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Abstract 
In this paper we investigate benefits of classifier 

combination (fusion) for  a multimodal system for per- 
sonal identity verification. The system uses frontal 
face images and speech. W e  show that a sophisticated 
fusion strategy enables the system to outperform its 
facial and vocal modules when taken seperately. W e  
show that both trained linear weighted schem.es and 
fusion by Support Vector Machine classifier leads to 
a significant reduction of total error rates. Th,e com- 
plete system is tested on data from a publicly avail- 
able audio-visual database ( X M 2  V T S ,  295 subjects) 
according to a published protocol. 

1 Introduction 
Recognition systems based on biometric features 

(face, voice, iris, etc ...) have received a lot of attention 
in recent years Most of the proposed approaches focus 
on mono-modal identification. The system uses a 
single modality to find the closest person to the user 
in a database. Relatively high recognition rates were 
obtained for different modalities like face recognition 
and speaker recognition [2l, 81. Verification of person 
identity based on biometric informations is important 
for many security applications. Examples include ac- 
cess control to buildings, surveillance and intrusion de- 
tection. In person identity verification, the user claims 
a certain client identity and the system decides to ac- 
cept or reject the claim. Only very low error rates 
can be tolerated in many of the above mentioned ap- 
plications. It has been shown that combining different 
modalities leads to more robust systems with better 
performance [5]. 

One of the remaining questions is what strategy 
should be adopted for combining different modalit- 
ies. In order to assess the performance of a method 
and compare it to other approaches, a large database 
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and an evaluation protocol are necessary. Most of the 
work done in multi-modal verification [7, 12, 14, 61 was 
tested and evaluated on small databases (less than 40 
persons) or medium-sized (less than 100 persons in 

We describe and evaluate in this paper a comple te  
multi-modal user verification sys tem based on 
facial and vocal modalities. Each module of the sys- 
tem (face, voice, fusion) is tested and evaluated on a 
large database (XM2VTS database' with 295 people) 
according to a published protocol2. 

The rest of the paper is organised as follows: face 
and speech verification modules are described in Sec- 
tion 2 and 3.  The multi-modal data fusion issue is 
presented in Section 4. The XM2VTS database and 
its evaluation protocol are described in Section 5. The 
results and different experiments are presented in sec- 
tion 6. 

2 Face Verification 

[51). 

The face verification method used is based on ro- 
bust correlation [ll]. Registration is achieved by dir- 
ect minimization of the robustified correlation score 
over a multi-dimensional search space. The search 
space is defined by the set of all valid geometric and 
photometric transformations. In the current imple- 
mentation method the geometric transformations are 
translation, scaling and rotation. Given a weak affine 
transformation Ta 

T;(a:, y) = (ala: - a2y + a3, a2l: + a ly  + 4 (1) 

the error function expressing the intensity difference 
between a pixel s in the model image I ,  and its pro- 
jection in the probe image Ip is defined as 

'From ACTS-M2VTS project, available at  

2Available with the XM2VTS database 
http://www.ee.surrey.ac.uk/Research/VSSP/xm2vts 
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The score function used to evaluate a match between 
the transformed model image and the probe image is 

where p denotes a robust kernel. The function is 
the average percentage of the maximum kernel re- 
sponse taken over some set of pixels R. Possible ker- 
nel functions are the Huber Minimax and the Hampel 
(1,1,2) [9]. Experiments reported in [4] showed that 
the choice of kernel is not critical. 

In Equation (3), parameters of the score function 
are purely geometrical and intensity values are not 
transformed. In our previous work [17], we included 
parameters for affine compensation of global illumin- 
ation changes (gain, offset) into the search space. For 
efficiency reasons, we decided to  adopt a less soph- 
isticated approach in which we shift (for each point 
in the search space) the histogram of residual errors 
using the median error. 

To find the global extremum of the score function 
we employ a stochastic search technique incorporat- 
ing gradient information. The gradient-based search 
is implemented using steepest descent on a discrete 
grid. Resolution of the grid is changed during the op- 
timization (multi-resolution in the parameter domain) 
following a predefined schedule. The different com- 
ponents of the gradient (the partial derivatives with 
respect to the affine coefficients) are 

where Q denotes the influence function of the robust 
kernel (obtained by differentiating the kernel) and 
s' = Ta(s). To escape from local maxima, stochastic 
search is performed by adding a random vector drawn 
from an exponential distribution (this optimization 
technique is effectively a special case of simulated an- 
nealing [13]). 

To meet real-time requirements of the verification 
scenario, we adopt a multi-resolution scheme in the 
spatial domain. This is achieved by applying the com- 
bined gradient-based and stochastic optimization de- 
scribed above to each level of a Gaussian pyramid. 
The estimate obtained on one level is used to initial- 
ize the search at  the next level. In addition to the 
speed-up, the multi-resolution search also has the be- 
nefit of removing local optima from the search space 

and thus effectively improving the convergence char- 
acteristics of the method. 

In the training phase we employ a feature selection 
procedure based on minimizing the intra-class vari- 
ance and at the same time maximizing the inter-class 
variance. A feature criterion is evaluated for each pixel 
and the subset of pixels that best discriminates a given 
client from other clients in the database (effectively 
modeling the impostor distribution) are selected. This 
feature subset is then used in verification allowing ef- 
ficient identification of the probe image. 

The presented system runs in real-time on a high- 
end PC. 

3 Speaker Verification 
Speaker verification methods can be classified into 

text-independent and text-dependent methods. The 
latter usually requires that the utterances used for 
verification are the same as for training. These meth- 
ods can exploit text-dependent voice individuality and 
therefore often outperform text-independent meth- 
ods. We propose two different algorithms: a text- 
independent method based on the sphericity meas- 
ure [3] and a text-dependent technique using hidden 
Markov models (HMM) [19]. 

3.1 Text-independent Speaker Verifica- 

The first processing step aims to remove silent parts 
from the raw audio signal as these parts do not convey 
speaker dependent information. We use the speech 
activity detector proposed by Reynolds et al. [18] on 
the 16 kHz sub-sampled audio signal. 

The cleaned audio signal is converted to linear pre- 
diction cepstral coefficients (LPCC) [l] using the auto- 
correlation method. We use a pre-emphasis factor of 
0.94, a Hamming window of length 25 ms, a frame 
interval of 10 ms, and an analysis order of 12. We 
have applied cepstral mean subtraction (CMS), where 
the mean cepstral parameter is estimated across each 
speech file and subtracted from each frame. The en- 
ergy is normalized by mapping it to the interval [0,1] 
using the tangent hyperbolic function. The normal- 
ized energy is included in the feature vector, leading 
to 13-dimensional vectors. A client model is repres- 
ented by the covariance matrix XI computed over the 
feature vectors of the client's training data. Similarly, 
an accessing person is represented by the covariance 
matrix Y , computed over that person's speech data. 
We use the arithmetic-harmonic sphericity measure 
D s p ~  (XI Y) [3] as similarity measure between the cli- 

tion 
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ent and the accessing person: 

where m denotes the dimension of the feature vector 
and t r ( x )  the trace of x. The similarity values were 
mapped to the interval [0,1] with a sigmoid function 

0.5. A claimed speaker is rejected if SSPH < 0.5, 
otherwise she/he is accepted. We have used person- 
dependent thresholds t which were estimated on the 
evaluation set. The processing time, on an Sun Ultra- 
Sparc 30, required by the speech verification module 
is $ the time of the utterance duration. 
3.2 Text-dependent Speaker Verification 

Hidden Markov models (HMMs) represent a very 
efficient approach to model the statistical variations 
of speech in both the spectral domain and in the tem- 
poral domain. Our HMM-based verification technique 
makes use of 3 HMM sets: client models, world mod- 
els, and silence models. Utterances of a client are rep- 
resented by client HMMs. The world models serve as 
speaker-independent models to represent speech of an 
average person. They are trained on the POLYCOST3 
database, which represents a distinct set of speak- 
ers, that neither includes clients nor impostors of the 
XM2VTS database. Finally, three silence HMMs are 
used to model the silent parts of the signal. 

The same feature extraction as in the previous sec- 
tion is performed. In addition, the first and second or- 
der temporal derivatives were included, leading to 42- 
dimensional feature vectors. All models were trained 
based on the maximum likelihood criterion using the 
Baum-Welch (EM) algorithm. The world models were 
trained on the segmented words of the POLYCOST 
database, where one HMM per word was trained. 

For both training and verification the sentences of 
the XM2VTSDB are first segmented into words and 
silence using the world and silence models. This con- 
sists in computing the best path between the sentence 
and the sequence of known HMMs using the Viterbi 
algorithm. To do this we used an HMM network that 
allowed optional silence at  the beginning of a sentence, 
between words, and at  the end of a sentence. The cli- 
ent models could then be trained on the segmented 
training words. For verification, the Viterbi algorithm 
is used to calculate the likelihood p(Xj IMij), where 
X j  represents the observation of the segmented word 
j; Mjj represents the model of subject Mi and word 
j .  We normalize the log-likelihood of word j by the 

f ( D S P H )  = (1 -k e X p ( - ( D S p H  - t ) ) ) - '  where f ( t )  = 

3For more informations see http://circwww.epfl.ch/polycost 

numbers of frames Nj and sum them over all words 
W ,  which leads to the following measure: 

This measure is calculated for the models Mc of a 
given client M, and for the world models M,. The 
following similarity: 

D H M M  = log AXIMC) - log p(XIMW) (6) 

is computed and compared to a threshold t .  The 
claiming subject is rejected if DHMM < t ,  other- 
wise she/he is accepted. The quantities DHMM were 
mapped to the interval [0,1] as described in Section 
3.1. The processing time is half the time of the utter- 
ance duration. 

