
Instructions

The main goal of this thesis is to analyze, design, implement and test a new module into an existing

application ClueMaker Configurator. The application is used to create and edit configuration which

contains definitions of entities, relations between them and their mapping from data sources. The new

configuration application module is intended to simplify and partially automate the creation and

modification of the configuration and will enable:

- visualization of defined entities and links between them,

- searching for and defining probable entities and relations in specified data sources (when creating a

new configuration or modifying an existing configuration), e.g. using a wizard,

- finding and defining a related entity (or link) to an existing entity in the specified data sources,

- finding and defining a related entity (or link) to an existing entity based on the match of the name

and data type between the tables in the data source.

Electronically approved by Ing. Michal Valenta, Ph.D. on 13 October 2020 in Prague.

Assignment of master’s thesis

Title: ClueMaker - visual configuration

Student: Bc. Dávid Žalúdek

Supervisor: Ing. Marek Sušický

Study program: Informatics

Branch / specialization: Web and Software Engineering, specialization Software Engineering

Department: Department of Software Engineering

Validity: until the end of summer semester 2021/2022

Master’s thesis

ClueMaker - visual configuration

Bc. Dávid Žalúdek

Department of Software Engineering
Supervisor: Ing. Marek Sušický

May 6, 2021

Acknowledgements

My thanks go to my supervisor Ing. Marek Sušický, for his insights and
guidance to the company Profinit EU s r.o for providing me the opportunity
to collaborate on the ClueMaker project. Lastly, to my family, friends, and
girlfriend, without their moral support and encouragement, I wouldn’t be able
to endure the years of studying CTU.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on May 6, 2021

Czech Technical University in Prague
Faculty of Information Technology
© 2021 Dávid Žalúdek. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Žalúdek, Dávid. ClueMaker - visual configuration. Master’s thesis. Czech
Technical University in Prague, Faculty of Information Technology, 2021.

Abstrakt

Táto diplomová práca sa zaoberá analýzou, návrhom a realizáciou modulov
do aplikácie ClueMaker Configurator firmy Profinit EU s.r.o., ktorej hlavnou
úlohou je generovanie konfigurácie pre vizualizačný nástroj ClueMaker. Im-
plementované moduly majú za úlohu pomáhat’ pri vytvárańı, modifikácíı a
vizualizácíı konfigurácie.

Kĺıčová slova ClueMaker, vizualizácia dát, analýza dát, konfigurácia, SQL,
databáza, graf

Abstract

This thesis deals with the analysis, design, and implementation of new modules
to Profinit EU ClueMaker Configurator, whose primary function is to create
configuration containing data source mapping to entity model used in visual-
ization done by Profinit EU ClueMaker. These modules aid in the creation,
modification, and visualization of the configuration.

Keywords ClueMaker, data visualization, data analysis, configuration, SQL,
database, graph

vii

Contents

Introduction 1
Motivation and goal of the thesis . 1
Thesis structure . 2

1 Introduction to ClueMaker 3
1.1 Basic Terms . 3
1.2 ClueMaker configurator . 4

1.2.1 Supported data source types 5
1.2.2 Generating configuration 5

1.3 ClueMaker application . 5
1.3.1 Data import . 6
1.3.2 Data filtering . 6
1.3.3 Data visualization . 6
1.3.4 Useful features . 6

1.3.4.1 Pallete . 7
1.3.4.2 Exporting reports 7
1.3.4.3 Timeline . 7
1.3.4.4 GIS . 8
1.3.4.5 Project export 8

1.4 ClueMaker Server . 8
1.5 Used technologies . 8

1.5.1 Java . 8
1.5.2 Apache Netbeans platform 9

1.5.2.1 Netbeans Visual library API 9
1.5.3 Apache Maven . 9

1.6 Real-world deployment . 10
1.6.1 Investigative journalists 11
1.6.2 Law firms . 11

ix

2 Analysis and design 13
2.1 Competing products . 13

2.1.1 IBM i2 Analyst’s Notebook 13
2.1.2 Cambridge Intelligence KeyLines 14
2.1.3 Tovek Tools . 14
2.1.4 Maltego . 15
2.1.5 Summary . 15

2.2 Existing solution . 15
2.2.1 Creating configuration 15

2.2.1.1 User prerequisites 16
2.2.1.2 Step needed to create configuration 16
2.2.1.3 SQL Query generation 16
2.2.1.4 Creating links 16

2.2.2 Visualization . 17
2.3 Requirements and use cases . 17

2.3.1 Use cases . 17
2.3.1.1 Use Case - creating configuration 17
2.3.1.2 Use Case - edit configuration 19

2.3.2 Functional requirements 19
2.3.2.1 FR1 - Visualize configuration entities and re-

lations in a graph. 20
2.3.2.2 FR2 - Extract meta data from data sources . . 20
2.3.2.3 FR3 - Find entities in data sources 20
2.3.2.4 FR4 - Find relations between entities 20
2.3.2.5 FR5 - Save data source metadata 20
2.3.2.6 FR6 - Visually generate SQL query 20

2.3.3 Non-functional requirements 20
2.3.3.1 NR1 - Cross-platform deployment 21
2.3.3.2 NR2 - Extensibility 21
2.3.3.3 NR3 - GUI consistency 21
2.3.3.4 NR4 - Backwards compatibility 21

2.4 Configuration model . 21
2.4.1 Transaction design pattern 21
2.4.2 Serialization/Deserialization 22

2.5 ClueMaker configurator . 22
2.5.1 Configuration editor module 22

2.5.1.1 Presenters . 22
2.5.1.2 View . 22
2.5.1.3 Actions . 23

2.5.2 Datasource model analysis 23
2.5.3 Drxf library . 24

2.5.3.1 Functions . 24
2.5.3.2 Data model . 25

2.6 User inteface design . 25

x

2.6.1 Wizard . 25
2.6.2 Configuration visualization 27
2.6.3 Visual SQL Query generation 27

3 Implementation 29
3.1 Used libraries . 29

3.1.1 Jackson . 29
3.1.2 JSOG for jackson . 29
3.1.3 Visual library API . 29

3.2 Implemented Modules . 30
3.2.1 Data sources meta data 30

3.2.1.1 Configuration model extension 30
3.2.1.2 Serialization/Deserialization 31
3.2.1.3 Datasources analyzer 32
3.2.1.4 Database analyzer 33
3.2.1.5 Drxf library integration 34

3.2.2 Configuration graph visualization 34
3.2.2.1 Model . 35
3.2.2.2 Presenters . 35
3.2.2.3 Contollers . 36
3.2.2.4 Interactors . 36
3.2.2.5 ViewModel . 36
3.2.2.6 View . 38

3.3 Configuration wizard . 39
3.3.1 Presenters . 40
3.3.2 View . 40
3.3.3 Dialogs . 41

3.4 SQLQuery builder . 41
3.5 SQL query generation . 43

3.5.1 Creating queries . 43
3.6 Additional components . 43

3.6.1 Searchable list . 43
3.6.2 Create Node entity dialog 44
3.6.3 Create Relation dialog 44
3.6.4 Create Relation entities dialog 44

3.7 Additional changes . 44
3.8 Evaluation of requirements . 44

3.8.1 FR1 - Visualize configuration entities and relations as a
graph. 44

3.8.2 FR2 - Extract metadata from data sources 44
3.8.3 FR3 - Find entities in meta data 45
3.8.4 FR4 - Find relations between entities 45
3.8.5 FR5 - Save data source metadata 45
3.8.6 FR6 - Visually generate SQL query 45

xi

3.8.7 NR1 - Cross-platform deployment 45
3.8.8 NR2 - Extensibility . 45
3.8.9 NR3 - GUI consistency 45
3.8.10 NR4 - Backwards compatibility 45

4 Testing 47
4.1 Unit tests . 47

4.1.1 Unit testing Drxf databases analyzer module 48
4.1.2 Unit testing configuration visualization module 48

4.1.2.1 Additional tests 48
4.2 Heuristical analysis . 48
4.3 Cognitive walk through . 50

4.3.1 Graph visualization . 50
4.3.2 Wizard . 51

4.4 Usability testing . 53
4.4.1 Tasks . 53
4.4.2 User 1 - Advanced user 54

4.4.2.1 Task 1 . 54
4.4.2.2 Task 2 . 54

4.4.3 User 2,3 - Novice users 54
4.4.3.1 Task 1 . 54
4.4.3.2 Task 2 . 55

Conclusion 57

Bibliography 59

A Acronyms 63

B Contents of enclosed CD 65

xii

List of Figures

1.1 Cluemaker application logo [1] . 3
1.2 Cluemaker configurator window. 4
1.3 Cluemaker timeline visualisation and graph view [2] 7
1.4 Apache Netbeans logo. [3] . 10
1.5 Apache Maven logo. [4] . 10

2.1 I2 group logo prior to being acquired by IBM. [5] 14
2.2 SQL text editor in ClueMaker configurator. 16
2.3 Element of a tree view with complex configuration opened. 17
2.4 Use case diagram for ClueMaker configuration process. 18
2.5 Class diagram of presenters handling components of configuration

model. 23
2.6 Data model generated by analyzer library. 25
2.7 Configurator main window with opened entity editor and mapping. 26
2.8 Modal dialog used to create new entities. 27
2.9 Configuration visualization as a graph. 28
2.10 Visual SQL builder. 28

3.1 Class diagram of meta data structure. 31
3.2 Class diagram depicting composition of presenter classes. 35
3.3 Class diagram visualizing dependencies of view model implemen-

tation. 37
3.4 Visualization of entities and relations in graph using orthogonal

routing for edges. 39
3.5 Visualization of entities and relations in graph using direct routing

for edges. 40
3.6 Wizard panel for relation entities creation. 41
3.7 Visual SQL builder view. 42

xiii

List of Tables

2.1 Functional requirements . 19
2.2 Non-functional requirements . 20

xv

Introduction

Never before in the history of the world has so much data been produced in
such a short time. Most organizations now understand that if they capture all
the data streams into their businesses, they can extract valuable information.
To solve the problem of visualization of relations, links, and flows between
subjects saved in multiple data sources, Profinit EU developed a commercial
solution ClueMaker.

This application is a commercial product of Profinit EU s.r.o., of which I
am an employee.

Motivation and goal of the thesis

With the ever-changing landscape of commercial applications, there is a need
for ClueMaker to stay competitive within its respective field. Therefore, con-
tinuous development and improvement are a necessary part of the application
life cycle.

To make the process of creating and managing configuration within the
application more accessible to the less experienced users, we decided to im-
plement new ways to create, edit and visualize configuration for the Clue-
Maker application. The current solution to extract entities and relations from
database data sources relies on previous user knowledge of database-specific
query language and database structure; this creates a barrier of entry for new
potential customers. The proposed solution is the new wizard module which,
in conjunction with our in-house developed library for database table relations
detection, aims to simplify and partially automate the configuration’s creation
and modification.

