the map, they do not contain
data caused by the noisy pixels. Then, each cluster file is processed by cluster
type recognition software and information about the cluster types are inserted
into the cluster files.

However, the TPX data are not processed by any noisy pixel detection nor
removal software, they are processed only by a clustering software. The soft-
ware is different than the one processing the TPX3 data. The TPX clustering
software runs automatically when the TPX network is acquiring data, and it
immediately determines the cluster types. Because of the software’s automatic
execution, there is no way how to include reliable detection of noisy pixels as
the periods between reconfigurations are very long.

TPX and TPX3 cluster files are ROOT files. A ROOT file is a file format
defined by the ROOT framework [27, 28], an open-source data analysis frame-
work developed by CERN. The framework is a powerful tool that is used in
a data processing and analysis. It is mainly used for its capabilities in I/O,
and its easy interface when plotting and fitting graphs and histograms. The
ROOT files can store any object whose class inherits from TObject.

One of these classes is TTree. It is similar to database tables. It consists of
branches which are similar to columns in a database table. Each branch has
its own type, which could be a primitive type, a class inheriting from TObject,
STL collection, and more. Entries of a tree are logical equivalents of rows in
a database table.

1.3.1 Timepix cluster file

The TPX cluster files use three naming conventions, MPX-like, per-day, and
per-hour. The oldest convention is the MPX-like, it is inspired by the conven-
tion used for the predecessors of TPX, Medipix (MPX). The names of cluster
files in this convention are $Y$M$D_ATLAS$T_$H.root where $Y is a four-digit
year, $M is a two-digit month, $D is a two-digit day of the month, $T is a name
of a TPX device, and $H is a two-digit hour in a 24-hour day. These files store
data per single hour. This convention was used until 19th of June 2015. Then
the per-day convention was used. The cluster file names in this convention
are $Y_$M_$D_$T.root where $Y, $M, and $D are year, month and day, and
$T is a TPX name. These files contain data per day. This convention was
used until 29th of September 2016. Since then, the TPX cluster files use the
per-hour naming convention. It is very similar to the previous one, the names
are $Y_$M_$D_$T_$H.root where $Y, $M, $D, and $T are year, month, day, and
TPX name, and $H is an hour.

A TPX cluster file contains three TTree objects, calibData, dscData, and
clusterFile. These three objects holds all the TPX data necessary for all
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kinds of analysis. The structure of a TPX cluster file is shown in Figure 1.10.

TPXClusterFile

calib D ata: C alibrationData [1..*]
canv_0: TCanvas
canv_1: TCanvas
clu sterFile: ClusterData [1..*] {ordered}
d scD ata: D escriptionData [1..*]

TPXClusterFile::CalibrationData

a_0: float ([65536])
a_1: float ([65536])
b_0: float ([65536])
b_1: float ([65536])
c_0: float ([65536])
c_1: float ([65536])
convertermap_0: short ([65536])
convertermap_1: short ([65536])
r_mm: int
rho_mm: int
t_0: float ([65536])
t_1: float ([65536])
x_mm: int
y_mm: int
z_mm: int

TPXClusterFile::DescriptionData

A cq_time: float
B iasV o ltage: fl oat ([numberOfLayers])
Bu ff A : short ([numberOfLayers])
Bu ff B: short ([numberOfLayers])
D isc: sh o rt ([numberOfLayers])
FBK: short ([numberOfLayers])
C h ip b oardID: std::string
IKru m: short ([numberOfLayers])
masked _p ixels: int
n u mb erOfLayers: short
p ixe ls_mode: short
PreAmp: short ([numberOfLayers])
Start_time: double
T H Lco arse: short ([numberOfLayers])
T H Lfi n e: short ([numberOfLayers])
T H S: short ([numberOfLayers])
TPX_clock_in_MHz: float

TPXClusterFile::ClusterData

A cq_time: float
cls trLinearity: float
clstrMeanX: short
clstrMeanY: short
clstrRegion: short
clstrRo u n d ness: float
cls trSize: int
clstrType: short
clstrVolCentroidX: float
clstrVolCentroidY: float
clstrVolume: double
clstrVolume_keV: double
C o u n terValue: short ([clstrSize])
C o u n terV alue_keV: float ([clstrSize])
frame_number: int
frame_number_cor: int
layer: short
maxC lstrHeight: float
maxC lstrHeight_keV: float
min C lstrHeight: float
min C lstrHeight_keV: float
PixX: short ([clstrSize])
PixY : short ([clstrSize])
Start_time: double

Devices TPX02, TPX12, TPX03, and TPX13 
do not have attributes a_0, a_1, b_0, b_1, 
c_0, c_1, t_0, and t_1

Devices TPX02, TPX12, TPX03, and TPX13 
do not have attributes clstrVolume_keV, 
maxClstrHeight_keV, minClstrHeight_keV, 
and CounterValue_keV

Figure 1.10: Structure diagram of a TPX cluster file. Note that files for devices
TPX02, TPX12, TPX03, and TPX13 do not contains some of the data.

The calibData object contains data which cannot change without physical
manipulation with the device as they describe the physical properties of the
device. If the tree has more than one entry, all of them should be the same.
The branches x_mm, y_mm, z_mm, rho_mm, and r_mm contain 32-bit integers
holding the location of the device in mm as described in Table 1.1. All of
the other branches end with either _0 or _1 depending on the layer the data
are related to. The branches ending _0 are related to layer-1 and the ones
ending _1 are related to layer-2. The branches starting a, b, c, and d contain
arrays of 65,536 32-bit floating-point numbers. There are four number for
each pixel. These arrays contain the calibration of the device. The numbers
are used to calculate energy released by particle from the ToT data. Files
for devices that are not in the ToT mode do not contain these four branches.

18



1.3. Data and processing

The branches starting convertermap contain arrays of 65,536 16-bit integers.
Each element of the array describes in which neutron converter region is the
pixel located. The regions are shown in Figure 1.2. Each element can take
on values between 0 and 4, where the value of 1 means it is in the uncovered
region, the value of 2 represents the PE region, the value of 3 means the
PE+Al region, and 4 means the 6LiF region. There is also a part of the chip
which is referred to as region 0. That is the combination of all of the pixels
where the converter region might be ambiguous because there is the physical
transition between the converters. The part of the chip is the combination of
four one-pixel wide bands on the edges of the chip, and two five-pixels wide
bands in between the regions.

Visual representation of the branches starting a, b, c, d, and convertermap
are depicted in TCanvas objects canv_0 and canv_1 for layer-1 and layer-2,
respectively. A TCanvas object is simply a canvas containing graphics. Each of
these two canvases contains five two-dimensional histograms. Four histograms
visualise values of each of the calibration number as a function of the pixel
location. If the device is not in the ToT mode, the behavior of the calibration
numbers visualisation is undefined. The fifth histogram visualises the neutron
converter regions on the chip as defined by the convertermap branches.

The TTree named dscData contains data describing the configuration and
settings of the device. The tree has one entry per each frame. The frame can
be identified by its timestamp. It is stored in a 64-bit floating-point number
in the branch Start_time. The timestamp is in the Unix timestamp format.
The number uses decimal places to enable time resolution on sub-second level.
The length of the frame is stored in the branch Acq_time. It contains a 32-bit
floating-point number storing the acquisition time in seconds. Another impor-
tant branch is pixels_mode, it contains a 16-bit integer describing the mode
the device is in (section 1.1.1). The value of 0 means it is in the hit count-
ing mode, the value of 1 represents the ToT mode, and the value of 3 means
the ToA mode. Some of the pixels can get damaged and if they are identi-
fied already during the data acquisition, the data they collect can be ignored.
Therefore, there are not data for all of the pixels in the file. The number of
these pixels is stored in the branch masked_pixels. It is stored in a 32-bit
integer. The value is usually between 0 and 100. The maximum possible value
is 131,072 as it is the number of pixels on both layers together. The branch
ChipboardID contains a standard C++ string holding unique identification
name of the TPX device. The value can change when the device is replaced
because of a malfunction or damage. And the branch numberOfLayers con-
tains a 16-bit integer holding the number of layers of the device. Its value
should be always equal to 2. The other branches describe the settings of the
circuits like voltages, thresholds, etc.

The last TTree, named clusterFile contains the cluster data. Each entry
of the tree represents one cluster. Some of the branches describe the shape
of the cluster, some its location, some the frame information, and some de-
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scribe the individual pixels. Also, some of the branches have suffix _keV,
these branches are present only in files for devices which are in the ToT mode,
as they contain information about deposited energy. The individual pixels
are described by branches CounterValue and CounterValue_keV, PixX and
PixY, and layer. The CounterValue branch contains an array of 16-bit inte-
gers storing the value of the counter of each of the pixels in the cluster. The
length of the array is stored in the branch clstrSize. The information, rep-
resented by the counter value, depends on the operation mode of the chip (sec-
tion 1.1.1). If the chip is in the ToT mode, there is also the CounterValue_keV
branch which contains a 32-bit floating-point number storing the amount of
energy deposited in the pixel in keV. The branches PixX and PixY contain
arrays of 16-bit integers storing the coordinates of the pixels on the chip. The
lengths of the arrays are the same as the length of CounterValue. The entries
in the arrays take on values between 0 and 255 including. The location of the
pixels is also described by the layer branch. It contains also a 16-bit inte-
ger, which holds a value describing in which layer was the cluster detected,
and therefore, in which layer are the pixels located. The value is 1 or 2 as it
corresponds to layer-1 and layer-2.

The branches describing the shape of the cluster are minClstrHeight
and maxClstrHeight, clstrSize and clstrVolume, clstrLinearity and
clstrRoundness, and clstrType. When the device is in the ToT mode, the
branches which describe the shape of the cluster are minClstrHeight_keV and
maxClstrHeight_keV, and clstrVolume_keV. The branches minClstrHeight
and maxClstrHeight contain 32-bit floating-point numbers which hold the
minimum and maximum values of CounterValue in the cluster. If the chip
is in the ToT mode, their energy counterparts minClstrHeight_keV and
maxClstrHeight_keV store the values also in 32-bit floating-point numbers.
The branch clstrSize contains a 32-bit integer storing the number of pixels
the cluster consists of. It holds the length of the arrays storing values for
individual pixels. Because a cluster must consist from at least one pixel, and
the chip has a grid of 256 × 256 pixels, the value of the integer is between 1
and 65,536 including. The clstrVolume branch is similar to clstrSize but in-
stead of counting the number of pixels, it sums values of their CounterValue.
The value is stored in a 64-bit floating-point number. As expected, it has
also the energy measuring counterpart which also stores the value in a 64-bit
floating-point number. The clstrLinearity branch describes how straight
or curly the cluster is and the clstrRoundness branch describes how packed
or spread the pixels are. They store the values in 32-bit floating-point num-
bers. The values of linearity are in interval of (0, 1〉, where the lowest values
are usually assigned to curly tracks, and the highest values to straight tracks,
small blobs, and dots. The roundness values are in a similar interval, they are
in (0,

√
2π〉, where

√
2π ≈ 2.5. The highest possible value is assigned to small

blobs which consist of two pixels, and the lowest values are usually assigned to
straight tracks. A single pixel cluster has both, roundness and linearity equal
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to one. Finally, the clstrType branch describes the category of the cluster
as shown in Table 1.3. The value is stored in a 16-bit integer which takes on
values between 1 and 6 including. The value of 1 represents a dot cluster, the
value of 2 means small blob, 3 means HB cluster, 4 is heavy track, 5 is straight
track, and 6 is curly track.

The location of the cluster is described using two different methods. The
first method is to use the average of coordinates of each pixel in the clus-
ter. The average coordinates are stored in the clstrMeanX and clstrMeanY
branches. Each of them stores the values in 16-bit integers. The other, more
advanced method is to use a weighted average of the coordinates. The values of
CounterValue are used as weights, so the average equals to the volumetric cen-
ter which is also the center of energy in the ToT mode. The weighted average
coordinates are stored in the clstrVolCentroidX and clstrVolCentroidY
branches. They store the values in 32-bit floating-point numbers. There is also
the clstrRegion branch which describes the location of the cluster. It stores
the neutron converter region in which every pixel in the cluster is located. The
regions are shown in Figure 1.2. They are described by a 16-bit integer value.
The meanings of the values are the same as for the convertermap branches.
The values between 1 and 4 are assigned to the cluster when all of its pixels
lay in that region. When at least one pixel lays in the region 0, the value
of 0 is assigned to the cluster. Note that a single cluster cannot cross two
converter regions without crossing the region 0.

Furthermore, the cluster is described by the frame in which the clus-
ter is contained. All the information describing the frame are about time.
The branches containing the information are Start_time, frame_number and
frame_number_cor, and Acq_time. The Start_time and Acq_time branches
are the same as the ones with the same name in dscData. The frame_number
branch contains the index of the frame in the dscData tree. The index is
stored in a 32-bit integer. Because some frames might be empty, they have
no entry in the clusterFile tree, and so the index might miss some values.
The frame_number_cor branch is there to compensate this. It counts only
the non-empty frames. It stores the value also in a 32-bit integer. Using these
two branches, additional information can be calculated, like the number of
empty frames.

1.3.2 Timepix3 cluster file

The TPX3 cluster files use naming convention where each file has a name of
$D_$M_$Y_$H_$m_$T_$I.root where $D is a day in a month with no leading
zero, $M is a name of the month starting with capital letter, $Y is a four-digit
year, $H is a two-digit hour, $m is a two-digit minute, $T is an identification
of the chip, and $I is an index of the file in the month. The date and time
mark the beginning of the dataset in the file. The identification of the chip,
$T is the first part of the chip ID (Table 1.2) without the zero.
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A TPX3 cluster file contains four TTree objects, InfoTree_layer0 which
describes the data acquisition period of the file and the configuration and
status of the device, analysisDescription and clusteranalysis_desc con-
taining parameters of the clustering process, and clusteredData holding the
cluster data. The file also contains five one-dimensional histograms stored as
TH1F objects and one canvas stored as TCanvas object. The structure of a
TPX3 cluster file is shown in Figure 1.11.

TPX3ClusterFile

an alysisD escrip ti o n : A n alysisDescription
c1: TCanvas
clu steran alysis_d esc: C lu sterAnalysisDescription
clu stered Data: ClusteredData [1..*]
h_dedx: TH1F
h_length: TH1F
h_phi: TH1F
h_theta: TH1F
h_type: TH1F
In foTree_layer0: InfoTree

TPX3ClusterFile::AnalysisDescription

ti me_o ffset: double ([1])
ti me_window: double

TPX3ClusterFile::ClusterAnalysisDescription

l imDotPixCount: int
limH eavyBlobInBorRatio: double
limHeavyBlobInnerCount: int
limH eavyBlobRadiusDev: double
limH eavyTrackInBorRatio: double
limHeavyTrackInnerCount: int
limSmallB lo bSizeXY: int
limStraigh tTrackMinInline: int
limStraigh tT rackMinInlineRatio: double

TPX3ClusterFile::ClusteredData

ab s_start_time_s: double
clstrH eight_keV: float
clstrHeight_ToT: int
cls trLength: float
cls trLinearity: float
clstrM eanX: float
clstrM eanY: float
cls trSize: int
clstrType: int
clstrVolCentroidX: float
clstrVolCentroidY: float
clstrV olume_keV: float
clstrVolume_ToT: unsigned long
co in cidence_group: unsigned long
co in cid ence_group_size: short
d elta_ToA: double
min_ToA: double
p h i: float
PixX: short ([clstrSize])
PixY : short ([clstrSize])
th eta: float
To A : double ([clstrSize])
To T : int ([clstrSize])
To T_keV: float ([clstrSize])
triggerNo: int

TPX3ClusterFile::InfoTree

b ias: d ouble
d acs: short ([18])
d etector_mode: std::string
ch ip b o ard_id: std::string
lo st_hits: int
read o ut_ip: std::string
read out_temperature: float
re lative_end_time: double
re lati ve_start_time: double
sen so r_temperature: float
start_time: double
start_ti me_compensation_ns: double
treshold: int

Figure 1.11: Structure diagram of a TPX3 cluster file.

The file contains three hours of data acquisition. The configuration of
the device is unchanged in this three-hours period, however, it can change in
between the periods. The data acquisition period and the device configuration
and status are described by the InfoTree_layer0 object. The tree has only
one entry per file. The unique identification name of the device is stored as
a standard C++ string in the branch chipboard_id. Because the readouts
of the TPX3 devices are connected to the data acquisition server by Ethernet
cables, and they use TCP/IP for communication, they have also assigned IP
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addresses. The address of the readout of the device is stored also as a standard
C++ string in the branch readout_ip. The mode of the device is also stored
as a standard C++ string in the branch detector_mode. Because all of the
TPX3 devices in the ATLAS cavern were operated in the ToA/ToT mode, the
string always contains the value " ToA & ToT" followed by a carriage return
character. Note that the value starts with a space. The space on the beginning
and the carriage return on the end of the string are there because of a bug in
parsing values during the cluster file production.

The timestamp of the beginning of the three-hour long data acquisition is
stored in the start_time branch in a 64-bit floating-point number. The times-
tamp is in the Unix timestamp format. Because the number of seconds since
1st of January 1970 is 30-bit long between 2004 and 2038, there are 22 bits to
store the time in sub-second level. However, these 22 bits make precision of
just 238.4 ns whereas the precision of TPX3 is 1.5625 ns. Because of this, there
is a need for additional precision. The value of start_time uses a resolution
of millisecond level and the rest of the required precision is delegated to the
relative_start_time branch. It also contains a 64-bit floating-point number
which stores the start time of the data acquisition relative to start_time in
seconds. It is usually equal to 50 ns and sometimes to 25 ns. There is a tightly
related branch called start_time_compensation_ns. The value of its 64-bit
floating-point number is usually equal to 0 but when the relative start time
is equal to 25 ns, its value is also equal to 25. It is there to correct for a bug
in the TPX3 chip which lead to time shifts of 25 ns of columns between 170
and 220 [29]. There is one other related branch, relative_end_time which
contains the end time of the data acquisition relative to start_time in second.
The time is also stored in a 64-bit floating-point number. The value is equal
to 10,800 s (3 hours) and 50 ns.

As particles hit the chip, part of the energy is released in form of heat. The
temperature of the sensor is stored in a 32-bit floating-point number in the
branch sensor_temperature as degree Celsius. The value is usually around
65 °C. The readout of the device does not get warm from radiation as it is not
in the ATLAS experimental cavern UX15 but in the neighbouring service cav-
ern USA15. However, the readout gets warm by itself as every chip under load.
The temperature of the readout is stored in a 32-bit floating-point number in
the readout_temperature as degree Celsius. The value is usually 35–40 °C.
The lost_hits branch contains a 32-bit integer which is always 0. The other
branches describe the settings of the circuits like voltages, thresholds, etc.

The parameters, used during the production of clusters from raw data,
are stored in the analysisDescription tree. It contains just two branches,
time_window and time_offset, and it has only one entry per file. The
time_window branch contains a size of a time interval in which all hits must be
recorded so they can constitute a cluster. The size of the interval is stored in a
64-bit floating-point number in nanoseconds and its value is always 100 ns. The
time_offset branch contains one-element long array of 64-bit floating-point
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numbers with value always equal to 0. It is the delay between the devices in
the pair. However, the current clusters were produced for one device at one
time, so the value is irrelevant.

The tree clusteranalysis_desc contains parameters used by the cluster
type recognition software. There are nine parameters in the tree, and the tree
has only one entry. The parameters describe the limit values of some of the
cluster properties. These are for example: the maximum number of pixels in
a dot cluster, the maximal size of small blob cluster, or the minimum number
of pixels which have to be in line to make a straight track. Four parameters
are stored in 64-bit floating-point numbers, three of them are ratios and one is
a deviation. The rest, five parameters are stored in 32-bit integers, and they
are counts. The parameters are not relevant anymore once the clusters are
categorized.

The most important tree in the file is the clusteredData tree. It contains
all the data about clusters. Each entry of the tree represents one cluster.
The branches in the tree are similar to the ones in a TPX cluster file. The
individual pixels in the cluster are described by the branches Pix and PixY,
ToT and ToT_keV, and ToA. All of them contain arrays with length stored in
the clstrSize branch. The branches PixX and PixY store the coordinates of
the pixels on the chip in 16-bit integers. The timestamp of the hit is stored in
ToA. It stores the number of nanoseconds from the beginning of the three-hour
long data acquisition period. The energy released to the pixel is stored in the
ToT_keV branch in a 32-bit floating-point number, and raw ToT is stored in
a 32-bit integer in the ToT branch.

The timing of the cluster is described by the branches abs_start_time_s,
min_ToA, and delta_ToA. The min_ToA branch contains simply the minimum
ToA in the cluster, so it is also stored in a 64-bit floating-point number.
The delta_ToA branch contains the difference between the maximum and
minimum ToA, so it describes the length of the period when the particle was
passing through the chip. It is also stored in a 64-bit floating-point number.
Finally, the branch abs_start_time_s contains the minimum ToA converted
to Unix timestamp. Because of this, the value has the issue of precision of
only 238.4 ns.

The branches that describe the location of the cluster are clstrMeanX and
clstrMeanY, clstrVolCentroidX and clstrVolCentroidY. The average co-
ordinates are stored in the clstrMeanX and clstrMeanY branches. In contrast
to the TPX cluster file, they store the value in a 32-bit floating-point num-
ber. The weighted average coordinates are stored also in 32-bit floating-point
numbers in the branches clstrVolCentroidX and clstrVolCentroidY. The
coordinates are weighted according to the values of ToT.

The branches describing the shape of the clusters are clstrHeight_ToT
and clstrHeight_keV, clstrVolume_ToT and clstrVolume_keV, clstrSize,
clstrLinearity, clstrType, and phi. The branches starting clstrHeight
contain the maximum value of ToT or energy in the cluster. The value of
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the amount of energy is stored in a 32-bit floating-point number and ToT
is stored in a 32-bit integer. The branches starting clstrVolume contain the
sum of the measured energy or ToT over all pixels in the cluster. The energy is
stored in a 32-bit floating-point number and ToT is stored in a 64-bit unsigned
integer. The number of the pixels constituting the cluster is stored in the
branch clstrSize. It stores the number in a 32-bit integer. The branch
clstrLinearity describes how straight or curly the cluster is. The value is
in interval of (0, 1〉 and it is stored in a 32-bit floating-point number. The
highest values are assigned to straight tracks, small blobs, and dots, and the
lowest values are assigned to curly tracks. The type of the cluster is described
by the clstrType branch, as shown in Table 1.3. The value is stored in a
32-bit integer and it is equal to a number between 1 and 6 including. The
value of 1 represents a dot cluster, the value of 2 means a small blob, 3 means
a curly track, 4 is a HB cluster, 5 is a heavy track, and 6 is a straight track.
The branch phi contains an angle in degrees stored in a 32-bit floating-point
number. It describes the angle of the longest line in the convex hull of the
cluster with respect to the x-axis. If the line is parallel to the x-axis, the angle
is 0°, and if the line is parallel to the y-axis, the angle is 90°. If all the pixels
of the cluster are in only one row or in only one column, the calculation of
the angle fails and it is set to 0. Therefore, all dot clusters and all two-pixel
small blob clusters have phi equal to 0.

The branches named coincidence_group and coincidence_group_size
describe how are clusters in different devices related. If there are clusters
captured by different devices in the pair which seem that they could be cre-
ated by the same particle, it is said that they are coincident. The branch
coincidence_group_size stores the number of coincident clusters. The clus-
ters in the same coincidence group have the same coincidence group identifi-
cation number which is stored in the branch coincidence_group. The size is
stored in a 16-bit integer and the identification number in a 64-bit unsigned
integer. If the cluster is not coincident to any other, the group size is equal
to 1.

