
14. 4. 2021 ProjectsFIT

https://projects.fit.cvut.cz/theses/109/assignment-print 1/1

Instructions

The thesis will follow these steps:

- Research state of the art methods for solving VRPTW using optimization heuristics

- Research a various solution which leverages machine learning techniques for solving VRPTW

- Implement selected method for VRPTW using optimization heuristics

- Implement selected method for VRPTW using machine learning techniques

- Benchmark implemented methods on a public dataset and discuss their results in detail.

Electronically approved by Ing. Karel Klouda, Ph.D. on 11 February 2021 in Prague.

Assignment of master’s thesis

Title: Vehicle Routing Problem with Time Windows solved via Machine Learning

and Optimization Heuristics

Student: Bc. Adam Zvada

Supervisor: doc. Ing. Pavel Kordík, Ph.D.

Study program: Informatics

Branch / specialization: Knowledge Engineering

Department: Department of Applied Mathematics

Validity: until the end of summer semester 2022/2023

Master’s thesis

Vehicle Routing Problem with Time
Windows solved via Machine Learning and
Optimization Heuristics

Bc. Adam Zvada

Department of Applied Mathematics
Supervisor: doc. Ing. Pavel Kord́ık, Ph.D.

May 6, 2021

Acknowledgements

This is giving me the remarkable opportunity to express many thanks to the
Big Bang for all its kindness in creating our space-time just right.

Great thanks also to my supervisor doc. Ing. Pavel Kord́ık, Ph.D. for all
his help, time and advice.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accor-
dance with Article 46(6) of the Act, I hereby grant a nonexclusive authoriza-
tion (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity.

In Prague on May 6, 2021 .

Czech Technical University in Prague
Faculty of Information Technology
© 2021 Adam Zvada. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Zvada, Adam. Vehicle Routing Problem with Time Windows solved via Ma-
chine Learning and Optimization Heuristics. Master’s thesis. Czech Technical
University in Prague, Faculty of Information Technology, 2021.

Abstrakt

Pro řešeńı vehicle routing problému byly navrženy nové př́ıstupy v oblasti
strojového učeńı, ale téměř žádná pozornost nebyla věnována variantě vehicle
routing problému s časovými okny s mı́rným omezeńım (VRPTW). I přesto,
že tato varianta je nutná řešit v každém produkčńım řešeńı plánovaćıho logis-
tického systému.

Tato práce navrhuje novou metodu řešeńı VRPTW pomoćı hlubokého po-
silovaného učeńı. Model je postaven na architektuře Transformer využ́ıvaj́ıćı
Graph Attention Network pro vložeńı vstupńı instance. Model použ́ıvá nově
navrženou funkci odměny, která zahrnuje omezeńı časových oken. Práce také
zkoumá daľśı metaheuristické metody pro řešeńı VRPTW, které slouž́ı ke vy-
hodnoceńı výsledného modelu.

Výsledkem této práce je end-to-end model hlubokého učeńı, který řeš́ı
VRPTW, který ale stále předč́ı metaheuristiké metody.

Kĺıčová slova vehicle routing problém, časová okna, vrptw, hluboké posi-
lované učeńı, umělá inteligence, strojové učeńı, transformer, graph attention
network

vii

Abstract

A novel approaches in the field of machine learning has been proposed to
solve the vehicle routing problem, but yet a variant of vehicle routing with
soft constrained time windows has received almost no attention. Even though
it is a must for any production ready logistics planner.

This thesis proposes a new method for solving a vehicle routing prob-
lem with soft constrained time windows (VRPTW) using deep reinforcement
learning. The model is built upon Transformer architecture utilizing Graph
Attention Network for embedding the input instance. The model is using the
proposed reward function that incorporates the time window constraint. The
thesis also explores other metaheuristics methods for solving VRPTW, which
is used to benchmark the model performance.

The result of this thesis is end-to-end deep learning model solving VRPTW
but it is still outperformed by metaheuristics solvers.

Keywords vehicle routing problem, time windows, vrptw, deep reinforc-
ment learning, artificial intelligence, machine learning, transformer, graph at-
tention network

viii

Contents

Introduction 1
Motivation . 1
Challenges . 2
Assumptions . 2
Thesis structure . 2

1 Introduction to Vehicle Routing Problem 3
1.1 Vehicle Routing Problem Definition 3

1.1.1 VRP Notation . 4
1.2 Vehicle Routing Flavors . 5

1.2.1 Capacitated Vehicle Routing Problem 5
1.2.2 Vehicle Routing Problem with Time Windows 6
1.2.3 Pick and Deliver . 6
1.2.4 Static vs. Dynamic . 6
1.2.5 Deterministic vs. Stochastic 7
1.2.6 Other Flavours . 8

1.3 VRP in a Real-world . 8

2 Theoretical Background 11
2.1 Reinforcement Learning . 11

2.1.1 State and Action Value Functions 12
2.1.2 Policy Gradients . 13
2.1.3 REINFORCE . 13

2.2 Attention . 14
2.2.1 Transformer . 15

2.2.1.1 Encoder . 15
2.2.1.2 Decoder . 16
2.2.1.3 Multi-Head Attention 16

2.2.2 Graph Attention Network 17

ix

3 VRPTW via Optimization 19
3.1 Insertion Heuristics . 20
3.2 Google OR-Tools . 21
3.3 Large Neighborhood Search . 22

3.3.1 Adaptive Large Neighborhood Search 22
3.4 Ant Colony Optimization . 23

4 VRPTW via AI 25
4.1 Related Work . 25
4.2 Solution . 26

4.2.1 Model Architecture . 26
4.2.1.1 Encoder . 27
4.2.1.2 Decoder . 29

4.2.2 Reinforcement Learning 30
4.2.2.1 VRPTW Cost 31
4.2.2.2 Training loop 32

4.2.3 Integrating Duration Matrix 32

5 Planning System 33
5.1 GoDeliver System . 33

5.1.1 Planning process . 33
5.1.2 Planning Requirements 34

5.2 Tech Stack - VRPTW via Optimization 36
5.3 Tech Stack - VRPTW via AI 36

6 Evaluation 39
6.1 Dataset . 39
6.2 Sample Solutions . 40
6.3 Experiments . 41

6.3.1 Time Windows . 41
6.3.2 Balancing Plans . 42
6.3.3 Generalization . 42
6.3.4 Training Process . 44

6.4 Benchmarking . 46

Conclusion 49

Bibliography 51

A Acronyms 57

B Media contents 59

x

List of Figures

0.1 GoDeliver dashboard visualizing solution for an instance of vehicle
routing problem with time windows. 1

1.1 Intuitive view of vehicle routing problem (VRP) instance on left
and proposed solution for 5 vehicles on the right [1] 3

1.2 Taxonomy of VRPs [2] . 5
1.3 Grocery delivery planning with multiple depots from the GoDeliver

system . 9

2.1 Agent feedback loop[3] . 11
2.2 A Shiba Inu and what is caughting the network’s attention [4],

photo credit by @mensweardog. 14
2.3 The Transformer architecture, encoder on the left and decoder on

the right [5]. 15
2.4 Multi-Head Attention component [4] 16
2.5 Multi-head attention with K = 3 heads [6]. 18

3.1 Family of algorithms for solving VRP 19

4.1 High-level concept behind the used method. 27
4.2 Encoder layers [7] . 28
4.3 Describes the decoder iteration in the construction of a solution.

This diagram very nicely visualizes the process and it was used in
the paper by Kool et al. [7] . 29

5.1 GoDeliver System Architecture . 34
5.2 GoDeliver Driver App . 35
5.3 Google Trend of PyTorch (blue) vs Tensorflow (red) 36

6.1 Sample solution of random vehicle routing problem with time win-
dows (VRPTW) instance for problem size 20. 40

xi

6.2 Sample solution of random VRPTW instance for problem size 50. 41
6.3 Low penalty for early visit of node results in poor performance. . . 41
6.4 Properly distributed time windows across the vehicles. 42
6.5 Unbalanced delivery plans. 43
6.6 If the model does not know how to solve the instance, it just sends

each vehicle to serve one node. 43
6.7 Average cost (reward) per epoch on training data. 44
6.8 Average cost (reward) per epoch on validation data. 44
6.9 The average cost for time windows per epoch. 45
6.10 The average distance cost per epoch. 45
6.11 The average cost of balanced plans. 46

xii

List of Tables

5.1 VRPTW AI support of planner requirements 36

6.1 Benchmarking of VRPTW solvers for problem size of 20 nodes. . . 46
6.2 Benchmarking of VRPTW solvers for problem size of 50 nodes. . . 47
6.3 Benchmarking of VRPTW solvers for problem size of 100 nodes. . 47

xiii

Introduction

The VRP is one of the most extensively studied combinatorial problems. It is
easy to define but very difficult to solve[8]. The reason VRP is attracting many
researchers is the fact that finding a near-optimal solution in a reasonable
time would have a great impact on many industries, especially in the domain
of transportation and logistics.

Figure 0.1: GoDeliver dashboard visualizing solution for an instance of vehicle
routing problem with time windows.

Motivation

The paradigm shift in logistics business models towards instant gratification
of customers are pushing the planning systems to be flexible and dynamic.
The environment is constantly changing and planning systems have to update
or entirely replan the instance in a short amount of time but maintaining

1

Introduction

the best delivery efficiency. Having a powerful planning system results in a
dramatic reduction of delivery expanses.

Challenges

In the real world, the general VRP problem is not enough to solve the business-
related problems. VRP has multiple variants adding various constraints such
as capacity, demand or time windows for given set of customers. The VRPTW
is main focus of this thesis and we will be looking at some novel approaches
how to solve it with artificial intelligence (AI).

Assumptions

We expect that leveraging AI or machine learning (ML) techniques to solve
VRP would lead in a drastic reduction of computational time for solving given
instance of VRP. Moreover, the time complexity would not be exponentially
increasing with the problem size. The trade-off lays in the required time to
allow AI to train and learn how to solve the problem of vehicle routing.

Thesis structure

The rest of this thesis is organized as follows:

• Chapter 1 presents a formal introduction to Vehicle Routing Problem.

• Chapter 2 provides an advanced theoretical background.

• Chapter 3 describes solutions of VRPTW for optimization heuristics.

• Chapter 5 describes how a delivery planning system works.

• Chapter 4 describes the proposed method for solving VRPTW via deep
learning.

• Chapter 6 evaluates and benchmarks the proposed deep learning model.

2

Chapter 1
Introduction to Vehicle Routing

Problem

The problem objective of VRP is simply finding the shortest route for mul-
tiple vehicles to serve all the given set of customers. The shortest route can
be differently interpreted based on your minimalization criteria, e.g, traveled
distance, time, or a combination of both. It was first proposed by Dantzig and
Ramser [9] in 1959, and since then researchers are coming up with different
approaches how to solve the problem.

1.1 Vehicle Routing Problem Definition

The general VRP can be defined as a problem in a complete graph G = (V,E)
of finding the optimal permutation πl = (π0, · · · , πm) of nodes V all starting
from a node v0 for given number of paths k which results in minimal traversal
cost where ∀v ∈ (V \ v0) are visited only once. VRP is generalization of
traveling salesman problem (TSP) which only has one path.