This project’s overall goal is to create a more readable representation of
the current configuration and ease its creation.

1

Introduction

Thesis structure

The work is divided into four logical units. The first part will describe the
application, technologies used, and its functionality before the development.

The next part deals with analyzing competing solutions and designing
a new approach to creating the configuration. This section also analyzes
functional and non-functional requirements for the new module and wire-frame
design.

The third section deals with the implementation of the new module. In
addition to implementation details of individual functional requirements and
a description of the technologies and procedures used, there is a description of
the integration of the new modules with the rest of the application. Finally,
at the end of this section is a brief evaluation of functional and non-functional
requirements.

The last part describes how the new module was tested, i.e., its function-
ality using unit tests, user interface heuristic analysis, and user testing.

2

Chapter 1
Introduction to ClueMaker

ClueMaker (link www.cluemaker.com) is a visual analytics tool created for one
of the premier Czech banks in 2012. It provides user-friendly querying across
connected data sources and a clear display of results, including time contexts.
Furthermore, with the help of a clear graphic connection, it is possible to
search for more related facts, making it easier, for example, for a security
analyst to form an overall picture of the case under investigation.

ClueMaker is divided into two smaller applications, the first responsible for
displaying data and operations on them. The second is the configurator, which
manages data sources and the mapping of individual entity attributes. The
main goal of the thesis is to streamline and simplify configuration creation.

1.1 Basic Terms

Introduction to most common terms used when describing ClueMakers con-
figuration and model. [6]

• Attribute: A data source field such as the surname, date, bank account
number.

• Entity: In general, a set of information related to an object, for example,
a person, company, contract, bank account. In the graph, the entities

Figure 1.1: Cluemaker application logo [1]

3

1. Introduction to ClueMaker

Figure 1.2: Cluemaker configurator window.

are represented as nodes and specific types of links.

• Relational entity: Item describes a relation that contains attributes, for
example, transaction or contract.

• Node: A fundamental component representing a data entry in a graph
(person, company, account) for which we search for links to its neighbors.

• Link/Edge: An expression for connection or relationship between two
nodes. It is not necessarily only a technical connection; the link could
bear several attributes, similarly to the node. (A good example is the
bank transaction - the link connecting two accounts that also contains
attributes such as the amount, currency, date)

1.2 ClueMaker configurator

The standalone application is responsible for defining data sources and their
respective mapping to user-defined entities, creating relations, defining rules
for generating reports. [1.2]

The output of this program is ClueMaker Workspace (.sws) file. This file
contains all definitions and resources necessary to import and visualize data
from data sources.

4

1.3. ClueMaker application

1.2.1 Supported data source types

ClueMaker supports a plethora of traditional relational databases (Oracle,
PostgreSQL, Microsoft SQL Server, and MySQL) and less traditional database
systems like Firebird, Impala, Teradata, Apache Hive, Aster Data, IBM DB2,
Netezza a Splunk. This adds flexibility to our users and allows them to de-
fine entities that are spread across different data sources. Lastly, we support
import from Excel using the wizard, which aids during the entire process of
creating the mapping, entities, and their relations.

1.2.2 Generating configuration

The main feature of this application is to generate configuration subsequently
used by the main ClueMaker application. The current implementation relies
on a series of form windows that allow the user to edit the configuration file
and create complex mappings to data sources; this is the functionality I want
to extend in this thesis since users are not provided any guidance other than
the user manual.

Currently, the application contains these main form panels:

• Data source editor - this panel provides the user with a form to create a
new data source and define parameters needed during the import step

• Entity editor - this panel provides the user with specifying attributes of
extracted entities.

• Relation entity editor - extends entity editor panel with source and target
relation definition

• Mapping editor - form defining a mapping from data source to the se-
lected entity and its attributes. When dealing with an SQL database,
this panel contains a formatted text field used to create a query.

• Relation editor panel - form defining the relation between two defined
entities.

• Saved searches - provides the user with functionality to create and save
frequently run queries on the data set.

• Reports editor - Provides the user with the ability to define templates
for generating reports.

1.3 ClueMaker application

The main application which visualizes graph from imported data based on
configuration generated by ClueMaker configurator.

5

1. Introduction to ClueMaker

1.3.1 Data import

The configuration defines the mapping from data sources to entities based
on which import queries are generated; this functionality provides the user
ability to query data sources for entities and use provided filters to focus on
investigated nodes. Results of queries are presented to the user in the form of
a table from which he can select subjects of interest. Another way to import
nodes to graphs is to expand nodes; this functionality also allows the user to
specify edges (relations) to expand.

1.3.2 Data filtering

After importing data, the user can create filters based on attribute values
or edge types, or entity types and highlight nodes in a graph or table. An-
other way to filter data is to use the full-text search functionality, which looks
throughout the entire graph to find a matching value. These filters can be
combined at will and saved for later use.

1.3.3 Data visualization

ClueMaker displays data in two ways, either as a graph or in the form of a
table. The graph represents entities as nodes and relations as edges. Table
maps entities to rows and their respective attributes as columns. Attributes
are dynamically loaded from data sources and are viewable as tables after
expanding nodes and edges.

ClueMaker offers multiple layouts to detangle complex networks and help
uncover insight. Each arrangement tries to highlight different features of data
and provide a new perspective. Supported layouts:

• Organic Layout - result in a natural distribution of nodes that exhibits
clusters and symmetric properties of the graph.

• Hierarchical Layout - the nodes are distributed into layers based on
degree. The order of the nodes within the layers ensures that the number
of edge crossings is as small as possible. Horizontal and vertical hierarchy
is supported.

• Timeseries Layout - Each node and edge has optional properties defining
its valid time, based on which ClueMaker can organize them into time
series layout.

1.3.4 Useful features

In this section, the author will highlight a few of the implemented tools aiding
in data visualization.

6

1.3. ClueMaker application

Figure 1.3: Cluemaker timeline visualisation and graph view [2]

1.3.4.1 Pallete

To ease visualization application provides a toolkit in the form of a palette,
which provides a way to place custom nodes, pictures, text, and edges. This
visual aid form helps organize complex structures and fill in pieces of infor-
mation not available in configured data sources.

1.3.4.2 Exporting reports

Another helpful feature to simplify and speed up repetitive lookups is the cre-
ation of reports. These can be run after an update to provide fast insight into
what is happening with the data or speed up the targeted nodes’ analysis.
Reports provide the following functionality: to execute parameterized data
queries on the entire data set or by creating reports specific to the selected
entity; this approach allows the use of entity attributes and user-defined pa-
rameters. In addition, the report’s result can be exported in the form of a
table (.csv or .xls).

1.3.4.3 Timeline

Another convenient feature is the timeline [1.3] which relies on entity property
valid time and allows users to scroll around to a specific time and evaluate
data from this perspective.

7

1. Introduction to ClueMaker

1.3.4.4 GIS

This system allows for geospatial analysis of data from the database accord-
ing to their geographic location. In addition, this module also implements
advanced filtering methods based on location data.

1.3.4.5 Project export

ClueMaker has the functionality to export the entire project, including the
current graph layout and selection as a ClueMaker Project file (.spr). This
feature allows continuous work even without online access to data sources.

1.4 ClueMaker Server

Extends ClueMaker with web scraper and web crawler features like scraping
from social networks, forums, RSS feeds, and searching the web for interesting
data like transactions or social connections.

1.5 Used technologies

ClueMaker is a Java language-based application developed on Netbeans open
IDE platform with Maven as a package management system. This combina-
tion creates an extendable, maintainable, and multiplatform architecture for
modern tools.

1.5.1 Java

Java is an object-oriented programming language created by James Gosling
from Sun Microsystems (Sun) in 1991 [7]; its main focus is to write a single
implementation translate it into bite code (.dex format) which is then run on
Java Virtual Machine.

The Java language was designed with the following characteristics as main
goals:

• Platform independent: Java programs use the Java virtual machine as
abstraction and do not access the operating system directly. This makes
ClueMaker highly portable and available on all supported platforms,
e.g., Windows, Linux, and Mac.

• Object-orientated programming language: Except for the primitive data
types, all Java elements are objects.

• Strongly-typed programming language: It is possible to define the type
of each variable during compilation.

8

1.5. Used technologies

• Interpreted and compiled language: Java source code is transferred into
the bytecode format, which does not depend on the target platform.
These bytecode instructions are interpreted by the Java Virtual machine
(JVM).

• Automatic memory management: Java manages the memory allocation
and de-allocation for creating new objects. The program does not have
direct access to the memory. The garbage collector automatically de-
stroys objects to which no active pointer exists.

Java 8 version [8] is used throughout the entire implementation of Clue-
Maker, including some of the modern features introduced in Java 8 like Stream
API and lambda functions.

1.5.2 Apache Netbeans platform

The NetBeans Platform is a broad Java framework for large desktop appli-
cations, like different IDEs or, in this case, visualization toolkit ClueMaker.
The NetBeans Platform contains APIs that simplify handling windows, ac-
tions, files, and many other things typical in applications. One of the best
know applications that makes use of this platform is NetBeans IDE itself. [9]

Each distinct feature in a NetBeans Platform application is represented
by a separate NetBeans module comparable to a plugin. A NetBeans module
is a group of Java classes that provides an application with a specific fea-
ture. ClueMaker uses most of the provided features. Few examples include
streamlining the handling of opened windows (TopComponent objects) and
implementation of custom action shortcuts.

1.5.2.1 Netbeans Visual library API

The API provides a set of reusable pieces - widgets. By composing them,
developers can create a visualization. Each widget has several properties,
including layout, border, assigned actions, and many more.

The library contains a set of predefined widgets that can be extended. All
pluggable pieces are declared as interfaces or abstract classes; a few exam-
ples include - WidgetAction, Anchor, AnchorShape, PointShape, Animator,
Border, GraphLayout, LookFeel, Layout, SceneLayout, Router, CollisionsCol-
lector. For all of these, the library provides built-in implementations which can
be extended or modified to fit specific needs of the application[10]. Licensed
under the Apache License, version 2.0.

1.5.3 Apache Maven

Maven is a powerful project management tool that is based on POM (project
object model). It is used for project build, dependency, and documentation.

9

1. Introduction to ClueMaker

Figure 1.4: Apache Netbeans logo. [3]

ClueMaker takes full advantage of Maven, including the use of plugins han-
dling testing like the surefire plugin or custom-defined builds using the jar
plugin [11]. Licensed under the Apache License, version 2.0

The following are the key features of Maven in summary:

• Dependency management including automatic updating, dependency
closures (also known as transitive dependencies).

• Multiple opened projects at the same time.

• Extensible, with the ability to quickly write plugins in Java or scripting
languages. ClueMaker uses build plugins for the NetBeans platform.