There are also branches that do not fit in neither of the categories. These
branches are theta, clstrLength, and triggerNo. The theta branch con-
tains the angle under which the particle hit the chip. If the trajectory of the
particle is perpendicular to the plane of the chip, the angle is equal to 0°, and
if the trajectory of the particle is parallel to the plane of the chip, the angle is
equal to 90°. The angle is stored in degrees in a 32-bit floating-point number.
Note that the angle never takes on the extreme values as the probability of that
happening is negligibly small. The branch clstrLength contains the distance
which the particle traveled through the chip. It can be calculated as 300 µm

cos θ ,
where 300 µm is the thickness of the chip and the value of θ is stored in the
theta branch. The length of the cluster is stored in micrometers in a 32-bit
floating-point number. The last branch is triggerNo. It contains a 32-bit
integer which is always equal to 0. The branch is there for legacy reasons and
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it is no longer used.
The file also contains five TH1F objects, they are one-dimensional his-

tograms storing the values as 32-bit floating-point numbers. The histograms
are h_length, h_phi, h_dedx, h_theta, and h_type. The prefix h_ in the
names marks the fact that they are histograms. The histograms h_phi,
h_theta, and h_type are overviews of the values of the branches phi, theta,
and clstrType. The histogram h_length contains information similar to the
clstrLength but it holds the number of pixels the particle crossed. It can
be calculated as sin θ ∗ clstrLength

55 µm or as tan θ ∗ 300 µm
55 µm where the 300 µm is the

thickness of the chip and the 55 µm is the size of a pixel. And the histogram
h_dedx describes how much energy a particle loses per distance it goes through
the chip ( dE

dX ). The values are in units of keV per µm.
The last object in the file is the TCanvas object called c1. It basically

contains h_phi and h_theta overlaying each other. They are distinguished
by different colors and there is also a legend in the canvas.

1.3.3 Timepix3 noisy pixel removal file

The information about the removed noisy pixels in TPX3 devices are stored
in noisy pixel removal files or NPR files for short. Its structure is shown in
Figure 1.12. The files use the same naming as the cluster files which they are
related to.

TPX3NPRFile

h2: TH2F
Nu mb ero fPixels: NumberOfPixels [1..*]
Pixe ls : Pixels [1..*]

TPX3NPRFile::Pixels

No isyPixelX: int
No isyPixelY: int

TPX3NPRFile::NumberOfPixels

Active: int
No isy: int
Region: int
T ime: double

Figure 1.12: Structure diagram of TPX3 NPR file.

The file contains one TH2F object, and three TTree object. There are two
instances of tree named NumberofPixels. Each of them has only a single en-
try. They store how many pixels are in which status. The branch Active con-
tains the number of pixels which were used during the clustering, the branch
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Noisy contains the number of noisy pixels, and the branch Region contains
the number of pixels in a region 0. The region 0 is different for TPX3 devices
than the one for TPX. It consists of four five-pixel bands on the edges of the
chip. The devices with the 6LiF converter also include two bands separating
the region from the rest of the chip. The horizontal band is nine-pixel wide
and the vertical band is ten-pixel wide. These three branches store the values
in 32-bit integers. The last branch, Time is present only in the second instance
of the tree. It contains the timestamp of the start of the three-hour acquisition
period stored in a 64-bit floating-point number.

The other TTree object is called Pixels and it stores the coordinates of the
removed pixels. These are the pixels which are noisy or in the region 0. The
coordinated are stored in branches called NoisyPixelsX and NoisyPixelsY
in 32-bit integers.

The last object in the file is the TH2F object. It is called h2 and it is
two-dimensional histogram which stores its values in 32-bit floating-point num-
bers. Each bin of the histogram represent one pixel and they store if they are
removed or not. A non-zero value means that the pixel is removed and zero
value means that it is not removed.

1.3.4 ATLAS reference file

The ATLAS collaboration provides text files containing luminosity as mea-
sured by different detectors. We refer to these files as ATLAS reference files.
The files are also known as Benedetto’s files after the man who was producing
them. There is one file per ATLAS run. They contain space separated values
divided into lines. The first line gives the names of data stored in the second
line. These two lines contain an overview summary of the run. The third line
contains the names of data stored in the following lines. Each of them repre-
sents one LB. At the beginning of each line, there are a few entries describing
the LB and they are followed by series of entries containing luminosity mea-
sured by different devices. Files for different years or corrections, used during
calculation of luminosity, can contain different number of detectors.
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Chapter 2
As-is

The purpose of this chapter is to analyse and describe the status in which the
data processing and analysis software was before the re-engineering.

2.1 Processes

In order to analyse the data, the cluster files have to processed and LBs have
to be created. The production of LBs is very different depending on the kind
of the device which is being processed. It is so because TPX3 cluster files have
noisy pixels already removed whereas TPX cluster files not. Because of this,
the noisy pixels have to be removed during the production of LBs. When the
LBs are produced and the noisy pixels are removed the data can be analysed.
The analysis software can work with both, TPX data and TPX3 data, as
the analysis is very similar for both devices. The overview of the process of
the data processing and analysis, and the data flow is shown in the activity
diagram in Figure 2.1.

Create TPX3 LBs
Create TPX LBs with noisy 

pixels removed

Analyse data

1..*

:TPXClusterFile

1..*

:TPX3ClusterFile

Wh at k in d  o f device is processed?

1..*

:TPXLBFile

1..*

:TPX3LBFile

1..*

ATLAS reference file

[TPX] [TPX3]

Figure 2.1: Activity diagram of data processing and analysis.
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Both, the TPX LB production and the TPX3 LB production uses the same
kind of data. The definition of the ATLAS runs and the LBs are read from
the ATLAS reference files. The data used to produce the LBs are read from
the corresponding cluster file. The result of both productions is a collection
of LB files. There is one file per each ATLAS run in the collection.

2.1.1 Production of luminosity blocks

The production of LBs for TPX3 is very simple. First, the ATLAS reference
files are read in to extract information about runs and individual LBs, and
objects, enabling easy reading of all TPX3 cluster files, are instantiated and
configured. Then the code starts to iterate over the ATLAS runs. For each
run, it creates the output file and the output tree, and starts iterating over the
clusters. It does nothing until it finds the first cluster which belongs in that
run. Once it was found, the clusters are compared to the LBs. If the cluster
belongs in the LB it starts to count the number of the clusters and sum their
sizes until it finds the first cluster which does not belong in that LB. Then the
information about the LB and the number of hits and clusters is written into
the output tree. The next iterations are testing the clusters against the next
LB. The loop over clusters ends once there is a cluster that was recorded after
the ATLAS run ended. The next run starts to iterate over the clusters from
exactly the position where the previous iteration ended. This can be done
because both, the ATLAS runs and the clusters are sorted by time. Once the
end of the ATLAS run is found, the output tree is written in the output file.
The structure of the file is shown in Figure 2.13.

The production of LBs for TPX is more complex because noisy pixels have
to be removed. The process consists of four main steps. They are shown in
the activity diagram in Figure 2.2. Each activity in the diagram represents
one execution of a program. The first step is to create the LBs without any
definition of the noisy pixels. The noisy pixels are detected during the creation
of the LBs and they are stored in a map (section 2.2.1). There is one map for
each ATLAS run. Then, the maps are merged together. The merge produces
single map for the whole year. The merge is done by performing a logical OR
on the maps, therefore, if a pixel is marked as noisy at least in one ATLAS
run, it is marked as noisy also in the final map.

Once the noisy pixel map is produced, the LBs are recreated. This time,
the definition of the noisy pixels is in the map. Along the maps, LB files are
also produced. However, they are very large and complicated, therefore, a
post-processing was introduced to simplify the files and make them similar
to the TPX3 LB files. It extracts only the data related to LBs and restores
the raw values from the ones modified during the LB creation. These values
are the numbers of hits before and after the noisy pixel removal. They are
changed to the average number of hits per second during the LB creation, and
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the absolute number of hits per LB is restored during the post-processing. It
also splits every file into two files, one for each layer.

:TPXBigLBFile

:TPXLBFile [2]

 «iterative» :TPXBigLBFile

:TPXLBFile [2]

A re  noisy pixels removed?

Merge maps of noisy pixels

1..*

noisy pixels map 
per run

noisy pixels map 
per year

Simplify file structure

Create TPX LBs

1..*

:TPXClusterFile

1..*

ATLAS reference file

[false]

[true]

Figure 2.2: Activity diagram of TPX data processing.

The most time-consuming operation is the creation of the LBs, and it
is performed twice during the production of the LBs. The activity diagram
describes the process of the creation of LBs, shown in Figure 2.3. It starts
with loading-in the ATLAS reference files. Then, the program starts to iterate
over the ATLAS runs. In each run, a ROOT file is created. It contains the
ATLAS reference data. Then, the program starts to iterate over the TPX
devices. Each iteration starts with creating the output file and loading-in
data from cluster files. Only the files which possibly contain the relevant data
are opened. At the beginning of the first file, there are clusters which do not
belong to the processed ATLAS run. These clusters are not loaded, however,
they are iterated over. Once the beginning of the run is found, the data are
loaded into series of arrays of maps and multi-dimensional arrays. Because
the maps are indexed by the timestamp of the cluster/frame, there is a lot
of unique entries in the maps, and therefore, the complexity of loading the
data is O(n logn) where n is the number of frames. As there are hundreds of
thousands up to a few millions of entries for a single ATLAS run, the loading
takes some time.

Once the data are loaded, the noisy pixels need to be detected. It is done
by creating forty histograms which plot the number of hits per pixel during
the run, and then by fitting the histograms by a Gaussian function. There
are four histograms per layer and region including region 0. However, for the
actual noisy pixel detection only one of the four histograms is used. Because
a noisy pixel accumulates huge numbers of hits, the mean of the Gaussian
function is not even close the mean of the values in the histogram. Because of
this, the fitting algorithm cannot find the mean of the function, and therefore,
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ATLAS Run

 «iterative»

ATLAS Run

TPX Device

:B igLBFile

 «iterative»

TPX Device

:B igLBFile

1..*

ATLAS reference file

1..*

:TPXClusterFile

Load reference data Create ATLAS reference tuple

Load TPX cluster data for 
current run

Detect noisy pixels

n o isy pixels
map

Produce frames

n o isy pixels
map

0..1

noisy pixels map per 
year

noisy pixels map per 
run

Produce LBs

[exists]

[o th erwise]

Figure 2.3: Activity diagram of TPX LBs creation.

a median has to be found and used as the initial value of the mean of the
function. The algorithm cannot guess even the initial width of the function,
so it has to be calculated. The sufficient initial width among the four years is

µ
11.8143 where µ is the mean of the function. This is important to note because
it is a linear dependence. Then, the fitting algorithm makes very precise values
from these gross estimates. The pixels are marked as noisy if the number of
hits is greater than µ+nσ and they are marked as dead if the number is lower
than µ−nσ. The σ is the width of the function, and n is an arbitrary number
specifying the strictness of the detection. The number is also referred to as
sigma level. Note that higher sigma/strictness level means looser conditions
for pixels to be kept. There are also other pixels marked for exclusion, the
pixels belonging to the region 0 or to its extension. The extension of the
region 0 are four four-pixel wide stripes on the edges of the chip. The stripes
extend the region 0 on the edges from one pixel to five pixels. The noisy
pixel detection is performed for three different strictness levels, 2σ, 3σ, and
5σ. Everything regarding the noisy pixel detection is stored in the output file.
The maps, which mark which pixels should be excluded and which not, are
created. There is one map for each combination of ATLAS run, device, layer,
and sigma level.

Then, the noisy pixel map for the whole year is loaded. The map which is
loaded was created with 5σ level. If the map is not present, the 3σ map for
the current run is used instead. Then, the program starts to iterate over the
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layers, frames from the layer, and the individual hits in the frame. It sums all
the hits for each frame and stores the numbers in a tree. Every calculation
is done in two variants, one removes the noisy pixels, and the other does not.
Although, the complexity of iterating through all the frames and hits is linear,
it takes quite a long time as there are tens of millions of hits to process in a
single ATLAS run.

Only then, finally, the program starts calculating the LBs. It starts to
iterate over the layers, LBs, and frames. With each LB it goes through all the
frames, twice. In the first run, it calculates the value of the LB without the
noisy pixel removal, and in the second run, it calculates the LB without the
noisy pixels. Then, the LBs are stored in a tree. Again, the complexity of the
cycles is linear but as there are hundreds of LBs and hundreds of thousands
up to millions of frames in an ATLAS run, there are tens or even hundreds of
millions of iterations to go through, twice, and that also takes a long time.

Processing a single ATLAS run for a single device can take between min-
utes up to hours, depending on the run and the device. Processing the stan-
dard dataset of TPX02, TPX12, TPX05, TPX06, TPX07, and TPX14 for a
single year takes few weeks, and few days for a single device. However, the
main problem is not the long time it takes but the memory consumption of the
program. Because the data are first read in, the allocated memory is more or
less equal to the size of the files. The average size of cluster data from a single
run, and therefore the required amount of memory is 20–80 GB. Also, the pro-
gram has to be launched with the maximum stack size of at least 65,536 kB.
Because of this large memory requirements, the program had to be executed
on special high-memory infrastructure, which required special authorization.

2.1.2 Analysis of data

All of the main data analysis code is in a single function. Each analysis has
its own branch of conditional compilation created using preprocessor instruc-
tions. The program enables to work with different data sources by introducing
the conditional compilation branches all across the program. Also, all of the
program’s configuration is located in a single header file, which condition-
ally includes other header files based on the type of the data with which the
program is supposed to work.

When any configuration changes, the program has to be recompiled. Be-
cause of this, the program is recompiled with every launch. It is launched
by its makefile. Because of this, the arguments are passed in variables to the
makefile, and it uses the preprocessor to hard-code them into the program.

When a special functionality of configuration is required, the program has
to be edited a the requirements programmed in. Because the program makes
a lot of assumptions, a new code has to be added or an old code has to
be commented out in order to make the special adjustments. As these are
one-time needs, the program is edited back and forth.
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All analyses start by loading the data, and filtering it only to the required
subset. Then graphs for different properties are created, and calculation are
done on the graphs. The graph are then used to project the data on the y-axis
to plot histograms or pull distributions. The histograms are created with fixed
number of bins either on the full range of data, or on specified subset. The
subsets of ranges are specified also in branches of conditional compilation.
Therefore, when a new range is required, it has to be programmed in. The
graphs and histograms are often fitted, and these fits are then often used in
other calculations.

All calculations and filtering are done immediately. When detector data
from TTree objects is filtered, the structure of the objects is copied and then
the filtered data is added entry by entry. When calculations are done on
graphs, the data stored in vectors are copied and modified. The graph has to
be copied and iterated over with every operation performed on it.

The graph and histograms are also drawn into canvases. The canvases
also draw various labels over the graphs and histograms. When everything is
drawn, the canvases are printed into PNG files.

2.2 Data structures

The whole program for production of TPX LBs consists of only five classes.
Their structures and relationships are shown in Figure 2.4. The five classes
are MakeRootTuple, AtlasLumi, ActivationCalculator, CreateORFile, and
withPrecision. The most important object in the program is the instance
of MakeRootTuple. It is instantiated and its method MainLoop is called from
the main function. It just starts time measurement and calls the FillHist
method. This method contains almost all the behavior and code executed
during the LB creation. The method is over a thousand lines long. The class
MakeRootTuple inherits from AtlasLumi. That is the class which responsibil-
ity is to read the ATLAS reference files and parse them. All of its behavior
is contained in the lumiInfo method. The method is around four hundred
lines long with around hundred lines of variable initializations, hundred and
fifty lines of input stream reading chains, and hundred lines of variable as-
signments. The reading chains constitute a hard-coded mapping of the files.
An AtlasLumi object contains a huge amount of member attributes which are
filled during the reading of the files. However, only a small fraction of theses
attributes is used. All of them are public and they are accessed directly from
the FillHist method.

The class CreateORFiles is used when the maps of noisy pixels need to
be merged. It is instantiated and its only method is called from the main
function. The method is processYear and it contains all the behavior and
code executed when merging the maps. It is totally independent of any other
class.
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ActivationCalculator

- m_activation: double*
- m_components: int
- m_previous_start_time: double
- m_vec_hl: vector<double>
- m_vec_poz: vector<double>
- m_vec_y: vector<double>

+ ActivationCalculator()
+ ActivationCalculator(fn: string&)
+ ~ActivationCalculator()
- ActivationCalculator(a: const ActivationCalculator&)
+ AddComponent(hl: double&, y: double&, poz: double&): int
+ CalculateActivation(st: double&, at: float&, cr: double&, result: float*): void
+ GetNoComponents(): int
+ Initialize(): void
+ PrintComponents(): void
+ SaveStatusToFile(fn: string, st: double&): void
+ SetComponentsFromFile(f: std::string&): int

AtlasLumi

+ firstLB_index: Int_t = 0
+ inst_LCD: Double_t ([3000])
+ inst_TILE: Double_t ([3000])
+ inst_TRACKS: Double_t ([3000])
+ IntegratedLumiOfRun_lcd: float = 0
+ IntegratedLumiOfRun_pix: float = 0
+ IntegratedLumiOfRun_til: float = 0
+ IntLumi: std::vector<double>
+ IntLumiPix: std::vector<double>
+ IntLumiTil: std::vector<double>
+ LB_length: double ([3000])
+ LB_Lint_emec: std::vector<double>
+ LB_Lint_emec_err: std::vector<double>
+ LB_Lint_lcd: std::vector<double>
+ LB_Lint_lcd_err: std::vector<double>
+ LB_Lint_pix: std::vector<double>
+ LB_Lint_pix_err: std::vector<double>
+ LB_Lint_til: std::vector<double>
+ LB_Lint_til_err: std::vector<double>
+ LB_Num: Int_t ([3000])
+ LBnum: std::vector<int>
+ LBs: std::vector<int>
+ LBtime: std::vector<double>
+ map_act_corr_LB_Lint_tpx1_wrt_lcd: std::unordered_map<unsigned, float>
+ map_act_corr_LB_Lint_tpx1_wrt_pix: std::unordered_map<unsigned, float>
+ map_act_corr_LB_Lint_tpx1_wrt_til: std::unordered_map<unsigned, float>
+ map_act_corr_LB_Lint_tpx2_wrt_lcd: std::unordered_map<unsigned, float>
+ map_act_corr_LB_Lint_tpx2_wrt_pix: std::unordered_map<unsigned, float>
+ map_act_corr_LB_Lint_tpx2_wrt_til: std::unordered_map<unsigned, float>
+ map_err_LB_Lint_tpx1_wrt_lcd: std::unordered_map<unsigned, float>
+ map_err_LB_Lint_tpx1_wrt_pix: std::unordered_map<unsigned, float>
+ map_err_LB_Lint_tpx1_wrt_til: std::unordered_map<unsigned, float>
+ map_err_LB_Lint_tpx2_wrt_lcd: std::unordered_map<unsigned, float>
+ map_err_LB_Lint_tpx2_wrt_pix: std::unordered_map<unsigned, float>
+ map_err_LB_Lint_tpx2_wrt_til: std::unordered_map<unsigned, float>
+ map_frames1: std::unordered_map<unsigned, int>
+ map_frames2: std::unordered_map<unsigned, int>
+ map_LB_eTime: std::unordered_map<unsigned, UInt_t>
+ map_LB_IntegratedAcqTime1: std::unordered_map<unsigned, float>
+ map_LB_IntegratedAcqTime2: std::unordered_map<unsigned, float>
+ map_LB_Lint_emec: std::unordered_map<unsigned, float>
+ map_LB_Lint_emec_err: std::unordered_map<unsigned, float>
+ map_LB_Lint_lcd: std::unordered_map<unsigned, float>
+ map_LB_Lint_lcd_err: std::unordered_map<unsigned, float>
+ map_LB_Lint_pix: std::unordered_map<unsigned, float>
+ map_LB_Lint_pix_err: std::unordered_map<unsigned, float>
+ map_LB_Lint_til: std::unordered_map<unsigned, float>
+ map_LB_Lint_til_err: std::unordered_map<unsigned, float>
+ map_LB_Lint_tpx1_wrt_lcd: std::unordered_map<unsigned, float>
+ map_LB_Lint_tpx1_wrt_pix: std::unordered_map<unsigned, float>
+ map_LB_Lint_tpx1_wrt_til: std::unordered_map<unsigned, float>
+ map_LB_Lint_tpx2_wrt_lcd: std::unordered_map<unsigned, float>
+ map_LB_Lint_tpx2_wrt_pix: std::unordered_map<unsigned, float>
+ map_LB_Lint_tpx2_wrt_til: std::unordered_map<unsigned, float>
+ map_LB_LintErr_tpx1_wrt_lcd: std::unordered_map<unsigned, std::pair<float,float> >
+ map_LB_LintErr_tpx1_wrt_pix: std::unordered_map<unsigned, std::pair<float,float> >
+ map_LB_LintErr_tpx1_wrt_til: std::unordered_map<unsigned, std::pair<float,float> >
+ map_LB_LintErr_tpx2_wrt_lcd: std::unordered_map<unsigned, std::pair<float,float> >
+ map_LB_LintErr_tpx2_wrt_pix: std::unordered_map<unsigned, std::pair<float,float> >
+ map_LB_LintErr_tpx2_wrt_til: std::unordered_map<unsigned, std::pair<float,float> >
+ map_LB_sTime: std::unordered_map<unsigned, UInt_t>
+ nDet: int
+ nlumib: Int_t = 0
+ number_of_LBs: Int_t = 0
+ numrun: Int_t
+ Run_Num: Int_t ([3000])
+ RunEndTime: std::vector<double>
+ RunNum: std::vector<int>
+ RunStartTime: std::vector<double>
+ StartTime: Double_t ([3000])

+ AtlasLumi()
+ ~AtlasLumi()
+ lumiInfo(runYear: std::string&, singleRun: bool, runNumber: std::string&): void

withPrecision

- precision: int
- value: double

+ withPrecision(precision: int, value: double)

«friend»
+ operator<<(s: std::ostream&, pr: withPrecision): std::ostream &

CreateORFiles

+ CreateORFiles()
+ ~CreateORFiles()
+ processYear(runYear: int): void

MakeRootTuple

+ FillHist(runYear: std::string&): void
+ MainLoop(roottuple: bool, runYear: std::string&): void
+ MakeRootTuple()
+ ~MakeRootTuple()

Figure 2.4: Class diagram of the program creating TPX LB data.

The class withPrecision is a helper class used when a floating point
number is printed into an output stream with a specific fixed precision. It
stores the value and the precision during the construction of the object. Then,
the object uses the them to print the value with desired precision in the fixed
mode. The state of the stream is restored after the value is printed.

The last class ActivationCalculator was created and prepared for cal-
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2. As-is

culations of radiation induced by surrounding materials. It is the only class
which implements some division of responsibilities. However, the class is not
used because the code, which invokes it, was never finished and so it was
commented out.

AtlasLumi

+ LB_End: std::vector<int>
+ LB_length: std::vector<double>
+ LB_Lint_emec: std::vector<double>
+ LB_Lint_emec_err: std::vector<double>
+ LB_Lint_fcal: std::vector<double>
+ LB_Lint_fcal_err: std::vector<double>
+ LB_Lint_lcd: std::vector<double>
+ LB_Lint_lcd_bi2: std::vector<double>
+ LB_Lint_lcd_err: std::vector<double>
+ LB_Lint_tile: std::vector<double>
+ LB_Lint_tile_d5: std::vector<double>
+ LB_Lint_tile_d5_err: std::vector<double>
+ LB_Lint_tile_err: std::vector<double>
+ LB_Lint_tracks: std::vector<double>
+ LB_Lint_tracks_err: std::vector<double>
+ LB_Num: std::vector<int>
+ LB_Start: std::vector<int>
+ Run_Num: std::vector<int>
+ RunEndTime: std::vector<double>
+ RunNum: std::vector<double>
+ RunStartTime: std::vector<double>

+ A tlasLu mi()
+ ~A tlasLumi()
+ lu miIn fo (RunYear: const std::string&): void

MakeHitDist

+ M ainLoop(inputDir: char*, outputDir: char*, RunYear: char*, use_cluster: bool, use_benedikt: bool, pixelDir: char*): int
+ M akeHitDist()
+ ~M akeHitDist()

Figure 2.5: Class diagram of the TPX3 LB data production program.

The program for production of TPX3 LBs consists of even lower number
of classes. There are only two classes in the whole program. One of them is
the AtlasLumi class and the other one is MakeHitDist which is a parallel to
the MakeRootTuple class. The structure of the classes is shown in Figure 2.5.
The instance of MakeHitDist is created and its only method is called from
the main function. The method is called MainLoop. It accepts arguments
marking the input and output directories, year of the dataset, type of the
cluster files, and directory where information about the noisy pixel removal
are stored. The method also contains almost all the behavior and code ex-
ecuted during the LB production. The method is just around two hundred
and fifty lines long. It basically contains just two nested loops and bunch of
conditional branches. The class inherits from the other one, from AtlasLumi.
The responsibility of this class is to read and parse the ATLAS reference files.
All the behavior is contained in only one method, lumiInfo. The method
is just around two hundred lines long as it is used just for 2018 data. Also,
there are not any member attributes which are not used. This saves not just
lines of the lumiInfo method but also the memory consumed by a AtlasLumi
instance. However, the method still contains a chain of input stream reading
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which constitutes a hard-coded mapping of the reference file. All attributes
of AtlasLumi are public and they are accessed directly from the MainLoop
method.

