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Monocular 3D Scene Reconstruction for an Autonomous
Unmanned Aerial Vehicle

Department of Cybernetics

Thesis supervisor: Ing. Matěj Petrĺık
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Abstract

The real-time 3D reconstruction of the surrounding scene is a key part in the
pipeline of the autonomous flight of unmanned aerial vehicle (UAV). The com-
bination of an inertial measurement unit (IMU) and a monocular camera is a
common and inexpensive sensor setup that can be used to recover the scale of the
environment. This thesis aims to develop an algorithm solving this problem for
this particular setup by leveraging the existing visual-inertial navigation system
(VINS) odometry algorithms for localisation.
Two algorithms are developed, wide-baseline matching-based and small-baseline
tracking-based. Also, an offline post-processing structure-refinement step is im-
plemented to further improve the resulting structure. The algorithms and the
refinement step are then evaluated on publicly available datasets. Furthermore,
they are tested in a simulator and a real-world experiment is conducted.
The results show that the tracking-based algorithm is significantly more perfor-
mant. Importantly, tests on the datasets and the real-world experiments suggest
that this algorithm can be practically employed in application scenarios.

Keywords: unmanned areal vehicle, 3D scene reconstruction, structure from

motion, monocular simultaneous localisation and mapping, non-linear least

squares

Abstrakt

Rekonstrukce 3D modelu prostřed́ı je kĺıčovou část́ı autonomńıho letu bezpi-
lotńı helikoptéry (UAV). Kombinace inerciálńı měřićı jednotky (IMU) a kamery
je běžnou a dostupnou senzorovou sadou, jež je schopna źıskat informaci o
měř́ıtku prostřed́ı. Tato práce si klade za ćıl vyvinout algoritmus řeš́ıćı problém
3D rekostrukce pro tyto senzory za využit́ı existuj́ıćıch metod vizuálně-inerciálńı
lokalizace (VINS).
V práci jsou navrženy dva algoritmy, odlǐsené zp̊usobem, jakým extrahuj́ı kore-
spondence mezi sńımky: párovaćı algoritmus se širokou báźı a algoritmus založený
na trackingu s malou báźı. Také je implementována metoda vylepšuj́ıćı výslednou
3D strukturu po letu. Algoritmy jsou otestovány na veřejně dostupné datové sadě.
Nav́ıc jsou otestovány v simulátoru a je proveden experiment v reálném prostřed́ı.
Výsledky ukazuj́ı, že algoritmus založený na trackingu dosahuje výrazně lepš́ıch
výsledk̊u. Nav́ıc testy na datech a experimenty v reálném prostřed́ı ukazuj́ı, že
algoritmus může být nasazen v praktických aplikačńıch situaćıch.

Kĺıčová slova: bezpilotńı helikoptéra, rekonstrukce 3D scény, struktura z po-

hybu, monokulárńı lokalizace a mapováńı, nelineárńı nejmenš́ı čtverce
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Chapter 1

Introduction

Contents

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Thesis’ outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

In this introductory chapter, we provide the motivation of the problem that we will be
solving. We follow this by a detailed account of the problem definition, its goals, constraints
and other specifics. Then we outline the work’s structure.

1.1 Motivation

The UAVs are becoming increasingly popular, both in industry and research. Although
UAVs are defined generally as any man-made devices, that can fly without a human operator
on board, when we talk about UAVs in this work, we will refer to multi-rotor UAVs.

Recently, the focus in research has been on increasing the autonomy of UAVs as it has
enormous potential for many new exciting applications, such as search-and-rescue missions
[1], firefighting inside high-rise buildings [2], area monitoring [3], or manoeuvres within close
range from objects, which can prove beneficial in industrial settings [4], documentation of
heritage [5], and elsewhere.

Even ordinary consumer-grade UAVs have semi-autonomous systems embedded in them,
improving their operability and unlocking their potential to a wider audience of operators,
which gave rise to their increased popularity in both professional and amateur photography.

Full autonomy of these systems is a complicated feat that requires many problems to
be solved. Firstly, UAVs need to be able to properly control their hardware and abstract it.
Then, a sense of perception of the world is required, meaning that the UAVs has to be able to
localise itself within the world while map it at the same time and then determine positions of
points of interest within the built maps. This can then be input to more high-level procedures,
such as path planning and decision making. Needless to say, all of this has to happen in real
time. It used to be the case that equipment with computation power adequate to the extent of



2 Chapter 1. Introduction

Figure 1.1: Practical deployment of the autonomous UAV platforms of the Multi-robot Sys-
tems (MRS) group. From left to right: testing of autonomous flight in the Býč́ı skála cave
for the DARPA Subterranean Challenge, documenting inaccessible parts of churches for the
Czech National Heritage Institute, autonomous flight in the forest environment, extinguishing
a fire at the MBZIRC 2020 challenge.
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the problem at hand could not be carried by these smaller devices. This is not true anymore,
and systems capable of relative autonomy can be of comparably small sizes.

Most of the consumer-grade systems are using Global Positioning System (GPS) for
localisation purposes. This solution is not satisfying for many applications, however, because
GPS does not offer a fine precision of centimetres and, most importantly, it is not available
in many situations at all, such as inside buildings. For this, simultaneous localization and
mapping (SLAM) algorithms were developed. Making the autonomous UAVs cheaper, more
capable and more reliable are the essential problems needed to solve for widespread adoption
of these systems. One of the solutions to this may be the visual SLAM because cameras are
fairly cheap and common devices.

Often, the map created by the visual SLAM is not detailed enough for the purposes of
autonomous navigation. Therefore, the main aim of this work is to build upon existing SLAM
systems, creating a more detailed map of the environment that would be both detailed enough
for autonomous planning and also eligible and understandable for human operators overseeing
the UAVs.

We will utilise results from both SLAM and also a similar problem called structure from
motion (SfM), which is an area of interest for the computer vision community and puts the
focus on the quality of the 3D reconstruction.

1.2 Problem definition

Provided with pose estimates from an existing localisation algorithm and images from a
monocular camera, we seek to develop an algorithm that is able to reconstruct the map of the
environment in real time on a central processing unit (CPU). Crucially, the algorithm must
leave enough computational resources for use in the subsequent autonomous path-planning
procedures.

More specifically, the algorithm is designed for a UAV equipped with a monocular
monocular and an IMU, as this is the minimal setup able to recover the true metric scale of
the world, which is important in the robotics’ applications.

As UAVs are often used for documentation purposes1, we would also like to use the
resulting map as some lasting output. This would unlock many more possibilities. As the
flight conditions are rather restrictive when it comes to computational resources, we want to
be able to easily perform a post-processing step after landing that would further refine the
3D structure, using already generated structure and full computational resources.

1.3 Thesis’ outline

In this chapter, we have motivated the problem and specified its definition and restric-
tions.

The following work attempts to solve the problem at hand, covering both its theoretical
aspects and practical considerations.

1https://dronument.cz

https://dronument.cz


4 Chapter 1. Introduction

First, we introduce the SLAM, SfM and other topics relevant to our problem in chapter
2, seeking to provide the reader with a broad and thorough overview of the state-of-the-art
literature.

Then, in chapter 3, we will first state the mathematical notation used throughout the
text and lay out important theoretical foundations. We follow this theoretical overview with
a description of the proposed algorithms in chapter 4. In chapter 5, we describe the offline
post-processing extension to the real-time algorithms.

Lastly, in chapter 6, we evaluate the proposed algorithms. We disscuss the parameter
selection in the section 6.2. In section 6.4, we verify the developed scene reconstruction tech-
niques on the publicly available EuRoC dataset [6]. We integrate the methods into the UAV
system used by the MRS group [7] and evaluate this integration by performing experiments
in the Gazebo simulator in section 6.6. and in a real-world environment in section 6.7. The
comparison of the post-processed structure with the structure obtained during the flight is
provided in section 6.4.4.



Chapter 2

State of the Art

Contents

2.1 Structure from Motion . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 SLAM and Visual-inertial Estimators . . . . . . . . . . . . . . . . 7

2.3 Depth completion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Use of GPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

In this chapter, we will describe SfM and related problems and present the reader with
state-of-the-art methods for solving these problems and other relevant literature. Further-
more, we provide a short overview of depth-completion methods. We seek to provide a broad
literature survey to put our problem into context and also to provide possible starting points
for future work. As many algorithms rely on graphics processing unit (GPU) for crucial com-
putation, we also provide a discussion of the performance boost that GPU provide and the
reasoning why we did not use GPU in our implementation.

2.1 Structure from Motion

The SfM, in general, is the process of recovering 3D structure, usually in the form of
a point cloud and camera view poses from a set of images. The set can be ordered, such as
images taken from a moving car, or unordered, such as a photo collection on the internet.
This has implications on the structure of the algorithm as the order in the set of images can
be exploited and taken advantage of. Usually, SfM algorithm is not performed in real time,
and its main focus is the quality of the recovered 3D structure. In this work, we would also
like to maximise the quality of the 3D structure, but with additional constraint being that
the algorithm must be able to perform in real time.

A large body of research has been written about SfM over the years, as it is one of the
fundamental problems of computer vision, and it is not possible to list all of the major work.
The research on this problem began in 1987 with the paper [8]. Survey [9] compiles more recent
advancements in SfM, focusing mainly on pure structure and camera pose recovery. An in-
depth summary of the multi-view reconstruction can be found in the book [10] by R. Hartley
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and A. Zisserman. Recently, the focus has been on the scalability of the algorithms, with
some implementations able to handle millions of photos [11, 12]. On the other hand, in [13]
the focus is put on being able to reliably recover the 3D structure even from short sequences
of images. The most popular approach to SfM is incremental, which consists of incremental
adding of new images into the reconstruction with some examples being [11, 14, 15]. We
will outline this approach next, as it also is the only one that can be adapted to a real-time
scenario. Other approaches include global [16], and hierarchical methods [17].

More recently, deep-learning approaches to 3D reconstruction have been developed.
Some of the recent advancements are described in the survey [18].

Feature extraction
Images Images with features

Matching

Matched image pairs 
with correspondences Verification, outlier

detection

Initial two-view
reconstruction

Image pose
estimationPoint triangulation

Bundle adjustment Outlier points
detection 

Verified 
scene 
graph

Reconstructed 3D structure

Extended set of images 
with estimated poses 

Extended set 
of triangulated 

3D points Repeat if some images
 remain without poseOptimized 3D structure

Figure 2.1: Diagram of the incremental SfM pipeline.

The SfM integrates solutions to many individual smaller problems, to produce its result.
The incremental SfM pipeline is shown in figure 2.1. First, some feature extractor is run on
images, which identifies parts of the image that are in some sense ”interesting”, e.g. corners,
lines. After this, descriptors of each feature are computed. The role of feature descriptors is to
accurately describe the area of the image that was identified as interesting so that it can be
compared against other areas in other images. Ideally, descriptors should be invariant under
geometric and radiometric changes so that the same object could be identified in as many
images as possible. They should also be discriminative, however, to prevent false matches.

The scale-invariant feature transform (SIFT) [19] is one of the most popular algorithms
for this task. It can handle both the feature extraction and also the computation of descriptors
and is robust. On the other hand, it is resource-expensive and slow [20] which bars its usage in
real-time applications. Algorithms with binary features, such as Oriented FAST and Rotated
BRIEF (ORB) [21], offer better performance in terms of speed while keeping the property of
rotational invariance. The recent trend in this area has been to use learning techniques for
defining or improving feature descriptors and detectors such as SuperPoint [22].

The next step is to match the descriptors against other images. This step is where an
ordered photo collection can be helpful, as it often can be reasonable to assume, that images
far from each other in the ordering are also far away from one another in reality. Otherwise,
we must match either naively every image to every other image, or use some algorithms that
can improve the efficiency of this process [23].

This constructs the so-called scene graph. Its nodes are the images, and edges represent
the match between two images and their descriptors. The purpose of the scene graph building
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process is to identify images that might view the same real object. Various strategies can be
applied to filter out outliers in matches, most notably random sample consensus (RANSAC)
and its derivatives [24, 25]. Matches can also be geometrically verified by estimating a trans-
formation that maps features between the two images. This mapping can either be described
by epipolar geometry or by a homography in the case of co-planar points [10]. A pair of images
is considered to be geometrically verified if there exists such a valid transformation that maps
enough correspondences between them.

Then, a pair of images is chosen to initiate the reconstruction and set the scale by a two-
view reconstruction. It is important to choose a high-quality initial pair, as the initialisation
has a large impact on the rest of the reconstruction. In real-time applications, however, we
do not have much control over what the first pair will be. In regular SfM, the absolute metric
scale cannot be recovered and is fixed by arbitrary initialisation. To fix the scale and remove
the ambiguity, we would need some additional information, which in this work we will have,
see section 2.2.2.

When the initial two-view reconstruction is performed, new images and scene points
are added by solving the Perspective-n-Point (PnP) problem [26], that uses correspondences
of already triangulated 3D points to points in the newly added image to estimate the camera
pose of this image. Meanwhile, triangulation is performed to reconstruct more points. A point
can be triangulated if it is observed by at least two already registered images. Triangulation
can be only two-view or more general and precise m-view. Many algorithms for multi-view
triangulation exist, and some of them are listed in the book [10]. In this work, we describe
one triangulation algorithm in section 4.1.5.

The two last steps provide us with a rough estimate of the camera poses and 3D points.
These estimates are then refined by using a non-linear optimisation method called the bun-
dle adjustment (BA). It is trying to find such camera parameters and point positions that
minimise the reprojection error. This is, in essence, a sparse geometric parameter estimation
problem [27]. Usually, the BA is modelled as a non-linear least square problem [14], although
this is not a general assumption, and other types of models might be suitable as well [27].

Some of the parts of the SfM will be explained in greater detail further on in the work.
As we are trying to solve SfM in real time, some parts of the algorithm will be handled by
different procedures. Most importantly, we will not be directly solving the PnP problem in
this work, and delegate most of the camera pose estimation work to other procedures that
will be described in the following section 2.2. Our focus will be mostly on correspondence
matching, triangulation and BA.

2.2 SLAM and Visual-inertial Estimators

SLAM is an important problem in robotics and perception, where a robot has to localise
its position within the environment whilst also building a map of it [28]. This has to be done
in real time, which imposes strict constraints on the possible solutions. The applications of
solving SLAM go well beyond the robotics community; one example might be augmented
reality [29]. One advantage of a device using SLAM is that it can work under many different
settings, where localisation based on other external sources like GPS would not work. This
especially holds for indoor or enclosed areas or generally for areas with poor signal reception.
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In some regards, the SLAM is somewhat similar to SfM. It, too, recovers poses of camera
views and some structure of the environment. However, SLAM is focused more on the recovery
of camera poses and hence the robot’s path, rather than the detailed 3D structure. Also, it
is an online problem when SfM, usually, is not.