• Model-based builds: Maven can build many projects into predefined
output types such as a JAR, WAR, or distribution based on metadata
about the project.

• Dependency management: Maven provides a central repository of JARs
and other dependencies. Profinit EU. runs one instance on-premises
where current implementation can be located.

Figure 1.5: Apache Maven logo. [4]

1.6 Real-world deployment

ClueMaker is currently used by several Czech banks, insurance companies,
and telecommunication providers to uncover, investigate and prevent loan
and insurance fraud.

In this section, the author will summarize the type of customers that are
the main focus of this update to configuration creation and management. It

10

1.6. Real-world deployment

is mainly aimed at less experienced users that might not have a technical
background but would greatly benefit from a new viewpoint on their data.

1.6.1 Investigative journalists

ClueMaker helps journalists visualize and uncover connections between people
and find illegal money flows. One of such cases happened in 2018 [12] where
an investigative journalist from Czech news site Hĺıdaćı pes uncovered un-
documented money flow between high ranking officials and private companies
that would not be possible without ClueMaker.

1.6.2 Law firms

Connecting data from sources like business, bankruptcy, and insolvency reg-
isters and companies’ internal notes are essential to recognize fraud patterns
among subjects, accounts, and money flows. In addition, it helps lawyers to
scrutinize and unwrap suspicious claims and create reports used during trials.

11

Chapter 2
Analysis and design

This chapter will analyze the current process of creating and editing configu-
ration in the ClueMaker configurator, analyzing the competing solution, and
applying observations to the design process. The author will also explain the
current solution’s architecture and propose changes to the structure to make
the app more flexible for future developments.

2.1 Competing products

The main focus of this section is the approach of selected competing products
to creating configurations for their visualization tools.

2.1.1 IBM i2 Analyst’s Notebook

After the acquisition of i2 by IBM in 2011 [13], this toolkit became the industry
leader in data analysis and visualization. The toolkit is currently used by
security agencies, law enforcement, banking sector all around the globe to
detect crimes and fraud. IBM i2 Analyst’s Notebook has vast visualization
and analysis capabilities [14] with extensive documentation [15]. Functionality
is split into several products :

• i2 iBridge - connects IBM i2 Analyst’s Notebook users directly to en-
terprise databases with powerful search and query capabilities. This
functionality is the most comparable to the capabilities of ClueMaker
importer modules.

• i2 Charts - Charts display the intelligence that relates to an investiga-
tion. It can be created automatically by a toolkit or can be user-defined.
Similar functionality to ClueMaker’s saved searches and reports func-
tionality.

13

2. Analysis and design

• i2 TextChart - software for text extraction and visualization, which helps
overcome problems associated with the processing of unstructured data.

Configuration creation The user creates import specifications using a wiz-
ard that recognizes some data source formats and guides the user during the
configuration creation process. Import specification defines how the data is
interpreted as entities and links or selects one of the provided templates. An-
alyst’s Notebook inspects the data and lists any compatible import specifica-
tions; this allows to merge similar data sources into a single project definition.

Another useful feature is provided during the import step where similar
entities are merged based on specified criteria; similar functionality is currently
being implemented into ClueMaker.

Figure 2.1: I2 group logo prior to being acquired by IBM. [5]

2.1.2 Cambridge Intelligence KeyLines

JavaScript toolkit that produces graph visualization [16]. This approach has
distinct advantages compared to ClueMaker; graphs are displayed in a web
browser and are platform-independent, supports all data formats that can
be loaded as JSON, this carries higher starting costs when wanting to use a
private data source. Documented API is provided to ease the development
of a custom solution for each deployment. At least basic knowledge of the
JavaScript programming language is required.

2.1.3 Tovek Tools

Developed by Czech-based company Tovek that is a direct competitor to Clue-
Maker. Tovek Tools enable content exploration and analytical search with
relationship visualization. Currently also supports capabilities that are to be
implemented into ClueMaker like :

• explicitly defined database bindings or tables

• links based on the occurrence of the same automatically extracted ob-
jects (e.g., names)

• links based on the relevance of data content to simple or very complex
queries

14

2.2. Existing solution

• links are given by the geographical location

• ties based on a time match or a match of another attribute

For more advanced use cases solution is tailor-made for customers, con-
figuration and mapping are created by in-house developers, or trained profes-
sionals on a request basis [17].

2.1.4 Maltego

The Maltego application is a visual link analysis tool. The tool offers real-
time data mining and information gathering and the representation of this
information on a node-based graph. Maltego provides a data source store
where data vendors sell already extracted data. It is possible to add a custom
data source, but the internal developer team creates integration [18].

2.1.5 Summary

Solutions available on the market today usually require a deep knowledge
of the used platform to get started. Although some like IBM i2 Analyst’s
Notebook provide the user with an entity and link detection on selected data
sources, integration of similar feature to ClueMaker is one of our design goals.

2.2 Existing solution

In this section, the author will introduce the current approach to configuration
creation and visualization. All actions involving the creation and removal of
entities, data sources, mappings, and relations are handled from the main tree
structure; with growing configuration, it is hard to keep track of relations
between entities and their respective mappings.

2.2.1 Creating configuration

The current process of creating configuration is slightly cumbersome, mainly
concerning defining entities and creating a mapping for SQL-based databases.
For the advanced user, this does not pose much of a challenge since they
generate queries outside of the configurator and paste them into the query
text window, but with increasing access to open data, more and more people
are keen to gain insight into their data.

Simplifying the entire process and streamlining it to the point that the
users would connect to the database and would be able to create functioning
configuration either through wizard or fully automatic process, which would
be of excellent benefit to ClueMaker toolkit.

15

2. Analysis and design

Figure 2.2: SQL text editor in ClueMaker configurator.

2.2.1.1 User prerequisites

Currently, ClueMaker Configurator is used by administrators who must have
the information concerning the data sources they plan to use (such as the
host and DB name, user, and password), including an understanding of the
structure of data (a database schema in case of DB) in the data source they
want to use for definition of entities. Basic knowledge of SQL is expected. [6]

The goal is to remove or significantly reduce the amount of time and re-
quired knowledge needed to create useful configuration so users can analyze
data as soon as possible with added flexibility to have that detailed configu-
ration option down the line.

2.2.1.2 Step needed to create configuration

Current workflow used to create configuration define in ClueMakers configu-
ration guide [6]:

1. define one or more data sources

2. definitions of data entities and their mappings

3. definitions of relational entities and their mappings

4. define links between entities

2.2.1.3 SQL Query generation

Import of data from SQL database data source takes place through user-
defined SQL query. Query creation currently requires writing SQL queries in
a provided text editor [2.2] or outside of ClueMaker configurator; this solution
is impractical for users who do not have access to database metadata or lack
the knowledge of SQL language.

2.2.1.4 Creating links

Another part that needs some improvement is creating relations; this step in
configuration creation relies on users’ knowledge of the domain. One goal is
to provide suggested relations between entities to the user based on foreign

16

2.3. Requirements and use cases

Figure 2.3: Element of a tree view with complex configuration opened.

keys and matches of column names and types; this allows the user to select
one of the suggested links, and configuration is automatically created.

2.2.2 Visualization

The primary way to display the structure of the currently opened configuration
is a tree-like visualization. This type of view sacrifices the visibility of defined
links between entities. As seen in figure 2.3, it is hard to keep track of relations
between entities.

2.3 Requirements and use cases

After deliberation, these are requirements placed on the developed product
extracted from discussed use cases and improvement ideas.

2.3.1 Use cases

The most typical use case for ClueMaker Configurator users is pretty straight-
forward and centered around creating the configuration file (.sws). The sum-
mary of the use case structure is represented in the use case diagram. 2.4

These use cases are later used during the design of usability tests.

2.3.1.1 Use Case - creating configuration

Actor - ClueMaker user Definition - Create a configuration for the ClueMaker
application in the ClueMaker configurator.

2.3.1.1.1 Basic Flow Uses editor windows and menus.

17

2. Analysis and design

Figure 2.4: Use case diagram for ClueMaker configuration process.

1. Open ClueMaker Configurator application

2. Select new configuration option from menu file dropdown

3. Create and define connection settings for data source

4. Select analyzer from the dropdown menu and run analysis

5. Create new entities and define attributes

6. Create new relation entities and define attributes

7. Define relations between entities

8. Save configuration.

2.3.1.1.2 Proposed alternative flow - wizard Uses wizard to create a
configuration. Guides users through various steps in configuration creation.

1. Open ClueMaker Configurator application

2. Open wizard window

3. Select new configuration

4. Select analyzer from a drop-down menu in the data source specification
window

5. In next step create new entities or select from suggested

6. In next step create new relation entities or select from suggested

18

2.3. Requirements and use cases

Code Definition
FR1 Visualize configuration entities and relations in a graph.
FR2 Extract meta data from data sources.
FR3 Find entities in data sources.
FR4 Find relations between entities
FR5 Save data source meta data
FR6 Visually generate SQL query

Table 2.1: Functional requirements

7. In next step create new relations or select from suggested

8. Finish wizard

9. Save configuration

2.3.1.1.3 Proposed alternative flow - visualization Uses graph visu-
alization to create a configuration. Allows the user to modify current visual-
ization through the context menu in the graph and the toolbar.

1. Open ClueMaker Configurator application

2. Create a new configuration

3. Open configuration visualization window

4. Right-click anywhere on graph scene and open context menu, select new
entity option, finish with new entity dialog repeat until required entities
are added.

5. Select entities that analysis is to be applied. Select create relation or cre-
ate relation entity. Choose from pre-filtered selection in dialog window
or add new.

6. Save configuration

2.3.1.2 Use Case - edit configuration

It follows nearly identical steps to configuration creation, with the only differ-
ence that configuration is loaded from an existing file.

2.3.2 Functional requirements

Functional requirements define the basic system behavior and product features
that focus on user needs.

19

2. Analysis and design

Code Definition
NR1 Cross-platform deployment
NR2 Extensibility
NR3 GUI consistency
NR4 Backwards compatibility

Table 2.2: Non-functional requirements

2.3.2.1 FR1 - Visualize configuration entities and relations in a
graph.

• Create visualization of current configuration that depicts entities and
relations between them.

• Add control elements to modify current configuration.

2.3.2.2 FR2 - Extract meta data from data sources

• Extract meta data from data sources which will be later used to provide
insight eg. relations and probable entities.

2.3.2.3 FR3 - Find entities in data sources

• Process data source meta data and suggest probable relations to the
user.

2.3.2.4 FR4 - Find relations between entities

• Process data source meta data and suggest probable relations to the
user.

2.3.2.5 FR5 - Save data source metadata

• Save extracted metadata together with configuration. So on successive
loads, no further need to connect to data source is needed.

2.3.2.6 FR6 - Visually generate SQL query

• Create visual tool to generate SQL queries with support for simple joins
and attribute selection.

