
Instructions

The topic is focused on analysis and implementation of searching inside conceptual models.

1. Acquaint yourself with UML and OntoUML languages and the XMI format for their serialization.

2. Design, implement and test XMI parser for Enterprise Architect/OpenPonk and possibly Visual

Paradigm models and storing the models in a suitable knowledge database for their searching and

querying.

3. Implement the search/query functionality as a module for the Repocribro model repository.

4. Document and discuss your solution.

 
https://openponk.github.io

https://en.wikipedia.org/wiki/XML_Metadata_Interchange

https://pypi.org/project/repocribro

Electronically approved by Ing. Karel Klouda, Ph.D. on 5 January 2021 in Prague.

Assignment of master’s thesis

Title: Searching Inside (Onto)UML Structural Conceptual Models

Student: Bc. Richard Husár

Supervisor: doc. Ing. Robert Pergl, Ph.D.

Study program: Informatics

Branch / specialization: Knowledge Engineering

Department: Department of Applied Mathematics

Validity: until the end of summer semester 2021/2022

Master’s thesis

Searching Inside (Onto)UML Structural
Conceptual Models

Bc. Richard Husár

Faculty of Information Technology
Supervisor: doc. Ing. Robert Pergl, Ph.D.

May 6, 2021

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on May 6, 2021

Czech Technical University in Prague
Faculty of Information Technology
© 2021 Richard Husár. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Husár, Richard. Searching Inside (Onto)UML Structural Conceptual Models.
Master’s thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2021.

Abstrakt

Práca sa zaoberá reprezentáciou konceptuálnych modelov v XMI formáte a
spôsobom ako v nich jednoducho vyhl’adávat’ potrebné informácie. Súčast’ou
riešenia tohto problému je správne zvolenie prostriedkov, ako výber dátového
uložiska, ktoré bude vyhovovat’ vyhl’adávaniu informácíı z XMI formátu. Ďaľśım
kritériom je transformácia XMI modelov do dátového úložiska a to tak, aby
boli informácie čo najčitatel’neǰsie pre už́ıvatel’a. Najlepš́ım riešeńım sa zdá
byt’ použitie grafových databáz, konkrétne Neo4j, pretože reprezentácia kon-
ceptuálnych modelov je l’ahko transformovatel’ná do grafov. Na transformova-
nie modelov z XMI formátu je použitý Python parser, ktorý je spolu s grafovou
databázou zakomponovaný do aplikácie Repocribro. Tá slúži ako platforma
pre spomı́nané vyhl’adávanie a reprezentovanie výsledkov pre už́ıvatel’ov.

Kĺıčová slova XMI, Neo4j, konceptuálny model, python parser, Neovis

v

Abstract

The thesis discusses ways of representing conceptual models in XMI format for
easy searching and querying. The elaboration of the solution to the problem
includes choosing an adequate storage medium that can easily represent XMI
models. Another requirement is a way of transforming raw XMI models into a
more human-readable form inside the storage tool. The most suitable version
for storage seems to be the graph database which utilizes its properties such
as a representation of data in nodes and relations, which highly resembles con-
ceptual models. Mapping of given models in XMI format is done in a Python
parser which is designed to be easily extendable. Everything is integrated into
the GitHub repository management tool - Repocribro, which in conjunction
with embedded tools to display graph results, serves as a platform for user
experience.

Keywords XMI, Neo4j, conceptual model, python parser, Neovis

vi

Contents

Introduction 1

1 State-of-the-art 3
1.1 XML and XMI specification . 3

1.1.1 Model class representation 3
1.2 XMI model . 3
1.3 Meta object facility specification (MOF) 4
1.4 UML . 5

1.4.1 UML diagrams . 5
1.4.2 Class diagrams . 6
1.4.3 Class representation . 6
1.4.4 Relations . 6

1.4.4.1 Association . 6
1.4.4.2 Aggregation 7
1.4.4.3 Composition 8
1.4.4.4 Inheritance / Generalization 10

1.4.5 Association class . 11
1.4.6 Generalization sets . 11

1.5 Neo4j . 12
1.6 Structure . 12

1.6.1 Nodes . 12
1.6.2 Relationships . 13
1.6.3 Cypher . 13
1.6.4 Neo4j from python . 13

1.6.4.1 Neomodel . 13
1.6.5 Embeddable tools with built-in Neo4j connections . . . 15

1.6.5.1 Neovis.js . 15
1.7 Integration tools . 15

1.7.1 Repocribro . 15

vii

1.7.2 Docker . 15
1.7.3 Celery . 16

2 Analysis and design 19
2.1 Standardization of models . 19
2.2 Storage . 23

2.2.1 Relational databases . 23
2.2.2 Document based databases 23
2.2.3 Elasticsearch as storage 24
2.2.4 Graph database as storage 24

2.2.4.1 Neo4j . 24
2.3 Model parsing . 26

2.3.1 XMI python solutions 26

3 Realisation 29
3.1 Python parser . 30
3.2 Class parsing . 34
3.3 Associations parsing . 36

3.3.0.1 Parsing different association types 37
3.4 Association class parsing . 40
3.5 Association node . 42

3.5.1 Improved proof-of-concept solution 43
3.6 Final stage of implementation 45

3.6.1 XMI file . 45
3.6.2 ParserFactory . 47
3.6.3 Class diagram parser . 48
3.6.4 Utility functions . 48
3.6.5 Parser . 49
3.6.6 Model . 49

3.7 Integration to repocribro . 50
3.7.1 Neo4j management tab (Exquiro) 51

3.7.1.1 Model addition/deletion 52
3.8 Example use case scenario . 54
3.9 Testing . 58

Conclusion 59

Bibliography 61

A Acronyms 65

B Contents of enclosed CD 67

viii

List of Figures

1.1 XMI model composition . 4
1.2 UML diagram types . 5
1.3 Association example . 7
1.4 Binary association example . 7
1.5 N-ary association example . 8
1.6 Aggregation example [1] . 8
1.7 Composition example . 9
1.8 UML relations visualization [2] . 9
1.9 UML inheritance diagram [3] . 10
1.10 Celery task queue example . 17

2.1 Openponk model example . 20
2.2 Enterprise Architect model example 20
2.3 The number of lines needed to parse XML file 27

3.1 High level solution overview . 29
3.2 Initial design of python parser . 32
3.3 Example of a hierarchical class parsing - EA model 35
3.4 Example of a hierarchical class parsing - Parsed representation in

Neo4j . 35
3.5 Association examples in XMI and EA 37
3.6 Example of XMI representation of association with unspecified di-

rection . 38
3.7 Example of XMI representation of bi-directional association 39
3.8 Example of XMI representation of unidirectional association 40
3.9 Example of association class . 41
3.10 Example of association class represented in Neo4j 42
3.11 Overview of second proposed realisation 44
3.12 Overview of implementation with regards to extensibility 46
3.13 Model addition sequence diagram 51

ix

3.14 Example model from Enterprise architect 53
3.15 Example model from openponk . 54
3.16 Initial user interface . 55
3.17 Exquiro tab after model addition 56
3.18 Neovis tab with both models added 56
3.19 Neovis tab after querying the ”phone” nodes with the 3 closest

neighbour nodes . 57

x

List of Tables

2.1 Table with execution time comparison betweeen Noe4j and MySQL 25
2.2 Comparison table [4] . 26

xi

Introduction

The concept of sharing knowledge and avoidance of the “reinventing the wheel”
method when designing software products is a powerful way to speed up de-
velopment and deployment. Utility applications that provide this functional-
ity have become quickly integrated inside the developers’ community and it
seems that without them, the breakthrough of new ready to use applications
would be much slower. The rise of applications such as GitHub or Stack-
overflow means that programmers all over the world can come together and
each one can contribute to the community with much less effort and more
quickly than ever before. Although these applications help with the workflow
of programmers and software engineers, there is currently a lack of solutions
regarding issues with conceptual models and model designing. This master
thesis addresses this issue by creating a software solution that helps designers
of contextual models to easily share work with the community, to enable them
to collaborate easily and provide tools necessary for searching, querying and
simply retrieving the information already done by the modelling community
with much bigger comfort than before. The fact that there are multiple mod-
elling tools on the market, each with its caveat and way of representing models
makes this task non-trivial. In this thesis, we would like to use the already
defined standards for conceptual models to help with designing a scalable and
maintainable solution. The thesis aims to implement a parser which in con-
junction with a graphical interface, is able to process conceptual models from
different kinds of modelling tools. This processed data will be presented to the
user and the graphical interface will enable a reasonably easy way of querying
the results and retrieving information about the models, mainly information
where the user can find the searched model.

In the first chapter, we discuss the current state-of-art of the issue, namely
what standards do exist, their structure and what information can be har-
nessed to the final solution. Also, this chapter introduces the current state of
technology, which can be used to produce such systems, for example, graphical
databases. To be specific Neo4j. Furthermore, this chapter discusses the inte-

1

Introduction

gration tools and already working solution, which can be leveraged to simplify
the user experience and enact the avoidance of “reinventing the wheel” policy.

The second chapter addresses the various issues and provides a deeper
analysis of chosen technologies such as the programming language used or
data storage method. Besides that, the chapter debates the differences when
it comes to the loosely defined standards regarding the storage of conceptual
models in the XMI format.

The last chapter describes the implementation process and goes through
the stages of development, from the early mock-up solution to the final solution
which includes the integration of the developed parser to the existing system
of Repocribro. Additionally, the chapter includes a section that implements
testing of the whole project and a section where demonstration what a real
use case might look like for the actual user.

2

Chapter 1
State-of-the-art

1.1 XML and XMI specification

XMI specification describes the representation of objects as the XML elements
and attributes. Moreover, it specifies a way of linking objects within the
same file or across different files. It is an Object Management Group (OMG)
standard designed to exchange metadata through XML format. It is fully
described inside the official specification [5]. In this section, some relevant
passages for this assignment are presented.

1.1.1 Model class representation

As mentioned in the official documentation in section Model class represen-
tation: “Every model class is represented in the schema by an XML element
whose name is the class name, as well as a complexType whose name is the
class name. The declaration of the type lists the properties of the class. By
default, the content models of XML elements corresponding to model classes
do not impose an order on the properties. By default, XMI allows you to se-
rialize features using either XML elements or XML attributes; however, XMI
allows you to specify how to serialize them if you wish. Composite and multi-
valued properties are always serialized using XML elements”. The model class
representation is not strictly given and is based on a specific implementation.