Generally, a SLAM system works by integrating information from odometry (e.g. wheel
rotation) and some perception sensors, recovering the depth information and creating 3D
landmarks that can be used as reference points for recovering the pose in time. SLAM frame-
works tend to be probabilistic, as they have to deal with large uncertainty which arises from
real-time conditions, sensor inaccuracies and noise, and localisation errors. Some statistical
framework is used to propagate the uncertainty, notably extended Kalman filter (EKF) [28].

Many variants of SLAM exist, usually stemming from some configuration of available
sensors. The first sensors, for which SLAM was designed, were active sensors, such as light
detection and ranging (LIDAR) [30], which have the advantage of fine precision when recov-
ering depth information and also a 360◦ field of view. This comes at a price, however, as
they tend to be expensive, large and also resource-intensive, which often prohibits their use
in more constrained real-world conditions.

2.2.1 Visual SLAM

A major alternative to LIDARs are regular cameras [31]. Especially, stereo-camera set-
ups with a static baseline can be used for depth estimation. A great advantage to using
camera-only SLAM (visual SLAM) is that camera is a widely used piece of equipment that
tends to be already available in many scenarios as they usually can serve a multitude of
different purposes. Processing of the camera output is also well studied by the computer
vision community.

Disadvantages of the visual SLAM lay in a limited field of view and more complicated
data structure, making them a harder problem than SLAM with LIDAR [31].

Feature-based visual SLAM methods

The more popular and traditional type of visual SLAM systems is the feature-based
approach, which is similar in essence to that of the SfM. These methods reduce the image to a
set of features (usually keypoints) and then perform their matching or tracking over multiple
frames. This is indeed a similar approach to the traditional SfM and is the most often used
solution.

The first of these algorithms was PTAM [32]. It was also the first to introduce the
architecture of two threads, one for tracking and the other for optimisation, that we also use
in this work. The approach is focused on the applications in small-scale augmented reality
(AR), which means that it does not focus on the density of the maps and can only track and
map over a small space.

One of the modern examples of this approach is ORB-SLAM [33] that is based, as its
name suggests, on ORB descriptors. Our work is largely based on these approaches, as they
achieve real-time performance and have been proven to be robust to changes in illumination
and rapid movements. By decoupling the mapping from the tracking, we seek to achieve a
denser reconstruction of the environment.
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Direct and dense SLAM methods

The direct approaches to the visual SLAM problem do not compute keypoints, but
rather base their solution on finding the alignment between two frames by minimisation of
the photometric error over the whole image [34]. The minimisation over the whole image, such
as in [35], achieves impressive results in terms of the density of the reconstruction; however,
it cannot be run in real-time on a CPU but rather requires state of the art GPU, which is
problematic on board of the UAV. Another limitation of this approach is that it is not able
to perform at a frame-rate required in our problem and cannot handle large motions well.

Versions of this approach exist that are capable of running in real time on a CPU, such
as LSD SLAM [36] or DSO [37]; however, the density has to be sacrificed. These methods
focus only on parts of the image with sufficient texture information, as those are the easiest to
optimise. Still, these methods suffer from the loss of tracks in large movements. However, we
believe that these methods are a viable alternative to the feature-based approaches, and if the
GPU technology advances, we may witness an advent of these methods in more challenging
environments. Especially the achieved density has a potential to significantly improve state
of the art.

In one of our methods, we used the idea from [38] of approximating the local rela-
tionships between points by a Delaunay triangulation, which is also based on the direct
approaches. They reformulate the photometric error optimisation to a graph optimisation
problem over the Delaunay triangulation.

2.2.2 VINS

In this work, we are interested in monocular systems (having a single camera) coupled
with an IMU. This is a sensor that, using a combination of gyroscopes and accelerometers,
measures angular rate, specific force and orientation. For the combined cameras and IMU se-
tups, a class of algorithms called visual-inertial navigation system (VINS) has been developed
[39, 40, 41]. In the following, we will focus on the monocular VINS case.

The main benefit over the regular monocular-camera SLAM is the increased accuracy
and observability of not only the pitch and roll angles, but the metric scale as well [40],
meaning that the resulting reconstruction is in the scale of the world that it captures, which
is essential for robotics. IMU measurements are also very useful in situations such as loss
of visual track due to poor visibility, motion blur, or area with not enough texture, where
vision-only approaches might otherwise fail [40]. Also, it suffices to use a small and low-cost
IMU. However, there are some limitations to this technology, too. In order for the metric
scale to be observable, acceleration is needed. Therefore monocular VINS estimators need to
launch from some moving state rather than stationary. This means that after the start of a
device, there is some short window where localisation cannot be performed. On the contrary,
stereo-camera systems have no issues with starting from stationary positions. Also, correct
camera-IMU extrinsic calibration has to be carried out prior to using the system [40].

As this framework is focused mainly on localisation, and maps produced by it are too
sparse for many applications, the aim of this work is to build upon its results to produce a
more detailed map that would be more adequate in other tasks, such as drone navigation.
We will leverage the timestamped position data produced by VINS estimators to build this
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map in real time. In the following, we will briefly introduce the VINS algorithms chosen for
the evaluation of the algorithms and provide a reason as to why they were chosen.

OpenVINS

OpenVINS [41] is an open-source implementation of a VINS algorithm based on an
on-manifold EKF that will be used for the evaluation of the methods presented here. We
chose this implementation because of its extensive documentation that greatly simplifies the
extension process. It has also achieved convincing results on the EuRoC dataset [6]. Also, this
dataset can be taken advantage of for our implementation, too, as it also provides the ground
truth 3D structure measurements performed by a precise 3D scanner.

Another advantage of OpenVins is that it supports a wide range of hardware configu-
rations, such as multiple IMUs, cameras and different feature representations.

VINS-mono

VINS-mono [40] is the system currently employed in the MRS group. It is focused on
the monocular VINS problem. In contrast to the OpenVINS it uses a non-linear optimisation
of the pose-graph instead of an EKF filter, supports loop closure and is based on keyframes.

2.3 Depth completion

During the implementation of the algorithm, we encountered the problem of densifi-
cation of the produced structure. We were motivated by the need to be able to discern the
empty space from obstacles. When the point cloud was too sparse, we did not have enough
information. This problem brought to our attention the topic of depth completion.

Most of the recent methods solving this problem are based on deep neural networks.
These include methods [42] and [43] that use both the RGB image of the scene and the sparse
depth map as input to the deep neural network that produces the full depth map. Importantly,
they are suited to sparse depth output of the SfM and SLAM algorithms; hence they can also
be applied in our case. In [44], the dense depth output is also utilised to improve the result of
a direct SLAM method. Unfortunately, the trained models of these methods are fairly large
and require the use of GPU for inference.

Depth inference from a single monocular image is another recently studied problem
that can be of interest in our case. In this area, more lightweight models that allow real-
time inference on a CPU have been developed, usually based on the Mobilenet network.
Comparison of various lightweight methods can be found in [45]. We have tested the approach
of model FastDepth [46], and we found that it is able to handle the real-time conditions well
if the resolution of the image is slightly decreased. However, we found that the results were
sometimes too arbitrary and unstable, as the network only observes static images. Even if a
depth-map estimate in one frame was relatively accurate, the estimate in the next frame could
be arbitrarily different. We believe that this can be a general problem with the neural-based
approaches, although admittedly, in the case where sparse depth is leveraged, it is not as
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profound. Furthermore, the performance of the networks is largely dependent on the datasets
they were trained on, and they may fail entirely in new environments.

Approaches using classical optimisation methods exist, even though it is not clear if
they provide major advantages over performing the optimisation over multiple frames as is
done in some of the dense direct SLAM methods. Usually, if we require to use these methods
on the CPU, they only utilise the sparse depth. The method [47] can run on the CPU in real
time; however, it is designed to fill point clouds produced by LIDAR sensors that tend to be
more dense and regular. Method [48] is based on the research from the field of compressive
sensing and uses L1 minimisation scheme. However, it turned out to be too slow for our use
case.

We also attempted to design a method based on image segmentation and following
interpolation of similar segments. However, we were not able to reach the desired speed and
results. In the end, we used the idea from [38] of using the Delaunay graphs and devised
a simple Delaunay-based interpolation scheme that we describe in section 4.2.3. We use it
mainly to densify the point cloud, but it can be used for full depth map estimation as well.

2.4 Use of GPU

During our literature research, we came across many methods that have the potential
of significantly improving the performance of the SfM algorithms and the density of the
produced structure but that rely on the use of state-of-the-art GPUs. The application area of
a GPU within the SfM problem is very broad, ranging from neural-powered approaches for
many geometry-inference tasks, such as depth completion, and optimisation tasks in the direct
approaches to more basic image processing tasks, which often are even embarrassingly parallel.
With the advent of new lightweight GPUs, such as Nvidia Jetson TX2, these approaches
become more feasible in smaller devices. However, at the moment, these are still expensive
and consume relatively large amounts of power. Even as they become progressively smaller,
we believe that algorithms that can run with only a regular CPU will still have their place,
for example, in more miniature robots.
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In this chapter, we introduce the fundamental concepts of the projective camera geom-
etry, stereo camera relationships and non-linear least-squares optimisation. We deem these
topics essential for the SfM algorithm, and they appear in multiple parts of the solution.
Reader with prior knowledge of these topics is encouraged to skip to chapter 4 describing
the algorithm itself. Also, for the comfort of the reader, we provide a short reference of the
mathematical notation we are using.

3.1 Mathematical notation

In the table 3.1, we outline the mathematical notation used throughout this work. Please
also note that we use terms vector and point interchangeably.
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Symbol Meaning

x scalar

x column vector in Cartesian coordinates

x vector in homogeneous coordinates

h : Rn+1 → Rn conversion from homogeneous coordinates defined as: h([x|l]T ) = x/l

||x|| the Euclidean norm of the vector x

f(x; p) function of variable x parametrized by the parameters p

X matrix

XT transpose

X−1 matrix inverse

det(X) determinant of the matrix X

I identity matrix, ones on the main diagonal, otherwise zeroes

0 zero vector or matrix, depending on the context

R set of real numbers

Rm×n matrices of real numbers with dimensions m× n
xt some information x in time t
ix vector in some coordinate frame i

x(i) value at the i’th coordinate of vector x

Ri→j the rotation component of a transform from frame i to j

[a]× the matrix representation of a vector product: a× b = [a]×b, see (3.10)

Ω the set of pixel coordinates of an image, Ω ⊂ Z+ × Z+

I : Ω→ R the image grayscale intensity value function

Table 3.1: Mathematical notation

3.2 Camera

A camera can be mathematically described as some mapping from 3D coordinates to a
2D image. This mapping is specified by a camera model, which has some form and parameters,
that approximate the actual camera being described. In the section 3.2.1, we describe the
commonly used basic pinhole model. The pinhole model does not account for many common
distortions of the lenses. Therefore we introduce distortion parameters in section 3.2.2.

In section 3.2.3, we define the concept of the depth of a point.

3.2.1 Pinhole camera model

In the pinhole camera model, we consider a central projection on the image plane with
the projection centre c ∈ R3 called the camera centre. Suppose we have a point x ∈ R3,
expressed in the camera coordinate frame, meaning that c is the origin of the Cartesian
system of coordinates and image plane is defined as z = f , where f is the focal length of the
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Figure 3.1: Pinhole camera model.

camera. Consider the homogeneous representation x of the point x. The central projection
onto the image plane in homogeneous coordinates xproj ∈ R3 is then defined as

xproj = K[I|0]x, (3.1)

where matrix K ∈ R3×3 is called the calibration matrix and is defined as

K =

f 0 px

0 f py

0 0 1

 , (3.2)

(px, py) are the coordinates of the principal point p in the image plane. The situation is
captured in the figure 3.1. Camera with f = 1 and p = [0, 0] is called the normalised camera.

We will deal with problems, where we will need multiple cameras, therefore it is more
practical to keep points in some global coordinate frame. For camera centre gc and point gx,
both in the global coordinate frame, the equation (3.1) then becomes

xproj = KR[I| − gc]gx, (3.3)

for some rotation matrix R ∈ R3×3 representing the orientation of the camera. Parameters
found in matrix K are called intrinsic parameters, while R and gc are called extrinsic pa-
rameters. The expression that gx is multiplied by can be interpreted as a matrix P ∈ R3×4.
We call P the full camera matrix. If we leave out K out of the matrix computation, which is
equivalent to using a normalised camera, we call the resulting matrix the extrinsic matrix.

A more compact representation can be achieved if we define a vector t = −Rgc. We
can then write (3.3) as

xproj = K[R|t]gx. (3.4)

The model of the matrix K above assumes that the image coordinates are in the eu-
clidean system with equal scales in directions of both axes. However, in reality, we often



16 Chapter 3. Theoretical Foundations

measure the image coordinates in pixels, which is referred to as pixel coordinates. Also, the
number of pixels in both directions per a unit distance in image coordinates can be different.
Let us denote this by mx in the direction of x-axis and my in the direction of y-axis. Then
for the pixel coordinates the matrix K becomes:

K =

fx 0 cx

0 fy cy

0 0 1

 . (3.5)

where fx = fmx and fy = fmy represent the focal length in the pixel dimensions of both
axes. The focal point is expressed in pixel coordinates as cx = pxmx and cy = pymy.

A more detailed description of the pinhole camera model can be found in [10].

3.2.2 Distortion

Usually, the pinhole camera model is not precise enough. Namely, it does not account
for the distortion effects of the lens. Therefore we also use a distortion model, with the most
common being radial distortion. In general, distortion occurs when camera projections of
straight lines are no longer completely straight but get some curvature. The example of this
can be seen in figure 3.2.

Figure 3.2: Illustration of lines under distortion.

Radial distortion model uses the fact, that often distortions are approximately radially
symmetric. When we measure a point x ∈ R2 in pixel coordinates, we can write the correction
as

x̂ = xc + L(r)(x− xc), (3.6)

where xc is the centre of radial distortion which usually is the principal point and L(r) is the
distortion factor, which is a function of the radial distance r = ‖x− xc‖.

The function L(r) is given as a Taylor expansion L(r) = 1 +κ1r+κ2r
2 +κ3r

3 + . . . and
its coefficients {κ1, κ2, κ3, . . .} are then the radial distortion parameters. They are retrieved
in the calibration process and there are multiple methods available [10].