2.3.3 Non-functional requirements

New extensions must comply with these non-functional requirements.

20

2.4. Configuration model

2.3.3.1 NR1 - Cross-platform deployment

• Added functionality must preserve cross-platform deployment. Cur-
rently, ClueMaker supports Linux, Windows, and macOS.

2.3.3.2 NR2 - Extensibility

• New modules must be developed in such way that they are extensible
and maintanable.

2.3.3.3 NR3 - GUI consistency

• Design of the new views must be in sync with the rest of the application
and comply with 10 Usability Heuristics for User Interface Design defined
by Jakob Nielsen [19].

2.3.3.4 NR4 - Backwards compatibility

• New configuration should be compatible with previous revisions. So new
specification should be supper set of previous.

2.4 Configuration model

The primary model of the ClueMaker application contains all the definitions
needed to import and visualize data from data sources. Configuration model
consists of the following objects:

• Datasources - Definitions of connected data-sources with connection de-
tails.

• Entities - Data objects with attributes and relations.

• Mapping - Provides a way of extracting data from data sources by using
queries.

• Reports - Templates for reports.

• Saved Searches - Predefined often searched relations

2.4.1 Transaction design pattern

Configuration model contains validation in conjunction with transaction de-
sign pattern; this ensures that configuration is always in a valid state, ready
to be saved and used by ClueMaker application. Each operation that modifies
configuration must be wrapped in the transaction; after success new event is
created which notifies presenters.

21

2. Analysis and design

2.4.2 Serialization/Deserialization

The jackson library does the saving and loading configuration model serial-
izer [20] using specialized mappers that map configuration to DTO object.
To minimize the size and complexity of generated JSON configuration name
attribute is used as a key defining object during deserialization.

2.5 ClueMaker configurator

In this section, I will introduce and analyze the current project structure and
architecture. It is composed of 4 main modules :

• Configurator application - Module that exports application as executable.

• Configurator branding - Module contains style definitions and look and
feel for components.

• Configuration editor - The main module implements all editor panels,
presenters, and actions that modify the configuration model.

• Datasources editor - ClueMaker supports multiple data sources, each
specific in their definition and process of defining mapping to entities.

2.5.1 Configuration editor module

In this section, I will introduce the overarching architecture of the Configura-
tion editor module and describe the configuration model. The overarching ar-
chitecture is based on MVP design pattern with tightly coupled presenters and
views; each view is injected presenter on creation, updates to model are prop-
agated through controller interface implemented by presenters with method
writeToConfiguration() this method is called by the view when changes are
detected. The class dependencies are visualized in diagrams provided in at-
tachments.

2.5.1.1 Presenters

Each configuration element has Presenter 2.5 class which responsibility is to
create and manage the view component. Instances of presenters are created
by static factory method open(Configuration Element) defined in each Pre-
senter class. Each presenter subscribes to EventBus, and implements handle
methods.

2.5.1.2 View

View components are created and updated by presenters, all changes to the
model are propagated through the controller interface to the configuration

22

2.5. ClueMaker configurator

Figure 2.5: Class diagram of presenters handling components of configuration
model.

model. Each view is based on ViewInterface which defines update() method
this is a way for presenter to notify view of changes to model. View panels
diagram was created and referenced during analysis and subsequent imple-
mentation; it is available in attachments.

2.5.1.3 Actions

Actions provide a way to interact with configuration from menus and by using
shortcuts. Uses NetBeans open ide annotation to define menu position and
short cut. For each of the main components of the configuration model, there
are implemented actions to delete, edit and create new ones

2.5.2 Datasource model analysis

To simplify the current creation of mapping and with its interconnected SQL
query generation, we need to have some analytics tool at our disposal. To
allow future expansion, the whole system was designed with additional anal-
ysis libraries in mind. During design few constraints had to be taken into
consideration :

23

2. Analysis and design

• Multiple data sources are analyzed by one analyzer, ex. Drxf library
detects relations across databases based on column names and types
applicable when databases contain ICO or social numbers.

• Multiple analyzers might be used across configuration for specific data
sources, ex. when importing from graph databases and SQL databases,
a different analyzer might be used.

• Expected output of the analyzer is suggested entities and relations be-
tween them.

2.5.3 Drxf library

The library is internally developed by Profinit EU. Supports databases Post-
gres, MSQL, Oracle, and H2.

2.5.3.1 Functions

This library provides way of extracting database structure through jdbc driver
including foreign keys, column types, table names and structure. Second
functionality that I want to use from this library is detection of matches
between columns based on type and name, this is useful when matches occur
across databases for example telephone number or social security number are
expected to be named similarily. Currently 3 types of matchers based on
column name and type are implemented :

• SameColumnNameNamingRule - checks for identical column names and
types.

• ColumnNameWithTableNameAndUnderscoreNamingRule - checks for col-
umn naming rule {referenced table} {referenced column}

• RegexTableColumnNamingRule - a very general way of creating naming
matches where the referenced column is matched with following regex
expression .*{referenced table}.*{referenced column}.*

The latest functionality added to this library is the categorization of col-
umn data that might be sensitive, these can also be used to generate matches,
but this feature is currently not fully implemented. Currently, the library
supports 11 categories :

• Address - uses provided dictionary to detect addresses

• Credit card - regex matcher used to validate credit card numbers.

• CZ bank account - regex matching

• CZ tel number - detects phone numbers

• Email - uses apache commons EmailValidator

24

2.6. User inteface design

Figure 2.6: Data model generated by analyzer library.

2.5.3.2 Data model

The resulting data model is returned as POJO classes with data structure de-
picted in diagram 2.6. Each database and schema has separate DatabaseModel
generated containing tables and columns, each DatabaseTable object has a
list of DatabaseColumns that contain foreign key referred columns, these are
useful in detecting relational entities, together with all detected matches.

2.6 User inteface design

In this section, the author describes user interface windows designed. All
wireframes that were created and used during implementation are available in
attachments.

2.6.1 Wizard

Wizard consists of panels guiding the user through the process of generating
entities and links between them. The main emphasis while designing the
wizard was placed on ease of use and repeatability of the steps with the already
opened configuration; also, the wizard should be fully featured so all changes
to the configuration can be done solely by it. Each panel should contain
validation of inputs to ensure the validity of generated configuration.

Wireframes

Wizard window [2.7] contains navigation buttons and legend. The main
panel of the wizard changes based on the current step. When creating en-
tities/mappings/relations, suggestions are presented to user-generated based
on extracted metadata in the form of modal dialog windows.

25

2. Analysis and design

Figure 2.7: Configurator main window with opened entity editor and mapping.

1. Select configuration - Screen that gives the user the option to select a
configuration to start the wizard.

2. Select data sources - Panel that deals with data source definition and
data source creation. The left side contains a searchable list that can be
used to select a data source to edit.

3. Edit entities and mapping - Panel that defines entities and their respec-
tive mapping. The panel is split in the middle to provide an overview
of the entity and the related mapping.

4. Edit relation entities and mapping - Panel that deals with relation en-
tities definition. Similar to entity panel with extra features concerning
relation selection.

5. Edit relations - Define and edit relations between entities. Relation
editor window.

Dialogs

Provide basic functionality to select from suggested values or fill the form to
create a new entity/relation/relation entity, wireframe of new entity dialog
can be found in 2.8. Each window contains a cancel button and validation
element.

26

2.6. User inteface design

Figure 2.8: Modal dialog used to create new entities.

2.6.2 Configuration visualization

Visualization is designed as a graph view with widgets representing entities
and edges representing relations, together with a searchable list of entities and
a toolbar that provides extra functionality.

Wireframes

The main window contains zoomable, stretchable, and pannable scene with
components laid out based on the currently selected layout. The toolbar is
located on the top of the panel with functions like layout, fit to the scene, etc.

2.6.3 Visual SQL Query generation

To ease SQL request creation, I designed an SQL query builder that uses
extracted metadata to provide GUI guidance to the user.

Wireframes

Depicted in figure 2.10. On the left side there is searchable list of tables
contained in the selected datasource. On the bottom current query text editor.
Central portion of the editor occupies window visaulizing currently selected
tables and their connections. Each attribute of table contains checkbox to
select the attribute.

27

2. Analysis and design

Figure 2.9: Configuration visualization as a graph.

Figure 2.10: Visual SQL builder.

28

Chapter 3
Implementation

In this section, the author will describe the process of developing new modules
and changes made to the existing application.

3.1 Used libraries

Selected libraries are heavily influenced by the current implementation of mod-
ules in ClueMaker. Each dependency is included in the External libraries
module and included in implemented modules.

3.1.1 Jackson

JSON serialization/deserialization library [20] with useful feature set of an-
notations and serializer settings. The project is open-sourced and is provided
under Apache License 2.0.

3.1.2 JSOG for jackson

Acronym for JavaScript Object Graph, this plugin [21] for Jackson can serialize
cyclic object graphs in the JSOG format. Functionality is achieved by creating
a set of all objects used during serialization and assigning them unique @id
tags. When an already encountered object appears again during serialization,
it is replaced by the @ref tag; a similar idea is employed during deserialization,
instances of objects with filled @id tag are encountered first, and already de-
serialized objects replace @ref. This software is provided under the MIT
license.

3.1.3 Visual library API

Part of the Apache NetBeans toolkit [10] used for generating graph visual-
ization. This is the go-to visualization library in ClueMaker already used to

29

3. Implementation

create graph visualization in the main application and is tied into the Net-
Beans ecosystem, licensed under Apache License 2.0.

3.2 Implemented Modules

The modified application consists of NetBeans modules which separate con-
cerns into logical sections. In this thesis, I implemented five new modules,
three relating to data source analysis, one for wizard and one for visualization
of configuration.

• Datasource analysis

– Datasources analyzer - common definitions of data sources analyzer.
– Databases analyzer - definitions of metadata and mapping relating

to database data sources.
– Drxf databases analyzer - analyzer implementation based on Drxf

library.

• Configuration wizard - Wizard guiding user through steps required to
create a configuration

• Configuration graph visualization - Module handling visualization of cur-
rently loaded configuration as a graph.

3.2.1 Data sources meta data

The first functionality implemented was related to metadata extraction from
data sources. This part will explain the realization steps taken to implement
this functionality to the ClueMaker configurator.

3.2.1.1 Configuration model extension

To store extracted information from data sources, additional properties needed
to be added to the current configuration model. Metadata depends heavily
on the analyzer used, so this was chosen as the main point of differentiation
and base for the current design. Each analyzer has to follow the predefined
structure of extracted data 3.1.

For these reasons following data structure was implemented :

• Datasource - added DatasourcesMetaData object representing output
of single datasource analyzer.

• AbstractMetaData - base class that each object in meta data must in-
herit. Provides annotations for JSOGgenerator and @JsonTypeInfo used
during serialization.

30

3.2. Implemented Modules

Figure 3.1: Class diagram of meta data structure.

• DatasourcesMetaData - contains extracted entities and their relations
this information is used in automatic configuration creation.

• EntityMetaData - defined by extracted attributes and extracted entity
name. Extracted mapping from datasources to this entity is also stored
for future reference during assisted mapping generation for example table
in database.

• EntityMappingMetaData - defines which components of datasource map
to this entity. For example structured sql request or plain sql query
string.

• AttributeMetaData - described attribute extracted during analysis.

• AttributeMappingMetaData - defines which sections of datasource map
to this attribute. ex. Column in Table.

• RelationMetaData - defines connection between two EntityMetaData
objects. Contains list of AttributeMetaData pairs.

• SuggestedRelationEntities - class defining detected RelationEntity
in meta data that connects to currently defined entities.

• SuggestedRelation - class defining detected Relation in metadata for
currently defined entities.

3.2.1.2 Serialization/Deserialization

The main challenge while implementing this data structure was the inclu-
sion of multiple circular references, mainly AttributeMetaData is referenced
throughout RelationMetaData, and backward references, to handle this dur-
ing serialization/deserialization annotations provided to jackson library.

31

3. Implementation

@JsonIdentityInfo with JSOGGenerator is used to handle circular reference
of an object by serializing the back-reference’s identifier (@id and @ref fields
are added during serialization). During this step, I needed to take extra care
in creating a structure that is backward compatible and would be able to use
the current infrastructure to import data.

Loading configuration from the .sws file poses additional challenges, mainly
when coupled with a refresh of analysis metadata. Since new objects are
created on each call, and these should be mapped to existing objects, the cache
was implemented in DrxfMetaDataCatche which uses overridden hashCode
and equals methods, this solution together with factories creating metadata
objects, handles consistency of objects after deserialization. These classes are
required to stay as POJO to help with serialization.

This functionality is provided by JsonConfiguration module in the main
ClueMaker application; changes to the DTO configuration class had to be
made to facilitate serialization and deserialization of metadata.

3.2.1.3 Datasources analyzer

This module defines interfaces and implements a dummy data source analyzer.
It also contains @ServiceProvider annotation for the factory, which creates
instances of specific analyzers. Thus, this implementation creates a plugin
infrastructure for analyzers.

DatasourceAnalyzerInteface - defines an interface that is used through-
out the application. Each instance of this interface is self-describing, ex-
posing getters for name and description and methods for registering data
source for analysis. The main functionality of the analyzer is to extract
metadata from the data source, which contains detected entities and relations
between them, and subsequently generate SuggestedRelationEntities and
SuggestedRelations. Dummy implementation of this interface is included
in this module. Main interface methods description :

• loadDatasourcesMetaDataCatche - used to during deserialization to
initialize object cache. This is handled internally by each analyzer.

• getAnalysisTask - returns analysis task that main goal is to extract
metadata from data sources.

• detectRelationEntities - main method used during detection of re-
lation entities from metadata and currently loaded mappings.

• detectRelations - used to create relations from current mappings def-
initions and metadata.

DatasourceAnalyzerFactory - creates instances of analyzers. This mod-
ule implements default implementaion which looks for @ServiceProvider an-
totation which imeplement DatasourceAnalyzerInteface.

32

3.2. Implemented Modules

DatasourceAnalyzerTask - task object produced by an analyzer that han-
dles extraction and analysis of metadata. It is expected that more advanced
analyzers will require to run for a more extended time. To avoid unwanted
freezes of the application, each analyzer must implement its analysis in a task
and adhere to the interface defined by this abstract class. On-task fail message
is provided with a reason for failure, and resulting metadata is left empty.

3.2.1.4 Database analyzer

This module is more specific implementation of Datasources Analyzer mod-
ule with was implemented to define meta data structure for SQL databases.
On top of extending DatasourcesMetaData properties and functionality en-
capsulates data source metadata and structure including tables and columns
with types these are later used during creation of custom SQL queries. Im-
plemented classes include :

• DatabasesMetaData - contains extracted entities and their relations this
information is used in automatic configuration creation. Also contains
description for each database datasource.

• DatabaseDescription - contains reference to datasource object from
configuration and tables.

• DatabaseTable - contains name and columns list with back reference to
database description.

• DatabaseColumn - contains definition of column with back reference to
parent table.

• DatabseEntityMappingMetaData - extends EntityMappingMetaDat and
adds structured SQL query which maps to selected EntityMetaData.
Contains DatabaseStructuredSQLQuery object which defines sql query
to import this entity.

• DatabseAttributeMappingMetaData - contains database column which
maps to selected attribute. This object is used to detect relations be-
tween user generated entities and detected entities.

• RelationMetaData - defines connection between EntityMetaData ob-
jects. Contains list of AttributeMetaata pairs.

• DatabaseMetaDataMappingConfiguration provides new definition of
sql query that uses DatabaseStructuredSQLQuery as base implemen-
tation.

• DatabaseMappingConfiguration and overrides default getSql() method
this ensures backwards compatibility through out the application and in
main ClueMaker app.

33

3. Implementation

3.2.1.5 Drxf library integration

To take advantage of functions provided by the Drxf library, I implemented
the module Drxf database analyzer, which wraps functionality into an already
specified interface. The resulting analyzer is registered under the analyzer
interface, so it can be easily accessible using NetBeans Lookup.

Mapping is created using factories with cache for objects. This ensures
that subsequent calls to the analyzer generate the same objects already used
throughout the application.

Since this library is developed in-house, additional changes were made,
new hash and equals functions were implemented. Additionally, detection of
primary keys was added; this is required for automatically creating entities
and speeding up imports in the ClueMaker application.

DrfxAnalysisTask - this task generates DrxfMetaData object. Firstly
generates connection and extracts schemas from database. Then creates list
of DatabaseDescription objects that are based on registered data source
configurations. Then runs reference search and name search on databases.
Converts data from the Drxf library data model to the internal structure; this
step is necessary to have an independent database analyzer implementation.
After generating an internal database structure, the analyzer creates entities
metadata found in the database structure. Last step is generating relations
based on Match objects located in Drxf DatabaseColumn class.

Suggestions for relation entities are generated in 2 steps:

1. All possible relation entities are generated.

2. Mapping configuration elements are scanned for corresponding entities
that satisfy conditions set in relations, filled entities

Generated suggestions are filtered by looking directly into the inner structure
of Mapping configuration elements and scanning queries for structured im-
plementation. When suitable match is found extracts EntityAttribute and
Entity and assigns them to suggested relation entity.

3.2.2 Configuration graph visualization

This part of implementation is contained in separate module handling visual-
ization of configuration entities and their relations as widgets on the graph. I
used Visual library API as the main framework handling visualization. Imple-
mentation is separated into three main layers, each separated through defined
interfaces and message specification; this architecture is loosely based on The
Clean Architecture design specification [22]. To achieve loose coupling be-
tween layers, I use the dependency inversion principle [23] which ensures that
boundaries are crossed using abstractions (interfaces). This design allows for
replacing and testing each layer separately and mocking and injecting inter-
actors to check if correct actions are generated.

34

3.2. Implemented Modules

Figure 3.2: Class diagram depicting composition of presenter classes.

3.2.2.1 Model

The core of the implementation is still the configuration model [2.4], which
defines entities that we want to visualize. To cross-boundary to presenters
and controllers, there are defined following interfaces :

ConfigurationControllerInterface - defines methods which handle ac-
tions from view.

ConfigurationListenerInterface - interface which allows to listen on
changes to configuration.

In visualization implementation, we want to represent these parts of the
model:

• Node entities and their attributes as nodes in the graph.

• Relation entities and their attributes as nodes in the graph connecting
node entities.

• Relations as edges.

3.2.2.2 Presenters

Presenters handle transforming model entities to view models which repre-
sent graph structure of configuration. Presenters also implement publish-
subscribe design pattern by exposing generic ViewModelListener interface.

35

3. Implementation

Generic interface PresenterInterface<T, V extends ViewModel> was de-
fined to create generic interface for any presenter that maps object of type T
to ViewModel subclass. Abstract class AbstractPresenter implements sub-
scription part of the interface and creates attributes that hold elements to
be visualized and currently generated view model, also implements outward-
facing update(T element), this implementation notifies on ViewModel change.

Presenter factories Presenters are created in factories with a cache to
ensure one-to-one mapping of entities to the corresponding presenter. Each
instance of a factory is registered as ServiceProvider of factory interface for
the given entity type. In addition, the protected method createPresenter() is
internally defined and provides initialization for each presenter.

Mapping to entities To facilitate mapping entities to ViewModel and vice
versa, custom ViewModelMappingInterface was designed. The default im-
plementation of this interface is registered as a service with bi-directional
mapping of entities and view models using hash maps. Presenters register
new instances of view models to this cache. Controllers map view model back
to configuration model object; this separation ensures that all communication
from view model must flow through controllers since the view has no direct
reference to the model.

3.2.2.3 Contollers

Implements handling of user actions from view. ActionMessages are POJO
classes that define action type and view models that this action concerns, view
models are subsequently mapped to real entities, and updates on the model
are executed.

3.2.2.4 Interactors

Interactors are used to communicate with the Configuration editor module.
An example of an action that is handled in this fashion is an open editor action
on an entity; this action is the opening of the editor window defined in the
configuration editor module. The result of separating this module from the
rest of the application through interactors is that tests can be written to check
expected action calls instead of checking the effects on the entire application.

3.2.2.5 ViewModel

POJO classes that represent the current state of the model to view. Each view
model implementation extends AbstractViewModel and contains a unique
UUID assigned during initialization to the presenter. Overridden hash and
equals methods provide a way to identify objects even when the view loses

36

3.2. Implemented Modules

Figure 3.3: Class diagram visualizing dependencies of view model implemen-
tation.

object reference. These objects are serializable and can be used to implement
different forms of views, for example, web-based. Implemented view models:

• ConfigurationViewModel - view model representing configuration.

• ConnectionViewModel - defines connection point.

• EdgeViewModel - contains 2 connection points and conditions represent-
ing relation.

• EntityAttributeViewModel - view model for repsresenting attribute.

• EntityViewModel - abstract class that provides base for entities view
models.

• NodeEntityViewModel - adds relations and icon to base implementation.

• RelationEntityViewModel - adds edges property to view model which
represent incoming and outgoing relations.

• RelationViewModel - represents relation.

37

3. Implementation

3.2.2.6 View

The view is implemented as a standard TopComponent in the NetBeans plat-
form and is registered in the main context menu Window.