The program for data analysis and plotting the results consists of several
classes and templates. The main two classes are the Detector class and the
Timepix class. The structure of these two classes is shown in Figure 2.6.

Detector

# d ata: std::shared_ptr<TTree>
# LB_length: lb_length_t* = new lb_length_t()
# LB_number: lb_number_t* = new lb_number_t()
# lu min o sity: luminosity_t* = new luminosity_t()
# run_number: run_number_t* = new run_number_t()
# ti mestamp : ti mestamp_t* = new timestamp_t()

# _bind(): void
# _copyBranch(TTree*, const String&, void*): TBranch*
# _copyRest(TTree*): TTree*
# _copyStructure(): TTree*
# _loadEntry(long): void
# _p roperties(): std::vector<std::tuple<int,String,void*>>
# _propertyPointer(int): void*
# _propertyPointer(String): void*
# Detector(std::shared_ptr<TTree>)
+ getEntriesNumber(): long
+ o perator const TTree*()
+ operator TTree*()

«template»
# _plotProperties<XT,YT>(Property<XT>, Property<YT>): Graph
# _plotProperty<T>(Property<T>, long): Histogram<T>
+ getProperty<T>(Properties::Instance<T>): Property<T>
+ getProperty<T>(String): Property<T>
+ p lo tProperties<XT,YT>(Properties::Instance<XT>, Properties::Instance<YT>): Graph
+ p lotProperties<XT,YT>(String, Properties::Instance<YT>): Graph
+ p lotProperties<XT,YT>(Properties::Instance<XT>, String): Graph
+ plotProperties<XT,YT>(String, String): Graph
+ p lotProperty<T>(Properties::Instance<T>, long): Histogram<T>
+ plotProperty<T>(String, long): Histogram<T>

Detector::Properties

+ LB_LENGTH: const Instance<lb_length_t>
+ LB_NUMBER: const Instance<lb_number_t>
+ LUM INOSITY: const Instance<luminosity_t>
+ RUN_NUMBER: const Instance<run_number_t>
+ T IMESTAMP: const Instance<timestamp_t>

taf::Iterable<Property>

T : class

Detector::Property

- detector: const Detector&
- property: const T&

+ getEntriesNumber(): long
+ o p erator[](long): T
+ Property(const Detector&, const T&)
+ s ize(): long

Detector::Entry

+ LB_length: lb_length_t
+ LB_number: lb_number_t
+ lu min o sity: luminosity_t
+ run_number: run_number_t
+ ti mestamp : timestamp_t

+ Entry()

T : class

Detector::Properties::Instance

+ id : int
+ n ame: String

+ In stance(int, String): void
+ o p erator std::pair<int,String>()()
+ o p erator!=(const Instance<T>&): bool
+ o p erator==(const Instance<T>&): bool

«template»
+ operator!=<T2>(const Instance<T2>&): bool
+ operator==<T2>(const Instance<T2>&): bool

«friend»
+ o p erato r<<(std::ostream&, const Instance<T>&): std::ostream&

taf::Iterable<Timepix>

Timepix

- acq u isiti o n _ti me: acquisition_time_t* = new acquisition...
- acti ve_p ixels: active_pixels_t* = new active_pixe...
- b ackground: data_t* = new data_t()
- clu sters: data_t* = new data_t()
- co d e_name: String
- frames_number: frames_number_t* = new frames_numb...
- n ame: String
- n o rmalization: double = 1
- references: std::vector<reference_t*>

# _bind(): void
# _loadEntry(long): void
# _p roperties(): std::vector<std::tuple<int,String,void*>>
+ calib rate(): void
+ co p y(): Timepix
+ getCodeName(): String
+ getName(): String
+ getNo rmalizationFactor(): double
+ operator[](long): Entry
+ o p erato r+(const Timepix&): Timepix
+ o p erator+=(const Timepix&): Timepix&
+ s ize(): long
# T imep ix(std::shared_ptr<TTree>, const String&, const String&)
+ T imep ix(const String&, const String&, const String&)

«template»
+ fi lter<F>(F): Timepix
+ fi lter<T,V,Cmp>(Properties::Instance<T>, V, Cmp): Timepix
+ fi lter<T,V>(Properties::Instance<T>, V): Timepix
+ fi lterLo cal<F>(F): Timepix&
+ fi lterLocal<T,V,Cmp>(Properties::Instance<T>, V, Cmp): Timepix&
+ fi lterLo cal<T,V>(Properties::Instance<T>, V): Timepix&
+ plotPropertiesWithErrors<XT,YT>(XT, YT): ErrorGraph
+ sumByProperty<T>(Properties::Instance<T>): Timepix
+ su mByPropertyLocal<T>(Properties::Instance<T>): Timepix&

Timepix::Properties

+ A C QUISIT ION_TIME: const Detector::Properties::Instance<acquisition_time_t>
+ A C T IV E_PIXELS: const Detector::Properties::Instance<active_pixels_t>
+ BACKGROUND: const Detector::Properties::Instance<data_t>
+ C LUSTERS: const Detector::Properties::Instance<data_t>
+ FRAMES_NUMBER: const Detector::Properties::Instance<frames_number_t>
+ REFERENCE: const Detector::Properties::Instance<reference_t>
+ REFERENCES: const std::vector<String>

Timepix::Entry

+ acq u isiti o n _ti me: acquisition_time_t
+ acti ve_p ixels: active_pixels_t
+ b ackground: data_t
+ clu sters: data_t
+ frames_number: frames_number_t

+ Entry()

taf::Iterable<Timepix>

Timepix

- acq u isiti o n _ti me: acquisition_time_t* = new acquisition...
- acti ve_p ixels: active_pixels_t* = new active_pixe...
- b ackground: data_t* = new data_t()
- clu sters: data_t* = new data_t()
- co d e_name: String
- frames_number: frames_number_t* = new frames_numb...
- n ame: String
- n o rmalization: double = 1
- references: std::vector<reference_t*>

# _bind(): void
# _loadEntry(long): void
# _p roperties(): std::vector<std::tuple<int,String,void*>>
+ calib rate(): void
+ co p y(): Timepix
+ getCodeName(): String
+ getName(): String
+ getNo rmalizationFactor(): double
+ operator[](long): Entry
+ o p erato r+(const Timepix&): Timepix
+ o p erator+=(const Timepix&): Timepix&
+ s ize(): long
# T imep ix(std::shared_ptr<TTree>, const String&, const String&)
+ T imep ix(const String&, const String&, const String&)

«template»
+ fi lter<F>(F): Timepix
+ fi lter<T,V,Cmp>(Properties::Instance<T>, V, Cmp): Timepix
+ fi lter<T,V>(Properties::Instance<T>, V): Timepix
+ fi lterLo cal<F>(F): Timepix&
+ fi lterLocal<T,V,Cmp>(Properties::Instance<T>, V, Cmp): Timepix&
+ fi lterLo cal<T,V>(Properties::Instance<T>, V): Timepix&
+ plotPropertiesWithErrors<XT,YT>(XT, YT): ErrorGraph
+ sumByProperty<T>(Properties::Instance<T>): Timepix
+ su mByPropertyLocal<T>(Properties::Instance<T>): Timepix&

Timepix::Properties

+ A C QUISIT ION_TIME: const Detector::Properties::Instance<acquisition_time_t>
+ A C T IV E_PIXELS: const Detector::Properties::Instance<active_pixels_t>
+ BACKGROUND: const Detector::Properties::Instance<data_t>
+ C LUSTERS: const Detector::Properties::Instance<data_t>
+ FRAMES_NUMBER: const Detector::Properties::Instance<frames_number_t>
+ REFERENCE: const Detector::Properties::Instance<reference_t>
+ REFERENCES: const std::vector<String>

Timepix::Entry

+ acq u isiti o n _ti me: acquisition_time_t
+ acti ve_p ixels: active_pixels_t
+ b ackground: data_t
+ clu sters: data_t
+ frames_number: frames_number_t

+ Entry()

Figure 2.6: Structure diagram of the Detector and Timepix classes in the
data analysis program.

The Detector class provides an API which enables detectors to read data
from an instance of TTree and plot properties as histograms or graphs. The
properties are indexed by the constants stored in the nested class Properties.
This class is used only as a namespace. The constants are instances of more
nested template Instance. It enables the constants to hold a name and an id.
The property can be also retrieved from the detector. The obtained object is
instance of the nested template Property with the template parameter bound
according to the property Instance. The detector defines properties which
are common for all ATLAS luminometers.

The Timepix class represents both, TPX and TPX3 devices. It reads
LBs from all files which are located in the directory passed to the Timepix
constructor. It also enables to filter the LBs according to values of their
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properties. The Timepix class further extends the collection of properties.
Some of the properties are conditioned to the conditional compilation. The
class also enables to iterate over its entries, and to retrieve the LB entries
using a call of operator[].

When the properties are plotted, an instance of either Graph, ErrorGraph,
or Histogram is created, depending on the invoked method. The structure of
these classes and other classes used for plotting is shown in Figure 2.7. The
Histogram template is used only to fit and to plot a histogram. Its template
parameter determines which instance of the ROOT class TH1 is used.

taf::Iterable<ErrorGraph>

ErrorGraph

- __makePullGraph(): ErrorGraph
+ abs(): ErrorGraph&
+ ab s(): ErrorGraph
+ ad dEntry(double, double, double): void
+ ad dEntry(const std::tuple<double,double,double>&): void
+ b egin (): taf::Iterator_base<ErrorGraph>
+ copy(): ErrorGraph
+ d raw(): void
+ en d (): taf::Iterator_base<ErrorGraph>
+ ErrorGraph()
+ ErrorGraph(const Graph&)
+ ErrorGraph(const ErrorGraph&)
+ getEntry(long): std::tuple<double,double,double>
+ getEntry(long, double&*, double&*, double&*): void
+ getError(long): double
+ in sertEntry(long, double, double, double): void
+ in sertEntry(long, const std::tuple<double,double,double>&): void
+ invert(): ErrorGraph&
+ invert(): ErrorGraph
+ makePu ll(long): Histogram<double>
+ makePu ll(long, double, double): Histogram<double>
+ makePu ll(long, double): Histogram<double>
+ o perator-(): ErrorGraph
+ o perator const TGraphErrors&()
+ operator const TGraphErrors*()
+ operator TGraphErrors&()
+ operator TGraphErrors*()
+ o p erato r[](long): std::tuple<double,double,double>
+ p lotErrors(): Graph
+ reciprocate(): ErrorGraph&
+ reciprocate(): ErrorGraph
+ setEntry(long, double, double, double): void
+ setEn try(long, const std::tuple<double,double,double>&): void
+ setError(long, double): void
+ setErrors(const Graph&): void
+ s ize(): long
+ sort(): ErrorGraph&
+ sqrt(): ErrorGraph&
+ sqrt(): ErrorGraph

«template»
# _operation<Op1,Op2>(Op1, Op2): ErrorGraph&
# _operation<Op1,Op2>(double, Op1, Op2): ErrorGraph&
# _operation<Op1,Op2>(const Graph&, Op1, Op2): ErrorGraph&
# _operation<Op1,Op2>(const ErrorGraph&, Op1, Op2): ErrorGraph&
# _operation<Op1,Op2>(const FitResult&, Op1, Op2): ErrorGraph&
# _operation<T,Op1,Op2>(T, Op1, Op2): ErrorGraph&
+ addEntries<T,N>(const std::array<T,N>&, const std::array<T,N>&, const std::array<T,N>&): void
+ addEntries<T>(long, const T*, const T*, const T*): void
+ addEntries<T>(const std::vector<T>&, const std::vector<T>&, const std::vector<T>&): void
+ computeErrors<Fnc>(Fnc): ErrorGraph&
+ ErrorGraph<T,N>(const std::array<T,N>&, const std::array<T,N>&)
+ ErrorGraph<T,N>(const std::array<T,N>&, const std::array<T,N>&, const std::array<T,N>&)
+ ErrorGraph<T>(long, const T*, const T*, const T*)
+ ErrorGraph<T>(const std::vector<T>&, const std::vector<T>&)
+ ErrorGraph<T>(const std::vector<T>&, const std::vector<T>&, const std::vector<T>&)
+ in sertEntries<T,N>(long, const std::array<T,N>&, const std::array<T,N>&, const std::array<T,N>&): void
+ insertEntries<T>(long, long, const T*, const T*, const T*): void
+ insertEntries<T>(long, const std::vector<T>&, const std::vector<T>&, const std::vector<T>&): void
+ operator-<T>(): ErrorGraph
+ operator-=<T>(): ErrorGraph&
+ operator*<T>(): ErrorGraph
+ operator*=<T>(): ErrorGraph&
+ operator/<T>(): ErrorGraph
+ operator/=<T>(): ErrorGraph&
+ operator+<T>(T): ErrorGraph
+ operator+=<T>(T): ErrorGraph&

taf::Iterable<Graph>

Graph

- d ata: std::shared_ptr<TGraph>

- __init(): void
# _fit(TF1*): TFitResultPtr
+ ab s(): Graph&
+ ab s(): Graph
+ addEntry(double, double): void
+ ad dEntry(const std::pair<double,double>&): void
+ d raw(): void
+ getEntriesNumber(): long
+ getEntry(long): std::pair<double,double>
+ getEntry(long, double&, double&): void
+ G raph()
+ in sertEntry(long, double, double): void
+ in sertEntry(long, const std::pair<double,double>&): void
+ invert(): Graph&
+ invert(): Graph
+ o p erator-(): Graph
+ o perator const TGraph&()
+ o p erator const TGraph*()
+ o p erator TGraph&()
+ operator TGraph*()
+ o p erato r[](long): std::pair<double,double>
+ p ro jectT o (Axis::Direction, long): Histogram<double>
+ p ro jectT o (A xis::Direction, long, double, double): Histogram<double>
+ p ro jectT o (Axis::Direction, long, double): Histogram<double>
+ p ro jectToX(long): Histogram<double>
+ p ro jectToX(long, double, double): Histogram<double>
+ p ro jectToX(long, double): Histogram<double>
+ p ro jectToY(long): Histogram<double>
+ p ro jectToY(long, double, double): Histogram<double>
+ p ro jectToY(long, double): Histogram<double>
+ recip rocate(): Graph&
+ recip rocate(): Graph
+ removeEntry(long): void
+ removeEntry(double, double): void
+ removeEntry(const std::pair<double,double>&): void
+ setEntry(long, double, double): void
+ setEn try(long, const std::pair<double,double>&): void
+ s ize(): long
+ sort(): Graph&
+ sqrt(): Graph&
+ sq rt(): Graph

«template»
# _operation<Op>(Op): Graph&
# _operation<Op>(double, Op): Graph&
# _o peration<Op>(const Graph&, Op): Graph&
# _o p eration<Op>(const FitResult&, Op): Graph&
# _operation<T,Op>(T, Op): Graph&
+ addEntries<T,N>(const std::array<T,N>&, const std::array<T,N>&): void
+ addEntries<T>(long, const T*, const T*): void
+ addEntries<T>(const std::vector<T>&, const std::vector<T>&): void
+ Graph<T,N>(const std::array<T,N>&, const std::array<T,N>&)
+ Graph<T>(long, const T*, const T*)
+ Graph<T>(const std::vector<T>&, const std::vector<T>&)
+ in sertEntries<T,N>(long, const std::array<T,N>&, const std::array<T,N>&): void
+ insertEntries<T>(long, long, const T*, const T*): void
+ insertEntries<T>(long, const std::vector<T>&, const std::vector<T>&): void
+ operator-<T>(T): Graph
+ operator-=<T>(T): Graph&
+ operator*<T>(T): Graph
+ operator*=<T>(T): Graph&
+ operator/<T>(T): Graph
+ operator/=<T>(T): Graph&
+ operator+<T>(T): Graph
+ operator+=<T>(T): Graph&

taf::Iterable<Graph>

Graph

- d ata: std::shared_ptr<TGraph>

- __init(): void
# _fit(TF1*): TFitResultPtr
+ ab s(): Graph&
+ ab s(): Graph
+ addEntry(double, double): void
+ ad dEntry(const std::pair<double,double>&): void
+ d raw(): void
+ getEntriesNumber(): long
+ getEntry(long): std::pair<double,double>
+ getEntry(long, double&, double&): void
+ G raph()
+ in sertEntry(long, double, double): void
+ in sertEntry(long, const std::pair<double,double>&): void
+ invert(): Graph&
+ invert(): Graph
+ o p erator-(): Graph
+ o perator const TGraph&()
+ o p erator const TGraph*()
+ o p erator TGraph&()
+ operator TGraph*()
+ o p erato r[](long): std::pair<double,double>
+ p ro jectTo (Axis::Direction, long): Histogram<double>
+ p ro jectTo (A xis::Direction, long, double, double): Histogram<double>
+ p ro jectTo (Axis::Direction, long, double): Histogram<double>
+ p ro jectToX(long): Histogram<double>
+ p ro jectToX(long, double, double): Histogram<double>
+ p ro jectToX(long, double): Histogram<double>
+ p ro jectToY(long): Histogram<double>
+ p ro jectToY(long, double, double): Histogram<double>
+ p ro jectToY(long, double): Histogram<double>
+ recip rocate(): Graph&
+ recip rocate(): Graph
+ removeEntry(long): void
+ removeEntry(double, double): void
+ removeEntry(const std::pair<double,double>&): void
+ setEntry(long, double, double): void
+ setEn try(long, const std::pair<double,double>&): void
+ s ize(): long
+ sort(): Graph&
+ sqrt(): Graph&
+ sq rt(): Graph

«template»
# _operation<Op>(Op): Graph&
# _operation<Op>(double, Op): Graph&
# _o peration<Op>(const Graph&, Op): Graph&
# _o p eration<Op>(const FitResult&, Op): Graph&
# _operation<T,Op>(T, Op): Graph&
+ addEntries<T,N>(const std::array<T,N>&, const std::array<T,N>&): void
+ addEntries<T>(long, const T*, const T*): void
+ addEntries<T>(const std::vector<T>&, const std::vector<T>&): void
+ Graph<T,N>(const std::array<T,N>&, const std::array<T,N>&)
+ Graph<T>(long, const T*, const T*)
+ Graph<T>(const std::vector<T>&, const std::vector<T>&)
+ in sertEntries<T,N>(long, const std::array<T,N>&, const std::array<T,N>&): void
+ insertEntries<T>(long, long, const T*, const T*): void
+ insertEntries<T>(long, const std::vector<T>&, const std::vector<T>&): void
+ operator-<T>(T): Graph
+ operator-=<T>(T): Graph&
+ operator*<T>(T): Graph
+ operator*=<T>(T): Graph&
+ operator/<T>(T): Graph
+ operator/=<T>(T): Graph&
+ operator+<T>(T): Graph
+ operator+=<T>(T): Graph&

T : typename

Histogram

- data: std::shared_ptr<TH1_t>

- __check(): void
- __ init(): void
# _fit(TF1*): TFitResultPtr
+ ad d Entries(long, const T*, const T*): void
+ addEntry(T, T): void
+ d raw(): void
+ H isto gram(String, long, double, double)
+ H istogram(String, long, long, const T*, const T*)
+ H istogram(String, long, const std::vector<T>&)
+ H istogram(String, long, const std::vector<T>&, const std;:vector<T>&)
+ H isto gram(String, long, double, double, long, const T*, const T*)
+ H isto gram(String, long, double, double, const std::vector<T>&)
+ H istogram(String, long, double, double, const std::vector<T>&, const std::vector<T>&)
+ H isto gram(long, double, double)
+ H isto gram(long, long, const T*, const T*)
+ H istogram(long, const std::vector<T>&)
+ H istogram(long, const std::vector<T>&, const std::vector<T>&)
+ H isto gram(long, double, double, long, const T*, const T*)
+ H isto gram(long, double, double, const std::vector<T>&)
+ H istogram(long, double, double, const std::vector<T>&, const std::vector<T>&)
+ resetRan ge(Axis::Direction): void

«template»
+ H istogram<N>(String, long, const std::array<T,N>&)
+ H istogram<N>(String, long, const std;:array<T,N>&, const std::array<T,N>&)
+ H isto gram<N>(String, long, double, double, const std::array<T,N>&)
+ H istogram<N>(String, long, double, double, const std::array<T,N>&, const std::array<T,N>&)
+ H istogram<N>(long, const std::array<T,N>&)
+ H istogram<N>(long, const std;:array<T,N>&, const std::array<T,N>&)
+ H istogram<N>(long, double, double, const std::array<T,N>&)
+ H istogram<N>(long, double, double, const std::array<T,N>&, const std::array<T,N>&)

taf::Drawable

Plot

- marker_size: double = 1
- title: String = ""
- x: Axis
- y: Axis

# _axis (Axis::Direction): Axis&
# _axis (Axis::Direction): const Axis&
# _b efo reD raw(Axis::Direction, TAxis*): void
# _fit(TF1*): TFitResultPtr
+ _ in crementRange(double): double
+ _ran ge(double): double
+ fi t(T F1*): FitResult
+ fi t(String): FitResult
+ fi t(std ::fu n ction<double(double*,double*)>, long): FitResult
+ fi t(std ::fu n ction<double(double,double*)>, long): FitResult
+ getM arkerSize(): double
+ getRan ge(A xis::Direction): std::pair<double,double>
+ getT imeD isp lay(Axis::Direction): bool
+ getT imeFo rmat(Axis::Direction): String
+ getT itle(): String
+ getT itle(Axis::Direction): String
+ getT itleOff set(Axis::Direction): double
+ getXRange(): std::pair<double,double>
+ getXRangeLow(): double
+ getXRangeUp(): double
+ getXT imeDisplay(): bool
+ getXTimeFormat(): String
+ getXT itle(): String
+ getXT itleOffset(): double
+ getY Range(): std::pair<double,double>
+ getYRangeLow(): double
+ getYRangeUp(): double
+ getY T imeDisplay(): bool
+ getYTimeFormat(): String
+ getY T itle(): String
+ getY T itleOffset(): double
+ isRan geSet(A xis::Direction): bool
+ isRan geSymetric(Axis::Direction): bool
+ isXRan geSet(): bool
+ isXRan geSymetric(): bool
+ isYRan geSet(): bool
+ isYRan geSymetric(): bool
+ resetRan ge(Axis::Direction): void
+ resetXRange(): void
+ resetYRange(): void
+ setM arkerSize(double): void
+ setRan ge(A xis::Direction, double, double): void
+ setRan ge(A xis::Direction, double): void
+ setRan ges(double, double, double, double): void
+ setRan ges(double, double): void
+ setRan gesSymeteric(): void
+ setRan geSymetric(Axis::Direction): void
+ setT imeD isp lay(Axis::Direction, bool): void
+ setT imeD isplay(Axis::Direction, bool, String): void
+ setT imeFo rmat(Axis::Direction, String): void
+ setT itle(String): void
+ setT itle(Axis::Direction, String): void
+ setT itleOffset(Axis::Direction, double): void
+ setT itles(String, String, String): void
+ setT itles(String, String): void
+ setXRange(double, double): void
+ setXRange(double): void
+ setXRangeSymetric(): void
+ setXT imeD isplay(bool): void
+ setXT imeDisplay(bool, String): void
+ setXTimeFormat(String): void
+ setXT itle(String): void
+ setXT itleOffset(double): void
+ setYRange(double, double): void
+ setYRange(double): void
+ setYRangeSymetric(): void
+ setYT imeD isplay(bool): void
+ setYT imeDisplay(bool, String): void
+ setYTimeFormat(String): void
+ setYT itle(String): void
+ setYT itleOffset(double): void

«template»
# _beforeDraw<T>(T*, TAxis*, TAxis*): void
+ _extreme<T>(long, const T*): double
+ _range<T>(long, const T*): double

Plot::Axis

- range: std::pair<double,double> = { 0, 0 }
- ran ge_set: bool = false
- ran ge_symetric: bool = false
- ti me_format: String = ""
- title: String = ""
- ti tle_offset: double = 1

«enumeration»
Direction

 X
 Y

taf::Drawable

FitResult

- fit: std::shared_ptr<TF1>
- result: TFitResultPtr

+ d raw(): void
+ evalu ate(double): double
+ FitResult(TFitResult, TF1*)
+ getParameter(long): double
+ getParameterError(long): double
+ getParametersNumber(): long
+ operator const TF1*()
+ o p erator const TFitResultPtr()
+ operator TF1*()
+ o p erator TFitResultPtr()

Canvas

- d ata: std::shared_ptr<TCanvas>

- __ init(): void
+ C an vas(String)
+ d raw(co n st taf::Drawable&): void
+ d raw(TObject*, String): void
+ d raw(String, double, double): Text
+ o p erator const TCanvas*()
+ o perator TCanvas*()
+ p rint(): void
+ p rint(String): void

taf::Drawable

Text

- d ata: String
- spacing: double = TEXT_LINE_SPACING
- texts: std::vector<std::shared_ptr<TText>>
- x: double = TEXT_COLUMN_LEFT
- y: double = TEXT_LINE_FIRST

+ d raw(): void
+ getLin eSp acing(): double
+ getX(): double
+ getY(): double
+ o p erator String()
+ o p erator String&()
+ setLin eSp acing(double): void
+ setX(double): void
+ setY (double): void
+ Text(cons String&, double, double)

T : typename

Histogram

- data: std::shared_ptr<TH1_t>

- __check(): void
- __ init(): void
# _fit(TF1*): TFitResultPtr
+ ad d Entries(long, const T*, const T*): void
+ addEntry(T, T): void
+ d raw(): void
+ H isto gram(String, long, double, double)
+ H istogram(String, long, long, const T*, const T*)
+ H istogram(String, long, const std::vector<T>&)
+ H istogram(String, long, const std::vector<T>&, const std;:vector<T>&)
+ H isto gram(String, long, double, double, long, const T*, const T*)
+ H isto gram(String, long, double, double, const std::vector<T>&)
+ H istogram(String, long, double, double, const std::vector<T>&, const std::vector<T>&)
+ H isto gram(long, double, double)
+ H isto gram(long, long, const T*, const T*)
+ H istogram(long, const std::vector<T>&)
+ H istogram(long, const std::vector<T>&, const std::vector<T>&)
+ H isto gram(long, double, double, long, const T*, const T*)
+ H isto gram(long, double, double, const std::vector<T>&)
+ H istogram(long, double, double, const std::vector<T>&, const std::vector<T>&)
+ resetRan ge(Axis::Direction): void

«template»
+ H istogram<N>(String, long, const std::array<T,N>&)
+ H istogram<N>(String, long, const std;:array<T,N>&, const std::array<T,N>&)
+ H isto gram<N>(String, long, double, double, const std::array<T,N>&)
+ H istogram<N>(String, long, double, double, const std::array<T,N>&, const std::array<T,N>&)
+ H istogram<N>(long, const std::array<T,N>&)
+ H istogram<N>(long, const std;:array<T,N>&, const std::array<T,N>&)
+ H istogram<N>(long, double, double, const std::array<T,N>&)
+ H istogram<N>(long, double, double, const std::array<T,N>&, const std::array<T,N>&)

taf::Drawable

FitResult

- fit: std::shared_ptr<TF1>
- result: TFitResultPtr

+ d raw(): void
+ evalu ate(double): double
+ FitResult(TFitResult, TF1*)
+ getParameter(long): double
+ getParameterError(long): double
+ getParametersNumber(): long
+ operator const TF1*()
+ o p erator const TFitResultPtr()
+ operator TF1*()
+ o p erator TFitResultPtr()

Canvas

- d ata: std::shared_ptr<TCanvas>

- __ init(): void
+ C an vas(String)
+ d raw(co n st taf::Drawable&): void
+ d raw(TObject*, String): void
+ d raw(String, double, double): Text
+ o p erator const TCanvas*()
+ o perator TCanvas*()
+ p rint(): void
+ p rint(String): void

Figure 2.7: Structure diagram of plotting classes in the data analysis program.