In practice, we often want to model both radial and hyperbolic distortion, which can
be modelled by the Brown–Conrady model [49].
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Fisheye distortion

Fisheye distortion model describes the fisheye cameras. These cameras are of interest
in the UAV scenario as they have a wide field of view. This is especially useful for quick
manoeuvres as the UAV tends to tilt downwards during the forward acceleration, and the
regular camera would not be able to see what is in the front of the vehicle.

Let point x̂ be a projection of some point in image coordinates using the pinhole camera
model. Next we apply the fisheye distortion to get the distorted projection x:

x =
θd
||x̂||

x̂, (3.7)

where θd is defined as
θd = θ(1 + κ1θ

2 + κ2θ
4 + κ3θ

6 + κ4θ
8). (3.8)

κ1, κ2, κ3, κ4 are the fisheye distortion coefficients and θ = arctan(||x̂||). The details of this
model are described in [50].

3.2.3 Depth of a point

Consider a point x ∈ R3 and an extrinsic matrix P ∈ R3×4. The depth d of a point is
defined as the last coordinate of the vector Px.

3.3 Parametrizations of rotations

The most used parametrization of rotations is a rotation matrix R ∈ R3×3. The rotation
matrices have some specific properties; namely, their determinant is equal to one, and they
are orthogonal. All such matrices form the Special Orthogonal Group SO(3).

The representation of rotations as matrices is not the most compact representation, as
rotations have 3 degrees of freedom. Because of this and the aforementioned restrictions on
the matrices that are hard to enforce in optimisation algorithms we will need to solve, it is
useful to use some other representations.

There are multiple other alternatives possible, most notably Euler angles and unit
quaternions, but here we focus on the vector representation derived from the Euler–Rodrigues
formula.

The representation is given as a rotation by angle θ radians around the axis a ∈
R3, ||a|| = 1. The rotation vector is then defined as: r = θa. Furthermore, the matrix repre-
sentation R of the rotation r can be obtained by the Euler–Rodrigues formula:

R = cos θI + sin θ[a]× + (1− cos θ)aaT , (3.9)

where the matrix representation [a]× of the vector product with a = [a1, a2, a3]T is defined
as:

[a]× =

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 . (3.10)
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The inverse process requires the choice of the axis a from the two alternatives. This
can, however, be accomplished by a simple procedure, for which we refer the reader to [51].
For the derivation of the formula, please see [52].

3.4 Epipolar geometry

x

c1 c2

π

baseline

epipoles

x1 x2

l1 l2

Figure 3.3: Epipolar geometry.

A crucial aspect of the SfM algorithms is the concept of geometric relations between two
camera views. These relations are called the epipolar geometry and have practical application
in the correspondence search, as they can constrain the solutions.

Suppose we have a point x ∈ R3 that is seen in two views as image points x1,x2 ∈ R2.
It is clear from figure 3.3 that the point x, its projections and camera centres c1, c2 lie in
the same plane π called the epipolar plane. The baseline is a line connecting the two camera
centres. The point of intersection of the baseline and the image plane is called the epipole.
Importantly, epipolar line is the intersection of the epipolar plane with the image plane.
Traditionally, the two views are described as a left view and a right view, which stems from
the fact that epipolar geometry is often used in stereo vision.

If we only know the poses of the cameras in 3D space and the coordinates of the image
point x1, we can determine the epipolar plane π using these points. Then the corresponding
point x2 must lie on the epipolar line l2. This fact can be utilised to restrict the correspondence
search to the epipolar line or, more practically, to points within some distance from the line.
It can also geometrically verify matches computed based on some descriptors. In the following
paragraphs, we will derive the algebraic form of this constraint, called the essential matrix.

Essential matrix The camera coordinate systems of the two views can be related by a
rotation matrix R ∈ R3×3 and a translation vector t ∈ R3. This means that the relationship
between the coordinates of x in these systems can be written as:
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c2x = Rc1x + t. (3.11)

The translation t corresponds to the directional vector of the baseline. We can demand the
following condition to hold:

c2x(t×Rc1x) = 0. (3.12)

This condition expresses the co-planarity of the baseline and the two lines connecting the point
to both camera centres. Because the homogeneous projections x1,x2 ∈ R3 of x correspond to
the same normalised vectors as c1x and c2x, we can rewrite this condition to:

x2(t×Rx1) = 0, (3.13)

or, equivalently:
xT2 Ex1 = 0, (3.14)

where
E = [t]×R (3.15)

is the essential matrix. Equation (3.14) is the normal equation of the epipolar line we were
seeking.

The essential matrix relates the undistorted points in homogeneous normalised coordi-
nates. We can generalise it to points p1,p2 ∈ Ω in pixel coordinates by utilizing the camera
matrices K1,K2:

pT2 K−T2 EK−1
1 p1 = 0. (3.16)

The matrix
F = K−T2 EK−1

1 (3.17)

is then called the fundamental matrix.

The essential and fundamental matrices can also be estimated from correspondences,
usually by using some robust estimation method such as RANSAC to deal with outliers.

3.5 Non-linear least squares

In the solution of the SfM problem, we often encounter the need to solve a non-linear
least squares problem. Therefore, we present the reader with a short overview of the essential
theory from this area. The non-linear squares optimisation is a problem of finding x ∈ Rn
that minimizes the following functional:

1

2

m∑
i=1

||fi(x)||2, (3.18)

where fi are some general non-linear functions. We note that the constant 1
2 is not a crucial

part of the problem, it is only included as it simplifies the derivatives and it has no effect on
the result of the optimisation.

Let us also introduce a matrix notation of the optimisation problem:

argmin
x

1

2
||F (x)||2, (3.19)
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where F : Rn → Rm is defined as F (x) = [f1(x), . . . , fm(x)]T . It can be easily seen that this
formulation is equivalent to the initial formulation (3.18).

It can also be useful to constrain the optimisation by setting lower and upper values of
x:

argmin
x

1

2
||F (x)||2,

s. t. d ≤ x ≤ u.

(3.20)

3.5.1 Solving non-linear least squares

The non-linear least squares do not have a closed-form solution, but many iterative
methods exist. Here we will describe the trust-region minimisation methods. In the following
description, we use the matrix problem notation (3.19).

In general, the iterative methods are based on linearising the problem and computing
at each step a correction ∆x to x. The linearisation is:

F (x + ∆x) ≈ F (x) + J(x)∆x, (3.21)

where J(x) is the Jacobian of F . Then, for known x, we need to solve the problem:

argmin
∆x

1

2
||F (x) + J(x)∆x||2. (3.22)

This is a linear least-squares problem that can be solved either by exact methods such as QR
decomposition, or by some other iterative algorithm [53].

The whole problem (3.19) can be solved by simply iteratively updating x := x + ∆x.
However, this solution can have problems with convergence, which is the motivation behind
the trust-region methods. Trust region methods restrict ∆x to some local neighbourhood,
defined by a local distance matrix D(x) and radius µ, which is dynamically manipulated
during algorithm’s iterations. The neighbourhood is captured by adding a following condition:

||D(x)∆x||2 ≤ µ. (3.23)

The whole trust region optimisation is then captured in algorithm 1. The value of q measures
how well the linearisation corresponds to the original function. If the approximation is poor,
the solution is not accepted, and the region radius µ is decreased. On the other hand, if it is
very precise, we enlarge the radius. This is controlled by parameters ε, η1, η2.

The way the constrained linear-squares problem is computed gives rise to different
trust-region methods, with the most well-known being the Levenberg-Marquardt. For a more
detailed treatment of these methods, we refer the reader to [53]. In most of the non-linear
least-squares problems we need to solve in this work, we leverage the Ceres solver [54].
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Algorithm 1: Trust region optimisation

Given initial x, radius µ and constants ε, η1, η2;
while Termination condition not satisfied do

Compute ∆x by solving the linear least-squares problem (3.22) constrained by
(3.23);

q = ||F ((x)+∆x||2−||F (x)||2)
||F (x)+J(x)∆x||2−||F (x)||2 ;

if q > ε then
x = x + ∆x ;

end
if q > η1 then

µ = 2µ;
end
else if q < η2 then

µ = µ/2;
end

end

3.5.2 Robustification
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Figure 3.4: Comparison of the quadratic loss x2

2 (blue) and the Huber loss ρ(x; 1) (green).

In real problems, we must deal with outliers, which are erroneous data points with an
impact on the value of the loss function, that can steer the optimisation away from the desired
solution. We can improve the robustness by replacing the quadratic loss function in (3.18)
with a more sophisticated loss function ρ : R→ R+ that down-weighs the impact of outliers:

m∑
i=1

ρ(||f(x)||) (3.24)

We want ρ to behave similarly to the original quadratic loss around the zero point, as it is
differentiable, which improves convergence, but at the same time decrease the slope further
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from the 0. We use the Huber loss function:

ρ(a; δ) =

{
1
2a

2, if
√
a ≤ δ

δ(|a| − δ2

2 ) otherwise
. (3.25)

See figure 3.4 for a visual comparison of the quadratic and Huber loss functions.

The use of a robust loss function ρ naturally has implications on the solution of the
problem, where it affects the computation of the gradient and Hessian. This is out of the
scope of this work, and we refer the reader to [27] for more details.
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In this chapter, we will outline the structure and theory of the proposed algorithms.
The algorithms are designed as an extension to some monocular VINS algorithms, or, more
generally, any localisation algorithm or system. It is therefore assumed that the camera pose
in time is provided. We then use this information to compute the 3D structure.

The camera is assumed to be calibrated, meaning that the calibration matrix K does
not change in time (e.g. by zooming) and is specified as a parameter at the beginning.

We always begin with a section describing the structure of the whole algorithm, and
then we attend to individual details.

4.1 Wide-baseline keyframe-based matching algorithm

This algorithm works on a keyframe basis, which means that we do not consider each
image coming from the camera but rather subsample this stream. This has two main reasons.
Firstly, we can afford to spend more computation time on each keyframe, hence achieving
better results in feature extraction and mapping. Secondly, if we took two images that would
be too close to each other, we would have a small baseline, which would cause poor results in
the structure estimation.

4.1.1 Algorithm’s structure

Each keyframe at time t can be described as a tuple

kt = (Ct,dt, ft), (4.1)
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where matrix Ct ∈ R3×4 is the camera extrinsic matrix that describes camera pose at that
keyframe, see eqquation (3.4). Then two vectors, dt and ft represent computed feature de-
scriptors and the corresponding feature pixel coordinates, respectively.

The state of the algorithm can be described by a vector of keyframes k and a vector of
correspondences descriptions which keep the information about matched images, effectively
representing the scene graph. Each correspondence descriptor has all the information needed
to perform triangulation of a point. It is defined as follows:

d = (key,desc), (4.2)

where key is a vector of indexes of keyframes kt that have been found to match and desc is
a vector of indexes of the actual matches dt, ft for the given kt.

Assume a given timestamp t. The algorithm receives information about the camera
pose at that time, which is represented by a rotation transform Rt and a position of the
camera centre ct. We then decide whether to add another keyframe. We do this simply by
thresholding the translational and rotational distance between the two frames and we describe
this in section 4.1.2.

Suppose we selected the timestamp t. We can then initialise a new keyframe. From a
corresponding image we compute its features and descriptors ft,dt, which we discuss in detail
in section 4.1.3. For feature extraction, we chose the ORB algorithm. SIFT has proven to be
too slow for the purposes of a real-time deployment [20].

Then we perform the feature matching as we describe in section 4.1.4. If the number of
keyframes is relatively low, we can match with n nearest keyframes, as the search for nearest
keyframes is fast. As an alternative, we can exploit the information about the ordering of
keyframes and match against a set of n prior keyframes {kt−1, kt−2, . . . , kt−n}.

After this, we estimate the epipolar geometry using the pose information from the
VINS algorithm, to remove the outliers and save the verified matches into the vector of
correspondence descriptions desc. We provide more details in section 4.1.4.

Once we have at least m correspondences for a given correspondence descriptor, with m
being another important parameter of the algorithm, we can triangulate a new point, which
we describe in section 4.1.5.

4.1.2 Keyframe selection

The frame becomes a keyframe if it satisfies the requirements of minimal translational
and rotational distances to the last frame. Translational distance is defined simply as the
standard Euclidean metric between two camera centres. We define the rotational distance in
the following section.

Rotational distance

In [51] a metric r on the space of rotational matrices SO(3) is defined as:

r : SO(3)× SO(3)→ 〈0, π),

r(R1,R2) = || log(R1R
T
2 )||,

(4.3)
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Figure 4.1: Resulting point cloud and the keyframes (red arrows). The green line symbolises
the trajectory.

where log gives the vector representation of rotation derived from the Euler-Rodrigues formula
as described in the section 3.3, hence the norm gives the angle θ of rotation around the axis a.
This function can be proven to be a metric and also has some desirable geometric properties
that are crucial in our case, for example that two rotation matrices with similar values will
also have a small value of this metric. The intuition behind this formula is that it attempts
to find the amount of rotation required to align R1 to R2. For the proof, details about the
computation and properties of this metric, we refer the reader to [51].

4.1.3 Keypoint detection and description

For the matching-based algorithm, we chose the Features from Accelerated Segment
Test (FAST) feature detector and ORB feature descriptor, as they are efficient to compute
and use while at the same are precise enough for our use. For evaluation of ORB performance,
refer to [20]. Also, multiple other works have been based on ORB such as ORB-SLAM [33].

We detect features in cells of a regular n × n grid, meaning that we always attempt
to find k features for each cell. We do this to make the distribution of detected points more
even, attempting to detect some keypoints in every part of the image. At the same time, we
do not want to dictate the points’ location as then less high-quality points would be detected,
deteriorating the matching quality. In practice, we opted for values n = 4 and k = 100.

FAST detector

The FAST detector was first introduced in [55] and then improved in [56]. It is based on
the idea that a corner should have in its surroundings points differing in intensity. It uses the
information from a Bresenham circle C ⊂ Ω of 16 pixels around the point of interest p ∈ Ω.
It evaluates pixels in two passes. In the first pass, a less accurate but more computationally
effective test is performed to filter potential candidate points. This test considers only four
points on the circle, namely points in the x-axis and y-axis direction from p. The point is
considered for the second test only if for three points p1,p2,p3 ∈ C of the four holds one of
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Figure 4.2: Example of a FAST corner p, with the Bresenham’s circle containing the points
used in the first test.

the following conditions:

I(pi) < I(p)− t, ∀i = 1, 2, 3

I(pi) > I(p) + t, ∀i = 1, 2, 3
(4.4)

where t is a pre-defined threshold. A typical value is 10. The candidates are then evaluated
by a more precise test, where one of the above conditions must hold for at least 12 contiguous
points. A simple example of the FAST corner is illustrated in figure 4.2. The grey area
symbolises pixels that have a similar intensity value to p, while white pixels have the intensity
value lower at least by the FAST threshold.