Class ConfigurationGraphView is the main component representing graph.
The base of its functionality is inherited from generic class GraphPinScene.
This class provides structure and methods for managing graph models as
well as mapping to widgets. The class is abstract and manages only data
models and mapping with widgets. The graphics (widgets) are supplied
by overriding the attachNodeWidget, attachPinWidget, attachEdgeWidget,
attachEdgeSourceAnchor and attachEdgeTargetAnchor abstract methods.
Each pin is assigned to a node. This class uses generics and allows to specify
type representation for nodes, edges, and pins in the graph model. ViewModel
is designed to conform to these specifications. Since the type of nodes, edges,
and pins could be the same, all node, edge, and pin instances have to be
unique within the whole scene.

Custom widgets were implemented to generate a view from view models :

• AttributePinWidget - implements listener for changes in entity at-
tributes view model, also contains special anchor implementation for
edge which position is calculated based on type of connection (source/des-
tination).

• EntityConnectionWidget - extends ConnectionWidget. Represents
edge in graph.

• EntityWidget - implements ViewModelListener for EntityViewModel
split into header widget and attributes.

• NodeEntityWidgetImpl - extends EntityWidget and adds image icon
to widget header.

• RealtionEntityWidgetImpl - extends EntityWidget.

3.2.2.6.1 Graph actions Multiple ways to interact with graph nodes
were implemented, including zoom on a graph, pan action, select node ac-
tion, box select action, via context menu anywhere on the scene or via the
provided toolbox.

Context menu actions include :

• Hide/Show all nodes

• Layout

• Create new entity - opens create entity dialog window.

38

3.3. Configuration wizard

Figure 3.4: Visualization of entities and relations in graph using orthogonal
routing for edges.

• Find relation entities/relations - when Entity widgets are selected this
functionality searches for relation entities where currently selected nodes
are present.

• 3 types of routing options, orthogonal [3.4], directed [3.5] or free routing
(User sets points on edges that stay in place).

3.2.2.6.2 Widget actions Each widget implements a primary move lis-
tener. In addition, entity widget registers context menu action that opens up
a menu that is constructed using the Swing component of JPopupMenu and
menu items are created using JMenuItem with the following options:

• Hide - hides this widget from the graph view

• Expand - Shows related entities and relations

• Attribute pathing - edge connections are related to attribute widgets

• Node pathing - edges are routed from the edges of the entity

• Minimize - Shows only the header of the widget

3.3 Configuration wizard

It uses a more straightforward implementation based on the NetBeans wiz-
ard model; this stems from the fact that current editor panels are used and

39

3. Implementation

Figure 3.5: Visualization of entities and relations in graph using direct routing
for edges.

wrapped in custom panels corresponding to wireframes in design. As a re-
sult, users can generate equal configuration through the wizard through the
standard editor part of the application and edit any configuration.

3.3.1 Presenters

Each wizard step has assigned presenter witch handles validation and panel
generation. Each presenter extends ConfigurationListener which subscribes
to current configuration on readSettings() method invocation, then propa-
gates update calls to assigned component.

3.3.2 View

View panels implementation adheres to wireframe designs. On the left side of
the window, users can browse through all defined objects editable in the cur-
rent panel; the right side is reserved for editor panels [3.6]. Editor panels used
for representing entities were reused from an existing application; this ensures
that users are not getting confused by two different editors and adds guided
configuration creation. All user interactions that influence configuration are
mapped to corresponding actions and executed.

40

3.4. SQLQuery builder

Figure 3.6: Wizard panel for relation entities creation.

3.3.3 Dialogs

Creating new Entities, Relation entities, and Relations are done through di-
alog windows that contain two parts. A list of suggested entities extracted
from metadata and simple form to specify the name of created entity/rela-
tion/relation entity.

3.4 SQLQuery builder

The biggest addition to the current workflow when creating configuration
is visual SQL builder; this component allows a novice user to create SQL
queries without having the database opened and creating them manually.
This component is available on data sources that have metadata compat-
ible with DatabasesMetaData. VisualSQLBuilder component is based on
GraphPinScene and uses internal information about structure of database.
To simplify query generation, users select one table that is the root node for
query and click on relations visualized in the form of a button with a key
label. SQL is built dynamically in the bottom text window; this text field is
non-editable. Users can select individual attributes from tables or decide to
select all attributes.

To extract query from the currently visualized graph, I implemented the
following algorithm :

1. Find root node of the query that is being visualized. This is trivial since
all our queries start with a single node selected.

41

3. Implementation

Figure 3.7: Visual SQL builder view.

2. Recursive function is then called on the top node with all currently
opened nodes and aggregator for already visited nodes. The fact that
our root node is not part of the query does not necessarily mean that
there are absolutely no cycles in the graph.

3. On each call function looks for node successors that were not visited
already.

4. Recursion ends if no additional successors are found.

1 struct SqlQuery {
2 bool isJoin ;
3 SqlQuery left;
4 SqlQuery right;
5 Table table;
6 }
7
8 SqlQuery generateSql (Set <Table > graphTables , Table rootTable , Set

<Table > expandedSet){
9 // add root node to expanded

10 expandedSet .add(root)
11
12 // returns childs of the Table by foreign key
13 referedTables = getReferredTables (root)
14
15 // remove all already expanded
16 referedTables . remove (expandedSet)
17
18 aggregator = SqlQuery {
19 table = rootTable
20 isJoin = false
21 }

42

3.5. SQL query generation

22
23 for (Table nextTable in referredTables)
24 aggregator = SqlQuery {
25 left = aggregator
26 right = generateSql (graphTables , nextTable , expandedSet)
27 isJoin = true
28 }
29
30 return aggregator
31 }

Listing 3.1: SQL structured query generation pseudo code.

One of the main limitations of this implementation is that queries are not
optimized, and the algorithm cannot generate self-referencing table queries;
each table must be used only once.

3.5 SQL query generation

One of the more algorithmically exciting parts of the implementation was the
generation of queries from the graph.

3.5.1 Creating queries

To save structural queries, I implemented StructuralSQLQuery class that im-
plements recursive data structure that defines semantical model as a binary
tree of subqueries. Each node in a graph is defined either as a join or table.
This data structure is subsequently traversed in order to generate an entire
query. The backbone of this implementation is the JOOQ library which com-
poses defined data into queries and wraps them into subqueries.

3.6 Additional components

During implementation, more generic components were developed to be reused
throughout the entire application.

3.6.1 Searchable list

One of the most used components throughout implementation provides a
searchable list of a generic type with a custom renderer for items. Components
that represent items in the list need to be stateless objects since no update
is called on change outside of the list. This composition dramatically simpli-
fies the creation of complex list visualization used, for example, in suggestion
boxes and dialogs.

43

3. Implementation

3.6.2 Create Node entity dialog

This dialog window serves as a guide during the creation of NodeEntity; the
primary purpose is to help the user with filling required data. It also provides
the user with suggested entities generated from Datasources metadata and
prefills mapping for this entity.

3.6.3 Create Relation dialog

To help generate relations between entities, a simple dialog window was used,
where the user is asked to either select from suggested entities or define new
relations by selecting the source and target node entities in provided combo
boxes.

3.6.4 Create Relation entities dialog

The modal dialog is used to suggest a new relation entity to the user.

3.7 Additional changes

To facilitate the use of editor panels in the wizard, multiple changes needed
to be made to the current implementation. Firstly static factory methods
used in presenters were substituted and refactored to support successive calls.
Only one instance of a presenter is required since they generate a single panel
component. New actions were added to the Configuration editor module to fa-
cilitate the creation of entities and relations using dialogues as well as filtering
based on selected nodes in visualization.

3.8 Evaluation of requirements

During this section, the author will summarize what functional requirements
were full filled during implementation.

3.8.1 FR1 - Visualize configuration entities and relations as a
graph.

This functional requirement is implemented in the Configuration Visualization
module. With additional functionality to edit configuration straight from
visualization, this feature was added during the design process to make the
interface more user-friendly.

3.8.2 FR2 - Extract metadata from data sources

A new plugin infrastructure is implemented to support additional analyzers
added to the implementation. Currently, only a single supported analyzer is

44

3.8. Evaluation of requirements

used based on an internally developed Drxf library that extracts data from
SQL databases and matches column names and types.

3.8.3 FR3 - Find entities in meta data

Currently, all tables are considered entities; this solution works for simple
databases, but when it comes to analyzing complex tables with multiple rela-
tional entities, these might get lost; further filtering is required.

3.8.4 FR4 - Find relations between entities

Dialog windows were implemented that suggest relations to the user. There
are created as actions, so they are available across all application GUI.

3.8.5 FR5 - Save data source metadata

The custom data structure was created, and special serialization tags were
used to serialize complex metadata with multiple cross-references. This model
is extensible to suit any data sources analyzer in the future.

3.8.6 FR6 - Visually generate SQL query

Visual SQL query builder [2.10] was implemented to help new users with
writing queries and defining metadata.

3.8.7 NR1 - Cross-platform deployment

No additional constraints were put on the application; all used libraries were
either already in use or had multiplatform deployment.

3.8.8 NR2 - Extensibility

The entire design of analyzers is structured around being able to add addi-
tional libraries and advanced features. In addition, metadata structure was
made flexible to allow for future expansion.

3.8.9 NR3 - GUI consistency

Existing panels were reused in the wizard, and graph controls were unified
across applications.

3.8.10 NR4 - Backwards compatibility

Backward compatibility was one of the hardest things to implement. The
current implementation of serialization was rigid and did not implement object
references. The entire structure was mapped to flat DTO. Mapping metadata

45

3. Implementation

flat was not an option since custom analyzers define them; this led to current
implementation with annotation and repopulating the object references back
based on names of objects from the configuration.

46

Chapter 4
Testing

Testing is the development phase performed during the entire application im-
plementation process used to detect software errors and prevent undesirable
effects of changes to the codebase.

ClueMaker application already uses various testing frameworks to support
a fully featured test suite. JUnit 5 [24] is used as the primary testing engine.
For mocking and stubbing interfaces, ClueMaker uses Mockito framework [25].
Also, the use of the Maven surefire plugin plays a vital role during automated
testing.

4.1 Unit tests

Unit tests were used during the implementation stage; this is due to the nature
of the application and to speed up development and catch errors early, various
mocking techniques were used to simulate a connection to other modules, for
this functionality, the internal implementation of MockLookup implemented in
testcommons module is used to mock default NetBeans looks up. This ensures
that each module is testable independently with the use of mocked interfaces.

These are the principles the author utilized during test creation:

• Fast — test should be fast.

• Independent — tests should not depend on each other. Tests should be
able to run in any order.

• Repeatable — tests should be repeatable in any environment.

• Self-Validating — Tests should have a boolean output.

• Minimize the number of assertions per test.

47

4. Testing

4.1.1 Unit testing Drxf databases analyzer module

Library interacts with the database, so the first step in creating unit tests
was defining sample database; for this purpose, ClueMaker implements H2
database, which is entirely contained in memory. During test class set-up new
instance of the database is created and populated with one of the two sample
scripts located in test sources. This library is tested in two stages:

First is connecting to the database and extracting metadata; these tests
are located in TestDrxfMetaDataTask class.

