
CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

F3 Faculty of Electrical Engineering
Department of Cybernetics

Bachelor’s Thesis

Influence of Classification Model
Architecture on Anomaly Detection
in Text

Tommaso Gargiani
Open Informatics

May 2021
https://github.com/tgargiani/OOD-anomaly-detection-in-text
Supervisor: Ing. Petr Lorenc

https://github.com/tgargiani/OOD-anomaly-detection-in-text

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

483466Personal ID number:Gargiani TommasoStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Cybernetics

Open InformaticsStudy program:

Artificial Intelligence and Computer ScienceSpecialisation:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Influence of Classification Model Architecture on Anomaly Detection in Text

Bachelor’s thesis title in Czech:

Vliv architektury klasifikačního modelu na detekci anomálií v textu

Guidelines:
The bachelor thesis will comprise the following steps:
1. Review the possible algorithms for anomaly detection based on different neural network architectures, focusing on:
• last layer [1,5]
• loss function [2,3,4]
2. Review the possible datasets for anomaly detection
• Must include CLINC150, ROSTD and dataset provided by supervisor
3. Implement some of the state-of-the-art algorithms
4. Compare selected approaches in respect to false rejection rate, precision, memory and time requirements on chosen
datasets

Bibliography / sources:
[1] Lei Shu, Hu Xu, Bing Liu – DOC: Deep Open Classification of Text Documents – University of Illinois at Chicago –
2017.
[2] Ting-En Lin, Hua Xu – Deep Unknown Intent Detection with Margin Loss – Tsinghua University, Beijing, China – 2019.
[3] Feng Wang, Weiyang Liu, Haijun Liu, Jian Cheng – Additive Margin Softmax for Face Verification – UESTC, Chengdu,
China – 2018.
[4] Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Dihong Gong, Jingchao Zhou, Zhifeng Li, Wei Liu – CosFace: Large
Margin Cosine Loss for Deep Face Recognition – Tencent AI Lab, Bellevue, USA – 2018.
[5] Hanlei Zhang, Hua Xu, Ting-En Lin – Deep Open Intent Classification with Adaptive Decision Boundary – Tsinghua
University, Beijing, China –2020.

Name and workplace of bachelor’s thesis supervisor:

Ing. Petr Lorenc, Department of Cybernetics, FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 21.05.2021Date of bachelor’s thesis assignment: 08.01.2021

Assignment valid until: 30.09.2022

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
Ing. Petr Lorenc
Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

Acknowledgement / Declaration

First of all, I would like to thank my
supervisor Ing. Petr Lorenc for his care-
ful guidance and valuable advice. I also
thank my family for always supporting
me throughout my education and for be-
ing close to me, no matter the distance
between us.

I declare that the presented work
was developed independently and that
I have listed all sources of information
used within it in accordance with the
methodical instructions for observing
the ethical principles in the preparation
of university theses.

Prague, May 21, 2021

. .

v

Abstrakt / Abstract

Konverzační agenti pracují v různých
prostředích. V open world prostředí
hraje důležitou roli jak rozpoznávání
předdefinovaných in-domain intentů,
tak detekce neznámých out-of-domain
anomálií. V této práci zkoumáme různé
metody určené pro detekci anomá-
lií a představujeme novou metodu,
která je nezávislá na out-of-domain
datech. Metody jsou následně porov-
nány s ohledem na in-domain přesnost,
out-of-domain recall, false rejection rate
a časové a paměťové požadavky. Ohod-
nocení metod na několika datasetech
ukazuje, že námi představená metoda
výrazně překonává již zavedené metody.

Klíčová slova: klasifikace intentů, de-
tekce out-of-domain, detekce anomálií,
chatbot, zpracování přirozeného jazyka

Překlad titulu: Vliv architektury kla-
sifikačního modelu na detekci anomálií
v textu

Conversational agents operate in var-
ious environments. In the open world
environment, both recognition of prede-
fined in-domain intents and detection of
unknown out-of-domain anomalies play
a crucial role. In this thesis, we review
several methods for anomaly detection
and propose a novel method that is in-
dependent of out-of-domain data. The
methods are then compared in respect
to in-domain accuracy, out-of-domain
recall, false rejection rate and time and
memory requirements. Evaluations on a
variety of datasets show that Our Pro-
posed Method significantly outperforms
the current state-of-the-art.

Keywords: intent recognition, out-of-
domain detection, anomaly detection,
chatbot, natural language processing

vi

/ Contents

1 Introduction 1

2 Datasets 2
2.1 CLINC150 2
2.2 ROSTD 2
2.3 Supervisor Dataset 3

3 Neural Networks 4

4 Loss Functions 6
4.1 Softmax Loss 6
4.2 Large Margin Cosine Loss 6
4.3 Triplet Loss 7

5 Embeddings 9
5.1 Universal Sentence Encoder . . . 9

5.1.1 USE-DAN 9
5.1.2 USE-TRAN 9

5.2 Sentence-BERT 9
5.3 Metric Learning 10

6 Methods 11
6.1 Cosine Similarity 11
6.2 Baseline Neural Network 11
6.3 DeepUnk 11

6.3.1 Local Outlier Factor 12
6.4 Adaptive Decision Boundary . . 12
6.5 Proposed Method 13

7 Experiments 15
7.1 Metrics 15

7.1.1 Precision and Recall 15
7.1.2 FRR 15
7.1.3 Formulae 15

7.2 Experimental Setup 16
7.3 ADB Performance 16
7.4 CLINC150 17
7.5 ROSTD 18
7.6 Supervisor Dataset 19
7.7 Limited Sentences and Intents . 19

8 Conclusion 22

References 23

vii

Tables / Figures

2.1 CLINC150 dataset splits2
2.2 ROSTD dataset splits.2
2.3 Supervisor Dataset overview.3
7.1 Original ADB performance 16
7.2 New ADB performance 16
7.3 Results on CLINC150 17
7.4 Time and memory on

CLINC150 . 17
7.5 Metric learning time on

CLINC150 . 17
7.6 Results on ROSTD. 18
7.7 Time and memory on ROSTD . 18
7.8 Metric learning time on ROS-

TD . 18
7.9 Results on Supervisor Dataset . 19

7.10 Time and memory on Super-
visor Dataset 19

7.11 Metric learning time on Su-
pervisor Dataset 19

1.1 Example of user-chatbot in-
teraction .1

3.1 Connection between biologi-
cal neurons .4

3.2 Neural network4
4.1 Comparison of LMCL with

Softmax Loss .7
4.2 Triplet Loss learning8
5.1 Sentence-BERT siamese

model structure 10
6.1 Stopping criterion of Our

Proposed Method 14
6.2 Effect of metric learning and

Our Proposed Method on toy
data . 14

7.1 Comparison between Our
Proposed Method and ADB
on 10 intents 20

7.2 Comparison between Our
Proposed Method and ADB
on 25 intents 20

7.3 Comparison between Our
Proposed Method and ADB
on 50 intents 21

viii

Chapter 1
Introduction

Intent classification is crucial to conversational AI, a branch of Natural Language Pro-
cessing (NLP), as it allows the chatbot to recognize what the user intends to do. Chat-
bots, i.e. systems like Amazon’s Alexa or Apple’s Siri, heavily rely on conversational-
centric (CC) style [1]. Even though the CC style is expensive to design, its better
dialogue management and improved coherence outweigh the disadvantages [2–3].