FAST detector usually picks many points within close proximity. This can be remedied
by using non-maximal suppression. A scoring function is introduced:

V (p) =
∑
x∈C
|I(x)− I(p)|. (4.5)

For two close points, we discard one with the lower value of V . We can also sort the points
using this function and pick the points with the highest score.

ORB descriptor

ORB is a feature descriptor, but part of the contribution of ORB is also improved
feature point detection. This comes at a computational expense, however, which is why we
decided to use plain FAST for detection and ORB only for description and matching. We will
only describe the ORB descriptor, not the detection mechanism.

ORB descriptor builds on top of Binary Robust Independent Elementary Features
(BRIEF) descriptor, improving its rotational invariance. The BRIEF descriptor is a binary
vector of n = 256 intensity tests t ∈ {0, 1}n. Intensity test τ of points p1,p2 ∈ Ω in smoothed
image I is defined as follows:

τ(p1,p2) =

{
1 if I(p1) < I(p2)

0 otherwise.
(4.6)
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The rotational invariance is accomplished by taking into account the orientation of the key-
points in the descriptor and by learning which tests are more valuable. Details of this can be
found in the work [21].

4.1.4 Matching

Matching of descriptors is performed by a nearest-neighbour search over some descriptor
distance function. As ORB feature descriptor is a binary vector t ∈ {0, 1}n, the function used
is Hamming distance, which is equal to the number of positions in which the vectors differ.
We accept two descriptors as matches if they are the nearest neighbours and their distance
is lower than some threshold.

Matching usually produces a considerable amount of false-positive erroneous matches.
This can be reduced by a simple test introduced by D. Lowe in [19]. We perform the 2-nearest-
neighbour search. It is then sensible to assume that a match should be unique. Therefore if
the second nearest neighbour is too close we refuse the match as not unique enough. Let d1, d2

be the smallest and second smallest, respectively. We then accept the match if it holds that
d1 < ld2, where l ∈ (0, 1) is a constant ratio threshold. We experimentally set l = 0.7.

Geometric verification

We further filter the matches using epipolar geometry, which we can directly compute
by leveraging the information provided by the localisation algorithm. Namely, we construct
the essential matrix from the definition (3.15). Then, for each pair of matched points x1,x2

in normalized image coordinates we compute the epipolar lines l1, l2 given by the equation
(3.14). We compute a regular distance of a point from the line for points and epipolar lines in
both frames and average them. Then we set threshold t and refuse a pair of matching points
if the value of the average epipolar error is larger than t.

The value of this threshold depends on the quality of the localisation algorithm, as this
dictates the precision of the epipolar geometry. In our case, we found values of around 0.05
to work well.

4.1.5 M-view triangulation

For point triangulation, we are using the m-view triangulation method that gives better
results than regular 2-view triangulation. This method provides us with an initial estimate of
the position of a point, which we further refine over time by a non-linear optimisation method
described in section 4.1.6.

We have used the multi-view triangulation algorithm present in OpenVINS [41]. It goes
as follows.

Suppose that we have an unknown point x ∈ R3 that is observed by m cameras with
their centres c1, c2, . . . , cm. We pick some arbitrary camera frame as an anchor a. We can
then write the following transformations, for arbitrary camera frame i and anchor frame a:

ix = Ra→i(
ax− aci),

ax = Ri→a
ix + aci.

(4.7)
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Also, we can represent the point coordinates within the frame of i’th camera ix as the
coordinates of its projection onto the image plane scaled by some factor six

ix = sixxproji , (4.8)

where xproj = [un, vn, 1]T and un, vn are the normalized image coordinates of the projection,
hence from our point of view we can deem them to be the image coordinates of the found
correspondence. We can substitute this into the second equation of (4.7) and we get

ax = sixRi→axproji + aci. (4.9)

Let us name the vector Ri→axproji as vi. We define a skew-symmetric matrix [vi]× in the
same way as in equation (3.10). Because rows of the matrix are orthogonal to the vector vi,
we can multiply (4.9) by it and get

[vi]×
ax = [vi]×

aci. (4.10)

This way we reduced the degrees of freedom by removing the parameter six. We can write a
linear equation 

...

[vi]×
...


︸ ︷︷ ︸

A

ax =


...

[vi]×
aci

...


︸ ︷︷ ︸

b

. (4.11)

Because each measurement [un, vn]Ti gives us two constraints on the solution, we should have
enough constraints to triangulate the feature as usually we require more than 3 correspon-
dences to compute the triangulation due to quality reasons. We can further simplify the
solution process by noting that we can multiply both sides from the left by a transposed
matrix of the left side:

ATAax = ATb. (4.12)

This leaves us with an equation that has only a 3 × 3 matrix ATA and is easily solvable.

By solving this equation, we obtain the pose coordinates in the a coordinate frame,
which we can easily transform into the global coordinate frame and get the final solution.

4.1.6 Non-linear least-squares refinement

The initial estimates obtained by the triangulation are further refined using a non-linear
least-squares method. This refinement runs in a separate thread and is performed when either:

1. point is newly-triangulated or

2. a new match of some point is found and the time elapsed since the last optimisation of
the point is at least one second.

The time restriction is vital to ensure that we do not waste the computing power recomputing
the same points too frequently, which would lead to delays in optimisation of the newly-
triangulated points.
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Consider a point x ∈ R3 that has a set of n matches mi in normalized undistorted
image coordinates with corresponding camera extrinsic matrix Pi ∈ R3×4 for i = 1, . . . , n.
We want to minimize the following function w.r.t. x:

n∑
i=1

1

2
||h(Pix)−mi||2. (4.13)

This is a non-linear least squares problem (refer section 3.5) where the non-linearity stems
from the fact that the function h, converting points from homogeneous coordinates, performs
division by the last coordinate. We solve a robustified version of this problem as we defined
in section 3.5.2, to reduce the impact of outliers that arise here from errors in matching.

4.1.7 Point quality measures

We can try to judge the quality of a triangulated point based on a set of heuristic
measures that are simple to compute. We filter points based on these metrics to try to ensure
some quality of the resulting structure. However, we recommend setting soft thresholds on
these metrics, as they can be overly pessimistic and thus considerably restrict the density of
the structure.

The first metric we keep track of is the reprojection error. This is the metric that the
whole problem chooses to optimise for. Therefore it is clear why it is useful to be keeping its
value.

Next, we also measure the maximum baseline between frames that the point is visible
from. The reasoning is that larger baselines provide more reliable information for triangulation
and thus should lead to more accurate points’ positions.

The last metric we compute is the average distance of the matches to the epipolar line
(described in section 3.4). This is based on the assumption that we have an accurate estimate
of the epipolar geometry that can be effectively used to judge the quality of matches.

4.2 Small-baseline tracking-based algorithm

This algorithm has an underlying principle that is rather different from the previous
one, even though the fundamentals remain the same. The fundamental functionality of the
algorithm is based upon a tracker that works on a frame-to-frame basis, rather than on a
keyframe basis. This means that we have more matches for an individual point and, more
importantly, the matching of points happens on a very small baseline. That allows us to employ
a very different approach to matching that does not require computation of descriptors and
their subsequent matching. Instead, we detect points in the first frame and then try to locate
them within their local neighbourhood in the next frame by some similarity measures. This
approach is called tracking and can generally be used for tracking the moving points and
objects within a stationary video sequence. Here we assume the scene to be static; hence we
instead use tracking to accomplish the same result as matching did.

Our first assumption was that this method would have to perform much more work in
a given time unit, as it has to track constantly frame to frame and cannot utilise a segment
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of time for some other computations. We found that this does not matter much and that it
can be beneficial as it provides us with more data and also is able to compute more dense
point clouds. Especially in areas with weak texture and not many distinctive features, this
algorithm can perform relatively well, leveraging the locality of tracking. For more discussion
and data, please see the performance evaluation in the experiments’ chapter 6.4.

4.2.1 Algorithm’s structure

The general structure is very similar to that of the previous algorithm, except that now
we keep information about all the frames. Despite processing all frames, the algorithm is able
to achieve a framerate of around 25 – 30 FPS.

In the first frames we detect some points using the FAST detector that we described
in section 4.1.3, that we then track to next frames. As a tracking algorithm, we use the
Kanade–Lucas–Tomasi (KLT) tracker, which we describe in more detail in section 4.2.2.

The point is triangulated once we have tracked it through a sufficient amount of frames.
This is similar to the matching-based algorithm, although here we triangulate when we have
a higher number of matches to cope with small-baseline-related issues by promoting data
redundancy in the initial triangulation. The triangulation algorithm itself is the same as
in the matching algorithm, see section 4.1.5. Also, the non-linear refinement mechanism is
identical, see section 4.1.6.

Furthermore, we developed a mechanism of detecting outlier points by operations on
the local neighbourhood of a point which is defined by a 2D Delaunay triangulation. This
can also be used to perform some light point cloud densification. We describe this in section
4.2.3.

This algorithm also performs keyframe selection based on the same criteria as the
previous, but keyframes are intended mainly for the post-processing step and as means of
reducing redundancy in the Delaunay computation, not for the tracking itself.

4.2.2 Kanade–Lucas–Tomasi (KLT) tracker

KLT tracker is an iterative algorithm that attempts to find for points detected in the
first image their correspondences in the second image frame. It was introduced in the two
papers [57, 58] by Kanade, Lucas and Tomasi, hence its name. The correspondences are
found by computing a motion vector between the two frames. An assumption is made that
the camera movement between the frames is small; hence the tracker is best suited for video
sequences. The initial points can be detected by multiple methods. In this work, we used the
FAST algorithm that we described in section 4.1.3.

Let T : D → R, D ⊂ Ω be a patch template in the first frame. This means that it is a
section of the first image. The patch is transformed to second frame I by some transformation
W (x; p) where p is a vector of its parameters. We want to estimate the optimal parameters
p̂ by approximately minimizing the following functional:∑

x∈D
[I(W (x; p))− T (x)]2. (4.14)
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This corresponds to the minimisation of the visual difference between the original and the
transformed patch. The resulting transformation can then be used to compute the position
of the point xi ∈ D in the second frame, xi+1 = W (xi; p̂). The function W can be simple
translation, rigid motion, affine or projective transformation. We use the affine transformation,
but we will derive a general KLT algorithm. Initial estimate of p is assumed to be known and
we try to estimate its change ∆p:

∆p = argmin
∆p

∑
x∈D

[I(W (x; p + ∆p))− T (x)]2. (4.15)

Let us linearise the functional I(W (x; p + ∆p)) by a first-order Taylor series approximation:

∑
x∈D

[I(W (x; p)) +∇I ∂W
∂p

∆p− T (x)]2. (4.16)

Here the ∇I represents the image gradient evaluated at W (x; p). We can differentiate the
above term and set it equal to zero and we get the value of ∆p as

∆p = H−1
∑
x∈D

[
∇I ∂W

∂p

]T
[T (x)− I(W (x; p))], (4.17)

where H ∈ Rn×n is the Gauss-Newton approximation of the Hessian matrix:

H =
∑
x∈D

[
∇I ∂W

∂p

]T [
∇I ∂W

∂p

]
. (4.18)

Now the whole algorithm can be written as a simple iterative procedure 2.

Algorithm 2: KLT tracker

Given initial p, ε, T, I and W ;
while ||∆p|| > ε do

Compute ∆p according to (4.17);
p := p + ∆p;

end

Essentially, the solution to the KLT is produced by solving a non-linear least-squares
problem by a specific iterative method.

There is an inherent trade-off between the accuracy and robustness of the tracker. Intu-
itively, the smaller the patch window, the more accurate results we will get. With the growing
size of the window, we lose the local details as their influence on the functional becomes
small. On the other hand, bigger windows handle better larger movements. Therefore, the
KLT tracker is usually implemented using an image pyramid that is processed in a coarse-to-
fine manner. We begin by estimating the parameters at the deepest image, which corresponds
to the smallest image with a low number of details. The estimates are then propagated through
the pyramid to account for the finer details. This method was introduced in [59].

For a very detailed account of the theory, practicalities and evaluation of the KLT
tracker, we refer the reader to [60].
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Management of points

New points must be continuously detected, as some may move out of the view, become
occluded or lost by the tracker. Also, some points might move too close during tracking. We
can pick just one point out of the group of close points. This is accomplished by splitting the
image into a grid and enforcing that there must be at most a single point within each grid
cell.

We, therefore, try to sample new points proportionally to the number of points needed
to reach our desired number of points. The same gridded detection mechanism is employed as
in the matching-based algorithm. For details refer section 4.1.3. We also tried to detect points
proportionally to the number of points needed in individual cells. However, we could not
measure any major improvements; hence we decided to use the simpler method. To promote
redundancy, we try to detect some constant amount of points even when we have more points
than we specified. This does not lead to unlimited growth, as in reality we almost always drop
enough points.

4.2.3 Delaunay mesh

A Delaunay triangulation of the set of points in the image has proven to be a useful con-
cept in the context of filling gaps and control of points’ quality. It gives us useful information
about a local neighbourhood of the point.

We will first describe the Delaunay triangulation and then outline its uses in this work.
The idea to use Delaunay triangulation comes from [38].

Figure 4.3: Example of a Delaunay triangulation of a set of points, with the cicumcircles.

Delaunay triangulation

The process of triangulation here means, in the geometric sense, a subdivision of some
planar object into triangles. This is not to be confused with the concept of triangulation as
used by the computer vision community that we have mentioned extensively throughout this
work.

We will not define triangulation fully formally, as this would be out of the scope of this
work. But informally, for a triangulation of a non-collinear set of points P = {p1, . . . ,pn},pi ∈
R2 must hold:
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Figure 4.4: The Delaunay triangulation in the runtime of the algorithm.

1. Every point pi is a vertex of at least one triangle.

2. Triangles do not intersect with each other but may share a vertex or edge.

3. Triangles form a convex polygon.

Delaunay triangulation is then such a triangulation that the circumcircle of every triangle
does not contain any p ∈ P . The circumcircle of a triangle is a circle that passes through
all of its three vertices. It is uniquely determined by the vertices. An example of a Delaunay
triangulation with visualised circumcircles can be seen in figure 4.3 and an example of the
Delaunay triangulation in the algorithm is in figure 4.4.