Figure 1.1: Intuitive view of VRP instance on left and proposed solution for
5 vehicles on the right [1]

3

1. Introduction to Vehicle Routing Problem

VRPs are classified as NP-Hard problems which was proved by Lenstra and
Kan [8]. It means that in the worst case, adding new nodes, i.e., customers
results in an exponential increase of computational complexity.

1.1.1 VRP Notation

Let’s introduce our used notation and its real-world interpretation.

• G = (V,E) is a complete undirected graph

– Network of routes

• v0 is the initial node

– A depot

• V ′ = (v1, · · · , vn) nodes expect the initial node

– Geographically scattered location of customers

• E = {(vi, vj)|vi, vj ∈ V, i 6= j} with associated weight as a cost c : E →
N+

– A single route between two locations with associated cost, e.g.,
distance.

• C is a matrix of edge weights indexed by nodes. cij where i, j ∈ V

– Matrix of costs between customers

• Ri ⊂ V is a path that starts and ends at v0. (r0 = v0 ∧ r|Ri| = v0)

– Route visit a subset of customers starting and ending at the depot,
it can be referred to it as a delivery plan.

• k number of paths

– Number of vehicles

• R = R1, · · · , Rk is a set of paths

– All routes (delivery plans) for a given instance of VRP.

• π = (π1, · · · , πk) solution for a given instance of VRP.

– Customer locations in visiting order for multiple vehicles.

4

1.2. Vehicle Routing Flavors

Feasibility of VRP solution for VRP of routes R is feasible only if each
node V1 is visited exactly once.

The cost of route Ri which we aim to minimize is the sum of its weights
(costs). If we operate in Euclidean space, then it is L2 norm of route locations.

C(Ri) :=
|Ri|∑
k=0

crkrk+1 (1.1)

The cost of VRP solution is the sum of route costs.

C(R) :=
|R|∑
i=1

C(Ri) (1.2)

1.2 Vehicle Routing Flavors

Our modern world heavily relies on complex logistics networks. It requires
to synchronize multimodal planning to ship your goods from one side of the
world to your doorstep. In order to achieve this, multiple variants and flavours
of VRP had to be studied and implemented in the real world use cases. It
goes from ordinary variants like measuring the capacity of cars to a more niche
problem like eVRP where vehicles are required to make stops to recharge.

All the flavours of VRP can be mutually combined, which is usually the
main area of research.

Figure 1.2: Taxonomy of VRPs [2]

The sections below are describing each flavour shown in 1.2.

1.2.1 Capacitated Vehicle Routing Problem

The capacitated vehicle routing problem (CVRP) extends the regular CVRP
in introducing a capacity element for each customer. In the literature, it is

5

1. Introduction to Vehicle Routing Problem

sometimes referred to as a demand. The customer’s demand is d ∈ N+ which
may represent capacity in the form of weight, size but also in some abstract
concepts such as a basket of apples. Additionally, each vehicle has a predefined
capacity Q > 0.

The CVRP extends the solution feasibility formula by the following capac-
ity constrain.

q(R) :=
∑
i∈R

di ≤ Q (1.3)

If the vehicle capacity of the fleet stays the same, we are dealing with
CVRP with homogeneous fleet. A fleet with varying capacity for each vehicle
is a heterogeneous fleet.

1.2.2 Vehicle Routing Problem with Time Windows

The VRPTW [10] extends the regular VRP by time constraint for each cus-
tomer. Customers have assigned time window interval [ei, li] where eli < li.
The time interval is the request within a vehicle is supposed to visit the node.

The time window can be either implemented as a hard constraint or a
soft constraint. Hard constraint forces the vehicle to visit the node, i.e., the
customer either in the given time interval or the solution is not feasible. Soft
constrains are not strictly enforcing the vehicle to visit the customer, but they
introduce a penalty for a violated interval barring a penalty cost. The penalty
becomes a part of the cost function which VRP aims to minimize.

In this thesis, we will be focusing on soft constraints for time windows
since it is a better reflection of real world use cases. Most businesses allow
couriers to arrive late or early, but these types of arrivals are supposed to be
minimized.

1.2.3 Pick and Deliver

The Pick and Deliver (PDP) extends the regular VRP by pairing pick and
drop with precedence relationships, in which a pickup point must precede the
paired delivery point. This flavour of VRP is one of the most complex and even
challenging for conventional methods like optimization heuristics algorithms.

The feasibility of a PDP solution is checking whether all delivery points
have preceded pickup point.

1.2.4 Static vs. Dynamic

When solving the vehicle routing model, usually we assume that all the input
data are static and known with certainty. However, this is not the case in real-
life applications where data such as customer demand or travel time are often
incomplete or not precise during the planning phase, they are only gradually
revealed and specified.

6

1.2. Vehicle Routing Flavors

Static VRP does not assume that the input data could be subject to
change. The dynamic VRP is aware about the information evolution[11] and
its goal is to obtain a robust routing planner that will be able to solve already
seen instances with subject to small changes without the need of recalculating
the whole instance again. This is called a priori optimization, after solving a
given instance of a combinatorial optimization problem, it becomes necessary
to repeatedly solve many other instances with a small variation from the
original instance but without reconsideration of the entire problem [12].

In this thesis, the VRP based on AI could be a great candidate for dynamic
VRP even though, the entire instance is being recalculated. The reason is that
the problem solution is calculated in a seconds instead of minutes and the AI
technically already seen the instance in some variation during the training
phase.

Dynamic VRP can be achieved with enough robust architecture around the
core planner and periodically recalculating the instance with newly revealed
information. The planner needs to take its previous solution as an input so the
part of the problem does not need to be recalculated. This approach tends
to be more exploitative since it is finding a solution in a predefined search
space. It would benefit from introducing an explorative element which would
diversify the search and could find better cost in a different local optimum.

1.2.5 Deterministic vs. Stochastic

Psaraftis [11] stated that there are two important dimensions of input data,
the information evolution which is used in dynamic VRP and quality of infor-
mation for stochastic VRP. The majority of studied VRP models are under
the assumption that all the information necessary to formulate the problems
is known and readily available. This is true but only for the deterministic
settings [13].

A VRP is stochastic [14] when some of its data behave as random
variables, and the routes must be defined before the values of these random
variables become known. Based on the probability distribution of the ran-
dom variables, we may extract some hidden information and use it to our
advantage in the planning process. The newly created plans will have incor-
porated stochastic information and the routing decisions may lead to different
decisions because of the stochastic information being part of the cost function.

A specific real-life example of stochastic VRP would be if we consider an
electric fleet of shared mobility vehicles and treat the locations of Blinkee
electric scooters as random variables. Based on the probability distribution
of Blinkee scooter, we may predict the time and location where a courier will
transfer to a new fully charged Blinkee scooter. This action will be incorpo-
rated into the planned routes.

In contrast, deterministic VRP has no random information which could
be leveraged before the execution of routes and all the given information are

7

1. Introduction to Vehicle Routing Problem

known with certainty. In this thesis, we are focusing on deterministic VRP.

1.2.6 Other Flavours

Dial-a-Ride (DARP) proposed by Wilson et al. [15] in 1971 is a special case of
dynamic VRP with pick and deliver. Passengers request a ride at a specified
origin and drop location with an optional time window.

Split Delivery VRP [16] is a variant where customers are allowed to be
visited more than once. This can be convenient for deliveries of large capacity
or stocking fulfillment centers.

Multi Depot VRP is a simplification of the vehicle routing problem with
pick and deliver, where pick can happen only on predefined depot locations.
This simplification of pickup location is making the problems less complex
then vehicle routing problem with pick and deliver (VRPPD).

1.3 VRP in a Real-world

Consumer habits have been shifting towards online and the pandemic situation
only accelerated this process. Delivery option is nowadays taken for granted
and consumers are demanding a perfect delivery experience. In 2020, there
has been shipped over 5.5 billion packages around the world [17].

Solving various flavors of VRP efficiently in a reasonable time plays a
crucial role for multiple businesses. For example, urban logistics is an essential
part of the delivery process, not only it is the last part of the delivery chain, but
frequently the courier interacts with the customer and delivery on time with
proper ETA prediction is a must. It is also the most expansive part which
makes up about 53% of shipment’s total cost[17]. Urban logistics by large
benefits from a better and more optimized VRP which increase the delivery
efficiency and reduces the delivery cost.

At GoDeliver, we are building an autonomous last-mile delivery system and
at the core is a planning system which is solving various VRP. The flavour
which we are focusing on is Dynamic Capacitated Vehicle Routing Problem
with Time Windows and Pick and Delivery (CVRPDPTW). GoDeliver typical
use case is on-demand food delivery with multiple depots (pick and deliver),
this means that the system has to be dynamic and flexible because a new
customers are ordering stochastically for a chosen time window. Another our
common use case shown in 1.3 is grocery delivery with multiple depots, time
windows, and capacity for customers.

8

1.3. VRP in a Real-world

Figure 1.3: Grocery delivery planning with multiple depots from the GoDeliver
system

9

Chapter 2
Theoretical Background

In this chapter, we will be covering the advanced theoretical background to
fully understand the solved task of VRPTW using ML.

2.1 Reinforcement Learning

ML can be divided with a little simplification into three categories; super-
vised learning, unsupervised learning, and reinforcement learning. Supervised
learning is the most common where the model is learned from the provided
labeled data. Unsupervised learning, on the other hand, is about finding a
hidden patterns in a collection of data with no labels. Finally, reinforcement
learning has no labeled data but learns by interacting with the environment
and getting feedback in the form of rewards as shown in Figure 2.1.

Figure 2.1: Agent feedback loop[3]

The Reinforcement Learning mimics the learning process of humans be-
ings. By experiencing the world and accumulating knowledge, we are learning
how to handle novel situations. reinforcement learning (RL) system consists
of agent in observed state st, the agent interacts with the environment via its
actions at at discrete time steps t and receives a reward rt+1 for given action.
The action moves the agent into a new state st+1. The goal of the agent is to

11

2. Theoretical Background

learn a policy π which chooses the action that maximizes the agent’s rewards
based on the environment [3].

2.1.1 State and Action Value Functions

Transition to a new state gives us a reward and to maximize it, we need a
way to quantify how good a state is. A state-value function Vπ(s) predicts a
future reward for a given state when following the policy π [3].

Vπ(s) = E[Gt|St = s] (2.1)

Gt =
∞∑
k=0

γkRt+k+1 (2.2)

The equation 2.2 calculates Gt, all future rewards, sometimes called as return
[3]. The γ ∈ [0, 1]is a discount factor and penalizes the rewards in the future,
incorporating the possible uncertainty and variance of the future rewards.

We will also define action-value Qπ(s, a) which is for a similar purpose as
state-value function but predicts the reward for action and state following the
policy π.

Qπ(s, a) = E[Gt|St = s,At = a] (2.3)

The decomposition of state-value and action-value function replays on Bell-
man equations [18]. The decomposition of state-value function is

Vπ(s) = E[Gt|St = s] (2.4)

Vπ(s) = E[Rt+1 + γRt+2 + γ2Rt+3 + · · · |St = s] (2.5)

Vπ(s) = E[Rt+1 + γ(Rt+2 + γRt+3 + · · ·)|St = s] (2.6)

Vπ(s) = E[Rt+1 + γGt+1|St = s] (2.7)

Vπ(s) = E[Rt+1 + γV (St+1)|St = s] (2.8)

Similarly, this method is applicable to action-value function,

Qπ(s, a) = E[Rt+1 + γV (St+1)|St = s,At = a] (2.9)

Qπ(s, a) = E[Rt+1 + γ E
a∼π

Q(St+1, a)|St = s,At = a] (2.10)

12

2.1. Reinforcement Learning

2.1.2 Policy Gradients

Policy Gradient [19] is a method for solving the reinforcement learning prob-
lem and learning the policy that maximizes the rewards. We define a set of
parameters θ that directly models the policy, πθ(a|s).

To optimize θ for the best reward, we define an objective function [19] as

J(θ) =
∑
s∈S

dπθ(s)Vπθ(s) (2.11)

where dπθ(s) is stationary distribution of Markov chain for πθ, the probability
of ending in a given state [20].

dπθ = lim
t−→∞

P (St = s|s0, πθ) (2.12)

The objective function J(θ) optimizes the θ parameters via gradient ascent
[21].

θt+1 = θt + α∇J(θt) (2.13)

However, computing∇J(θ) is tricky because it depends on the action selection
and the stationary distribution of states [22]. Policy gradient can be simplified
using Policy Gradient Theorem by Sutton et al. [19].

The proof of policy gradient theorem is quite long and complicated, but
you may go through it in this article [22] which is inspired by Sutton and
Barto [3]. Policy gradient is simplified to the form as

∇J(θ) = E[∇ ln π(a|s, θ)Qθ(s, a)] (2.14)

2.1.3 REINFORCE

REINFORCE algorithm, proposed by Williams [23] in 1992, is a policy gra-
dient method to update the policy parameter θ.

Let us define the additional terms required by the REINFORCE algorithm.
We define a trajectory τ which is a sequence of states, actions, and rewards.
Episode is a trajectory which ends at the terminal state St.

τ = (S0, A0, R0, S1, A1, R1, · · ·) (2.15)

REINFORCE algorithm computes the policy gradient as follows

∇J(θ) = E[Gt∇ ln π(At|St, θ))] (2.16)

It is a simplification of a regular policy gradient because Qπ(s, a) = E[Gt|St =
s,At = a] and in REINFORCE algorithm we rely on a full trajectory where

13

2. Theoretical Background

we can estimate Gt based on Monte-Carlo method which is describe in this
article [3].

Algorithm 1: REINFORCE algorithm
Result: Updated θ that maximises reward
Initialize theta at random;
Generate one episode S0, A0, R0, · · · , ST ;
for t = 1, 2, · · · , T do

Estimate the the return Gt since the time step t;
θ ← θ + αγtGt∇ ln π(At|St, θ)

end

In the REINFORCE algorithm, the estimated gradient is highly effected
by variance. A technique called baseline b(St) is common to be used which
subtracts a baseline from the estimated Gt to reduce the variance [24]. The
baseline function can be in many forms, but the most common one is to
calculate the advantage function A(s, a) = Q(s, a) − V (s) and use it to be
subtracted from the gradient.

2.2 Attention

Attention mechanism was first proposed by Bahdanau et al.[25] in 2014 with a
problem to help memorize long source sentences in neural machine translation.
Not long after that, this concept gave birth to Transformers which dramat-
ically improved many domains, especially Natural Language Processing and
brought state-of-the-art results [26].

Figure 2.2: A Shiba Inu and what is caughting the network’s attention [4],
photo credit by @mensweardog.

For humans, visual attention is allowing us to focus on certain regions as
visualized on Figure 2.2. Attention mechanism decides on which part of the
given source should pay attention to.

14

2.2. Attention

2.2.1 Transformer

The Transformer neural network architecture proposed by Vaswani et. al [5]
was one of the major breakthroughs in the field of Natural Language processes
(NLP). Transformer is getting rid of recurrence [27] in favor of the attention
mechanism which allows global dependencies between input and output.

The Transformer architecture is based on encoder-decoder structure as
shown on Figure 2.3. Encoder maps the input sequence x to continues rep-
resentation z which is taken by decoder and decodes it to output sequence y
one element at a time. The model is auto-regressive, it takes into account the
previously generated output as additional input.

Figure 2.3: The Transformer architecture, encoder on the left and decoder on
the right [5].

2.2.1.1 Encoder

The encoder on Figure 2.3 has N identical layers (Vaswani et al. set N = 6
[5]). Each layer has two sublayers, the first is multi-head attention 2.2.1.3,
and the second is a simple fully connected feed-forward network. Each of the
sublayers has a residual connection [28] that sums the input and output of the

15

2. Theoretical Background

sublayer and normalize it [29].

OutputSubLayer = Norm(x+ SubLayer(x)) (2.17)

The residual connections are similar to the skip connection which propa-
gates input of the sublayer to the output which helps to avoid exploding or
vanishing gradient.

2.2.1.2 Decoder

The decoder on Figure 2.3 is also built from N identical layers and with similar
sublayers as the encoder. The first sublayer is masked multi-head attention
2.2.1.3 also with residual connection. The masking mechanism is only there to
hide the future information because the Transformers are processing the input
one by one. The next two sublayers of the decoder are same as the encoder
with the only difference that multi-head attention 2.2.1.3 receives part of the
input from the encoder.

2.2.1.3 Multi-Head Attention

The major component of Transformers is Multi-Head Attention (MHA). It
runs the input through an attention mechanism h times in parallel. The
independent attention outputs are then concatenated and transformed into
the expected dimension as shown in Figure 2.4 [4].

Figure 2.4: Multi-Head Attention component [4]

16

2.2. Attention

The Multi-Head Attention takes the embedded input and split the input
copy to Key K, Value V and Query Q. They all have the same dimension
of input sequence length and embedded vector size dmodel (Vaswani et al. set
dmodel = 512 [5]).

The matrices K, V , and Q get multiplied for each head i ∈ (1, · · · ,h)
by trainable parameters WK

i , W V
i , and WQ

i , respectively. Then it performs
scaled dot-product attention as shown in equations 2.18 and 2.19

headi = ScaledDotAttention(QWQ
i ,KW

K
i , V W

Q
i) (2.18)

ScaledDotAttention(Q,K, V) = softmax(QK
T

√
n

)V (2.19)

According to the paper[5], the scaled dot product attention allows the
model to jointly attend to information from different representation subspaces
at different positions.

Finally, we concatenate all head outputs headi for i ∈ (1, · · · ,h) from
scaled dot product attention and perform linear transformation by trainable
parameter W0 of Multi-head Attetntion (MHA).

MHA(Q,K, V) = Concat(head1, · · · ,headh)W0 (2.20)

2.2.2 Graph Attention Network

To understand the model used for solving VRPTW we need a basic under-
standing of Graph Attention Network (GAT), first proposed by Veličković et
al. [6] in 2017.

It is a neural network architecture capable of operating on graph-structured
data. GAT extend the work on Graph Convolution Networks [30] which has a
problem with generalizability because they are structure-dependent [31]. GAT
address the shortcoming of Graph Convolution Networks (GCN) by leveraging
masked self-attentional layers 2.2.

GAT is a single layer (possibly can be stacked) which takes a set of nodes
features h = {h0, h1, · · · , hN}, hi ∈ RF where N is the number of nodes and
F is the number of features for a node. The GAT layer assigning different
importance to each node through the attention coefficients.

elij = al(W lhli,W
lhlj) (2.21)

The equation 2.21 is a linear transformation of node features and weight
matrix W l which is used for calculating the attention coefficients via learnable
parameter al. It is gathering information about the importance of node j’s
features to node i.

αlij = softmaxj(elij) =
exp(elij)∑
k∈Ni exp(elik

(2.22)

17

2. Theoretical Background

The graph structural data are represented in attention via equation 2.22
which is computed only for all neighbour nodesNi of node i. The softmax func-
tion is used to make the attention scores comparable across different nodes.

hl+1
i = σ(

∑
j∈Ni

αlijW
lhli) (2.23)

The equation 2.23 is aggregating together all attention embeddings of all
neighbour nodes. If we perform multi-head attention on the final layer of GAT
then computation of the final high level feature embedding is as follows

hl+1
i = σ(1

K

K∑
k=1

∑
j∈Ni

αlijW
khli) (2.24)

The aggregation process of a multi-head graph attentional layer for a given
node is illustrated on Figure 2.5.

Figure 2.5: Multi-head attention with K = 3 heads [6].

18

Chapter 3
VRPTW via Optimization

In this chapter, we review, multiple approaches for solving VRPTW via op-
timization techniques with the objective to find suboptimal solutions in a
reasonable time. The real-life use cases of VRP are demanding to quickly find
a good enough solution for large instances and this is achieved by applying
handcrafted heuristics.

Exact Algorithms Approximate  
Heuristics

Local Search

Large Neighborhood Search

Tabu Search

Simulated Annealing

Branch & Bound

Branch & Price

Branch & Cut & Price

Linear & Dynamic Programming

CPLEX

Branch & Cut

Genetic Algorithms

Focus of this thesis

Particle Swarm Optimization

Ant Colony Optimization

Popolation-based Deep Learning

RL Attention

Pointer Network

Neural Large Neighborhood

Search

VRP  
Solution Algorithms

Figure 3.1: Family of algorithms for solving VRP

In the field of operations research, approximate heuristics may be divided

19

3. VRPTW via Optimization

into constructive heuristics and metaheuristics. Constructive heuristics are
used to provide an initial solution in a matter of seconds, which is later opti-
mized. Metaheuristics is end-to-end algorithm that takes a problem instance
and calculates its suboptimal solution. Metaheuristics can be further divided
into local search method which explores the search space by iterativly mov-
ing to a better solution, or population-based methods that generate a set of
solutions that are continually evolving [13].

3.1 Insertion Heuristics

Insertion heuristic is a constructive heuristic first proposed by Jaw et. al [32]
in 1986 and later that year extended by Solomon et al. [33] to supporting
time windows.

The insertion heuristic works by gradually iterating through all the nodes
considered to be planned. For each of the nodes, the algorithm tries to insert
it to all possible positions of all plans, then it picks the best insertion based
on the calculated penalty. By repeating this process for all the nodes, a fully
feasible solution is constructed.

Algorithm 2: Insertion Heuristic
for x ∈ X do

bestPenalty = MAX;
for r ∈ R do

let l be a length of route r;
for i ∈ {1, · · · , l + 1} do

for j ∈ {i+ 1, · · · , l + 2)} do
Try to insert on πrij the node x;
Calculate newPenalty of the insert πrij ;
if bestPenalty > newPenalty then

bestInsert← (i, j);
bestPenalty← newPenalty;

end
end

end
Perform best insert πrbestInsert the node x;

end
end
return π;
Insertion heuristic is mainly driven by the cost function that returns the

penalty for a given set of plans. The cost function has to consider the distance
of a plan but also include the time window slack due to the insertion [34].

It very common with dynamic VRP 1.2.5 to continuously recalculate de-
livery plans based on triggers such as a new delivery order. The advantage of

20

3.2. Google OR-Tools

this heuristic is that it can leverage on a given previous solution and does not
need to construct it from scratch.

3.2 Google OR-Tools

We have noticed that many of the production solutions in the field of logistics
use some type of optimization framework. The framework allows to describe
the routing problem using their specific notation and their optimization library
finds its solution. They usually implement variants of local search algorithms.
However, their are fairly flexible and they serve as a great reference point for
any benchmarking.

In this thesis, we use Google OR-Tools1 an open source tool developed
to solve optimization problems in vehicle routing, network flows, integer and
linear programming, and constraint programming [35]. We have chosen this
optimization framework because the operations research community uses OR-
Tools as a main benchmark and it supports soft constraint programming.

OR-Tools works by building a graph where the distance callback function
assigns a value to graph transitions called arc cost. In the use case of solving
VRPTW, the arc cost is supposed to be the traveled duration between two
given locations (nodes).

OR-Tools implements a cost function in the form of dimensions repre-
senting quantities accumulated at nodes along the vehicle’s route. Solving
VRPTW via OR-Tools requires to have extra dimensions for time windows
that accumulates early and late arrivals. OR-Tools are minimizing the dimen-
sions values by using a chosen metaheuristic.

OR-Tools implements many well-known metaheuristics such as

• AUTOMATIC Lets the solver select the best metaheuristics.

• GREEDY DESCENT Accepts only cost-reducing solutions using local
search of neighbors until a local minimum is reached.

• GUIDED LOCAL SEARCH Uses guided local search to escape local
minima [36].

• SIMULATED ANNEALING Uses simulated annealing to escape local
minima [37].

• TABU SEARCH Uses tabu search to escape local minima [38].

• OBJECTIVE TABU SEARCH Uses tabu search on the objective value
of a solution to escape local minima [39].

1https://developers.google.com/optimization

21

https://developers.google.com/optimization

3. VRPTW via Optimization

3.3 Large Neighborhood Search

Heuristics based on large neighborhood search have shown superior results in
solving a wide variety of routing problems. Large neighborhood search was
first introduced by Shaw [40] in 1997.

Large neighborhood search is an iterative algorithm that gradually im-
proves its solution by exploring its neighborhoods. The neighborhoods are
defined by applying destroy and repair operator. The destroy operator re-
moves a random part of the solution such that different parts are destroyed
in each iteration. The repair operator takes the partial solution and rebuilds
into a fully feasible solution [41].

In the implementing of large neighborhood search, the most important is
to pick the proper degree of destruction for the destroy operator. If it de-
stroys a small part of the solution, then it leads to ineffective exploration of
the search space. In the opposite, when destroying large parts of the solution,
the algorithm will keep re-optimizaing, which yields poor quality solutions
with higher complexity [41]. The degree of destruction can be either chosen
randomly or it can be gradually increased during the execution.

Algorithm 3: Large Neighborhood Search
Initialize a feasible solution xb;
while stopping criteria is met do

xt = repair(destroy(xb));
if accept(xt, x)) then

Accept a new solution x = xt;
end
if cost(xt) > cost(xb) then

Keep the best xb = xt;
end

end
return xb;
The original large neighborhood search algorithm only accepted a superior

solution based on the cost function. To achieve better exploration, a new ac-
ceptance criterium was used, inspired by the algorithm of simulated annealing
[42]. The algorithm accepts the solution x based on probability e(c(xt)−c(x))/T

where T is the parameter for temperature. The temperature is gradually
decreasing resulting in accepting fewer deteriorating solutions.

3.3.1 Adaptive Large Neighborhood Search

Adaptive Large Neighborhood Search is an extension of Large Neighborhood
Search (LNS) that was proposed by Ropke et. al [43] in 2006.

Adaptive Large Neighborhood Search (ALNS) supports multiple destroy
operators and repair methods and adds a component of diversification strategy.

22

3.4. Ant Colony Optimization

Repair operators are selected based on their past performance during the
search and usually by employing a roulette wheel selection process with an
adaptive weight adjusting mechanism [43].

3.4 Ant Colony Optimization

The other category of metaheuristics are population-based methods, which
take their inspiration from natural concepts such as the evolution of species
or the behavior of insects. However, all successful population-based heuristics
rely on local search methods to drive the search towards promising areas and
to avoid local optima. As a result, the majority of population-based algorithms
are naturally hybrid [13].

Ant colony optimization was first applied on VRP by Reimann et. al [44]
in 2004, and successfully outperformed many existing solutions. It is inspired
by the pheromone mechanism used by ants for coordination. where each ant
simulates a solution by traversing the graph along its edges and accumulates
the pheromones.

Ant Colony Optimization mainly consists of the iteration of four steps [44]:

• Generation of solutions according pheromone information.

• Application of a local search to the ant’s solution.

• Update of the pheromone information.

• Augmentation of the attractiveness list.

The algorithm generates solutions according to pheromone information,
which represents how good is the combination of two nodes. The solution is
generated by running a decision step for the ants in which they decide where
to move based on the pheromone information. Each ant generates k feasible
moves and one is picked based on the attractiveness probability [44], evapo-
rating pheromone. The construction process is stopped when no more feasible
combinations are possible. After the ants have constructed their solutions,
it is improved by applying a local search algorithm like LNS 3.3. Than the
pheromone trails are updated based on the achieved local optimum [45] and
a new attractiveness values are created based on pheromone information.

23

Chapter 4
VRPTW via AI

In this chapter, we will describe our end-to-end deep learning method for
solving VRPTW.

Machine learning and artificial intelligence have been replacing many hand-
engineered algorithms and providing state-of-the-art results. In recent years,
reinforcement learning 2.1 and advances in attention models 2.2 has shown
great promise to disrupt the field of heuristics algorithms [46, 7, 47]. Heuristics
algorithms [48] are incomplete methods that can compute solutions efficiently,
but are not able to prove the optimality of a solution. Most of the business
challenges do not require the most optimal exact solution [49] but focus on
approximation of the optimal solution in a reasonable time.

4.1 Related Work

Regarding the research of solving the VRP, researchers have been mainly con-
centrating on designing hand-crafted metaheurictis via optimization. How-
ever, the great adoption of deep learning is starting to catch up with the field
of operations research.

The first relatively successful deep learning model for solving general VRP
was proposed by Vinyals et al. [50] in the year of 2015 by introducing Pointer
Networks. The model uses attention to output a permutation of the input and
the model was trained in the supervised manner by example solutions. In the
next year, Bello et al. [51] extended the model of Pointer Networks by adopting
the Actor-Critic algorithm that introduced RL and the model was trained on
the training samples and did not require labelled data anymore. The reward
function was a simple Euclidean length of the routes. The network showed
improved performance on larger instances of 50 nodes over the predecessor
model using supervised learning. In 2018, Nazari et al. [52] simplified the
model of RL-based Pointer Network by omitting the recurrent neural network
encoder and replaced it with embedding to D-dimensional vector space. The
recurrent neural network is not necessary because the inputs of delivery nodes

25

4. VRPTW via AI

are not dependent on order [52]. There was no deterioration in performance
and the model also supported the constraint for solving split delivery 1.2.6.

In 2018, Kool et al. [7] proposed a new approach and replaced the Pointer
Network with Transformers 2.2.1 using Graph Attention Network 2.2.2 in-
stead of positional encoding, and the Actor-Critic algorithm was changed to
REINFORCE algorithm. The model showed superior performance. In this
thesis, we will extend this model to support the soft time window constraint.

In 2019, Hottung et al. [53] introduced a novel approach that was inspired
by LNS 3.3 called Neural Large Neighborhood Search. This model learns the
destroy and repair operators by using graph attention network and attention
mechanism, and it is outperforming the standard metahesuristics on capaci-
tated vehicle routing problem. However, it is still iterative algorithm based
on the local search which results in much larger runtime then end-to-end deep
learning methods for VRP.

In 2021, another paper by Kool et al.[47] was released with a completely
new approach. It combines dynamic programming and deep learning to solve
VRP and promises much better performance than previous solutions. The
method uses deep learning to restrict the dynamic programming search space
using a policy derived from graph neural network. In the future, we will
explore this method in depth and extend the support of constraints for time
windows and pick and deliver problem 1.2.3

4.2 Solution

The end-to-end deep learning method pro solving VRPTW is extension of the
work done by Kool et al. [7].

Let us describe the high-level concept behind the method. Consider we
have a model as blackbox which takes VRPTW instance as an input and
outputs probabilities for all the VRPTW nodes. The probability represents
which node should be visited next and by following to the most probable node
we get a partial solution which will be considered by the blackbox. We iterate
this process until all nodes have been visited and we acquire a feasible plan
as shown on Figure 4.1.

4.2.1 Model Architecture

The model architecture [7] leveraging recent advancements in attention mech-
anism is here extended by the time window constraint. The model is built
upon transformers 2.2.1, graph attention network 2.2.2, and reinforcement
learning 2.1. The network structure is encoder-decoder that fits well for solv-
ing sequential decision problems. The structural input instance is extracted
by the encoder 4.2.1.1 and then the solution is incrementally constructed by
the decoder 4.2.1.2.

The VRPTW input instance is consisted from:

26

4.2. Solution

0.91

0.82
0.73

0.41

0.51

0.49

0.57

0.12

0.68

0.76

0.12

0.75

0.680.59

Figure 4.1: High-level concept behind the used method.

• X = {x1, · · · , xn} where xi is two-dimensional coordinates in the eu-
clidean space.

• x0 is the location of depot.

• D = {d1, · · · , dn}) is the demand capacity for each of the locations.

• T = {(e1, l1), · · · , (en, ln)}) is time windows for each of the location
where ei is the beginning and li is the end of the considered time window.

The output is the solution of VRPTW instance and is represented as a
permutation π of locations X ∪ x0.

• π = {π1, · · · , πT } ∈ {x0, · · · , xn})

4.2.1.1 Encoder

The encoder uses graph attention network 2.2.2 to embed the node features to
graph embedding. Then the decoder architecture is the same as the decoder
of transformer 2.2.1. Typicaly, the decoder of transformer uses positional
encoding [54] to embed the input, but in this case it has been replace with
GAT 2.2.2 since we deal with graph-based structure and the input order does
not matter.

The first step is to perform the initial embedding of input data 4.2.1 via
learned linear projections as in GAT. The hli represents the node embedding
of layer l ∈ {0, · · · , N} (N=3).

x̃ = concat(X,D, T) (4.1)

h0
i =

{
Wx̃i + bi if i > 0
Wx̃0 + b0 if n = 0

(4.2)

27

4. VRPTW via AI

The node embeddings are updated via N attention layers, each containing
multi-head attention 2.2.1.3 (M=8) and a fully connected feed-forward net-
work with normalization. The structure is identical to transformer’s encoder
2.2.1 with additional support of graph structure 2.2.2 as shown on Figure 4.3.

Figure 4.2: Encoder layers [7]

The equation 4.3 calculates the query Q, key K and value V of multi-head
attention layer using the node embeddings and weights WQ

m , WQ
m , and WQ

m ,
respectively. The number of heads is represented by m ∈ {1, · · · ,M} (M=8).

qlim = WQ
mh

(
il − 1),klim = WK

m h
(
il − 1),vlim = W V

mh
(
il − 1) (4.3)

The query and key values are used in calculating the compatibility ulijm
of node i with a node j 4.4. If node i is not adjecnt to node j then they are
not compatible and the value is set to a large negative number.

ulijm =
{
qlimk

l
jm if i adjacent to j

−∞ otherwise
(4.4)

The attention score alijm ∈ [0, 1] is calculated using softmax from the
compatibility values of nodes 4.19

alijm = eu
l
ijm∑n

j′=0 e
ul
ij′m

(4.5)

The transformed h′iml 4.6 aggregates all attention scores across neighbour
nodes, which is based on GAT 2.2.2.

h′im
l =

n∑
j=0

alijmv
l
jm (4.6)

28

4.2. Solution

Finally, we may calculate the multi-head attention 2.2.1 for layer l as a
function of {hl−1

1 , · · · , hl−1
n } through h′im

l.

MHAl
i(hl−1

1 , · · · , hl−1
n) =

M∑
m=1

WO
mh
′
im
l (4.7)

h̃i = BNl(hl−1
i + MHAl

i(hl−1
1 , · · · , hl−1

n))) (4.8)

hli = BNl(h̃i + FFl(h̃i)) (4.9)
In the final layer, the encoder computes the aggregated embedding of the

input graph as the mean of the final node embeddings.

hN = 1
n

m∑
i=1

hNi (4.10)

The output of the encoder’s final layer is passed to the decoder, which is
detailed in the next sections 4.2.1.2.

4.2.1.2 Decoder

Decoder works sequentially through timestamps t ∈ {0, · · · , n}, at each times-
tamp one node is selected to be visited based on partial route π1:t−1. It is
predicting the probability distribution over nodes according to the node em-
bedding and context vector of the encoder 4.2.1.1.

Figure 4.3: Describes the decoder iteration in the construction of a solution.
This diagram very nicely visualizes the process and it was used in the paper
by Kool et al. [7]

The decoder uses a new context vector h′c which represents the state 2.1
and it goes as follows:

h
′
c =

{
concat(hN ;hN0 ;Dt) if t = 0
concat(hN ;hNπ1:t−1 ;Dt) if t > 0

(4.11)

The state of h′c is concatenation of hN , the output of the encoder, hNπ1:t−1 ,
the embedding of previous partial solution, and Dt, the remaining demand
capacity of the vehicle.

29

4. VRPTW via AI

Due to the fact that the decoder architecture is transformer 2.2.1, the next
layers are multi-head attentions which are responsible for choosing the next
node to visit. This defines the system action 2.1.

The multi-head attention in the decoder is computed in a similar manner
as in the decoder 4.2.1.1 with a little alternation.

q(c)m = WQ
mh

′
c, kjm = WK

m h
N
j , vjm = W V

mh
N
j (4.12)

u(c)j =
{
qTc kj if dj <= Dt and xj /∈ π1:t−1

−∞ otherwise
(4.13)

The equation 4.13 computes the compatibility score and performs a mask-
ing mechanism to mask the nodes which have already been visited during the
partial route (besides depot x0) and eliminates nodes where the vehicle capac-
ity would overflow. If we would consider a time window as a hard constraint,
the calculation of compatibility would have extended masking mechanism to
show only nodes which correspond to the time t.

h′(c)m =
n∑
j=0

softmax(u(c)j)vjm (4.14)

hc = MHA(h′c) =
M∑
m=1

WO
mh
′
(c)m (4.15)

In order to calculate the desired probability pθ(πt|X,π1:t−1), a logit layer.
The final layer is a single-head attention.

q = WQhc, kj = WKhNj (4.16)

uj =
{
C.tanh(qTkc) if dj <= Dt and xj /∈ π1:t−1

−∞ otherwise
(4.17)

pi = pθ(πt|X,π1:t−1) = euj∑n
j′=0 e

uj′
(4.18)

4.2.2 Reinforcement Learning

The model 4.2.1 takes VRPTW instance and outputs probability distribution
over nodes pθ(π|X) which is used to sample a full feasible route as a solution π.
The instance of VRPTW S is defined as concatenation of locations, demand
capacity and time windows for each node, S = [X,D, T].

To train the model, we have to define a reward, respectively, a cost func-
tion. The model is trained using REINFORCE algorithm 2.1.3 as proposed
by Kool et al. [7]. The algorithm is based on the computation of the policy
gradient, which is defined as

∇θL(θ|X) = E[L(π|X)− b(X))∇ ln π(π|X))] (4.19)

30

4.2. Solution

4.2.2.1 VRPTW Cost

For effectively solving VRPTW, the cost function is an integral part of a
successfully trained model. In this thesis, we propose a new cost function
to solve the vehicle routing problem with soft constrained time windows and
demand capacity for each node.

The cost function is ranking the given solution of VRPTW instance. It
penalizes the solution based on the length of the routes, early and late visits,
and unequal distribution of nodes across vehicles.

For a given VRPTW instance S and its solution π, we propose the cost
function as follows:

L(π|S) = disp(π, S) + tp(π, S) + balp(π, S) (4.20)

disp(π, S) =
N∑
i=0

∥∥∥xπ(i) − xπ(i+1)

∥∥∥
2

(4.21)

The equation 4.21 calculates the length of all routes in Euclidean space.

tp(π, S) =
N∑
i=0

(I
ei>t̃i

(ei − t̃i)pe + I
li<t̃i

(t̃i − li)pl) (4.22)

The equation 4.22 calculates the penalty for early or late arrival. The time
of the visit for a given node i is defined by vector t̃i. We assume that the
travel speed is always identical and we approximate that one unit of distance
equals to one unit of time. The vector I behaves as a mask I ∈ (0, 1)n which
represents if either early or late arrival occurred. The penalty for late arrival
pl should be greater than for early arrival pe and finding the proper penalties
will be empirically determined as a part of experiment chapter ??.

balp(π, S) = σ([|R0|, · · · , |Rk|]) (4.23)

The last subpart of the cost function is calculating balance cost 4.23 that
aims to evenly distribute the number of nodes in a route Ri by minimizing its
standard deviation. In logistics, we expect to utilize couriers evenly.

31

4. VRPTW via AI

4.2.2.2 Training loop

Pseudocode of the RL system training loop is as follows
Algorithm 4: REINFORCE algorithm

Input: Number of epoch E, steps per epoch T , batch size B
Result: Updated θ that maximises reward
Initialize θ at random;
for epoche = 1, 2, · · · , E do

for steps = 1, 2, · · · , T do
Compute context embedding hN via decoder (4.2.1.1);
for t = 1, 2, · · · , N do

Calculate pθ(πt|X,π1:t−1) via encoder for t (4.2.1.2);
Pick an action based on probability distribution;
Update the state by visiting a new node;

Compute reward L(π|S) (4.20);
∇θL ← E[L(π|X)∇ ln π(π|X))];
θ ← Adam(θ,∇θL);

4.2.3 Integrating Duration Matrix

Real-world application of VRP require to obtain the distance and duration
matrix which represents the weighted transition between graph nodes. The
duration between two locations is typically defined by the infrastructure and
speed limits on a given route. Such a duration matrix is calculated using map
data such as OpenStreetMap [55].

The neural network solving VRPTW learns to approximate the Euclidean
distance between two given points. However, if we would integrate the du-
ration matrix into the cost function of the model, the network would have
to derive the duration between two points, which is an impossible task with
the given model architecture. Moreover, the planning would be fixed to the
location (city) on which the model was trained on.

We propose an indirect integration of the duration matrix for the input
instance. We may project the duration matrix into the node locations using
multidimensional scaling [56] which would embed the duration information in
a given 2D space.

32

Chapter 5
Planning System

In this chapter, take a look at how the GoDeliver2 system works and the
integration of the VRPTW AI planner.

5.1 GoDeliver System

The GoDeliver system is consisted of multiple services, each responsible for a
given subproblem of the delivery process. The core of the system is GoDeliver
service, which implements all system APIs and performs the basic CRUD3

operation on our NoSQL database. The database stores information about
business, delivery orders, couriers, and delivery plans. In the Figure 5.1 is
visualized the simplified architecture of GoDeliver system, it is especially ori-
ented to show how the planning process works.

5.1.1 Planning process

The planning process is a complex operation which requires to work asyn-
chronously because the planning of delivery orders is a time-consuming oper-
ation. The modern delivery planners have to support dynamic rescheduling
and autonomously act upon the constantly changing environment.

The first part of the planning process is the creation of a delivery order,
which is a request for delivery via API. The delivery order is saved in the
database by GoDeliver Service with additional meta-data about the delivery
state, etc. The database is monitored for a so-called trigger changes which fires
a replanning job via a distributed task queue Celery4. The trigger changes are
a list of actions such as creation of a new delivery order, changes in courier
capacity, or a significant delay of delivery.

2https://godeliver.co/
3Create, read, update and delete
4https://github.com/celery/celery

33

https://godeliver.co/
https://github.com/celery/celery

5. Planning System

Figure 5.1: GoDeliver System Architecture

If such a replanning job is created, it is saved in Celery queue which is
processed by GoDeliver Replanning Service 5.1. The replanning service loads
a business configuration, delivery orders, and delivery plans from the database.
It transforms the data into a generic structure which is accepted by our another
service logistics planners that are solving the vehicle routing problem. The
generic plan structure for the logistics planner freezes some delivery points
which should not be considered by the planner since we do not want to change
the current in-progress delivery points. This process is enabling us to perform
the dynamic vehicle routing problem 1.2.5.

Based on the business config, the desired vehicle routing solver is invoked
via the logistics planner API. Usually, the planner takes the previous delivery
plan and performs a heuristic algorithm like insertion heuristic which outputs
an extended feasible plan. This plan is then improved by a local search algo-
rithm to improve its cost function. Then the solution is processed by GoDeliver
Replanning Service and saves the new delivery plans into the database.

In the future, the proposed VRPTW AI planner will be used instead of
insertion heuristics because we expect the AI planner will outperform the in-
sertion heuristics. The downside is that AI planner is not able to leverage
on the previous solution, which can lead to drastic changes in the solution
structure of the delivery plan. However, this side effect is not a blocker since
couriers only see one current delivery point from the delivery plan via GoDe-
liver mobile app 5.2.

5.1.2 Planning Requirements

The GoDeliver objective is to provide the most advanced and versatile urban
logistics system. The logistics cases are always different for individual busi-

34

5.1. GoDeliver System

Figure 5.2: GoDeliver Driver App

nesses and in order to cover them all we require a flexible but yet powerful
planning system. For a new planner to be successfully used in the produc-
tion environment, we have defined the planner requirements which have to be
supported 5.1.

In the table 5.1, we have summarized the supported features of our pro-
posed VRPTW AI It does not support features such as Pick and Deliver,
predefined number of vehicles, and distance matrix. The Pick and Delivery is
possible to support by extending the model to support a heterogeneous fleet
based on this paper by J. Li et. al [57] which extends the masking mechanism
and RL state and action to support the pick and deliver constraints. Distance
matrix could be indirectly supported by applying multidimensional scaling [58]
to project the distance matrix into Euclidean space which is supported by the
model. To define a fixed number of vehicles for a given VRPTW instance is
surprisingly more complicated, but we propose that it can be achieved by im-
plementing the support of multiagent reinforcement learning [59] where each
agent is one vehicle.

35

5. Planning System

Feature Is supported?
Time windows X
Soft constraint X

Distance matrix indirectly5

Pick and Deliver -
Demand Capacity X

Balanced load across vehicles X
Predefined number of vehicles -

Table 5.1: VRPTW AI support of planner requirements

5.2 Tech Stack - VRPTW via Optimization

The planners based on optimization heuristics are implemented in program-
ming languages Python6 and Go7 and our implemented metaheuristic uses the
optimization framework OR-Tools.

5.3 Tech Stack - VRPTW via AI

The VRPTW planner via AI is implemented in the programming language
Python which is the most favorite programming language for any AI-related
project [60]. Besides it is easy language to get start with, it has many amazing
AI and data libraries such as Pandas, Numpy, Tensorflow or PyTorch.

Production implementation of neural network is developed with the use of
deep learning frameworks. TensorFlow8 and PyTorch9 are the two most pop-
ular frameworks. It is an important decision which deep learning framework
to choose if you plan to develop a production ready ML pipeline.

Figure 5.3: Google Trend of PyTorch (blue) vs Tensorflow (red)

6https://python.org/
7https://golang.org/
8https://pytorch.org/
9https://pytorch.org/

36

https://python.org/
https://golang.org/
https://pytorch.org/
https://pytorch.org/

5.3. Tech Stack - VRPTW via AI

The Google Trends graph 5.3 shows how TensorFlow was more popular in
the past, but lately they have similar amount of search results. However, the
majority of the new research papers are implemented via PyTorch [61]. It is
due to the fact that PyTorch has a great and intuitive API based on Numpy10

operations and it is even slightly faster than TensorFlow.
In this thesis, we have decided to use PyTorch as our main deep learning

framework.

10https://numpy.org/

37

https://numpy.org/

Chapter 6
Evaluation

In this chapter, we will evaluate our proposed planning model based on deep
reinforcement learning built upon Transformer 2.2.1 architecture utilizing Graph
Attention Network 2.2.2 and benchmark the performance against constructive
heuristics and metaheuristics.

6.1 Dataset

The dataset used for training and evaluation was generated on the fly via a
uniform probability distribution within a given range. The reason we decided
to generate the data is that learning reinforcement policy requires a large
amount of training data. Since it learns by interacting with the environment,
we do not need labeled datasets and generating them seems as the best ap-
proach. Nevertheless, in further work, the model will require other kinds of
distribution to simulate a real-world demand.

In real-world routing applications, the geographic coordinate system is
typically used for specifying locations. However, our proposed model requires
locations between [0, 1] to achieve model convergence. The locations of depots
and delivery nodes were generated via uniform distribution within a range of
[0, 1]× [0, 1].

The data for the demand capacity of a delivery node is a discrete number
{1, · · · , 9} chosen uniformly at random with assumption that the depot has a
demand capacity of zero.

Lastly, each location has assigned time windows that work as a soft con-
straint at which time a vehicle is supposed to visit the node. We generate
different lengths of time windows based on the problem size (20, 50, 100).
For the problem size of 20 nodes, the time window value occurs in a range
of {0, · · · , 10} with the condition that the length of the time window is less
than four. The problem size of 50 nodes has the upper bound set to 20 with a
maximal length of 6 and the case of 100 nodes, the upper bound is 40 and the

39

6. Evaluation

maximal window length is 9. Similarly, the start and end of a time window
are generated with uniform distribution.

6.2 Sample Solutions

To better imagine the complexity and variability of solving VRPTW, in Figure
6.1 and 6.2 we illustrate a random solution predicted by our proposed deep
learning model. On the left, we visualize the customer’s time windows using
Gantt diagram and on the right are shown the routes for each vehicle. Each
color represents a vehicle which servers the customers represented by a node
with a generated time window.

Figure 6.1: Sample solution of random VRPTW instance for problem size 20.

The AI model has to optimize the route path with focus to minimize
the travelled distance, but simultaneously early and late arrivals should be
avoided. Our model is able to solve VRPTW instance considers both distance
and time window constrains. The windows are soft constrained, which results
in a much larger combinatorial space of possible solutions than considering
just hard constrained time windows. As illustrated on Figure 6.2 the model
sometimes sacrifices the time of a served customer in order to optimize the
route distance and vice versa.

The model has successfully learned the policy how to pick the next node to
visit, the time windows are almost cascadingly sorted, and the routes are sub-
optimally optimized based on distance. However, it is clearly not an optimal
solution, but it proves that the problem of vehicle routing with soft constrained
time windows is possible to be solved with ML and the research is on the right
path to outperform regular metaheuristics. In the section 6.4 we compare the
model with our implemented constructive heuristics and metaheuristics

40

6.3. Experiments

Figure 6.2: Sample solution of random VRPTW instance for problem size 50.

6.3 Experiments

6.3.1 Time Windows

The main goal of this thesis was to integrate the soft constraint of time win-
dows to VRP model introduced by Kool et al.[7]. The model is extended by
our proposed cost function 4.20 that penalizes early and late arrivals. The
early arrival is not as crucial as delayed visit, so we have decided that the
penalty for early arrival is always less than late visit pe < pl.

Figure 6.3: Low penalty for early visit of node results in poor performance.

Finding a proper penalty values pe and pl for time windows is one of the

41

6. Evaluation

most important steps because an incorrect penalty highly influences the model
in choosing the next node to visit.

The Figure 6.3 illustrates how the performance is degraded by choosing an
incorrect penalty value for early arrival pe. If the early penalty is too low, the
model will strictly focus on minimizing the late arrival and Gantt diagram of
time windows looks like a plan for just a single vehicle.

We have empirically tested various kinds of penalties and updated them
based on our observations. After the experiments, we have chosen pe = 0, 25
and pl = 0, 5 which resulted in predicting a feasible plans with properly dis-
tributed time windows across the vehicles as shown in Figure 6.4.

Figure 6.4: Properly distributed time windows across the vehicles.

6.3.2 Balancing Plans

In real-world solution of VRP, we aim to balance the number of served cus-
tomers across vehicles. It means the number of nodes in a given route is
supposed to be uniformly distributed across all routes. However, we have no-
ticed that the model was constantly adding additional routes of size one as
illustrated on Figure 6.5.

Therefore, we have decided to penalize the delivery plans that are not
balanced by including an unbalance penalty. We calculate the standard de-
viation of plans with the objective to be minimized using our cost function.
This approach helped in creating balanced delivery plans.

6.3.3 Generalization

A great downside of this proposed model is its sensitivity to data input, which
results in poor model generalization. If we introduce to a model a distribution

42

6.3. Experiments

Figure 6.5: Unbalanced delivery plans.

of data which has not been seen before, it is not possible to predict sensible
delivery plans and the model just serves each of the nodes by a single vehicle.
This behavior is shown in Figure 6.6. The model has even problems with
generalization to different input data distributions in a single dataset.

Figure 6.6: If the model does not know how to solve the instance, it just sends
each vehicle to serve one node.

Another model sensitivity is to the instance problem size. If the model is
trained on the problem size of 20 nodes, the model performance is continuously
degraded by a larger difference of the problem size on which it was trained
on. We tried training the model on a dataset of different problem sizes, but
the network was not effectively learning. The model has to be trained on a

43

6. Evaluation

problem size with a minimal difference.
The solution is to train multiple models for each of the problem sizes

and data distribution. However, this seems as a great obstacle in using this
model in real-world environment and thus a new model with improved model
generalization needs to be proposed by researches.

6.3.4 Training Process

The training process of such a network is very time consuming and with our
limited available hardware, the VRPTW model for solving 50 nodes requires
at least 5 days to be fully trained. Therefore, experimenting with a different
values of network hyperparameters is not part of this thesis. We only focused
on proving if even such a problem like VRPTW can be sub-optimally solved
via ML. We have used the same hyperparameters as Kool et al. [7] in their
research.

During the training process, we have observed multiple values of the cost
function 4.20 to understand if the network was successfully learning to solve
the problem.

Figure 6.7: Average cost (reward) per epoch on training data.

In Figure 6.7 we observe the average cost of the predicted solutions per
epoch. It fairly quickly plateaued, but if we look at the average cost on the
validation dataset 6.8, the value was still decreasing. The model was still
improving just on different parts of the cost function.

Figure 6.8: Average cost (reward) per epoch on validation data.

44

6.3. Experiments

If we would experiment with hyperparameter tuning, in this case, we could
try to use the decaying learning rate which we assume would further more
decreased the cost function.

Figure 6.9: The average cost for time windows per epoch.

In Figure 6.9 we observe the average penalty for early and late arrivals of
the predicted routes per epoch. The model quickly learns the policy strategy
how to predict the next node to visit based on the time constraint. We assume
that the model first learns the strategy for minimizing the time window based
on the drastic drop of the time window cost function and then it learns to
optimize the distance of routes. In Figure 6.10 we observe the average total
distance of predicted routes per epoch and the cost is constantly decreasing
while the model learns to optimize the distance.

Figure 6.10: The average distance cost per epoch.

In Figure 6.11 is the last observed part of the cost function, the unbalance
penalty, which is slowly decreasing while the model learns to distribute the
nodes uniformly across the vehicles.

The cost function is used as a reward function for RL. It is important to
note that the model can never achieve a value of the cost function which would
converge to zero.

45

6. Evaluation

Figure 6.11: The average cost of balanced plans.

6.4 Benchmarking

We know that our deep reinforcement learning model for sub-optimally solv-
ing VRPTW can predict a solution for VRPTW instances 6.2. However, to
evaluate the model performance, we need to compare it with other reliable
methods like constructive heuristics and metaheuristics.

The first benchmark is insertion heuristics 3.1 which produces a feasible
solution in a matter of seconds. It is frequently used to generate an initial
solution which is then optimized by a local search algorithm or population-
based method. The second typical benchmark used in research papers is
OR-Tools framework 3.2 and its is widely used for many optimization tasks.
Lastly, the third benchmark combines insertion heuristics as an initial solution
and OR-Tools planner as a metaheuristic.

In tables 6.1, 6.2 and 6.3 are measured the average cost of our implemented
planners on 64 random VRPTW instances. We evaluate on all the essential
subparts of the cost function where the AggCost is the same as being used in
our model architecture 4.20. Additionally, we have tracked the computation
time per each instance to emphasize on the great advantage of our model.

Our proposed deep reinforcement learning model is RL AM PLANNER.
Additionally, we have implemented RL AM OR TOOLS PLANNER, a plan-
ner that uses the predicted solution of our model as a constructive heuristic
which is then optimized by OR-Tools.

Model DistanceCost DelayCost EarlinessCost ComputationTime AggCost
Km min. min. sec

INSERTION HEURISTIC 981 0 847 1 1,193
RL AM PLANNER 610 38 871 0.5 847
OR TOOLS 482 4 814 120 687
OR TOOLS INSERTION 488 1 798 121 688
RL AM OR TOOLS PLANNER 482 4 814 120 688

Table 6.1: Benchmarking of VRPTW solvers for problem size of 20 nodes.

Our proposed model RL AM PLANNER is outperforming the constructive
heuristic as expected, but OR-Tools as our metaheristics, clearly outperforms
the deep learning model. The RL AM PLANNER model for the problem

46

6.4. Benchmarking

Model DistanceCost DelayCost EarlinessCost ComputationTime AggCost
Km min. min. sec

INSERTION HEURISTIC 2,306 0 4,355 39 3,395
RL AM PLANNER 1,297 100 3,634 2 2,255
OR TOOLS 757 539 6,180 154 2,571
OR TOOLS INSERTION 2,007 3 3,967 192 3,000
RL AM OR TOOLS PLANNER 759 537 6,161 156 2,568

Table 6.2: Benchmarking of VRPTW solvers for problem size of 50 nodes.

Model DistanceCost DelayCost EarlinessCost ComputationTime AggCost
Km min. min. sec

INSERTION HEURISTIC 4,654 0 17,548 750 9,041
RL AM PLANNER 5, 852∗ 1∗ 15, 805∗ 16 9, 804∗
OR TOOLS 1,034 2,885 23,719 199 8,406
OR TOOLS INSERTION 4,478 0 17,109 807 8,755
RL AM OR TOOLS PLANNER 1, 034∗ 2, 885∗ 23, 719∗ 219∗ 8, 406∗

Table 6.3: Benchmarking of VRPTW solvers for problem size of 100 nodes.

size of 100 was not fully trained and the data may be biased (marked with
x∗). However, it is important to appreciate the negligible computational time
which the deep learning model requires to predict a feasible but still highly
suboptimal solution in compression with metaheuristics solvers.

47

Conclusion

The thesis objective was to explore solutions for the vehicle routing problem
with soft constrained time windows (VRPTW) using optimization heuristics
(metaheuristics) and primarily machine learning. Even though the general
vehicle routing problem has seen novel proposed approaches in recent years,
the problem of vehicle routing with soft constrained time windows has received
almost no attention. Based on this realization, we have focused on proposing a
solution for vehicle routing problem with soft constrained time windows using
machine learning techniques and comparing it with metaheuristic solvers.

In this thesis, we have formally defined the problem of vehicle routing and
described its other flavours such as time windows. The thesis provides the nec-
essary theoretical background of reinforcement learning, attention mechanism,
Transformer network, and Graph Attention Network to fully understand the
implemented solution of vehicle routing with soft constrained time windows.
It covers various methods for solving our problem using constructive heuristics
and metaheuristics. We also described how a production ready planner should
look like.

This thesis describes a new method for solving a vehicle routing problem
with soft constrained time windows using deep reinforcement learning. The
model is built upon Transformer architecture utilizing Graph Attention Net-
work for embedding the input instance. The model uses a newly proposed
reward function that incorporates the time window constraint.

We have developed and trained our proposed deep reinforcement learning
using PyTorch and additionally implemented insertion heuristics as a con-
structive heuristic benchmark and OR-Tools solver as a metaheuristic bench-
mark. The model was successfully trained on a generated dataset of VRPTW
instances because it requires a large amount of training unlabeled data.

We have evaluated the performance of our model against our implemented
constructive heuristic and metaheuristic. The model significantly outperforms
the constructive heuristics but is still behind the OR-Tools metaheuristics.
We have assumed that the model could be a great alternative to constructive

49

Conclusion

heuristics, but because of its poor generalization, it is impossible to use it as
a production ready planner.

In the future work, we will focus on a little different approach and adopt a
new model architecture of Kool et al. [47] which we plan to extend to support
soft constrained time windows and pick and deliver.

50

Bibliography

[1] Available from: https://neo.lcc.uma.es/vrp/vehicle-routing-
problem/

[2] Bono, G. Deep multi-agent reinforcement learning for dynamic and
stochastic vehicle routing problems. , no. 2020LYSEI096, Oct. 2020. Avail-
able from: https://tel.archives-ouvertes.fr/tel-03098433

[3] Sutton, R. S.; Barto, A. G. Reinforcement Learning: An Introduction.
Cambridge, MA, USA: A Bradford Book, 2018, ISBN 0262039249.

[4] Weng, L. Attention? Attention! lilianweng.github.io/lil-log, 2018.
Available from: http://lilianweng.github.io/lil-log/2018/06/24/
attention-attention.html

[5] Vaswani, A.; Shazeer, N.; et al. Attention Is All You Need. CoRR, volume
abs/1706.03762, 2017, 1706.03762. Available from: http://arxiv.org/
abs/1706.03762

[6] Veličković, P.; Cucurull, G.; et al. Graph Attention Networks. 2018,
1710.10903.

[7] Kool, W.; van Hoof, H.; et al. Attention, Learn to Solve Routing Prob-
lems! 2019, 1803.08475.

[8] Lenstra, J. K.; Kan, A. H. G. R. Complexity of vehicle rout-
ing and scheduling problems. Networks, volume 11, no. 2, 1981:
pp. 221–227, doi:https://doi.org/10.1002/net.3230110211, https:
//onlinelibrary.wiley.com/doi/pdf/10.1002/net.3230110211. Avail-
able from: https://onlinelibrary.wiley.com/doi/abs/10.1002/
net.3230110211

[9] Dantzig, G. B.; Ramser, J. H. The Truck Dispatching Problem. Manage-
ment Science, volume 6, no. 1, 1959: pp. 80–91. Available from: https://
EconPapers.repec.org/RePEc:inm:ormnsc:v:6:y:1959:i:1:p:80-91

51

https://neo.lcc.uma.es/vrp/vehicle-routing-problem/
https://neo.lcc.uma.es/vrp/vehicle-routing-problem/
https://tel.archives-ouvertes.fr/tel-03098433
http://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html
http://lilianweng.github.io/lil-log/2018/06/24/attention-attention.html
1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
1710.10903
1803.08475
https://onlinelibrary.wiley.com/doi/pdf/10.1002/net.3230110211
https://onlinelibrary.wiley.com/doi/pdf/10.1002/net.3230110211
https://onlinelibrary.wiley.com/doi/abs/10.1002/net.3230110211
https://onlinelibrary.wiley.com/doi/abs/10.1002/net.3230110211
https://EconPapers.repec.org/RePEc:inm:ormnsc:v:6:y:1959:i:1:p:80-91
https://EconPapers.repec.org/RePEc:inm:ormnsc:v:6:y:1959:i:1:p:80-91

Bibliography

[10] Solomon, M. Algorithms for the Vehicle Routing and Scheduling Prob-
lems with Time Window Constraints. Oper. Res., volume 35, 1987: pp.
254–265.

[11] Psaraftis, H. A Dynamic Programming Solution to the Single Vehicle
Many-to-Many Immediate Request Dial-a-Ride Problem. Transportation
Science, volume 14, 05 1980: pp. 130–154, doi:10.1287/trsc.14.2.130.

[12] Bertsimas, D.; Jaillet, P.; et al. A Priori Optimization. Operations Re-
search, volume 38, 02 1989, doi:10.1287/opre.38.6.1019.

[13] Toth, P.; Vigo, D.; et al. Vehicle Routing: Problems, Methods, and Appli-
cations, Second Edition. USA: Society for Industrial and Applied Math-
ematics, 2014, ISBN 1611973589.

[14] Gendreau, M.; Laporte, G.; et al. Stochastic vehicle routing. Euro-
pean Journal of Operational Research, volume 88, no. 1, 1996: pp. 3–
12, ISSN 0377-2217, doi:https://doi.org/10.1016/0377-2217(95)00050-X.
Available from: https://www.sciencedirect.com/science/article/
pii/037722179500050X

[15] STEIN, D. M. Scheduling Dial-a-Ride Transportation Systems. Trans-
portation Science, volume 12, no. 3, 1978: pp. 232–249, ISSN 00411655,
15265447. Available from: http://www.jstor.org/stable/25767916

[16] DROR, M.; TRUDEAU, P. Savings by Split Delivery Routing. Trans-
portation Science, volume 23, no. 2, 1989: pp. 141–145, ISSN 00411655,
15265447. Available from: http://www.jstor.org/stable/25768367

[17] Last-mile logistics worldwide - Statistics Facts. Available from:
https://www.statista.com/topics/4383/last-mile-delivery/
#dossierSummary

[18] Bellman, R. E. The Theory of Dynamic Programming. Santa Monica,
CA: RAND Corporation, 1954.

[19] Thomas, P. S.; Brunskill, E. Policy Gradient Methods for Reinforcement
Learning with Function Approximation and Action-Dependent Baselines.
2017, 1706.06643.

[20] j2kun. Markov Chain Monte Carlo Without all the Bullshit. Sep 2016.
Available from: https://jeremykun.com/2015/04/06/markov-chain-
monte-carlo-without-all-the-bullshit/

[21] Ng, A. CS229 Lecture notes - Supervised learning, 2012.

[22] Weng, L. Policy Gradient Algorithms. lilianweng.github.io/lil-log, 2018.
Available from: https://lilianweng.github.io/lil-log/2018/04/08/
policy-gradient-algorithms.html

52

https://www.sciencedirect.com/science/article/pii/037722179500050X
https://www.sciencedirect.com/science/article/pii/037722179500050X
http://www.jstor.org/stable/25767916
http://www.jstor.org/stable/25768367
https://www.statista.com/topics/4383/last-mile-delivery/##dossierSummary
https://www.statista.com/topics/4383/last-mile-delivery/##dossierSummary
1706.06643
https://jeremykun.com/2015/04/06/markov-chain-monte-carlo-without-all-the-bullshit/
https://jeremykun.com/2015/04/06/markov-chain-monte-carlo-without-all-the-bullshit/
https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html
https://lilianweng.github.io/lil-log/2018/04/08/policy-gradient-algorithms.html

Bibliography

[23] Williams, R. J. Simple Statistical Gradient-Following Algorithms for Con-
nectionist Reinforcement Learning. Machine Learning, volume 8, 1992:
pp. 229–256.

[24] Available from: https://danieltakeshi.github.io/2017/03/28/
going-deeper-into-reinforcement-learning-fundamentals-of-
policy-gradients/

[25] Bahdanau, D.; Cho, K.; et al. Neural Machine Translation by Jointly
Learning to Align and Translate. 2016, 1409.0473.

[26] Radford, A.; Wu, J.; et al. Language Models are Unsupervised Multitask
Learners. 2019.

[27] Hochreiter, S.; Schmidhuber, J. Long Short-term Memory. Neural compu-
tation, volume 9, 12 1997: pp. 1735–80, doi:10.1162/neco.1997.9.8.1735.

[28] He, K.; Zhang, X.; et al. Deep Residual Learning for Image Recognition.
2015, 1512.03385.

[29] Ba, J. L.; Kiros, J. R.; et al. Layer Normalization. 2016, 1607.06450.

[30] Kipf, T. N.; Welling, M. Semi-Supervised Classification with Graph Con-
volutional Networks. 2017, 1609.02907.

[31] Graph attention network. Available from: https://docs.dgl.ai/en/
0.4.x/tutorials/models/1_gnn/9_gat.html

[32] Jaw, J.-J.; Odoni, A. R.; et al. A heuristic algorithm for the multi-vehicle
advance request dial-a-ride problem with time windows. Transportation
Research Part B: Methodological, volume 20, no. 3, 1986: pp. 243–
257, ISSN 0191-2615, doi:https://doi.org/10.1016/0191-2615(86)90020-
2. Available from: https://www.sciencedirect.com/science/article/
pii/0191261586900202

[33] Solomon, M. M. Algorithms for the Vehicle Routing and Schedul-
ing Problems with Time Window Constraints. Operations Re-
search, volume 35, no. 2, 1987: pp. 254–265. Available from:
https://EconPapers.repec.org/RePEc:inm:oropre:v:35:y:1987:
i:2:p:254-265

[34] Lu, Q.; Dessouky, M. M. A new insertion-based construction heuristic
for solving the pickup and delivery problem with time windows. Eu-
ropean Journal of Operational Research, volume 175, no. 2, 2006: pp.
672–687, ISSN 0377-2217, doi:https://doi.org/10.1016/j.ejor.2005.05.012.
Available from: https://www.sciencedirect.com/science/article/
pii/S0377221705004698

53

https://danieltakeshi.github.io/2017/03/28/going-deeper-into-reinforcement-learning-fundamentals-of-policy-gradients/
https://danieltakeshi.github.io/2017/03/28/going-deeper-into-reinforcement-learning-fundamentals-of-policy-gradients/
https://danieltakeshi.github.io/2017/03/28/going-deeper-into-reinforcement-learning-fundamentals-of-policy-gradients/
1409.0473
1512.03385
1607.06450
1609.02907
https://docs.dgl.ai/en/0.4.x/tutorials/models/1_gnn/9_gat.html
https://docs.dgl.ai/en/0.4.x/tutorials/models/1_gnn/9_gat.html
https://www.sciencedirect.com/science/article/pii/0191261586900202
https://www.sciencedirect.com/science/article/pii/0191261586900202
https://EconPapers.repec.org/RePEc:inm:oropre:v:35:y:1987:i:2:p:254-265
https://EconPapers.repec.org/RePEc:inm:oropre:v:35:y:1987:i:2:p:254-265
https://www.sciencedirect.com/science/article/pii/S0377221705004698
https://www.sciencedirect.com/science/article/pii/S0377221705004698

Bibliography

[35] Perron, L.; Furnon, V. OR-Tools. Available from: https://
developers.google.com/optimization/

[36] Voudouris, C.; Tsang, E.; et al. Guided Local Search. 09 2010, pp. 321–
361, doi:10.1007/978-1-4419-1665-5 11.

[37] Kirkpatrick, S.; Gelatt, C.; et al. Optimization by Simulated Annealing.
Science (New York, N.Y.), volume 220, 06 1983: pp. 671–80, doi:10.1126/
science.220.4598.671.

[38] Glover, F. Future paths for integer programming and links to artifi-
cial intelligence. Computers Operations Research, volume 13, no. 5,
1986: pp. 533–549, ISSN 0305-0548, doi:https://doi.org/10.1016/
0305-0548(86)90048-1, applications of Integer Programming. Avail-
able from: https://www.sciencedirect.com/science/article/pii/
0305054886900481

[39] Pacheco, J.; Mart́ı, R. Tabu search for a multi-objective routing prob-
lem. Journal of the Operational Research Society, volume 57, no. 1,
2006: pp. 29–37, doi:10.1057/palgrave.jors.2601917, https://doi.org/
10.1057/palgrave.jors.2601917. Available from: https://doi.org/
10.1057/palgrave.jors.2601917

[40] Shaw, P. Using Constraint Programming and Local Search Methods to
Solve Vehicle Routing Problems. 1998.

[41] Pisinger, D.; Ropke, S. Large Neighborhood Search. 09 2010, pp. 399–419,
doi:10.1007/978-1-4419-1665-5 13.

[42] Schrimpf, G.; Schneider, J.; et al. Record Breaking Optimization Re-
sults Using the Ruin and Recreate Principle. Journal of Computational
Physics, volume 159, 04 2000: pp. 139–171, doi:10.1006/jcph.1999.6413.

[43] Ropke, S.; Pisinger, D. An Adaptive Large Neighborhood Search Heuris-
tic for the Pickup and Delivery Problem with Time Windows. Trans-
portation Science, volume 40, 11 2006: pp. 455–472, doi:10.1287/
trsc.1050.0135.

[44] Reimann, M.; Doerner, K.; et al. D-ants: Savings Based Ants Divide and
Conquer the Vehicle Routing Problem. Computers Operations Research,
volume 31, 04 2004: pp. 563–591, doi:10.1016/S0305-0548(03)00014-5.

[45] Bullnheimer, B.; Hartl, R.; et al. A New Rank Based Version of the Ant
System - A Computational Study. Central European Journal of Opera-
tions Research, volume 7, 01 1999: pp. 25–38.

54

https://developers.google.com/optimization/
https://developers.google.com/optimization/
https://www.sciencedirect.com/science/article/pii/0305054886900481
https://www.sciencedirect.com/science/article/pii/0305054886900481
https://doi.org/10.1057/palgrave.jors.2601917
https://doi.org/10.1057/palgrave.jors.2601917
https://doi.org/10.1057/palgrave.jors.2601917
https://doi.org/10.1057/palgrave.jors.2601917

Bibliography

[46] Cappart, Q.; Moisan, T.; et al. Combining Reinforcement Learning
and Constraint Programming for Combinatorial Optimization. 2020,
2006.01610.

[47] Kool, W.; van Hoof, H.; et al. Deep Policy Dynamic Programming for
Vehicle Routing Problems. 2021, 2102.11756.

[48] Local Search in Combinatorial Optimization. Princeton University Press,
2003. Available from: http://www.jstor.org/stable/j.ctv346t9c

[49] Lawler, E. L.; Wood, D. E. Branch-And-Bound Methods: A Survey. Op-
erations Research, volume 14, no. 4, 1966: pp. 699–719, ISSN 0030364X,
15265463. Available from: http://www.jstor.org/stable/168733

[50] Vinyals, O.; Fortunato, M.; et al. Pointer Networks. 2017, 1506.03134.

[51] Bello, I.; Pham, H.; et al. Neural Combinatorial Optimization with Re-
inforcement Learning. 2017, 1611.09940.

[52] Nazari, M.; Oroojlooy, A.; et al. Reinforcement Learning for Solving the
Vehicle Routing Problem. 2018, 1802.04240.

[53] Hottung, A.; Tierney, K. Neural Large Neighborhood Search for the Ca-
pacitated Vehicle Routing Problem. 08 2020.

[54] Transformer Architecture: The Positional Encoding. Available
from: https://kazemnejad.com/blog/transformer_architecture_
positional_encoding/

[55] OpenStreetMap contributors. Planet dump retrieved from
https://planet.osm.org . https://www.openstreetmap.org, 2017.

[56] Borg, I.; Groenen, P. Modern Multidimensional Scaling: Theory and
Applications. Journal of Educational Measurement, volume 40, 06 2006:
pp. 277 – 280, doi:10.1111/j.1745-3984.2003.tb01108.x.

[57] Li, J.; Xin, L.; et al. Heterogeneous Attentions for Solving Pickup
and Delivery Problem via Deep Reinforcement Learning. IEEE Trans-
actions on Intelligent Transportation Systems, 2021: pp. 1–10, doi:
10.1109/TITS.2021.3056120.

[58] Davison, M.; Sireci, S. Multidimensional Scaling. 10 2012, doi:10.1016/
B978-012691360-6/50013-6.

[59] Zhang, K.; Yang, Z.; et al. Multi-Agent Reinforcement Learning: A Se-
lective Overview of Theories and Algorithms. 2019, 1911.10635.

[60] Stack Overflow Developer Survey 2020. Available from: https://
insights.stackoverflow.com/survey/2020

55

2006.01610
2102.11756
http://www.jstor.org/stable/j.ctv346t9c
http://www.jstor.org/stable/168733
1506.03134
1611.09940
1802.04240
https://kazemnejad.com/blog/transformer_architecture_positional_encoding/
https://kazemnejad.com/blog/transformer_architecture_positional_encoding/
 https://www.openstreetmap.org
1911.10635
https://insights.stackoverflow.com/survey/2020
https://insights.stackoverflow.com/survey/2020

Bibliography

[61] He, H. The State of Machine Learning Frameworks in 2019. The Gradient,
2019.

56

Appendix A
Acronyms

AI artificial intelligence

ALNS Adaptive Large Neighborhood Search

CVRP capacitated vehicle routing problem

GAT Graph Attention Network

GCN Graph Convolution Networks

LNS Large Neighborhood Search

MHA Multi-head Attetntion

ML machine learning

PDP Pick and Deliver

RL reinforcement learning

TSP traveling salesman problem

VRP vehicle routing problem

VRPPD vehicle routing problem with pick and deliver

VRPTW vehicle routing problem with time windows

57

Appendix B
Media contents

readme.txt................................introductionary instructions
rl-am-vrptw..............the directory of VRPTW using deep learning

README.md.........the directory with example sequence from dataset
rl-am-vrptw source code of network

godeliver-planner..................directory of optimization planners
godeliver-planner.......................... source code of planers
benchmarking source code for running benchmarks

text..the thesis text directory
thesis..............the directory of LATEX source codes of the thesis
thesis.pdf the Diploma thesis in PDF format

59

	Introduction
	Motivation
	Challenges
	Assumptions
	Thesis structure

	Introduction to Vehicle Routing Problem
	Vehicle Routing Problem Definition
	VRP Notation

	Vehicle Routing Flavors
	Capacitated Vehicle Routing Problem
	Vehicle Routing Problem with Time Windows
	Pick and Deliver
	Static vs. Dynamic
	Deterministic vs. Stochastic
	Other Flavours

	VRP in a Real-world

	Theoretical Background
	Reinforcement Learning
	State and Action Value Functions
	Policy Gradients
	REINFORCE

	Attention
	Transformer
	Encoder
	Decoder
	Multi-Head Attention

	Graph Attention Network

	VRPTW via Optimization
	Insertion Heuristics
	Google OR-Tools
	Large Neighborhood Search
	Adaptive Large Neighborhood Search

	Ant Colony Optimization

	VRPTW via AI
	Related Work
	Solution
	Model Architecture
	Encoder
	Decoder

	Reinforcement Learning
	VRPTW Cost
	Training loop

	Integrating Duration Matrix

	Planning System
	GoDeliver System
	Planning process
	Planning Requirements

	Tech Stack - VRPTW via Optimization
	Tech Stack - VRPTW via AI

	Evaluation
	Dataset
	Sample Solutions
	Experiments
	Time Windows
	Balancing Plans
	Generalization
	Training Process

	Benchmarking

	Conclusion
	Bibliography
	Acronyms
	Media contents