The system depends on recognition of predefined in-domain (ID) intents. Examples
of sentences that belong to an ID class are provided by a dialogue designer. These
examples are then used in a classification model that is trained to classify sentence user
input into one of the intents. Therefore, thanks to intent recognition, the chatbot is
able to guide the user through a predefined conversation flow.

However, based on the open world assumption [4], we need to prepare the system for
situations when the user input does not belong to any known in-domain class. These
inputs are called out-of-domain (OOD, anomalies). Unfortunately, while classifiers
generally perform very well on in-domain classification, they tend to struggle on OOD
detection.

A chatbot that fails to recognize an out-of-domain query will give an unrelated an-
swer, instead of using a fallback response. An example of this can be seen in Figure 1.1.

Figure 1.1. Example of interaction between user (right side) and chatbot (left side). (1)
– the user asks a question that belongs to an ID intent. (2) – the chatbot fails to detect

OOD. (3) – the chatbot succeeds in the task, giving a fallback response [5].

In this thesis, we will focus on the methods employed to classify correctly both in-
domain and out-of-domain intents, aiming to improve the usability of conversational
agents.

1

Chapter 2
Datasets

A chatbot has to handle many different forms of user input, as not everyone speaks
in the same manner. For instance, User A may talk to the chatbot in long, formal
sentences, while User B might speak more concisely. Different chatbot purposes should
also be taken into consideration – a conversational chatbot like Alquist [3] will need
different sentence examples than a Q&A chatbot.

Therefore, to reflect all the varieties of user input, we evaluate the employed models
on 3 different datasets – CLINC150, ROSTD and a dataset provided by our supervisor.

2.1 CLINC150
CLINC150 [5] contains 23,700 labeled sentences, out of which 22,500 are in-domain,
covering 150 intents, and 1,200 are out-of-domain. The exact number of sentences per
in-domain intent of either the training, validation or test split can be seen in Table 2.1.
The out-of-domain splits are also shown.

Training Validation Test
ID OOD ID OOD ID OOD
100 100 20 100 30 1,000

Table 2.1. Training/validation/test splits of each in-domain intent and of out-of-domain.

This dataset contains rather long sentences, spanning a range of intents that go from
translation to groceries.

2.2 ROSTD
ROSTD [6] is a companion to the in-domain dataset by [7], ROSTD extends the afore-
mentioned ID dataset with more than 4,000 OOD sentences.

The in-domain dataset features 12 intents with more than 43,000 examples. However,
many of these intents resemble each other, as they cover only 3 domains – Alarm,
Reminder and Weather. The number of sentences of the training, validation and test
splits of each domain, as well as out-of-domain, is described in Table 2.2.

Domain Training Validation Test Number of intents
Alarm 9,282 1,309 2,621 6
Reminder 6,900 943 1,960 3
Weather 14,339 1,929 4,040 3
OOD 750 750 3,090 1

Table 2.2. Training/validation/test splits and number of intents of every domain.

ROSTD’s example sentences fit a Q&A chatbot that is able to execute IoT commands.

2

. 2.3 Supervisor Dataset

2.3 Supervisor Dataset
The unnamed dataset provided by our supervisor is as yet unpublished. Due to its
chatbot-focused design, it is not comparable with the two previously described datasets.

It features 81 dialogues on 13 different topics. Each dialogue has several decision
points which limit the current selection of local intents. A dialogue also contains global
intents, i.e. intents accessible from every decision point. Out-of-domain examples are
the same for all dialogues.

An overview of the dataset is available in Table 2.3.

Item Number
Topics 13
Dialogues 81
Avg. decision points per dialogue 3.5
Avg. local intents per decision point 2.8
Avg. global intents per dialogue 17.9

Table 2.3. Supervisor Dataset overview.

3

Chapter 3
Neural Networks

A neural network (NN) is a model used to classify and cluster data. It is composed
of units that are inspired by the biological neurons in our brain. These units are
organized in fully connected layers – every unit in a layer is connected to all the units
in both the previous and next layers. Such connections mimick the function of synapses
between biological neurons (Figure 3.1), allowing to transmit the output of a unit, a
real number, to the next layer’s units. This type of NN with no backward connection
is called a feedforward neural network.

Figure 3.1. Connection between biological neurons [8].

According to the Universal Approximation Theorem [9], neural networks can be used
to approximate any continuous function on a unit hypercube.

Every neural network has an input and output layer, with zero or more hidden layers
in between, as visualized in Figure 3.2.

Figure 3.2. A neural network with 3 hidden layers [10].

4

. .
The units in the hidden and output layers have associated weights, a bias and an

activation function. Activation functions are also called non-linearities due to their
non-linear properties that allow NNs to cope with more complex problems, where a
linear function would not suffice. Common activation functions include:

. Sigmoid
𝑓(𝑥) = 1

1 + 𝑒−𝑥

. Tanh
𝑓(𝑥) = 𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥

. Softmax
𝑓(𝘅)𝑖 = 𝑒𝑥𝑖

∑𝐾
𝑗=1 𝑒𝑥𝑗

for 𝑖 = 1, 2, . . . , 𝐾

. ReLu
𝑓(𝑥) = max(0, 𝑥)

The output 𝑥 ∈ ℝ of a unit is defined as:

𝑥 = 𝜎(𝘄𝑇𝘇 + 𝑏)

where 𝘄 ∈ ℝ𝑁 are the weights associated with the unit, 𝘇 ∈ ℝ𝑁 are the outputs of
the previous layer, 𝑏 ∈ ℝ is the bias and 𝜎 is the activation function.

The output 𝘅 ∈ ℝ𝑀 of a layer with 𝑀 units can be thus generalized to:

𝘅 = 𝜎(𝗪𝘇 + 𝗯)

where 𝗪 ∈ ℝ𝑀×𝑁 is the weights matrix, 𝘇 ∈ ℝ𝑁 are the outputs of the previous
layer, 𝗯 ∈ ℝ𝑀 is the bias vector and 𝜎 is the activation function.

We can observe that a neural network with 𝐿 layers (excluding the input layer) is a
composition of multiple functions:

𝘅 = 𝜎𝐿(𝗪𝐿(· · · (𝜎1(𝗪1𝘇 + 𝗯1))) + 𝗯𝐿)

where 𝘅 ∈ ℝ𝑀 is the output and 𝘇 ∈ ℝ𝑁 is the input of the neural network.
The weights and bias of a unit are parameters that are learned by the network during

the training phase. In fact, training can be formulated as an optimization problem
where a loss function is minimized by updating the NN’s weights and biases.

Loss functions are often minimized using gradient-based methods. Gradient descent
finds a local minimum of the differentiable function 𝑓 by taking steps, of size learning
rate 𝜇, in the opposite direction of the gradient:

𝘅𝑘+1 = 𝘅𝑘 − 𝜇∇𝑓(𝘅𝑘)

5

Chapter 4
Loss Functions

In this chapter, we will discuss the loss functions that were minimized by the neural
networks we employed.

4.1 Softmax Loss
The term Softmax Loss is often used for the combination of the Softmax activation
function and the Cross-Entropy Loss.

Softmax is a function that takes the output 𝘅 ∈ ℝ𝐾 of the last layer of a classification
neural network with 𝐾 classes, i.e. numbers called logits, and transforms them into a
probability distribution that sums to 1. This is achieved by applying the exponential
function to the output of a class 𝑥𝑖 ∈ ℝ and then dividing the result by the sum of all
the exponentials:

𝑓(𝘅)𝑖 = 𝑒𝑥𝑖

∑𝐾
𝑗=1 𝑒𝑥𝑗

Then, this probability distribution is used by Cross-Entropy Loss to measure the
performance of the classification model:

𝐶𝐸𝐿 = 1
𝑁

𝑁
∑
𝑖=1

− log 𝑓(𝘅)𝑡𝑖

where 𝑁 is the number of training examples and 𝑡𝑖 is the ground truth class of an
example.

4.2 Large Margin Cosine Loss
Large Margin Cosine Loss was first used as part of the CosFace model in [11].

LMCL builds upon the Softmax Loss and aims to minimize intraclass variance and
maximize interclass variance by normalizing both features and weights vectors.

Let us rethink the class output 𝑥𝑖 of a model’s last layer in a cosine perspective:

𝑥𝑖 = 𝘄𝑖
𝑇𝘇 = ‖𝘄𝑖‖‖𝘇‖ cos 𝜃𝑖

where 𝘄𝑖 is the weights vector of a certain class, 𝘇 is the layer’s input vector and 𝜃𝑖
is the angle between these two vectors.

We can observe that both the norm and the angle between vectors contribute to the
class output 𝑥𝑖.

In order to avoid disruptive effects on feature learning, we normalize the weights
vector 𝘄𝑖. Then, variations in radial direction are removed by fixing ‖𝘇‖ to the hy-
perparameter 𝑠. Thanks to this limitation, the learned features are separable in the

6

. 4.3 Triplet Loss

angular space. Finally, the hyperparameter 𝑚 ≥ 0 is used to reinforce a more stringent
cosine margin.

The resulting loss is defined as:

𝐿𝑀𝐶𝐿 = 1
𝑁

𝑁
∑
𝑖=1

− log 𝑒𝑠(𝑥𝑡𝑖−𝑚)

𝑒𝑠(𝑥𝑡𝑖−𝑚) + ∑𝐾
𝑗≠𝑡𝑖

𝑒𝑠𝑥𝑗

subject to

𝘄 = 𝘄
‖𝘄‖

𝘇 = 𝘇
‖𝘇‖

𝑥𝑡𝑖
= 𝘄𝑇

𝑡𝑖
𝘇

where 𝑁 is the number of examples, 𝐾 is the number of classes, 𝑠 and 𝑚 are hyper-
parameters, 𝑡𝑖 is the ground truth class of an example, 𝘄𝑡𝑖

is the weights vector of the
class, 𝘇 is the input vector and 𝑥𝑡𝑖

is the output of the class.
A comparison of LMCL with Softmax Loss using multiple values of 𝑚 is shown in

Figure 4.1.

Figure 4.1. Comparison of LMCL with Softmax Loss in Euclidean space [11].

4.3 Triplet Loss
Triplet Loss [12] works with the normalized feature vector 𝘅 ∈ ℝ𝐷, where 𝐷 is the
vector dimension.

It ensures that a vector 𝘅𝑎, the anchor, is closer to another vector of the same class
𝘅𝑝, the positive, than to the vector of a different class 𝘅𝑛, the negative. These three
vectors combined form a triplet.

The loss for a single triplet is defined as:

𝑇 𝐿 = max(‖𝘅𝑎 − 𝘅𝑝‖ − ‖𝘅𝑎 − 𝘅𝑛‖ + 𝛼, 0)

subject to

𝘅 = 𝘅
‖𝘅‖

where 𝛼 is a hyperparameter that defines the margin between positive and negative
pairs.

7

4. Loss Functions .

Figure 4.2. Triplet Loss learning [12].

Triplet Loss learning is visualized in Figure 4.2.
Proper triplet selection is critical for both effective learning and fast convergence.

While there are several strategies, we use the semi-hard triplet strategy, as it gave the
best results in the original paper. Semi-hard triplets are vectors where the resulting
loss is still positive, albeit the negative is not closer to the anchor than the positive:

‖𝘅𝑎 − 𝘅𝑝‖ < ‖𝘅𝑎 − 𝘅𝑛‖ < ‖𝘅𝑎 − 𝘅𝑝‖ + 𝛼

8

Chapter 5
Embeddings

In NLP, sentence embeddings are used to represent sentence features in a high-
dimensional vector format. Moreover, the embedding vector space is designed such
that semantically similar words have embeddings that are closer to each other.

We have used 3 different types of embeddings – Universal Sentence Encoder with
Deep Average Network (USE-DAN), Universal Sentence Encoder with Transformer Ar-
chitecture (USE-TRAN) and Sentence-BERT (SBERT).

5.1 Universal Sentence Encoder
According to [13], Universal Sentence Encoder embeddings are trained on both super-
vised and unsupervised data. Supervised learning is performed with data from the
Stanford Natural Language Inference (SNLI) corpus [14], whereas unsupervised data is
collected from several web sources such as Wikipedia, discussion forums, etc.

5.1.1 USE-DAN
This encoding model creates sentence embeddings by means of a deep averaging net-
work (DAN) that averages word and bi-gram embeddings and passes them through a
feedforward deep neural network.

USE-DAN’s time complexity is linear in the sentence length, hence its inference is
efficient. Conversely, a drawback of having an efficient model is its slightly reduced
accuracy.

5.1.2 USE-TRAN
As stated by [13], USE-TRAN creates sentence embeddings using the encoding sub-
graph of the transformer architecture [15]. Relying on this solution enables the encoding
model to compute context aware word embeddings that are later converted to sentence
embeddings. Such conversion is applied by calculating the element-wise sum of the
word embeddings at each word position.

In comparison with USE-DAN, USE-TRAN’s complex nature allows the model to
achieve higher accuracy at the cost of a penalized compute time and memory usage.
Both these variables scale dramatically with sentence length.

5.2 Sentence-BERT
Sentence-BERT [16] is a modification to BERT [17], a pre-trained transformer network.
Although BERT’s contextualized embeddings set new state-of-the-art results to several
NLP tasks, its large computational requirements make BERT unsuitable for tasks like
semantic similarity comparison and clustering. Besides this, BERT does not directly
compute stand-alone sentence embeddings, although this limitation can be avoided by
averaging its outputs, for instance.

9

5. Embeddings .
Firstly, BERT is fine-tuned on siamese and triplet networks [12] in order to ensure

that the resulting embeddings are semantically meaningful and comparable with cosine
similarity. Then, Sentence-BERT adds a pooling operation to the output of BERT in
order to extract a sentence embedding.

The exact training dataset and model structure depend on the task the model was
trained for. We use the stsb-roberta-base model which was optimized for Semantic
Textual Similarity. This model computes the mean of all output vectors as its pooling
strategy and then applies the softmax function to the difference between two sentence
embeddings. Finally, cross-entropy loss is optimized. This structure is visualized in
Figure 5.1.

Figure 5.1. Sentence-BERT siamese model structure [16].

5.3 Metric Learning
As shown in [18], the main goal of metric learning is to learn a function 𝑓 for which
vectors 𝑥1, 𝑥2, . . . , 𝑥𝑛 ∈ 𝑌𝐴 and vectors 𝑧1, 𝑧2, . . . , 𝑧𝑚 ∈ 𝑌𝐵 are transformed such that
𝑑(𝑥1, 𝑥2) < 𝑑(𝑥1, 𝑧1), where 𝑑(𝑥, 𝑦) is a distance function.

In other words, metric learning is used to minimize intraclass variance and maximize
interclass variance of the embeddings by training a neural network that approximates
the function 𝑓.

Such modified embeddings should better reflect the prior knowledge we have about
the known in-domain intents.

10

Chapter 6
Methods

In this chapter, we will introduce the several methods that we employed – Cosine Simi-
larity, Baseline Neural Network (BaselineNN), DeepUnk, Adaptive Decision Boundary
(ADB) and a novel method that we propose.

Two of these methods work with out-of-domain training data – Cosine Similarity and
Baseline Neural Network. However, OOD data collection is a very challenging task, as it
is impossible to reflect all the possible out-of-domain sentences that the user might say.
Also, one change in the defined in-domain intents, e.g. adding a new intent, may entail
many changes in the OOD training set. Therefore, we also experiment with methods
that do not need OOD training data – DeepUnk, ADB and the novel proposed method.

6.1 Cosine Similarity
Cosine Similarity is a simple and straightforward method to measure semantic similarity
between two embeddings.

Given two embeddings 𝘅, 𝘆 ∈ ℝ𝐷, where 𝐷 is the embedding dimension, Cosine
Similarity can be computed as:

𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = cos 𝜃 = 𝘅𝘆
‖𝘅‖‖𝘆‖

The formula above yields similarities ranging from −1 to 1, where 1 means complete
similarity and −1 complete dissimilitude.

6.2 Baseline Neural Network
BaselineNN is a simple neural network with no hidden layers. Softmax Loss is min-
imized. As mentioned before, out-of-domain examples are treated as an additional
in-domain intent during training.

6.3 DeepUnk
This method was presented by [19] and adapted to our needs.

First, CosFace, a model with one hidden layer and with the Large Margin Cosine
Loss, is built. Thanks to the use of LMCL, CosFace has not only learned to classify
the in-domain classes, but has also strengthened, in terms of minimizing intraclass and
maximizing interclass variance, the discriminative features of the embeddings.

The improved embeddings are thus extracted from the hidden layer and fed into
Local Outlier Factor (LOF) [20], an algorithm that is able to detect OOD.

Finally, CosFace and LOF are combined in the prediction process. CosFace first
classifies test examples into in-domain intents. Then, the embeddings learned with
LMCL are extracted and LOF detects the out-of-domain examples.

11

6. Methods .
6.3.1 Local Outlier Factor

As mentioned before, LOF is an algorithm capable of detecting anomalies (outliers), in
our case out-of-domain sentences. This is achieved by identifying examples that have
a significantly lower local density than their neighbors.

To measure the local outlier factor of an object A, i.e. the degree to which A is an
outlier, we have to first introduce the reachability distance of the object A with regard
to object B:

𝑟𝑒𝑎𝑐ℎ‐ 𝑑𝑖𝑠𝑡𝑘(𝐴, 𝐵) = max(𝑘‐ 𝑑𝑖𝑠𝑡(𝐵), 𝑑(𝐴, 𝐵))

where 𝑘‐ 𝑑𝑖𝑠𝑡(𝐵) is the distance between object B and its k-th nearest neighbor,
and 𝑑(𝐴, 𝐵) is the distance between objects A and B. Reachability distance is used to
introduce a smoothing effect in case objects A and B are considered too close to each
other.

Then, we calculate local reachability density of object A, 𝑙𝑟𝑑𝑘(𝐴), as the inverse of
the average reachability distance:

𝑙𝑟𝑑𝑘(𝐴) = |𝑁𝑘(𝐴)|
∑𝐵∈𝑁𝑘(𝐴) 𝑟𝑒𝑎𝑐ℎ‐ 𝑑𝑖𝑠𝑡𝑘(𝐴, 𝐵)

where 𝑁𝑘(𝐴) is the set of k-nearest neighbors. A low local reachability density is a
sign that the object A is in a sparse area, hence more distant from other objects.

Local Outlier Factor is computed as:

𝐿𝑂𝐹𝑘(𝐴) =
∑𝐵∈𝑁𝑘(𝐴)

𝑙𝑟𝑑(𝐵)
𝑙𝑟𝑑(𝐴)

|𝑁𝑘(𝐴)|
A value of LOF significantly larger than 1 indicates that the measured object is an

outlier.

6.4 Adaptive Decision Boundary
ADB [21] is a two-step algorithm based on metric learning and creation of decision
boundaries specific to each class using a neural network.

First, Softmax Loss metric learning is used to adapt embeddings to the in-domain
intents.

Then, we create spherical boundaries around the centroid of each class. A spherical
boundary aims to contain all examples of an in-domain class. On the other hand,
if an example does not belong to the decision boundary of the closest centroid, it is
considered as out-of-domain.

The centroid 𝗰𝑘 ∈ ℝ𝐷, where 𝐷 is the embedding dimension, of class 𝑘 is defined as:

𝗰𝑘 =
∑𝘅∈𝗫𝑘

𝘅
|𝗫𝑘|

where 𝗫𝑘 contains all the training embeddings of class 𝑘.
Formally, an example 𝘅 belongs to class 𝑘 if the following constraint is satisfied:

‖𝘅 − 𝗰𝑘‖ ≤ 𝑟𝑘

where ‖𝘅 − 𝗰𝑘‖ denotes the Euclidean distance between 𝘅 and 𝗰𝑘, and 𝑟𝑘 is the class’s
radius.

12

. 6.5 Proposed Method

Based on the suggestion of [22], the Softplus activation function is used to map
between 𝑟𝑘 and the actual radius learned by the model ̂𝑟𝑘:

𝑟𝑘 = log(1 + 𝑒 ̂𝑟𝑘)

Although a spherical boundary aims to contain all the in-domain examples of a
certain class, this is not often feasible. Therefore, the proposed Boundary Loss is
minimized. Boundary Loss balances the radius of each boundary so that it contains
as many in-domain examples as possible, without sacrificing out-of-domain detection
performance:

𝐵𝐿 = 1
𝑁

𝑁
∑
𝑖=1

[𝛿𝑖(‖𝘅𝑖 − 𝗰𝑡𝑖
‖ − 𝑟𝑡𝑖

) + (1 − 𝛿𝑖)(𝑟𝑡𝑖
− ‖𝘅𝑖 − 𝗰𝑡𝑖

‖)]

where 𝑁 is the number of examples, 𝘅𝑖 is the embedding of the 𝑖𝑡ℎ example, 𝗰𝑡𝑖
is

the centroid of the example’s ground truth class and 𝛿𝑖 is defined as:

𝛿𝑖 = {
1 if ‖𝘅𝑖 − 𝗰𝑡𝑖

‖ > 𝑟𝑡𝑖
,

0 if ‖𝘅𝑖 − 𝗰𝑡𝑖
‖ ≤ 𝑟𝑡𝑖

As described earlier, examples whose embeddings do not belong to the spherical
boundary of the closest centroid are considered OOD, while the others are classified as
the centroid’s class 𝑘:

𝑦 = { 𝑘 if ‖𝘅 − 𝗰𝑘‖ ≤ 𝑟𝑘,
out-of-domain otherwise.

subject to:

𝑘 = arg min
𝑘∈𝐾

‖𝘅 − 𝗰𝑘‖

where 𝑦 is the resulting label and 𝐾 is the set of all in-domain intents.

6.5 Proposed Method
Our Proposed Method is inspired by ADB (6.4) – it is also a two-step algorithm based
on metric learning and creation of decision boundaries specific to each class. However,
we experiment with LMCL and Triplet Loss metric learning and we find the best radius,
in terms of compromise between the distances from the radius to either the ID or OOD
examples, using an iterative method with a stopping criterion.

After either LMCL or Triplet Loss metric learning, we work in the One-vs-Rest
setting [23] – we treat examples from one in-domain intent as positive, while other
intents with their respective examples are considered out-of-domain. This is another
difference from ADB, where the examples are regarded as OOD dynamically, based on
the current radius during training.

Thus, for every in-domain class 𝑘, we iteratively increase the possible value of radius
𝑟𝑘, evaluate our criterion and stop iterating when it returns a negative value.

The stopping criterion is defined as:

𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 =
∑𝘅∈𝑂𝑂𝐷(‖𝘅 − 𝗰𝑘‖ − 𝑟𝑘)

𝑁𝑂𝑂𝐷
−

∑𝘅∈𝐼𝐷(𝑟𝑘 − ‖𝘅 − 𝗰𝑘‖)
𝑁𝐼𝐷

𝑁𝑂𝑂𝐷
𝑁𝐼𝐷

1
𝛼

13

6. Methods .

Figure 6.1. Stopping criterion of Our Proposed Method. 𝐼𝐷 is an in-domain example,
𝑂𝑂𝐷 is an out-of-domain example, 𝑐 is the centroid, 𝑑 denotes the distance between two

objects and 𝑟 is the radius.

where 𝑁𝑂𝑂𝐷 (respectively 𝑁𝐼𝐷) is the number of out-of-domain (resp. in-domain)
examples, 𝘅 is the embedding of an example, 𝑘 is the current class, 𝗰𝑘 is the centroid
of class 𝑘 as described in ADB, 𝑟𝑘 is the current radius for class 𝑘 and 𝛼 is a hyperpa-
rameter. The stopping criterion is shown in Figure 6.1.

We can observe that the criterion returns a negative value when the in-domain ex-
amples outweigh the out-of-domain. Additionally, we multiply the weight of in-domain
examples by 𝑁𝑂𝑂𝐷

𝑁𝐼𝐷
in order to counter the imbalance between the number of OOD and

ID examples, and by the hyperparameter 𝛼 which normalizes the importance of OOD
detection in opposite to ID classification. We have empirically observed that lower
values of 𝛼 are better for lower numbers of in-domain classes.

Finally, classification is performed as in ADB – if constrained by its decision bound-
ary, the example is classified as the closest centroid’s class 𝑘, otherwise it is considered
out-of-domain:

𝑦 = { 𝑘 if ‖𝘅 − 𝗰𝑘‖ ≤ 𝑟𝑘,
out-of-domain otherwise.

subject to:

𝑘 = arg min
𝑘∈𝐾

‖𝘅 − 𝗰𝑘‖

where 𝑦 is the resulting label and 𝐾 is the set of all in-domain intents.
A visualization of our method on toy data is available in Figure 6.2.

Figure 6.2. Effect of metric learning and Our Proposed Method on toy data.

14

Chapter 7
Experiments

This chapter includes the evaluations that were performed on the various datasets. We
also describe the used metrics and provide further details abour our experimental setup.

7.1 Metrics
We evaluate the results of the employed methods on several performance criteria –
accuracy over the predefined in-domain intents, recall on out-of-domain queries and
false rejection rate (FRR).

We also take into account the models’ time requirements for training and inference, as
well as their memory consumption. Both are very important, since large requirements
of either time or RAM would compromise the usability of the models in real-world
applications, where these parameters are essential.

7.1.1 Precision and Recall
For in-domain intents, we are interested in accuracy – the fraction of correct predictions
among all predictions that have an ID ground truth label. On the other hand, recall
– the fraction of relevant predictions – gives more weight to out-of-domain intents.
Measuring recall provides a needed additional insight on OOD intents, because if the
model misclassified an OOD user input, the system would give an unrelated response.

7.1.2 FRR
FRR is the ratio of falsely rejected in-domain sentences to all ID sentences. By mini-
mizing FRR, the error of considering ID sentences as OOD is reduced.

FRR minimization is critical to conversational AI. Since chatbots use the
conversational-centric style of dialogues, frequent in-domain misclassifications would
prevent the system from guiding the user through the predefined conversation flow.

7.1.3 Formulae
Recall and FRR can be expressed by the following formulae:

𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑇 𝑃
𝑇 𝑃 + 𝐹𝑁

𝐹𝑅𝑅 = 𝐹𝑃
𝐹𝑃 + 𝑇 𝑁

where

. 𝑇 𝑃 – predicted as out-of-domain and true label is out-of-domain. 𝑇 𝑁 – predicted as in-domain and true label is in-domain. 𝐹𝑃 – predicted as out-of-domain and true label is in-domain. 𝐹𝑁 – predicted as in-domain and true label is out-of-domain

15

7. Experiments .

7.2 Experimental Setup
The neural networks were implemented in TensorFlow 2 [24]. The classification models
were trained for 40 epochs and optimized using Adam [25], with its default learning
rate 1e-3. The NNs used for metric learning were trained for 20 epochs and Adam’s
learning rate was set to 1e-4.

LMCL’s two hyperparameters were set as suggested in the original paper: 𝑚 = 0.35
and 𝑠 = 64.

The default margin hyperparameter used in Triplet Loss’s TensorFlow implementa-
tion was left unchanged: 𝛼 = 1.

Local Outlier Factor was again used with its default scikit-learn [26] implementation.
In our proposed method, we used 3 different hyperparameter values, depending on

the dataset:

. CLINC150: 𝛼 = 1.45. ROSTD: 𝛼 = 0.2. Supervisor Dataset: 𝛼 = 1.0

Both training and inference times include creating sentence embeddings from the
respective training and test splits. Training time includes training the model. Inference
time includes prediction of all testing examples. Memory usage, calculated using the
Python library psutil1, includes the size of the model and of the training embeddings.

All the computations were executed on a dual-core Intel(R) Core(TM) i5-7267U
CPU @ 3.10GHz.

7.3 ADB Performance
When evaluating the performance of ADB on the CLINC150 dataset, we have found
significantly worse results (see Table 7.1) than claimed in the original paper.

Method Accuracy Recall FRR
ADB 38.4 / 38.7 / 37.0 99.5 / 99.8 / 99.4 60.8 / 60.9 / 62.2

Table 7.1. ADB results – USE-DAN / USE-TRAN / SBERT embeddings.

We suspect this might be caused by some differences in implementation, especially
in training, which were not mentioned in the paper.

However, we have found that we can boost ADB’s performance by replacing Softmax
Loss metric learning with LMCL or Triplet Loss, and by adding 3 hidden layers with the
ReLu activation function to the model. These layers perform further metric learning
based on the model’s Boundary Loss. The results (see Table 7.2) then improve.

Method Accuracy Recall FRR
ADBLMCL 92.9 / 95.4 / 89.9 75.4 / 75.2 / 75.8 3.9 / 2.1 / 5.9
ADBTriplet 91.2 / 95.0 / 89.1 77.2 / 74.3 / 73.8 4.6 / 2.1 / 5.8

Table 7.2. New ADB results – USE-DAN / USE-TRAN / SBERT embeddings.

Therefore, we will only use our new version of ADB in future evaluations.
1 https://github.com/giampaolo/psutil

16

https://github.com/giampaolo/psutil

. 7.4 CLINC150

7.4 CLINC150
As we can observe in Table 7.3, the best results were achieved with USE-TRAN em-
beddings. As for accuracy, the best method was BaselineNN. On the other hand, even
though BaselineNN received out-of-domain training data, its recall is significantly lower
than the recall of ADB or Our Proposed Method.

Altogether, Our Proposed Method with LMCL metric learning achieves the best
results. It has a high accuracy, the best recall and FRR is reasonably low.

Method Accuracy Recall FRR
Cosine Similarity 87.7 / 92.1 / 83.3 12.8 / 14.6 / 6.1 0.0 / 0.0 / 0.1
BaselineNN 95.1 / 96.5 / 92.0 41.1 / 51.4 / 29.8 0.2 / 0.1 / 0.3
DeepUnk 90.3 / 92.7 / 85.9 39.6 / 38.4 / 54.3 4.5 / 4.3 / 8.5
ADBLMCL 92.9 / 95.4 / 89.9 75.4 / 75.2 / 75.8 3.9 / 2.1 / 5.9
ADBTriplet 91.2 / 95.0 / 89.1 77.2 / 74.3 / 73.8 4.6 / 2.1 / 5.8
OurLMCL 92.2 / 94.6 / 89.6 81.3 / 83.9 / 79.3 4.9 / 3.1 / 6.8
OurTriplet 92.5 / 94.8 / 89.6 72.5 / 78.6 / 69.7 2.6 / 2.1 / 4.8

Table 7.3. Results on CLINC150 – USE-DAN / USE-TRAN / SBERT embeddings.

As shown in Table 7.4, USE-DAN’s worse performance in comparison with USE-
TRAN is compensated by its speed and lower memory requirements. SBERT has,
considering its low accuracy and recall results, surprisingly high requirements. Com-
pared to other methods that rely on a neural network, Our Proposed Method’s training
is significantly faster.

Method Training (s) Inference (s) Memory (MB)
Cosine Similarity 0.9 / 65.4 / 473.1 2.2 / 23.9 / 160.6 979.7 / 1277.9 / 767.5
BaselineNN 23.6 / 94.9 / 503.2 1.5 / 21.9 / 146.3 917.1 / 1140.3 / 924.7
DeepUnk 70.2 / 141.8 / 614.4 16.5 / 40.4 / 178.4 738.1 / 440.8 / 948.3
ADBLMCL 64.1 / 134.0 / 643.7 10.6 / 30.1 / 224.4 664.4 / 1077.0 / 886.6
ADBTriplet 61.6 / 139.9 / 647.8 8.0 / 34.4 / 221.5 672.9 / 1081.2 / 894.0
OurLMCL 9.7 / 77.2 / 544.6 15.1 / 35.1 / 245.0 649.2 / 1056.8 / 850.5
OurTriplet 9.3 / 111.9 / 528.3 9.2 / 40.5 / 220.8 661.7 / 788.0 / 862.3

Table 7.4. Time and memory on CLINC150 – USE-DAN / USE-TRAN / SBERT embed-
dings.

In Table 7.5, we can see that LMCL metric learning is significantly faster than Triplet
Loss.

Type Metric learning (s)
LMCL 44.4 / 110.9 / 507.0
Triplet Loss 389.0 / 460.6 / 825.1

Table 7.5. Metric learning time on CLINC150 – USE-DAN / USE-TRAN / SBERT em-
beddings.

17

7. Experiments .

7.5 ROSTD
ROSTD results (see Table 7.6) continue to demonstrate the strength of USE-TRAN over
USE-DAN. The metrics of all methods, excluding ADB with LMCL metric learning,
benefitted from using USE-TRAN. We are not able to explain the abnormal results of
ADB with LMCL metric learning.

As for accuracy, all methods gave excellent results. In comparison with CLINC150,
out-of-domain recall of all methods, except ADB, substantially improved. As shown
later in Section 7.7, ADB’s performance is penalized by ROSTD’s low number of classes.

Although BaselineNN has better overall results, we highlight Our Proposed Method
with LMCL metric learning, as it yields comparatively strong results in all metrics
without the need of OOD training data.

Method Accuracy Recall FRR
Cosine Similarity 97.9 / 98.1 / 96.9 62.6 / 69.4 / 58.7 0.0 / 0.0 / 0.1
BaselineNN 98.8 / 98.9 / 98.6 93.2 / 96.2 / 89.8 0.1 / 0.0 / 0.1
DeepUnk 90.9 / 89.2 / 83.9 80.7 / 81.1 / 78.3 8.4 / 10.2 / 15.4
ADBLMCL 98.6 / 98.8 / 98.3 30.7 / 22.7 / 17.8 0.5 / 0.4 / 0.6
ADBTriplet 96.1 / 97.1 / 97.2 39.5 / 52.2 / 27.5 2.1 / 1.2 / 1.1
OurLMCL 95.8 / 96.4 / 95.6 92.8 / 95.8 / 78.5 3.9 / 3.4 / 4.0
OurTriplet 92.8 / 94.1 / 91.9 93.8 / 98.0 / 84.6 6.8 / 5.5 / 7.6

Table 7.6. Results on ROSTD – USE-DAN / USE-TRAN / SBERT embeddings.

As we can observe in Table 7.7, the time requirements are consistent with the re-
sults on CLINC150. Conversely, USE-DAN is more memory demanding than USE-
TRAN. We believe this is caused by the fact that ROSTD contains shorter sentences
than CLINC150, penalizing USE-DAN’s constant memory usage and rewarding USE-
TRAN’s space complexity dependent on sentence length.

Method Training (s) Inference (s) Memory (MB)
Cosine Similarity 2.2 / 171.0 / 810.5 6.5 / 80.8 / 316.0 671.4 / 263.7 / 843.1
BaselineNN 34.8 / 253.9 / 966.8 3.1 / 88.1 / 315.1 694.5 / 230.6 / 861.3
DeepUnk 187.7 / 277.3 / 1220.6 53.1 / 114.5 / 404.9 886.9 / 859.9 / 1162.0
ADBLMCL 130.3 / 253.9 / 1230.2 4.3 / 51.7 / 410.4 765.1 / 597.6 / 976.5
ADBTriplet 133.9 / 248.5 / 1233.8 5.0 / 52.0 / 412.9 771.6 / 398.9 / 902.1
OurLMCL 5.6 / 112.7 / 1004.5 4.4 / 46.2 / 447.5 745.4 / 386.3 / 961.3
OurTriplet 5.6 / 116.5 / 1021.7 4.4 / 46.7 / 423.4 765.9 / 470.9 / 976.5

Table 7.7. Time and memory on ROSTD – USE-DAN / USE-TRAN / SBERT embeddings.

The results in Table 7.8 confirm the previous findings on LMCL’s efficiency.

Type Metric learning (s)
LMCL 78.8 / 206.5 / 925.2
Triplet Loss 756.0 / 831.3 / 1581.6

Table 7.8. Metric learning time on ROSTD – USE-DAN / USE-TRAN / SBERT embed-
dings.

18

. 7.6 Supervisor Dataset

7.6 Supervisor Dataset
Considering the results on the two previous datasets, we have decided to not include
evaluations with SBERT embeddings or Triplet Loss metric learning.

On Supervisor Dataset, DeepUnk achieves the best accuracy at the expense of recall
results. Despite its simplicity, Cosine Similarity has surprisingly good results.

Overall, Our Proposed Method with LMCL metric learning achieves very high accu-
racy and the best recall. These outstanding results combined with the lack of need of
out-of-domain training data make of Our the best method.

Method Accuracy Recall FRR
Cosine Similarity 96.1 / 97.8 88.7 / 89.3 0.0 / 0.0
BaselineNN 93.2 / 95.6 93.1 / 94.7 0.2 / 0.3
DeepUnk 97.8 / 98.2 11.4 / 12.0 0.4 / 0.6
ADBLMCL 91.6 / 94.3 75.5 / 76.0 7.2 / 5.1
OurLMCL 94.8 / 96.2 97.8 / 98.1 4.3 / 3.3

Table 7.9. Results on Supervisor Dataset – USE-DAN / USE-TRAN embeddings.

As shown in Table 7.10 and Table 7.11, the time and memory requirements of the
employed methods are generally in agreement with previous measurements. We can
observe that due to their simplicity, the combination of Cosine Similarity with USE-
DAN embeddings is the most efficient method by a large margin, since it was not as
penalized as the other methods by the dialogue structure of Supervisor Dataset.

Method Training (s) Inference (s) Memory (MB)
Cosine Similarity 3.7 / 1849.9 36.9 / 627.5 590.5 / 1003.9
BaselineNN 2088.8 / 4396.5 146.5 / 707.2 1243.6 / 1190.4
DeepUnk 3456.5 / 4955.9 365.2 / 883.6 1505.6 / 1788.6
ADBLMCL 3539.4 / 6464.9 133.4 / 1072.8 2474.1 / 2555.9
OurLMCL 701.7 / 2947.3 142.0 / 911.4 764.6 / 1304.8

Table 7.10. Time and memory on Supervisor Dataset – USE-DAN / USE-TRAN embed-
dings.

Type Metric learning (s)
LMCL 2335.9 / 3720.4

Table 7.11. Metric learning time on Supervisor Dataset – USE-DAN / USE-TRAN em-
beddings.

7.7 Limited Sentences and Intents
In a real-world setting, conversational agents often use fewer intents with a limited
number of training sentences. Therefore, we compare the behaviour of Our Proposed
Method and ADB when there is a limited number of in-domain intents and training

19

7. Experiments .
sentences. We have chosen these two methods because they both do not need out-of-
domain training data and because of their similar approach to the problem. USE-TRAN
embeddings with LMCL metric learning and the CLINC150 dataset are employed.

For each comparison, we select 10, 25 or 50 classes and limit the number of training
sentences to 4, 8, . . . , 100. The used classes and sentences are chosen randomly. The
results are then computed as the average over 5 runs.

As we can observe in Figure 7.1, Figure 7.2 and Figure 7.3, both methods achieve
very high accuracy rates. However, Our Proposed Method is more appropriate for a
setting with a low number of classes, as it needs less training sentences than ADB.

As for out-of-domain recall, the difference between the two methods is more signifi-
cant. Regardless of the number of intents, ADB is not able to achieve the same recall
as Our Proposed Method.

Figure 7.1. Comparison between Our Proposed Method and ADB on 10 intents.

Figure 7.2. Comparison between Our Proposed Method and ADB on 25 intents.

20

. 7.7 Limited Sentences and Intents

Figure 7.3. Comparison between Our Proposed Method and ADB on 50 intents.

21

Chapter 8
Conclusion

In this thesis, we have introduced the problem of out-of-domain anomaly detection and
reviewed the current methods employed for its solution. We have also explained the
core concepts behind neural networks and the role of loss functions in model training,
discussing the positive impact on embeddings brought by metric learning.

Subsequently, we have proposed a two-step algorithm based on the combination of
metric learning and creation of boundaries using a novel stopping criterion. Since out-
of-domain data are difficult to collect, one of the strong points of Our Proposed Method
is its lack of need of OOD training data.

Several experiments on a variety of datasets and embeddings were performed. These
evaluations have confirmed the strength of Our Proposed Method which has, with
feasible computational requirements, significantly outperformed the current state-of-
the-art.

We believe that the outcomes of this thesis will have positive implications for building
better conversational agents.

22

References

[1] Robert J. Moore, and Raphael Arar. Conversational UX Design: An Introduc-
tion. In: Robert J. Moore, Margaret H. Szymanski, Raphael Arar, and Guang-Jie
Ren, eds. Studies in Conversational UX Design. Cham: Springer International
Publishing, 2018. 1–16. ISBN 978-3-319-95579-7.
https://doi.org/10.1007/978-3-319-95579-7_1.

[2] Sarah E. Finch, James D. Finch, Ali Ahmadvand, Ingyu, Choi, Xiangjue Dong,
Ruixiang Qi, Harshita Sahijwani, Sergey Volokhin, Zihan Wang, Zihao Wang, and
Jinho D. Choi. Emora: An Inquisitive Social Chatbot Who Cares For You. 2020.

[3] Jan Pichl, Petr Marek, Jakub Konrád, Petr Lorenc, Van Duy Ta, and Jan Šedivý.
Alquist 3.0: Alexa Prize Bot Using Conversational Knowledge Graph. 2020.

[4] C. Maria Keet. Open World Assumption. In: Werner Dubitzky, Olaf Wolkenhauer,
Kwang-Hyun Cho, and Hiroki Yokota, eds. Encyclopedia of Systems Biology. New
York, NY: Springer New York, 2013. 1567–1567. ISBN 978-1-4419-9863-7.
https://doi.org/10.1007/978-1-4419-9863-7_734.

[5] Stefan Larson, Anish Mahendran, Joseph J. Peper, Christopher Clarke, Andrew
Lee, Parker Hill, Jonathan K. Kummerfeld, Kevin Leach, Michael A. Laurenzano,
Lingjia Tang, and Jason Mars. An Evaluation Dataset for Intent Classification
and Out-of-Scope Prediction. In: Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-IJCNLP). 2019.
https://www.aclweb.org/anthology/D19-1131.

[6] Varun Gangal, Abhinav Arora, Arash Einolghozati, and Sonal Gupta. Likelihood
Ratios and Generative Classifiers for Unsupervised Out-of-Domain Detection In
Task Oriented Dialog. arXiv preprint arXiv:1912.12800. 2019,

[7] Sebastian Schuster, Sonal Gupta, Rushin Shah, and Mike Lewis. Cross-Lingual
Transfer Learning for Multilingual Task Oriented Dialog. 2019.

[8] Prof. Loc Vu-Quoc. Neuron3. 2018.
https://commons.wikimedia.org/wiki/File:Neuron3.png.

[9] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward
networks are universal approximators. Neural Networks. 1989, 2 (5), 359-366.
DOI https://doi.org/10.1016/0893-6080(89)90020-8.

[10] IBM Cloud Education. Deep neural network. 2020.
https://1.cms.s81c.com/sites/default/files/2021-01-06/ICLH_Dia-
gram_Batch_01_03-DeepNeuralNetwork-WHITEBG.png.

[11] Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Dihong Gong, Jingchao Zhou,
Zhifeng Li, and Wei Liu. CosFace: Large Margin Cosine Loss for Deep Face
Recognition. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2018. 5265-5274.

23

https://doi.org/10.1007/978-3-319-95579-7_1
https://doi.org/10.1007/978-1-4419-9863-7_734
https://www.aclweb.org/anthology/D19-1131
https://commons.wikimedia.org/wiki/File:Neuron3.png
http://dx.doi.org/https://doi.org/10.1016/0893-6080(89)90020-8
https://1.cms.s81c.com/sites/default/files/2021-01-06/ICLH_Diagram_Batch_01_03-DeepNeuralNetwork-WHITEBG.png
https://1.cms.s81c.com/sites/default/files/2021-01-06/ICLH_Diagram_Batch_01_03-DeepNeuralNetwork-WHITEBG.png

References .
[12] Florian Schroff, Dmitry Kalenichenko, and James Philbin. FaceNet: A unified

embedding for face recognition and clustering. 2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 2015, DOI 10.1109/cvpr.2015.7298682.

[13] Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St.
John, Noah Constant, Mario Guajardo-Cespedes, Steve Yuan, Chris Tar, Yun-
Hsuan Sung, Brian Strope, and Ray Kurzweil. Universal Sentence Encoder . 2018.

[14] Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Man-
ning. A large annotated corpus for learning natural language inference. In: Proceed-
ings of the 2015 Conference on Empirical Methods in Natural Language Processing.
Lisbon, Portugal: Association for Computational Linguistics, 2015. 632–642.
https://www.aclweb.org/anthology/D15-1075.

[15] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is All You Need.
In: 2017.
https://arxiv.org/pdf/1706.03762.pdf.

[16] Nils Reimers, and Iryna Gurevych. Sentence-BERT: Sentence Embeddings using
Siamese BERT-Networks. 2019.

[17] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-
training of Deep Bidirectional Transformers for Language Understanding. 2019.

[18] Matthew Schultz, and Thorsten Joachims. Learning a Distance Metric from
Relative Comparisons. In: S. Thrun, L. Saul, and B. Scholkopf, eds. Advances in
Neural Information Processing Systems. MIT Press, 2004.
https: / / proceedings . neurips . cc / paper / 2003 / file /
d3b1fb02964aa64e257f9f26a31f72cf-Paper.pdf.

[19] Ting-En Lin, and Hua Xu. Deep Unknown Intent Detection with Margin Loss.
2019.

[20] Markus Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jörg Sander. LOF:
Identifying Density-Based Local Outliers. In: PROCEEDINGS OF THE 2000 ACM
SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA.
ACM, 2000. 93–104.

[21] Hanlei Zhang, Hua Xu, and Ting-En Lin. Deep Open Intent Classification with
Adaptive Decision Boundary. 2021.

[22] Makarand Tapaswi, Marc T. Law, and Sanja Fidler. Video Face Clustering with
Unknown Number of Clusters. 2019.

[23] Ryan Rifkin, and Aldebaro Klautau. In Defense of One-Vs-All Classification. J.
Mach. Learn. Res.. 2004, 5 101–141.

[24] Mart�n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur,
Josh Levenberg, Dandelion Mane, Rajat Monga, Sherry Moore, Derek Murray,
Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever,
Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan,
Fernanda Viegas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke,
Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-Scale Machine Learning on
Heterogeneous Systems. 2015.
https://www.tensorflow.org/. Software available from tensorflow.org.

24

http://dx.doi.org/10.1109/cvpr.2015.7298682
https://www.aclweb.org/anthology/D15-1075
https://arxiv.org/pdf/1706.03762.pdf
https://proceedings.neurips.cc/paper/2003/file/d3b1fb02964aa64e257f9f26a31f72cf-Paper.pdf
https://proceedings.neurips.cc/paper/2003/file/d3b1fb02964aa64e257f9f26a31f72cf-Paper.pdf
https://www.tensorflow.org/

. .
[25] Diederik P. Kingma, and Jimmy Ba. Adam: A Method for Stochastic Optimization.

2017.
[26] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.

Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D.
Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research. 2011, 12 2825–2830.

25

	TITLE
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents
	Tables/Figures
	Introduction
	Datasets
	CLINC150
	ROSTD
	Supervisor Dataset

	Neural Networks
	Loss Functions
	Softmax Loss
	Large Margin Cosine Loss
	Triplet Loss

	Embeddings
	Universal Sentence Encoder
	USE-DAN
	USE-TRAN

	Sentence-BERT
	Metric Learning

	Methods
	Cosine Similarity
	Baseline Neural Network
	DeepUnk
	Local Outlier Factor

	Adaptive Decision Boundary
	Proposed Method

	Experiments
	Metrics
	Precision and Recall
	FRR
	Formulae

	Experimental Setup
	ADB Performance
	CLINC150
	ROSTD
	Supervisor Dataset
	Limited Sentences and Intents

	Conclusion
	References