Outlier removal

We propose a novel method for the removal of outlier points that is based on the
Delaunay triangulation connectivity graph.

Consider a point x ∈ R3 with a correspondence in some camera frame c. Let ∆ be a
set of points whose correspondences in c share an edge with the correspondence of x in the
Delaunay triangulation.

We define a simple outlier-rejection scheme, which uses a least-squares interpolation of
a plane passing through the depth points. For reference, we defined depth of point in section
3.2.3. Let us define a linear plane depth function:

D(a; p) = pTa, (4.19)

where a ∈ R3 is a point correspondence in homogeneous normalized image coordinates.

We solve two least squares problems, one with the correspondence of x included and
one without it, and obtain two parameter vectors p1,p2 ∈ R3:

p1 = argmin
p1

∑
y∈∆

(D(ay; p1)− dy)2,

p2 = argmin
p2

∑
y∈∆∪{x}

(D(ay; p2)− dy)2,
(4.20)

where ay is the correspondence in c of the point y and dy is its depth in c. These are linear
least-squares problems that we can quickly solve by pseudo-inversion. We then consider the
point to be an outlier if it holds that ||p1 − p2|| > t, where t is a threshold.
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This approach assumes that the surrounding depths of near points can be either well
approximated by some plane and that the large difference between p1 and p2 is indeed caused
by the outlying point x. This is a gross oversimplification, but in man-made environments
that are mostly planar, it enables us to deal with some of the outliers. Especially when we
limit the definition of D by the intensity and distance thresholding. This means that we take
into account only neighbouring points with similar intensities and low pixel distance to the
correspondence ax. In practice, we set t = 0.7, although we note that more evaluation of
settings of this threshold in different environments is needed.

This approach was not utilised in the matching-based algorithm, as there the detected
points were too sparse; therefore, this method could not work reliably under such circum-
stances.

Densification

We can densify the point cloud by assuming the planar model of a single triangle, as
in the previous section. We sample the 2D triangle and project the new points by using
the interpolated depth. The plane has a closed-form solution, as 3 points define a plane
unambiguously, provided they are not on a single line. Assume we have three points forming
the Delaunay triangle, x1,x2,x3 ∈ R3, where their last coordinate is the depth. The normal
vector n of the plane with normal equation xTn = l can then be computed as:

n = (x2 − x1)× (x3 − x1). (4.21)

To compute the affine constant l, we can substitute one of the points into the plane equation.

We sample the points from the triangle on a regular grid rotated so that it matches
the direction of one of the edges of the triangle. For simplicity, we do this in the normalised
image coordinates, although we believe that better approaches might exist and could improve
the performance of this algorithm. The dimension of the grid we set to 0.05, which would
correspond to 5 % of pixels in the horizontal or vertical directions if the grid was aligned to
them.

To avoid redundancy, we perform the densification procedure only in the keyframes that
are determined in the same way as in the matching-based algorithm.

Importantly, suitable triangles for this operation must be chosen, as some would lead
to many erroneous points. Firstly, we refuse triangles defined by points that are too far apart
from one another, as it is not probable that this triangle is a good approximation of the space
between the two points. We accomplish this by setting a threshold on the maximum length
of an edge of the triangle.

Further, we limit the maximum photometric difference between the triangle points.
This is a common assumption employed in the depth estimation problems: that when points
are close in the image and have a similar pixel intensity value, they will probably be close in
reality, and their surroundings can be linearly approximated. Naturally, this is a simplification
that may not hold under many circumstances, e.g. the crown of a tree. In our experiments,
we set this maximum distance to be 0.2 m, as this corresponds to the value of the resolution
of the occupancy grid, which we describe in the following section 4.3.
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Let the pixel intensity values of the vertices of the triangle be denoted as i1, i2, i3. We
then accept the triangle only if the following condition holds:

µ− aσ ≤ ij ≤ µ+ aσ, ∀j = 1, 2, 3, (4.22)

where µ is the average of the pixel intensity values, σ is its standard deviation and a is a
parameter influencing the strictness of the condition. In our experiments, we chose a = 1.5.

We provide the coordinate of the filled points on demand by computing it using the
triangle interpolation of the depth and its conversion to global coordinates. This means that
these points can move over time, as the non-linear least-squares refinement step optimises
the points that define the triangle or the pose of the frame. We do not attempt to match the
filled points in other frames, although we note that this can be an interesting direction of
improvements.

Figure 4.5: Depth map created by the linear interpolation over the Delaunay triangulation.
The orange end of the colourmap corresponds to lower depth. The visible triangulated points,
upon which the triangulation is based are also displayed.

We can use this method to produce full depth maps, as we show in figure 4.5. However,
we did not use this in the final algorithm, as the depth map would require some additional
optimisation to smooth out errors, such as in the paper [38]. We also note that the whole
depth map is largely redundant for the purpose of autonomous navigation. Furthermore, it is
relatively computationally expensive when performed on a CPU.

4.3 Interface with the navigation algorithms

Despite our method producing substantially denser environment representation in the
form of a point cloud than the VINS algorithms, it is still too sparse for a direct application of
navigation algorithms, as they need to see the gaps between the points closed. Because of this,
we feed the point information into some other algorithm that computes representation that can
be directly used by existing planning techniques. We used the OctoMap [61] method, which
was chosen as it is already used within the MRS system for processing the data generated by
LIDAR sensors, which are also point cloud data. That means there are navigation algorithms
already implemented that use the OctoMap and could therefore be easily employed with this
method.



36 Chapter 4. Proposed Algorithms

The OctoMap works by constructing an occupancy grid representation of the 3D space,
where each cell can either represent empty or occupied space. It probabilistically integrates
the information about point density from the point cloud to update the knowledge about
occupied space.

In essence, the probability of being occupied and free is kept in each cell in the space
and is manipulated by observations. When a point is observed, the occupation probability of
the cell containing the said point is increased. Importantly, a raycasting operation from the
sensor (in our case camera) to the point is performed, and the probability of being occupied
is decreased for all the grid cells along this ray.

An important parameter is the resolution of the octree, which is the size of the edge
of its leaf cell, or, equivalently, to the size of the occupancy grid cell. We use the same value
that is already being used at MRS for the LIDAR scans, which is 0.2 m.
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In this chapter, we describe an offline post-processing step that seeks to improve the
quality of the resulting 3D structure. It consists of three main parts: full bundle adjustment,
loop closure and outlier rejection. As this step is performed offline, we can utilise some com-
putationally heavy components that could not be used in the online setting.

5.1 Full Bundle Adjustment

Consider a scene graph of n points xi ∈ R3 and k camera intrinsic matrices Pl ∈ R3×4.
Each of these points has a set of matches in undistorted normalized image coordinates Mi =
{j1m1, . . . ,

jmmm} in m camera frames j1, . . . , jm.

The full BA is then defined as a joint optimisation problem of point positions x and
camera extrinsics P over the scene graph, in which we minimize the following function:

n∑
i=1

∑
jm∈Mi

||h(Pjxi)− jm||2. (5.1)

This is again a non-linear least-squares problem (for details refer section 3.5). Note that,
in general, the intrinsic parameters can also be optimised, which is not necessary in our
case as we assume them to be known. The BA is a more general version of the structure
refinement problem we were solving online 4.1.6. However, the problem becomes more complex
and computationally expensive, which prohibits us from solving it in the real-time setting,
especially considering that we aim for a large number of points.
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We solve the full BA problem for just a subsection of frames, called the keyframes. The
way we determine those is described in section 4.1.2. By fixing the rotation or translation
part of the extrinsic matrix P, we can further obtain two simpler problems that allow the use
of the full scene graph. We will compare those approaches in the experimental section 6.4.4.

We note that the BA problem has a certain specific sparse structure that can be ex-
ploited for a more effective solution of the linear squares sub-problem 3.5.1. This stems from
the fact that in most scenes, points can only be observed from a small subset of frames. We
will not describe the details of these methods in this work. We will only note that we use
the Schur complement method, and for a more detailed treatment of the topic, we refer the
reader to [27].

The rotational parts we parametrise as rotation vectors because they have better prop-
erties for optimisation. We described this parametrisation in section 3.3. Namely, they have
the minimum number of parameters needed to represent rotations and, also, they do not have
to be normalised in any way during the optimisation, as a rotation matrix would have to be.

5.2 Loop closure

In order to provide the BA optimisation with more information about the structure,
we employ a simple loop closure scheme. The problem of loop closure is to introduce new
connections in the scene graph, capturing the fact that two points observed in two frames that
are far apart in time are the same point in the real world. This establishes more constraints
for the optimisation, potentially enhancing its results.

Our loop closure scheme is based on the assumption that the employed localisation
system is precise, meaning that when two frames are close in the map of the environment,
they are also close in the real world. We thus examine frames i, j that satisfy the following
conditions:

d(i, j) < dthr, (5.2)

r(i, j) < rthr, (5.3)

i≪ j, (5.4)

where d(i, j) is translational distance between the two frames and r(i, j) is the rotational
distance between the two frames that we defined in 4.1.2. The conditions (5.2), (5.3) enforce
the frames to be close from each other, therefore making it more probable that they will view
a common part of the scene. The third condition (5.4) ensures that the indexes of the two
frames are far apart from each other, which effectively enforces a temporal difference between
the two frames. This is due to the fact that close frames with similar ids have a higher chance
of having already correctly tracked points of the same 3D structure.

We then perform the matching of triangulated points observed from these frames by
computing SIFT descriptors and using those. The SIFT descriptors could not be used during
the online part of the algorithm due to their high computational cost. However, here we are
not limited by strict resource constraints, and SIFT descriptors are beneficial, as they exhibit
a much higher rate of correct matches compared to ORB descriptors, especially under a big
change of scale and rotation [20].
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The matching is performed in a similar fashion to 4.1.4. As SIFT is not a binary descrip-
tor as ORB, regular Euclidean distance is used to determine similarities between descriptors.
For a detailed description of the SIFT algorithm, we refer the reader to [19]. When a match
is established, we then merge the two points.

5.3 Outlier rejection with a SOR filter

In addition to the online rejection method discussed in section 4.2.3, we also implement
a rejection method that takes into account the local structure of the point cloud.

We use an approach called the statistical outlier removal (SOR) filter from the Point
CLoud Library (PCL) [62]. It considers k-nearest neighbours of each point x ∈ R3. A point
y is considered to be an inlier if the following condition holds:

µ− aσ ≤ ||x− y|| ≤ µ+ aσ, (5.5)

where µ is the mean distance of the k-nearest neighbours to the point x, σ is the standard
deviation of these distances, and a is a user defined constant that can be used to control
how strict the filter is. With this filter, we can remove many of the clear outliers. For our
experiments we set the k = 10 and a = 1.

We also considered using a filter measuring the distance of the point to other points
to remove some outliers that are distant from the rest of the point cloud. However, by using
the k-nearest neighbours distance filter, we removed almost all of the outlier points that we
would target by such a filter.
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We performed a wide range of tests of the implemented algorithms. The EuRoC datasets
were first used to compare and evaluate the algorithms’ performance under different difficulty
levels. The performance could be measured very precisely, as the dataset comes with a ground-
truth point cloud of the scene obtained by a high-resolution LIDAR scan.

Importantly, when we talk about OpenVINS in the evaluation section, we mean its
monocular version as that is the problem we are solving.

More visual content from the experiments, including the resulting point clouds, can be
found on the website accompanying this thesis1.

6.1 Implementation and used libraries

The code is written in the C++ programming language, which is a standard choice in
robotics and computer vision because of its performance optimisation and library support.

Robot Operating System (ROS) is a widely used open-source library, providing an
abstraction for effective development of algorithms for the operation of robots, ranging from
sensor controllers all the way to high-level path-planning algorithms [63]. One of the most
important features is that it enforces the code to be organised in task-oriented programs

1http://mrs.felk.cvut.cz/melecky2021thesis

http://mrs.felk.cvut.cz/melecky2021thesis
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called nodes and enables to structure these nodes into complex structures by inter-node
communication. The code-base is maintained, well-documented, and a wide community exists
around it, making it comparably simple to get into. Another feature we will use to our
advantage in this work is the Rviz visualisation system that can be used as a simple graphical
output of the algorithm, streaming information in real time.

For some computer vision methods, most notably the KLT tracker and descriptors,
we use OpenCV [64], which is an open-source library for computer vision. A wide range
of computer vision methods is implemented in it. We can also quite easily use OpenCV
implementations of algorithms as a baseline to test our implementations against.

For operations with matrices and linear algebra in general, we utilise the Eigen library
[65].

We use the Ceres library [54] for solving most of the non-linear least squares problems
that we discussed in the theoretical parts of the work [54].

For operations on point clouds, such as the SOR filter, we leveraged the Point CLoud
Library (PCL) [62]. For visualisations of the mean distance to reference (MDR) error in the
figures, we use the CloudCompare software2.

6.2 Parametrization of the algorithms

Parameter Value

Keyframes

Minimum distance between keyframes 0.03 m

Minimum rotation distance between keyframes 0.008 rad

Length of sliding window 4

Matching

ORB scale factor 1.2

FAST threshold 8 px

Lowe ratio 0.7

Threshold on epipolar distance 0.05 m

Grid dimension 4

Maximum amount of features per grid cell 100

Triangulation
and

refinement

Amount of matches required for triangulation 4

Huber loss threshold 0.1

Maximum movement caused by refinement 5 m

Table 6.1: Parametrization of the matching-based algorithm.

In the tables 6.1 and 6.2, we provide a concise reference of the most important param-
eters of both algorithms and their values. In the following tests, we assume the parameters’
values to be set as described here unless we specify otherwise. The parameters’ values were

2https://www.danielgm.net/cc/

https://www.danielgm.net/cc/
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Parameter Value

Tracking

FAST threshold 10 px

Threshold on epipolar distance 0.05 m

Grid dimension 4

Maximum amount of features per grid cell 300

Triangulation
and

refinement

Amount of matches required for triangulation 4

Huber loss threshold 0.1

Maximum movement caused by refinement 5 m

Outlier
filtering

Delaunay plane difference 0.7

Maximum epipolar violation 0.1 m

Minimum length of maximum baseline 0.1 m

Maximum reprojection error 0.03 m

Table 6.2: Parametrization of the tracking-based algorithm.

chosen empirically. In this section, we describe some of the reasoning behind their particular
values.

In the matching-based algorithm, important parameters are those influencing the se-
lection of keyframes, as outlined in section 4.1.2. The general idea of keyframes is to keep
only important information and discard the rest. However, in the end, we found that some
redundancy in information is useful in real-world conditions, and therefore, we set the values
of distance thresholds to be fairly low.