The Graph class is used to fit and to plot a graph without any error bars. It
also enables to be used in various calculations, to manipulate with its entries,
and to project the entries on one of the axes to produce a histogram. A graph
can be combined with other graphs and with fit results. When a graph is
used in a calculation, the calculation is performed for every entry and they
are stored in a new graph instance. This is performed for every operation in
the calculation.

The ErrorGraph class is used to fit and to plot a graph with error bars
for the Y values. It is a child class of the Graph class, therefore, it can be also
used for the same purposes. The ErrorGraph class also enables to create a
histogram storing the pull distribution.

All of these classes are descendants of the abstract class Plot. This class
enables to set the ranges of the axes, as well as to set various traits which
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change the appearance of the plot when it is drawn into a canvas. A canvas
is instance of the Canvas class. It used to draw plots and text labels, and to
print itself into a PNG, PDF, or any other image file. When a plot is printed,
it resets the canvas, therefore, the text labels have to be printed later over the
plots. The labels are instances of the Text class. It is used to bind a text with
its coordinates, and its line spacing.

All of the classes use custom class representing string. The class is the
String class, and its structure is show in Figure 2.8. The class is a wrapper
around the ROOT class TString. It purpose is to enable use any of TString,
std::string, and C string interchangeably, and to simplify text manipulation
and creation. The String class can turn any value of any printable type to
its instance. It can be created using a list initialization, where all elements
of the list are joined into a single string. The class can also create a string
by joining a series of values and separating them by a delimiter. And it can
also create a string using formatting which is used by the printf family of
functions.

taf::Iterable<String>

String

- d ata: TString

+ jo in(const String&): String
+ jo in By(const String& delimiter, const String& first): String
+ o p erator const char*()
+ o p erator std::string()
+ o perator TString()
+ o p erator!=(const String&): bool
+ operator[](long): Entry&
+ operator[](long): Entry
+ o p erator+(const String&): String
+ o p erator+=(const String&): String&
+ o p erator<(const String&): bool
+ o perator=(String): String&
+ o p erator==(const String&): bool
+ s ize(): long
+ String(const String&)
+ Strin g(s td ::in itializer_list<String>)

«template»
+ format<Args...>(String, Args...): String
+ join<Args...>(const String&, Args...): String
+ joinBy<Args...>(const String&, const String&, Args...): String
+ String<Args...>(String, Args...)
+ String<T>(T)

«friend»
+ o p erato r<<(std::ostream&, const String&): std::ostream&
+ o p erato r>>(std::istream&, String&): std::istream&

Figure 2.8: Structure diagram of the String class.

Some of the classes like Plot, Text, or FitResult implement the inter-
face taf::Drawable. This interface marks the fact that instances of the
implementing classes can be drawn using the draw method. Some other
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classes like Timepix, Property Graph, ErrorGraph, or String inherit from the
taf::Iterable mixin. The structure of this mixin and its related template
taf::Iterator_base are shown in Figure 2.9.

Data : typename

taf::Iterator_base

# d ata: Data& {readOnly}
# in d ex: long long

+ getIndex(): long long
+ operator--(): Iterator_base&
+ operator-=(long long): Iterator_base&
+ operator long long()
+ operator!=(Iterator_base&): bool
+ operator*(): Entry
+ operator++(): Iterator_base&
+ operator+=(long long): Iterator_base&
+ operator==(Iterator_base&): bool
+ taf::Iterato r_base(Data&, long long)

typename Data::Entry

«alias»
taf::Iterator_base::Entry

Child : typename

taf::Iterable

- from_index: long long = -1
- to_index: long long = -1

- __fi n d (T , I, I, long long): long long
- __ in d ex(long long, long long&): long long
# _b egin Index(): long long
# _en d Index(): long long
+ begin(): Iterator
+ end(): Iterator
+ fi n d (T , long long): long long
+ from(long long): Child&
+ from(long long): Child&
+ rfi n d (T, long long): long long
+ size(): long long
+ to(long long): Child&
+ to(long long): Child&

typename taf::Iterator_base<Child>

«alias»
taf::Iterable::Iterator

Figure 2.9: Structure diagram of the taf::Iterable mixin and the template
taf::Iterator_base.

The taf::Iterable mixin adds the ability to iterate over to its child
classes. The only precondition for this mixin is that the instances of the
child have the operator[] and the method size. The mixin also enables to
iterate over only a subset of entries in the child object. It uses the instances
of the taf::Iterator_base template as the iterators. The instances have
the template parameter bound to the child class. The iterator can move
in both directions by any amount of entries, and it retrieves entries from
the child object using the operator[]. However, because of its erroneous
implementation, it does not meet the requirements for an iterator according
to the C++ standard.

2.2.1 File structures

The first produced file is a map of noisy pixels. It is a text file which con-
tains space separated zeros and ones. There is 65,536 entries in the file.
Each entry represents one pixel. The value of one means that the pixel
is marked as noisy, and the zero value means it is not noisy. The maps
for individual runs are stored in a directory excludedPixels and the name
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of each map is excluded_pixels_$D_L$L_run$R_${S}sigma.dat where $D
is the name of a TPX device, $L is a number of a TPX layer, $R is an
ATLAS run number, and ${S} is a sigma level. The merged maps for the
whole years are stored in a directories which names are the years. The di-
rectories are in a directory noisyPixels. The name of each merged map is
noisy_pixels_$D_L$L_${S}sigma.dat.

The first LB file is created during the production of TPX LBs. However,
it contains no TPX data, instead it contains some of the ATLAS reference
data. The structure of the file is shown in Figure 2.10. The files are stored in
a directory root and the name of each file is TPX_hits_$R_ATLAS.root where
$R is an ATLAS run number.

RunNum

AtlasLBFile

$RunNum: RunDir

AtlasLBFile::RunDir

A tlasLu mi: AtlasLumi [1..*]

AtlasLBFile::RunDir::
AtlasLumi

EMEC: float
EMEC_err: float
EMEC_present: bool
LB_duration: double
LB_end_time: double
LB_number: int
LB_start_time: double
LUC ID: float
LUCID_err: float
LUCID_present: bool
T ILE: float
T ILE_err: float
T ILE_present: bool
TRACKS: float
TRACKS_err: float
TRACKS_present: bool

Figure 2.10: Structure diagram of an ATLAS LB File. Variable RunNum is
used as a name of a directory. The dollar sign sigil syntax is used to mark a
string substitution.

The file contains a single TTree object contained in a directory. The name
of the directory is equal to the number of the ATLAS run, LBs of which the
data describe. The TTree object is called AtlasLumi, and it contains sixteen
branches. Four branches describe the LBs and the twelve branches are related
to other ATLAS detectors. The timestamp of the start of the LB is stored in
the branch LB_start_time, and the timestamp of the end of the LB is stored
in the LB_end_time branch. The difference of these two timestamp is the
duration of the LB, which is stored in the branch LB_duration. All of these
three branches store their values in 64-bit floating-point numbers. The branch
LB_number stores the identification number of the LB in a 32-bit integer.

The other twelve branches can be split into four group by three branches.
Each group contains one branch containing estimated luminosity. The name
of the branch is the name of the reference data. Each group also contains one
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branch storing the uncertainty of the luminosity. The name of this branch is
the name of the reference data with suffix of _err. Both, the luminosity and
the uncertainty branches store their values in 32-bit floating-point numbers.
The last branch in the group stores whether the detector contains any data
for the current LB. The name of the branch is the name of the reference data
with suffix of _present. The branch stores the information in a Boolean
value. The four groups are for reference data EMEC, LUCID, TILE, and TRACKS.
The EMEC data come from the Electromagnetic Endcap (EMEC), the LUCID
data come from LUCID, the TILE data come from the tile calorimeter, and the
TRACKS data come from track counting in the ATLAS Inner Detector [4, 19].

The first TPX LB file is created during the production of LBs. The struc-
ture of the file is show in Figure 2.11. The files are also stored in the directory
root and the name of each file is TPX_hits_$R_$D.root where $R is an ATLAS
run number, and $D is a name of a TPX device.

The file contains objects stored in a structure of directories. The only
thing the root directory contains is a directory, name of which is a number
of an ATLAS run. This directory also contain only one directory, name of
which is a name of a TPX device. This directory contains two TTree objects,
two directories, and eighty TH1D objects. There are eight TH1D objects per
each converter region and each TPX layer. Name of each TH1D object in the
directory contains both, the number of the ATLAS run, and the name of the
TPX device from which the data originate. The objects with name starting
hitsDist are the histograms created during the noisy pixel detection. They
store the distribution of number of hits. As the class name suggests, the values
of the histograms are stored in 64-bit floating-point numbers. Note that the
forty histograms store also the fitted Gaussian functions. The other forty
histograms were also created during the noisy pixel detection. They store
the information how many time was each pixel hit. The data are also stored
in 64-bit floating-point number. The names of these histograms start with
hitsPix.

The two TTree objects are summedHits and fitResults. The first tree,
summedHits stores the values used to create the histograms. All of its data are
stored in a single entry. The summed numbers of hits per each pixel are stored
in the branch summed_hits_reg. They are stored in a three-dimensional array
of 32-bit floating-point numbers. The dimensions separate the data by the
TPX layer, the converter region, and the pixel. The individual_hits_reg
branch stores the number of pixels which were hit during a single frame. It is
similar to the summed hits but it ignores values of pixel counters. The hits are
also stored in a three-dimensional array of 32-bit floating-point numbers. The
last branch in the tree is the IntLumi branch. It stores integrated luminosity
of the run which was read from the ATLAS reference files.

The second tree is fitResults. It stores the parameter values of the Gaus-
sian functions used for fitting the histograms. The values are results of the
fitting. All of them are stored in a single tree entry. The tree contains eight
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RunNum
DeviceName

TPXBigLBFile

$RunNum: RunDir

TPXBigLBFile::RunDir

$DeviceName: DeviceDir

TPXBigLBFile::RunDir::DeviceDir

ExcludedPixels: ExcludedPixelsDir
fitResults: FitResults
hitsDist_$DeviceName_individual_hits_L1_R0_run$RunNumber: TH1D
hitsDist_$DeviceName_individual_hits_L1_R0_run$RunNumber_noR0extended: TH1D
hitsDist_$DeviceName_individual_hits_L1_R1_run$RunNumber: TH1D
hitsDist_$DeviceName_individual_hits_L1_R1_run$RunNumber_noR0extended: TH1D
hitsDist_$DeviceName_individual_hits_L1_R2_run$RunNumber: TH1D
hitsDist_$DeviceName_individual_hits_L1_R2_run$RunNumber_noR0extended: TH1D
hitsDist_$DeviceName_individual_hits_L1_R3_run$RunNumber: TH1D
hitsDist_$DeviceName_individual_hits_L1_R3_run$RunNumber_noR0extended: TH1D
hitsDist_$DeviceName_individual_hits_L1_R4_run$RunNumber: TH1D
hitsDist_$DeviceName_individual_hits_L1_R4_run$RunNumber_noR0extended: TH1D
hitsDist_$DeviceName_individual_hits_L2_R0_run$RunNumber: TH1D
hitsDist_$DeviceName_individual_hits_L2_R0_run$RunNumber_noR0extended: TH1D
hitsDist_$DeviceName_individual_hits_L2_R1_run$RunNumber: TH1D
hitsDist_$DeviceName_individual_hits_L2_R1_run$RunNumber_noR0extended: TH1D
hitsDist_$DeviceName_individual_hits_L2_R2_run$RunNumber: TH1D
hitsDist_$DeviceName_individual_hits_L2_R2_run$RunNumber_noR0extended: TH1D
hitsDist_$DeviceName_individual_hits_L2_R3_run$RunNumber: TH1D
hitsDist_$DeviceName_individual_hits_L2_R3_run$RunNumber_noR0extended: TH1D
hitsDist_$DeviceName_individual_hits_L2_R4_run$RunNumber: TH1D
hitsDist_$DeviceName_individual_hits_L2_R4_run$RunNumber_noR0extended: TH1D
hitsDist_$DeviceName_L1_R0_run$RunNumber: TH1D
hitsDist_$DeviceName_L1_R0_run$RunNumber_noR0extended: TH1D
hitsDist_$DeviceName_L1_R1_run$RunNumber: TH1D
hitsDist_$DeviceName_L1_R1_run$RunNumber_noR0extended: TH1D
hitsDist_$DeviceName_L1_R2_run$RunNumber: TH1D
hitsDist_$DeviceName_L1_R2_run$RunNumber_noR0extended: TH1D
hitsDist_$DeviceName_L1_R3_run$RunNumber: TH1D
hitsDist_$DeviceName_L1_R3_run$RunNumber_noR0extended: TH1D
hitsDist_$DeviceName_L1_R4_run$RunNumber: TH1D
hitsDist_$DeviceName_L1_R4_run$RunNumber_noR0extended: TH1D
hitsDist_$DeviceName_L2_R0_run$RunNumber: TH1D
hitsDist_$DeviceName_L2_R0_run$RunNumber_noR0extended: TH1D
hitsDist_$DeviceName_L2_R1_run$RunNumber: TH1D
hitsDist_$DeviceName_L2_R1_run$RunNumber_noR0extended: TH1D
hitsDist_$DeviceName_L2_R2_run$RunNumber: TH1D
hitsDist_$DeviceName_L2_R2_run$RunNumber_noR0extended: TH1D
hitsDist_$DeviceName_L2_R3_run$RunNumber: TH1D
hitsDist_$DeviceName_L2_R3_run$RunNumber_noR0extended: TH1D
hitsDist_$DeviceName_L2_R4_run$RunNumber: TH1D
hitsDist_$DeviceName_L2_R4_run$RunNumber_noR0extended: TH1D
hitsPix_$DeviceName_individual_hits_L1_R0_run$RunNumber: TH1D
hitsPix_$DeviceName_individual_hits_L1_R0_run$RunNumber_noR0extension: TH1D
hitsPix_$DeviceName_individual_hits_L1_R1_run$RunNumber: TH1D
hitsPix_$DeviceName_individual_hits_L1_R1_run$RunNumber_noR0extension: TH1D
hitsPix_$DeviceName_individual_hits_L1_R2_run$RunNumber: TH1D
hitsPix_$DeviceName_individual_hits_L1_R2_run$RunNumber_noR0extension: TH1D
hitsPix_$DeviceName_individual_hits_L1_R3_run$RunNumber: TH1D
hitsPix_$DeviceName_individual_hits_L1_R3_run$RunNumber_noR0extension: TH1D
hitsPix_$DeviceName_individual_hits_L1_R4_run$RunNumber: TH1D
hitsPix_$DeviceName_individual_hits_L1_R4_run$RunNumber_noR0extension: TH1D
hitsPix_$DeviceName_individual_hits_L2_R0_run$RunNumber: TH1D
hitsPix_$DeviceName_individual_hits_L2_R0_run$RunNumber_noR0extension: TH1D
hitsPix_$DeviceName_individual_hits_L2_R1_run$RunNumber: TH1D
hitsPix_$DeviceName_individual_hits_L2_R1_run$RunNumber_noR0extension: TH1D
hitsPix_$DeviceName_individual_hits_L2_R2_run$RunNumber: TH1D
hitsPix_$DeviceName_individual_hits_L2_R2_run$RunNumber_noR0extension: TH1D
hitsPix_$DeviceName_individual_hits_L2_R3_run$RunNumber: TH1D
hitsPix_$DeviceName_individual_hits_L2_R3_run$RunNumber_noR0extension: TH1D
hitsPix_$DeviceName_individual_hits_L2_R4_run$RunNumber: TH1D
hitsPix_$DeviceName_individual_hits_L2_R4_run$RunNumber_noR0extension: TH1D
hitsPix_$DeviceName_L1_R0_run$RunNumber: TH1D
hitsPix_$DeviceName_L1_R0_run$RunNumber_noR0extension: TH1D
hitsPix_$DeviceName_L1_R1_run$RunNumber: TH1D
hitsPix_$DeviceName_L1_R1_run$RunNumber_noR0extension: TH1D
hitsPix_$DeviceName_L1_R2_run$RunNumber: TH1D
hitsPix_$DeviceName_L1_R2_run$RunNumber_noR0extension: TH1D
hitsPix_$DeviceName_L1_R3_run$RunNumber: TH1D
hitsPix_$DeviceName_L1_R3_run$RunNumber_noR0extension: TH1D
hitsPix_$DeviceName_L1_R4_run$RunNumber: TH1D
hitsPix_$DeviceName_L1_R4_run$RunNumber_noR0extension: TH1D
hitsPix_$DeviceName_L2_R0_run$RunNumber: TH1D
hitsPix_$DeviceName_L2_R0_run$RunNumber_noR0extension: TH1D
hitsPix_$DeviceName_L2_R1_run$RunNumber: TH1D
hitsPix_$DeviceName_L2_R1_run$RunNumber_noR0extension: TH1D
hitsPix_$DeviceName_L2_R2_run$RunNumber: TH1D
hitsPix_$DeviceName_L2_R2_run$RunNumber_noR0extension: TH1D
hitsPix_$DeviceName_L2_R3_run$RunNumber: TH1D
hitsPix_$DeviceName_L2_R3_run$RunNumber_noR0extension: TH1D
hitsPix_$DeviceName_L2_R4_run$RunNumber: TH1D
hitsPix_$DeviceName_L2_R4_run$RunNumber_noR0extension: TH1D
NonCalibratedLuminosity: NonCalibratedLuminosityDir
summedHits: SummedHits

TPXBigLBFile::RunDir::DeviceDir::SummedHits

individual_hits_reg: float ([2][5][65536])
IntLumi: double
summed_hits_reg: float ([2][5][65536])

TPXBigLBFile::RunDir::DeviceDir::FitResults

mean: double ([2][5])
mean_individual_hits: double ([2][5])
mean_individual_hits_noR0extended: double ([2][5])
mean_noR0extended: double ([2][5])
sigma: double ([2][5])
sigma_individual_hits: double ([2][5])
sigma_individual_hits_noR0extended: double ([2][5])
sigma_noR0extended: double ([2][5])

TPXBigLBFile::RunDir::DeviceDir::ExcludedPixelsDir

2sigma: 2SigmaDir
3sigma: 3SigmaDir
5sigma: 5SigmaDir

TPXBigLBFile::RunDir::DeviceDir::
ExcludedPixelsDir::3SigmaDir

all_L1_3sigma_run$RunNum: TH2D
all_L2_3sigma_run$RunNum: TH2D
excludedPixels: ExcludedPixels
high_L1_3sigma_run$RunNum: TH2D
high_L2_3sigma_run$RunNum: TH2D
low_L1_3sigma_run$RunNum: TH2D
low_L2_3sigma_run$RunNum: TH2D
R0_L1_3sigma_run$RunNum: TH2D
R0_L2_3sigma_run$RunNum: TH2D
R0extended_L1_3sigma_run$RunNum: TH2D
R0extended_L2_3sigma_run$RunNum: TH2D

TPXBigLBFile::RunDir::DeviceDir::
ExcludedPixelsDir::2SigmaDir

all_L1_2sigma_run$RunNum: TH2D
all_L2_2sigma_run$RunNum: TH2D
excludedPixels: ExcludedPixels
high_L1_2sigma_run$RunNum: TH2D
high_L2_2sigma_run$RunNum: TH2D
low_L1_2sigma_run$RunNum: TH2D
low_L2_2sigma_run$RunNum: TH2D
R0_L1_2sigma_run$RunNum: TH2D
R0_L2_2sigma_run$RunNum: TH2D
R0extended_L1_2sigma_run$RunNum: TH2D
R0extended_L2_2sigma_run$RunNum: TH2D

TPXBigLBFile::RunDir::DeviceDir::
ExcludedPixelsDir::5SigmaDir

all_L1_5sigma_run$RunNum: TH2D
all_L2_5sigma_run$RunNum: TH2D
excludedPixels: ExcludedPixels
high_L1_5sigma_run$RunNum: TH2D
high_L2_5sigma_run$RunNum: TH2D
low_L1_5sigma_run$RunNum: TH2D
low_L2_5sigma_run$RunNum: TH2D
R0_L1_5sigma_run$RunNum: TH2D
R0_L2_5sigma_run$RunNum: TH2D
R0extended_L1_5sigma_run$RunNum: TH2D
R0extended_L2_5sigma_run$RunNum: TH2D

TPXBigLBFile::RunDir::DeviceDir::
ExcludedPixelsDir::2SigmaDir::

ExcludedPixels

high: int ([2][5])
low: int ([2][5])

TPXBigLBFile::RunDir::DeviceDir::
ExcludedPixelsDir::3SigmaDir::

ExcludedPixels

high: int ([2][5])
low: int ([2][5])

TPXBigLBFile::RunDir::DeviceDir::
ExcludedPixelsDir::5SigmaDir::

ExcludedPixels

high: int ([2][5])
low: int ([2][5])

TPXBigLBFile::RunDir::DeviceDir::NonCalibratedLuminosityDir

perFrameL1: PerFrame [1..*]
perFrameL2: PerFrame [1..*]
perLBL1: PerLB [1..*]
perLBL2: PerLB [1..*]