1.2 XMI model

The three diagrams from XMI specification 1.1 describe XMI model. In the
figure 1.1, we can see that XMI class consists of documentation, differences
and extensions. The documentation class consists of many fields which help
describe the document for non-computational purposes. The extension class
contains the metadata for external information. Usually, this is the class where
additional information about rendering the graph such as the position of nodes

3

1. State-of-the-art

and other parameters are. That information is specific to the model tool in
which they were created. The model also contains primitive type DateTime.

Figure 1.1: XMI model composition

1.3 Meta object facility specification (MOF)

The MetaObject Facility Specification™ (MOF™)is the foundation of OMG’s
industry-standard environment where models can be exported from one appli-
cation, imported into another, transported across a network, stored in a repos-
itory and then retrieved, rendered into different formats (including XMI™,
OMG’s XML-based standard format for model transmission and storage), trans-
formed, and used to generate application code. These functions are not re-
stricted to structural models, or even to models defined in UML - behavioral
models and data models also participate in this environment, and non-UML
modeling languages can partake also, as long as they are MOF-based.[6]

4

1.4. UML

1.4 UML

UML, short for Unified Modeling Language, is a standardized modelling lan-
guage. The standard consists of an integrated set of diagrams developed to
help system and software developers to specify, visualize, construct, and doc-
ument the artefacts of software systems. Business models and non-software
systems can also find value in using this modelling language. The UML was
created by the Object Management Group (OMG) and UML 1.0 specifica-
tion draft was proposed to the OMG in January 1997. The UML represents
a collection of best engineering practices that have proven successful in the
modelling of large and complex systems. The UML proved to be a very impor-
tant part of developing object-oriented software. The UML consists of mostly
graphical notations which express the structure of software projects. Using
UML greatly helps with communication, presentation of ideas and quicker
development of software and non-software oriented projects.[7][8]

1.4.1 UML diagrams

There are several UML diagram types 1.4, which can be generalized in two
main categories; structural diagrams and behavioral diagrams [5]. As category
names suggest, structural diagrams show basic structure or objects inside
the system. On the other hand, behavioural diagrams describe how objects
interact with each other to create a functioning system.

Figure 1.2: UML diagram types

5

1. State-of-the-art

1.4.2 Class diagrams

The class diagram is a kind of structural UML diagram and it represents the
static view of the application. The main purpose of this diagram is not only
to describe, visualizing and documenting the application but also it provides
some sort of blueprint for the development process. More specifically, it can be
used to construct executable code, because the class diagram contains objects
(classes) and their respective attributes and operations. It can also reflect
constraints imposed on the system [9].

1.4.3 Class representation

Every class in the UML diagram is represented as a rectangle, inside of which
is the name of the class. The class can also represent owned attributes and
operations. Attributes are typically shown in the section below the name of
the class. Attributes are represented at least with a name but also the type
of the attribute can be included (aligned to the right). The same rules apply
for the operations of the class with the addition of return type.

1.4.4 Relations

The UML allows the definition of several relations between classes in the class
diagram. Relations join objects which have some interactions between them.
Based on the type of interaction, we define different relations.

1.4.4.1 Association

According to the Visual Paradigm documentation [10] associations are defined
as: “If two classes in a model need to communicate with each other, there
must be a link between them, and that can be represented by an association
(connector). Association can be represented by a line between these classes
with an arrow indicating the navigation direction. In case an arrow is on
both sides, the association is known as a bidirectional association. We can
indicate the multiplicity of an association by adding multiplicity adornments
to the line denoting the association.” Another source [11] states that: “Name
of the association can be shown somewhere near the middle of the association
line but not too close to any of the ends of the line. Each end of the line could
be decorated with the name of the association end.”

1.4.4.1.1 Binary association The Binary association relates two typed
instances. It is normally rendered as a solid line connecting two classifiers, or
a solid line connecting a single classifier to itself (the two ends are distinct).
The line may consist of one or more connected segments. [11]

6

1.4. UML

Figure 1.3: Association example

Figure 1.4: Binary association example

1.4.4.1.2 N-ary association Any association may be drawn as a diamond
(larger than a terminator on a line) with a solid line for each association
end connecting the diamond to the classifier that is the end’s type. N-ary
association with more than two ends can only be drawn this way. [11]

1.4.4.2 Aggregation

As is stated in IBM’s documentation [12], aggregation can be defined as fol-
lows:

”In UML models, an aggregation relationship shows a classifier as a part
of or subordinate to another classifier. An aggregation is a special type of
association in which objects are assembled or configured together to create a
more complex object. An aggregation describes a group of objects and how
you interact with them. Aggregation protects the integrity of an assembly of
objects by defining a single point of control, called the aggregate, in the object
that represents the assembly. Aggregation also uses the control object to de-
cide how the assembled objects respond to changes or instructions that might
affect the collection. Data flows from the whole classifier, or aggregate, to the
part. A part classifier can belong to more than one aggregate classifier and
it can exist independently of the aggregate. For example, a Department class
can have an aggregation relationship with a Company class, which indicates

7

1. State-of-the-art

Figure 1.5: N-ary association example

that the department is part of the company. Aggregations are closely related
to compositions. As the following figure 1.6 illustrates, an aggregation associ-
ation appears as a solid line with an unfilled diamond at the association end,
which is connected to the classifier that represents the aggregate. Aggregation
relationships do not have to be unidirectional.”

Figure 1.6: Aggregation example [1]

1.4.4.3 Composition

A composition association relationship represents a whole–part relationship
and is a form of aggregation. A composition association relationship speci-
fies that the lifetime of the part classifier is dependent on the lifetime of the
whole classifier. In a composition association relationship, data usually flows
in only one direction (that is, from the whole classifier to the part classifier).
For example, a composition association relationship connects a Student class
with a Schedule class, which means that if you remove the student, the sched-
ule is also removed. You can name any association to describe the nature of

8

1.4. UML

the relationship between the two classifiers; however, names are unnecessary
if you use association end names. As the following figure 1.7 illustrates, a
composition association relationship appears as a solid line with a filled dia-
mond at the association end, which is connected to the whole, or composite,
classifier.[12]

Figure 1.7: Composition example

The composition and aggregation are two subsets of association. In both of
the cases, the object of one class is owned by the object of another class; the
only difference is that in composition, the child does not exist independently of
its parent, whereas in aggregation, the child is not dependent on its parent i.e.,
standalone. An aggregation is a special form of association, and composition
is the special form of aggregation.[13]

Figure 1.8: UML relations visualization [2]

9

1. State-of-the-art

1.4.4.4 Inheritance / Generalization

A generalization is a binary taxonomic (i.e. related to classification) directed
relationship between a more general classifier (superclass) and a more specific
classifier (subclass). Each instance of the specific classifier is also an indirect
instance of the general classifier, so that we can say ”Patient is a Person”,
”Savings account is an Account”, etc. Because of this, generalization relation-
ship is also informally called ”Is A” relationship. Generalization is owned by
the specific classifier. A generalization is shown as a line with a hollow trian-
gle as an arrowhead between the symbols representing the involved classifiers.
The arrowhead points to the symbol representing the general classifier. This
notation is referred to as the ”separate target style”. The parent model element
can have as many children, and also, the child can have one or more parents.
But most commonly, it can be seen that there is one parent model element
and multiple child model elements. The generalization relationship does not
consist of names. The generalization relationship is represented by a solid line
with a hollow arrowhead pointing towards the parent model element from the
child model element.[9]

Figure 1.9: UML inheritance diagram [3]

10

1.4. UML

1.4.5 Association class

An association may be refined to have its own set of features; that is, features
that do not belong to any of the connected classifiers but rather to the asso-
ciation itself. Such an association is called an association class. It is both an
association, connecting a set of classifiers and a class, and as such could have
features and might be included in other associations.

An association class can be seen as an association that also has class prop-
erties, or as a class that also has association properties.

An association class is shown as a class symbol attached to the association
path by a dashed line. The association path and the association class symbol
represent the same underlying model element, which has a single name. The
association name may be placed on the path, in the class symbol, or on both,
but they must be the same name.[9]

1.4.6 Generalization sets

Generalization set is a packageable element that allows us to define classifi-
cation hierarchies by combining some generalizations of a particular general
classifier into (sub)sets. Each generalization set may be also associated with
a classifier called its powertype.[9] Each generalization set has two properties
- isCovering (complete or incomplete constraint) and isDisjoint (disjoint or
overlapping constraint), to clarify what kind of set it is.

The isCovering property of generalization set specifies whether the set of
specific classifiers in that generalization set is complete. For the covering
(complete) generalization set, every instance of the general classifier is also
an instance of (at least) one of the specific classifiers. If the set is not covering
(incomplete), there could be some instances of the general classifier that could
not be classified as any of the specific classifiers from the generalization set.[5]

The isDisjoint property specifies whether the specific classifiers of the gen-
eralization set may overlap. Generalization set constrained as disjoint has
no instance of any specific classifier may also be an instance of another spe-
cific classifier (i.e there is no overlapping of classifiers). If generalization
set is overlapping, some or all of its specific classifiers could share common
instances. By default, in UML 2.0 to UML 2.4.1 generalization set is incom-
plete, disjoint, while in UML 2.5 default was changed to {incomplete, overlap-
ping}.[5]

11

1. State-of-the-art

1.5 Neo4j

Neo4j is an open-source, NoSQL, native graph database that provides an
ACID-compliant transactional backend for applications. The source code,
written in Java and Scala is publicly available. Neo4j is referred to as a native
graph database because it efficiently implements the property graph model
down to the storage level. This means that the data is stored exactly as a
model written on the whiteboard, and the database uses pointers to navigate
and traverse the graph. In contrast to graph processing or in-memory libraries,
Neo4j also provides full database characteristics, including ACID transaction
compliance, cluster support, and runtime failover - making it suitable to use
graphs for data in production scenarios.[14]

Neo4j is a graph database, thus it stores not only data but also connec-
tions (relationships) between them. This fact makes graph databases an ideal
candidate for this task because conceptual models consist of objects and re-
lationships between them. We can use this resemblance further, to represent
conceptual models as nodes and relationships in a graph database.

Features and advantages

Cypher is a declarative query language similar to SQL, but optimized for
graphs. This feature will be further discussed in section 1.6.3.