The second functionality that is being unit tested is the generation of
suggested entities and the loading instance of configuration with MetaData
already attached. These tests were implemented during the development of a
serializable data structure. Tests reside in TestDrxfDatabaseAnalyzer.

4.1.2 Unit testing configuration visualization module

Strict separation of presenters, controllers, and view through dependency in-
version principle and dependency injection allows for simple implementation
of unit tests.

Presenters are fed configuration and checked for correct view model change.
These tests are implemented per presenter basis. Thus, they greatly simplify
and speeds up the implementation process since entire components can be
developed independently of the main application.

Controllers would follow a similar pattern as presenters. Unfortunately,
there is no function I could test since there are no actions directly affecting
configuration; all current actions use dialogs and actions implemented in the
Configurator editor module and are just relayed through the interactor.

4.1.2.1 Additional tests

Pagila [26] is a large sample database to check against during testing. I ran
unit tests against this database, but it depended on running the Postgres
database on the local server. There is no way to keep these tests in the
unit tests suite and are commented out. Future unit tests could be run in a
stable environment like docker or on a deployment server where these sample
databases are available and versioned. This would allow for a faster response
time to JDBC driver changes or run tests against multiple different versions
of the database.

4.2 Heuristical analysis

The primary purpose of this analysis is to look through the application and
find design antipatterns broadly.

1. Visibility of system status

48

4.2. Heuristical analysis

• Application contains validation that keeps the user informed if there
are any errors during wizard steps.

• Metadata extraction might take a long time that might upset users;
that is why a dialog window with progress is opened during the
import process.

2. Match between system and the real world

• Currently, there is a disconnect in visualization style between the
new and old modules. This should be easily rectified by using new
custom icons for database keys and tables.

• Wizard uses editor panels that users are already comfortable with.
• Actions on the graph are intuitive, and controls follow well-known

conventions. (Mouse wheel to zoom, Mouse wheel click to the pan)

3. User control and freedom

• Each modal dialog has a well-defined way to exit through the cancel
button, nullifying the effect of an action or the normal closing of
the frame.

• Even during wizard steps, users are not tied down to a single step
and can move freely throughout.

• The one thing that’s not currently implemented is Undo and Redo
features, but the user is always notified when an irreversible step
is being taken (Deletion of part of the configuration)

4. Consistency and standards

• As already described, the wizard uses already defined panels. Dur-
ing this thesis, the extra functions implemented to them propagated
to the main editor interface, so novice users get accustomed to it.

5. Error prevention

• Currently, all modal dialogs used in creation are set up to rectify
user mistakes. For example, when the node entity name is left
blank default name is used.

6. Recognition rather than recall

• During wizard steps, entity editor and mapping are presented side
by side so the user can reference extracted attributes and create
mapping without the need to switch context.

7. Flexibility and efficiency of use

49

4. Testing

• Design of wizard was more catered for novice users, so no new
shortcuts or optimizations were created for the power users.

8. Aesthetic and minimalist design

• Minimalization of widgets and various routing options were imple-
mented and actions to hide or extend node entities.

9. Help users recognize, diagnose, and recover from errors

• Created dialogs are designed not to give the user much opportunity
to fill invalid data.

10. Help and documentation

• Currently, there is no documentation for provided functionality
available for users; this will be rectified by the time this function-
ality is released to the public.

4.3 Cognitive walk through

”The CW identifies usability problems by simulating step-by-step user behav-
ior for a given task” [27, p.463], and by answering the following questions at
each simulated step:

• Q1 - Will the user try and achieve the right outcome?

• Q2 - Will the user notice that the correct action is available to them?

• Q3 - Will the user associate the correct action with the outcome they
expect to achieve?

• Q4 - If the correct action is performed, will the user see that progress is
being made toward a solution of his/her task?

4.3.1 Graph visualization

Scenario user decided that he/she wants to extend current configuration with
new entity actor to add analysis of favorite actors of customers. Graph visu-
alization window create new entity task, steps taken:

1. User presses toolbar button ”Create new entity”

2. User selects entity from suggestion list

3. User clicks ”Create suggested”

50

4.3. Cognitive walk through

Action 1 There were no main issues found with this step.

1. Yes - The user will attempt to find a button that allows the user to
create a new entity.

2. Yes - These buttons are implemented in the context menu and toolbar
and are predominantly visible.

3. Yes - The user wants to add a new entity to the current configuration;
the button is named ”Create entity”.

4. Yes - User is prompted with a dialog to add a new entity to configuration.

Action 2 The main problem in this step is that not enough information is
given to the user on entities being created. The solution is creating a new
section that provides details on the currently selected entity.

1. Yes - The user’s main goal in this step is to select and view a new entity
from a predefined list to be created.

2. Yes - The selected item is highlighted in the list.

3. Yes - The result is selecting this entity from the list.

4. No - Not enough visual information is provided to the user when selection
happens.

Action 3 The problem within this step is that the entity might appear
outside of the visibility of the graph window. The solution is positioning new
nodes in the center of the screen.

1. Yes - User creates currently suggested entity.

2. Yes - The button is visible in the dialog window and is positioned in the
expected location.

3. Yes - Button name and action correlate.

4. No - User might not see that entity was created when it’s positioned
outside of the current scope of graph view.

4.3.2 Wizard

Wizard window create configuration task, steps taken:

1. User selects open configuration option

2. User clicks next on the wizard window

51

4. Testing

3. Select configuration file from selector

4. User selects entity from suggestion list

5. User clicks ”Create suggested”

Action 1 There were no main issues found with this step.

1. Yes - The form selection of configuration is designed in a way that
matches the user’s mental model

2. Yes - All radio options are presented with correct labeling, and it should
be easy for the user to recognize the correct action.

3. Yes

4. Yes - radio button is checked

Action 2 The next button should change the label based on the action
selected in the radio button.

1. Yes - The user wants to continue to the next page of the wizard.

2. Yes - Next button is using a standard wizard layout.

3. No - There might be some confusion with what the next button is going
to do, depending on the currently selected radio button.

4. Yes - File selector window will be opened.

Action 3 There were no main issues found with this step. A file selector is
a standard component of the operating system.

Action 4 Uses identical dialog window to Graph visualization cognitive
walkthrough 4.3.1, the identical analysis applies.

Action 5 The problem in this step is that wizard does not change windows
to the currently created entity. The solution is to open both the mapping and
entity editor panel relating to the new entity created.

1. Yes - User wants to create the selected entity.

2. Yes - The button is in a standard location.

3. Yes - The button is labeled as ”Create suggested”.

4. No - Wizard still displays the old entity selected previously by the user.

52

4.4. Usability testing

4.4 Usability testing

To review the current implementation and gather user feedback, usability tests
were executed, with two novice participants and one more advanced user who
has previous knowledge of the system. Users were given tasks which they
tried to full fill using provided tools. Afterward, user feedback was gathered,
and additional changes were implemented based on said feedback. Users were
then provided with basic tasks to try to execute if they struggled; additional
guidance was offered. All tests were executed through a remote session on
well-defined system configuration as well as stable database definitions; tests
were performed on Pagila [26] data set, whose structure was explained to
participants using entity diagram.

4.4.1 Tasks

During usability testing of wizard component following tasks were defined:

Task 1 Tests usability of wizard interface.

1. Open ClueMaker configurator application.

2. Open configuration wizard window from Tools menu.

3. Open configuration file in Documents folder.

4. Check if the database has loaded metadata / if not provide username
and password and load metadata.

5. Create new entities Customer, Actor, Film, Address and try to identify
other entities that might have relevance.

6. Create relation entities that create a connection between actor and film.

7. Create a relation that connects customer and address.

8. Check created entities in the graph.

Task 2 Test graph interface and SQL query builder. This task is designed
to check for the intuitiveness of making changes to the already loaded config-
uration.

1. Open ClueMaker configurator application.

2. Open configuration file in the Documents folder.

3. Check if the database has loaded metadata / if not provide username
and password and load metadata.

53

4. Testing

4. Create new entity Address thought graph interface.

5. Edit Address entity mapping.

6. Edit SQL to include city and country through provided visual editor.

7. Save configuration.

4.4.2 User 1 - Advanced user

Developer of application ClueMaker that helps clients with modyfying config-
urations and has extensive knowledge of ClueMaker controls.

4.4.2.1 Task 1

The user had no problem navigating the interface of wizards since these panels
were familiar to him. The one problem this user faced was while navigating
the graph visualization, here he noticed that controls are different from those
currently used by the main ClueMaker application, this was rectified, and
controls were unified.

4.4.2.2 Task 2

During testing with this user, the functionality of the visual SQL builder was
not yet implemented.

4.4.3 User 2,3 - Novice users

This was the first encounter with ClueMaker for these participants. At first,
they needed an explanation of what their goal is and basic controls of the GUI.
However, both were students of IT on FIT, so users with technical backgrounds
and understood quickly.

4.4.3.1 Task 1

After a brief introduction to user controls, participants had no problem lo-
cating the wizard and opening configuration. Users quickly found the create
button but were confused by the create dialog and needed to be guided to the
suggestion box instead of typing and creating a new entity. Both users then
used the search functionality to speed up locating desired entities/relation-
s/relation entities.

User 1 of this group found it odd that already created relations are still
offered in context menus, and it seemed there were duplicates without distin-
guishable differences. Additional filters were included that removed currently
used entities based on the name. For relations and relation entities

User 2 thought the overall experience was much more straightforward than
if he had to create the configuration by himself but noted that the process

54

4.4. Usability testing

should be even more streamlined with the suggestions based on some heuristic
or metric; this feature is planned in future revisions.

4.4.3.2 Task 2

Users used the toolbar, clicked on the create new node button, and created
entity without any issues. Both users need to be guided to a tree view of
the configuration and shown where mappings reside. This should not be a
problem for the more apt user since the process is pretty well documented in
the user guide [6]. Using the SQL builder was intuitive for the users.

User 1 - didn’t like that the created node entity was not laid out properly
and only placed in the top left corner. He thought opening mapping should be
more intuitive and straight from graph visualization instead of going through
an expanded tree. This is a valid concern that will be addressed in future
revisions.

User 2 - user noticed lag when opening mapping editor; this was due to
the static import of library JOOQ that needed some time to initialize; this
initialization was moved to startup sequence.

55

Conclusion

At the beginning of this thesis, the author describes the application ClueMaker
and ClueMaker Configurator their interaction and functionality; the next part
contains an analysis of the current solution for creating configuration as well
as market research of competing products, the rest of the thesis deals with
design implementation and testing of new modules.

The result of the thesis is three new modules implemented to ClueMaker
configurator whose purpose is to guide and help users create a configuration
and visualize entities and relations on a graph. Furthermore, to support the
detection of suggested entities and their relations new plugin architecture for
data sources analyzer was implemented, and a custom visual SQL builder was
developed.