The epipolar distance threshold was chosen by a visual inspection of the number of
outliers in the matching data.

The grid dimension parameter allows forcing the FAST detector to pick points more
evenly. However, a too detailed grid leads to a high count of poor features that are hard to
match.

We tried to achieve the maximum amount of features per grid cell as possible, as we aim
for denser point clouds. There is an inherent trade-off between the number of triangulated
points and their quality, which is why we employ the filtering approaches. We argue that it is
better to keep more points at the price of gross outliers, as for navigation purposes, it is vital
to notice an obstacle early, and false obstacles do not cause too much harm unless there are
too many. Moreover, we are able to remove many of the outliers in the offline post-processing
step. In the tracking algorithm, we could afford more features per grid cell, as the KLT tracker
can compute their matches efficiently. On the other hand, in the matching algorithm, further
increase of the limit did not improve the matching results as the matching procedure could
not effectively match the low-quality feature points.

We decided not to use the heuristic filtering of points in the matching-based algorithm,
because we would lower the amount of triangulated points too much. Moreover, we do not
have enough points for the Delaunay filtering.
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In the non-linear least-squares refinement, we also introduced a threshold on the dis-
tance between point’s coordinates before and after the refinement as a means of detecting an
unstable, hence likely low-quality point.

6.3 Map evaluation metrics

In this section, we present the main metrics used in the evaluation of our algorithms’
performance. We use two metrics measuring the quality of the point clouds and two comple-
mentary metrics for evaluation of the resulting occupancy grids.

Apart from these metrics, we also evaluated some other performance measures such as
number of points, number of points visible from a frame or mean reprojection error (MRE).

6.3.1 Mean distance to reference (MDR)

The main metric for point cloud evaluation is the distance of a point from the con-
structed point cloud to its nearest neighbour in the reference point cloud. The main limitation
of this metric is that it requires a reference point cloud of the environment to be known, which
often is not the case. Also, the reference point usually is subject to some measurement error
of its own. However, we use point clouds produced by a stationary high-resolution 3D scanner
(e.g. LIDAR), and in this case the error of the scanner is negligible compared to our errors.
We can thus safely use the point cloud as a reference.

Another consideration is that the coordinate systems of the localisation system on board
of the UAV must be matched to that of the 3D scanner. For this, we make use of the trajectory
alignment by yaw-only rigid body transformation algorithm provided by the OpenVINS and
described in [66]. This algorithm requires the ground-truth trajectory to be known, which is
the case in the EuRoC Micro Aerial Vehicle (MAV) datasets.

We also note that this metric assumes that the nearest neighbour of the given point in
the reference cloud is the same point in real world. This might not be the case, however for
the LIDAR scans, it is a good approximation as they are comparatively dense.

6.3.2 Mean map entropy (MME)

When a reference point cloud of appropriate quality is not available, we must rely on
other methods for establishing the map quality. In these methods, we assume that the map
of the world should be sufficiently ”sharp”, meaning that a large variation in relatively close
points is a product of noise. This holds true especially in man-made environments that are
largely planar and points close within some radius tend to lay on the same plane and are
regularly spaced. On the other hand, natural environments such as grass would produce sets
of points that will be much more scattered. Here we define one such method, called the mean
map entropy (MME).

In [67], the entropy of a point x ∈ R3 is defined as:

H(x) =
1

2
ln[det(2πeΣ(x; r))], (6.1)
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where Σ(x; r) is the sample covariance of the map points within the radius r from the point
x. In our evaluation we set r = 0.6m.

The mean map entropy is then defined as the average of the point entropies over all of
the map points.

The authors of [67] found a correlation between the nearest-neighbour distance to the
reference point cloud and the mean map entropy, which is very useful to reasoning about the
quality of the solution when the reference 3D structure is not available.

6.3.3 Octomap precision

When the reference 3D structure is available, we also evaluate the quality of the con-
structed occupancy grid. After running the algorithms, we align the reference point cloud to
the frame of the VINS by utilising the method of [66]. We then create an occupancy grid by
labelling the cells that contain some points as occupied. Using this reference occupancy grid,
we define two metrics for evaluation of the occupancy grid. We say that a cell is correctly
classified as occupied if it is marked as occupied in both occupancy grids. Firstly, we define
the true positive rate as:

TP =
number of cells correctly classified as occupied

total number of cells classified as occupied
. (6.2)

As a second complementary metric, we define the coverage as:

Cov =
number of cells correctly classified as occupied

total number of occupied cells in the reference
. (6.3)

These two metrics differ in the denominator and express both the rate at which we classify
correctly and what percentage of occupied cells we find.

6.4 EuRoC MAV datasets

The EuRoC MAV datasets [6] were the most valuable source for our tests, as they are
widely used in the community, provide all the necessary data for simulating and evaluating
the VINS algorithms, such as synchronised images, IMU measurements and ground-truth
trajectory. Crucially for our use case, the ground-truth LIDAR scan of the environment is
provided in some of the datasets as well.

We test our algorithms mainly on the Vicon Room datasets, as they provide an accu-
rate 3D structure. The datasets are recorded within two rooms and capture different flights
through these rooms. Each of the flights has different difficulty for both the SLAM and the
3D reconstruction algorithms. The differences in difficulty come from the variations in speeds
and more dynamic manoeuvres. In table 6.3, we include a subsection of the table provided by
the authors of the datasets in [6], that contains important parameters of the datasets: length
of trajectory l, duration of the flight t, average velocity v, average angular velocity ω and a
short description. We note that, for notational convenience, we took the liberty in renaming
the original Difficult level to Hard.
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Name l [m] t [s] v [m s−1] ω [rad s−1] Note

V1 easy 58.6 144 0.41 0.28 slow motion, bright scene

V1 medium 75.9 83.5 0.91 0.56 fast motion, bright scene

V1 hard 79.0 105 0.75 0.62 fast motion, motion blur

V2 easy 36.5 112 0.33 0.28 slow motion, bright scene

V2 medium 83.3 115 0.72 0.59 fast motion, bright scene

V2 hard 86.1 115 0.75 0.66 fast motion, motion blur

Table 6.3: Details of the datasets.

Importantly for our algorithms, the images are captured at a rate of 20 FPS by a
grayscale camera with a global shutter and resolution of 752× 480.

The algorithms were run on a laptop with a quad-core Intel i5–8250U CPU. The VINS
algorithm, in theory, requires a single thread, while both of our algorithms need two threads,
one for tracking or matching and the second one for the optimisation of the 3D structure.
In reality, the algorithms required well under half of the processing power, which in practice
should allow for a sufficient resources for other tasks that must be performed on a UAV, such
as path planning or motion control. We further discuss the resources required for computation
in section 6.4.2.

6.4.1 Comparison of the tracking-based and matching-based algorithms

Level Alg. MDR [m] MME MRE [mm] n [×103] nk TP Cov

Easy
match. 0.188 ± 0.235 -0.797 ± 0.653 3.330 ± 7.671 ≈ 28 86 ± 75 0.239 0.059

track. 0.149 ± 0.209 -0.447 ± 0.523 3.910 ± 6.102 ≈ 58 578 ± 233 0.246 0.129

Medium
match. 0.194 ± 0.281 -0.773 ± 0.789 4.061 ± 12.31 ≈ 21 47 ± 40 0.189 0.047

track. 0.147 ± 0.222 -0.494 ± 0.713 7.407 ± 9.523 ≈ 35 339 ± 195 0.229 0.141

Hard
match. 0.236 ± 0.355 -0.865 ± 0.910 4.530 ± 8.622 ≈ 11 18 ± 23 0.414 0.081

track. 0.214 ± 0.359 -0.344 ± 0.709 7.274 ± 8.889 ≈ 35 249 ± 203 0.325 0.247

Table 6.4: Evaluation on the dataset Vicon Room 1.

In tables 6.4 and 6.5, we provide the results of an evaluation of the algorithms on the
Vicon Room 1 dataset and Vicon Room 2 dataset, respectively. We evaluate the point cloud
quality metrics outlined in 6.3, namely the mean distance to reference cloud (MDR) and mean
map entropy (MME). Furthermore, we provide the values of metrics for the evaluation of the
occupancy grids, the true positive rate TP and the coverage Cov. Also, we included some
other important metrics that add some relevant information. Mean reprojection error (MRE)
is added because it roughly corresponds to the metric for which the BA optimises. We also
provide information about the count of points n in the resulting point cloud and the mean
count of triangulated points visible from keyframes nk. The last metric is especially relevant
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Level Alg. MDR [m] MME MRE [mm] n [×103] nk TP Cov

Easy
match. 0.189 ± 0.338 -0.744 ± 0.834 3.359 ± 9.221 ≈ 16 72 ± 62 0.123 0.031

track. 0.165 ± 0.281 -0.399 ± 0.705 4.407 ± 7.473 ≈ 35 410 ± 185 0.126 0.081

Medium
match. 0.174 ± 0.269 -0.841 ± 0.868 3.324 ± 6.881 ≈ 17 31 ± 31 0.133 0.033

track. 0.155 ± 0.235 -0.463 ± 0.717 7.458 ± 9.084 ≈ 37 276 ± 165 0.130 0.095

Hard
match. 0.236 ± 0.335 -0.896 ± 1.007 4.685 ± 10.98 ≈ 11 21 ± 27 0.110 0.021

track. 0.241 ± 0.329 -0.339 ± 0.810 10.72 ± 11.16 ≈ 22 164 ± 154 0.118 0.092

Table 6.5: Evaluation on the dataset Vicon Room 2.

0 20 40 60 80 100

Time since the start (in seconds)

0

200

400

600

800

1000

C
o
u
n
t

o
f

p
o
in

ts
v
is

ib
le

in
k
ey

fr
a
m

e

matching

tracking

Figure 6.1: Comparison of the count of visible triangulated points from the last keyframe
between the matching and tracking algorithm on the Vicon room 2 easy dataset.

for the navigation algorithms, as new obstacles must be detected quickly. Where relevant, we
accompany the metrics by their standard deviation.

The time complexity of the algorithms cannot be easily compared due to the differ-
ence in approaches. The matching and triangulation time of the matching-based algorithm is
typically around 40 milliseconds, while the tracking and triangulation time of the tracking-
based algorithm is around 27 milliseconds. In section 6.4.2 we provide a more detailed timing
analysis of the tracking-based algorithm.
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(a) Matching algorithm. (b) Tracking algorithm.

Figure 6.2: Visual comparison of the point clouds and occupancy grids produced by the
proposed algorithms. In the case of the occupancy grids, the colour visualises the z coordinate.

The results clearly show that the tracking-based algorithm outperforms the matching-
based algorithm in most of the criteria. It is able to produce significantly more points while
achieving better scores in the quality metrics, such as MDR or TP .

In the case of the true positive rate TP it is sometimes outperformed by the matching
algorithm, which is not surprising, as it triangulates fewer points. However, when it comes to
the coverage Cov, it is significantly higher for the tracking-based algorithm. The low number
of points is a possible cause of the worse performance in the MRE of the matching-based
algorithm.

It can be noted that, in general, the scores on these two occupancy grid metrics are
relatively low. The low TP metric can be explained by the MDR metric, whose value is
around 20 centimetres, with a standard deviation of around 30 centimetres. The resolution
of the OctoMap is 20 centimetres. This means that relatively many points are further than
20 centimetres from the reference; therefore they produce many falsely occupied areas. We
could limit this effect by decreasing the sensitivity of the OctoMap and by requesting higher
quality of points, which can be done, for example, as was described in section 4.1.7. However,
we believe that this would have a negative impact on autonomous navigation.

The low Cov can be partially explained by this, meaning that we detect some objects
but place them in a slightly different place in the world, e.g. closer to the UAV. However, at
the same time, the reference contains data about parts of the structure that the camera did
not observe during the flight, such as the ceiling and some other parts of the room.

The coverage metric Cov is also significantly lower on the Vicon room 2 dataset. We
believe that this is the case because this dataset has fewer textured areas, from which we can
obtain reliable feature points.
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(a) Matching algorithm. (b) Tracking algorithm.

Figure 6.3: Visual comparison of the point cloud MDR produced by the two algorithms on
the dataset V1 easy. The colour scales of these visualisations match.
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Figure 6.4: Histogram of counts of matches of individual points. The counts are displayed
relative to the number of detected points.

A discrepancy can be noticed in the MME metric, where datasets with better MDR
score often do not have a better value of the MME metric. We believe that this is again
caused by the difference in the number of points and hypothesise that MME is reliable only
in the case of a similar number and density of points. Results from the section evaluating the
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post-processing step 6.4.4 seem to support this hypothesis.

Crucially for tracking, the number of points visible in the current frame nk is also
significantly better. In figure 6.1 we provide a graph that compares this number over time
and shows that the tracking algorithm is almost always more performant, apart from a few
drops. We analyse their cause in the following section 6.4.2

The difference between easier and harder datasets can be observed in most of the criteria.
However, it is not very profound. A noticeable change in performance in MDR can be observed
only between the easy and hard levels. In the dataset Vicon Room 2 medium, most of the
metrics even improved compared to the easy level. We might attribute this, however, to the
large difference in the trajectory length of the datasets. In the medium datasets, the movement
of the drone is more rapid, whereas, in the hard datasets, it is both more rapid and also some
abrupt movements with high angular velocity are introduced that often cause motion blur.

We can deduce that higher speeds might not always deteriorate the quality of the
solution. This might be caused by the fact that in lower speeds, the pose information gets
largely lost in the noise of the propellers. Naturally, too large speeds impact the quality of
matching and tracking, and we expect the results to deteriorate under these conditions.

In the figure 6.2 we provide a visual comparison of the resulting point clouds and
occupancy grids of both algorithms. The differences in point cloud density and occupancy
grid coverage are clearly visible.

Also, in figures 6.3a and 6.3b we provide a visualisation of the MDR of the resulting
point clouds. The blue end of the colour spectrum corresponds to points close to the reference,
while the red end corresponds to the furthest points.

We can analyse the distribution of the counts of the points’ matches, i.e. the number
of frames from which they can be observed. This can provide us with some insights into the
tracking and matching performance. Figure 6.4 displays the relative histograms of these counts
for both algorithms. The points with counts higher than 9 are put into a single histogram
box, as after this threshold, the counts continue to decrease, and it is also the value of the
triangulation threshold for the tracking algorithm. This means that for the tracking-based
algorithm, all the points that are in this category are triangulated. The threshold for the
matching-based algorithm is set to 4.