Constant time traversals in big graphs for both depth and breadth due
to efficient representation of nodes and relationships. Enables scale-up to bil-
lions of nodes on moderate hardware.

Flexible property graph schema that can adapt over time, making it pos-
sible to materialize and add new relationships later to shortcut and speed up
the domain data when the business needs change.

Drivers for popular programming languages, including Java, JavaScript, .NET,
Python, and many more. Python driver will be discussed further in the sec-
tion.

1.6 Structure

1.6.1 Nodes

Nodes are the entities in the graph. They can hold any number of attributes
(key-value pairs) called properties. Nodes can be tagged with labels, repre-
senting their different roles in the domain. Node labels may also serve to
attach metadata (such as index or constraint information) to certain nodes.

12

1.6. Structure

1.6.2 Relationships

Relationships provide directed, named, semantically relevant connections be-
tween two node entities (e.g. Employee WORKS FOR Company). A relation-
ship always has a direction, a type, a start node, and an end node. Like nodes,
relationships can also have properties. In most cases, relationships have quan-
titative properties, such as weights, costs, distances, ratings, time intervals,
or strengths. Due to the efficient way relationships are stored, two nodes can
share any number or type of relationships without sacrificing performance.
Although they are stored in a specific direction, relationships can always be
navigated efficiently in either direction.

1.6.3 Cypher

Cypher is Neo4j’s graph query language that allows users to store and retrieve
data from the graph database. The syntax is based on ASCII art, making it
easy to learn and understand. Cypher provides many features just like other
query languages, for example, basic CRUD operations, filtering results, built-
in aggregation functions, support for database native types such as DATE or
DATETIME, use of subqueries and many others.[15]

Custom functions and procedures

A special feature that is important for this task is the utilization and creation
of custom functions and procedures. They will allow developers to prepare
custom functions and procedures needed for easy manipulation and informa-
tion retrieval from graph database which will be storing data and metadata
about conceptual models. Custom functions and procedures can be added to
the Neo4j database as plugins. Plugins are written in Java and stored as .jar
files.

1.6.4 Neo4j from python

Neo4j offers its official python driver to easily connect and manage Neo4j
databases from within python code. It makes use of binary protocol and is
very light and simple. There are lots of extensions built on top of this driver.
For example, when working with python 2, neo4j offers py2neo which is a small
intuitive tool kit for working with neo4j. Another viable option is Neomodel.
The Neomodel was the product of choice for this task because it offers easy
API for communication with Neo4j itself, as well as other features further
discussed in the section below.

1.6.4.1 Neomodel

The Neomodel is a kind of Object Graph Mapper, which is built on top of the
mentioned Neo4j python driver. It provides node definitions and a powerful

13

1. State-of-the-art

query API. It is completely thread safe and has full transaction support.[16]

Structure

Nodes of the model are defined in the same way as classes are in Python, with
the only difference that data members of those classes, that are planned to be
stored to the database, must be defined as Neomodel property objects.

Property objects and types

The Neomodel includes various property objects which can represent nodes.
The most elementary and the most basic is StructuredNode class. It represents
a basic node that can be enriched with properties such as StringProperty,
to represent string value, IntegerProperty to represent integer value or more
complex properties such as JSONProperty to include JSON structured data
in the node attribute. Another object which can represent a node is called
SemiStructuredNode. This type of object allows storing properties on the
node that are not specified in its definition. Property addition can be realized
dynamically right when inserting and saving to the database. Possible conflicts
in property names are signaled by special DeflateConflict exception.

Property types

As mentioned above, the Neomodel facilitates a wide range of property types.
From simple types used in the programming world such as string, integer
boolean, array and many others, to more complex ones satisfying needs of
simply and efficiently representing real-life properties such as geolocation with
PointProperty.

Default values

Default values can be defined for any property. Value can be represented as a
callable or function.

my_id = StringProperty(unique_index=True, default=uuid4)

Mandatory / Optional properties

In the definition of a property, one can specify if the given property is manda-
tory or optional. This behaviour is achieved with the parameter required.
Setting this property to true, means the property is mandatory and cannot
have a default value.

14

1.7. Integration tools

1.6.5 Embeddable tools with built-in Neo4j connections

Embedding the visualization within the application allows the developer to
create applications that include the visualization as part of the user interface.
This also means that the developer can write other components and customize
the application experience and other components involved in the application
to the exact business requirements. [17]

The disadvantage with embedding is, that the libraries implementing them,
do not always support complex and heavy queries. Also, these visualizations
are usually connected directly to the database which might not be the desired
architecture.

1.6.5.1 Neovis.js

The paper on visualizations via Neo4j [18] refers to the neovis.js as follows:
”Neovis.js and is used for creating JavaScript based graph visualizations that
are embedded in a web app. It uses the JavaScript Neo4j driver to connect
to and fetch data from Neo4j and a JavaScript library for visualization called
vis.js for rendering graph visualizations. Neovis.js can also leverage the results
of graph algorithms like PageRank and community detection for styling the
visualization by binding property values to visual components.”

1.7 Integration tools

1.7.1 Repocribro

Repocribro is a web application allowing users to register their GitHub reposi-
tory so they can be managed, searched, browsed, tested, etc. (depends on used
extensions) with the site. The main idea is to provide a simple but powerful
modular tool for building groups of GitHub repositories that are developed by
different users and organizations. [19]

1.7.2 Docker

Docker is an open platform for developing, shipping, and running applica-
tions. Docker enables us to separate our applications from the infrastructure
so we can deliver software quickly. With Docker, we can manage your infras-
tructure in the same ways we manage our applications. By taking advantage
of Docker’s methodologies for shipping, testing, and deploying code quickly,
we can significantly reduce the delay between writing code and running it in
production [20].

15

1. State-of-the-art

Docker provides the ability to package and run an application in a loosely
isolated environment called a container. The isolation and security allow
us to run many containers simultaneously on a given host. Containers are
lightweight and contain everything needed to run the application, so we do
not need to rely on what is currently installed on the host. We can easily
share containers while you work and be sure that everyone we share with, gets
the same container that works in the same way.

1.7.3 Celery

Celery is a simple, flexible, and reliable distributed system to process vast
amounts of messages while providing operations with the tools required to
maintain such a system.

It’s a task queue with a focus on real-time processing, while also supporting
task scheduling.[21]

Celery provides an easy way of extending the Repocribro app without
interrupting the user experience by waiting while all models are parsed into
the storage.

Task queues

Task queues are used as a mechanism to distribute work across threads or
machines. A task queue’s input is a unit of work called a task. Dedicated
worker processes constantly monitor task queues for new work to perform.
Celery communicates via messages, usually using a broker to mediate be-
tween clients and workers. To initiate a task the client adds a message to the
queue, the broker then delivers that message to a worker. A Celery system
can consist of multiple workers and brokers, giving way to high availability
and horizontal scaling. Celery is written in Python, but the protocol can
be implemented in any language. In addition to Python, there’s node-celery
and node-celery-ts for Node.js, and a PHP client. Language interoperability
can also be achieved by exposing an HTTP endpoint and having a task that
requests it (webhooks).[22]

16

1.7. Integration tools

Figure 1.10: Celery task queue example

17

Chapter 2
Analysis and design

The main goal of this thesis is to explore the possibility to effectively search
and retrieve information from multiple conceptual models. The conceptual
models could come from various sources and can be of different types, such
as activity diagram, class diagram or others. The main concepts thus will be;
standardization of models, parsing, storage and searching.

2.1 Standardization of models

The models are usually developed and designed in graphical tools such as
Enterprise Architect, Visual Paradigm or StarUML. These tools have options
to export models in XMI format. As mentioned in the review section, XMI
consists of three parts; documentation, extensions and differences. To create
an XMI file complaint with OMG XMI specification, different tool distributors
can use different approaches. This means that XMI files representing the
same model, but modelled in different modelling tools, would have slightly
different XMI files as output. Sometimes the differences are small and cause
no trouble with the actual parsing of the model because only the section where
modelling tool-specific metadata differ. However, usually, the differences are
also present in the section where the model itself is stored. This means that
just the reliance on the OMG XMI specification does not guarantee unified
rules when parsing XMI files from different distributors. Parsing of XMI files
thus means, that there must be some kind of mechanism identifying format
specific for a given modelling tool program.

19

2. Analysis and design

Specific XMI model representation differences

Example of interpretation of the same class diagram in Openponk and Enter-
prise architect

Figure 2.1: Openponk model example

Figure 2.2: Enterprise Architect model example

20

2.1. Standardization of models

Listing 2.1: Openponk XMI example
<?xml version="1.0" encoding="UTF-8"?>
<xmi:XMI xmlns:uml="UML" xmlns:xmi="XMI">
<uml:Model xmi:type="uml:Model" xmi:id="1b1ce627..." name="New Project">
<packagedElement xmi:type="uml:Class" xmi:id="6310e627..."

name="Test_class"/>
<packagedElement xmi:type="uml:Class" xmi:id="6310e627..."

name="Another_test_class"/>
<packagedElement xmi:type="uml:Association" xmi:id="6310e627..."
memberEnd="a32fe627... 8b33e627...">

<ownedEnd xmi:type="uml:Property" xmi:id="a32fe627..."
association="6310e627..." name="test_class" type="6310e627..."/>
<ownedEnd xmi:type="uml:Property" xmi:id="8b33e627..."
association="6310e627..."

name="another_test_class" type="6310e627..."/>
</packagedElement>
<packagedElement xmi:type="uml:Class" xmi:id="6310e627..."
name="Generalization_class">

<generalization xmi:type="uml:Generalization" xmi:id="7b0ce627..."
general="6310e627..."/>

</packagedElement>
</uml:Model>
</xmi:XMI>

21

2. Analysis and design

Listing 2.2: Enterprise Architect XMI example
<?xml version="1.0" encoding="windows-1252"?>
<xmi:XMI xmi:version="2.1" xmlns:uml="http://schema.omg.org/spec/UML/2.1"
xmlns:xmi="http://schema.omg.org/spec/XMI/2.1">
<xmi:Documentation exporter="Enterprise Architect".../>
<uml:Model xmi:type="uml:Model" name="EA_Model" visibility="public">
<packagedElement xmi:type="uml:Package" xmi:id="EAPK..."
name="Package1"
visibility="public">
<packagedElement xmi:type="uml:Class" xmi:id="EAID..."
name="Another_class" visibility="public"/>
<packagedElement xmi:type="uml:Association" xmi:id="EAID..."
visibility="public">