The solution implemented in this thesis fulfills all the functional and non-
functional requirements, with some needing further refinement, mainly by
adding user-facing features like better sorting of suggestions.

Further improvements can be made by implementing additional analyzers
with more advanced features like detection of relations based on classifica-
tion of data, merging similar entities during the analysis process, or detecting
relations defined by multiple attributes.

57

Bibliography

[1] Cluemaker Logo. [Cited 2021-05-05]. Available from: https:
//cluemaker.com/wp-content/themes/svat/images/ClueMaker_
logo_1x.png

[2] ClueMaker application. Profinit EU s.r.o., [Cited 2021-05-05]. Avail-
able from: https://docs.cluemaker.com/latest/assets/img/70_
timeline_1_en.png

[3] Apache NetBeans Logo. July 2018, [Cited 2021-05-05]. Available
from: https://commons.wikimedia.org/wiki/File:Apache_NetBeans_
Logo.svg

[4] Apache Maven logo. Apache Software Foundation, [Cited 2021-05-05].
Available from: https://commons.wikimedia.org/wiki/File:Apache_
Maven_logo.svg

[5] I2 Group logo. [Cited 2021-05-05]. Available from: https://
upload.wikimedia.org/wikipedia/en/1/11/I2_Group_logo.png

[6] ClueMaker Configurator Guide. [Cited 2021-05-05]. Available from:
https://docs.cluemaker.com/latest/en/manual/configurator.html

[7] Vogel, L. Introduction to Java programming - Tutorial. vogella
GmbH, [Cited 2021-05-05]. Available from: https://www.vogella.com/
tutorials/JavaIntroduction/article.html#introduction-to-java

[8] Java 8. Oracle Corporation, [Cited 2021-05-05]. Available from: https:
//www.oracle.com/java/technologies/java8.html

[9] Apache NetBeans Development Version Documentation: APIs Overview.
[Cited 2021-05-05]. Available from: http://bits.netbeans.org/dev/
javadoc/

59

https://cluemaker.com/wp-content/themes/svat/images/ClueMaker_logo_1x.png
https://cluemaker.com/wp-content/themes/svat/images/ClueMaker_logo_1x.png
https://cluemaker.com/wp-content/themes/svat/images/ClueMaker_logo_1x.png
https://docs.cluemaker.com/latest/assets/img/70_timeline_1_en.png
https://docs.cluemaker.com/latest/assets/img/70_timeline_1_en.png
https://commons.wikimedia.org/wiki/File:Apache_NetBeans_Logo.svg
https://commons.wikimedia.org/wiki/File:Apache_NetBeans_Logo.svg
https://commons.wikimedia.org/wiki/File:Apache_Maven_logo.svg
https://commons.wikimedia.org/wiki/File:Apache_Maven_logo.svg
https://upload.wikimedia.org/wikipedia/en/1/11/I2_Group_logo.png
https://upload.wikimedia.org/wikipedia/en/1/11/I2_Group_logo.png
https://docs.cluemaker.com/latest/en/manual/configurator.html
https://www.vogella.com/tutorials/JavaIntroduction/article.html##introduction-to-java
https://www.vogella.com/tutorials/JavaIntroduction/article.html##introduction-to-java
https://www.oracle.com/java/technologies/java8.html
https://www.oracle.com/java/technologies/java8.html
http://bits.netbeans.org/dev/javadoc/
http://bits.netbeans.org/dev/javadoc/

Bibliography

[10] Kaspar, D. Visual Library 2.0 - Documentation. [Cited 2021-05-
05]. Available from: http://bits.netbeans.org/dev/javadoc/org-
netbeans-api-visual/org/netbeans/api/visual/widget/doc-
files/documentation.html

[11] Introduction to Apache Maven: A build automation tool for
Java projects. Dec. 2019, [Cited 2021-05-05]. Available from:
https://www.geeksforgeeks.org/introduction-apache-maven-
build-automation-tool-java-projects/

[12] Břešt’an, R. Peńıze na ”analýzy a mediálńı zastoupeńı” Okamurovy
SPD šly k lidem spojeným s TV Barrandov a Parlamentńımi listy. Feb.
2018, [Cited 2021-05-05]. Available from: https://hlidacipes.org/
penize-analyzy-medialni-zastoupeni-okamurovy-spd-sly-k-
lidem-spojenym-tv-barrandov-parlamentnimi-listy/

[13] IBM to Acquire i2 to Accelerate Big Data Analytics to Transform Global
Cities. [Cited 2021-05-05]. Available from: https://www-03.ibm.com/
press/us/en/pressrelease/35255.wss

[14] IBM Security i2 Analyst’s Notebook - Overview. IBM, [Cited 2021-05-05].
Available from: https://www.ibm.com/cz-en/products/i2-analysts-
notebook

[15] i2 Analyst’s Notebook Documentation. [Cited 2021-05-05]. Avail-
able from: https://www.ibm.com/docs/en/i2-anb/9.2.3?topic=
specification-creating-editing-import

[16] KeyLines - The JavaScript toolkit for graph visualization. Nov.
2020, [Cited 2021-05-05]. Available from: https://cambridge-
intelligence.com/keylines/

[17] Tovek. [Cited 2021-05-05]. Available from: https://www.tovek.cz/cs/
tovek-tools.html/textbf

[18] Transform Development Services. [Cited 2021-05-05]. Available from:
https://www.maltego.com/transform-hub/

[19] in Research-Based User Experience, W. L. 10 Usability Heuristics for
User Interface Design. [Cited 2021-05-05]. Available from: https://
www.nngroup.com/articles/ten-usability-heuristics/

[20] FasterXML. FasterXML/jackson. [Cited 2021-05-05]. Available from:
https://github.com/FasterXML/jackson

[21] Schnitzer, J. jsog/jsog-jackson. [Cited 2021-05-05]. Available from:
https://github.com/jsog/jsog-jackson

60

http://bits.netbeans.org/dev/javadoc/org-netbeans-api-visual/org/netbeans/api/visual/widget/doc-files/documentation.html
http://bits.netbeans.org/dev/javadoc/org-netbeans-api-visual/org/netbeans/api/visual/widget/doc-files/documentation.html
http://bits.netbeans.org/dev/javadoc/org-netbeans-api-visual/org/netbeans/api/visual/widget/doc-files/documentation.html
https://www.geeksforgeeks.org/introduction-apache-maven-build-automation-tool-java-projects/
https://www.geeksforgeeks.org/introduction-apache-maven-build-automation-tool-java-projects/
https://hlidacipes.org/penize-analyzy-medialni-zastoupeni-okamurovy-spd-sly-k-lidem-spojenym-tv-barrandov-parlamentnimi-listy/
https://hlidacipes.org/penize-analyzy-medialni-zastoupeni-okamurovy-spd-sly-k-lidem-spojenym-tv-barrandov-parlamentnimi-listy/
https://hlidacipes.org/penize-analyzy-medialni-zastoupeni-okamurovy-spd-sly-k-lidem-spojenym-tv-barrandov-parlamentnimi-listy/
https://www-03.ibm.com/press/us/en/pressrelease/35255.wss
https://www-03.ibm.com/press/us/en/pressrelease/35255.wss
https://www.ibm.com/cz-en/products/i2-analysts-notebook
https://www.ibm.com/cz-en/products/i2-analysts-notebook
https://www.ibm.com/docs/en/i2-anb/9.2.3?topic=specification-creating-editing-import
https://www.ibm.com/docs/en/i2-anb/9.2.3?topic=specification-creating-editing-import
https://cambridge-intelligence.com/keylines/
https://cambridge-intelligence.com/keylines/
https://www.tovek.cz/cs/tovek-tools.html/textbf
https://www.tovek.cz/cs/tovek-tools.html/textbf
https://www.maltego.com/transform-hub/
https://www.nngroup.com/articles/ten-usability-heuristics/
https://www.nngroup.com/articles/ten-usability-heuristics/
https://github.com/FasterXML/jackson
https://github.com/jsog/jsog-jackson

Bibliography

[22] Martin, R. C. The Clean Code Blog. [Cited 2021-05-05]. Avail-
able from: https://blog.cleancoder.com/uncle-bob/2012/08/13/
the-clean-architecture.html

[23] Villena, K. Simplifying Dependency Inversion Principle (DIP). Sept.
2018, [Cited 2021-05-05]. Available from: https://medium.com/
@kedren.villena/simplifying-dependency-inversion-principle-
dip-59228122649a

[24] The 5th major version of the programmer-friendly testing framework
for Java and the JVM. [Cited 2021-05-05]. Available from: https:
//junit.org/junit5/

[25] Mockito Framework. [Cited 2021-05-05]. Available from: https://
site.mockito.org/

[26] Gündüz, D. Pagila. [Cited 2021-05-05]. Available from: https://
github.com/devrimgunduz/pagila

[27] Blackmon, M. H.; Polson, P. G.; et al. Cognitive Walkthrough for
the Web. In Proceedings of the SIGCHI Conference on Human Fac-
tors in Computing Systems, CHI ’02, New York, NY, USA: Associa-
tion for Computing Machinery, 2002, ISBN 1581134533, p. 463–470,
doi:10.1145/503376.503459, [Cited 2021-05-05]. Available from: https:
//doi.org/10.1145/503376.503459

61

https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html
https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html
https://medium.com/@kedren.villena/simplifying-dependency-inversion-principle-dip-59228122649a
https://medium.com/@kedren.villena/simplifying-dependency-inversion-principle-dip-59228122649a
https://medium.com/@kedren.villena/simplifying-dependency-inversion-principle-dip-59228122649a
https://junit.org/junit5/
https://junit.org/junit5/
https://site.mockito.org/
https://site.mockito.org/
https://github.com/devrimgunduz/pagila
https://github.com/devrimgunduz/pagila
https://doi.org/10.1145/503376.503459
https://doi.org/10.1145/503376.503459

Appendix A
Acronyms

API Application Programming Interface

CW Cognitive Walkthrough

DB Database

DTO Data transfer object

FR Functional requirement

GUI Graphical user interface

ICO Company identification number

IDE Integrated development environment

JDBC Java Database Connectivity

JOOQ Java Object Oriented Querying

JSOG JavaScript object graph

JSON JavaScript object notation

NR Non-functional requirement

POJO Plain old java object

SQL Structured Query Language

63

Appendix B
Contents of enclosed CD

readme.txt the file with CD contents description
exe the directory with executables

cluemakerConfigurator.zip...ZIP with executable of implemtation
test....................................the directory with test files

src.......................................the directory of source codes
source implementation sources
thesis..............the directory of LATEX source codes of the thesis

text..the thesis text directory
thesis.pdf...........................the thesis text in PDF format
diagrams...............................the directory with diagrams

65