TPXBigLBFile::RunDir::DeviceDir::
NonCalibratedLuminosityDir::

PerFrame

active_pixels_3sigma: int
active_pixels_all: int
aq_time: float
clstr_count: int
frame_start: double
run_number: int
summed_hits_3sigma: int
summed_hits_all: int

TPXBigLBFile::RunDir::DeviceDir::
NonCalibratedLuminosityDir::PerLB

active_pixels_3sigma: int
active_pixels_all: int
aq_time_3sigma: float
aq_time_all: float
clstr_count: int
frames_3sigma: int
frames_all: int
LB_duration: double
LB_end_time: double
LB_number: int
LB_start_time: double
present_3sigma: bool
present_all: bool
run_number: int
summed_hits_LB_3sigma: unsigned int
summed_hits_LB_all: unsigned int

Figure 2.11: Structure diagram of a big TPX LB file. (Part 1/3)

branches in total, four store the mean of the Gaussian functions and the other
four store the widths. The names of the branches storing the means start with
mean and the names of the branches storing the widths start with sigma. All of
the branches store the data in two-dimensional arrays of 64-bit floating-point
numbers. The first dimension represents a TPX layer and the second dimen-
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2. As-is

RunNum
DeviceName

TPXBigLBFile

$RunNum: RunDir

TPXBigLBFile::RunDir

$DeviceName: DeviceDir

TPXBigLBFile::RunDir::DeviceDir

ExcludedPixels: ExcludedPixelsDir
fitResults: FitResults
hitsDist_$DeviceName_individual_hits_L1_R0_run$RunNumber: TH1D
hitsDist_$DeviceName_individual_hits_L1_R0_run$RunNumber_noR0extended: TH1D
hitsDist_$DeviceName_individual_hits_L1_R1_run$RunNumber: TH1D
hitsDist_$DeviceName_individual_hits_L1_R1_run$RunNumber_noR0extended: TH1D
hitsDist_$DeviceName_individual_hits_L1_R2_run$RunNumber: TH1D
hitsDist_$DeviceName_individual_hits_L1_R2_run$RunNumber_noR0extended: TH1D
hitsDist_$DeviceName_individual_hits_L1_R3_run$RunNumber: TH1D
hitsDist_$DeviceName_individual_hits_L1_R3_run$RunNumber_noR0extended: TH1D
hitsDist_$DeviceName_individual_hits_L1_R4_run$RunNumber: TH1D
hitsDist_$DeviceName_individual_hits_L1_R4_run$RunNumber_noR0extended: TH1D
hitsDist_$DeviceName_individual_hits_L2_R0_run$RunNumber: TH1D
hitsDist_$DeviceName_individual_hits_L2_R0_run$RunNumber_noR0extended: TH1D
hitsDist_$DeviceName_individual_hits_L2_R1_run$RunNumber: TH1D
hitsDist_$DeviceName_individual_hits_L2_R1_run$RunNumber_noR0extended: TH1D
hitsDist_$DeviceName_individual_hits_L2_R2_run$RunNumber: TH1D
hitsDist_$DeviceName_individual_hits_L2_R2_run$RunNumber_noR0extended: TH1D
hitsDist_$DeviceName_individual_hits_L2_R3_run$RunNumber: TH1D
hitsDist_$DeviceName_individual_hits_L2_R3_run$RunNumber_noR0extended: TH1D
hitsDist_$DeviceName_individual_hits_L2_R4_run$RunNumber: TH1D
hitsDist_$DeviceName_individual_hits_L2_R4_run$RunNumber_noR0extended: TH1D
hitsDist_$DeviceName_L1_R0_run$RunNumber: TH1D
hitsDist_$DeviceName_L1_R0_run$RunNumber_noR0extended: TH1D
hitsDist_$DeviceName_L1_R1_run$RunNumber: TH1D
hitsDist_$DeviceName_L1_R1_run$RunNumber_noR0extended: TH1D
hitsDist_$DeviceName_L1_R2_run$RunNumber: TH1D
hitsDist_$DeviceName_L1_R2_run$RunNumber_noR0extended: TH1D
hitsDist_$DeviceName_L1_R3_run$RunNumber: TH1D
hitsDist_$DeviceName_L1_R3_run$RunNumber_noR0extended: TH1D
hitsDist_$DeviceName_L1_R4_run$RunNumber: TH1D
hitsDist_$DeviceName_L1_R4_run$RunNumber_noR0extended: TH1D
hitsDist_$DeviceName_L2_R0_run$RunNumber: TH1D
hitsDist_$DeviceName_L2_R0_run$RunNumber_noR0extended: TH1D
hitsDist_$DeviceName_L2_R1_run$RunNumber: TH1D
hitsDist_$DeviceName_L2_R1_run$RunNumber_noR0extended: TH1D
hitsDist_$DeviceName_L2_R2_run$RunNumber: TH1D
hitsDist_$DeviceName_L2_R2_run$RunNumber_noR0extended: TH1D
hitsDist_$DeviceName_L2_R3_run$RunNumber: TH1D
hitsDist_$DeviceName_L2_R3_run$RunNumber_noR0extended: TH1D
hitsDist_$DeviceName_L2_R4_run$RunNumber: TH1D
hitsDist_$DeviceName_L2_R4_run$RunNumber_noR0extended: TH1D
hitsPix_$DeviceName_individual_hits_L1_R0_run$RunNumber: TH1D
hitsPix_$DeviceName_individual_hits_L1_R0_run$RunNumber_noR0extension: TH1D
hitsPix_$DeviceName_individual_hits_L1_R1_run$RunNumber: TH1D
hitsPix_$DeviceName_individual_hits_L1_R1_run$RunNumber_noR0extension: TH1D
hitsPix_$DeviceName_individual_hits_L1_R2_run$RunNumber: TH1D
hitsPix_$DeviceName_individual_hits_L1_R2_run$RunNumber_noR0extension: TH1D
hitsPix_$DeviceName_individual_hits_L1_R3_run$RunNumber: TH1D
hitsPix_$DeviceName_individual_hits_L1_R3_run$RunNumber_noR0extension: TH1D
hitsPix_$DeviceName_individual_hits_L1_R4_run$RunNumber: TH1D
hitsPix_$DeviceName_individual_hits_L1_R4_run$RunNumber_noR0extension: TH1D
hitsPix_$DeviceName_individual_hits_L2_R0_run$RunNumber: TH1D
hitsPix_$DeviceName_individual_hits_L2_R0_run$RunNumber_noR0extension: TH1D
hitsPix_$DeviceName_individual_hits_L2_R1_run$RunNumber: TH1D
hitsPix_$DeviceName_individual_hits_L2_R1_run$RunNumber_noR0extension: TH1D
hitsPix_$DeviceName_individual_hits_L2_R2_run$RunNumber: TH1D
hitsPix_$DeviceName_individual_hits_L2_R2_run$RunNumber_noR0extension: TH1D
hitsPix_$DeviceName_individual_hits_L2_R3_run$RunNumber: TH1D
hitsPix_$DeviceName_individual_hits_L2_R3_run$RunNumber_noR0extension: TH1D
hitsPix_$DeviceName_individual_hits_L2_R4_run$RunNumber: TH1D
hitsPix_$DeviceName_individual_hits_L2_R4_run$RunNumber_noR0extension: TH1D
hitsPix_$DeviceName_L1_R0_run$RunNumber: TH1D
hitsPix_$DeviceName_L1_R0_run$RunNumber_noR0extension: TH1D
hitsPix_$DeviceName_L1_R1_run$RunNumber: TH1D
hitsPix_$DeviceName_L1_R1_run$RunNumber_noR0extension: TH1D
hitsPix_$DeviceName_L1_R2_run$RunNumber: TH1D
hitsPix_$DeviceName_L1_R2_run$RunNumber_noR0extension: TH1D
hitsPix_$DeviceName_L1_R3_run$RunNumber: TH1D
hitsPix_$DeviceName_L1_R3_run$RunNumber_noR0extension: TH1D
hitsPix_$DeviceName_L1_R4_run$RunNumber: TH1D
hitsPix_$DeviceName_L1_R4_run$RunNumber_noR0extension: TH1D
hitsPix_$DeviceName_L2_R0_run$RunNumber: TH1D
hitsPix_$DeviceName_L2_R0_run$RunNumber_noR0extension: TH1D
hitsPix_$DeviceName_L2_R1_run$RunNumber: TH1D
hitsPix_$DeviceName_L2_R1_run$RunNumber_noR0extension: TH1D
hitsPix_$DeviceName_L2_R2_run$RunNumber: TH1D
hitsPix_$DeviceName_L2_R2_run$RunNumber_noR0extension: TH1D
hitsPix_$DeviceName_L2_R3_run$RunNumber: TH1D
hitsPix_$DeviceName_L2_R3_run$RunNumber_noR0extension: TH1D
hitsPix_$DeviceName_L2_R4_run$RunNumber: TH1D
hitsPix_$DeviceName_L2_R4_run$RunNumber_noR0extension: TH1D
NonCalibratedLuminosity: NonCalibratedLuminosityDir
summedHits: SummedHits

TPXBigLBFile::RunDir::DeviceDir::SummedHits

individual_hits_reg: float ([2][5][65536])
IntLumi: double
summed_hits_reg: float ([2][5][65536])

TPXBigLBFile::RunDir::DeviceDir::FitResults

mean: double ([2][5])
mean_individual_hits: double ([2][5])
mean_individual_hits_noR0extended: double ([2][5])
mean_noR0extended: double ([2][5])
sigma: double ([2][5])
sigma_individual_hits: double ([2][5])
sigma_individual_hits_noR0extended: double ([2][5])
sigma_noR0extended: double ([2][5])

TPXBigLBFile::RunDir::DeviceDir::ExcludedPixelsDir

2sigma: 2SigmaDir
3sigma: 3SigmaDir
5sigma: 5SigmaDir

TPXBigLBFile::RunDir::DeviceDir::
ExcludedPixelsDir::3SigmaDir

all_L1_3sigma_run$RunNum: TH2D
all_L2_3sigma_run$RunNum: TH2D
excludedPixels: ExcludedPixels
high_L1_3sigma_run$RunNum: TH2D
high_L2_3sigma_run$RunNum: TH2D
low_L1_3sigma_run$RunNum: TH2D
low_L2_3sigma_run$RunNum: TH2D
R0_L1_3sigma_run$RunNum: TH2D
R0_L2_3sigma_run$RunNum: TH2D
R0extended_L1_3sigma_run$RunNum: TH2D
R0extended_L2_3sigma_run$RunNum: TH2D

TPXBigLBFile::RunDir::DeviceDir::
ExcludedPixelsDir::2SigmaDir

all_L1_2sigma_run$RunNum: TH2D
all_L2_2sigma_run$RunNum: TH2D
excludedPixels: ExcludedPixels
high_L1_2sigma_run$RunNum: TH2D
high_L2_2sigma_run$RunNum: TH2D
low_L1_2sigma_run$RunNum: TH2D
low_L2_2sigma_run$RunNum: TH2D
R0_L1_2sigma_run$RunNum: TH2D
R0_L2_2sigma_run$RunNum: TH2D
R0extended_L1_2sigma_run$RunNum: TH2D
R0extended_L2_2sigma_run$RunNum: TH2D

TPXBigLBFile::RunDir::DeviceDir::
ExcludedPixelsDir::5SigmaDir

all_L1_5sigma_run$RunNum: TH2D
all_L2_5sigma_run$RunNum: TH2D
excludedPixels: ExcludedPixels
high_L1_5sigma_run$RunNum: TH2D
high_L2_5sigma_run$RunNum: TH2D
low_L1_5sigma_run$RunNum: TH2D
low_L2_5sigma_run$RunNum: TH2D
R0_L1_5sigma_run$RunNum: TH2D
R0_L2_5sigma_run$RunNum: TH2D
R0extended_L1_5sigma_run$RunNum: TH2D
R0extended_L2_5sigma_run$RunNum: TH2D

TPXBigLBFile::RunDir::DeviceDir::
ExcludedPixelsDir::2SigmaDir::

ExcludedPixels

high: int ([2][5])
low: int ([2][5])

TPXBigLBFile::RunDir::DeviceDir::
ExcludedPixelsDir::3SigmaDir::

ExcludedPixels

high: int ([2][5])
low: int ([2][5])

TPXBigLBFile::RunDir::DeviceDir::
ExcludedPixelsDir::5SigmaDir::

ExcludedPixels

high: int ([2][5])
low: int ([2][5])

TPXBigLBFile::RunDir::DeviceDir::NonCalibratedLuminosityDir

perFrameL1: PerFrame [1..*]
perFrameL2: PerFrame [1..*]
perLBL1: PerLB [1..*]
perLBL2: PerLB [1..*]

TPXBigLBFile::RunDir::DeviceDir::
NonCalibratedLuminosityDir::

PerFrame

active_pixels_3sigma: int
active_pixels_all: int
aq_time: float
clstr_count: int
frame_start: double
run_number: int
summed_hits_3sigma: int
summed_hits_all: int

TPXBigLBFile::RunDir::DeviceDir::
NonCalibratedLuminosityDir::PerLB

active_pixels_3sigma: int
active_pixels_all: int
aq_time_3sigma: float
aq_time_all: float
clstr_count: int
frames_3sigma: int
frames_all: int
LB_duration: double
LB_end_time: double
LB_number: int
LB_start_time: double
present_3sigma: bool
present_all: bool
run_number: int
summed_hits_LB_3sigma: unsigned int
summed_hits_LB_all: unsigned int

Figure 2.11: Structure diagram of a big TPX LB file. (Part 2/3)

sion represents a converter region. The names of the two branches, which
contain the values which were actually used during the noisy pixels detection,
are stored in branches mean_noR0extended and sigma_noR0extended.

The two directories are ExcludedPixels and NonCalibratedLuminosity.
The ExcludedPixels directory contains just three other directories, one for
each sigma level. Names of the directories are 2sigma, 3sigma, and 5sigma.
All three directories contain the same structure, only names of the objects
differ. Each of them contains one TTree object and ten TH2D objects. A TH2D
object is a two-dimensional histogram which stores the bin values in 64-bit
floating-point numbers. There are five types of histograms for each layer. All
of them use the histograms to store maps of pixels. The histograms with
names starting R0 mark the pixels which belongs to the region 0 and the
histograms starting R0extended mark the pixels which belong to the exten-
sion of the region 0. Noisy and dead pixels are marked in the histograms
starting high and low, respectively. The histograms starting all mark all
the pixels which should be excluded. The sets of pixels in the histograms
are disjunctive with the exception of the ones starting all, as they are con-
junction of the other histograms. The structure of all the histogram names
is $H_L$L_${S}sigma_run$R where $H is the start of the name, $L is a layer
number, ${S} is the sigma level, and $R is the ATLAS run number.
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2.2. Data structures

RunNum
DeviceName

TPXBigLBFile

$RunNum: RunDir

TPXBigLBFile::RunDir

$DeviceName: DeviceDir

TPXBigLBFile::RunDir::DeviceDir

ExcludedPixels: ExcludedPixelsDir
fitResults: FitResults
hitsDist_$DeviceName_individual_hits_L1_R0_run$RunNumber: TH1D
hitsDist_$DeviceName_individual_hits_L1_R0_run$RunNumber_noR0extended: TH1D
hitsDist_$DeviceName_individual_hits_L1_R1_run$RunNumber: TH1D
hitsDist_$DeviceName_individual_hits_L1_R1_run$RunNumber_noR0extended: TH1D
hitsDist_$DeviceName_individual_hits_L1_R2_run$RunNumber: TH1D
hitsDist_$DeviceName_individual_hits_L1_R2_run$RunNumber_noR0extended: TH1D
hitsDist_$DeviceName_individual_hits_L1_R3_run$RunNumber: TH1D
hitsDist_$DeviceName_individual_hits_L1_R3_run$RunNumber_noR0extended: TH1D
hitsDist_$DeviceName_individual_hits_L1_R4_run$RunNumber: TH1D
hitsDist_$DeviceName_individual_hits_L1_R4_run$RunNumber_noR0extended: TH1D
hitsDist_$DeviceName_individual_hits_L2_R0_run$RunNumber: TH1D
hitsDist_$DeviceName_individual_hits_L2_R0_run$RunNumber_noR0extended: TH1D
hitsDist_$DeviceName_individual_hits_L2_R1_run$RunNumber: TH1D
hitsDist_$DeviceName_individual_hits_L2_R1_run$RunNumber_noR0extended: TH1D
hitsDist_$DeviceName_individual_hits_L2_R2_run$RunNumber: TH1D
hitsDist_$DeviceName_individual_hits_L2_R2_run$RunNumber_noR0extended: TH1D
hitsDist_$DeviceName_individual_hits_L2_R3_run$RunNumber: TH1D
hitsDist_$DeviceName_individual_hits_L2_R3_run$RunNumber_noR0extended: TH1D
hitsDist_$DeviceName_individual_hits_L2_R4_run$RunNumber: TH1D
hitsDist_$DeviceName_individual_hits_L2_R4_run$RunNumber_noR0extended: TH1D
hitsDist_$DeviceName_L1_R0_run$RunNumber: TH1D
hitsDist_$DeviceName_L1_R0_run$RunNumber_noR0extended: TH1D
hitsDist_$DeviceName_L1_R1_run$RunNumber: TH1D
hitsDist_$DeviceName_L1_R1_run$RunNumber_noR0extended: TH1D
hitsDist_$DeviceName_L1_R2_run$RunNumber: TH1D
hitsDist_$DeviceName_L1_R2_run$RunNumber_noR0extended: TH1D
hitsDist_$DeviceName_L1_R3_run$RunNumber: TH1D
hitsDist_$DeviceName_L1_R3_run$RunNumber_noR0extended: TH1D
hitsDist_$DeviceName_L1_R4_run$RunNumber: TH1D
hitsDist_$DeviceName_L1_R4_run$RunNumber_noR0extended: TH1D
hitsDist_$DeviceName_L2_R0_run$RunNumber: TH1D
hitsDist_$DeviceName_L2_R0_run$RunNumber_noR0extended: TH1D
hitsDist_$DeviceName_L2_R1_run$RunNumber: TH1D
hitsDist_$DeviceName_L2_R1_run$RunNumber_noR0extended: TH1D
hitsDist_$DeviceName_L2_R2_run$RunNumber: TH1D
hitsDist_$DeviceName_L2_R2_run$RunNumber_noR0extended: TH1D
hitsDist_$DeviceName_L2_R3_run$RunNumber: TH1D
hitsDist_$DeviceName_L2_R3_run$RunNumber_noR0extended: TH1D
hitsDist_$DeviceName_L2_R4_run$RunNumber: TH1D
hitsDist_$DeviceName_L2_R4_run$RunNumber_noR0extended: TH1D
hitsPix_$DeviceName_individual_hits_L1_R0_run$RunNumber: TH1D
hitsPix_$DeviceName_individual_hits_L1_R0_run$RunNumber_noR0extension: TH1D
hitsPix_$DeviceName_individual_hits_L1_R1_run$RunNumber: TH1D
hitsPix_$DeviceName_individual_hits_L1_R1_run$RunNumber_noR0extension: TH1D
hitsPix_$DeviceName_individual_hits_L1_R2_run$RunNumber: TH1D
hitsPix_$DeviceName_individual_hits_L1_R2_run$RunNumber_noR0extension: TH1D
hitsPix_$DeviceName_individual_hits_L1_R3_run$RunNumber: TH1D
hitsPix_$DeviceName_individual_hits_L1_R3_run$RunNumber_noR0extension: TH1D
hitsPix_$DeviceName_individual_hits_L1_R4_run$RunNumber: TH1D
hitsPix_$DeviceName_individual_hits_L1_R4_run$RunNumber_noR0extension: TH1D
hitsPix_$DeviceName_individual_hits_L2_R0_run$RunNumber: TH1D
hitsPix_$DeviceName_individual_hits_L2_R0_run$RunNumber_noR0extension: TH1D
hitsPix_$DeviceName_individual_hits_L2_R1_run$RunNumber: TH1D
hitsPix_$DeviceName_individual_hits_L2_R1_run$RunNumber_noR0extension: TH1D
hitsPix_$DeviceName_individual_hits_L2_R2_run$RunNumber: TH1D
hitsPix_$DeviceName_individual_hits_L2_R2_run$RunNumber_noR0extension: TH1D
hitsPix_$DeviceName_individual_hits_L2_R3_run$RunNumber: TH1D
hitsPix_$DeviceName_individual_hits_L2_R3_run$RunNumber_noR0extension: TH1D
hitsPix_$DeviceName_individual_hits_L2_R4_run$RunNumber: TH1D
hitsPix_$DeviceName_individual_hits_L2_R4_run$RunNumber_noR0extension: TH1D
hitsPix_$DeviceName_L1_R0_run$RunNumber: TH1D
hitsPix_$DeviceName_L1_R0_run$RunNumber_noR0extension: TH1D
hitsPix_$DeviceName_L1_R1_run$RunNumber: TH1D
hitsPix_$DeviceName_L1_R1_run$RunNumber_noR0extension: TH1D
hitsPix_$DeviceName_L1_R2_run$RunNumber: TH1D
hitsPix_$DeviceName_L1_R2_run$RunNumber_noR0extension: TH1D
hitsPix_$DeviceName_L1_R3_run$RunNumber: TH1D
hitsPix_$DeviceName_L1_R3_run$RunNumber_noR0extension: TH1D
hitsPix_$DeviceName_L1_R4_run$RunNumber: TH1D
hitsPix_$DeviceName_L1_R4_run$RunNumber_noR0extension: TH1D
hitsPix_$DeviceName_L2_R0_run$RunNumber: TH1D
hitsPix_$DeviceName_L2_R0_run$RunNumber_noR0extension: TH1D
hitsPix_$DeviceName_L2_R1_run$RunNumber: TH1D
hitsPix_$DeviceName_L2_R1_run$RunNumber_noR0extension: TH1D
hitsPix_$DeviceName_L2_R2_run$RunNumber: TH1D
hitsPix_$DeviceName_L2_R2_run$RunNumber_noR0extension: TH1D
hitsPix_$DeviceName_L2_R3_run$RunNumber: TH1D
hitsPix_$DeviceName_L2_R3_run$RunNumber_noR0extension: TH1D
hitsPix_$DeviceName_L2_R4_run$RunNumber: TH1D
hitsPix_$DeviceName_L2_R4_run$RunNumber_noR0extension: TH1D
NonCalibratedLuminosity: NonCalibratedLuminosityDir
summedHits: SummedHits

TPXBigLBFile::RunDir::DeviceDir::SummedHits

individual_hits_reg: float ([2][5][65536])
IntLumi: double
summed_hits_reg: float ([2][5][65536])

TPXBigLBFile::RunDir::DeviceDir::FitResults

mean: double ([2][5])
mean_individual_hits: double ([2][5])
mean_individual_hits_noR0extended: double ([2][5])
mean_noR0extended: double ([2][5])
sigma: double ([2][5])
sigma_individual_hits: double ([2][5])
sigma_individual_hits_noR0extended: double ([2][5])
sigma_noR0extended: double ([2][5])

TPXBigLBFile::RunDir::DeviceDir::ExcludedPixelsDir

2sigma: 2SigmaDir
3sigma: 3SigmaDir
5sigma: 5SigmaDir

TPXBigLBFile::RunDir::DeviceDir::
ExcludedPixelsDir::3SigmaDir

all_L1_3sigma_run$RunNum: TH2D
all_L2_3sigma_run$RunNum: TH2D
excludedPixels: ExcludedPixels
high_L1_3sigma_run$RunNum: TH2D
high_L2_3sigma_run$RunNum: TH2D
low_L1_3sigma_run$RunNum: TH2D
low_L2_3sigma_run$RunNum: TH2D
R0_L1_3sigma_run$RunNum: TH2D
R0_L2_3sigma_run$RunNum: TH2D
R0extended_L1_3sigma_run$RunNum: TH2D
R0extended_L2_3sigma_run$RunNum: TH2D

TPXBigLBFile::RunDir::DeviceDir::
ExcludedPixelsDir::2SigmaDir

all_L1_2sigma_run$RunNum: TH2D
all_L2_2sigma_run$RunNum: TH2D
excludedPixels: ExcludedPixels
high_L1_2sigma_run$RunNum: TH2D
high_L2_2sigma_run$RunNum: TH2D
low_L1_2sigma_run$RunNum: TH2D
low_L2_2sigma_run$RunNum: TH2D
R0_L1_2sigma_run$RunNum: TH2D
R0_L2_2sigma_run$RunNum: TH2D
R0extended_L1_2sigma_run$RunNum: TH2D
R0extended_L2_2sigma_run$RunNum: TH2D

TPXBigLBFile::RunDir::DeviceDir::
ExcludedPixelsDir::5SigmaDir

all_L1_5sigma_run$RunNum: TH2D
all_L2_5sigma_run$RunNum: TH2D
excludedPixels: ExcludedPixels
high_L1_5sigma_run$RunNum: TH2D
high_L2_5sigma_run$RunNum: TH2D
low_L1_5sigma_run$RunNum: TH2D
low_L2_5sigma_run$RunNum: TH2D
R0_L1_5sigma_run$RunNum: TH2D
R0_L2_5sigma_run$RunNum: TH2D
R0extended_L1_5sigma_run$RunNum: TH2D
R0extended_L2_5sigma_run$RunNum: TH2D

TPXBigLBFile::RunDir::DeviceDir::
ExcludedPixelsDir::2SigmaDir::

ExcludedPixels

high: int ([2][5])
low: int ([2][5])

TPXBigLBFile::RunDir::DeviceDir::
ExcludedPixelsDir::3SigmaDir::

ExcludedPixels

high: int ([2][5])
low: int ([2][5])

TPXBigLBFile::RunDir::DeviceDir::
ExcludedPixelsDir::5SigmaDir::

ExcludedPixels

high: int ([2][5])
low: int ([2][5])

TPXBigLBFile::RunDir::DeviceDir::NonCalibratedLuminosityDir

perFrameL1: PerFrame [1..*]
perFrameL2: PerFrame [1..*]
perLBL1: PerLB [1..*]
perLBL2: PerLB [1..*]

TPXBigLBFile::RunDir::DeviceDir::
NonCalibratedLuminosityDir::

PerFrame

active_pixels_3sigma: int
active_pixels_all: int
aq_time: float
clstr_count: int
frame_start: double
run_number: int
summed_hits_3sigma: int
summed_hits_all: int

TPXBigLBFile::RunDir::DeviceDir::
NonCalibratedLuminosityDir::PerLB

active_pixels_3sigma: int
active_pixels_all: int
aq_time_3sigma: float
aq_time_all: float
clstr_count: int
frames_3sigma: int
frames_all: int
LB_duration: double
LB_end_time: double
LB_number: int
LB_start_time: double
present_3sigma: bool
present_all: bool
run_number: int
summed_hits_LB_3sigma: unsigned int
summed_hits_LB_all: unsigned int

Figure 2.11: Structure diagram of a big TPX LB file. Variables RunNum and
DeviceName are used in names of objects and directories. As UML does not
have any formal way how to mark this fact, the dollar sign sigil syntax is used
to mark a string substitution. (Part 3/3)

The TTree object is excludedPixels. It contains only two branches and
only one entry. The branches are high and low. They store the number of
noisy and dead pixels for each layer and converter region. The values are
stored in two-dimensional arrays of 32-bit integers.