<memberEnd xmi:idref="EAID_dst..."/>
<memberEnd xmi:idref="EAID_src..."/>

<ownedEnd xmi:type="uml:Property" xmi:id="EAID_src..."
visibility="public"
association="EAID..." isStatic="false" isReadOnly="false"
isDerived="false"
isOrdered="false" isUnique="true" isDerivedUnion="false"...>
<type xmi:idref="EAID..."/>

</ownedEnd>
<ownedEnd xmi:type="uml:Property" xmi:id="EAID_dst..." ..."
association="EAID..." isStatic="false" isReadOnly="false"
...
isDerivedUnion="false" aggregation="none">
<type xmi:idref="EAID..."/>

</ownedEnd>
</packagedElement>
<packagedElement xmi:type="uml:Class"
xmi:id="EAID..." name="Generalization_class"
visibility="public">

<generalization xmi:type="uml:Generalization" xmi:id="EAID..."
general="EAID..."/>

</packagedElement>
<packagedElement xmi:type="uml:Class" xmi:id="EAID..."

name="Test_class" visibility="public"/>
</packagedElement>

</uml:Model>
<xmi:Extension extender="Enterprise Architect" extenderID="6.5">

...
</xmi:Extension>

</xmi:XMI>

22

2.2. Storage

As seen from figures and listings 2.1, 2.1, 2.2 and 2.2, ignoring the exten-
sions section (Openponk format does not have one), both formats describe
the same model, but are different in the actual XML representation of the
model. In this small example, only a few differences are seen, such as usage of
memberEnds and ownEnds. In Openponk format, memberEnds and ownEnds
- references to other objects involved in relation - are included in the given
relation as attributes of XML element (uml:Association in this case). On the
other hand, Enterprise architect uses memberEnds and ownEnds as separate
XML elements inside the parent element of relation.

2.2 Storage

The greatest challenge of this thesis is to accurately and efficiently store meta-
model provided in the form of XMI files which could be from different pro-
grams. The solution should bring easy retrieval and possibly provide some
sort of querying for stored models. Different approaches come to mind in
regards to this problem. Usage of traditional relational databases, or usage
of more recent technology in the context of storage, like No-SQL solutions;
document-based or graph-based.

2.2.1 Relational databases

Relational databases would provide well-known structures such as tables and
relations between them. Provided with SQL, querying would be simple enough,
that no other simplification would be needed. However, the expression of the
query could be tricky even with simple basic use cases, because models can
contain transitional relations and querying would have to be complex and use
various levels of recursion. The model itself can be represented with a table
containing nodes or objects and a table containing relations between them.

2.2.2 Document based databases

Document-based databases such as Elasticsearch or MongoDB provide another
way of storing conceptual models. Currently, there are lots of document-
oriented databases on the market, and they use different types of formats in
which documents are stored. Elasticsearch or MongoDB use some variation
of JSON which would mean that in addition to parsing the conceptual model
from XMI, we would have to create an additional structure to encode it into
JSON, which would prove ineffective. Another format for storing is of course
XML, where main database providers such as Oracle, Microsoft SQL Server
or PostgreSQL each have their XML support.

23

2. Analysis and design

According to Matthias [23]: Native XML databases are especially tailored
for working with XML data. As managing XML as large strings would be in-
efficient, and due to the hierarchical nature of XML, custom optimized data
structures are used for storage and querying. This usually increases perfor-
mance both in terms of read-only queries and updates.

2.2.3 Elasticsearch as storage

Elasticsearch is a distributed, RESTful search and analytics engine. It is suited
for working with and searching in large data files, for example, logs. As the
heart of the Elastic Stack, it centrally stores data for fast search, fine-tuned
relevancy, and powerful analytics that can be scaled easily. [24]

If Elasticsearch was used as a base component for the storage of metamod-
els, we would have to create mapping which would translate metamodels into
JSON documents. These documents would be indexed and stored in Elastic-
search. The advantage of indexed data is very quick retrieval when the data
is queried. On the other hand, data is stored denormalized. This means that
pieces of information are stored in the system redundantly, therefore it creates
more requirements on disc space. Also, problems could emerge when updating
data, which is present in the system multiple times.

Overall Elasticsearch is best suited for consuming a large amount of data
in real-time and also to quickly search and retrieve relevant documents. This
deems Elasticsearch to be a powerful tool but does not quite meet the require-
ments for this task, as it has different demands, such as easy querying and
mapping of the XMI files.

2.2.4 Graph database as storage

Graph databases provide a convenient way to store data that resemble graphs
in the real world. Metamodels can be easily transformed to graph notation
of nodes and their relationships. Every object in a metamodel can be in-
terpreted as a node in a graph and every attribute or characteristics can be
directly stored inside this node. Similarly, the relationships between objects
also can be labelled and can store additional information about the ongoing
relationship between given objects. Currently, there are few popular graph-
oriented databases in the database ecosystem. Cassandra, Titan, Dgraph or
Neo4j, every one of them work on a similar principle, but each one of them
has its pluses and minuses.

2.2.4.1 Neo4j

Neo4j offers several advantages when it comes to storing conceptual models.
Easy to use and relatively well documented APIs and drivers in regards to
python connection to the parsing part of the conceptual models. Another
plus is graphical UI and web browser which will provide a solution to the

24

2.2. Storage

visualization part of this problem. A key aspect of choosing Neo4j over the
other solutions is the usage of the query language Cypher. Cypher will in
conjunction with the earlier mentioned web browser greatly reduce the need
to design and implement a new way of visualizing and presenting results to
the end-users. Cypher was designed to resemble SQL and thus is very easy to
learn even for non-tech users. There is also the possibility of creating stored
procedures where we can prepare the most useful commands and queries.

This use case requires the usage of a powerful tool, which can process
queries with the possibility of hundreds, thousands or even millions of nodes
and relationships with them. Graph databases and especially Neo4j is smart
choice to use for this task. For illustration, comparison between relational
database (MySQL) and graph database (Neo4j) was conducted on 1,000,000
users [25]. The objective was to find connections between friends in the social
network. Query times for both databases are presented in the table 2.1.

Depth Execution Time – MySQL Execution Time –Neo4j
2 0.016 0.010
3 30.267 0.168
4 1,543.505 1.359
5 Not Finished in 1 Hour 2.132

Table 2.1: Table with execution time comparison betweeen Noe4j and MySQL

For the simple friends of friends query, Neo4j is 60% faster than MySQL.
For friends of friends of friends, Neo is 180 times faster. And for the depth four
queries, Neo4j is 1,135 times faster. And MySQL just chokes on the depth 5
queries. The results are dramatic.

Another factor when choosing neo4j was licencing. Neo4j project is fully
open-source and licensed and distributed under GPL v3. Neo4j offers many
commercial licensing options, outlined above: both paid and free, including
free licenses for development, startup, and academic-educational uses and of
course evaluation.[26]

Neo4j is overall considered as the number one graph database based on the
ranking from db-engines.com. However, it has its drawbacks. Neo4j does not
support multi-graphs as data structures, which can be a limiting factor when
encoding conceptual models into it. But overall Neo4j is the well-rounded
solution when it comes to the storing part of parsed conceptual models.

25

https://db-engines.com/

2. Analysis and design

2.3 Model parsing

The conceptual models can come in various forms and although they all will
be compliant with XMI international standard, the actual form and represen-
tation of XML file structure will slightly differ. This section will be covering
the analysis of possible solutions in regards to parsing conceptual models.

When it comes to parsing files, there are several programming languages
for selection. Among many, Java, Python, C# or Perl. My choice for this
task was Python because it offers great results in comparison with how easy it
is. According to a paper from the Computer Science department, Zakho Uni-
versity, Kurdistan, Iraq [4] where a comparison between major programming
languages when parsing XML files, was done, with regards to speed, memory
usage, CPU consumption or lines of code needed.

Python came with very good results. “It was the second faster one to parse
the XML file after C# on both operating systems. Moreover, Python was the
third better one in terms of less memory usage by consuming 4.6 gigabytes on
Linux and 6 gigabytes on Windows. As other languages, Python CPU time
consumption was very close to other languages. It also did not need a lot of
lines to do the task and the lines number was the same of Perl lines number.“

Time Memory MB CPU Line number
Pro.Lang Linux Windows Linux Windows Linux Windows Linux Windows
Perl 3.42min 4.25min 13.9 12 25% 29% 46 46
Python 26 sec 34 sec 4.6 6 25% 29% 46 46
PHP 1.35 min 0.8min 4.3 5.9 20% 29% 66 66
Java 40 sec 12.5 57 11.2 44% 29% 108 108
C# 19 sec 7 sec 15.2 2.8 25% 24% 56 56
C++ 38 58C 57 sec 0.37 1 25% 29% 109 109

Table 2.2: Comparison table [4]

2.3.1 XMI python solutions

There are several tools for parsing XML files in python, such as The Element-
Tree XML API or lxml - XML and HTML with Python. However, to the
author’s knowledge, there are currently no good modules for parsing files in
XMI. The xmiparser 1.5 exists, but it was last updated in 2010. Also, there
is little to no documentation to this module and if it would have been used,
almost all of the functionality would be considered as a black box with a very
hard way of customization or modification of behaviour. There are also other
modules such as PyXMI, but every module found, solves only one specific
implementation of XMI from a specific modelling tool. PyXMI for example
parses files from a modelling tool called Poseidon. This leaves no other op-
tion, but to develop an own parser that would parse XMI files as needed, and
connect it to the Neo4j storage through the Neo4j Python driver. Advantages

26

2.3. Model parsing

Figure 2.3: The number of lines needed to parse XML file

of developing own parsers are that internal parts of parsing will be well under-
stood and can be easily changed, modified or extended. Another advantage
is that it will be much easier to connect the storage and also other programs
using this parser which are also written in python, for example, Repocribro.
The disadvantage would be of course the time consumption of development
itself.

27

Chapter 3
Realisation

The basic outlook on the solution is to create a system of applications - python
parser, Neo4j and visualization apps using Neovis or default neo4j browser.
The whole system would be contained in docker and individual components
would communicate with each other and with the rest of the world. On the
input, there will be an XMI file that will be parsed and stored into Neo4j.
Users can examine the results in one of the possible visualization tools which
will be implemented using the Neovis component.