We can see that the matching-based algorithm is more prone to detect only 2 matches
of the point and the tracking-based algorithm collects 9 or more matches for a higher number
of points. These results are caused by the fact that the matching algorithm is keyframe based
while the tracking-based algorithm takes into account the whole information.

In the following sections, we will discuss and evaluate the tracking-based algorithm as
we have shown that it significantly outperforms the matching-based algorithm.
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(a) V1 easy. (b) V1 medium. (c) V1 hard.

Figure 6.5: Visual comparison of the point clouds produced by the tracking-based algorithm
on all the difficulties of the dataset V1 with visualisation of MDR.

6.4.2 Analysis of the tracking algorithm

In this section, we provide a more detailed analysis of some of the inner workings of the
tracking-based algorithm. In figures 6.5, one can visually compare the resulting point clouds
produced by the tracking-based algorithm on the Vicon room 1 dataset.

Level Total [ms] KLT [ms] Detection [ms] Triangulation [ms] Refinement [s]

Easy 29.5 ± 24.9 15.4 ± 8.6 6.3 ± 2.7 3.15 ± 18.6 2.32 ± 7.48

Medium 24.8 ± 23.7 13.5 ± 7.6 4.6 ± 2.9 2.36 ± 12.4 0.15 ± 0.73

Hard 27.8 ± 19.5 15.9 ± 7.9 5.1 ± 2.8 2.24 ± 9.51 0.30 ± 1.71

Table 6.6: Detailed timing of the tracking-based algorithm on the V1 dataset.

Table 6.6 contains time measurements of different parts of the algorithm on multiple
difficulty levels. The total time is composed of the time of the KLT tracker itself, the detection
time, the triangulation and graph insertion time, and some other small operations that we
do not list here. The duration of the non-linear least-squares refinement should be largely
independent of the other durations, as it runs in a separate thread. The refinement loops over
points from the last added point until the first and refines points that should be refined. For
details about when that is, see section 4.1.6. We measure the time of the refinement loop.

The times do not vary dramatically between difficulty levels. On the refinement time,
we can see the result of a higher number of points that have to be optimised in the easiest
difficulty level. The same effect can be observed on the triangulation time.

Level Ref. iterations Tracked Inliers Delaunay refused

Easy 3.345 ± 0.729 2020 ± 250 0.990 ± 0.045 0.049 ± 0.048

Medium 3.413 ± 0.571 1698 ± 373 0.967 ± 0.068 0.091 ± 0.057

Hard 3.899 ± 0.965 1742 ± 487 0.948 ± 0.109 0.146 ± 0.103

Table 6.7: Performance statistics of the tracking-based algorithm on the dataset V1.

We further provide some additional statistics of the algorithm in the table 6.7. The
values of the average number of the non-linear least-squares refinement iterations per point
show that in more complex levels, it is harder to optimise the point’s position.
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We say that a point is successfully tracked if it has been tracked by the KLT tracker
to the subsequent frame and it has passed the verification step by the epipolar geometry.
Surprisingly, the average count of tracked points is slightly higher for the hard level than
for the medium level. But it can be observed that the standard deviation increases with the
difficulty level, which we attribute to the increasing number of erratic movements that tend
to disrupt the tracker, as we will show in the graph 6.6.

The number of matches deemed to be inliers decreases with increasing difficulty. This
might be the result of the tracker not being able to find the matches as reliably. However,
it may also show that the quality of epipolar geometry is worse when a large movement is
present.

The percentage of points in the frame that are refused by the Delaunay filtering follows
the same trend and could be attributed to the same factors, as well as to less precise Delaunay
filtering in the presence of fewer points and more noise.
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Figure 6.6: Relating the number of visible triangulated points and the rotation distance on
the dataset V1 hard. The y-axis is a simple rolling average over a window of 10, to provide a
better visualisation of the general trend.

We hypothesise that the before mentioned trends can be attributed to a high rotational
distance between frames. We believe that this causes a decrease in the precision and conver-
gence of the KLT tracker. Furthermore, it also seems that the rotation distance itself causes a
higher rate of refused points. We believe that this can be only partly attributed to the faults
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of KLT tracker and that another cause of this issue is a worse quality of the localisation, from
which stems a worse estimate of the epipolar geometry, because in some frames it refuses
almost all points, especially when the rotation distance is very large. We ruled out the failure
of the tracker to be the cause of these drops by a visual inspection of the matches. The rela-
tionship between rotation distance and the number of triangulated points can be seen 6.6. We
considered combatting this issue by computing the essential matrix by RANSAC whenever
we encountered this major drop in the number of tracked points. This should lead to a more
precise estimate of the geometry. However, RANSAC execution produced a drop in framerate
that was more damaging than the issue itself.
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Figure 6.7: Histograms of counts of matches on the datasets V1 easy and difficult

In the figure 6.7 we compare the histogram of the match counts between the datasets
V1 easy and V1 difficult. The differences are visible, although not significant, meaning that
when the tracker finds a second match for a point, it is almost just as likely to find another
match in the hard level as in the easy level.

6.4.3 Evaluation of the Delaunay-based densification

In this section, we evaluate the performance of the Delaunay-based depth filling that
we have introduced in section 4.2.3. In addition to the data provided in the table 6.8, we
also note that we produced on average around 45 new points per keyframe for the easy level,
115 for the medium level and 25 for the hard level. In the table we also present the results
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(a) The Delaunay-only point cloud. (b) The tracking-only point cloud.

Figure 6.8: Visual comparison with MDR visualisation for the dataset V1 medium.

Level Alg. MDR [m] MME n [×103] TP Cov

Easy

orig. 0.149 ± 0.209 -0.447 ± 0.523 ≈ 58 0.246 0.129

combined 0.174 ± 0.223 -0.409 ± 0.517 ≈ 80 0.253 0.142

Delaunay-only 0.241 ± 0.280 -0.263 ± 0.515 ≈ 20 — —

Medium

orig. 0.147 ± 0.222 -0.494 ± 0.713 ≈ 35 0.229 0.141

combined 0.203 ± 0.265 -0.255 ± 0.489 ≈ 103 0.206 0.172

Delaunay-only 0.224 ± 0.272 -0.178 ± 0.432 ≈ 68 — —

Hard

orig. 0.214 ± 0.359 -0.344 ± 0.709 ≈ 35 0.325 0.247

combined 0.264 ± 0.299 -0.287 ± 0.749 ≈ 53 0.318 0.260

Delaunay-only 0.329 ± 0.324 -0.200 ± 0.751 ≈ 18 — —

Table 6.8: Evaluation of the densification on the dataset Vicon Room 1.

if we evaluate the filling point cloud separately without the points produced by the tracking
algorithm.

From the results, we can see that the densification is able to significantly increase the
number of points. This naturally comes at the price of higher MDR and lower MME, as the
linear interpolation often is not a good approximation of the surface and the points defining
the triangle might still be erroneous. Furthermore, the densification improves the coverage Cov
of the occupation grid. At the same time, it decreases the TP rate, but only to a reasonable
degree. We argue that this decrease in the TP rate can be negligible in comparison to the
increase in Cov, as we believe that the latter is more valuable for the navigation algorithms.

An interesting result is that the densification adds significantly more points in the
medium dataset. This can also be seen in the figure 6.8a. We do not know the cause of this
difference in behaviour.

From the visual comparison between the separate filling point cloud in figure 6.8a and
the tracking point cloud in figure 6.8b, we can see that the densification successfully enhances
the information in some areas, at the cost of introducing additional noise, which aligns with
the numerical results from table 6.8.
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6.4.4 Evaluation of the post-processing step

We have experimented with multiple versions of the post-processing algorithm outlined
in the chapter 5, constructing different combinations of parameters. We list those in the table
6.9.

Short name BA Dense Fixed orient. SOR Strict Huber

fixed orient. 3 3 3 7 7

fixed orient., strict Huber 3 3 3 7 3

fixed orient., SOR 3 3 3 3 7

full BA, dense graph 3 3 7 3 7

full BA, loop closure 3 7 7 3 3

only SOR 7 — — 3 —

Table 6.9: Post-processing algorithms.

We constructed a version with fixed orientation because its estimate should be precise
thanks to the use of IMU. In the versions with a strict Huber loss we set its threshold to
δ = 0.009, in other versions we set it to δ = 0.1. We do this to limit the effect of outliers
and evaluate their influence. We found that for problems of scale similar to ours, we can
use the full scene graph in most variants, as it is still computationally tractable and leads
to better results. Only in the version with loop closure, we had to select keyframes, because
there the optimisation problem became harder with the new connections in the graph, and
the computation time has increased dramatically.

In the table 6.10 we present the results of the evaluation of the different variants of the
post-processing procedure. Results in bold font are the best within the difficulty level. When
multiple results are of similar value, we embolden all of them.

The first important observation from these results is that the algorithms performing
the full BA have mostly slightly worse scores in the MDR metric, contrary to what we hoped
them to achieve. Even more surprisingly, the MRE is often also worse in these algorithms. Our
hypothesis is that these results are caused by the high precision of the VINS algorithm on these
datasets. Simply put, the localisation is so precise that the additional BA does not improve it
further. On the contrary, the results might deteriorate due to the effect of the outliers. This is
the reason why we attempted to construct a version of the post-processing that uses a stricter
Huber loss threshold δ. We can indeed see that it outperforms its equivalent with a higher
threshold δ, suggesting that our hypothesis might be valid. We believe that in situations
where the tracking algorithm produces higher errors, the use of BA in the post-processing
will improve the results.

We attribute the deterioration of the MRE to the fact that this is not the actual loss
function used in the solution of the BA problem. Rather, as we specified in section 5.1, the
loss function is the sum of squared reprojection errors, with the Huber function applied to it.
We argue that this also shows the effect of outliers in the full BA.

One of the solutions to this might be to use a strict Huber loss, as we have done, which
increases the complexity of the optimisation. This did not help enough; however, an even
stricter value of δ maybe would. Another solution is to perform BA with a more aggressively
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Level Post-processing MDR [m] MME MRE [mm]

Easy

no post-processing 0.149 ± 0.209 -0.447 ± 0.523 3.910 ± 6.102

fixed orient. 0.159 ± 0.197 -0.430 ± 0.488 5.247 ± 14.01

fixed orient., strict Huber 0.158 ± 0.171 -0.575 ± 0.521 4.974 ± 12.60

fixed orient., SOR 0.131 ± 0.124 -0.441 ± 0.336 —

full BA, dense graph 0.121 ± 0.121 -0.534 ± 0.315 4.580 ± 9.943

full BA, loop closure 0.142 ± 0.117 -0.628 ± 0.327 30.03 ± 92.37

only SOR 0.114 ± 0.124 -0.571 ± 0.366 —

Medium

no post-processing 0.147 ± 0.222 -0.494 ± 0.713 7.407 ± 9.523

fixed orient. 0.204 ± 0.264 -0.334 ± 0.744 6.913 ± 8.791

fixed orient., strict Huber 0.195 ± 0.255 -0.429 ± 0.665 6.339 ± 8.996

fixed orient., SOR 0.126 ± 0.124 -0.440 ± 0.390 —

full BA, dense graph 0.199 ± 0.230 -0.313 ± 0.407 6.935 ± 8.289

full BA, loop closure 0.112 ± 0.117 -0.591 ± 0.453 29.46 ± 36.65

only SOR 0.099 ± 0.106 -0.541 ± 0.415 —

Hard

no post-processing 0.214 ± 0.359 -0.344 ± 0.709 7.274 ± 8.889

fixed orient. 0.256 ± 0.366 -0.260 ± 0.683 7.457 ± 8.746

fixed orient., strict Huber 0.226 ± 0.364 -0.319 ± 0.679 7.542 ± 10.26

fixed orient., SOR 0.187 ± 0.201 -0.440 ± 0.390 —

full BA, dense graph 0.201 ± 0.215 -0.280 ± 0.382 8.816 ± 8.935

full BA, loop closure 0.214 ± 0.212 -0.292 ± 0.380 30.47 ± 34.05

only SOR 0.165 ± 0.181 -0.339 ± 0.384 —

Table 6.10: Evaluation of the different versions of post-processing on the dataset V1.

pruned subset of points, which decreases the complexity. However, we would risk removing
some important information.

In the version containing the loop closure, we can see that the MRE is significantly
higher than in other variants. This is probably caused by the additional matches produced
by the loop closure. By inspection of the point clouds produced by this version of the post-
processing algorithm, we came to the conclusion that it does remove many outliers, but at
the same time, it tends to move some objects in various directions. One of the solutions to
this could be to restrain the poses of cameras to some interval around the solution computed
by the VINS algorithm.

The simple SOR filter has proven to be the best post-processing tool, especially when
the pose information is precise. We note that the number of points removed by the SOR filter
is around 1000, which is a low number, considering how much improvement its application
yields.

The figures 6.9a and 6.9b visualise the difference between the original point cloud and
the same point cloud after the application of the filter. It can be observed, that indeed, many
of the gross outliers were removed. This effect is also visible in the graph 6.10, where we
serialised the points into a single dimension by their ids and plotted their distance to the
nearest reference point. The ids of points are ordered by their occurrence during time.

Another useful piece of information that stems from the data is that the ordering
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(a) SOR filter applied. (b) The original.

Figure 6.9: Visual comparison of the effect of SOR filter on the point cloud MDR.
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Figure 6.10: Illustrating the effect of applying the SOR filter to the resulting point cloud of
the V1 dataset.

provided by MME does roughly correspond to the ordering by the MDR, supporting the
conclusions of [67]. This will be useful in the evaluation of the real-world experiments in the
section 6.7.
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6.4.5 VINS-Mono

Level Loc. MDR [m] MME MRE [mm] n [×103] nk TP Cov

Easy
V-M 0.117 ± 0.184 -0.538 ± 0.527 5.320 ± 7.402 ≈ 40 549 ± 194 0.251 0.123

OV 0.149 ± 0.209 -0.447 ± 0.523 3.910 ± 6.102 ≈ 58 578 ± 233 0.246 0.129

Medium
V-M 0.163 ± 0.243 -0.525 ± 0.754 11.36 ± 12.65 ≈ 15 199 ± 153 0.195 0.112

OV 0.147 ± 0.222 -0.494 ± 0.713 7.407 ± 9.523 ≈ 35 339 ± 195 0.229 0.141

Hard
V-M 0.210 ± 0.269 -0.408 ± 0.839 10.74 ± 10.62 ≈ 16 147 ± 177 0.322 0.174

OV 0.214 ± 0.359 -0.344 ± 0.709 7.274 ± 8.889 ≈ 35 249 ± 203 0.325 0.247

Table 6.11: Comparing VINS-Mono to OpenVINS on the dataset V1.

VINS V1 easy V1 medium V1 hard V2 easy V2 medium

OpenVINS 0.642 / 0.076 1.766 / 0.096 2.391 / 0.344 1.164 / 0.121 1.248 / 0.106

VINS-Mono 1.199 / 0.064 3.542 / 0.103 5.934 / 0.202 1.585 / 0.073 2.370 / 0.079

Table 6.12: Values of absolute trajectory error in units degree / metres for the two algorithms,
as evaluated in [41].

We demonstrate the flexibility of the developed algorithm by evaluating its performance
while using a different underlying localisation algorithm. We pick VINS-Mono [40] for this, as
it is used by the MRS group, and we will use it for the following experiments in the simulator
and the real-world environment.

The main difference between OpenVINS and VINS-Mono is that VINS-Mono is based
on keyframes, that are sampled at a certain frequency. This has an impact on the results in
the table 6.11, as the SfM algorithm produces a lower number of points when it uses VINS-
Mono. However, this does not have a significant impact on the metrics measuring the quality
of the resulting occupancy grid, suggesting that it may be possible to filter keyframes to a
certain degree even when using OpenVINS.

In table 6.12 we provide for reference information about the absolute trajectory error
of the VINS-Mono and OpenVINS algorithms on the EuRoC MAV datasets as evaluated in
[41]. We will not discuss the trajectory evaluation in this work. For the definition of absolute
trajectory error and further details on the matter, we refer the reader to ??. We will only
note that it usually is measured in two parts, rotational error and translational error.

6.5 UAV setup

The drone, on which we performed the real-world experiments and also is simulated in
the Gazebo environment is a custom-built drone that is based on the DJI F330 frame with
Pixhawk 4 flight control unit (FCU).

Importantly for our algorithm, the camera is mvBlueFOX-MLC 200w with fisheye lens
and global shutter triggered by the IMU, which ensures precise time calibration of the cam-
era with the IMU. It has a resolution of 752 × 480. The IMU is the IvenSense ICM-20689
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Camera mvBlueFOX-MLC
Intel NUC

Pixhawk 4 FCU

IMU

Figure 6.11: The UAV platform.

programmable sensor. The processor on board is the Intel NUC10i7FNK with six cores, base
frequency of 1.1 GHz and 16 GB of RAM.

The whole setup can be seen in figure 6.11.

6.6 Gazebo simulation environment

We tested the tracking-based algorithm on a few scenarios in the realistic Gazebo sim-
ulator. It simulates the actual drone used by the MRS group and described in section 6.5.
The experiments were conducted with VINS-Mono as the underlying localisation algorithm.

The advantage of the simulation is that it provides access to a variety of environments,
where we can simulate different flights. We evaluated flights in indoor environments of church
and cave, that can be characterised as slow but containing a high number of small rock-
ing movements and vertical movements, which have proven to be challenging for the SfM
algorithm.

For the experiments in the church, we evaluated the MDR as the model is in the form
of a mesh created from a terrestrial laser-scan. In the figure 6.12, we show the first of the
church flights, which is less challenging, as it contains more straight, constant forward motion.
The second church flight is more challenging, as it contains a lot of rotating motion, which is
difficult for our algorithm.

We did not evaluate it for the cave environment, as it is assembled from smaller models,
and it is not so straightforward to obtain the reference point cloud. The cave environment
can be seen in the figure 6.13.

6.6.1 Results

In table 6.13, we provide the results of these flights. Indeed, the second church dataset
shows worse performance than the first one.
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Figure 6.12: Experiment in the Gazebo simulator – the church environment.

Figure 6.13: Experiment in the Gazebo simulator – the cave environment.

Simulation MDR [m] MME MRE [cm] n [×103] nk

church 0.657 ± 0.700 -1.412 ± 3.078 1.628 ± 3.807 ≈ 10 252 ± 166

church, harder 1.087 ± 1.063 -1.166 ± 2.782 1.359 ± 2.715 ≈ 16 193 ± 146

cave — -0.839 ± 2.234 1.813 ± 7.656 ≈ 10 266 ± 205

Table 6.13: Evaluation of performance in the Gazebo simulator.

An important difference between the EuRoC MAV datasets and these simulated envi-
ronments is the scale of the environments, where the simulated environments have a much
larger scale. The challenge posed by this is that two points close in the image become further
apart the further they are located from the camera, which decreases the perceived density
of the resulting structure. However, as the UAV gets closer to the object, the density should
become sufficient.

6.7 Real-world deployment on a UAV

We deployed the algorithm within the MRS UAV system in a test scenario in an outdoor
environment of the university courtyard. This poses its challenges compared to the EuRoC
dataset, which is largely based in an enclosed indoor environment. One of the main differences
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is, similarly to the simulated environments, the scale of the world, which is much greater.
Furthermore, the light conditions were more challenging compared to both the simulated
environment and EuRoC MAV datasets, when sometimes scenes could get overexposed due
to a high amount of natural light and white objects. Also, motion blur occurs in real-world
conditions when in the simulation it does not.

Flight Duration [s] Description Fig.

F1 75
the longest flight, straight along the building wall,
with the camera pointing in the direction of the building

6.14

F2 62

straight along the building wall,
camera pointing in the direction of the motion,
where another bulding is located,
some trees and varied objects on the left

6.15

F3 51
along a building, trees and a car,
with camera pointing in the direction of the objects

6.16

F4 30
UAV flying across the yard, in the direction of
a further-away, sunlit, white building, heavy drift

6.17

Table 6.14: Brief description of the real-world flights.

We also provide the .bag data files, which can be used as an alternative to the existing
datasets for further testing of localisation and mapping solutions. We provide raw camera
and IMU data as well as pose information computed by the VINS-Mono algorithm.

We note that during the experiment, we encountered a problem of the drift of the
VINS-Mono pose estimates. We believe that this is due to the high noise produced by the
rotating propellers. Therefore, the quality of the localisation deteriorates over time, which
has the effect of substantially changing the scale of the reconstruction. Because of this, we
decided to shorten the flights from their original length for our evaluation. In table 6.14 we
provide some information about the flights.

We also increased the parameter of the Delaunay threshold to 1.5, as the outdoor en-
vironments include more objects that violate the assumption of the local planarity of the
environment, such as trees. Due to the bigger scale, we also increased the maximum optimi-
sation movement to 10 metres.

6.7.1 Results

Flight Duration [s] MME MRE [cm] n [×103] nk

F1 75 -0.857 ± 1.566 0.6799 ± 1.277 ≈ 20 772 ± 178

F2 62 -1.904 ± 2.412 1.323 ± 2.599 ≈ 11 538 ± 165

F3 51 -1.069 ± 1.858 1.022 ± 1.394 ≈ 8,8 602 ± 209

F4 30 -1.724 ± 2.642 0.8707 ± 1.589 ≈ 2,5 363 ± 162

Table 6.15: Evaluation of performance in the real-world conditions.

In table 6.15 we provide the results of the evaluation of the system on these flights. The
key metric for the navigation algorithms, the average number of triangulated points visible



62 Chapter 6. Experimental Evaluation

from the frame nk, is comparable and even greater than in the EuRoC MAV datasets. The
MRE metric is higher, which is expected due to the greater scale of the environment.

In figures 6.14 – 6.17 we show for individual flights the footage of the drone flying in
the environment, what it sees, including the current tracked points and the Delaunay graph
between them, and the path and the resulting OctoMap of the environment.

In figures 6.18 – 6.22, we show the progress of the algorithm on Flight 1 in the first 50
seconds, with frames separated by 10 seconds. In these figures, we can see from left to right:
the view from the drone, including the Delaunay triangulation, the resulting point cloud, the
occupancy grid.

We believe that the results of these real-world experiments demonstrate that the pro-
posed algorithm performs well under those circumstances.

Figure 6.14: Flight 1.

Figure 6.15: Flight 2.
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Figure 6.16: Flight 3.

Figure 6.17: Flight 4.

Figure 6.18: 10 seconds into the flight 1.

Figure 6.19: 20 seconds into the flight 1.
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Figure 6.20: 30 seconds into the flight 1.

Figure 6.21: 40 seconds into the flight 1.

Figure 6.22: 50 seconds into the flight 1.



Chapter 7

Conclusion

In this thesis, we have first motivated and outlined the problem of real-time monocular
3D scene reconstruction for autonomous navigation of a UAV equipped with an IMU. We
have conducted a detailed survey of the state-of-the-art literature about 3D reconstruction,
focusing on the SfM and SLAM problems and showed how they relate to our problem. We
have then laid out the fundamentals of multiple-view computer vision and non-linear least-
squares optimisation, providing the theoretical background necessary to solve the problem at
hand.

We have devised and implemented two algorithms for this problem. Both of them are
intended as an extension to an existing localisation technique, more specifically VINS. The
first algorithm is based on the matching approach with keyframes, while the second one is
built around a KLT tracker and does not require subselection of keyframes. For the second,
tracking-based algorithm, we created methods for outlier filtering and point cloud and depth
filling based on the 2D Delaunay triangulation of a set of points visible from a single frame. We
have described these algorithms in detail, which we then followed by an extensive evaluation
of their performance on the EuRoC MAV datasets. Furthermore, they were integrated into the
MRS system and verified in a simulated environment before testing them on an actual UAV in
real-world conditions. As an interface between our algorithm and path-planning algorithms, we
have chosen the probabilistic occupancy grid framework OctoMap. Lastly, we have presented
possible post-processing steps that can be utilised to improve the quality of the structure
obtained during flight and we have evaluated their performance.

In summary of the evaluation results, we found that the tracking-based algorithm per-
forms better than the matching-based algorithm in almost all of the tested criteria. Also, we
have found that a large rotational distance between frames is problematic for the tracking-
based algorithm. We have found that the Delaunay point cloud filling can significantly densify
the resulting point cloud, leading to better performance scores in the coverage of the occu-
pancy grid. The main result of the evaluation of the post-processing steps was that BA with
loop closure does not improve the quality of the structure, which we believe is due to the al-
ready high precision of the localisation, and we discussed this in more detail. We have found
the SOR outlier filter to be the most useful post-processing tool, as it can remove most of the
outlier points.
In this work, we have fulfilled all of the assigned tasks, namely:



66 Chapter 7. Conclusion

1. We designed and implemented an algorithm for 3D scene reconstruction from monocular
camera images. Pose estimates from a self-localisation system of the UAV were used to
initialise the camera poses.

2. We verified the developed scene reconstruction technique on publicly available EuRoC
dataset, which contains indoor flight sequences of a UAV equipped with cameras

3. We integrated the developed method into the Multi-robot Systems Group UAV system

4. We conducted experiments in the realistic Gazebo simulator to verify the integrated
system

5. The feasibility of deployment onto the actual hardware platform flying in a real-world
environment was demonstrated, and we also discussed results and parameter selection.

6. The reconstruction process was extended by a post-processing step, which can be run
offline after the flight to improve the accuracy of the reconstructed structure.

7. We evaluated the improvement in quality of the post-processed structure compared to
the structure obtained during the flight.

7.1 Future work

Although we have selected the algorithms’ parameters empirically, we acknowledge that
there is space for a more detailed analysis of the interplay between the individual parameters.
Also, the map produced by the algorithm remains to be verified for collision-free motion
planning in an autonomous-flight scenario. Furthermore, for mapping over longer periods of
time, some mechanism of saving old data to the memory should be implemented.

One way to improve the tracking-based algorithm could be to alter the formulation of
the KLT tracker to take into account the information about the known epipolar geometry.
Furthermore, direct methods could be potentially used for tracking. The depths on the Delau-
nay graphs could be smoothed, possibly providing better results. We believe that a promising
direction of enhancing the density of the structure would be to improve the state-of-the-art
depth filling deep neural networks to be able to run in real time on a CPU. Another research
direction is to develop a version of these algorithms for GPU-enabled setups. In that case,
variational approaches for a fully dense 3D reconstruction can be utilised, possibly enhanced
by some deep neural network method. Then, the resulting post-processed 3D structure could
be used to complete the scans produced by a terrestrial 3D scanner. Research direction oppo-
site to the previous one is to adapt these algorithms for use in an even more resource-restricted
application in smaller devices.
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Archive Content

In table 1 are listed names of all root directories and files in the archive accompanying
the thesis. The archive and other accompanying material can be found on the webpage1.

Name Description

thesis the thesis in pdf format

vins sfm the code of the algorithms

README.txt additional information about the code

Table 1: CD Content

1http://mrs.felk.cvut.cz/melecky2021thesis

http://mrs.felk.cvut.cz/melecky2021thesis
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Acronyms

AR augmented reality. 8

BA bundle adjustment. 7, 37, 38, 46, 55, 56, 65

BRIEF Binary Robust Independent Elementary Features. 26

CPU central processing unit. 3, 9–11, 35, 66

EKF extended Kalman filter. 8, 10

FAST Features from Accelerated Segment Test. 25, 26, 30, 42, 43

FCU flight control unit. 58

GPS Global Positioning System. 3, 7

GPU graphics processing unit. 5, 9–11, 66

IMU inertial measurement unit. v, 3, 9, 10, 55, 58, 65

KLT Kanade–Lucas–Tomasi. viii, 30, 31, 42, 43, 51–53, 65, 66

LIDAR light detection and ranging. 8, 11, 35, 36, 41, 44, 45

MAV Micro Aerial Vehicle. viii, 41, 44, 45, 47, 49, 51, 53, 55, 57, 58, 60–62, 65

MDR mean distance to reference. 42

MME mean map entropy. 44

MRE mean reprojection error. 44

MRS Multi-robot Systems. 2, 4, 10, 35, 60

ORB Oriented FAST and Rotated BRIEF. 6, 8, 24–27, 38, 39, 42

PCL Point CLoud Library. 39, 42

PnP Perspective-n-Point. 7
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RAM random-access memory. 59

RANSAC random sample consensus. 7, 19, 53

ROS Robot Operating System. 41

SfM structure from motion. 3–8, 10, 11, 13, 18, 19, 58, 59, 65

SIFT scale-invariant feature transform. 6, 24, 38, 39

SLAM simultaneous localization and mapping. vii, 3, 4, 7–11, 45, 65

SOR statistical outlier removal. 39, 42, 56, 57, 65

UAV unmanned aerial vehicle. v, xi, 1–3, 9, 17, 44, 46, 48, 60, 61, 65

VINS visual-inertial navigation system. v, 9, 10, 23, 24, 35, 45, 46, 56, 65
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