The other directory in the device directory, NonCalibratedLuminosity
stores luminosity information. It is called non-calibrated because the count
rates are not normalized to luminosity. There are four TTree objects in the
directory, two for each layer. One tree stores the count rates per frame and the
other one stores the count rates per LB. The trees which store the count rates
per frame are perFrameL1 and perFrameL2. They store data in eight branches
and each entry represents one frame. The branch run_number stores the num-
ber of the ATLAS run in a 32-bit integer. The start time of the frame acqui-
sition is stored in the branch frame_start, and the acquisition time is stored
in the aq_time branch. The start time is stored in a 64-bit floating-point
number, and the acquisition time in a 32-bit floating-point number. The
numbers of hits per the frame are stored in the branches summed_hits_all
and summed_hits_3sigma. The first branch stores the number of hits with-
out any noisy pixel exclusion, and the other stores the number of hits with
a noisy pixel exclusion. Both branches store the values in 32-bit integers.
The number of pixels, used to count the number of hits, are stored in the
branches active_pixels_all and active_pixels_3sigma. The value of the
first branch is 65,536 as its hit counting counterpart uses all the pixels on the
chip. The second branch stores the number of pixels left after the noisy pixel
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2. As-is

exclusion. Both branches store the values in 32-bit integers. The excluded
pixels were detected with the 5σ strictness level, even though, the names of
the branches say otherwise. The names contain 3sigma from legacy reasons.
The last branch, clstr_count contains the number of clusters recorded during
the frame. It stores the number in a 32-bit integer.

The trees which store the count rates per LB are perLBL1 and perLBL2.
Each entry of the trees represents one LB. The branch run_number stores
the number of the ATLAS run in a 32-bit integer. The start time of the
LB is stored in the branch LB_start_time, the end time is in the branch
LB_end_time and the duration i.e. the difference between end and start times
is stored in the branch LB_duration. These three branches store the values in
64-bit floating-point numbers. The integrated acquisition time over the dura-
tion of the LB is stored in the branch aq_time_all. Only acquisition time of
frames which are not empty is counted. The branch aq_time_3sigma stores
the integrated acquisition time of frames which are not empty even after the
noisy pixel removal. Both branches store the values in 32-bit floating-point
numbers. The number of frames recorded during the LB is stored in the
branch frames_all. Again, only frames which are not empty are counted.
The branch frames_3sigma stores the number of frames which are not empty
even after the noisy pixel removal. Both branches store the values in 32-bit
integers. The numbers of pixels, used to count hits, are stored in the branches
active_pixels_all and active_pixels_3sigma. They store the values in
32-bit integers. The summed numbers of hits are stored in 32-bit unsigned in-
tegers in branches summed_hits_LB_all and summed_hits_LB_3sigma. They
are the average numbers of hits per second during the LB. The number of clus-
ters recorded during the LB is stored clstr_count in a 32-bit integer. The last
two branches, present_all and present_3sigma store whether there are any
hits in the LB. They store the data as Boolean values. The noisy pixels were
detected with the 5σ strictess level, even though, the names of the branches
suggest otherwise. The names contain 3sigma from historical reasons.

This complicated LB file is simplified during the post-processing. Un-
like the complicated LB file, the simplified file contains data for only one
layer. This enables to work with each layer as if they are independent de-
vices. The structure of the simplified file is show in Figure 2.12. The files
are stored in a directory structure where path to each file can be written as
$D/L$L/LB_Run_$R.root where $D is a name of a TPX device, $L is a layer
number, and $R is a run number.

The file contains only one TTree object called Data which stores all the
data. It basically contains the same data as the perLBL1 and perLBL2 trees in
the complicated LB file. However, there are some changes to the data and some
new data. The changes are in the branches which names are summed_hits_all
and summed_hits_3sigma. In this file, they store the absolute numbers of hits
recorded during the LB, and they store the values in 64-bit unsigned integers.

The new data are stored in the branches LUCID, EMEC, TILE, and TRACKS.
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2.2. Data structures

TPXLBFile

D ata: Data [1..*]

TPXLBFile::Data

acti ve_p ixe ls_3sigma: int
acti ve_p ixels_all: int
aq _ti me_3sigma: float
aq _ti me_all: float
clstr_count: int
EMEC: float
frames_3sigma: int
frames_all: int
LB_duration: double
LB_end_time: double
LB_number: int
LB_start_time: double
LUC ID: float
p resent_3sigma: bool
p resen t_all: bool
run_number: int
su mmed _h its_3sigma: unsigned long
su mmed _h its_all: unsigned long
T ILE: float
TRACKS: float

Figure 2.12: Structure diagram of a simplified TPX LB file.

They store luminosity as detected by other luminosity monitors. These values
originates from the ATLAS reference files. All of the branches store the values
in 32-bit floating-point numbers.

This simplified LB files were inspired by TPX3 LB files. Their structure is
shown in Figure 2.13. The names of the files are LB_Run_$R where $R is a run
number. Files for each device have to be stored in separate directory because
there is no way how to distinguish them later.

The file contains only one TTree object called Data which stores all the
data. The tree stores TPX3 data, ATLAS reference data, and a description of
LBs. The number of the ATLAS run is stored in the branch Run_number in a
32-bit integer, and the number of the LB is stored in the LB_number also in a
32-bit integer. The duration of the LB is stored in 64-bit floating-point number
in the branch LB_length, and the start time also in 64-bit floating-point
number in the branch Time. The numbers of hits and clusters are stored in
32-bit integers in branches Hits and Clusters. The number of pixels, used
to count the hits and clusters, is stored in the branch Active_pixels in a
32-bit integer. The rest of the branches store luminosity from other ATLAS
luminosity monitors. These branches are LUCID, LUCID_BI2_HitOR, EMEC,
FCAL, TILE_D5 and TILE_D6, and TRACKS_TIGHTMOD. All of these branches
store the values in 64-bit floating-point numbers.
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TPX3LBFile

D ata: Data [1..*]

TPX3LBFile::Data

A ctive_pixels: int
C lusters: int
EMEC: double
FCAL: double
H its: int
LB_length: double
LB_number: int
LUCID: double
LUCID_BI2_HitOR: double
Run_number: int
TILE_D5: double
TILE_D6: double
T ime: double
TRACKS_TIGHTMOD: double

Figure 2.13: Structure diagram of TPX3 LB file.
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Chapter 3
Analysis and design

The idea behind the re-engineering is to reduce the number of time-consuming
operations and to create software which is highly scalable and configurable
without a need to recompile.

System Boundary

User

Advanced user

Produce LBs

Remove noisy pixels

Analyse data

Add functionality

Luminosity curve

Short-term precision

Linearity

Long-term stability

Figure 3.1: Use case diagram for the software.

First, the use cases for the new software were collected. As Figure 3.1
shows, eight use cases of three kinds were found. The first kind are use cases
designated for regular users. All of these are related to data processing and
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3. Analysis and design

analysis. They are the production of LBs, the noisy pixels removal, and anal-
ysis of data. Note that the data processing use cases are there to enable
effective data analysis.

The second kind of use cases are the individual types of data analysis.
These are the known types of data analysis, however more data analysis types
could be added in the future. That is the reason for the third kind of use
cases and that is the addition of functionality. This use case is designated
for advanced users as it requires a knowledge about the software’s API and
ability to program in C++.

Because all of the use cases shown in Figure 3.1 work with the same data
structures, the application is split into several shared libraries. All these
libraries are loaded by a launcher which also sets up the environment, data
structures and object instances used by all of the libraries. The process of
launching the application is shown in Figure 3.2.

Setup data structures Load libraries

Load pluginsInvoke routine

Handle exceptions

Figure 3.2: Activity diagram of launching of the application.

There are two kinds of shared libraries in the application, plugins and
libraries. The shared libraries which serve simply as libraries are used to in-
troduce new kinds of functionality which can be subsequently used by other
libraries or plugins. The plugin libraries are used to extend already existing
kinds of functionality. For example, there is a library which handles different
detectors, and plugins can register new detectors and data formats. Another
example is the core library which, among others, parses arguments and op-
tions, and launches routines. Plugins register new routines which can be
executed, and new options which modify their behaviour.

Both libraries and plugins, are loaded and linked at run-time by the
launcher, so they are independent of each other. The libraries are loaded
first to provide all functionality, and then the plugins are loaded. Every plu-
gin should contain a handler which is invoked when the plugin is loaded. The
handler is used to register the extensions it contains. Plugins may also con-
tain another handler which is invoked just before the plugin is unloaded. This
handler is used to clean up what is needed to.
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The only exceptions to this loading rule are core library and its depen-
dencies. They are linked at launch-time because the core library contains the
code responsible for loading the other libraries and plugins. It is separated
from the launcher so the other libraries and plugins can use and share its code
and its data like singleton instances independently of the launcher.

Plugins can also register routines. Each routine is registered by a name,
and it can be invoked from the command line when the name of the routine is
passed to the launcher. Because of this, each routine creates a new use case.
Therefore, each use case shown in Figure 3.1 is implemented by one routine,
and the routines are separated to several plugins.

The configurable aspect of the new software is done by putting all settings
into a series of configuration files. These files can inherit from each other and
one or more of them can be read by the final application. The configuration
files are written in YAML for readability purposes and its easy-to-understand
syntax. Reading and parsing of the files is handled by the launcher, so the
libraries and plugins handle just with a representation of the data in the files.

The use cases of the first two kinds shown in Figure 3.1 are basically
the same as the one for the previous software. Therefore, the focus is on
improving the processes engaged in performing these use cases, mainly the
data processing.

The main process of data processing shown in Figure 2.1 cannot be avoided
nor simplified, however, the sub-process of the production of TPX LBs and
the noisy pixel removal can be simplified. This process can be simplified into
just two main steps which are shown in Figure 3.3.

:C lu sterFile [1..*]

A TLAS reference file [1..*]

Make LBs

:C lu sterFile [1..*]

A TLAS reference file [1..*]

Remove noisy pixels

1..*

:NoisyRunLBFile

1..*

:RunLBFile

Figure 3.3: Activity diagram of processing of TPX data.

The first step is to create LB files without noisy pixels removed but with
enough information so it can be done later. Structure of this file is shown in
Figure 3.8. This step has to process the cluster files and therefore it is the
most time-consuming operation. The difference from the previous software is
that the cluster files are processed only once and all the subsequent processing
and potential analysis can use these significantly smaller noisy LB files.

The second step is to detect and remove the noisy pixels from the LB
files. This step is way faster then previously as it works with LB data instead
of individual clusters. The newly produced LB files are again simplified and
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3. Analysis and design

therefore smaller than the noisy LB files, because they do not need to contain
information used to detect and remove the noisy pixels. The structure of this
file is shown in Figure 3.9.

To further minimize the amount of calculations, the API for work with the
detector data is designed in such a way that no calculations are done up to
the point when the data are needed, usually to create a graph or a histogram.
This is achieved by composing iterable objects. These objects can modify,
combine, or filter the data. The calculations are done once the objects are
iterated over.

There are two families of these iterable objects, the first family works with
objects representing LB entries, and the other family works with numbers.
There are also a few special iterable objects which extract values and uncer-
tainties of individual properties of LB entries. By this, they create a bridge
between these two families.

Plugins register types of detectors in an instance of DetectorManager.
The instance is provided by the getInstance class method. This makes
DetectorManager singleton. The related class diagram is shown in Figure 3.4.
The types are registered by their name. Either the plugins provide a function
which constructs instances of the detector, or they provide class representing
the detector type. If a plugin provides the function, it either must be convert-
ible to DetectorConstructor, or the parameters of DetectorConstructor
must be convertible to the parameters of that function, and its return type
must be convertible to a Detector pointer. If a plugin provides the class of
the detector, the instance must be constructible using the same parameters
which are accepted by DetectorConstructor.

Once the detector type is registered in DetectorManager, the instances
of that detector can be created. This is done by calling the getDetector
method and providing the name of the detector. This enables to add and
use new detectors in already existing routines. The detector is looked up in
the configuration files, and the corresponding constructor function is invoked,
according to the type of the device specified in the configuration files. The
function is invoked with two arguments, the first one is the name of the detec-
tor, and the second one is the configuration node which specifies the detector.
The method has also an optional Boolean parameter which specifies whether
the instance of the detector should be stored by the manager. The instances
are stored by default and if the detector is required again, the already existing
instance is returned.

A detector instance is a combination of PropertyComposite and LBStream.
The PropertyComposite is an abstract template which specifies that its child
classes or child templates are logical composites of properties. It defines an
interface which enables to retrieve individual properties of the composite and
their errors/uncertainties, to retrieve a list of properties of the composite, and
to check if the composite contains the required property. A detector is com-
posed of property streams, which can extract the required properties from the
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DetectorManager

- _constructors: std::unordered_map<std::string,DetectorConstructor>
- _d etectors: std::unordered_map<std::string,Detector*>

- D etectorManager()
+ ~DetectorManager()
+ getD etector(const std::string&, bool): Detector&
+ getIn stance(): DetectorManager&
+ registerDetectorType(const std::string&, DetectorContructor): bool
+ u n registerDetectorType(const std::string&): bool

«template»
+ registerDetectorType<F>(const std::string&, F): bool
+ registerDetectorType<T>(const std::string&): bool

std::function<Detector*(const std::string&,const Config::Node&)>

«typedef»
DetectorContructor

Detector

- _n ame: std::string
- _type: std::string

+ D etecto r(co nst std::string&, const std::string&)
+ getName(): const std::string&
+ getProperty(const std::string&): NumberStream
+ getPropertyError(const std::string&): NumberStream
+ lis tProperties(): std::vector<std::string>

T : class

PropertyComposite

+ getProperty(const std::string&): T
+ getPropertyError(const std::string&): T
+ h asPro perty(const std::string&): bool
+ listProperties(): std::vector<std::string>

DetectorEntry

LBStream

- _data: LBSourcePtr

+ b egin (): Iterator
+ en d (): Iterator
+ fi lter(Filter): LBStream&
+ fi lterRu n s(Filter): LBStream&
+ LBStream()
+ LBStream(LBSourcePtr)
# setData(LBSourcePtr): void

«template»
+ fi lter<F>(F): LBStream&
+ fi lter<F>(const std::string&, F): LBStream&
+ fi lter<F>(const std::string&, const Number&, F): LBStream&
+ fi lterRuns<F>(F): LBStream&
+ fi lterRu n s<F>(const std::string&, F): LBStream&
+ fi lterRu n s<F>(const std::string&, const Number&, F): LBStream&

LBSource::Iterator

«typedef»
LBStream::Iterator

LBFilter::Filter

«typedef»
LBStream::Filter«bind»

< T->NumberStream >

«bind»

< T->Number >

Figure 3.4: Class diagram of the detector API.

stream of detector entries, which are provided by its LBStream interface.
The LBStream is a stream of detector entries. It composes and wraps

around LBSource instances which are the iterable objects from the first family.
The stream can be filtered by individual LB entries or by the whole runs. If the
stream is filtered by runs using properties that can change during a single run,
the behavior is undefined. When the stream is filtered the current LBSource
instance is pass to LBFilter, which is a child of LBSource, and the filter
source is stored instead. The entries are filtered only at the point when, the
stream is iterated over.

Once the LBs are filtered, calculations and plotting using their proper-
ties can be performed. The properties are retrieved from the detector using
the getProperty method and their uncertainties can be retrieved using the
getPropertyError method. They return instances of NumberStream, which
are streams of Number instances.

The Number object is a dynamic container which can store either a 64-bit
floating-point number, a 64-bit integer, or a 64-bit unsigned integer, and dy-
namically switch between them. This enables to work with arbitrary data
type without a loss in precision. The structure of the object is shown in class
diagram in Figure 3.5. The number object can be constructed from any num-
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ber type, it can be converted back to any number type, and also, it can be
worked with as with any regular number type.

Number

- _d ata: Data
- _type: Type

+ getType(): Type
+ Nu mber()
+ o perator-(): Number
+ o perator--(): Number&
+ o p erator--(int): Number
+ operator-=(const Number&): Number&
+ operator!(): Number
+ operator*=(const Number&): Number&
+ operator/=(const Number&): Number&
+ operator++(): Number&
+ operator++(int): Number
+ operator+=(const Number&): Number&

«template»
+ Number<Dbl>(Dbl)
+ Number<Int>(Int)
+ Number<UInt>(UInt)
+ operator T<T>()

«union»
Number::Data

+ _fl oat: double_t
+ _int: int64_t
+ _uint: uint64_t

uint8_t

«enumeration»
Type

 FLOAT
 INT
 UINT

Figure 3.5: Structure diagram of the Number class.

The NumberStream is similar to the LBStream, but its main purpose instead
of filtering are calculations. The stream composes and wraps around instances
of NumberSource which are the iterable objects of the second family. The com-
positions are shown in the class diagram in Figure 3.6. The number streams
can combine number sources using arithmetic binary operators and standard
mathematical binary functions. They can be modified using various unary
operators and functions. There is also a number source which provides con-
stant numbers. This enables to use expressions like 2 * sqrt(a) / b, where
a and b are instances of NumberStream. The example expression creates an in-
stance of NumberStream which contains an instance of NumberCombiner. This
number source is composed of two other number sources, NumberCombiner
and b. The other combiner is composed of ConstantNumberProvider and
NumberModifier. Finally the modifier contains the source that belongs to
the stream a. However, none of the calculations are done up until the point
the stream is iterated over. The composed structure of number sources cre-
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ates equivalent structure of iterators. The iterators do all the calculations
as the numbers are passed through the structure. Because the NumberSource
and LBSource families are connected by instances of PropertyExtractor, the
numbers are calculated at the same time as they are provided by the detector.

NumberSource

+ begin(): Iterator
+ end(): Iterator

ConstantNumberProvider

- _num: Number

+ b egin (): NumberSource::Iterator
+ ConstantNumberProvider(Number)
+ en d(): NumberSource::Iterator

NumberModifier

- _fnc: Modifier
- _x: NumberSourcePtr

+ b egin (): NumberSource::Iterator
+ en d(): NumberSource::Iterator
+ NumberModifier(NumberSourcePtr, Modifier)

NumberCombiner

- _fnc: Combiner
- _x: NumberSourcePtr
- _y: NumberSourcePtr

+ b egin (): NumberSource::Iterator
+ en d(): NumberSource::Iterator
+ NumberCombiner(NumberSourcePtr, NumberSourcePtr, Combiner)

NumberFilter

- _fn c: Filter
- _x: NumberSourcePtr

+ b egin (): NumberSource::Iterator
+ en d(): NumberSource::Iterator
+ Nu mberFilter(NumberSourcePtr, Filter)

std::shared_ptr<NumberSource>

«typedef»
NumberSourcePtr

std::function<bool(const Number&)>

«typedef»
NumberFilter::Filter

std::function<Number(const Number&)>

«typedef»
NumberModifier::Modifier

std::function<Number(const Number&, const Number&)>

«typedef»
NumberCombiner::Combiner

Figure 3.6: Class diagram of NumberSource and its child classes.

The data are usually used to create plots like graphs and histograms. The
class structure of these plots is shown in Figure 3.7. The plots can be created
from the number streams or directly from collections of data. The graph
works also as a stream, so it can be used in various calculations. The graph
can be combined with other graphs or with instances of FitResult. When
two graphs are combined their uncertainties are combined using the formula
shown in equation 3.1, and the values are assumed to be not correlated. If
they are correlated the calculation of the uncertainty has to be done separately,
and passed to the setErrors method. The instances of the FitResult class
are retrieved from the fit method. They can be also created from constants
to form constant functions. The instances can be also modified by unary
operations, and combined with other FitResult instances.

σf =

√(
∂f

∂a

)2
σ2
a +

(
∂f

∂b

)2
σ2
b (3.1)

When the graph needs to use the data, usually to be plotted or fitted,
it iterates over its number sources and the results are used to create the
TGraphErrors object from the ROOT framework. The number sources are
then replaced by other sources, which read the data from the TGraphErrors
instance, where the results are already buffered.
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Plot

Graph

- _esource: NumberSourcePtr
- _modified: bool = true
- _tobject: std::shared_ptr<TGraphErrors>
- _xsource: NumberSourcePtr
- _ysource: NumberSourcePtr

+ combine(const Graph&, Combiner, Combiner): Graph&
# createROOTObject(): TGraphErrors&
+ fit(const FitFunction&): FitResult
+ getErrors(): NumberStream
+ getX(): NumberStream
+ getY(): NumberStream
+ Graph()
+ Graph(NumberStream, NumberStream, NumberStream)
+ Graph(const std::vector<double>&, const std::vector<double>&, const std::vector<double>&)
+ Graph(std::vector<double>&&, std::vector<double>&&, std::vector<double>&&)
+ Graph(std::size_t, const double*, const double*, const double*)
- init(): void
+ makeProjection(): Histogram
+ makePull(): Histogram
+ modify(Modifier, Modifier): Graph&
+ operator-(): Graph
+ operator-=(const Graph&): Graph&
+ operator-=(const FitResult&): Graph&
+ operator*=(const Graph&): Graph&
+ operator*=(const FitResult&): Graph&
+ operator/=(const Graph&): Graph&
+ operator/=(const FitResult&): Graph&
+ operator+(): Graph
+ operator+=(const Graph&): Graph&
+ operator+=(const FitResult&): Graph&
+ paint(Canvas&): void
+ setErrors(NumberStream): void
+ setErrors(const std::vector<double>&): void
+ setErrors(std::vector<double>&&): void
+ setErrors(std::size_t, const double_t*): void
+ setup(const Config::Node&): void

«template»
+ combine<F,DF>(const Graph&, F, DF): Graph&
+ modify<F,DF>(F, DF): Graph&

«friend»
+ operator-(const Graph&, const Graph&): Graph
+ operator-(const Graph&, const FitResult&): Graph
+ operator-(const FitResult&, const Graph&): Graph
+ operator*(const Graph&, const Graph&): Graph
+ operator*(const Graph&, const FitResult&): Graph
+ operator*(const FitResult&, const Graph&): Graph
+ operator/(const Graph&, const Graph&): Graph
+ operator/(const Graph&, const FitResult&): Graph
+ operator/(const FitResult&, const Graph&): Graph
+ operator+(const Graph&, const Graph&): Graph
+ operator+(const Graph&, const FitResult&): Graph
+ operator+(const FitResult&, const Graph&): Graph

Plot

Histogram

- _bin_fnc: BinFunction
- _bin_functions: std::unordered_map<std::string,BinFunctionFactory>
- _data: std::vector<double>
- _default_config: const Config::Node
- _range_fnc: RangeFunction
- _range_functions: std::unordered_map<std::string,RangeFunctionFactory>
- _tobject: std::shared_ptr<TH1D>

# createROOTObject(): TH1D&
+ fit(const FitFunction&): FitResult
+ getBinFunctionFactory(const std::string&): BinFunctionFactory
+ getRangeFunctionFactory(const std;:string&): RangeFunctionFactory
+ Histogram(const NumberStream&)
+ Histogram(const std::vector<double>&)
+ Histogram(std::vector<double>&&)
+ Histogram(std::size_t, const double*): void
- init(): void
+ paint(Canvas&): void
+ registerBinFunctionFactory(const std::string&, BinFunctionFactory): bool
+ registerRangeFunctionFactory(const std::string&, BinFunctionFactory): bool
+ setBinFunction(BinFunction): void
+ setRangeFunction(RangeFunction): void
+ setup(const Config::Node&): void

std::function<BinFunction(const Config::Node&)>

«typedef»
Histogram::BinFunctionFactory

std::function<RangeFunction(const Config::Node&)>

«typedef»
Histogram::RangeFunctionFactory

std::function<std::size_t(const std::vector<double>&)>

«typedef»
Histogram::BinFunction

std::function<std::pair<double,double>(const std::vector<double>&)>

«typedef»
Histogram::RangeFunction

NumberModifier::Modifier

«typedef»
Graph::Modifier

NumberCombiner::Combiner

«typedef»
Graph::Combiner

Figure 3.7: Class diagram of Graph and Histogram.

The graph can be also projected to the y-axis or it can produce a pull
distribution. The pull distribution is created by dividing all values by their
uncertainties and then projecting them to the y-axis. When the data are
projected, a histogram is created. The histogram can dynamically change its
range and the number of bins. For this purpose it uses BinFunction and
RangeFunction, which are created by corresponding factories. The factories
can be registered in the Histogram class. Then, the histogram can use these
factories to create the functions by providing a configuration node to the
factories with all settings which the factories need. There are few predefined
binning and range functions. The predefined binning functions are following:

• fixed — always returns a fixed number of bins.
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• sqrt — returns the number of bins equal to square root of the number
of entries.

• sturge — returns the number of bins according to the Sturge’s rule i.e.
log2 n+ 1 where n is the number of entries.

• rice — returns the number of bins according to the Rice’s rule i.e. 2 3
√
n

where n is the number of entries.
• doane — returns the number of bins according to the Doane’s rule i.e.

1 + log2 n + log2
(
1 + |g1|

σg1

)
where n is the number of entries, g1 is the

estimated 3rd-moment-skewness i.e. g1 =
∑

(x−x)3

[∑(x−x)2]
3
2

, and its standard

deviation σg1 =
√

6(n−2)
(n+1)(n+3)

• scott — returns the number of bins according to the Scott’s rule i.e.
3√n

3.49σ̂ (max x − min x) where n is the number of entries, and σ̂ is the

sample standard deviation i.e. σ̂ =
√∑

(x−x)2

n−1

• freedman-diaconis — returns the number of bins according to the
Freedman-Diaconis’ rule i.e.

3√n
2IQR(x)(max x−min x) where n is the num-

ber of entries, and IQR(x) is the interquartile range.
And the predefined range functions are following:

• fixed — always returns a fixed range.
• minmax — returns the range between the minimum and the maximum

entries.
• gaus — returns a range in which a logarithm of fitted Gaussian function

is positive.
The minmax and gaus functions have two options. The first option is to

offset the range by a percentage of its width. That means that if the offset
is set to 10 %, the range will be 1.2 times larger as it will be widen by 10 %
on each side. The second option is to round the range. The rounding always
expands the range. The boundary of the range is rounded to the nearest
multiple of five of order lower by one, except when the value of the highest
order is equal to one, then the boundary is rounded to the nearest order lower
by one. For example, when the upper boundary of a range is equal to 2345,
it is rounded to 2500, because the highest order is equal to 2 and the nearest
multiple is 2500. However, when the boundary is equal to 0.1234, it is rounded
to 0.13, because the highest order is equal to 1 and the closest number rounded
to order lower by one is 0.13.

The gaus function finds the range by repeatedly fitting and recreating the
histogram. The histogram is fitted by a Gaussian function. The boundaries
of the range are equal to µ±

√
2σ2 ln a, where µ is the center of the function,
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3. Analysis and design

σ is the width of the function, and a is the height of the function. All the
values are provided from the result of the fit. The boundaries of the range are
then equal to the points where the logarithm of the fitted Gaussian function is
equal to 0, or where the Gaussian function itself is equal to 1. The offset and
rounding are then applied to the range if it is required. This process of fitting
and recreating the histogram is repeated either until the difference between the
previous range and the current one is sufficiently small, or until the algorithm
reaches a limit of iterations. The limit can be set in the configuration. The
gaus function also provides an option to fix the mean µ at specific value. This
is useful for datasets which are known to be centered around specific value,
like pull distributions and residuals which are centered around 0.

3.1 File structures

The files storing LB data were also re-engineered. The focus is to store as much
relevant data as possible, separate this data by meaning, avoid duplication of
data in the file where it is possible, and not store data related to other detectors
or in case of TPX, even to other layers. The idea is also to pre-calculate as
much data as it makes sense, but keeping the granularity on a level, where
the data can be filtered and processed more, so things like neutron counting
are possible. The file structures are also designed in such a way that they can
be easily used by other software which is not related to this one. Also, the
sizes of the variables are chosen so the file structure could also be used in the
future during the LHC Run-3 or the High Luminosity LHC (HL-LHC) [30].

In case of TPX LB production, the first files to be produced are LB files
without noisy pixels removed. The structure of the files is shown in Figure 3.8.
These files must contain enough information so noisy pixel removal can be
done later. When looking at the previous software, it was found out that
calculating the number of hits in the LB per pixel instead of summing them
up is sufficient.

The LBs are also already summed to create statistics per ATLAS run.
Because the production has to go through all the data anyway, it can be done
basically at no cost. The statistics can be used to determine the noisy pixels,
or, after the noisy pixel removal, for various types of data analysis such as the
long-term stability analysis.

The data are stored in three TTree objects. The lb_data object stores
the data for individual LBs, run_data stores the summed data for the whole
ATLAS run, and description stores all the remaining data, such as the
physical information about the TPX layer, the whole device, or information
about the run, which do not depend on the LB data.

The lb_data tree stores its data in nine branches. Ones of the most impor-
tant branches are hits and clusters. The hits branch stores the number
of hits per pixel in arrays of 65,536 64-bit unsigned integers. The index of
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3.1. File structures

TPXNoisyRunLBFile

d escrip tion: Description
lb _d ata: LBData [1..*]
ru n _d ata: RunData

TPXNoisyRunLBFile::Description

acq _time: double
clock_MHz: float
co nvertermap: unsigned char ([65536])
cu mu lative_lumi: double
fi ll_n u mber: unsigned short
layer: unsigned char
lu mi: double
masked _p ixe ls: unsigned short
p ixe ls_mo d e: unsigned char
r_mm: unsigned short
rh o_mm: unsigned short
ru n _number: unsigned int
x_mm: short
y_mm: short
z_mm: short

TPXNoisyRunLBFile::LBData

clu ster_types: unsigned char
clu sters: u n sign ed  lo ng ([cluster_types][regions])
frames: u nsigned long
h its: unsigned long ([65536])
in t_acq_time: double
lb _duration: double
lb _n u mber: unsigned short
lb _start: double
regio n s: unsigned char

TPXNoisyRunLBFile::RunData

clu ster_types: unsigned char
clu sters: u n sign ed  lo ng ([cluster_types][regions])
frames: u nsigned long
h its: unsigned long ([65536])
in t_acq_time: double
lb _count: unsigned short
regio n s: unsigned char
run_duration: double
ru n _number: unsigned int
run_start: double

Figure 3.8: Structure diagram of a TPX LB file before noisy pixel removal.

the pixel is calculated as x + 256y, where x and y are the coordinates of the
pixel. Storing the numbers of hits per pixel enables to exclude the hits when
the pixels is determined to be noisy. The branch clusters stores the num-
ber of clusters in two-dimensional array of 64-bit unsigned integers. The first
dimension serves to separate the clusters by their type, and the second dimen-
sion separates the data by their converter region. This separation enables to
use advanced counting methods such as the thermal neutron counting, which
counts the number of HB clusters in the 6LiF region and subtracts by it the
number of HB clusters in the uncovered region, both normalized to the same
area of the chip. The number of cluster types and the number of regions are
stored in the branches cluster_types and regions, respectively. Both values
are stored in an 8-bit unsigned integer. The number of cluster types is seven.
Six of the cluster types are described by Table 1.3, and they are numbered the
same way as in the cluster file. The seventh type is not really a cluster type, it
is the sum of all of the clusters independently of their type. The index of the
sum of all the clusters is 0. The number of regions is five and the numbering

59



3. Analysis and design

is the same as in the cluster file.
In order to be able to calculate average instantaneous luminosity per LB,

the number frames and the sum of their acquisition times are also counted.
The number of frames is stored in the branch frames in a 64-bit unsigned
integer, and the integrated acquisition time is stored in int_acq_time in a
64-bit floating-point number.

The last three branches describe properties of the LB. The properties are:
the identification number of the LB, the timestamp of the start of the LB,
and the duration of the LB. The start timestamp and the duration of the
LB are stored in the branches lb_start and lb_duration, respectively, both
in a 64-bit floating-point number. The ID number is stored in the branch
lb_number in a 16-bit unsigned integer. The sixteen bits are enough to store
the IDs because the numbers are assigned sequentially from zero and they
need to be unique only in the current ATLAS run, so the counting starts
over with each new run. Note that each LB is usually around one minute
and the maximum value of a 16-bit unsigned integer is 65,535. This means
that in order to overflow the capacity, the ATLAS run has to be longer than
circa 45.5 days. This is never the case as the intensity of the LHC fill would
drop so low by that time that it would be impossible to use it and to do any
meaningful measurements with it.

The other tree in the file, run_data stores the summed statistics of the LBs
in ten branches. The branches hits, clusters, frames, and int_acq_time
are the same as the one in the lb_data tree. These branches contain values
which are equal to the sum of the values of their respective branches in the
lb_data tree over all of its entries. The branches cluster_types and regions
are identical to the ones in the lb_data as they describe the dimensions of
the clusters array. The new branch lb_count stores the number of LBs
which were summed. Because of this, the value is equal to the number of
entries in the lb_data tree. The value is stored in a 16-bit unsigned integer
as its maximum value is equal to or lower than the maximum value of the
lb_number branch in the lb_data tree. The last three branches are also
similar to their lb_data counterparts. They describe the same properties but
for the ATLAS run. The start timestamp and the duration of the run are
stored in the run_start and run_duration branches, respectively, both also
in a 64-bit floating-point number. The start time of the run is set to be equal
to the start time of its first LB. The duration is calculated by calculating the
end time of the last LB in the run and subtracting the start time of the run
from it. The identification number of the run is stored in run_number in a
32-bit unsigned integer. As the number is currently 6-digits long, it cannot fit
in 16 bits, and because the number has increased by around 150,000 during
the four years of LHC Run-1 and by around 100,000 during the four years of
LHC Run-2, it is expected not to get over 1,000,000 neither during the three
years of LHC Run-3 nor during the following years of HL-LHC.

Note that all branches storing counts, in both trees, with exception of
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lb_count, use 64-bit unsigned integers, as the numbers cannot be negative
and overflows of 32-bit unsigned integer have been observed in the previous
software. Also, all branches related to time use 64-bit floating-point numbers
as most branches need the precision it provides, and few others use it for
consistency.

The last object in the file is the description tree. It contains fifteen
branches related to the TPX layer, the whole device, and the ATLAS run. The
branches describing the ATLAS run in this tree do not depend on the LB data.
These branches are run_number, fill_number, lumi, and cumulative_lumi.
The run_number branch is the same as the one in the run_data tree. The
branch is duplicated so the description tree can be used independently of
the others. The fill_number stores the identification number of the LHC fill.
The value is stored in a 16-bit unsigned integer. As the number is currently
4-digits long, it has to be at least 16-bit, and because the number has increased
by around 2500 during the LHC Run-1 and by almost 3750 during the LHC
Run-2, it is expected that the number of fills will not cross the 16-bit maximum
of 65,536 anytime soon in the future. The branch lumi holds the reference
luminosity of the run provided by the ATLAS collaboration, and the branch
cumulative_lumi is the reference integrated luminosity from the beginning
of the dataset up to the current ATLAS run. A dataset is a collection of
consecutive ATLAS runs or LHC fills when the same particles were colliding
with the same nominal energy in the same year. There are often several
datasets per single year, usually these are: proton-proton collisions at 13 TeV,
proton-proton collisions at 5 TeV, and collisions of lead ions. Both of the
luminosity branches store the values in 64-bit floating-point numbers.

Because both TPX layers share a common readout, there are only two
branches which describe purely the layer. One of them is the layer branch
which determines whether the current layer is layer-1 or layer-2. The infor-
mation is stored in a 8-bit unsigned integer and the possible values are 1 or 2.
Even though the information is binary, the Boolean data type is not chosen
for two reasons. First, the values are supposed to be numbers and not to rep-
resent truthness. And second, the Boolean type is usually stored as one byte
value anyway. The second branch describing the layer is the convertermap
branch which stores in which converter region each pixel lays. The values are
copied from the cluster files from either the branch convertermap_0 or the
branch convertermap_1 in the calibData tree, depending on the layer. In
contrast to the cluster files, the values are stored in an array of 65,536 8-bit
unsigned integers instead of 16-bit signed integers, because they lay in the
range between 0 and 4.

The rest of the branches describe the TPX device, and all of the values
are copied from the cluster files, however, some of the branches have differ-
ent, more optimal data type than their cluster file counterparts, and some
branches were renamed to make the naming consistent. One renamed branch
is acq_time and it stores the acquisition time of a single frame. The value
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is stored in a 32-bit floating-point number and it is copied from the branch
Acq_time in either the dscData tree or the clusterFile tree. Another re-
named branch is clock_MHz which stores the frequency of the TPX clock in
MHz. The frequency is stored in a 32-bit floating-point number and it is
copied from the branch TPX_clock_in_MHz in the dscData tree.

One of the branches which stores the value in different data type is the
masked_pixels branch. It stores the number of pixels which were excluded
already during the data acquisition. The value is copied from the branch of
the same name in the dscData tree, however, this branch stores the value in
a 16-bit unsigned integer instead of 32-bit signed integer, because the value
must lay in the range between 0 and 65,536 which is the number of pixels on
the chip. The last value of 65,536 cannot be stored in a 16-bit number but
that does not matter as that would mean that no pixels were actually used to
collect data, and therefore, there would be no data to store. During the whole
LHC Run-2, the value was always below 100, with the exception of TPX06
which had the value slightly over 1000.

Another branch with different data type is the pixels_mode branch. It
stores the mode of the device. The value is copied also from the branch of the
same name in the dscData tree. Because it can take up only one of the values
of 0, 1, or 3, the value is stored in a 8-bit unsigned integer instead of 16-bit
signed integer as it is in the cluster file.

The last five branches store coordinates of the location of the device. The
branches x_mm, y_mm, and z_mm store the values in 16-bit integers, and the
branches r_mm and rho_mm store the values in 16-bit unsigned integers. They
use just 16 bits because no TPX device is located further away from the
interaction point than 32 meters as the device located furthest is TPX16
which is not even 20 meters away. The x, y, and z coordinates can be both
positive and negative as the interaction point lays in the middle of the ATLAS
cavern, however, because the r and ρ coordinates are distances, they are always
positive, and therefore, they are stored in unsigned integers as negative values
would be invalid.

Once the noisy pixels are detected and removed, other files, which store
TPX LBs, are produced. The structure of these files is shown in Figure 3.9.
These files are very similar to the previous LB files. There are only four
changes. The first two are that the lb_data and run_data trees do not need
to store the hit counts per pixel anymore. Therefore, the hits branches in
these two trees store the numbers of hits in a single 64-bit unsigned integer.
This change saves around 3 MB per LB, that means around 1 GB per 5.5 hours
of data-taking.

The other two changes are two new branches in the description tree. The
first branch is the branch sigma which stores the strictness level of the noisy
pixel removal. Its value is stored in a 32-bit floating-point number, because for
better precision and configurability, the level does not need to be an integer.
The second branch is the active_pixels branch which stores the number of
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TPXRunLBFile

d escrip tion: Description
lb _d ata: LBData [1..*]
ru n _d ata: RunData

TPXRunLBFile::Description

acq _time: float
acti ve_p ixe ls: unsigned short
clock_MHz: float
co nvertermap: unsigned char ([65536])
cu mu lative_lumi: double
fi ll_n u mber: unsigned short
layer: unsigned char
lu mi: double
masked _p ixe ls: unsigned short
p ixe ls_mo d e: unsigned char
r_mm: unsigned short
rh o_mm: unsigned short
ru n _number: unsigned int
s igma: float
x_mm: short
y_mm: short
z_mm: short

TPXRunLBFile::LBData

clu ster_types: unsigned char
clu sters: u n sign ed  lo ng ([cluster_types][regions])
frames: u nsigned long
h its: u n signed long
in t_acq_time: double
lb _duration: double
lb _n u mber: unsigned short
lb _start: double
regio n s: unsigned char

TPXRunLBFile::RunData

clu ster_types: unsigned char
clu sters: u n sign ed  lo ng ([cluster_types][regions])
frames: u nsigned long
h its: u n signed long
in t_acq_time: double
lb _count: unsigned short
regio n s: unsigned char
run_duration: double
ru n _number: unsigned int
run_start: double

Figure 3.9: Structure diagram of a TPX LB file after noisy pixel removal.

pixels which are used to count the number of hits. This branch is essential
in order to enable the so-called active pixels correction i.e. to normalize the
number of hits as if the whole chip is used to count the hits. The number is
stored in a 16-bit unsigned integer, because the value lays in the range between
0 and 65,536. The last value cannot fit in the 16 bits, but it does not matter
as all pixels are never used to count the hits, since there is the non-empty
region 0 which is always excluded.

The TPX3 LB file is very similar to the TPX LB file without noisy pixels.
The structure of this file is shown in Figure 3.10. However, as the TPX3
devices are not frame based, the branches related to frames are removed. The
trees lb_data and run_data do not contain the int_acq_time and frames
branches, otherwise, the trees are identical.

For the same reason, the description tree does not contain the acq_time
branch. However, this tree has more changes than just this one branch. It
also removes the layer branch, because even though the TPX3 devices are in-
stalled in pairs, each device contains only one layer. The tree also removes the
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TPX3RunLBFile

d escrip tion: Description
lb _d ata: LBData [1..*]
ru n _d ata: RunData

TPX3RunLBFile::Description

acti ve_p ixe ls: unsigned short
clock_MHz: float
co nvertermap: unsigned char ([65536])
cu mu lative_lumi: double
fi ll_n u mber: unsigned short
lu mi: double
p ixe ls_mo d e: unsigned char
r_mm: unsigned short
rh o_mm: unsigned short
ru n _number: unsigned int
x_mm: short
y_mm: short
z_mm: short

TPX3RunLBFile::LBData

clu ster_types: unsigned char
clu sters: u n sign ed  lo ng ([cluster_types][regions])
h its: u n signed long
lb _duration: double
lb _n u mber: unsigned short
lb _start: double
regio n s: unsigned char

TPX3RunLBFile::RunData

clu ster_types: unsigned char
clu sters: u n sign ed  lo ng ([cluster_types][regions])
h its: u n signed long
lb _count: unsigned short
regio n s: unsigned char
run_duration: double
ru n _number: unsigned int
run_start: double

Figure 3.10: Structure diagram of a TPX3 LB file.

masked_pixels branch, because there is no data source, which contains this
information. The same applies to the sigma branch. The branch clock_MHz
always contains the value of 640, and the values of convertermap and of the
coordinate branches have to be read from different data sources.
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Chapter 4
Realisation

Because the application has to work with ROOT files, it is best to build it
around the ROOT framework. Because of this, the application needs ROOT
libraries to be accessible. The framework does not has to be installed locally
instead it is better to use CERN Virtual Machine File System (CVMFS) which
serves for the purpose of distributing software. This software is available on
CERN servers accessible using Linux Public Login User Service (LXPLUS),
and it is also installed on atlastpx2.utef.cvut.cz [5].

The whole application uses the newest C++20, because there is no need
for backward compatibility, as the application is built almost from scratch.
However, it requires GCC of version at least 10.2 and compatible ROOT
build. Both of these are available at CVMFS.

The C++20 is used for its new features like constraints and concepts [31],
or the three-way comparison operator [32], as well as for its improvements in
the C++ standard. Such improvements are also concerning the constexpr
specifier. The specifier now enables wider range of use, and it was added to a
lot of STL functions, methods, and constructors. However, the full potential of
C++20 constexpr cannot be used, because GCC 10.2 does not yet implement
these improvements into its libraries.

Because the application also has to read YAML files, the library yaml-cpp
is used. The source code is available from GitHub, and it is compiled during
deployment of the application.

The modular design splits the application into one executable, four li-
braries, and seven plugins. The executable is the launcher which handles all
the loading and setup. One of the libraries is the core library which is the
only library which is not linked at run-time. From the other three libraries,
one provides streams, other handles detectors, and other provides graphs and
histograms. About the plugins, one provides ATLAS reference detectors, one
provides TPX detectors, creates TPX LB files, and removes noisy pixels, other
provides TPX3 detectors, and four others provide the different kinds of data
analysis.
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4. Realisation

Because of the amount of work, only prototype of the whole application
was created. The prototype serves as a proof of concept. It is simplified, so
not everything is configurable as it could be, and the TPX3 library and most
of the analysis libraries are not implemented. Nonetheless, the prototype itself
has over 8500 lines of code, over 270,000 characters, and over 100 classes, all
in 48 header files and 39 source files.

4.1 Launcher and core library

When the application is launched it loads and links all the ROOT libraries,
the yaml-cpp library, and the core library at launch-time. The core library is
then used to load all the user libraries and plugins, it does so using the dlopen
mechanism. When a plugin is loaded, the application looks for function called
onload with one parameter, which is a reference to the Application object
which is defined in the core library. The lookup is done using the dlsym
function. If it is found, it is called. Once the onload function is invoked, it
can register all the routines, detector types, and others.

However, there are few cases when the libraries and the plugins are not
loaded. It is when user calls routine to install or reinstall new plugin or library.
These routines are registered by the launcher itself. When a routine registered
by the launcher are supposed to be invoked the libraries and the plugins are
not loaded because it expected that they could be overwritten. That is because
they, such as the detector library, might create objects with static life-time
duration. When such an object is created and the shared library is rewritten
or unloaded, the program crashes at the very end, when the destruction of
static objects takes place.

When a plugin or a library are installed using the launcher’s routine, all
it needs are the header and source files and optionally a dependency file. The
directory is copied into the same directory where are all plugins or libraries.
Plugins and libraries have separate directories. If the the directory is already
present only the files which has changed are copied. In case the source direc-
tory is also the target directory of the copying, no files are copied at all. Then
the directory is checked for the dependency file. If it is present all libraries
and plugins are installed first, before the installment of the current plugin or
library. Then an universal makefile is written in the directory. The file is read
from the launcher executable as it is linked into it. The linked file contains
placeholders which are replaced when it is written out. Such a placeholder is
for example in place of the name of the plugin or library. Once the makefile
is written, it is used to install the plugin or library.

Because the application needs to be compiled with GCC version at least
10.2 and corresponding build of ROOT, it is recommended to first run the
source.sh script, which is located in the project directory, using the source
command. This scripts sets up the environment using CVMFS, if it is not
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done so, yet. If the script is not executed before, it is executed just before
invoking makefile of each dependency and also of the plugin or library. The
script is based on other ATLAS environment setup scripts which are rather
heavy, and therefore, the processing of the script can take up to few seconds.