Figure 3.1: High level solution overview

29

3. Realisation

3.1 Python parser

As a quick proof of concept, that everything done in the analysis part can be
practically done using just the python and neo4j without bigger problems, I
designed a simple parser and connected it to the Neo4j storage. The parser
contains a model class, which when instantiated, takes an XMI file as input and
loads all of its components into data structures. This parser counts only with
class diagrams on the input. The model class needs to store all semantically
important information. This information is stored in dictionaries and arrays.
Which information is semantically important, is determined from the XMI
itself. Initial temporary simplification to limit input only on class diagrams
allowed me to prepare a list of objects (python classes) that will be parsed
from the input XMI file.

• classes - represent objects in XMI file which are labeled as
xmi:type=”uml:Class”. The python class representing the UML class
object contains information that needs to be persisted. Id, to easily
track and query graphs and also to link with other objects using relations
(association, generalization...). Class attributes and methods are not
parsed as it is unnecessary for the proof of concept.

• associations - represent relations between classes. From the XMI file
they are recognized as
xmi:type=”uml:Association”. As they can be bidirectional or unidirec-
tional, there is a need to look up which node or class is on which side of
the relation. Neo4j does not support unidirectional relations and all rela-
tions are treated as bidirectional. Therefore I created custom properties
for nodes; src node and dest node. Src node represents the source of the
association and dest node represents the destination of the association.
When the association is bidirectional or the direction is not specified,
the parser does not recognize this information. This means that source
and destination are taken randomly, as it does not affect the structure
of the model in a significant way, because for searching purposes the
Neo4j treats connections as bidirectional anyway. Associations contain
additional information about the multiplicity, label or ID which are also
stored.

• generalizations - represent another type of relation and store similar
information as associations. Generalizations can only be unidirectional
and thus src node and dest node is implemented here, similarly as with
associations. They are parsed based on the ”uml:Generalization” type
from the XMI file.

• generalization sets - represents objects in XMI file which are labeled as
uml:GeneralizationSet. This type of object is not connected to any other

30

3.1. Python parser

node in the model as it is some kind of additional information regarding
generalizations. The generalization set contains two boolean attributes
isCovering and isDisjoint.

• enumerations - represent objects which store a set of values that can
given type acquire. They are labeled as a uml:Enumeration XMI type.
Parsing of this type of object is straight forward and only requires the
creation of the Enumeration object and a list of values to be stored.

• class attributes - are embodied by a node and not as an internal property
of a class node. This decision comes from the fact that attributes can be
more easily queried, filtered and visualized when they are represented
by a standalone node. They are identified as a uml:Property type inside
of a class in the XMI file.

• association nodes - represent nodes associations have more than one
connection or join more than two classifiers. They are not specified
in the XMI file. The creation of an association node is determined
programmatically by simply counting the connections of the association.
The section 3.5 specifically discuses the association nodes in detail.

• class types and association types - denote the stereotypes which can
classes and associations acquire. They are not included in the XMI
specification and parsing is highly dependent on the source designing
tool of the exported model. In case of the Openponk for instance, the
stereotypes are present on their own as a <OntoUml:type> elements
inside the parent <uml:Model> element

Model class

The model class is in this case responsible for parsing. The solution in this
case of the early stage counts only with class diagrams and two XMI formats
(Enterprise architect and Openponk), which differ in a few small instances.
Basic graphs were created inside model designing tools and then they were
parsed and stored to Neo4j.The graphs contained objects from which the class
diagram consists to test the functionality and to design generalized parsing
methods.

The model class aims to restructure the XMI file given as an input to the
graph database notation; nodes and relationships, no matter what kind of
conceptual model is inside.

31

3. Realisation

Figure 3.2: Initial design of python parser

32

3.1. Python parser

Node

Node class represents a general object inside a graph database which is called
a node. To abstract from specific objects inside various conceptual models
- classes, packages, activities and many more, I had to come up with a uni-
versal definition, which would be easy and simple to implement and also able
to extend the other types of conceptual models. This means that whether
inserting a class object or package object or another object into the Node
class, one will be able to store it with everything needed later inside the graph
database. For this purpose several attributes are present; ID, name, type, and
dictionary of custom attributes. The first three are straightforward as they
specify the identity of the object, and the last one, attributes are implemented
as a dictionary. This means that the developer working on the extension can
fill the values for the specific object which is being stored, independently. All
of the contents of the attributes dictionary will be propagated to the graph
database and querying based on its contents will also be enabled.

One of the main use cases of this project is to query conceptual models
and retrieve information about them. The most important information to
retrieve is the origin of the conceptual model and/or a path where to find the
original model. For this reason, I introduced Base node which is a base class
from which every Node is derived. This class contains metadata about the
model such as the name of the model, URL path to the original model XMI
or other relevant information. This information is passed through the parser
while parsing the file and can be fully customized to include other relevant
metadata about the model.

Relation

Relation class represents a one-way relation between two nodes. Relation does
not place constraints on the types of objects which can be connected. Simi-
larly, as with the Node class, the Relation class also needs to be generalized
for all possible connections. Attributes required to create relation objects are
ID, name, src node, dest node and relation type. ID is required for identifi-
cation inside neo4j. Name is used as a label displayed inside Neo4j. Src node
and dest node stand for source node and destination node respectively. The
source node is the node from which the relation flows to the destination node.
In Neo4j all relations are bidirectional, which means if a connection exists,
querying is possible from both ends of the connection. But on the other hand,
UML models also specify some relations which are not bidirectional (general-
ization, associations. . .) and thus the need to specify direction was required.
However, this source-destination connection can only be visible through these
attributes inside Neo4j. Querying based on connection directions thus must
consider these attributes when designing queries.

33

3. Realisation

3.2 Class parsing

The class parsing consists of calling two methods. First parse classes() 3.1
which does not take any input parameter. This class finds all classes inside the
XMI file using the python module lxml. XML elements that represent classes
are returned and stored in the list. This list is subsequently iterated and every
individual class is then parsed through another method called parse class().
This method takes an XML element representing class as an input parameter
and automatically stores the parsed class into the list of classes.

Listing 3.1: Class parsing
def parse_classes(self):

classes = self.model.findall(
’.//packagedElement[@xmi:type="uml:Class"]’, self.namespaces)
for c in classes:

self.parse_class(c)

The parse class method firstly parses all attributes which are contained
inside. Then parses id and creates an object representing class as a node
inside Neo4j. This object is then appended to the general list of nodes which
will later be inserted into Neo4j.

There are instances where a class contains references to another class or
generalization. References to another class happen when class is a descendant
in the inheritance hierarchy or specification of the parent class. There can be
a chain of nested classes with each one will be more specific than the parent.
The parsing of this structure highly resembles the parsing of an n-nary tree
and recursion is an easy way to iterate over it. If the currently parsed node
contains nested classes, the function iterates over them and parses them by
calling itself (parse class) on those classes again. This ensures that no matter
how long the chain of specification and inheritance in the model is, the parser
correctly parses all of them.

Lastly function checks on the generalizations contained inside the class.
Process of parsing those is described in section explaining the function
parse generalization. However the main principle is the same as with parsing
class attributes.

34

3.2. Class parsing

Figure 3.3: Example of a hierarchical class parsing - EA model

Figure 3.4: Example of a hierarchical class parsing - Parsed representation in
Neo4j

35

3. Realisation

Listing 3.2: Class parsing 2
def parse_class(self, c):

parsed_attributes = self.parse_attributes(c)
#new node
node_id = c.attrib["{" + self.namespaces[’xmi’] + "}" + "id"]
n = Node(c.attrib["name"], node_id, "uml:Class",
parsed_attributes)
self.nodes.append(n)
#parse sub classes, if present
nestedClassifiers = c.findall(’nestedClassifier’,
namespaces=self.namespaces)
for nc in nestedClassifiers:

if self.type_attrib in nc.attrib
and nc.attrib[self.type_attrib] == "uml:Class":

self.parse_class(nc)
#parse generalization, if present
generalization = c.find(’generalization’,
namespaces=self.namespaces)
if generalization is not None:

self.parse_generalization(generalization, node_id)

3.3 Associations parsing

Function parse associations finds all packedElements with type attribute set
to uml:Association and then iterates over them and parses them one by one.

The function responsible for parsing associations parse association takes
one argument, association to be parsed. As mentioned in earlier passages, as-
sociation always has a source and destination and finding those is the primary
task of this function. Every modelling tool has its specific way of defining ref-
erences to the source and destination of the association and implementation
can vary even though the model is fully compliant with UML and XMI spec-
ification. This first proof-of-concept-like solution only considers format from
Enterprise architect. This specific format has ownedEnds and memberEnds
elements for further identification and references to the source and destination
nodes.

MemberEnd MemberEnd as cited in UML superstructure specification [5];
“Each end represents participation of instances of the classifier connected to
the end in links of the association”. This element points to the elements which
are part of the association, inside ownedEnd.

36

3.3. Associations parsing

OwnedEnd OwnedEnds are ends owned by the association itself. This
element specifies the reference id to the classifier which is connected by the
association [5].

3.3.0.1 Parsing different association types

In figure 3.5 are four possible association connections with regards to direc-
tion. The association connecting Class1 and Class2 does not have a specified
direction and it is seen that no arrow points to any of the joining class. Class3
is joined to the Class4 by a bi-directional connection. In UML it represents
the fact that both classes “know of each other” or have reference to one an-
other. The last two cases are variations of unidirectional connection where
only one class has reference to the other class. For parsing XMI and repre-
senting given connections in Neo4j, there is a need to look at the structure of
exported XMI files generated by the Enterprise Architect.

Figure 3.5: Association examples in XMI and EA

37

3. Realisation

Case 1 - Unspecified As it is seen in the figure 3.6, association with un-
specified direction is a basic type, where neither class does not have a reference
to one another. Only association references both joining classes through ele-
ment <type> inside element <ownedEnd>.

Figure 3.6: Example of XMI representation of association with unspecified
direction

38

3.4. Association class parsing

Case 2 - Bi-directional In the case of using bi-directional associations
(??), both classes have each other stored inside an attribute as a reference.
The difference between unspecified and bi-directional is that association has
only the memberEnd elements inside. The actual elements pointing to the class,
stored inside ownedEnd is in this case inside the class itself.