4 Multi-Modal Data Fusion 
Combining different experts results in a system 

which can outperform the experts when taken indi- 
vidually [15, lo]. This is especially true if the different 
experts are not correlated. We expect from the fusion 
of vision and speech to achieve better results. In the 
next section, we compare the Support Vector Machine 
(SVM) with tradition fusion methods to combine dif- 
ferent modalities. The use of SVM is motivated by the 
fact that verification is basically a binary classification 
problem (i.e. accept or reject user) [a]. 
4.1 SVM 

The Support Vector Machine is based on the prin- 
ciple of Structural Risk Minimization [20]. Classical 
learning approaches are designed to minimize the em- 
pirical risk (i.e error on a training set) and therefore 
follow the Empirical Risk Minimization principle. The 
SRM principle states that better generalization cap- 
abilities are achieved through a minimization of the 
bound on the generalization error. 

We assume that we have a data set V of M points 
in a n dimensional space belonging to two different 
classes +1 and -1: 

D = {(Xi,yi)li E { 1 . . ~ } , x i  E Rn,yi E {+1,-1}} 

A binary classifier should find a function f that maps 
the points from their data space to their label space. 

It has been shown [20] that the optimal separating 
hyperplane is expressed as: 

f ( ~ )  = s i g n ( C  aiyil((Xi, z) + 6) (7) 
i 

where K(x,y) is a positive definite symmetric func- 
tion, b is a bias estimated on the training set, ai are 
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the solutions of the following Quadratic Programming 
(QP) problem: 

with the constraints: xi aiyi = 0 and ai 2 0 

where: 

(d)i = ai 
( i , j )  E [1..M] x [l..M] 

( I ) i  = 1 
\ (D) i j  = YiYjIK(Xi, Xj) 

The computational complexity of the SVM during 
the training depends on the number of data points 
rather than on their dimensionality. The number of 
computation steps is O(n3)  where n is the number 
of data points. At run time the classification step of 
SVM is a simple weighted sum. The classification of 
112400 claims requires 5.6sec on an Ultra-Sparc 30. 

5 The XM2VTS database 
The XM2VTSDB database contains synchronized 

image and speech data as well as sequences with views 
of rotating heads. The database includes four record- 
ings of 295 subjects taken at one month intervals. 
On each visit (session) two recordings were made: a 
speech shot and head rotation shot. The speech shot 
consisted of frontal face recording of each subject dur- 
ing the dialogue. 

The database was acquired using a Sony VXlOOOE 
digital cam-corder and DHRlOOOUX digital VCR. 
Video is captured at a color sampling resolution of 
4:2:0 and 16bit audio at a frequency of 32kHz. The 
video data is compressed at a fixed ratio of 5:l in the 
proprietary DV format. In total the database contains 
approximately 4 TBytes (4000 Gbytes) of data. 

When capturing the database the camera settings 
were kept constant across all four sessions. The head 
was illuminated from both left and right sides with 
diffusion gel sheets being used to keep this illumination 
as uniform as possible. A blue background was used 

to  allow the head to be easily segmented out using a 
technique such as chromakey. A high-quality clip-on 
microphone was used to record the speech. The speech 
sequence consisted in uttered digits from 0 to 9. 

5.1 Evaluation Protocol 
The database was divided into three sets: train- 

ing set, evaluation set, and test set (see Fig. 1). The 
training set is used to build client models. The evalu- 
ation set is selected to produce client and impostor ac- 
cess scores which are used to estimate parameters (i.e. 
thresholds). The estimated threshold is then used on 
the test set. The test set is selected to simulate real au- 
thentication tests. The three sets can also be classified 
with respect to subject identities into client set, im- 
postor evaluation set, and impostor test set. For this 
description, each subject appears only in one set. This 
ensures realistic evaluation of imposter claims whose 
identity is unknown to the system. The protocol is 

I Session Shot Clients Impostors 

Figure 1: Diagram showing the partitioning of the 
XM2VTSDB according to protocol Configuration I. 

based on 295 subjects, 4 recording sessions, and two 
shots (repetitions) per recording sessions. The data- 
base was randomly divided into 200 clients, 25 eval- 
uation impostors, and 70 test impostors (See [16] for 
the subjects' IDS of the three groups). 

5.2 Performance Measures 
Two error measures of a verification system are the 

False Acceptance rate (FA) and the False Rejection 
rate (FR). False acceptance is the case where an im- 
postor, claiming the identity of a client, is accepted. 
False rejection is the case where a client, claiming his 
true identity, is rejected. FA and FR are given by 
F A  = E I / I  * 100% and F R  = E C / C  * loo%, where 
E I  is the number of impostor acceptances, I the num- 
ber of impostor claims, E C  the number of client rejec- 
tions, and C the number of client claims. A trade-off 
between FA and FR can be controled by a threshold. 
For the protocol configurations, I is 112,000 (70 im- 
postors x 8 shots x 200 clients) and C is 400 (200 
clients x 2 shots). 
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The video and audio stream of each user are pro- 
cessed by the different verification modules. Three 
different modalities are considered: Face verification 
(Section 2) ,  Sphericity-based speaker verification (Sec- 

formance speech verification modules and a medium 
performance vision module the conditions are viol- Table 1: Performance of Modalities on Test Set 

. Modalities weights FA (%) FR (%) 
HMM and Face 0.9 0.1 0.86 0.25 
Spher. and Face 0.95 0.05 1.37 2.5 

HMM and Spher. 0.84 0.16 0.64 0.25 

ated and none of the above-mentioned fusion scheme 
performed better than the best individual expert (the 
HMM). 

We then considered linear weighted combination 
rules (also used in [la]). Optimal weights and accept- 
ance threshold were chosen using the evaluation set. 
The performance of the scheme on the test set is sum- 
marized in Table 2. The results show that the trained 
linear classifier outperforms the linear SVM. This is 
not unexpected since SVMs minimize maximum dis- 
tance from decision boundaries whereas the training 

We performed a series of experiments to evaluate 
different configuration sets of modalities. The sets are 
defined as follows: 

0 C1: Face and HMM. 

0 C2: Face, Sphericity and HMM. 

0 C3: HMM and Sphericity. 

0 C4: Face and Sphericity. 

I 
Set FA" FR FA FR FA FR 
c1 1.07 0.25 1.18 0 1.47 0 
c 2  0.34 0.50 0.78 0 1.47 0 
c 3  0.39 0.50 0.38 0.50 1.47 0 

For the SVM-based fusion, we used polynomial and 
gaussian kernels in our experiments. The training set 
was used as an evaluation set to see how performance 
changes with different kernel parameters. The main 
conclusion is that the performance does not change 
significantly with different polynomial. The conclu- 
sion is also valid for the gaussian kernel. We chose to 
run the experiments with the following configurations: 

0 Linear: K(x,y)  = zty 

Polynomial: ~ ( x ,  y) = (xty + q3 
0 Gaussian: K(x ,y )  = ezp(-4llz - y1I2) 

The dimensionality of the data corresponds to  the 
number of modalities to combine. Moreover, SVM 
computes only dot products with the data and there- 
fore the complexity of SVM is independent from the 
number of modalities to  combine. As a baseline fu- 
sion experiment we combined the output of the HMM, 

http://www.ee.surrey.ac.uk/Research/VSSP/xm2vts 

of the linear classifier minimizes error rate (over train- 
ing is not a problem for a simple 1-parameter linear 
classifier). Surprisingly, the linear classifier compares 
well even with non-linear SVMs. One more interest- 
ing observation can be made. A posteriori, a threshold 
(point on the ROC curve) can be found for the HMM 
where this expert outperforms the face and HMM 
combination. However, at the threshold predictedfrom 
training and evaluation data the weighted sum of Face 
and HMM expert has a lower error. This suggest that 
more stable prediction of the operating point can be 
made for the fused data. 

11 Kernel 11 Polvnomial I Gaussian I Linear II 

1 c 4  1 1  0.13 I 10.0 I 1.18 I 0 I 1.23 I 1.25 

Table 3: SVM Fusion Performance 
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7 Conclusion 
We have described a complete multi-modal per- 

son identity verification system with very low error 
rates (less than 1% total error rate). It was evalu- 
ated and tested on a large database (295 people) with 
a published protocol. Combining different modalit- 
ies increases the performance of the system and yields 
better results than individual modalities. One of the 
major problems is how to combine modalities with dif- 
ferent skills. We compared two approaches: a linear 
weighted classifier and SVM. The linear classifier per- 
formed well and even better than linear SVM in com- 
bining two modalities (face/speech). SVM has the ad- 
vantage of combining any number of modalities a t  the 
same computational cost with very good fusion res- 
ults. 
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