4.2 Detector library

The detector library implements various classes, some regarding the Detector
API, some regrading the LBStream API, and some are used for handling
ROOT files and TTree objects.

When a new detector type is registered to the DetectorManager, the
passed function has to be either of type DetectorContructor, or the parame-
ters of DetectorConstructor have to be convertible to the parameters of the
function, and the return type of the function has be convertible to Detector
pointer. Another option is to provide a class of the detector. Instances of this
class has to be constructible from the parameters of DetectorConstructor.
The convertibilities and the constructibility are ensured using the C++20
concepts. The concept are used in all of the libraries and plugins for every
template parameter where it makes sense. The concepts are used to ensure
that all required functionality is provided. If the functionality is missing, the
concepts provide clear and short information of the problem, instead of long
and cryptic messages which are printed without the concepts. The reason is
that concepts make the compilation fail already during a declaration of a class
with bound template parameter, however, without the concepts, the compila-
tion fails when it encounters a use of functionality which is not provided.

The other examples of concept usage are TreeReader and TreeWriter.
Because TTree objects are conceptually equivalent to database tables, the
reader and the writer basically use ORM to read and write TTree objects.
Because instances of both of these templates need to manipulate with the
mapped objects, the objects are required to have certain functionality. The
set of the required functionality is called semiregular by the C++ standard.
This requires the object to be default constructible and copyable. The copy-
able concept requires it to be copy constructible, copy assignable, and mov-
able, and the movable concept requires it to be move constructible, move
assignable, and swappable. This set of requirements is ensured by the use
of the std::semiregular concept which is provided from the <concepts>
header.

4.3 Stream library

The main purpose of the stream library is to implement the NumberStream
class and all the other related classes. This class enables to perform delayed
calculations on streams of number. The calculation is stored as hierarchical

67



4. Realisation

structure of NumberSource instances, where each operation is represented by
one NumberSource instance composed of other NumberSource instances.

The instances of NumberSource are object of various implementations of
the NumberSource class because the class in incomplete. Therefore, their
iterators have to behave differently, as they provide most of the functionality.
However, because iterators are used to be returned by value, and values of
instances of different classes are not covariant, they all have to return iterator
of the same type. For this purpose, NumberSource implements its own iterator,
which wraps around iterators of the common base NumberIterator. This
wrapper just bridges all behaviour to the contained iterator which is stored in
a pointer because pointers to types with the same common base are covariant.

When the structure of the NumberSource instances is iterated over, it
creates equivalent structure of iterators. However, building the structure us-
ing the iterators retrieved from the other NumberSource instances would be
inefficient as the size of the structure would be doubled because every it-
erator would be wrapped. For this reason, the wrapping iterator has the
method getUnderlaying, which returns a pointer to the wrapped iterator.
This enables to build the iterator structure without any wrapping iterators,
and therefore every iterator in the structure brings in new functionality.

Because the streams has to work with any number data type, it uses Number
objects. These objects can store either a 64-bit floating-point number, a 64-bit
integer, or a 64-bit unsigned integer, and dynamically switch in between if
necessary. When two of these object are combined, the type stored in the
resulting object is determined according to the types in the original two objects
and according to the operation. However, all operations follow a priority of
types. This priority is different than the one built in C++. The type with
the highest priority is the floating-point number, it is followed by the signed
integer, and the unsigned integer has the lowest priority. The priorities of the
signed and unsigned integers are reversed in C++.

When two Number objects are added, the resulting type is equal to the type
with the higher priority. When they are subtracted, the same rule applies,
with exception of the unsigned integers. When both numbers are unsigned
integers, the resulting type depends on their values. If the minuend is smaller
than the subtrahend, the resulting type is signed integer, because the resulting
difference is negative, otherwise, the resulting type is also the unsigned integer.

When two Number objects are multiplied, the same rule as for addition is
applied. However, if they are divided, the rule is more complicated. If one
of the divisor or the dividend is a floating-point number, the resulting type is
also the floating-point number. Otherwise, the resulting type is floating-point
number if a non-zero remainder would be left after the division. If there is no
remainder, the resulting type is determined according the priorities.
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4.4 Graph library

The most interesting part of the graph library is the ability of histograms
to dynamically change their binning and range according to their data. The
most interesting example is the gaus range function which finds the range by
repeatedly fitting and recreating the histogram. It first creates a histogram
with range computed by the minmax function, and with the number of bins
computed using the Sturge’s rule. The rule has a tendency to over-smooth the
histogram which is a useful effect in this algorithm as it needs to work even
on datasets with large fluctuations, and almost no precision is required. The
histogram is then fitted with a Gaussian function, and the boundaries of the
range are calculated as µ ±

√
2σ2 ln a. Then, the offset is applied, and then,

the boundaries are rounded if it required. This range is than used to create
a new histogram, and the process is repeated. This is done either until the
difference between the previous range and the current one is smaller than 1 %,
or until the algorithm reaches a limit of iterations. By default, the limit is set
to 100 iterations, but it can be changed by the configuration.

(a) The initial histogram (b) The histogram after the
first iteration

(c) The histogram after the
second iteration

(d) The histogram after the
third iteration

(e) The histogram after the
fourth iteration

(f) The histogram after the
fifth iteration

(g) The histogram after the
sixth iteration

(h) The histogram after the
seventh iteration

(i) The histogram in the fi-
nal iteration

Figure 4.1: Iterations of the gaus range function for a distribution of hits.
The hits originates in TPX02 layer-1 region 0 during the ATLAS run 350160.
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An example evolution of the range is shown in Figure 4.1. This example
uses distribution of hits in the region 0, which is known to have fluctuations
in form of noisy pixels. The noisy pixels have much larger number of hits
than the other pixels. This is visible in the initial histogram in Figure 4.1(a).
The range is from −50× 106 to 550× 106. The initial range is produced by
the mimax range function with an offset of 10 % and with enabled rounding.
This means that there is at least one noisy pixel with a hit count as large
as 500× 106. On the opposite side of the range, there are pixels with zero hit
count because the region 0 contains masked pixels.

After the first iteration, the range is between −50× 106 and 80× 106 as
shown in Figure 4.1(b). And after the second iteration, the range is be-
tween −6× 106 and 20× 106 as shown in Figure 4.1(c). In this step, the
data, which were contained in a single bin in the previous two histogram,
starts to spread into multiple bins. However, because of the shape of the his-
togram, which looks a bit like a right half of a Gaussian distribution, the range
in the next step is wider than before. The range extends between −120× 106

and 35× 106, and all the data are again contained in a single bin. This is
shown in Figure 4.1(d). The algorithm tries again, and in the next step, the
range is between 0 and 14× 106 as shown in Figure 4.1(e).

The data are spread into multiple bins again, this time even more than
before. The structure on right side from the peak is now more separated from
the peak, and it starts to look like a second Gaussian distribution. This is
most likely because the region 0 spans across the whole chip and borders all
the converter regions. If there is one converter region which has higher hit
rate than the others, it can have effect on the region 0 in the form of a second
Gaussian distribution which is slightly shifted against the other data. This is
why the noisy pixels have to be detected in each converter region separately.
The region with the highest hit rate is most likely the uncovered region as
there is no neutron converter which filters out low energetic particles.

The fit focuses on the peak and so the range in the next iteration is be-
tween −1× 106 and 4.5× 106 as shown in Figure 4.1(f). This time, the peak
starts to spread into multiple bins, and a distribution start to be visible. In
the next step, the range is between −100× 103 and 3.5× 106, and the distri-
bution starts to be obvious. This is shown in Figure 4.1(g). The distribution
is not Gaussian, in theory, the distribution should be Poisson, however the ap-
proximation by a Gaussian function is sufficient. In the next step, the range
is tuned between 0 and 3.5× 106 as shown in Figure 4.1(h). Finally, the last
iteration produces the same range. This is shown in Figure 4.1(i). Because
the ranges are identical, there is no difference between them and the algorithm
ends.

The histogram, which invoked the gaus range function, is independent on
the intermediate steps of the function. This is shown in Figure 4.2. The steps
shown in Figure 4.1 belong to this histogram. One can see, that the range of
the histogram corresponds to the one shown in Figure 4.1(i). However, this
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histogram sets its number of bins using the sqrt binning function instead of
the sturge function. The histogram is then fitted by a Gaussian function
again and the fit result is then drawn over the histogram. This fit result is
the base for noisy pixel detection.

Figure 4.2: The distribution of hits. The histogram was created using the
gaus range function and the sqrt binning functions. The histogram shows the
distribution of hits in TPX02 layer-1 region 0 during the ATLAS run 350160.

4.5 ATLAS plugin

The data for reference detectors are read directly from the ATLAS reference
files described in section 1.3.4. The difficulty is that the files for each year are
stored in different locations, are named differently, and have different entries
with different names. Furthermore, for a single reference detector, entries
with different names are needed to be read from files from different years.
This requires not just to iterate over different data sources based on the year
of the data, but also to lookup different entries.

This is solved by a hierarchy of iterators. The top iterator goes over
different years. The iterator below goes through a list of files for that year.
And the last iterator goes through individual LB entries in a file. When the
iterator below hits the end, the iterator above moves to the next element, and
the iterator below is set to the beginning again. It resembles three nested for
loops. All three iterators are encapsulated by a different, single iterator which
behaves as if all LB entries were located in a single file. The top level is iterator
of std::map which stores the names of the entries for each year. The map of
the lists of files for each year is accessible by all instances of the encapsulating
iterator, and it is used to retrieve the list of files, when an iterator moves to
the next year.

4.6 Timepix plugin

The Timepix plugin registers two routines, tpx-lb and tpx-npr. The tpx-lb
routine produces the LB files shown in Figure 3.8 from the TPX cluster files.
The tpx-npr then removes the noisy pixels from this LB files and produces
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files shown in Figure 3.9. These routines implement use cases identified in
Figure 3.1. The testing and performance of these routines is described in
chapter 6.

The tpx-lb routine produces LBs for just a single TPX device at a time.
However, it can produce LBs either for a single run, a single year, or for all data
possible. The routine first fetches a reference detector from DetectorManager
and filters it if necessary. The reference detector is then used to iterate over
the LBs one by one. The cluster files are opened also one by one. Which
cluster file have to be opened is determined from the timestamp of the current
LB, so no cluster file is opened unnecessarily. Then, the algorithm start to
iterate over the cluster entries in the file. If the timestamp of a cluster is
lower than the timestamp of the start of the LB, the cluster if skipped. This
is because ATLAS runs are not aligned with the cluster files and so they start
somewhere in the middle of the files. The algorithm moves to the next LB
once a cluster, which was recorded after the end of the current LB, is iterated
over. When the end of the cluster file is reached, the next file is opened. If
there is no more cluster entries for the LB, the algorithm moves to the next
one.

The tpx-npr routine removes the noisy pixels for just a single TPX layer
at a time. It removes the noisy pixels using the data from the whole year.
Note that it can use only the data which were produced using the tpx-lb
routine up to the date. The routine starts by iterating the noisy LB files one
by one. If the ATLAS run stored in the file does not belong to the required
year, it is skipped. The pixels are separated by the converter regions. For
each region, a histogram of distribution of summed hits for the whole ATLAS
run is created and fitted by a Gaussian function. If the distance of the number
of hits of a pixel from the center of the function is greater than the required
multiple of the function width, or if the pixels lays in the region 0, the pixel
is marked for exclusion.

Once all noisy pixels are collected, the required extension of region 0 is
also marked for exclusion. Then, the algorithm iterates over the files again,
this time only over the ones, which were used in the first round. The numbers
of hits are summed together for the run statistics as well as for all LBs in the
file. Only numbers of hits originating in pixels, which were not marked for
exclusion, are used in the summation.
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Chapter 5
Deployment

The application contains series of makefiles which enables for automated build
and deployment. The process starts by invoking the general makefile, which
is located in the project directory, using make. The structure of the directory
is shown in Figure 5.1. Note that the application come only with the src
directory and the makefile, config.sh, default.yaml files.

The makefile first checks whether all third-party dependencies are built
and deployed. The only such dependency is currently the yaml-cpp. If the
dependency is not present in the dependencies directory, its source code
is automatically downloaded from GitHub using the git clone command.
Then, the building scripts for the dependency are prepared using the CMake
tool, which creates makefiles which are then invoked using make. Once the
dependency is built, the resulting libraries are copied into the lib directory, in
which all the libraries built in the future will be located. Then, the header files
of the dependency are copied into a sub-directory of the include directory.
To the sub-directory is given the same name as the dependency.

Once the dependencies are deployed, the core library is built. The library
contains its own makefile among the source files, which is invoked by the
general makefile. The invoked makefile builds the core library, and copies the
resulting shared library into the lib directory. It also copies header files of
the core library into the include directory, and then, the control is returned
to the general makefile.

The next step is to build the launcher. It also contains its own makefile.
When it is invoked, it compiles the source files to object files, but it also
produces object files from two other makefiles located in the directory of the
launcher. One makefile is called makelib and the other is called makeplugin.
These two files are later used to install the libraries and plugins. Then all
object files are linked together to produce the launcher executable, which is
copied into the project directory.

Once the launcher is ready, it can be used to install the libraries and plu-
gins. First, all libraries, which are present in the src/lib directory, are built
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dependencies ............................ the directory of dependencies
yaml-cpp.. the directory of the dependency downloaded from GitHub

include...........................the directory of includes/header files
yaml-cpp...................the directory of the dependency includes

lib...........................................the directory of libraries
plugin ........................................ the directory of plugins
src.......................................the directory of source codes

Core................................the directory of the core library
Launcher ..................... the directory of launcher source codes
lib.............................the directory of library source codes

detector .................... the directory of the detector library
graph..........................the directory of the graph library
stream........................the directory of the stream library

plugin..........................the directory of plugin source codes
atlas................the directory of ATLAS plugin source codes
linearity....................the directory of the linearity plugin
lumicurve............the directory of the luminosity-curve plugin
precision ........ the directory of the short-term-precision plugin
stability..........the directory of the long-term-stability plugin
timepix......................the directory of the Timepix plugin
timepix3....................the directory of the Timepix3 plugin

config.sh.........................the environment configuration script
default.yaml.............................the default configuration file
makefile................................ the general deployment script
launcher.exe ................................. the launcher executable

Figure 5.1: Structure of the project directory.

one by one using the ./launcher.exe install lib command. Every library
is built using the makelib makefile. It builds the library, copies the binary into
the lib directory and it also copies the header files into the include directory.
Then, all plugins present in the lib/plugin directory are installed one by one
using the ./launcher.exe install plugin command. Every plugin is built
using the makeplugin makefile. It builds the plugin and copies the resulting
binary into the plugin directory. The installation routine is further described
in section 4.1. After this step, the application is ready to be used.

It is highly recommended to invoke the config.sh script before the exe-
cution of the make. The script has to be invoked using the source command.
If the script is not invoked, it is very likely that the deployment will fail. If
it does not fail, but the script was not invoked, it is not guaranteed that the
application will work.
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Chapter 6
Measurements and testing

The efficiency and memory requirement of the tpx-lb and tpx-npr routines
were measured on the lxplus716.cern.ch server. The speed and memory
consumption was first tested on data for TPX02 run 350160 and then on data
for TPX05 run 350160. The LBs for TPX02 were produced in 8.5 minutes.
The measurement was repeated several times with almost identical results.
The maximum virtual memory consumed during the process was below 2 GB,
and the maximum resident memory was slightly over 1.5 GB.

The LBs for TPX05 were not produced, however the production was used
to determine the speed of the routine in number of processed cluster entries per
minute. The measurement was performed repeatedly, sometimes for several
hours. It was found that the performance of the routine is stable and it is
able to process around 95,000 cluster entries per minute, that is around 630 µs
per entry. Because the used cluster files contain around 96,000,000 entries,
it is estimated that the production of LBs for TPX05 run 350160 would take
around 17 hours. However, there are known ways how to increase the speed
performance, which can be implemented in the future.

In order to compare to the previous software, the LB production of TPX02
run 350160 was executed using the previous software on the same LXPLUS
server. It was found that the previous code is much faster on skipping the
cluster entries with timestamp smaller than the beginning of the ATLAS run.
However, no LBs were produced, because after between 2.5 and 3 minutes,
the program is killed by the OS as its virtual memory exceeds 32 GB which
are available on the server. Nonetheless, from the output log, which prints the
progress of the production, it was found that the program has processed less
than 44,000 entries involved in the LB production before it was killed. That
mean that the previous software was able to process on average less than
15,000 entries per minute. Note that because it stores the entries in a map
structure, the complexity of inserting new entry is O(n logn). Therefore, the
performance of the previous software declines as it loads more and more data.
Also note, that the program has exceeded the 32 GB limit but the cluster files
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are just 5.5 GB large.
This all means that in contrast to the previous software, the re-engineered

one not just fits into the memory and has no special memory requirements,
it is also already at least 6 times faster than its predecessor, and further
performance improvements could be applied in the future.

About the tpx-npr routine, the execution is almost instantaneous and the
memory consumption is lower than half a GB. This is major improvement, as
in the previous software, the LBs had to be reproduced to exclude the noisy
pixels.

The produced LBs were compared to the LBs produced by the previous
software. The comparison is shown in Figure 6.1. The new LBs have a higher
number of hits by about 35 %. This is due to the fact, that the previous LBs
were produced with noisy pixels detected and removed using the whole year,
whereas the new LBs have noisy pixels removed only using the single run.
The same reason is expected to be the reason for the outliers. Nonetheless,
the ratio between the old LBs and the new LBs is constant, and therefore it
is considered to be correct.

Figure 6.1: Comparison of LBs produced by different software. The LBs are
created from TPX02 layer-1 run 350160.

The significant speed increase comes at the cost of an additional disk
usage. In order to compare the file sizes, the data for TPX02 run 350160 were
used. The cluster files, which have to be processed, are around 5.5 GB, the
large LB file shown in Figure 2.11 is around 10 MB and the post-processed
file shown in Figure 2.12 is around 30 kB, that means around 60 kB for both
layers. Concerning the new files, the LB file before the noisy pixel removal is
around 120 MB, so around 240 MB for both layers, and the LB file after noisy
pixel removal is around 35 kB, so around 70 kB for both layers.
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The cluster files for TPX02, TPX05, TPX06, TPX07, TPX12, and TPX14
for all four years are around 11 TB in total and the previous large LB files
shown in Figure 2.11 are around 42 GB in total. Therefore, the total size of
the noisy LB files for the same dataset is estimated to be between 480 GB
and 1 TB. As the estimate was done using TPX02 which has fewer entries per
cluster file, it is expected to be closer to the 1 TB.

Because the LB files without the noisy pixels are of similar size as the
post-processed LB files, the total size of all of the files is expected to be
similar, and therefore, to be around 200 MB.
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Chapter 7
Web page

In order to make the resulting plots available on a web interface, a web page
is developed. The web page is developed from scratch using HTML, CSS,
and JavaScript. The web page is made to comply with the Material Design
guidelines [33], and it is made to be responsive.

Figure 7.1: Screenshot of the web interface.

The web page enables the user to select a type of analysis and various
parameters about a dataset. Then, the web page displays the plots created
from the selected dataset for the selected analysis. Currently, the parameters
regarding the dataset are: the counting method, the TPX device, and year of
the data acquisition.

The web page consists of three main areas, the header, the navigation, and
the contents. The main structure and the header are designed using Material
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Design Lite (MDL) [34], which was modified to match the desired style of the
page. The navigation consist of four drop-down lists. The drop-down lists
are custom made because they are not defined in MDL. The component was
created by combining a text field and drop-down menu. The component does
not use these other two components, it just combines their functionality and
design. The contents part of the page is used to show a list of plots. The list
is dynamically changed when a different dataset or analysis type is selected.

When a user clicks on a plot, it is opened over the whole page, and its
surrounding turns black so the plot is better visible and the surroundings do
not distract the user. Then, the plot can be zoomed in and out, enabling for
closer look. The user can close the plot by clicking on it in the maximum
zoom-out, or by clicking on the black background. All of this behaviour was
also custom made, as there was no component which exactly suits this needs.

The navigation and the contents are placed into a scroll-able element. The
element has custom designed scroll bar, which is made to fit the design of the
page.

The web uses CSS3 and JavaScript standard ECMAScript 6. This might
make the web page incompatible with older browsers. It also uses the modern
APIs such as the fetch API to send requests and load the images, or the service
worker API to cache the web page and the subsequently required plots. The
web page and all of its resources are cached statically on load, however, the
plots are cached only when they are demanded, because there are currently
around 600 of them.
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Conclusion

This thesis fulfills all five goals of the task description. The first goal was
to analyse the needs of the ATLAS luminosity measurements using TPX and
TPX3 devices regarding an automatic procedure to coherently determine the
luminosity from 2015 to 2018 data. The second goal was to design a soft-
ware, which reads the TPX and TPX3 data, performs a noisy pixel removal
automatically, and produces performance plots regarding the LHC luminosity
curve, short-term precision, linearity, and long-term stability. The third goal
was to implement this software, the fourth goal was to test the software, and
the fifth goal was to make the resulting distributions (plots) available on a
web interface.

The fulfillment of the first goal, which was to analyse the needs, is detailed
in chapter 1 and chapter 2, and by the fact that the other goals were accom-
plished as well. The fulfillment of the second goal regarding the design of the
software is given in chapter 3, and also by the fact that the next goal is accom-
plished. The third goal, the implementation of the software was accomplished
by creating a prototype of the software (chapters 4 and 5), which serves as
a proof of concept. The fulfillment of the fourth goal, testing the software is
explained in chapter 6. The fifth goal, to make the results available on a web
interface, is detailed in chapter 7, and demonstrated by the online web page.

The prototype has over 8500 lines of C++ code, over 270,000 characters,
and over 100 classes. Because of its already high laboriousness, the proto-
type implements only a subset of functionalities, and it is designed for future
extensions.
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Appendix A
Summaries

Timepix Timepix3
Bibliography [1, 2] [3]
Coupling One device with two layers Two single-layer devices
Operation
modes ToT/ToA/Counting mode Simultaneous ToT & ToA

Readout
scheme Frame-based Data-driven

Dead time Whole chip for 90–100 ms Individual pixels for 475 ns
Time
resolution 100 ns 1.5625 ns

Maximum
hit-rate 100 kHz 79 MHz

Clock
frequency

dynamic; up to 100 MHz;
usually 10 MHz

two clocks; 40 MHz and
640 MHz

Maximum
bandwidth 102 Mbit/s for 100 MHz 5.12 Gbit/s

Neutron
converters

Both layers; 4 regions:
free, PE, PE+Al, 6LiF
(Figure 1.2)

TPX3 4B and TPX3 9B;
3 regions: free, PE, 6LiF
(Figure 1.5)

Table A.1: Summary of differences between installed TPX and TPX3 devices

89





Appendix B
Acronyms

6LiF lithium-6 fluoride.

AFP ATLAS Forward Proton.

API application programming interface.

ATLAS A Toroidal LHC Apparatus.

CERN European Organization for Nuclear Research.

CSS Cascading Style Sheets.

CVMFS CERN Virtual Machine File System.

EMEC Electromagnetic Endcap.

GCC GNU Compiler Collection.

HB heavy blob.

HL-LHC High Luminosity LHC.

HTML HyperText Markup Language.

I/O Input/Output.

ID identifier.

IP Internet Protocol.

LB luminosity block.

LHC Large Hadron Collider.
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B. Acronyms

LUCID Luminosity Cherenkov Integrating Detector.

LXPLUS Linux Public Login User Service.

MDL Material Design Lite.

MPX Medipix.

ORM object–relational mapping.

OS operating system.

PDF Portable Document Format.

PE polyethylene.

PNG Portable Network Graphics.

STL Standard Template Library.

TCP Transmission Control Protocol.

ToA time-of-arrival.

ToT time-over-threshold.

TPX Timepix.

TPX3 Timepix3.

UML Unified Modeling Language.

YAML YAML Ain’t Markup Language.
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Appendix C
Contents of enclosed CD

readme.txt ....................... the file with CD contents description
project....................................the directory of the project

src....................................the directory of source codes
makefile.....................................the deployment script
config.sh......................the environment configuration script
default.yaml..........................the default configuration file

thesis.................the directory of LATEX source codes of the thesis
text..........................................the thesis text directory

thesis.pdf...........................the thesis text in PDF format
thesis.ps..............................the thesis text in PS format

web...................................... the directory of the web page
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