Figure 3.7: Example of XMI representation of bi-directional association

Case 3 and 4 - Source - Destination and vice versa Similarly, in the
case of unidirectional association 3.8, the reference to the other class is present,
where the tip of the arrow is. In the generated XMI file, the examples of unidi-
rectional associations look very similar to each other. In both cases, only one
class has the reference to the other class in its attribute inside the ownedEnd
element. The other reference stays inside the association itself. The difference
between the cases of the direction of the arrow from source to destination and
vice versa is that in the case of the source source ->destination, the destination
class has a source node as reference. It also satisfies the statement that the
class at which the arrow tip is, contains the reference of the other.

Enterprise architect marks its associations with shortcuts src and dest
inside the reference ID. (e.g EAID dst... B7B39544371F). This marking does
not correlate to the cases mentioned here, as the unspecified case has them
as well as bi and unidirectional cases. It marks only the order of how the
association was dragged out inside the designing tool by the user.

39

3. Realisation

Figure 3.8: Example of XMI representation of unidirectional association

3.4 Association class parsing

Parsing association class and mapping it to the graph notation using only
nodes and edges can be challenging because, in the graph-based syntax of
Neo4j, one cannot connect edge to another edge. Association class is rep-
resented as a regular class, which is connected to the association itself by
the dashed line. This means that when the association class is present in
the model, there are two semi-distinct parts that need to be parsed. Firstly,
the basic association between two nodes (in the example above Class9 and
Class10) and secondly Association class itself. The first case is covered in the
section discussing association parsing.

40

3.4. Association class parsing

Figure 3.9: Example of association class

For the second part - parsing the class connected to the association class
(Class11), a new kind of node was created called AssociationClass. This
node represents the fact that a connection is made with the association class
and not with the basic association. The new node is needed as in Neo4j,
there is no such thing as connecting relation to another relation. Although
relations can contain values and properties on their own. Reference to the
association class (Class11) could be stored inside. However the use case of
this model searching and retrieval will be mainly used to lookup models and
relations and based on this, the user can then open the specific XMI file inside
the favourite designing tool. So making sure, that a clear visual distinction
between this case of connection and basic association is needed. Additionally,
user can filter out these nodes (AssociationClasses) and basic association
(between Class9 and Class10) would remain.

Connections between the AssociationClass node (AssociationClass1
3.10) and its classes (two classes similarly as in basic association; Class9 and
Class10 and one representing the association itself - Class11) are not other
association connections but rather some informative meta connection. (dash
lined connection in the picture) This connection is not present in the UML
specification. In the parser, it is called association class connection and
it always joins the AssociationClass node to the ClassNode.The ClassNode
does not have the reference for this connection as it is not needed.

41

3. Realisation

Figure 3.10: Example of association class represented in Neo4j

3.5 Association node

Association does not need to connect only two classes. There are plenty of
examples where association connects multiple classes. This is usually repre-
sented through diamond-shaped object inside model design tools. There is no
restriction on how many associations can be connected through this diamond
object.

Parser identifies case when an association has more than two memberEnds.
As mentioned in section 3.3 memberEnds are always present inside an associ-
ation, even though ownedEnds (actual references to the classes) can be else-
where in the XMI file. This means that memberEnds can be used to deter-
mine that more associations are connected. The parser then needs to create
a node, which represents the diamond-shaped object. This node is called
AssociationNode. Node does not have any additional parameters other than
a unique id as it does not need any.

After AssociationNode creation is done, connections need to be set cor-
rectly. Each class participating inside this association needs to point to the
newly created AssociationNode. This is simply done by reusing the parsing
of basic 2 class association and instead of pointing src and dest to the classes
themselves, now the parser points src to the AssociationNode and dest to
the class. This gives us an equivalent representation of association connection
using diamond shape inside Neo4j graph.

42

3.5. Association node

3.5.1 Improved proof-of-concept solution

A slightly improved design of the parser consists of 3 main parts. Parser dis-
patcher, parser dictionary and Model base. On the input of the parser is the
XMI file, which can be from any of the modelling tools (Visual paradigm,
Enterprise Architect, Openponk) which are supported by the parser. As men-
tioned in the analysis section, XMI files can differ due to the different imple-
mentation of the XMI standard by the design tools. This is addressed in the
parser dispatcher. A parser dispatcher is a dictionary that recognizes XMI file
format and chooses an appropriate parser for it. As this parser only parses
class diagrams, ClassDiagramParser instances are returned.

This solution does not account for expansion in terms of different diagram
types. And thus it is very limited in the parsing as it can only work with
class diagrams. On the other hand, the development of other format-specific
models is fairly straightforward, as it only has to inherit from the model base.
The extension for different formats is also very simple; the addition of the
new format specific model to the parser dictionary is the only requirement.
The flaw in this design is a bad composition of the whole parsing process.
Specifically, the parsing process should be detached from the model itself, but
in this design, parsing tasks are done in Model classes. The proof-of-concept
showed a basic outline of the solution, as well as some mistakes which could
be worked on, and improved.

43

3. Realisation

Figure 3.11: Overview of second proposed realisation

44

3.6. Final stage of implementation

3.6 Final stage of implementation

Initial proof of concept and an additional more advanced solution did not sat-
isfy the overall need to parse a variety of different conceptual models encoded
in multiple XMI formats from multiple designing tools. The biggest weakness
of those solutions was the limited extensibility of the application as it was
primarily coded for class diagrams and nothing else. A new approach had to
be taken into mind when designing the final solution. The structure of the
code had to be changed to introduce more abstraction. The previous solu-
tions lacked the ability to easily parse multiple XMI files produced by various
design models containing several conceptual models. Mainly two parts had to
be addressed; firstly different formats of XMI files and secondly different kinds
of conceptual models. (previously only class diagram) The idea is to identify
diagram types inside the model and also specify from which designing tool the
XMI file came. Then this information is passed to the ParserFactory, which
will be responsible for choosing the right parser based on that information.
The chosen parser then takes the XMI file and tries to parse it. The parsed file
will have a unified structure and it does not matter which conceptual model
type was parsed. This abstraction is possible by encoding models to the no-
tation of only nodes and relations which are then passed to the component
responsible for taking care of the Neo4j database. This thesis is focused on
parsing only class diagrams, but a foundation for other types of contextual
models is present as well.

3.6.1 XMI file

XMIFile class represents the input XMI file. This class tries to identify the
format of the models contained inside as well as the design tool format. For
this tasks, it uses functions get format and get diagrams.

get format The purpose of this function is to correctly identify the format
in which the file was modelled. This function is contained inside the XMIFile
class and does not take any additional parameters other than self. Currently,
there are two formats identified by it. The Enterprise Architect is detected
by the presence of the attribute exporter inside the uml:Documentation part
of the XMI file. Openponk is set as a default format when there is no indi-
cation that the format is Enterprise architect. The problem of this format
determinations is, no real unified way of telling from which format the model
came. Determination gets even harder when users can omit the metadata
section when exporting to the XMI. Then default Openponk format will be
chosen and the process of parsing can end with failure. The possible but par-
tial solution to this problem can be a brute-force approach; trying all of the
available formats accepting the result where parsing completed without error
and maximum of the nodes & relations were recognized.

45

3. Realisation

Figure 3.12: Overview of implementation with regards to extensibility

46

3.6. Final stage of implementation

get diagram This function is responsible for diagram recognition. The
challenge with this task is the fact that there can be several diagrams inside
one <uml:Model> element. The parsers should ideally recognise all of them
correctly and based on the diagram, choose the right parser. The problem is,
that there is no universal way of determining the diagram type. Enterprise
architect for instance includes some information about diagram types in the
xmi:extensions section, but this section can be omitted when exporting the
XMI. A similar brute-force solution could be applied to this problem as with
get format function. However, when iterating through all of the possible di-
agrams, there is a possibility that multiple of them end without error. This is
because currently, parsers work on the principle, that they parse only sections
of XMI file that are familiar - there is a function that supports this kind of
element. For example, if a class diagram will be parsed by a parser intended
for package diagrams, the package parser will recognise the initial package
where all of the classes are stored and then return with success. No classes
were parsed, just the initial package. This case can be solved by deciding
that only parser with the maximum nodes and relations parsed is chosen to
be stored into the Neo4j.

Another solution to the problem could be input provided by the user.
However, this would create problems on its own with the possibility of multiple
diagrams, for which the would user had to fill the correct type. As this solution
could be tedious for the user, the automatic identification of the diagram is
preferable.

3.6.2 ParserFactory

A class ParserFactory is created as a solution to the problem of having
multiple types of parsers. Various parsers need to be created and each one
will be responsible for parsing a specific diagram in a specific format. The
application thus needs to select the right one for the job. Using common design
pattern in programming - Factory method, ParserFactory class facilitates
this behaviour and parser creation without the need to expose internal logic
to the outside world.

47

3. Realisation

3.6.3 Class diagram parser

This class represents the interface or required behaviour of parsers, which
are to be registered as class diagram parsers. This is the base class from
which all format-specific parsers inherit their functionality and further extend
or override it. The class contains various methods and functions to provide
simple parsing of class diagrams. Every parser derived from this class should
implement methods that are split up into two main groups. Utility functions,
which provide basic logic when parsing models. They are not related to the
class models in general. In the other group are functions, which are specifically
created to parse objects and relations found inside the class diagram. Other
parsers which would be derived from a different base class, for example, the
base class for parsing action diagrams, would have different functions inside
this second, model-specific group. However, the utility group would be very
similar.

3.6.4 Utility functions

parse model The function takes two input parameters. Model - section of
the XMI file, represented by the element xmi:Model. A second parameter is
a dictionary with namespaces used. The purpose of the class is to parse each
significant object inside the class diagram and return the model in a special
format. As it was mentioned earlier, to assure that application will be exten-
sible, all parsers have to return the result in format, which is universal and
agreed upon in advance. It has to be ready to be stored in the graph database
easily which means, nodes and relations are the best representations. Function
aggregates all syntactically significant objects and creates ClsDiagramModel,
which is a class representing the class model from the input XMI file. This
class is derived from the base class Model. Currently, there are 6 objects
available for parsing from the class diagram other than id (classes, associa-
tions, association classes, generalizations, and class and association types) but
additional objects can be added freely in the future.

parse file This function is responsible for parsing XMI file. It takes the
name of the file as an input parameter. The function identifies namespaces
present inside the XMI file, extracts the model part of the XMI file with
another utility function get model, and then calls a function to parse the
model. The function returns the result of function parse model.

48

3.6. Final stage of implementation

add model from file The function tries to parse the model from the path
of the file provided as an input argument. The file should be in XMI or
XML format. The most suitable parser is chosen for parsing. If parsing is
successful, the model is added into the Neo4j by the Neo4jManager instance.
Before the addition, the function checks whether a model with the same ID
is not already present inside the Neo4j. If yes, Neo4jManager deletes the old
model. A new model is inserted and the function returns with ”True” value.
If model addition is not successful, the function returns ”False”.

add model from github The function tries to download all XMI or XML
files inside the repository provided as an input argument. The function
also expects the name of the owner of a repository provided. If the repos-
itory is not public, a token for private connection is also required. When
XMI/XML files are recognized, they are iterated and in cycle, they are down-
loaded. If the function successfully downloaded file, the file is passed to the
add model from file which tries to store it inside the Neo4j. The function re-
turns a tuple with a number of successfully recognized XMI files and a number
of added models.

3.6.5 Parser

Parsers are created specifically for the type of the model (e.g. activity dia-
gram) and format of the XMI file (e.g. Enterprise Architect)

Enterprise architect The class diagrams produced in Enterprise architect
are parsed inside EA class diagram parser. This class inherits from the
base class ClassDiagramParser. Here are defined and implemented all of
the functions which specifically relate to the class diagram produced inside
Enterprise architect. The implementation was to the great extent recycled
from the previous proposals for a solution.

3.6.6 Model

ClassDiagram model The ClassDiagramModel class inherits from the
Model class, which acts as an interface that requires the derived classes to
implement method get neo4j model. This class should be implemented in
such a way, that it returns a list consisting of nodes and a list consisting of re-
lationships between them. This abstraction to represent the model as a tuple
of two lists ensures that the Neo4jManager class then does not have a problem
with adding the model to the Neo4j.

49

3. Realisation

Neo4jManager Neo4jManager class is responsible for establishing connec-
tion and configuration with the Neo4j database as well as providing basic
API to manage the database. The class is able to connect to the Neo4j and
provides simple static functions for deleting all models from the database, in-
serting/updating the model to the database, or deleting a specific model to
the database. The Neo4jManager class can insert any kind of model, as long
as it implements the Model interface. This is achieved by using abstraction of
models, more specific usage of universal encoding, that objects are represented
strictly as nodes (Node classes) and relations between objects are represented
by relations (Relation classes). Neo4jManager can then use this fact, to save
all nodes into the database and subsequently iterate over every relation and
connect the right nodes included in the relation.

3.7 Integration to repocribro

Repocribro serves as an easy overview and sharing platform for GitHub reposi-
tories. Those repositories can be viewed by other people inside different organ-
isations. Repositories listed inside the Repocribro can contain various projects
and different contents, but one common use case is when a team of people are
working on the modelling and designing conceptual models. As mentioned
many times before, those models can be represented as actual pictures of
models or exports in various formats such as XMI. All of those formats are
not useful when it comes to quick searching for a specific model with specific
content. For example, when designing a new library system, the designer could
want to see, in which models, the node with connection from Person to Book is
present. Integration of parser created for this purpose, with Repocribro app,
could enable this feature and provide valuable tools for designers/teachers/s-
tudents who work with, design and model conceptual models. Repocribro
provides great extensibility features and I tried to take advantage of it, to
incorporate a parser with its Neo4j graph database storage inside this app.

Repocribro is available as a dockerized set of containers, consisting of the
Repocribro application itself and a simple SQL database that provides storage
for saved data about users and repositories. The idea of integrating parser
consists of modifying user interface in one part and connecting separate part
of docker images needed to provide structure to run parser behind the scene
in the background. The extensions in Repocribro are simple to implement.
All that is needed is to write an own class that extends the Extension class
and returns itself. In this class, two main features are introduced. Tab in the
UI which provides control and the management of repositories that will be
parsed, and the interface to actively search and query the models inside the
Neo4j without the need of redirection to the default Neo4j browser.

50

3.7. Integration to repocribro

Figure 3.13: Model addition sequence diagram

3.7.1 Neo4j management tab (Exquiro)

The tab which is responsible for adding, updating and deleting models from/to
Neo4j is called Exquiro. It lists all of the user-owned repositories and provides
two buttons, one to add a model to the Neo4j and one to delete models from
the Neo4j. Tab also informs the user, how many models in the repository have
been recognized, which means how simply how many files inside the repository
have the extension .xmi or .xml, and also informs about how many models
were successfully added/deleted to/from the database. The add button acts
as an upgrade as well, because all the models which are present inside the
repository are on addition deleted first, when they are present in the system,
and just after that, they are added for the second time. The model recognition
inside the system works on an ID basis. The ID of the model is provided by
the get id function from the python parser (ref to section).

51

3. Realisation

3.7.1.1 Model addition/deletion

The background processe which facilitate the actual parsing and addition/dele-
tion are initiated by the button click. The button runs the Javascript function
which calls background job and sends it to the task queue. If a celery worker
listening to the task queue is available, it accepts a new task and starts to
parse the repository. Worker uses designed parser and calls function
add models from github(repository, owner). This function then parses all mod-
els present in the repository as it is described in the section 3.6.4. Meanwhile,
the task is being processed, the Javascript is polling the status of the task and
periodically updates the page about the progress of the task. When the task is
completed or failed, results are displayed on the page with the notification of
success or failure. Also, there is information about the number of recognized
XMI/XML files inside the repository and the number of successfully added
are updated.

This process requires some modifications and additions to the Repocribro
code, namely new controller - exquiro, which handles every request dealing
with the parsing of repository models. With the controller, obviously, the
view tab template was needed to display information. And lastly, some modi-
fications to the SQL model of the Repository class, as there was a need to store
information about the state of the parsing, a number of recognized reposito-
ries and a number of already added repositories. The state of the parsing is
initially set to the default value of ”Not added”, and other values are set to
zero. This modification then guarantees that when the Repocribro is for some
reason restarted, these values are preserved and loaded from the persistent
SQL storage.

52

3.8. Example use case scenario

Figure 3.14: Example model from Enterprise architect

53

3. Realisation

Figure 3.15: Example model from openponk

3.8 Example use case scenario

This section will demonstrate the real-life use case of the proposed solution.
Taking it from the process of designing a conceptual model, through register-
ing a repository with the exported model to the actual searching of the models
inside the Neo4j. Firstly I created an example model in Enterprise architect
seen in figure 3.14 which resembles a basic E-shop class diagram. It contains
enumeration, classes, attributes, associations with multiplicity and aggrega-
tions. The second example shown in figure 3.15 comes from the OpenPonk
software and shows a simple class diagram with few classes, associations and
generalizations. These examples have been exported to the XMI format, each
in its design tool of origin. The models in image format and also in newly
generated XMI format were then uploaded to the example repository, which
will be added to the Repocribro. The repository was set up to be publicly
available.

On the figure 3.16 we can see the Repocribro search page, with two newly
added tabs - Exquiro and Neovis. The selected tab Exquiro shows the user in-
formation about the repositories which are selected in Repocribro. Specifically,
only those repositories are shown, which are present also inside the Reposito-
ries tab. The figure then shows the two repositories, of which one was previ-
ously added with success, 15 models were recognized and currently, zero mod-
els are added to the Neo4j. The second repository DT xmi parser examples
contains the two examples mentioned above, one from Enterprise architect
and one from the OpenPonk. The status informs that the repository was not
added yet and thus no models were recognized nor added.
54

3.8. Example use case scenario

After the user clicks on the add button, the application starts to process
the repository in the background as was mentioned in the figure 3.13. When
the parser is done, a notification will appear on the screen with the result
status. After a refresh of the page, the user can see how many models have
been recognized inside the repository and how many have been successfully
added by the parser. At the moment there is no way to tell which models
have been recognized, added or failed to parse as it would require a separate
managing page and due to the time restrictions, this additional feature was
not implemented.

Figure 3.16: Initial user interface

When the user is satisfied with the addition of repositories to the Neo4j,
he/she can click on another tab called Neovis, to see all of the models suc-
cessfully added, including the models of other users who did the same. As
shown in the figure 3.18 the Neovis tab contains an embedded window with
a connection to the Neo4j database and it conveniently shows the contents of
the Neo4j inside the small embedded window. The tab also has a text field for
writing queries in the Cypher language. Implicitly the Neovis window shows
all of the models inside the database.

The main purpose of this Repocribro extension is to enable users who are
interested in the particular kind of models to easily find them. At the time of
writing this thesis, there is only one way to query these models, and that is
by Cypher queries. Those queries can be directly applied inside of the Neo4j
browser or more conveniently inside the Neovis extension tab. In this example
case, the query could display some section of a model whose attribute is equal
to the value ”phone”. As both of the models contain this kind of node, sections
connected to that node, from both models are displayed in the window.

55

3. Realisation

Figure 3.17: Exquiro tab after model addition

Figure 3.18: Neovis tab with both models added

56

3.8. Example use case scenario

Users are free to explore the possibilities which are provided by the Cypher
language in conjunction with the graph database. For example, users can be
interested in models, where a specific connection is present, or a node that
starts with ”birth” is contained in the model and that node must be connected
to the node ”person”. Also, users can choose to show only just a fraction
of a model or whole model which satisfies all of the conditions. When the
results are shown, the user can easily retrieve information about the model,
by hovering over any of the nodes to find metadata about the origin repository
of the model 3.19. This fact enables users to easily search for the information
they require and the application will point them to the source where the
desired models are present. From there, users can download XMI files and
collaborate end extend the models on their own in any of the model designing
tools that enables XMI import. This way users do not have to begin on the
project on ”the green field”, but have some foundation in the works of the
community stored inside the application.

Figure 3.19: Neovis tab after querying the ”phone” nodes with the 3 closest
neighbour nodes

57

3. Realisation

3.9 Testing

Testing of applications correct behaviour rests in the unit testing. A few
dozen simple unit tests for each parser were written to ensure the correctness
of the parsing. Each test was specified on one task; e.g class parsing or whole
model parsing. For each testing cases, simple models were provided. Each
one contained various elements. This provides an easy and comfortable way
of confirming, that new additions to the models, parsers or other classes do
not alter the behaviour of the application.

58

Conclusion

The thesis elaborates on the analysis and implementation of searching inside
the conceptual models. When working on the solution, several steps had to be
taken, analysed and solved. Firstly, implementing the parser which processes
XMI representations of conceptual models, enabled to store of various kinds of
conceptual models (in the thesis, class diagrams were used to demonstrate the
solution) inside the best-suited data storage medium. The data storage pos-
sibilities have been analysed and the best-suited solution was provided by the
use of graph databases. After this stage, final integration to the Repocribro
was designed and implemented, to provide a convenient way for end-user to
search and query conceptual models. Several embedded solutions were con-
sidered and one which provided the best result was worked into the solution -
Neovis. The final solution provides users with a simple way of integrating this
parser to Repocribro, and use it to further multiply the usefulness by provid-
ing not only an easy repository filtering application but also an application
that provides a way of convenient search and retrieval of data and metadata
about the conceptual models inside the repositories. The parser was designed
to be extensible for other types of conceptual models and also for other types
of model designing tools.

The work provides value in trying to solve the need for reusability and
recycling of the already developed conceptual models without using too much
effort on the users’ side. By creating the application, knowledge from the con-
ceptual models included in the system can be shared between the community
much easier and quicker.

59

Conclusion

There are several points where the future of the work could be heading.
The issue with the need for the user to know query language Cypher can be
avoided by designing and implementing a system of queries where the user
could provide only the relevant terms. The application will automatically
create a relevant query in the background and retrieve the information from
the database. Another way to improve the design is to include more ways
for inputting the source XMI models other than Github, such as google drive
or other cloud storage. Furthermore, the security of the application was not
covered by this work. Much more work can be done to improve the security
of the Repocribro extension; preventing users from accessing Neo4j directly
or using Neovis connection more securely without exposing Neo4j credentials.
Also, other diagrams can be included in the application as well as extending
the reach of current diagrams, by implementing other, less frequent constructs
from UML. I believe my solution will simplify the act of sharing information
from the already created models, by the users to the rest of the community.

60

Bibliography

[1] Aggregation relationships. 2021, [Online; accessed April 25, 2021].
Available from: https://www.ibm.com/docs/en/SSCLKU_7.5.5/
com.ibm.xtools.modeler.doc/images/2aggassoc.gif

[2] UML Association vs. Aggregation vs. Composition. 2018,
[Online; accessed April 25, 2021]. Available from: https:
//static.javatpoint.com/tutorial/uml/images/uml-association-
vs-aggregation-vs-composition3.png

[3] UML Generalization. 2018, [Online; accessed April 25, 2021]. Avail-
able from: https://static.javatpoint.com/tutorial/uml/images/
uml-generalization.png

[4] Abdo, A.; Alali, S. Comparing Common Programming Languages to
Parse Big XML File in Terms of Executing Time, Memory Usage, CPU
Consumption and Line Number on Two Platforms. European Scientific
Journal, volume 12, 09 2016, doi:10.19044/esj.2016.v12n27p325.

[5] Object Management group. Unified Modeling Language 2.5.1 Specifica-
tion [online]. [publication date December 2017]. Available from: https:
//www.omg.org/spec/UML/2.5.1/PDF

[6] Meta-object facility. 2020. Available from: https://www.omg.org/mof/

[7] What is Unified Modeling Language (UML)? 2020. Available from:
https://www.visual-paradigm.com/guide/uml-unified-modeling-
language/what-is-uml/

[8] Fowler, M. UML Distilled: A Brief Guide to the Standard Object Model-
ing Language. USA: Addison-Wesley Longman Publishing Co., Inc., third
edition, 2003, ISBN 0321193687.

61

https://www.ibm.com/docs/en/SSCLKU_7.5.5/com.ibm.xtools.modeler.doc/images/2aggassoc.gif
https://www.ibm.com/docs/en/SSCLKU_7.5.5/com.ibm.xtools.modeler.doc/images/2aggassoc.gif
https://static.javatpoint.com/tutorial/uml/images/uml-association-vs-aggregation-vs-composition3.png
https://static.javatpoint.com/tutorial/uml/images/uml-association-vs-aggregation-vs-composition3.png
https://static.javatpoint.com/tutorial/uml/images/uml-association-vs-aggregation-vs-composition3.png
https://static.javatpoint.com/tutorial/uml/images/uml-generalization.png
https://static.javatpoint.com/tutorial/uml/images/uml-generalization.png
https://www.omg.org/spec/UML/2.5.1/PDF
https://www.omg.org/spec/UML/2.5.1/PDF
https://www.omg.org/mof/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-uml/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-uml/

Bibliography

[9] Fakhroutdinov, K. UML Class and Object Diagrams Overview. 2020.
Available from: https://www.uml-diagrams.org/class-diagrams-
overview.html

[10] UML Association vs Aggregation vs Composition. 2020. Avail-
able from: https://www.visual-paradigm.com/guide/uml-unified-
modeling-language/uml-aggregation-vs-composition

[11] Aggregation relationships. 2020. Available from: https://www.ibm.com/
docs/en/rsm/7.5.0?topic=diagrams-aggregation-relationships

[12] Fakhroutdinov, K. UML Association vs. Aggregation vs. Composition.
2020. Available from: https://www.javatpoint.com/uml-association-
vs-aggregation-vs-composition

[13] UML Class and Object Diagrams Overview. 2020. Available from:
https://www.uml-diagrams.org/association.html??context=
class-diagrams

[14] Van Bruggen, R. Learning Neo4j. Birmingham: Packt Publishing, 2014,
ISBN 978-1-84951-716-4.

[15] Panzarino, O. Learning Cypher. Packt Publishing, 2014, ISBN
1783287756.

[16] Edwards, R. Neomodel documentation. 2019. Available from: https:
//neomodel.readthedocs.io/en/latest/index.html

[17] Graph Visualization Tools. 2021. Available from: https://neo4j.com/
developer/tools-graph-visualization/#embed-graph-vis

[18] Lyon, W. Graph Visualization With Neo4j Using Neovis.js. 2020. Avail-
able from: https://medium.com/neo4j/graph-visualization-with-
neo4j-using-neovis-js-a2ecaaa7c379

[19] Suchánek, M. Repocribro documentation. 2017. Available from: https:
//repocribro.readthedocs.io/en/latest/

[20] Docker Engine overview. 2020. Available from: https://
docs.docker.com/engine/

[21] Introduction to Celery. 2018. Available from: https://
docs.celeryproject.org/en/stable/

[22] Celery - Distributed Task Queue. 2018. Available from: https://
docs.celeryproject.org/en/stable/

[23] Nicola, M.; John, J. XML parsing: A threat to database performance. 01
2003, pp. 175–178, doi:10.1145/956863.956898.

62

https://www.uml-diagrams.org/class-diagrams-overview.html
https://www.uml-diagrams.org/class-diagrams-overview.html
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/uml-aggregation-vs-composition
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/uml-aggregation-vs-composition
https://www.ibm.com/docs/en/rsm/7.5.0?topic=diagrams-aggregation-relationships
https://www.ibm.com/docs/en/rsm/7.5.0?topic=diagrams-aggregation-relationships
https://www.javatpoint.com/uml-association-vs-aggregation-vs-composition
https://www.javatpoint.com/uml-association-vs-aggregation-vs-composition
https://www.uml-diagrams.org/association.html??context=class-diagrams
https://www.uml-diagrams.org/association.html??context=class-diagrams
https://neomodel.readthedocs.io/en/latest/index.html
https://neomodel.readthedocs.io/en/latest/index.html
https://neo4j.com/developer/tools-graph-visualization/##embed-graph-vis
https://neo4j.com/developer/tools-graph-visualization/##embed-graph-vis
https://medium.com/neo4j/graph-visualization-with-neo4j-using-neovis-js-a2ecaaa7c379
https://medium.com/neo4j/graph-visualization-with-neo4j-using-neovis-js-a2ecaaa7c379
https://repocribro.readthedocs.io/en/latest/
https://repocribro.readthedocs.io/en/latest/
https://docs.docker.com/engine/
https://docs.docker.com/engine/
https://docs.celeryproject.org/en/stable/
https://docs.celeryproject.org/en/stable/
https://docs.celeryproject.org/en/stable/
https://docs.celeryproject.org/en/stable/

Bibliography

[24] Gormley, C.; Tong, Z. Elasticsearch: The Definitive Guide. O’Reilly Me-
dia, Inc., first edition, 2015, ISBN 1449358543.

[25] How much faster is a graph database really. 2021. Available from: https:
//neo4j.com/news/how-much-faster-is-a-graph-database-really

[26] Licencing. 2021. Available from: https://neo4j.com/licensing/

63

https://neo4j.com/news/how-much-faster-is-a-graph-database-really
https://neo4j.com/news/how-much-faster-is-a-graph-database-really
https://neo4j.com/licensing/

Appendix A
Acronyms

GUI Graphical user interface

XML Extensible markup language

XMI XML metadata interchange

OMG Object management group

UML Unified modeling language

65

Appendix B
Contents of enclosed CD

readme.txt the file with CD contents description
docker images the directory with executables
src.......................................the directory of source codes

repocribro integration..implementation sources of repocribro with
extension
exquiro....................implementation sources of python parser

text..the thesis text directory
thesis..............the directory of LATEX source codes of the thesis
thesis.pdf...........................the thesis text in PDF format

67

	Introduction
	State-of-the-art
	XML and XMI specification
	Model class representation

	XMI model
	Meta object facility specification (MOF)
	UML
	UML diagrams
	Class diagrams
	Class representation
	Relations
	Association
	Aggregation
	Composition
	Inheritance / Generalization

	Association class
	Generalization sets

	Neo4j
	Structure
	Nodes
	Relationships
	Cypher
	Neo4j from python
	Neomodel

	Embeddable tools with built-in Neo4j connections
	Neovis.js

	Integration tools
	Repocribro
	Docker
	Celery

	Analysis and design
	Standardization of models
	Storage
	Relational databases
	Document based databases
	Elasticsearch as storage
	Graph database as storage
	Neo4j

	Model parsing
	XMI python solutions

	Realisation
	Python parser
	Class parsing
	Associations parsing
	Parsing different association types

	Association class parsing
	Association node
	Improved proof-of-concept solution

	Final stage of implementation
	XMI file
	ParserFactory
	Class_diagram_parser
	Utility functions
	Parser
	Model

	Integration to repocribro
	Neo4j management tab (Exquiro)
	Model addition/deletion

	Example use case scenario
	Testing

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD

