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Instructions

A central problem in learning from sequential data is representing cumulative history in an 

incremental fashion as more data is processed. The ordinary recurrent neural network suffers from a 

limited memory horizon. Several heuristics were proposed to overcome this, such as gates in the 

successful LSTM and GRU, or higher-order frequencies in the recent Fourier Recurrent Unit and 

Legendre Memory Unit. The most recent result in online function approximation problem field is given 

by a high-order polynomial projection operators (HiPPO) framework for the online compression of 

discrete and continuous signals by projection onto polynomial bases. 

 

The aim of this thesis is to research the practical usability of this framework. The student should 

implement this HiPPO-LegS update mechanism within this framework a test it on at least two publicly 

available sequential datasets. The results should be compared to other state-of-the-art approaches 

applied to those datasets and properly discussed.
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Abstrakt

Ćılem této práce je prozkoumat možnosti praktického využit́ı komprese signálu
projekćı do polynomiálńıch báźı při implementaci rekurentńıch neuronových
śıt́ı. Praktická část práce se zabývá klasifikaćı zvukových signál̊u a zpra-
cováńım textu pomoćı frameworku Tensorflow a implementaćı jako ”Spiking
Neural Network” pomoćı simulátoru NengoDL.

Kĺıčová slova LSTM,LMU,HIPPO,Polynomy,Optimálńı Projekce,Rekurentńı
neuronová śıt,Klasifikace zvuku, NLP

Abstract

The aim of this thesis is to research the practical usability of high-order poly-
nomial projection operators for compression of signals by projection onto poly-
nomial bases for implementation of recurrent neural networks. Experiments
in the field of sound classification and natural language processing are per-
formed using Tensorflow framework and also as a spiking neural network using
a simulator NengoDL.

Keywords LSTM,LMU,HIPPO,Polynomials,Optimal Projections,RNN,Audio
classification, NLP
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Introduction

Motivation

Sequence Learning

Many things in life vary trough time and therefore, represent a sequence. To
perform machine learning on sequential data (text, speech, etc.), one could use
a regular neural [12] network and feed it the entire sequence, but the input size
of our data would be fixed, which is quite limiting. Other problems with this
approach occur if important events in a sequence lie just outside of the input
window. What would be actually useful is to have a network to which we can
feed sequences of arbitrary length, one element of the sequence per time step
(for example, a video is just a sequence of images; we feed the network one
image at a time); and a network which has a type of memory to remember
important events which happened over many time steps in the past. These
problems and requirements have led to a variety of different recurrent neural
networks [13].

Learning long-range dependencies in timeseries

One of the architectures for tasks that require learning long-range tempo-
ral dependencies in sequential data or time series data like speech recognition,
named entity recognition, or machine translation is called recurrent neural net-
work (RNN). One of the currently most popular architectures that have proved
to be successful in modelling complex temporal relationships is the Long-
Short-Term-Memory(LSTM). This kind of architecture is commonly used and
incorporated into popular applications such as Siri, voice search, and Google
Translate. Like other types of neural networks, recurrent neural networks uti-
lize training data to learn. The special thing about these architectures is the
memory - they are able to take information from prior inputs and take it into
account when evaluating the current input and output. Most of the tradi-
tional deep neural networks assume that inputs and outputs are independent
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Introduction

of each other, while the outputs of recurrent neural networks depend on the
prior elements within the sequence. While future events would also be helpful
in determining the output of a given sequence, unidirectional recurrent neural
networks cannot account for these events in their predictions [14].

When using the LSTMs, one has to be aware of their limitations in terms
of time steps, specifically LSTMs have a memory of about T = 500–5,000
time steps [15]. That may be enough for some applications, but in general
signals in realistic natural environments are continuous in time. It is unclear
how existing RNNs can deal with conditions as T → ∞. This limitation is
a problem for models that must leverage long-range dependencies within an
ongoing stream of continuous-time data [4].

Actually, mammalian brains are able to do much better regarding lever-
aging long-range dependencies in information processing tasks even though
the data brain process are of continuous nature. Research in the field of neu-
roscience uncovers that biological nervous systems possess mechanisms that
allow them to solve problems beyond the capabilities of currently widely used
architectures like LSTM or GRU related to the processing of continuous-time
information. Neurons in the brain transmit information using spikes and filter
those spikes continuously over time through synaptic connections. Based on
this work in the field of neuroscience, a novel memory cell LMU based on or-
thogonalization of the continuous-time history of its input signal was proposed
in 2019, and in late 2020 it was identified as a member of a broader family of
architectures united by HiPPO framework. Both of those works are achieving
state-of-the-art performance on PSMNIST dataset in the domain of RNNs,
which is the standard benchmark for RNN networks [4].

The aim of this work is to explore the practical usability of these novel
approaches in the domain of audio classification, named entity recognition,
and sentiment classification as audio and text data are naturally sequential
and can be treated as timeseries.
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Chapter 1
Recurrent neural networks

In this chapter, recurrent neural networks will be explained in greater detail,
we will try to demonstrate what are the limitations of the baseline RNN
architecture and the two essential improvements in the form of LSTM and
GRU which as we will later discuss actually both can be interpreted as a
special case of the novel approaches presented in the chapter 2.

1.1 Basic architecture

To extend the basic feed-forward neural networks to Recurrent Neural Net-
works, it is necessary to make the feeding of signals from previous timesteps
back into the network possible. These networks with recurrent connections
are called Recurrent Neural Networks (RNN) [16, 17]. The basic RNNs are
limited to look back in time for approximately ten timesteps [18]. This is
because the fed-back signal is either vanishing or exploding. This issue was
addressed with Long Short-Term Memory Recurrent Neural Networks (LSTM-
RNN) [19, 1, 20, 21]. LSTM networks are capable to learn more than 1,000
timesteps, depending on the specific problem and model. [15].

Recurrent neural networks (RNNs) [16, 17] are dynamic systems, which
means that they have an internal state during each of the timesteps when
performing inference. This is allowed by circular connections between higher-
and lower-layer neurons and optional self-feedback connections. The presence
of a feedback connection is what enables data propagation from the data in
the processed sequence that occurred in the earlier processing timesteps. This
can be perceived as the memory of previous timesteps which is preserved in
its internal state [2].

3



1. Recurrent neural networks

Figure 1.1: In Figure a we can see a simple fully recurrent neural network with
a two neuron layer. The same network unfolded over time with a separate layer
for each time step is shown in Figure b. The representation in Figure b is a
feed-forward neural network[1].

1.2 Training recurrent networks

To understand the limitations of the basic RNN models, it is necessary to
understand how they are trained. The most common way to train recur-
rent neural networks is using methods called Backpropagation Through Time
(BPTT) [16, 17, 22] and Real-Time Recurrent Learning (RTRL) [17, 23]. The
main difference between BPTT and RTRL is the way the weight changes are
calculated. The original formulation of LSTM-RNNs used a combination of
BPTT and RTRL [17, 2].

1.2.1 Backpropagation Through Time

The backpropagation through time algorithm makes use of the fact that, for
a finite period of time, there is a feedforward neural network with identical
behaviour for every RNN. It is possible to unfold a recurrent network in time
to obtain a new neural network that is feedforward.

Figure 1.1 shows a simple, fully recurrent neural network with a single two-
neuron layer and the corresponding feed-forward neural network. It is clear
that it requires a separate layer for each time step with the same weights for all
layers. If the weights are identical to the RNN, both networks show the same
behaviour. The unfolded network can be trained using the backpropagation

4
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1.2. Training recurrent networks

algorithm. At the end of a training sequence, the network is unfolded in time.
The error is calculated for the output units with existing target values using
some chosen error measure. The error is injected backwards into the network
and the weights are updated for all time steps calculated. The weights in the
recurrent version of the network are updated with the sum of its deltas over
all time steps [2].

For a single unit, the error signal is calculated for all time steps in a single
pass, using the following iterative backpropagation algorithm. Considering
the discrete time steps indexed by the variable τ . Assuming that the network
starts at a point in time t′ and end at t. The time between t′ and t is called an
epoch. U is the set of non input units, and fu is the differentiable, non-linear
squashing function of the unit u ∈ U ; the output yu(τ) of u at time τ is given
by

yu(τ) = fu (zu(τ)) ,

where the weighted input is given as

zu(τ + 1) =
∑
l

W[u,l]X[l,u](τ + 1), with l ∈ Pre(u)

=
∑
v

W[u,v]yv(τ) +
∑
i

W[u,i]yi(τ + 1),

where v ∈ U∩ Pre (u) and i ∈ I, the set of input units. It is important to
note that there are two different types of inputs to u at time τ + 1. The input
that arrives at time τ + 1 via the input units, and the recurrent output from
all non-input units in the network produced at time τ . If the network is fully
connected, then U∩ Pre (u) is equal to the set U of non-input units. Let T (τ)
be the set of non-input units for which, at time τ , the output value yu(τ) of
the unit u ∈ T (τ) should match some target value du(τ). The cost function is
the summed error Etotal (t′, t) for the epoch t′, t′ + 1, . . . , t, which we want to
minimise using a learning algorithm. The total error is defined by

Etotal
(
t′, t
)

=
t∑

τ=t′
E(τ),

with the error E(τ) at time τ defined using the squared error as an objective
function by

E(τ) = 1
2
∑
u∈U

(eu(τ))2 ,

and with the error eu(τ) of the non-input unit u at time τ defined by

eu(τ) =
{
du(τ)− yu(τ) if u ∈ T (τ)
0 otherwise .
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1. Recurrent neural networks

To adjust the weights, we use the error signal ϑu(τ) of a non-input unit u at
a time τ , which is defined by

ϑu(τ) = ∂E(τ)
∂zu(τ) .

When we unroll ϑu over time, we obtain the equality

ϑu(τ) =
{
f ′u (zu(τ)) eu(τ) if τ = t

f ′u (zu(τ))
(∑

k∈U W[k,u]ϑk(τ + 1)
)

if t′ ≤ τ < t
.

After the backpropagation computation is performed down to time t′, we
calculate the weight update ∆W[u,v] in the recurrent version of the network.
This is done by summing the corresponding weight updates for all time steps:

∆W[u,v] = −η∂Etotal (t′, t)
∂W[u,v]

,

with
∂Etotal (t′, t)
∂W[u,v]

=
t∑

τ=t′
ϑu(τ) ∂zu(τ)

∂W[u,v]

=
t∑

τ=t′
ϑu(τ)X[u,v](τ).

There is definitely more on the backpropagation through time and it is de-
scribed in more detail in the following works [16, 23]. We just wanted to
derive the weight update formula which will be useful when talking about the
vanishing/exploding gradient problem later in this chapter.

1.2.2 Vanishing Error Problem

Standard RNN memory is not able to reasonably contain more than 5–10 time
steps [19]. This is because back-propagated error signals will grow or shrink
with every time step. Over many time steps, the error typically explodes to-
wards large values or it vanishes, which means that from the computational
perspective it is too close to zero [24, 25]. Error explosions lead to oscillating
weights, and with a vanishing error the learning takes an enormous amount
of time, or the model does not learn at all. The explanation of how the gradi-
ents are computed by the standard backpropagation algorithm and the basic
vanishing error analysis is as follows: we update weights after the network has
trained from time t′ to time t using the formula

∆W[u,v] = −η∂Etotal (t′, t)
∂W[u,v]

,

with
∂Etotal (t′, t)
∂W[u,v]

=
t∑

τ=t′
ϑu(τ)X[u,v](τ),

6



1.3. LSTM

where the backpropagated error signal at time τ (with t′ ≤ τ < t) of the unit
u is

ϑu(τ) = f ′u (zu(τ))
(∑
v∈U

Wvuϑv(τ + 1)
)
.

Given a fully recurrent neural network with a set of non-input units U , the
error signal that occurs at any chosen output-layer neuron o ∈ O. at a time
step, τ , is propagated back through time for t− t′ time-steps, with t′ < t to an
arbitrary neuron v. This causes the error to be scaled by the following factor:

∂ϑv (t′)
∂ϑo(t)

=


f ′v (zv (t′))W[o,v] if t− t′ = 1
f ′v (zv (t′))

(∑
u∈U

∂ϑα(t′+1)
∂ϑd(t) W[u,v]

)
if t− t′ > 1

.

To solve the above equation, it is necessary to unroll it over time. For t′ ≤
τ ≤ t, let uτ be a non-input-layer neuron in one of the replicas in the unrolled
network at time τ . Now, by setting ut = v and ut′ = o, the following equation
can be obtained

∂ϑv (t′)
∂ϑo(t)

=
∑
ut,∈U

. . .
∑

ut−1∈U

 t∏
τ=t′+1

f ′uτ
(
zuτ

(
t− τ + t′

))
W[uτ ,uτ−1]

 .
Observing the previous equation , it follows that if

| f ′uτ
(
zuτ

(
t− τ + t′

))
W[uτ ,uτ−1

]
> 1,

for all τ , then the product will grow exponentially, causing the error to explode.
Conflicting error signals arriving at neuron v can lead to oscillating weights
and unstable learning. If now∣∣∣∣f ′uτ (zuτ (t− τ + t′

))
W[uτ,uτ−1 ]

∣∣∣∣ < 1,

for all τ , then the product decreases exponentially, causing the error to van-
ish, preventing the network from effective learning within an acceptable time.
Finally, the equation ∑

o∈O

∂ϑv (t′)
∂ϑo(t)

,

shows that if the local error vanishes, then the global error also vanishes [26].

1.3 LSTM

One way to deal with the vanishing error problem is a gradient-based method
called long short-term memory (LSTM) [1, 25, 19, 21]. LSTM is able to learn
how to bridge minimal time lags of more than 1,000 discrete time steps. It is

7



1. Recurrent neural networks

able to do that by using constant error carousels, which make sure that there
is a constant error flow within special cells. Granting access to the cells is
done by multiplicative gate units, which learn when to grant access. Picture
is worth a thousand words in this case see figure 1.3 For any additional details
see the original publication [1].

1.4 GRU

Gated Recurrent Unit (GRU) architecture for RNN as an alternative to LSTM
proposed in [27]. GRU has empirically been found to outperform LSTM on
nearly all tasks [28]. GRU units, unlike LSTM memory blocks, do not have a
memory cell; although they do have gating units: a reset gate and an update
gate. GRU reset and input gates behave like normal units in a recurrent
network. The main characteristic of GRU is the way the activation of the
GRU units is defined [1] . See the original publication [27] for details.

8



1.4. GRU

Figure 1.2: A standard LSTM memory block. The block contains (at least)
one cell with a recurrent self-connection (Constant Error Carousel) and weight
of ’1’. The state of the cell is denoted as sc. Read and write access is regulated
by the input gate, yin , and the output gate, yout . The internal cell state is
calculated by multiplying the result of the squashed input, g, by the result of
the input gate, yin, and then adding the state of the last time step, sc(t− 1).
Finally, the cell output is calculated by multiplying the cell state, sc, by the
activation of the output gate, yout [2].
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Chapter 2
Novel approaches

Many areas of machine learning require processing long sequential data. For
example, a time series may be observed in real time where the future needs
to be continuously predicted, or an agent in a partially observed environment
must learn how to encode its cumulative experience into a state to navigate
and make decisions. The fundamental problem in modeling long-term and
complex temporal dependencies is memory, that means storing and incorpo-
rating information from previous time steps, which, as shown in the previous
chapters, gets increasingly difficult as the length of the processed sequence
increases not only because of the vanishing gradient problem. In this chapter,
we will try to explain two novel approaches, LMU and HiPPO-LegS.

2.1 Mathematical prerequisites

In the following section, we will introduce some advanced concepts from math-
ematics in a gentle way. For example, the concept of measure is needed to
further explore and generalize the concepts in [4] using the idea of function
approximation with respect to a measure introduced in [5]. It is strongly rec-
ommended to consult [29, 30, 31, 32, 33] for more correct interpretation of
the topics in this section. Properly introducing all the concepts used in both
[4, 5] would be very technical and definitely out of the scope of this thesis.
An attempt will be made to introduce the concepts in a somewhat informal
way, even though for the sake of preservation of our own sanity we will still
use a formal notation where it is suitable. Basic knowledge of linear algebra
and analysis is assumed.

2.1.1 Measurable space

We can think about a measurable space as if it was a collection of events M,
and the set of all outcomes X, which is sometimes called the sample space.
Given a collection of possible events M why do we need to state X? Having

11



2. Novel approaches

it makes it possible to define complements of sets. If the event F ∈ M, then
the event FC is the set of outcomes in X that are disjoint from F [29, 30, 31].

Definition 1 By a measurable space we mean a couple (X,M) consisting
of a set X and a σ -algebra M of subsets of X. A subset E of X is called
measurable (or measurable with respect to M ) provided E belongs to M

2.1.2 Algebras and Fields

Often, we will see that the collection of eventsM in a measurable space is a σ
-algebra. A σ -algebra is a special kind of collection of subsets of the sample
space X : a σ -algebra is complete in that if some set A is in our σ -algebra,
then we have to have AC (the complement of A ) in our set too. In addition,
it must be that if we have two sets A and B in our collection of sets, then
the union A∪B must also be in our collection of sets (in fact, σ -algebras are
closed under countable unions, not just finite unions) [31].

Definition 2 A collection M of subsets of a set X is said to be a σ -algebra
in X if M has the following properties:

– X ∈M.

– If A ∈M, then Ac ∈M, where Ac is the complement of A relative
to X.

– If A = ⋃∞
n=1An and if An ∈M for n = 1, 2, 3, . . ., then A ∈M.

• If M is a σ -algebra in X, then X is called a measurable space, and the
members of M are called the measurable sets in X.

• If X is a measurable space, Y is a topological space, and f is a mapping
of X into Y , then f is said to be measurable provided that f−1(V ) is a
measurable set in X for every open set V in Y .

Another term sometimes used to mean the same thing as σ -algebra is σ
-field. The smallest possible σ -field is a collection of just two sets, {X, ∅}.
The largest possible σ -field is the collection of all the possible subsets of Ω,
this is called the powerset [29, 30, 31].

2.1.3 Measure

Definition 3 By a measure µ on a measurable space (X,M) we mean an
extended real-valued nonnegative set function µ :M→ [0,∞] for which µ(∅) =
0 and which is countably additive in the sense that for any countable disjoint
collection {Ek}∞k=1 of measurable sets,

µ

( ∞⋃
k=1

Ek

)
=
∞∑
k=1

µ (Ek) .
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By a measure space (X,M, µ) we mean a measurable space (X,M) together
with a measure µ defined on M

A measure µ takes a set A (from a measurable collection of sets M ), and
returns ”the measure of A,” which is some positive real number. So ones writes
µ : M → [0,∞). An example measure is volume, which goes by the name
Lebesgue measure. In general, measures are generalized notions of volume.
The triple (X,M, µ) combines a measurable space and a measure, and thus
the triple is called a measure space. A measure has these two properties:

1. Nonnegativity: µ(A) ≥ 0 for all A ∈M

2. Countable Additivity: If Ai ∈ M are disjoint sets for i = 1, 2, . . ., then
the measure of the union of the Ai is equal to the sum of the measures
of the Ai.

We can see how our ordinary notion of volume satisfies these two proper-
ties. There are a couple variations on the term measure that we will run into.
One is a signed measure, which can be negative. A special case of measure is
the probability measure in the probability space. The probability measure P
has the two above properties of a measure but it’s also normalized, such that
P (X) = 1.

A probability measure P over a discrete set of events is what we know as
a probability mass function. For example, given a probability measure P and
two sets A,B ∈ M, it is possible to write this pretty well-known formula for
conditional probability [29, 30, 31].

P (B | A) = P (A ∩B)
P (A) .

Having a measure allows the definition of an inner product of two functions,
which we will later use to define the orthogonality of polynomials.

2.1.4 Function spaces

Function space is a class X of functions (with fixed domain and range). Simply
put, a function space is a space made of functions. Each function in the space
can be thought of as a point. An example of that would be C[a, b], the set of
all real-valued continuous functions in the interval [a, b] [34].

There are many ways in which knowledge of the structure of function
spaces can assist in the study of functions. For instance, if one has a good
basis for the function space, so that every function in the space is a (possibly
infinite) linear combination of basis elements, and one has some quantitative
estimates on how this linear combination converges to the original function,
then this allows one to represent that function efficiently in terms of a number
of co-efficients, and also allows one to approximate that function by smoother
functions [34].

13
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2.1.5 Metric Spaces

Let X be a nonempty set. Function d : X ×X → [0,∞) is called a metric on
X if it satisfies the following conditions:

1. d(x, y) = 0⇐⇒ x = y.

2. d(x, y) = d(y, x).

3. d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

A set X equipped with a metric d is called a metric space and is denoted
by (X, d). One of the examples of metric spaces is well-known distance on the
real line. More formally, the set of all real numbers equipped with distance

d(x, y) = |x− y|,

is the metric space R1.

2.1.6 Inner Product Space

A complex vector space H is called an inner product space [30] (or unitary
space) if to each ordered pair of vectors x and y ∈ H there is associated a
complex number (x, y), the so-called ”inner product” (or ”scalar product”) of
x and y, such that the following rules hold:

• (y, x) = (x, y). (The bar denotes complex conjugation.)

• (x+ y, z) = (x, z) + (y, z) if x, y, and z ∈ H.

• (αx, y) = α(x, y) if x and y ∈ H and α is a scalar.

• (x, x) ≥ 0 for all x ∈ H.

• (x, x) = 0 only if x = 0.

2.1.7 Cauchy sequence

Cauchy sequence is a sequence whose elements become arbitrarily close to
each other as the sequence progresses. More precisely, given any small positive
distance, all but a finite number of elements of the sequence are less than that
given distance from each other. We say that a sequence of real numbers {an}
is a Cauchy sequence provided that for every ε > 0, there is a natural number
N so that when n,m ≥ N , we have that |an − am| ≤ ε [32].
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2.1.8 Completeness of metric space

In the context of a metric space [M = (X, d)], Cauchy sequence is defined
as the sequence whose distance becomes smaller as the series proceeds. Such
that, given m,n > N (a positive integer), the following holds true

d (xm, xn) < ε.

A sequence of functions fn is fundamental if ∀ε > 0 ∃Nε such that

∀n and m > Nε, d (fn, fm) < ε.

A metric space is complete if all fundamental sequences converge to a point in
the space. A sequence of functions fn is fundamental if ∀ε > 0∃Nε such that

∀n and m > Nε, d (fn, fm) < ε.

A metric space is complete if all fundamental sequences converge to a point in
the space [30, 32]. In other words completeness grants us that there are not
any gaps.

2.1.9 Hilbert space

Having a metric space H. If this metric space is complete, that means if every
cauchy sequence converges in H, then H is called a Hilbert space. [30]

2.1.10 L2 space and L2(µ) norm of a function

If µ is any positive measure, L2(µ) is a Hilbert space, with inner product

(f, g) =
∫
X
fḡdµ.

The L2 space is a special case of an Lp space, which is also known as the
Lebesgue space. Let X be a measure space. Given a complex function f , we
say f ∈ L2 on X if f is (Lebesgue) measurable and if∫

X
|f |2 dµ < +∞.

Then the function f is also said to be square-integrable. In other words, L2

is the set of square-integrable functions. For f ∈ L2(µ) define

‖f‖ =
(∫

X
|f |2 dµ

)1/2
.

We call ‖f‖ the L2(µ) norm of f To give a notion of distance in L2(µ), we
define the distance between between two functions f and g in L2(µ) as

d(f, g) = ‖f − g‖.
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The space L2 is unique among Lp spaces as a Hilbert space. Hilbert spaces
have many useful properties. In particular, its similarity to Euclidean space
enables the use of geometric notions such as distance and orthogonality. The
Pythagorean identity also holds true in L2. In addition, Hilbert spaces, and
in particular the L2 Hilbert space, are very important in many different parts
of physics and mathematics [35, 32, 30].

2.1.11 Lipchitz functions

Lipchitz functions are a class of functions which appear not only in many
branches of mathematics including computer science. Lipschitz function f :
Ω → Rm, where Ω is an open subset of Rn, is differentiable outside of a
Lebesgue null subset of Ω, the condition of being Lipschitz could be viewed as a
weakened version of differentiability, and therefore, these functions are a good
substitute for smooth functions in the framework of metric spaces. Lipschitz
functions are smooth functions of metric spaces. A real-valued function f on
a metric space X is said to be L -Lipschitz if there is a constant L ≥ 1 such
that

|f(x)− f(y)| ≤ L|x− y|,

for all x and y in X [36, 37].

2.1.12 Padé Approximants

If we define f as a power series.

f =
∞∑
n=0

an(x− c)n = a0 + a1(x− c)1 + a2(x− c)2 + · · ·

A Padé approximant of f is the ”best” approximation of f by a rational
function of a given order. It is a rational function whose numerator and de-
nominator are chosen so that its power series expansion (obtained by dividing
the numerator by the denominator in ascending powers of the variable) agrees
with f as far as possible that is, at least, up to the term whose degree equals
the sum of the degrees of the numerator and the denominator of the rational
function. Such approximants have a long history and they play an impor-
tant role in the solution of many problems such as the transcendence of the
numbers e and π. Sixty years ago, Padé approximants proved to be very effi-
cient not only to improve existing methods but also for extracting important
information from power series [38].

2.1.13 Orthogonal Polynomials

Orthogonal polynomials are a standard tool for working with function spaces
[5]. Every measure µ induces a unique (up to a scalar) sequence of orthogonal
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polynomials (OPs) P0(x), P1(x), . . . satisfying

deg (Pi) = i,

and
〈Pi, Pj〉µ :=

∫
Pi(x)Pj(x)dµ(x) = 0,

for all i 6= j. This is the sequence found by orthogonalizing the monomial
basis

{
xi
}

with Gram-Schmidt with respect to 〈·,−〉µ. The fact that OPs
form an orthogonal basis is useful because the optimal polynomial g of degree
deg(g) < N that approximates a function f is then given by

N−1∑
i=0

ciPi(x)/ ‖Pi‖2µ where ci = 〈f, Pi〉µ =
∫
f(x)Pi(x)dµ(x),

It may not look like that on a first sight, but computing the approximation of
f like that is actually an easy job, at least for a computer. The computation is
easy because when using an orthogonal basis, many of the computations that
would be necessary if we chose a nonorthogonal basis can be omitted. This
observation also kind of explains why the mononomial basis {1, x, x2, ...} is not
a good basis because the polynomials are not orthogonal under any measure.
Even though it may look like a good basis, it is way less computationally
efficient to compute the same approximation of f using a nonorthogonal basis.
Simply put, it is because we cannot take advantage of the simple way to find
the representation of f . It stems from a concept introduced in the very first
linear algebra courses. Basically if v1, · · · , vk is an orthogonal basis for a
subspace V of Rn, and v is a vector in V then:

v =
(
v · v1

|v1|2

)
v1 + · · ·+

(
v · vk
|vk|2

)
vk,

and vi · vj = 0 if i 6= j and vi · vi = ‖vi‖2. Which is exactly what we see in the
formula for the approximation.

There are different families of orthogonal polynomials. The family of Ja-
cobi polynomials includes Legendre polynomials which also includes Cheby-
shev polynomials. Other polynomials used in the work [5] include Laguerre,
and Hermite polynomials. They also show that the Fourier basis can be in-
terpreted as orthogonal polynomials on the unit circle in the complex plane
[29, 30, 31].

2.1.14 Legendre Polynomials properties

Several properties of Legendre polynomials are used in both [4, 5].
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2.1.14.1 Legendre polynomials

Under the usual definition [4, 5] of the canonical Legendre polynomial Pn,
they are orthogonal with respect to the measure ωleg = 1[−1,1] :

2n+ 1
2

∫ 1

−1
Pn(x)Pm(x)dx = δnm. (2.1)

Additionally, they satisfy
Pn(1) = 1

Pn(−1) = (−1)n.

2.1.14.2 Shifted and Scaled Legendre polynomials

It is also possible to consider the scaling Legendre polynomials [4, 5] to be
orthogonal on the interval [0, t]. A change of variables on the 2.1 yields

(2n+ 1)
∫ t

0
Pn

(2x
t
− 1

)
Pm

(2x
t
− 1

) 1
t

dx

= (2n+ 1)
∫
Pn

(2x
t
− 1

)
Pm

(2x
t
− 1

)
ωleg

(2x
t
− 1

) 1
t

dx

= 2n+ 1
2

∫
Pn(x)Pm(x)ωleg(x)dx

= δnm.

Therefore, with respect to the measure ωt = 1[0,t]/t (which is a probability
measure for all t ), the normalized orthogonal polynomials are

(2n+ 1)1/2Pn

(2x
t
− 1

)
.

Similarly, the basis
(2n+ 1)1/2Pn

(
2x− t

θ
+ 1

)
,

is orthonormal for the uniform measure 1
θ I[t−θ,t]. In general, the orthonormal

basis for any uniform measure consists of (2n + 1) 1
2 times the corresponding

linearly shifted version of Pn.

2.1.14.3 Derivatives of Legendre polynomials

Legendre polynomials can be described using recurrence relations on Legendre
polynomials [5], this is useful as it can be used to for an elegant definition of
their derivative:

(2n+ 1)Pn = P ′n+1 − P ′n−1

P ′n+1 = (n+ 1)Pn + xP ′n.
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The first equation yields

P ′n+1 = (2n+ 1)Pn + (2n− 3)Pn−2 + . . .

where the sum stops at P0 or P1. These equations directly imply

P ′n = (2n− 1)Pn−1 + (2n− 5)Pn−3 + . . .

and
(x+ 1)P ′n(x) = P ′n+1 + P ′n − (n+ 1)Pn

= nPn + (2n− 1)Pn−1 + (2n− 3)Pn−2 + . . .

2.1.15 Control theory

Control theory is often regarded as a branch of the general and more abstract
subject of systems theory. Control theory can be approached from a number
of directions. The first systematic method of dealing with what is now called
control theory began to emerge in the 1930 s. Transfer function and frequency
domain techniques were predominant in these ”classical” approaches to control
theory. Starting in the late 1950s and early 1960s, a time-domain approach us-
ing state variable descriptions came into prominence. For a number of years,
the state variable approach was synonymous with ”modern control theory.”
Nowadays, the state variable approach and various transfer function-based
methods are considered on an equal level and nicely complement each other.
Distinctions exist, and the major one appears to be in the kinds of mathe-
matical tools used. The state variable approach uses linear algebra based on
the real or complex number field. The newer approach involves multivariable
transfer functions and the algebra of polynomial matrices and related con-
cepts. By defining the number field properly, the major mathematical tool is
once again linear algebra, but on a level most of the mortals are less familiar
with [33].

Many control problems are solved in literature in the following way using
the analytical approach and state variable modelling. Performing the analysis
and control of dynamical systems consists of three major steps:

1. Developing an idealized mathematical representation of the real physical
system

2. Applying mathematical analysis and design techniques to the model

3. Interpreting the mathematical results. If the resulting implications are
not acceptable or do not seem to match reality or experimental obser-
vations start over again

In this case, the real physical problem is computing the continuous delay
of the input signal, which was proposed as a way to represent memory since
computing delay without memory is not possible [10].
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2.1.16 Dynamic systems and the concept of state

The concept of state is essential in modern control theory. However, the
concept of state appears in many other technical and nontechnical contexts
as well. In everyday life, monthly financial statements are commonplace. The
annual message delivered by the president near the beginning of each calendar
year on the current condition of the nation is another familiar example. In all
these examples, the concept of state is essentially the same. It is a complete
summary of the status of the system at a particular point in time. Knowledge
of the state at some initial time t0, plus knowledge of the system inputs after
t0, allows the determination of the state at a later time t1. As far as the state
at t1 is concerned, it makes no difference how the initial state was computed.
The state at t0 represents a complete history of the system behavior prior to
t0, so that the history affects future behavior[33].

One of the main challenges in computational neuroscience is understanding
how dynamic stimuli can be processed by neural mechanisms to drive behavior.
Recurrent connections, cellular responses, and synaptic responses are sources
of dynamics throughout the mammalian brain that must cooperate to support
dynamic information processing. How these low-level mechanisms interact to
encode information about the history of a stimulus across time is a subject of
many works in the field of neuroscience. The neural engineering framework
proposes a method to model such dynamical systems in networks of spiking
neurons and will be discussed in greater detail in the following chapters [39].

2.1.17 State-space model

Even though it is not the main focus of this chapter, it is important to note
that the Principle 3 of the neural engineering framework [39] allows the neural
implementation (using spiking neurons) of continuous linear time-invariant
(LTI) systems which are defined as:

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t),

where the time-varying signal x(t) represents the system state, ẋ(t) its time
derivative, y(t) the output, u(t) the input, and the time-invariant matrices
(A,B,C,D) fully describe the system [33]. This form of an LTI system is com-
monly referred to as the state-space model. By dynamical primitive one means
the source of the dynamics for the system. For LTI systems, the dynamical
primitive is the integrator, see figure 2.1.17. [3]
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Figure 2.1: Block diagram for and LTI system. The integrator is driven by
the signal ẋ(t)[3]

2.1.18 Laplace transform

By the Laplace transform of function f : [0,∞) → C we mean L[f ] = F
defined by

F (s) =
∫ ∞

0
f(t)e−ts dt,

if for at least one s the integral converges. For example, if f = 1 the laplace
transform L of the function f is the following.

L[f = 1](s) = 1
s

for each s ∈ C which has its real part Re(s) > 0.

2.1.19 Transfer function of a dynamic system

The transfer function of a dynamic system is defined as the ratio of the Laplace
transform of the output variable to Laplace transform of the input variable
assuming all initial conditions to be zero. If the input is represented by y(s)
and output by u(s)

F (s) = y(s)
u(s) .

Transfer function represents the relationship between the output signal of a
control system and the input signal, for all possible input values [33].

The transfer function is related to the LTI system defined in the previous
section is given by the following:

F (s) = y(s)
u(s) = C(sI −A)−1B +D.
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We can see that the time invariant matrices (A,B,C,D) are present in the
equation. The transfer function F (s) can be converted into the state-space
model (A,B,C,D) if and only if it can be written as a proper ratio of finite
polynomials in s. Ratio is proper when the degree of the numerator does
not exceed that of the denominator. In this case, we can notice that the
output does not depend on the future input. The order of the denominator
corresponds to the dimensionality of x, and therefore must be finite. Both of
these conditions can be interpreted as physically realistic constraints where
time may only progress forward, and neural resources are finite [40].

2.2 LMU

Legendre Memory Unit (LMU) is a new recurrent architecture and method of
weight initialization that provides interesting theoretical guarantees for learn-
ing long-range dependencies, even as the discrete time-step, ∆t, approaches
zero. This enables the gradient to flow across the continuous history of internal
feature representations [4].

2.2.1 Delay network and Ideal Delay

Delay network, which was first described in [10] is an imporant dynamical
system that is useful for improving the memory of recurrent networks, it is
a system realizing a delay. It is necessary to define the delay problem and
show how a delay is optimally realized by the DN, which is in a LTI system.
LMU employs a single-input DN coupled to a nonlinear dynamical system to
process sequential data. A system is said to be an ideal delay system if it takes
in an input, u(t), and outputs a function, y(t), which is the delayed version of
the input. Mathematically, this can be described in the following manner:

y(t) = D[u(t)] =
{

0 t < θ
u(t− θ) t ≥ θ,

where D is the ideal delay operator and θ ∈ R is the length of the delay. The
ideal delay system is linear, which means that for any two functions, f(t) and
g(t), and any a, b ∈ R, it respects the following equation:

D[af(t) + bg(t)] = aD[f(t)] + bD[g(t)],

it takes a system with infinite memory to take in and store a continuous input
for θ seconds and then reproduce the entire input without error.

The optimal system that implements delay must be linear and even the
most optimal physical implementation can be approximate as the resources
will always be finite. Given the fact that the delay can be at best approxi-
mated, we can move on to search for the best approximation [41, 4, 10].
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2.2.2 Approximating Delay

When constructing a dynamical system that implements delay, it is possible
to narrow the search space from the general system of ordinary differential
equations to the following form thanks to the linearity constraint:

ṁ = f(m, u)
y = g(m, u),

to just finding the four matrices (A,B,C,D) that define an LTI system:

ṁ = Am+Bu

y = Cm+Du.

Considering the transfer function of the delay system, which for a single input
single output system is defined as:

G(s) = y(s)
u(s) = e−θs,

where y(s) and u(s) are found by taking the Laplace transform of the input
and output functions in time. This defines an infinite dimensional transfer
function, capturing the intuitive difficulty of constructing a continuous delay
[4, 41, 10].

The transfer function can be converted to a finite state space realization if
and only if it can be written as a proper ratio of finite dimensional polynomials
in s. A ratio a(s)

b(s) is said to be proper if the order of the numerator does not
exceed the order of the denominator. G(s), however, is irrational, that means
that it cannot be written as a proper finite dimensional ratio. This observation
suggests that making an approximation is necessary [33].

To achieve an optimal convergence rate in the least square error point of
view, Padé approximants are used [42]. Choosing the order of the numerator
to be one less than the order of the denominator and accounting for numerical
issues in the state-space realization [10, 4], gives the following realization:

Ai,j = (2i+1)
θ

{
−1 i < j
(−1)i−j+1 i ≥ j

Bi = (2i+1)(−1)i
θ

Ci = (−1)i∑i
l=0

(
i
l

)(
i+ l
j

)
(−1)l

D = 0, i, j ∈ [0, d− 1],

the variable d is the order of the system. The LTI system (A,B,C,D) is
a Delay Network (DN). The order of the system, d, and the delay length,
θ are the main hyperparameters to choose when using a DN. Higher order
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systems require more resources, but provide a more accurate emulation of the
ideal delay. Because of the usage of the Padé approximants, each order is
optimal for that dimension of the state vector m [41, 10]. The realization of
the matrices defining the LTI system corresponds to the following numpy code.

import numpy as np
# ‘ order ‘ i s the number o f
# Legendre polynomia l s used to
# or thogona l l y r e p r e s en t the s l i d i n g window .
# ‘ theta ‘ i s the l ength o f the in
Q=np . arange ( order , dtype=np . f l o a t 6 4 )
R=(2∗Q+1) [ : , None ] / theta
j , i=np . meshgrid (Q,Q)
A=np . where ( i<j , −1 ,( −1.0)∗∗( i−j + 1))∗R
B=(−1.0)∗∗Q[ : , None ] ∗R
C=np . ones ( ( 1 , order ) )
D=np . z e ro s ( ( 1 , ) )

2.2.3 Legendre polynomials

Legendre Polynomials are a special class of polynomials with interesting prop-
erties as discussed earlier, they are one of the standard tools for working with
function spaces. Constructing a system defined in the previous section is done
by using the (A,B,C,D) matrices defined above, and providing it with an
input signal, u(t). When given the state mt, it is possible to use C to decode
u(t− θ) to a degree of accuracy determined by the order of the system.

u(t− θ) ≈ CTmt. (2.2)

Intuitively, given mt, it seems possible to decode not only u(t − θ) but also
u (t− θ′)∀0 ≤ θ′ ≤ θ. This can be done using a slightly modified C for a
given θ′ :

u
(
t− θ′

)
≈ C

(
θ′
)T

mt,

where

Ci
(
θ′
)

= (−1)i
i∑
l=0

(
i
l

)(
i+ l
j

)(
−θ
′

θ

)l
, 0 ≤ θ′ ≤ θ, (2.3)

and C (θ′ = θ) corresponds to the C defined in the equation

Ci = (−1)i
i∑
l=0

(
i
l

)(
i+ l
j

)
(−1)l.

The functions in 2.3 turn out to be the shifted Legendre polynomials.
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2.2.4 Memory Cell Dynamics

In this section, we will try to shed some light on the Memory Cell Dynamics
used to realize the storage and retrieval of the cell state which can be perceived
as memory. The main component of the Legendre Memory Unit (LMU),
which is a memory cell that orthogonalizes the continuous-time history of
its input signal, u(t) ∈ R, across a sliding window of length θ ∈ R>0. The
cell is derived from the linear transfer function for a continuous-time delay,
F (s) = e−θs, which is best-approximated by d coupled ordinary differential
equations (ODEs):

θṁ(t) = Am(t) + Bu(t), (2.4)

where m(t) ∈ Rd is a state-vector with d dimensions. The ideal state-space
matrices, (A,B), are derived through the use of Padé [43] approximants [10]:

A = [a]ij ∈ Rd×d, aij = (2i+ 1)
{
−1 i < j
(−1)i−j+1 i ≥ j

B = [b]i ∈ Rd×1, bi = (2i+ 1)(−1)i, i, j ∈ [0, d− 1].
(2.5)

The key property of this dynamical system is that m represents sliding win-
dows of u via the Legendre [44] polynomials up to degree d− 1 :

u
(
t− θ′

)
≈

d−1∑
i=0
Pi
(
θ′

θ

)
mi(t), 0 ≤ θ′ ≤ θ,

Pi(r) = (−1)i
i∑

j=0

(
i
j

)(
i+ j
j

)
(−r)j ,

(2.6)

where Pi(r) is the ith shifted Legendre polynomial [45]. This gives a unique
and optimal decomposition. The functions of m correspond to computations
across windows of length θ, projected onto d orthogonal basis functions [4].

2.2.5 Discretization

To actually perform any computation, we need to perform a discretization of
the matrices describing the ideal state-space model. Discretization process in
this case means mapping the equations onto the memory of a recurrent neural
network, mt ∈ Rd, given some input ut ∈ R, indexed at discrete moments in
time, t ∈ N :

mt = Amt−1 + But,

where (A,B) are the discretized matrices provided by the ODE solver for
some time-step ∆t relative to the window length θ. For Euler’s method if ∆t
is sufficiently small:

A = (∆t/θ)A + I, B = (∆t/θ)B.
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Figure 2.2: Shifted Legendre polynomials (d = 12). The memory of the LMU
represents the entire sliding window of input history as a linear combination
of these scale-invariant polynomials. Increasing the number of dimensions
supports the storage of higher-frequency inputs relative to the time-scale [4].

Other discretization methods can be considered as well, for example zero-
order hold (ZOH) for more information on the actual implementation of the
discretization see documentation of scipy.signal.cont2discrete [46, 47].

2.2.5.1 Bilinear transform

The bilinear transform is a transformation from continuous-time systems to
discrete-time systems. It uses the trapezoidal rule for numerical integration.
It is used for simulation of dynamical systems, and even thought its not the
best method available. It is fairly popular because of theoretically simple
compared to other available options and it is easy to implement. [47]

2.2.6 Approximation Error

When d = 1, the memory is analogous to a single-unit LSTM without any
gating mechanisms (a leaky integrator with time-constant θ ). As d increases,
so does its memory capacity relative to frequency content. In particular,
the approximation error in equation 2.6 scales as O(θω/d), where ω is the
frequency of the input u that is to be committed to memory [3].
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2.2.7 Layer Design

The LMU takes an input vector, xt, and generates a hidden state, ht ∈ Rn.
Each layer maintains its own hidden state and memory vector. The state
mutually interacts with the memory, mt ∈ Rd, in order to compute nonlinear
functions across time, while dynamically writing to memory. The state is a
function of the input, previous state, and current memory:

ht = f (Wxxt + Whht−1 + Wmmt) ,

where f is some chosen nonlinearity (e.g., tanh) and Wx,Wh,Wm are learned
kernels. Note that this decouples the size of the layer’s hidden state (n) from
the size of the layer’s memory (d), and requires holding n + d variables in
memory between time steps. The input signal that writes to the memory via
the equation mt = Amt−1 + But is:

ut = e>x xt + e>h ht−1 + e>mmt−1,

where ex, eh, em are learned encoding vectors. Intuitively, the kernels (W)
learn to compute nonlinear functions across the memory, while the encoders
(e) learn to project the relevant information into the memory.

Figure 2.3: Time-unrolled LMU layer. An n dimensional state-vector (ht) is
dynamically coupled with a d -dimensional memory vector (mt). The mem-
ory represents a sliding window of ut, projected onto the first d Legendre
polynomials [4].
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2.3 HiPPO Framework

HiPPO framework was first introduced in [5] , it describes a method for ad-
dressing the fundamental problem of incrementally maintaining a memory
representation of sequences. They carefully formulate this problem and ana-
lyze it. The main result is the derivation of a closed-form solution using the
HiPPO framework for multiple memory mechanisms. The particular model
HiPPO-LegS, which is computationally efficient, deals with vanishing gradi-
ents, and is the first known method be robust to timescaling.

They follow similar logic as in [4] but move from discrete-time to the
continuous-time setting, which is often easier to analyze theoretically. They
are trying to analyze the following problem: given a continuous function (in
one dimension) f(t), is it possible to maintain a fixed-size representation c(t) ∈
RN at all times t such that c(t) optimally captures the history of f from times
0 to t. Two things need to be specified in order to analyze such problem.
What is the “optimal approximation” of the function’s history and what basis
is gonna be used for c(t). Assuming a polynomial space we can think of
the memory representation c(t) ∈ RN as being the coefficient vector of the
optimal polynomial approximation to the history of f(t). That enables a
thorough theoretical analysis, we will only discuss 4 basic propositions in this
thesis regarding timescale invariance, inference speed, gradient norms and
error bounds. Complete proofs of all propositions in this section are presented
in the original paper as they are rather technical, we will only touch the way
gradient norms are analysed and derivation of the two memory mechanisms
used in the practical part of this thesis in this section [5].

2.3.1 Problem

As stated in the earlier sections of this work, given an input function f(t) ∈ R
on t ≥ 0, many problems require operating on the cumulative history f≤t :=
f(x)|x≤t at every time t ≥ 0, to understand the inputs seen so far and make
future predictions. The space of functions is enormous, which means that the
history cannot be perfectly memorized and must be compressed, the work [5]
proposes the general approach of projecting it onto a subspace of bounded di-
mension. The goal is to maintain this compressed representation of the history.
To further specify this problem, we need a way to quantify the approximation
and a suitable subspace [5].

2.3.2 Function Approximation with respect to a measure.

Simply put, a measure induces a Hilbert space structure on the space of func-
tions, so that there is a unique optimal approximation - the projection onto
the desired subspace [6]. If we want to quantify the quality of an approxi-
mation, it requires defining a distance in the function space. Any probability

28



2.3. HiPPO Framework

measure µ on [0,∞) equips the space of square integrable functions with inner
product

〈f, g〉µ =
∫ ∞

0
f(x)g(x)dµ(x), (2.7)

inducing a Hilbert space structure (a vector space equipped with an inner
product) Hµ and corresponding norm

‖f‖L2(µ) = 〈f, f〉1/2
µ ,

which may be percieved in a similar way we percieve norms in the basics of
linear algebra even thought it works with Hilbert Spaces instead [5].

2.3.3 Polynomial Basis Expansion

Any N -dimensional subspace G of this function space is a suitable candidate
for the approximation. The parameter N corresponds to the order of the
approximation, or the size of the compression. The projected history can be
represented by the N coefficients of its expansion in any basis of G. The
polynomials are used as a natural basis for simplicity in [5], so that G is the
set of polynomials of degree less than N [5].

2.3.4 Online Approximation

When approximating f≤t for every time t, it is useful to also let the measure
vary through time. For every t, let µ(t) be a measure supported on (−∞, t]
(since f≤t is only defined up to time t) [5]. In essence we are after some
g(t) ∈ G that minimizes ∥∥∥f≤t − g(t)

∥∥∥
L2(µ(t)) .

Intuitively, the measure µ controls the importance of various parts of the input
domain, and the basis defines the possible approximations. The challenge is
how to solve the optimization problem in closed form given µ(t), and how these
coefficients can be maintained online as t→∞ [5, 4].

Definition 4 Given a time-varying measure family µ(t) supported on (−∞, t],
an N -dimensional subspace G of polynomials, and a continuous function
f : R≥0 → R, HiPPO defines a projection operator projt and a coefficient
extraction operator coeft at every time t, with the following properties:

1. projt takes the function f restricted up to time t, f≥t := f(x)|x<t, and
maps it to a polynomial g(t) ∈ G, that minimizes the approximation error∥∥∥f≤t − g(t)

∥∥∥
L2(µ(t))

2. coef t : G → RN maps the polymomial g(t) to the coefficients c(t) ∈ RN
of the basis of orthogonal polynomials defined with respect to the measure
µ(t).
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Figure 2.4: Illustration of the HiPPO framework. (1) For any function f ,
(2) at every time t there is an optimal projection g(t) of f onto the space
of polynomials, with respect to a measure µ(t) weighing the past. (3) For an
appropriately chosen basis, the corresponding coefficients c(t) ∈ RN represent-
ing a compression of the history of f satisfy linear dynamics. (4) Discretizing
the dynamics yields an efficient closed-form recurrence for online compression
of time series (fk)k∈N. This illustrates the overall framework when we use
uniform measures [5].

The composition coef ◦ proj is called hippo, which is an operator mapping a
function f : R≥0 → R to the optimal projection coefficients c : R≥0 → RN , for
example

(hippo(f))(t) = coeft (projt(f)) .

For each t, the problem of optimal projection projt(f) is well-defined by the
above inner products, but this is not computable using a naive approach. The
derivation in the original paper [5] shows that the coefficient function

c(t) = coeft (projt(f)) ,

has the form of an ODE satisfying

d

dt
c(t) = A(t)c(t) +B(t)f(t) for some A(t) ∈ RN×NB(t) ∈ RN×1.

It is demonstrated how to obtain c(t) online by solving an ODE and running
a discrete recurrence. When discretized, HiPPO takes in a sequence of real
values and produces a sequence of N -dimensional vectors [5]. Next, several
concrete applications of the framework will be shown.
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2.3.5 High Order Projections

Given any input function f(t), the desired coefficient vectors c(t), which are
the desired memory representation, are completely defined. However, we still
need a way to calculate them. The HiPPO framework formalizes this problem
and provides a closed form solution. The desired coefficients c(t) are defined
as the implicit solution to an approximation problem, there is a closed-form
solution which is easy to compute. Leveraging concepts from approximation
theory such as orthogonal polynomials [33, 5]. The solution takes on the form
of a linear differential equation, which is called the HiPPO operator:

ċ(t) = A(t)c(t) +B(t)f(t).

The HiPPO framework takes a family of measures, and gives an ODE with
closed form transition matrices A(t), B(t). These matrices depend on the
measure, and following these dynamics finds the coefficients c(t) that optimally
approximate the history of f(t) according to the measure [6].

Figure 2.5: Tne input function f(t) (black line) is continually approximated
by storing the coefficients of its optimal polynomial projections (colored lines)
according to specified measures (colored boxes). These coefficients evolve
through time (red, blue) according to a linear dynamical system [5, 6].

Choosing a specific measure family µ(t) results in a specific way past
weighted in when projecting into a memory of a lower dimension.The unified
perspective on memory mechanisms allows one to derive these closed-form so-
lutions using the strategy from [5]. The first LegT explains the core Legendre
Memory Unit (LMU) [4] update. In the figure 2.3.6 we can see the tradeoffs
of these measures. The original paper derives additional HiPPO instantia-
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tions using other bases such as Fourier which uncovers the previously used
architecture called Fourier Recurrent Unit [48] and also Chebyshev base.

The translated Legendre (LegT) measures assign a uniform weight to the
most recent history [t − θ, t]. There is a hyperparameter θ representing the
length of the sliding window, or the length of history that is being summa-
rized. The translated Laguerre (LagT) measures instead use the exponentially
decaying measure, assigning more importance to recent history.

LegT : µ(t)(x) = 1
θ
I[t−θ,t](x)

LagT : µ(t)(x) = e−(t−x)I(−∞,t](x) =
{
ex−t if x ≤ t
0 if x > t.

Theorem 1 (Proof [5] Appendix E) For LegT and LagT, the hippo oper-
ators satisfying 4 are given by the linear time-invariant ordinary differential
equation

d

dt
c(t) = −Ac(t) +Bf(t),

where
A ∈ RN×N , B ∈ RN×1 :

LegT:

Ank = 1
θ

{
(−1)n−k(2n+ 1) if n ≥ k
2n+ 1 if n ≤ k , Bn = 1

θ
(2n+ 1)(−1)n

(2.8)

LagT:

Ank =
{

1 if n ≥ k
0 if n < k

, Bn = 1 .
(2.9)

Equation 2.8 proves the LMU update [4]. Additionally the [5] shows that
outside of the projections, there is another source of approximation. This
sliding window update rule requires access to f(t − θ), which is no longer
available. It works with the current coefficients c(t), while hoping that the
results are an accurate enough model of the function f(x)x≤t that f(t−θ) can
be recovered.
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2.3.6 Discretization

Since the data one usually works with are discrete, it is useful to know how
the HiPPO projection operators can be discretized using standard techniques
for approximating the evolution of dynamical systems, so that the continuous-
time HiPPO ODEs become discrete-time linear recurrences. Simply put, to
construct a memory representation ct of an input sequence ft, HiPPO is im-
plemented as a linear recurrence

ct+1 = Atct +Btft,

where the transition matrices At, Bt have closed-form formulas [5, 6]. In the
continuous case, these operators consume an input function f(t) and produce
an output function c(t). The discrete time case consumes an input sequence
(fk)k∈N, implicitly defines a function f(t) where

f(k ·∆t) = fk,

for some step size ∆t, produces a function c(t) through the ODE dynamics,
and discretizes back to an output sequence:

ck := c(k ·∆t).

The basic method of discretizating an ODE:

d

dt
c(t) = u(t, c(t), f(t)),

chooses a step size ∆t and performs the discrete updates

c(t+ ∆t) = c(t) + ∆t · u(t, c(t), f(t)).

In [5] they note that this process is sensitive to the discretization step size
hyperparameter ∆t. They also show that this provides a way to seamlessly
handle timestamped data, even with missing values: the difference between
timestamps indicates the (adaptive) ∆t to use in discretization [46].

2.3.7 Memory Mechanisms of gated architectures

As a special case, one may decide not to include high order polynomials.
Specifically, if N = 1, then the discretized version of HiPPO-LagT 2.9 becomes

c(t+ ∆t) = c(t) + ∆t(−Ac(t) +Bf(t)) = (1−∆t)c(t) + ∆tf(t),

since A = B = 1. If the inputs f(t) can depend on the hidden state c(t)
and the discretization step size ∆t is chosen adaptively (as a function of input
f(t) and state c(t)), as in RNNs, then this becomes exactly a gated RNN. For
instance, by stacking multiple units in parallel and choosing a specific update
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Figure 2.6: Illustration of HiPPO measures. At time t0, the history of a
function f(x)x≤t0 is summarized by polynomial approximation with respect
to the measure µ(t0) (blue line), and similarly for time t1 (purple line). The
Translated Legendre measure (LegT) assigns weight in the window [t − θ, t].
For small t, µ(t) is supported on a region x < 0 where f is not defined. When
t is large, the measure is not supported near 0, causing the projection of f to
forget the beginning of the function. The Translated Laguerre (LagT) measure
decays the past exponentially. It does not forget, but also assigns weight on
x < 0. The Scaled Legendre measure (LegS) weights the entire history [0, t]
uniformly [5].

function, it is possible to recover the GRU update cell as a special case. The
LSTM cell update is similar, with a parameterization known as tied gates. In
contrast to HiPPO which uses one hidden feature and projects it onto high
order polynomials, these models use many hidden features but only project
them with degree 1. This view sheds light on these classic techniques by
showing how they could be derived in a different way [5].

2.3.8 Scaled Legendre Measure LegS

Exposing the connection between function approximation and memory en-
ables memory mechanisms with better theoretical properties. We only need
to choose the measure carefully. Sliding windows are very popular in signal
processing. However more rational approach for modeling memory is process-
ing a the whole signal rather than a sliding window, memory should scale
the window over the whole signal perceived so far, so nothing is completely
forgotten [5].
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2.3.8.1 Time Dynamics

The novel scaled Legendre measure (LegS) assigns a uniform weight to all
previously seen data

[0, t] : µ(t) = 1
t
I[0,t].

A picture is worth a thousand words in this case, great explanation of how
the importance of history differs for those measures is illustrated in 2.6, which
compares LegS, LegT, and LagT visually, showing the advantages of the scaled
measure. To create such a memory mechanism using HiPPO framework, we
only need to choose the right measure [5].

Theorem 2 (Proof [5] Appendix E) The continuous- 2.10 and discrete-
2.11 time dynamics for HiPPO-LegS are:

d

dt
c(t) = −1

t
Ac(t) + 1

t
Bf(t) (2.10)

ck+1 =
(

1− A

k

)
ck + 1

k
Bfk (2.11)

Ank =


(2n+ 1)1/2(2k + 1)1/2 if n > k

n+ 1 if n = k, Bn = (2n+ 1) 1
2

0 if n < k

.

The corresponding Python code is the following.

import numpy as np
#‘N‘ i s the order o f the memory
q=np . arange (N, dtype=np . f l o a t 6 4 )
co l , row=np . meshgrid (q , q )
r=2∗q+1
M=−(np . where ( row>=col , r ,0)−np . diag ( q ) )
T=np . s q r t (np . d iag (2∗q+1))
A=T @ M @ np . l i n a l g . inv (T)
B=np . diag (T) [ : , None ]
C=np . ones ( ( 1 , N) )
D=np . z e ro s ( ( 1 , ) )

It is possible to show that HiPPO-LegS possesses good theoretical proper-
ties as it is invariant to the input timescale, fast to compute during inference,
and has bounded gradients and approximation error. Attentive readers may
have noticed the absence of the window length parameter because, as men-
tioned before, the window size of LegS is adaptive. The projection of this
measure is thus robust even when the input signal is scaled in time. Formally,
it can be said that the HiPPO-LegS operator is timescale-equivariant: dilating
the input f does not change the approximation coefficients.
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Proposition 1 (Proof [5] Appendix E) For any scalar α > 0, if h(t) =
f(αt), then hippo(h)(t) = hippo(f)(αt) In other words, if γ : t 7→ αt is any
dilation function, then hippo (f ◦ γ) = hippo(f) ◦ γ

Informally, this can be noticed when inspecting the HiPPO-LegS model
which has no timescale hyperparameters. The discrete recurrence 2.11 is in-
variant to the discretization step size. When using the LegT measure which is
equivalent to LMU, we can notice it has a hyperparameter θ for the window
size, and both LegT and LagT have a step size hyperparameter ∆t in the
discrete time case. The θ and ∆t hyperparameters are important and getting
their values right may require hyperparameter optimization in practice( in our
case grad student descent [49] and random search was used). [28, 50, 51]. In
[5] the timescale robustness is empirically demonstrated by using upsampled/-
downsampled timeseries.

Figure 2.7: Illustration of how HiPPO-LegS is intuitively dilation equivariant
[5, 6].

2.3.8.2 Computational efficiency

During the inference in HiPPO framework, computing a single step of the
discrete HiPPO update requires multiplication by the (discretized) square
matrix A it is the first operation that one usually focuses on when determining
the efficiency of such architectures. The transition matrices At actually have
a special structure, and the recurrence can be computed in linear instead of
quadratic time. Discretization requires fast multiplication for any matrix of
the form

I + ∆t ·A and (I −∆t ·A)−1,
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for arbitrary step sizes ∆t. In general that would be a O
(
N2) operation,

LegS operators however use a fixed A matrix with a special structure that
has fast multiplication algorithms for any discretization. The [5] provides an
efficient implementation for fast inference using PyTorch C++ binding, the
possibilities of speeding up training are discussed in the section about future
work of this thesis. All experiments in this thesis were however implemented
using Keras.

Proposition 2 (Proof [5] Appendix E) Under any generalized bilinear trans-
form discretization, each step of the HiPPO-LegS recurrence in equation 2.11
can be computed in O(N) operations.

2.3.8.3 Gradient flow

To deal with the vanishing gradient problem in RNNs [52] there is no need
for an effort similar to introducing gating mechanisms in LSTM and GRU
architectures as LegS is designed for memory, it avoids the vanishing gradient
issue entirely. It can be shown that the gradient norms of the model decay
polynomialy in time, instead of exponentially [5].

Proposition 3 (Proof [5] Appendix E) For any time t0 < t1, the gradi-
ent norm of HiPPO-LegS operator for the output at time t1 with respect to
input at time t0 is

∥∥∥ ∂c(t1)
∂f(t0)

∥∥∥ = Θ (1/t1).

2.3.8.4 Approximation error bounds

The error rate of LegS decreases with the smoothness of the input.

Proposition 4 (Proof [5] Appendix E) Let f : R+ → R be a differen-
tiable function, and let g(t) = projt(f) be its projection at time t by HiPPO-
LegS with maximum polynomial degree N − 1. If f is L -Lipschitz then∥∥∥f≤t − g(t)

∥∥∥ = O(tL/
√
N). If f has order-k bounded derivatives then

∥∥∥f≤t − g(t)
∥∥∥ =

O
(
tkN−k+1/2

)
2.3.9 Architecture of RNN with HiPPO framework

HiPPO is a simple linear recurrence that can be integrated into deep learning
models in multiple ways. The attempt to construct a recurrent neural network
(RNN) using HiPPO is the first that comes to mind because of their connection
to dynamic systems involving a state evolving over time, just as in HiPPO.
The HiPPO-RNN is the simplest way to construct this kind of architecture:

1. Begin with the standard RNN recurrence ht = τ (ht−1, xt) which evolves
the hidden state ht by any nonlinear function τ given the input xt

2. Project the state to a lower dimension feature ft

37



2. Novel approaches

Figure 2.8: This figure shows HiPPO incorporated into a simple RNN model.
hippo is the HiPPO memory operator which projects the history of the ft
features depending on the chosen measure [5].

3. Use the HiPPO recurrence to create a representation ct of the history of
ft, which is also fed back into τ

This looks very similar to cell diagrams for other architectures such as LSTMs
and GRU. [1, 27]. These classical architectures which rely on gating are closely
related. The cell state of an LSTM performs the recurrence

ct+1 = αtct + βtft,

where αt, β are known as and ”input” gates. Reccurences representing these
gates are similar to the HiPPO recurrence:

ct+1 = Atct +Btft.

These gated RNNs may be percieved as a special case of HiPPO with low-order
(N = 1) approximations and input dependent discretization.

In this way, HiPPO sheds light on these popular architectures already
widely deployed in the wild and shows how the gating mechanism, which was
originally introduced as a heuristic, could have been derived. The HiPPO-
LegT model, which is the instantiation of HiPPO using the translated Legen-
dre measure, is exactly equivalent to the previously discussed Legendre Mem-
ory Unit [4]. This means that the LMU, which is the main result of [4] is part
of the HiPPO framework as it is equivalent to using the LegT measure.

The original LMU was motivated by neurobiological research and ap-
proaches the problem from a specific direction: it considers approximating
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spiking neurons in the frequency domain, while directly solving an inter-
pretable optimization problem in the time domain. More specifically, they
consider time-lagged linear time invariant (LTI) dynamical systems and ap-
proximate the dynamics with Padé approximants. [4] observes that the result
also has an interpretation in terms of Legendre polynomials, but not that it
is the optimal solution to a natural projection problem. There is no complete
proof of the update mechanism in [4, 41].

HiPPO on the other hand, suggests and online signal approximation prob-
lem, which is related to orthogonal polynomial families and makes the deriva-
tion of several related memory mechanisms simpler. The interpretation in
time rather than frequency space, and the associated derivation of the LegT
measure, reveals a different set of approximations stemming from the sliding
window.[5].

The motivations of the two works [4, 5] are seemingly different, but they
still manage to find the same memory mechanism. This hints a potential
connection between sequence models and biological nervous systems. HiPPO
is integrated into an RNN architecture which is shown in figure 2.3.9 with
slight improvements to the LMU architecture [5].

2.3.10 HiPPO operators

Given a specific choice of measure and basis functions, we are interested in
how the coefficients c(t) can be computed. As an input for this process, we
are given a function f : [0,∞) → R which is seen online, for which we wish
to maintain a compressed representation of its history f(x)≤t = f(x)x≤t at
every time t. Not considering tilted measures we have χ = 1 (no tilting), we
also have ζ = 1 and gn = λnpn.

Given a function f we want to find its approximation coeficients as it can be
approximated by storing its coefficients with respect to the basis {gn}n<N . For
example, in the case of no tilting χ = 1, this encodes the optimal polynomial
approximation of f by polynomials of degree less than N . Specifically, at time
t we are trying to represent f≤t as a linear combination of polynomials g(t)

n .
Since they are orthogonal, more specifically g

(t)
n are orthogonal with respect

to the scalar product of the Hilbert space defined by 〈·, ·〉ν(t) as defined in
equation 2.7, it is enough to calculate the coefficients

cn(t) =
〈
f≤t, g

(t)
n

〉
ν(t)

=
∫
fg(t)

n

ω(t)

ζ(t)
(
χ(t))2

= ζ(t)−
1
2λn

∫
fp(t)

n

ω(t)

χ(t) .

(2.12)
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Reconstruction at any time t, f≤t is then given by

f≤t ≈ g(t) :=
N−1∑
n=0

〈
f≤t, g

(t)
n

〉
ν(t)

g
(t)
n∥∥∥g(t)

n

∥∥∥2

ν(t)

=
N−1∑
n=0

λ−2
n cn(t)g(t)

n

=
N−1∑
n=0

λ−1
n ζ

2
2 cn(t)p(t)

n χ
(t).

(2.13)

The equation 2.13 is the proj t operator, given the measure and basis pa-
rameters. That means that it defines the optimal approximation of f≤t.
On the other hand, the coef t operator extracts the vector of coefficients
c(t) = (cn(t))n∈[N ].

Consuming an input function f(t), the coefficients c(t) are enough to en-
code information about the history of f and allow online predictions needed
when trying to construct a model. Defining c(t) to be the vector of cn(t) from
equation 2.12, the focus will be on how to calculate the coefficient function

c : R≥0 → RN ,

from the input function
f : R≥0 → R .

In the HiPPO framework, computing these coefficients over time is done by
viewing the problem as a dynamical system. Obtaining the following by dif-
ferentiating the formula 2.12.

d

dt
cn(t) =ζ(t)−

1
2λn

∫
f(x)

(
∂

∂t
pn(t, x)

)
ω

χ
(t, x)dx

+
∫
f(x)

(
ζ−

1
2λnpn(t, x)

)( ∂
∂t

ω

χ
(t, x)

)
dx.

(2.14)

Here they are using the assumption that ζ is constant for all t. Formally the
function c(t) ∈ RN−1 denotes the vector of all coefficients (cn(t))0≤n<N . The
key idea is that if ∂

∂tPn and ∂
∂t
ω
χ have closed forms that can be related back to

the polynomials Pk, then an ordinary differential equation can be written for
c(t). This allows these coefficients c(t) to be computed online. Since d

dtP
(t)
n is

a polynomial (in x ) of degree n−1, it can be written as linear combinations of
P0, . . . , Pn−1, so the first term in 2.14 is a linear combination of c0, . . . , cn−1.
For many weight functions ω, it is possible to find scaling function χ such that
∂
∂t
ω
x can also be written in terms of ω

x itself, if that is the case 2.14 is also
a linear combination of c0, . . . , cN−1 and the input f . Thus this often yields
a closed-form linear ODE for c(t). Suppose that equation 2.14 is reduced to
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dynamics of the form
d

dt
c(t) = −A(t)c(t) +B(t)f(t).

Then, letting Λ = diagn∈[N ] {λn}

d

dt
Λ−1c(t) = −Λ−1A(t)ΛΛ−1c(t) + Λ−1B(t)f(t),

allows them to reparameterize the coefficients
(
Λ−1c(t)→ c(t)

)
then the nor-

malized coefficients projected onto the orthonormal basis satisfy dynamics and
associated reconstruction

d

dt
c(t) = −

(
Λ−1A(t)Λ

)
c(t) +

(
Λ−1B(t)

)
f(t)

f≤t ≈ g(t) =
N−1∑
n=0

ζ
1
2 cn(t)p(t)

n χ
(t).

These are the hippo and projt operators [5].

2.3.11 Derivation of LMU in HiPPO framework

Given the previously established foundations, it is possible to show the deriva-
tion of Translated Legendre (HiPPO-LegT). The way to derive a HiPPO op-
erator in general consists of four basic steps.

• First, we need to have some measure and basis, so we define the measure
µ(t) or weight ω(t, x) and basis functions pn(t, x).

• After that, we need to have the derivatives at hand, so we compute the
derivatives of the measure and basis functions,

• Then Coefficient Dynamics need to be figured out. Therefore, we plug
them into the coefficient dynamics from the equation 2.14 to derive the
ODE that describes how to compute the coefficients c(t),

• The last step is the reconstruction. It is necessary to provide a complete
formula to reconstruct an approximation to the function f≤t, which is
the optimal projection under this measure and basis.

This measure fixes a window length θ and slides it across time. As a Measure
and Basis uniform weight function supported on the interval [t− θ, t] is used
and Legendre polynomials Pn(x), translated from [-1,1] to [t − θ, t], are used
as basis functions:

ω(t, x) = 1
θ
I[t−θ,t]

pn(t, x) = (2n+ 1)1/2Pn

(2(x− t)
θ

+ 1
)

gn(t, x) = λnpn(t, x).
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The derivations included in this thesis use use no tilting so χ = 1 and ζ = 1
see [5] for further explanation of what the tilted measure means. To further
simplify this problem, we can leave λn unspecified for now, they specify con-
stants which we are able to leave unspecified - the reason we are to leave them
unspecified is that the orthogonal basis is not unique. At the endpoints, these
basis functions satisfy

gn(t, t) = λn(2n+ 1)
1
2

gn(t, t− θ) = λn(−1)n(2n+ 1)
1
2 .

The derivative of the measure is

∂
∂tω(t, x) = 1

θδt −
1
θδt−θ.

The derivative of Legendre polynomials can be expressed as linear combina-
tions of other Legendre polynomials as mentioned earlier, we make use of that
fact to get

∂

∂t
gn(t, x) = λn(2n+ 1)

1
2 · −2

θ
P ′n

(2(x− t)
θ

+ 1
)

= λn(2n+1)
1
2
−2
θ

[
(2n− 1)Pn−1

(2(x− t)
θ

+ 1
)

+ (2n− 5)Pn−3

(2(x− t)
θ

+ 1
)

+ . . .

]

= −λn(2n+1)
1
2

2
θ

[
λ−1
n−1(2n− 1)

1
2 gn−1(t, x) + λ−1

n−3(2n− 3)
1
2 gn−3(t, x) + . . .

]
,

(2.15)

using the equation P ′n = (2n−1)Pn−1+(2n−5)Pn−3+. . . here. As a special case
of the LegT measure, it is necessary to consider an approximation due to the
nature of the sliding window measure. When analyzing d

dtc(t), the value f(t−
θ) will be used. However, at time t this input is no longer available. Instead,
it relies on compressed representation of the function, by the reconstruction
equation that says that at any time t, f≤t can be explicitly reconstructed as

f≤t ≈ g(t) :=
N−1∑
n=0

〈
f≤t, g

(t)
n

〉
ν(t)

g
(t)
n∥∥∥g(t)

n

∥∥∥2

ν(t)

=
N−1∑
n=0

λ−2
n cn(t)g(t)

n

=
N−1∑
n=0

λ−1
n ζ

1
2 cn(t)p(t)

n χ
(t).
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In the case where the approximation is succeeding so far, this results in

f≤t(x) ≈∑N−1
k=0 λ−1

k ck(t)(2k + 1) 1
2Pk

(
2(x−t)
θ + 1

)
f(t− θ) ≈∑N−1

k=0 λ−1
k ck(t)(2k + 1) 1

2 (−1)k,

and the coefficient dynamics can now be derived. Plugging the derivatives of
this measure and basis into the equation 2.14 gives

d

dt
cn(t) =

∫
f(x)

(
∂

∂t
gn(t, x)

)
ω(t, x)dx

+
∫
f(x)gn(t, x)

(
∂

∂t
ω(t, x)

)
dx

= −λn(t)
θk

+ (2n+ 1)
1
2
λn
θ
f(t),

where
Mnk =

{
1 if k ≤ n
(−1)n−k if k ≥ n.

Considering different possible values of λn. The first one is the more natural
λn = 1, which turns gn into an orthonormal basis. This yields

d

dt
c(t) = −1

θ
Ac(t) + 1

θ
Bf(t)

Ank = (2n+ 1)
1
2 (2k + 1)

1
2

{
1 if k ≤ n
(−1)n−k if k ≥ n

Bn = (2n+ 1)
1
2 .

The second case takes λn = (2n+ 1) 1
2 (−1)n. This yields

d

dt
c(t) = −1

θ
Ac(t) + 1

θ
Bf(t)

Ank = (2n+ 1)
{

(−1)n−k if k ≤ n
1 if k ≥ n

Bn = (2n+ 1)(−1)n.

This is exactly the LMU update equation [4, 5]. Using the reconstruction by
equation

f≤t ≈ g(t) :=
N−1∑
n=0

〈
f≤t, g

(t)
n

〉
ν(t)

g
(t)
n∥∥∥g(t)

n

∥∥∥2

ν(t)

=
N−1∑
n=0

λ−2
n cn(t)g(t)

n

=
N−1∑
n=0

λ−1
n ζ

1
2 cn(t)p(t)

n χ
(t),
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at every time t

f(x) ≈ g(t)(x) =
∑
n

λ−1
n cn(t)(2n+ 1)

1
2Pn

(2(x− t)
θ

+ 1
)
.

2.3.12 Derivation of LegS

Following the same general steps as in the previous section, the derivation of
Scaled Legendre (HiPPO-LegS) can be done in the following way. The scaled
Legendre is the only method that uses a measure with varying width from the
measures presented in [5]. That is an interesting property as it allows it to
get rid of the timescale parameter. It is necessary to choose a measure and
basis to create an instantiation of the framework in the case

ω(t, x) = 1
t
I[0,t]

gn(t, x) = pn(t, x) = (2n+ 1)
1
2Pn

(2x
t
− 1

)
.

Here, Pn are the basic Legendre polynomials. They use no tilting, that means
χ(t, x) = 1, ζ(t) = 1, and λn = 1 so that the functions gn(t, x) are an or-
thonormal basis. Derivatives are derived in a way where we first differentiate
the measure and basis:

∂

∂t
ω(t, ·) = −t−2I[0,t] + t−1δt = t−1 (−ω(t) + δt)

∂

∂t
gn(t, x) = −(2n+ 1)

1
2 2xt−2P ′n

(2x
t
− 1

)
= −(2n+ 1)

1
2 t−1

(2x
t
− 1 + 1

)
P ′n

(2x
t
− 1

)
.

Now defining z = 2x
t −1 and applying the properties of derivatives of Legendre

polynomials

(x+ 1)P ′n(x) = P ′n+1 + P ′n − (n+ 1)Pn
= nPn + (2n− 1)Pn−1 + (2n− 3)Pn−2 + . . .

this yields

∂

∂t
gn(t, x) = −(2n+ 1)

1
2 t−1(z + 1)P ′n(z)

= −(2n+ 1)
1
2 t−1 [nPn(z) + (2n− 1)Pn−1(z) + (2n− 3)Pn−2(z) + . . .]

= −t−1(2n+ 1)
1
2
[
n(2n+ 1)−

1
2 gn(t, x) + (2n− 1)

1
2 gn−1(t, x) + (2n− 3)

1
2 gn−2(t, x) + . . .

]
,

the Coefficient Dynamics are obtained by plugging these into
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d

dt
cn(t) =ζ(t)−

1
2λn

∫
f(x)

(
∂

∂t
pn(t, x)

)
ω

χ
(t, x)dx

+
∫
f(x)

(
ζ−

1
2λnpn(t, x)

)( ∂
∂t

ω

χ
(t, x)

)
dx,

from which the following is obtained

d

dt
cn(t) =

∫
f(x)

(
∂

∂t
gn(t, x)

)
ω(t, x)dx+

∫
f(x)gn(t, x)

(
∂

∂t
ω(t, x)

)
dx

=− t−1(2n+ 1)
1
2
[
n(2n+ 1)−

1
2 cn(t) + (2n− 1)

1
2 cn−1(t) + (2n− 3)

1
2 cn−2(t) + . . .

]
− t−1cn(t) + t−1f(t)gn(t, t)

=t−1(2n+ 1)
1
2
[
(n+ 1)(2n+ 1)−

1
2 cn(t) + (2n− 1)

1
2 cn−1(t) + (2n− 3)

1
2 cn−2(t) + . . .

]
+ t−1(2n+ 1)

1
2 f(t),

where gn(t, t) = (2n + 1) 1
2Pn(1) = (2n + 1) 1

2 has been used, next vectorizing
this yields equation:

d

dt
c(t) = −1

t
Ac(t) + 1

t
Bf(t) (2.16)

Ank =


(2n+ 1)1/2(2k + 1)1/2 if n > k
n+ 1 if n = k
0 if n < k.

Bn = (2n+ 1) 1
2

(2.17)

This can also be written as

d

dt
c(t) = −t−1D

[
MD−1c(t) + 1f(t)

]
,

where D := diag
[
(2n+ 1) 1

2
]N−1

n=0
,1 is the all ones vector, and the state matrix

M is

M =



1 0 0 0 . . . 0
1 2 0 0 . . . 0
1 3 3 0 . . . 0
1 3 5 4 . . . 0
...

...
...

... . . . ...
1 3 5 7 . . . N


, that is, Mnk =


2k + 1 if k < n
k + 1 if k = n.
0 if k > n

Previously shown equations 2.16 and 2.17 form a linear dynamical system,
they are however dilated by a time-varying factor t−1, which due to the scaled
measure [5, 6].
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2.3.13 Comparing LegS and LegT

After the detailed description of both LMU(LegT) and LegS, it would probably
be beneficial to compare them. LegS does not need any hyperparameters
governing the timescale. However, if we choose the θ in a LegT just right.
Meaning, we choose it to match the length of the sequence. θ = T where T
is the final time range. We can see that at the end of consuming the input
function (time t = T ), the measures µ(t) for LegS and LegT are both equal
to 1

T I[0,T ]. This means that the aproximation projT (f) is specifying the same
function for LegS and LegT at time t = T . There is however still one difference,
LegT has an additional approximation term for f(t− θ) while calculating the
update at every time t because it is using a sliding window [5].

2.3.14 Analyzing norm of the gradient

Analyzing the discrete time case under the Euler discretization , where the
HiPPO-LegS recurrent update is equation 2.10, it is possible to restate for
convenience in the following way:

ck+1 =
(

1− A

k

)
ck + 1

k
Bfk.

These gradient asymptotics hold under multiple other discretizations. It can
be shown that for any time k < `, the gradient norm of the HiPPO-LegS
operator for the output at time ` + 1 with respect to input at time k is∥∥∥∂ct+1
∂fk

∥∥∥ = Θ(1/`). To actually prove that in [5] they start with setting N to
be a constant. Without loss of generality, they assume k > 2, as the gradient
change for a single initial step is bounded. By unrolling the recurrence (2.10),
the dependence of c`+1 on ck and fk, . . . , f` can be made explicit:

c`+1 =
(
I − A

`

)
. . .

(
I − A

k

)
ck

+
(
I − A

`

)
. . .

(
I − A

k + 1

)
B

k
fk

+
(
I − A

`

)
. . .

(
I − A

k + 2

)
B

k + 1fk+1

...

+
(
I − A

`

)
B

`− 1f`−1

+ B

`
f`,

therefore
∂c`+1
∂fk

=
(
I − A

`

)
. . .

(
I − A

k + 1

)
B

k
.
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Notice that A has distinct eigenvalues 1, 2, . . . , N , since those are the elements
of its diagonal and A is triangular (Theorem 2). That means that the matrices
I−A

τ , . . . , I−
A
k+1 can be diagonalized using change of basis. The assumption of

this method is that we suppose that the basis vectors are linearly independent
eigenvectors, which is exactly the case here. Matrix multiplication does not
commute in general, but diagonal matrices commute. The gradient can be
be expressed as PDP−1B assuming an invertible matrix P and a diagonal
matrix D. The actual norm is then bounded from below (up to constant)
by the smallest singular value of P and

∥∥P−1B
∥∥, both of which are nonzero

constants, and the largest diagonal entry of D. It thus suffices to bound this
largest diagonal entry of D, which is the largest eigenvalue of this product,

ρ =
(

1− 1
`

)
. . .

(
1− 1

k + 1

) 1
k

.

The problem reduces to showing that ρ = Θ(1/l). They use the following
facts about the function log

(
1− 1

x

)
. It is an increasing function, so

log
(

1− 1
x

)
≥
∫ x

x−1
log

(
1− 1

λ

)
d.λ

Additionally, its antiderivative is∫
log

(
1− 1

x

)
dx =

∫
log(x− 1)− log(x)dx

= (x− 1) log(x− 1)− x log(x)

= x log
(

1− 1
x

)
− log(x− 1).

Using those two facts we get

log
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)
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∫ i

i−1
log

(
1− 1

x

)
dx

=
∫ `

k
log

(
1− 1

x

)
dx

= [(x− 1) log(x− 1)− x log(x)]|`k

= ` log
(

1− 1
`

)
− log(`− 1)

−
(
k log

(
1− 1

k

)
− log(k − 1)

)
.

Another thing that should be noticed is the fact that x log
(
1− 1

x

)
is an in-

creasing function, and also a function bounded from above since it is negative,
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from that we get that it is Θ(1). So we have

log ρ ≥ Θ(1)− log(`− 1) + log(k − 1)− log(k).

All inequalities are asymptotically tight, so that ρ = Θ(1/`) [5].
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Chapter 3
Experiments

Here we describe the experiments conducted as part of this thesis. All of them
were implemented using Keras framework, additionally one of the audio clas-
sification experiments was replicated using Nengo framework to demonstrate
how such networks could be implemented on specialized hardware by using a
simulator of such hardware on a classical CPU.

3.1 Audio classification

Audio classification in this thesis is concerned with classifying audio data
points using a single label.

3.1.1 Preprocessing

First, we want to test the previously mentioned ability of the the novel ar-
chitecture LMU and LegS capture longterm dependencies on downscaled/up-
scaled signal. We perform an unusual preprocessing on this dataset, converting
the spectrogram of each audio sample to a sequence of fixed length 4096 and
feed the network one element at a time. The aim of this experiment is to di-
rectly compare the ability of different architectures to handle long sequences of
upsampled/downsampled signals. The upsampling/downsampling is achieved
by taking audio recordings of different lengths and converting them to a spec-
trogram of a fixed length. This means that for some points in the dataset, the
data point is shrinked to fit the fixed size and for other data points the data
is stretched to fit the fixed size.

3.1.2 Mel-frequency cepstrum

The spectrogram mentioned in the previous section is actually Mel-frequency
cepstrum (MFCC) [53]. MFCC is perhaps the best known and most popular
method of audio preprocessing. MFCC’s are based on the known variation
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of the human ear’s critical bandwidth with frequency. The MFCC technique
makes use of two types of filters, namely, linearly spaced filters and logarith-
mically spaced filters. To capture the phonetically important characteristics
of speech, the signal is expressed in the mel frequency scale. This scale has
a linear frequency spacing below 1000 Hz and a logarithmic spacing above
1000 Hz. Normal speech waveforms may vary from time to time depend-
ing on the physical condition of the speaker and his/her vocal cord. Rather
than the speech waveforms themselves, MFFCs are less susceptible to the said
variations [53].

3.1.3 Sequential Spoken Digits

For this experiment a simple audio/speech dataset consisting of recordings
of spoken digits is used [54]. To test the ability of the RNNs considered in
this experiment to learn long-range dependencies, we perform preprocessing
transforming the data into a spectrogram of fixed length, and then we flatten
the spectrogram into a 1 dimensional sequence resulting in 4096 timesteps
for each utterance. That should be enough timesteps to demonstrate the
limitations of the currently popular architectures LSTM and GRU.

3.1.3.1 Results

Figure 3.1: Results in terms of validation accuracy on the spoken digit classi-
fication task, same architecture was used for all experiments we only switched
the recurrent unit for each experiment.

Results
Model Accuracy Trainable param-

eters
Training time

LSTM 0.1060 1057802 15 min
GRU 0.1160 791040 12 min
LMU 0.9440 101771 33 min
LMU 0.9520 101771 68 min
LMU(NengoDL) 0.9550 102017 38 min
LegS 0.8540 102027 31 min
LegS 0.9540 102027 133 min

We can see that LSTM and GRU failed to learn from these long sequences.
Another thing we can notice is that LMU converges to a fair accuracy way
faster. Even thought there are ways to make this dataset more convenient
for architectures with limited ability to process long-time dependencies and
upsampled/downsampled signals. That was not the aim of this experiment
nor of this thesis in general. The part of this experiment using LMU(LegT)
to perform this task was also replicated using Nengo [55]framework instead
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of Keras to demonstrate how this kind of model could be implemented on
specialized hardware like Intel Loihi which takes advantage of model of com-
putation called spiking neural network. In order to perform the experiment on
classic hardware we simulated the spiking network using TensorFlow backend
for Nengo called NengoDL [56]. The topic of spiking neural networks will be
briefly discussed in the next chapter.

3.1.4 Sequential Environmental Sound classification

After confirming that treating sound as a sequence is actually a feasible ap-
proach, we perform another experiment on a comparatively bigger dataset
called Urban8k [57]. It is concerned with the classification of environmental
sounds. Namely, there are ten different categories which we are trying to
classify

0 = a i r c o n d i t i o n e r
1 = car horn
2 = c h i l d r e n p l a y i n g
3 = dog bark
4 = d r i l l i n g
5 = e n g i n e i d l i n g
6 = gun shot
7 = jackhammer
8 = s i r e n
9 = s t r e e t m u s i c

We perform the same preprocessing steps like in the previous sound classi-
fication experiment, resulting in sequences of 4096 time-steps and use a similar
architecture.

3.1.4.1 Results

After training the network 10 times, once for each fold, we report the mean
validation accuracy. The LSTM and GRU were omitted.

Figure 3.2: Results in terms of validation accuracy on urban8k dataset under
10-fold crossvalidation.

Results
Model Accuracy Trainable param-

eters
Training time

LMU 0.4877 402475 6 hours
LMU 0.5659 402475 50
LegS 0.4906 485811 7 hours
LegS 0.5702 485811 49 hours
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As this is a popular dataset, we have an opportunity to compare the model
with other approaches which are using different architectures and preprocess-
ing methods [7].

Figure 3.3: Results gathered from litarature in terms of 10-fold cross-
validation mean accuracy on urban8k dataset under 10-fold crossvalidation.
Data augumentation seems to be neccesary to achieve state of the art results
[7]

Results
Model Accuracy
CNN 0.5118
LSTM + Attention 0.5950
Capsule Network + DA 0.7650
CNN + DA 0.7900

We can see from the figure 3.1.4.1 that this sequential approach is able to
match with the approaches using convolutional neural networks and LSTMs
with attention. The state-of-the-art results are mainly based on heavy data
augumentation (DA), which we did not perform

3.2 Natural language processing

Recurrent neural networks are a popular architecture used for natural lan-
guage processing tasks. We will compare the novel architecture-based models
with the the models based on LSTM and GRU architectures. In essence, re-
placing the recurrent units in the currently used architectures by the novel
ones LMU(LegT) and LegS. We want to determine if the novel architectures
can be treated as drop-in replacement for the currently used LSTM and GRU
architectures.

3.2.1 Named Entity Recognition

In this experiment, we are going to be dealing with English text. Some of the
words in the text are rigid designators. A rigid designator designates the same
object in all possible worlds in which that object exists and never designates
anything else. Named entity recognition (NER) is the task to identify men-
tions of rigid designators from text belonging to predefined semantic types
such as person, location, organization, etc. NER always serves as the founda-
tion for many natural language applications such as question answering, text
summarization, and machine translation [58].

The term “Named Entity” refers to the named entities in the task of identi-
fying the names of organizations, people, and geographic locations in the text,
as well as currency, time, and percentage expressions. There has been increas-
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ing interest in NER, and various scientific events devote much effort to this
topic. The problem was defined in [8] and restricted the definition of named
entities to: “A NE is a proper noun, serving as a name for something or some-
one”. This restriction is justified by the significant percentage of proper nouns
present in the corpus. Another work [59] claimed that the word “Named”
restricted the task to only those entities for which one or many rigid desig-
nators stands for the referent. Rigid designators, as defined in [60], include
proper names and natural kind terms like biological species and substances.
Despite the various definitions of NEs, researchers have reached a common
consensus on the types of NEs to recognize. We generally divide NEs into two
categories: generic NEs (e.g., person and location) and domain-specific NEs
(e.g., proteins, enzymes, and genes). In this experiment, we focus on generic
NEs in English language.

3.2.1.1 Dataset

The Groningen Meaning Bank (GMB) [61] is a dataset of multisentence texts,
together with annotations for parts-of-speech, named entities, lexical cate-
gories, and other natural language structural phenomena.

Figure 3.4: Illustration of named entity recognition task [8].

3.2.1.2 Preprocessing

There is 35178 unique words in the corpus and 17 unique named entity tags,
we create a mapping of tags and words to natural numbers and use that
for training, since we care about named entities no further processing of the
corpus is done. We create sequences of maximum length 50 from the corpus
with sequences of corresponding length representing the tags assigned to words
in the sequence. We use that for supervised training. Specific example of a
processed sentence about Rwandan genocide in 1994 is shown in figure 3.2.1.2.
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Figure 3.5: An example sequence that is fed to the network and comparison of
ground truth and predicted output. The specific model used for this example
was LSTM based, but it does not differ for other models

Word True Pred

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
A O O
United B−org B−org
Nations I−org I−org
war O O
cr imes O O
court O O
has O O
sentenced O O
a O O
former O O
Rwandan B−gpe B−gpe
mayor O O
to O O
15 O B−tim
years O O
in O O
pr i son O O
f o r O O
h i s O O
r o l e O O
in O O
the O O
1994 B−tim B−tim
genoc ide O O
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3.2.1.3 Architecture

Even though four different architectures were used in these experiments, they
are all similar and differ only in the recurrent unit used. An embedding layer
is used followed by spatial dropout and after that a recurrent layer is used in
a bidirectional manner and it is followed by a timedistributed dense layer that
outputs a sequence of tags for the input sequence of words.

The recurrent layer is used in a bidirectional manner as it is beneficial for
the named entity recognition model where the context can come after the word
the model was supposed to tag [59], this architecture is also easily appliable
for the RNN models using LMU and LegS architectures.

3.2.1.4 Results

In this section, we compare the accuracy of the classic RNN approaches
LSTM,GRU and the novel ones LMU and HiPPO LegS

Figure 3.6: Results in terms of validation accuracy on the named entity recog-
nition task, same architecture was used for all experiments we only switched
the recurrent unit for each experiment.

Results
Model Accuracy Trainable

parameters
Training
time

Bidirectional-LSTM 0.9855 1883167 50 min
Bidirectional-GRU 0.9860 1853567 52 min
Bidirectional-LMU 0.9849 1986331 21 min
Bidirectional-LegS 0.9853 1986843 34 min

We can see that the novel approaches perform on par with GRU and
LSTM while bringing new theoretical guarantees and the possibility of imple-
mentation on neuromorphic hardware to the table. In this particular case, the
training using novel architectures was actually faster.

3.2.2 Sentiment Classification

The last experiment conducted uses the widely known IMDB movie reviews
[62] dataset, which provides a set of 25,000 highly polar movie reviews for
training and 25,000 for testing. It is one of the standard benchmarks in the
field of NLP.

3.2.2.1 Results

We see that aside from longer training time, the novel architectures seem to
perform almost on par with the LSTM and GRU architectures.
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Figure 3.7: Results in terms of validation accuracy on the sentiment classi-
fication task, same architecture was used for GRU and LSTM that is two
bidirectional recurrent layers, for LegT and LegS one recurrent layer proved
to be enough instead of two.

Results
Model Accuracy Trainable

parameters
Training
time

Bidirectional-LSTM 0.8590 2757761 3 min
Bidirectional-GRU 0.8784 2709121 2 min
Bidirectional-LMU 0.8648 2574721 40 min
Bidirectional-LegS 0.8630 2593409 73 min

3.2.3 Exploring hyperparameters of the novel approaches

Because the literature concerned with the topic is still rather sparse, the hy-
perparameters available in the HiPPO framework instantiations are worth
exploring.

The first conducted experiment was concerned with performance of the
models as we change the number of recurrent units, which results in fewer
trainable parameters in the recurrent layer. In essence, we started with models
from the previous experiment and decreased the size of the recurrent layers.

We can see that using less recurrent units does reduce the accuracy con-
siderably when using LSTM and GRU, however with LMU and LegS it is not
the case. The rationale behind this observation may be that both LMU and
LegS are able to store more complex relationships because of the way their
memory works even when using a single unit.

In the second experiment, we explore how the choice of order d of the
space used for projection in both LMU and HiPPO-LegS affects accuracy of
the model. Order is the number of degrees in the transfer function of the
LTI system used to represent the history. As explained earlier, the novel
approaches use projection into a lower dimension, this parameter sets the
number of Legendre polynomials used to orthogonally represent the signal.
In the case of LMU, a sliding window of the signal is represented instead.
We stick to using 64 recurrent units in this experiment. The [4] uses rather
high order of polynomials (256) to achieve state-of-art performance on the
PSMNIST problem. We will explore if lower dimension memory is sufficient
for the problem of sentiment classification.

We can see that reducing the memory order to as low as 1 or 2 dimensions
seems to be sufficient for this problem. That is an interesting observation,
which may suggest that the novel approach introduces unnecessarily complex
dynamics into the model.
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Figure 3.8: Results in terms of validation accuracy on the sentiment classifi-
cation task as the number of recurrent units is decreased

Results
Model Accuracy Trainable

recurrent
parameters

Recurrent
units

Bidirectional-LSTM 0.8602 98816 64 Units
Bidirectional-LSTM 0.8566 66048 32 Units
Bidirectional-LSTM 0.8469 24832 16 Units
Bidirectional-LSTM 0.8323 10368 8 Units
Bidirectional-LSTM 0.8266 1040 1 Unit
Bidirectional-GRU 0.8780 74496 64 Units
Bidirectional-GRU 0.8749 31104 32 Units
Bidirectional-GRU 0.8589 14016 16 Units
Bidirectional-GRU 0.8552 6624 8 Units
Bidirectional-GRU 0.8552 786 1 Unit
Bidirectional-LMU 0.8648 63832 64 Units
Bidirectional-LMU 0.8580 26072 32 Units
Bidirectional-LMU 0.8480 13880 16 Units
Bidirectional-LMU 0.8606 8168 8 Units
Bidirectional-LMU 0.8598 1220 1 Unit
Bidirectional-LegS 0.8630 31232 64 Units
Bidirectional-LegS 0.8470 14784 32 Units
Bidirectional-LegS 0.8530 8096 16 Units
Bidirectional-LegS 0.8542 5136 8 Units
Bidirectional-LegS 0.8798 2756 1 Unit

Figure 3.9: Results in terms of validation accuracy on the sentiment classi-
fication task as the dimension of the space we project to is decreased. The
number of units is fixed to 64

Results
Model Accuracy Trainable

recurrent
parameters

Order

Bidirectional-LMU 0.8694 25092 1
Bidirectional-LMU 0.8614 25228 2
Bidirectional-LMU 0.8540 26128 8
Bidirectional-LMU 0.8598 31668 32
Bidirectional-LegS 0.8598 1220 1
Bidirectional-LegS 0.8700 25232 2
Bidirectional-LegS 0.8670 26144 8
Bidirectional-LegS 0.8630 31232 32
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Chapter 4
Neuromorphic computing and

spiking neural network

In this section we will briefly introduce an alternative spiking neuron model
closer to its biological counterpart. Then we move to a brief introduction of a
formal framework for describing architectures of spiking neurons. Finally, we
will introduce the software and hardware tools related to this framework.

4.1 Izikevich neuron model

Spiking Neural Networks are said to be the third neural network generation
[63], they have been developed to closely imitate natural neural networks,
meaning they are close to their biological counterparts in terms of their inter-
nal dynamics. Spiking neural networks follow the same trend as computational
neuroscience. A popular model that features both efficiency and biologically
realistic behavior is the Izhikevich model[64]. This model is not only biolog-
ically plausible, it is also similar to the first model of this kind. A model
inspired by the flow of current in biological nerves introduced in 1952 in [65]
called Hodgkin-Huxley model, but also it is computationally as efficient as
an integrate-and-fire model. The Izhikevich model is also capable of simu-
lating large-scale spiking neurons in real-time [66]. Izhikevich model can be
described by two differential equations:

v′ = 0.04v2 + 5v + 140− u+ I
u′ = a(bv − u),

and a function, that restarts neuron internal state after a spike is generated:

if v ≥ 30 mV , then
{
v ← c
u← u+ d.

This kind of neuron is using an internal membrane potential to accumulate
the signal and decide whether the potential crosses the threshold and a spike
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should be emitted and sent out via an output connection (this is called an
axon in biological terminology). Arrival of spikes on the input connections
of the neuron increases its potential. In the absence of any input signal, the
potential is decaying [67].

4.2 Spiking neural networks

Spiking Neural Networks (SNNs) are a promising new paradigm for efficient
processing of data streams. SNNs have inspired the design and can take
advantage of the emerging class of neuromorphic processors like Intel Loihi.
These novel hardware architectures expose a variety of constraints that affect
firmware, compiler, and algorithm development alike. To enable the fast and
flexible development of SNN algorithms on Loihi and similar neuromorphic
processors, there are tools that make the transition from a simulator on a
traditional CPU to an actual spiking implementation on a piece of neuromor-
phic hardware easier. One of the main reasons one may find spiking neural
networks interesting is their order of magnitude lower energy cost per infer-
ence, which important for both edge devices with low power supply and large
simulations which nowadays require enormous energy supply [9].

4.3 Neural engineering framework

Neural Engineering framework describes three principles that govern the con-
struction of models of neurobiological systems. It unifies control (and dynamic
systems) theory with biologically plausible spiking models of neural function.
It provides a general way to generate circuits that have analytically deter-
mined synaptic weights that provide a desired functionality. Promotes the
formulation of specific hypotheses about circuit function and about key de-
sign constraints.

The neural engineering framework presented in [39] consists of three math-
ematical principles used to describe neural computation. The NEF is most
commonly applied to building recurrent spiking neural networks, but also ap-
plies to nonspiking and feedforward networks. Its primary use case is providing
an efficient way of engineering spiking neural models, and programming neuro-
morphic hardware, it enables the implementation of linear dynamical systems,
but it also extends to nonlinear dynamical systems as well. The framework
is consistent with the Nengo simulator which will also be presented in this
section. Three basic principles will be introduced in this section as described
in [39], the most important of them being the third one which closely relates
to the dynamic systems introduced in the second chapter.
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Figure 4.1: Dynamic energy cost per inference across hardware devices. Mo-
vidius and Jetson are edge computing devices, which are not neuromorphic
chips [9].

4.3.1 Principle 1 - Representation

Simply put, it says that neural representations are defined by the combination
of nonlinear encoding and weighted linear decoding. It is possible can formal-
ize this principle in the following way. Let x(t) ∈ Rq denote a q -dimensional
time-varying signal that is to be represented by a population of n spiking
neurons. By formally describing this representation, it is feasible to define a
nonlinear encoding and a linear decoding that together determine how neural
activity relates to the represented vector. First, encoders need to be chosen

E = [e1, . . . , en]> ∈ Rn×q,

gains αi > 0, and biases
βi, i = 1 . . . n,

as parameters for the encoding, which map x(t) to neural activities. These pa-
rameters are fit from neuroanatomical data, these include but are not limited
to neuron tuning curves, preferred directions, firing rates, sparsity) or ran-
domly sampled from distributions constrained by the domain of x(t) and the
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dynamic range of the neuron models. In either case, the encoding is defined
by

ax
i (t) = Gi [αi 〈ei,x(t)〉+ βi] , i = 1 . . . n,

where ax
i (t) is the neural activity generated by the i th neuron encoding the

vector x(t) at time t, 〈·, ·〉 denotes a dot product, and Gi[·] is the nonlinear
dynamical system for a single neuron (e.g., a leaky integrate-and-fire, neuron,
a conductance-based neuron). Then

ax
i (t) =

∑
m

δ (t− ti,m) ,

where δ(·) is the Dirac delta and {ti,m} is the sequence of spike times generated.
Having defined an encoding, it is possible to introduce a postsynaptic

filter h(t), which acts as the synapse model by capturing the dynamics of a
receiving neuron’s synapse. In particular, this filter models the postsynaptic
current (PSC) triggered by action potentials arriving at the synaptic cleft. It
is possible to fix

h(t) = 1
τ
e−

i
t ,

to be an exponentially decaying PSC with time constant τ , which is equivalent
(in the Laplace domain) to the canonical first-order low-pass filter (also known
as a leaky integrator). This is the conventional choice of synapse in the NEF,
since it strikes a convenient balance between mathematical simplicity and
biological plausibility [39].

Now it is possible to characterize the decoding of the neural response,
which determines the information extracted from the neural activities encod-
ing x(t). Let D = [d1, . . . ,dn]> ∈ Rn×q be the decoding matrix that decodes
x(t) from the population’s activities (ax

i (t)) at time t. This linear decoding is
described by

(x ∗ h)(t) ≈
n∑
i=1

(ax
i ∗ h) (t)di,

where ∗ is the convolution operator that is used to apply the synaptic filter.
The equation takes a linear combination of the filtered activities to recover
a filtered version of the encoded signal. To complete the characterization of
the neural representation, they solve for the optimal linear decoders D. This
optimization is identical for principles 1 and 2, as discussed below [10].

4.3.2 Principle 2 - Transformation

Simple explanation of the Principle 2 is that transformations of neural rep-
resentations are functions of variables that are represented by neural popu-
lations. Transformations are determined using an alternately weighted linear
decoding. The second principle of the NEF addresses the issue of comput-
ing transformations of the represented signal. The encoding remains defined
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in the same way as in the Principle 1. However, to decode some desired
function of x(t), f : Rq → Rq,2 by applying an alternate matrix of decoders
Df =

[
df1 , . . . ,dfn

]>
∈ Rn×q to the same activities:

(f(x) ∗ h)(t) ≈
n∑
i=1

(ax
i ∗ h) (t)dfi .

For both principles 1 and 2 , the optimization for Df over the domain of the
signal, S = {x(t) : t ≥ 0}, which is typically the unit q -ball {v ∈ Rq : ‖v‖2 ≤ 1}
or the unit q -cube [−1, 1]q. To determine these decoders, first let ri(v) be
the limiting average firing rate of the i the neuron under the constant input
v ∈ S :

ri(v) = lim
t→∞

1
t

∫ t

0
av
i

(
t′
)
dt′.

To account for the variance introduced by neural spiking and other sources
of uncertainty, white noise term is introduced η ∼ N

(
0, σ2) The optimality

criterion for Df is therefore

Df = arg min
D∈Rxx

∫
S
| f(v)−

n∑
i=1

(ri(v) + η) di‖2dqv.

Note that this optimization depends on only ri(v) for v ∈ S, as opposed to
depending on the signal x(t). In other words, the optimization is determined
strictly by the distribution of the signal, and not according to its particular
dynamics. Furthermore, this is a convex optimization problem, which may
be solved by uniformly sampling S and applying a standard regularized least-
squares solver to the sampled data. Monte Carlo sampling introduces O

(
1√
m

)
error into the integral where m is the number of samples, but this can be
improved to Õ

(
1
m

)
- effectively squaring m− by the use of quasi-Monte Carlo

methods [39]. The accuracy of this approach relies on ri(v) being a suitable
proxy for ax

i (t) whenever x(t) = v. This zeroth-order approximation clearly
holds in the steady state for constant x(t) and turns out to be ideal in practice
for low frequency x(t), and likewise for h(t) that filter out high frequencies
(when the synaptic time-constant τ is large).

The derivation can be done in the following way with a connection weight
matrix between layers to implicitly compute the desired function f(x) within
the latent vector space Rq. Specifically, the weight matrix W = [ωij ] ∈ Rn×n,
which maps activities from the j the presynaptic neuron to the i the postsy-
naptic neuron, is given by

ωij =
〈
ei,dfj

〉
.

Consequently, the matrices E and Df are a low-rank factorization of W . In
other words, the process of decoding and then encoding is equivalent to taking
the dot product of the full-rank weight matrix W with the neural activities.
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This factorization has important consequences for the computational ef-
ficiency of neural simulations. The crucial difference between the factorized
and nonfactorized forms is that it takes O(qn) operations per simulation time
step to implement this dot product [10].

4.3.3 Principle 3 - Dynamics

This principle says that neural dynamics are characterized by considering
neural representations as control theoretic state variables. Thus, the dynamics
of neurobiological systems can be analyzed using control theory.

The third principle is a method of harnessing the dynamics of the synapse
model for network-level information processing. NEF dynamics for the neu-
ral implementation of continuous linear time-invariant (LTI) systems have to
following form:

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t),

where the time-varying signal x(t) represents the system state and ẋ(t) repre-
sents the time derivative. We also need to to account for the output y(t) and
the input u(t). These together with the time-invariant matrices (A,B,C,D)
fully describe the system [33]. This form of an LTI system is also called the
state-space model, but there are many other equivalent forms.

We also need a nonlinearity and for the LTI systems, the dynamical prim-
itive that is, the source of the dynamics - is the integrator. However, the
dynamical primitive available is the leaky integrator, given by the canonical
first-order low-pass filter modeling the synapse

h(t) = 1
τ
e−

t
t = L−1

{ 1
τs+ 1

}
,

where L−1(·} denotes the inverse Laplace transform. To be more precise, their
approach is to represent the state vector x(t) in a population of spiking neurons
such that this vector is obtained by filtering some linearly decoded spike trains
with a leaky integrator. Thus, the goal of principle 3 is to determine the
transformations required to implement the equation

ri(v) = lim
t→∞

1
t

∫ t

0
av
i

(
t′
)
dt′, (4.1)

given that x(t) is obtained by some convolution with a leaky integrator
rather than the perfect integrator.

Principle 3 states that to implement the equation in a population of neu-
rons that represents x(t), tocompensate for the effect of ”replacing” the inte-
grator with a leaky integrator , that is, by driving the synapse with τ ẋ(t)+x(t)
instead of only ẋ(t). This compensation is achieved as follows: implement the
recurrent transformation (τA+ I)x(t) and the input transformation τBu(t),
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4.4. Spiking delay network

but use the same output transformation Cx(t), and the same pass-through
transformation Du(t) . Specifically, this may be implemented in a spiking dy-
namical network by representing x(t) via principle 1 and then using principle
2 to decode the needed transformations.

The correctness of this ”mapping” procedure relies on three assumptions:

1. Usage the synapse model equation described in principle 2

2. The network is simulated in continuous time (or the discrete time step
is sufficiently small)

3. All the necessary representations and transformations are sufficiently
accurate such that the approximation error O

(
1√
n

)
is negligible. In

other words, assuming n is sufficiently large, the architecture using leaky
integrator is equivalent to the architecture with the ideal integrator but
using the leaky integrator instead of an integrator as the dynamical
primitive [39, 10].

Consequently, both systems compute the exact same signals x(t) and y(t).
The work [10] provides a novel proof of this equivalence. This framework can
be extended to remove the first and second assumptions.

Principle 3 is useful for accurately implementing a wide class of dynami-
cal systems (e.g., integrators, oscillators, attractor networks) to solve specific
problems that frequently arise in neural modeling. Furthermore, the class of
state-space models is isomorphic to the class of all finite-dimensional causal
linear filters or, equivalently, all rational (finiteorder) proper transfer func-
tions, which is a large and useful class of dynamical systems employed widely
in control applications [33]. Given the ability of Principle 2 to compute non-
linear functions, Principle 3 also naturally generalizes to nonlinear dynamical
systems [10].

4.4 Spiking delay network

A fundamental dynamical system is the continuous-time delay line of θ sec-
onds, expressed as

y(t) = (u ∗ δ−θ) (t) = u(t− θ), θ > 0, (4.2)

where δ−θ denotes a Dirac delta function shifted backward in time by θ. This
system takes a time-varying scalar signal, u(t), and outputs a purely delayed
version, u(t − θ). The task of computing this function both accurately and
efficiently in a biologically plausible spiking dynamical network is a significant
theoretical challenge that was unsolved until the recent publication of [3] which
shows that the continuous-time delay is worthy of detailed consideration for
several reasons.
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• It is nontrivial to implement using continuous-time spiking dynamical
primitives. Equation 4.2 requires maintaining a rolling window of length
θ (the history of u(t), going θ seconds back in time). Thus, computing a
delay of θ seconds is just as hard as computing every delay of length θ′

for all 0 ≤ θ′ ≤ θ. Since any finite interval of R contains an uncountably
infinite number of points, an exact solution for arbitrary u(t) requires
maintaining an uncountably infinite amount of information in memory.

• Moreover, the delay provides one with a window of input history from
which to compute arbitrary nonlinear functions across time.

• Delays introduce a rich set of interesting dynamics into large-scale neural
models. [68].

• Delay lines can be coupled with a single nonlinearity to construct a
network displaying many of the same benefits as reservoir computing
[69, 41].

• Examining the specific case of continuous-time delay introduces several
methods and concepts that can be used to extend the NEF [10].

4.5 Neuromorphic hardware

The human brain has been estimated to consume as little as 10–20 fJ. On
average 10 per synaptic event [70, 71], totalling approximately 20 W across
its approximately 1015 neurons and 1014 synapses [72]. After more than 30
years of work [73], the state-of-the-art in neuromorphic computing is close
to this level of performance, with Braindrop, Loihi, and TrueNorth soon to
be commercially available [74, 75]. Such potential energy savings seem very
promising. Having this kind of energy efficiency is the prerequisite to reach the
exascale level of computation achieved by the human brain without requiring
an insane amount of energy to run it [76, 77].

4.5.1 SpiNNaker

The SpiNNaker is a processor that is optimized for simulating of neural net-
works. It is implemented using many ARM cores as an integrated system
architecture optimized for communication and fast memory access. To take
advantage of the asynchronous subcomputations of biological neurons, each
core simulates neurons independently and communicates via a lightweight,
spike-optimized asynchronous communication protocol. Neurons are simu-
lated for a certain timestep, and then activity patterns exchanged between
cores, on the assumption that time models itself, for example, an exchange of
activities every millisecond is assumed to represent biological real time. This
way they are able to perform an energy efficient simulation of neural network
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models in real time, with SpiNNaker, significantly outperforming conventional
high performance computing. The first generation of SpiNNaker has been de-
signed by the University of Manchester and is currently operational at its
intended maximum system size, which consists of 1 Million ARM processors,
as well as in the form of smaller boards for IoT and mobile applications. One
Million cores is enough to create models that represent roughly one percent of
the human brain capacity. Technische Universitt Dresden and the University
of Manchester have been jointly developing the next generation SpiNNaker2
system in the framework of the EU flagship Human Brain Project. They aim
for a tenfold increase in the number of cores while keeping the same power
consumption of the whole system that means 10 times better power efficiency.
They expect to create a system with 50 times bigger capacity [78].

4.5.2 Braindrop

Braindrop claims to be the first neuromorphic system designed to be pro-
grammed at a high level of abstraction. Previous neuromorphic systems were
programmed at the neurosynaptic level and required expert knowledge of the
hardware to use. Braindrop’s computations are specified as coupled nonlinear
dynamical systems and synthesized on the hardware by an automated proce-
dure, which means that a clean abstraction is presented to the user. Fabricated
in a 28-nm FDSOI process, Braindrop integrates 4096 neurons in 0.65 square
milimeters . It includes two innovations, the first is sparse encoding through
analog spatial convolution and weighted spike-rate summation trough digital
accumulative thinning, that leads to a significant reduction in digital traffic
and reduction of the energy Braindrop consumes per synaptic operation to
381 fJ for typical network configurations [79].

4.5.3 Intel Loihi

Intel’s Loihi research chip is an asynchronous, compute-in-memory neuro-
morphic processor optimized for the execution of Spiking Neural Networks.
Fabricated in Intel’s standard 14 nm CMOS process, Loihi consists of 128
neurocores, each of which supports up to 1024 neurons. Three embedded
x86 processors per chip enable off-chip data encoding and interaction with
the neurocores. Loihi’s asynchronous network-on-chip communication infras-
tructure allows it to be seamlessly scaled up to various form factors, ranging
from 2-chip USB devices, Kapoho Bay to the 768-chip rack Pohoiki Springs.
[80]. Spiking neurons on Loihi are stateful dynamical systems that support
a wide range of features. These include synaptic plasticity, variable numeric
precision of synaptic weights up to 9 bits, multicompartment models, thresh-
old adaptation for homeostasis, and configurable synaptic, axon and refrac-
tory time constants. To support hierarchical and repeated connectivity as in
CNNs, Loihi provides a connection-sharing mechanism. The dynamical equa-
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tions that underlie the Loihi neuron model are approximated in discrete time.
The transition between algorithmic time steps is not driven by a fixed global
clock but mediated through a barrier synchronization protocol between all
participating neurocores that is very different from what we are used to from
traditional computing. As part of this protocol, neurocores signal the com-
pletion of the workload for the current time step to their neighbors, resulting
in a workload-dependent duration of each time step. Neuron updates con-
tribute on the order of microseconds to the duration of each time step. Spike
traffic typically dominates the overall time step duration. This is the reason
spatially and temporally sparsely communicating SNNs promise the greatest
level of efficiency on such architectures [11].

4.5.4 Other hardware platforms and commercial solutions

There are other hardware platforms available which are not compatible with
Nengo at the moment or the information available on them is limited. They
will be listed and briefly described for completeness.

• GrAI Matter Labs has their own chip and toolset built around it. They
have a few different approaches to increase sparsity as the basic idea of
spiking neural networks is that changes in the real world don’t happen
everywhere, or all at once.

• Synsense technology has the DYNAP-SE2, each Chip features 1k re-
designed adaptive exponential integrate-and-fire analog ultra low-power
spiking neurons and 65k enhanced synapses with configurable delay,
weight and short-term plasticity.

• Applied Brain Research offers their own implementation of NER spiking
neural networks as a FPGA.

• BrainChip’s Akida integrated circuit technology is an ultra-low power,
high performance, minimum memory footprint, event domain neural
processor targeting Edge AI applications. In addition, because the archi-
tecture is based upon an event domain processor, leveraging fundamen-
tal principles from biological SNN the processor supports incremental
learning

• Inivation is selling their Extreme Machine Vision High-performance neu-
romorphic vision systems for demanding real-time applications.

4.6 Implementation of SNN

The Spiking Neural Network (SNN) is a promising approach to energy ef-
ficient computing, since its activation levels are quantized into temporally
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sparse, one-bit values called spikes, which additionally converts the sum over
weight-activity products into a simple addition of weights (one weight for each
spike). However, the goal of maintaining a competitive accuracy when moving
from a nonspiking model to a spiking one has for a long time been unsolved,
mainly because spikes have only a single bit of precision. The LMU can be
implemented on a spiking neural network [3], and on neuromorphic hardware
[75], while consuming several orders less energy than traditional computing
architectures [9, 10]. By reducing the amount of communication and con-
verting weight multiplies into additions, spikes can trade precision for energy
efficiency on neuromorphic hardware [9]. Moreover, this can be accomplished
while preserving the optimizations that are found by deep learning [56].

4.6.1 Neural precision

The dynamical system for the memory cell can be implemented by mapping
each state variable onto the postsynaptic currents of d individual popula-
tions of p Poisson spiking neurons with fixed heterogeneous tuning curves
[3]. Considering the error between the ideal input to the classical neuron
representing some dimension, versus the weighted summation of spike events
representing the same dimension. The following was proved in [10] about
scaling of feed-forward precision in the Neural Engineering Framework . Let
µ(t) = ∑n

i=1 (ai ∗ h) (t)df
i −

∑n
i=1 (ri(x) ∗ h) (t)df

i be the spiking noise. If the
ISIPs, gi, are uniformly and independently distributed, then:

1. E[µ(t)] = 0; hence the expected spike noise is exactly zero at all times
(no systematic bias).

2.
√
W[µ(t)] = O

(
(τ
√
n)−1) is the standard error, or root-mean-squared

error; hence the precision scales as O(τ
√
n) at all times.

Simply put, this error has a variance of O(1/p). By the variance sum law, re-
peating this for d independent populations yields an overall RMSE ofO(

√
d/p).

Letting m = pd be the total number of neurons, now it is clear that the error
scales as O(d/

√
m). It is now clear that m is a hyperparameter that trades

precision for energy efficiency, while scaling to the original network in the limit
of large d. [10].

4.6.2 Neuromorphic implementation of LMU

The LMU spiking neural network has been implemented on neuromorphic
hardware including Braindrop [75] and Loihi [10]. Each population is coupled
to one another to implement equation 2.4 by converting the postsynaptic filters
into integrators [3]. This results in a specific connectivity pattern, shown in
Figure 4.6.2 that exploits the alternating structure of equation 2.5. An ideal
implementation of this system requires m nonlinearities, O(m) additions, and
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d state variables. Spiking neurons may also be used to implement the hidden
state of the LMU by nonlinearly encoding the memory vector [3]. Since this
scales linearly in time and memory with square root precision, the LMU offers
a promising architecture for low-power RNNs.

Figure 4.2: Connection structure as presented in [4] where (d = 6) and is
adapted from an earlier work [10]. Forward arrow heads indicate addition,
circular heads indicate subtraction. The ith state variable continuously inte-
grates its input with a gain of (2i+ 1)θ−1 [4].

4.7 Adjustable power efficiency

A useful property of SNNs is their ability to trade off accuracy with computa-
tional cost. As the classification result is obtained by accumulating spikes at
the output layer across a certain period of time, one may shorten the run time
of the network to reduce the inference delay and energy cost at the potential
risk of misclassifying some samples [10].

4.8 Software tools

There is many different software tools which are able to simulate spiking net-
works. For the experiment with spoken digit recognition, NengoDL was used.
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Multiple other tools that were considered will however be covered in this sec-
tion as finding comprehensive up-to-date information on these tools is rather
difficult.

4.8.1 Nengo

Nengo is a simulator for Nengo models. That means it takes a Nengo network
as input and allows the user to simulate that network using some underlying
computational framework, in this case it is TensorFlow. The nice thing about
Nengo is that it supports some of the hardware platforms mentioned earlier
in this chapter, specifically Intel Loihi and SpiNNaker. In practice, what that
means is that the code for constructing a Nengo model is the same as it would
be for the standard Nengo simulator. All that changes is that a different
simulator class is used to execute the model. The experiment conducted on
classifying the spoken digits was replicated using Nengo and achieved the
same results during the simulation of spiking hardware on classical hardware
- even though no neuromorphic hardware was commercially available at the
time of writing of this work, it should not be necessary to modify the code
that describes the model. To change the backend to Loihi, just switch the
Nengo backend to, for example, an Intel Loihi implementation and we should
be good to go [56].

4.8.2 NengoDL

NengoDL is a software framework designed to combine the strengths of neu-
romorphic modelling and deep learning. NengoDL allows users to construct
biologically detailed neural models, intermix those models with deep learning
elements (such as convolutional networks), and then efficiently simulate those
models in an easy-to-use, unified framework. In addition, NengoDL allows
users to apply deep learning training methods to optimize the parameters of
biological neural models. However, NengoDL adds a number of unique fea-
tures, such as:

• Optimizing the parameters of a model through deep learning training
methods (using the Keras API)

• Faster simulation speed on both CPU and GPU

• Automatic conversion from Keras model to Nengo networks

• Inserting TensorFlow code (individual functions or whole network archi-
tectures) directly into a Nengo model

This is the simulator that was used to implement the Spoken Digit Recog-
nition experiment. Running the code on the actual neuromorphic hardware
should be as easy as changing one line, defining which simulator will be used
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for running the network and possibly converting the network using the bun-
dled convertor if Keras layers were used, which was not the case here. Instead
of invoking the simulator like in the example below, which is used to simulate
a spiking network on classical hardware.

import nengo dl

with nengo dl . S imulator (
net , m i n i b a t c h s i z e =100 , u n r o l l s i m u l a t i o n =16) as sim :

sim . compi le (
l o s s=t f . l o s s e s . Spar seCategor i ca lCros sent ropy ( f r o m l o g i t s=True ) ,
opt imize r=t f . op t im i z e r s .Adam( ) ,
met r i c s =[” accuracy ” ] ,

)
sim . eva luate ( X test , y t e s t )
sim . f i t ( X train , y t ra in , epochs =25)
sim . save params ( ” . / weights ”)
sim . eva luate ( X test , y t e s t ” ]

After training the network using the NengoDL simulator and possibly con-
verting the network using the bundled convertor, we would replace the line
defining the simulator to be used from nengo_dl.Simulator to something like
this

import n e n g o l o i h i
with n e n g o l o i h i . S imulator ( net , model=model ) as sim :

Some additional finetuning may be however, required to achieve optimal
performance on neuromorphic hardware. Earlier work from the same author
[81] suggests that we can first train the model on classical hardware and then
transfer the weight to the spiking implementation for inference. The Nen-
goDL framework provides methods for converting a trained Keras model into
a Nengo one while keeping the trained weights. The goal of NengoDL is to
provide a tool that unites deep learning and neuromorphic modelling methods
[56].

4.8.3 KerasSpiking

KerasSpiking is a companion project to NengoDL that has a more mini-
mal feature set but integrates even more transparently with the Keras API.
KerasSpiking provides tools for training and running spiking neural networks
directly within the Keras framework. The main feature is SpikingActivation,
which can be used to transform any activation function into a spiking equiva-
lent. For example, translating a non-spiking feedforward model into a a model
with spiking activation function by using spiking activation layer. Models with
spiking activation layers can be optimized and evaluated in the same way as
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any other Keras model. The only thing needed is adding the time-dimension
input as all spiking neurons need to will automatically take advantage of
KerasSpiking’s spiking aware training: using the spiking activations on the
forward pass and the non-spiking (differentiable) activation function on the
backwards pass[56].

4.8.3.1 Neuromorphic chip energy use estimation

When we have successfully developed a model using Nengo or using Keras
and successfully converted it to a Nengo model. We may be interested in the
estimated energy use of the current implementation on a real neuromorphic
device like Intel Loihi. Estimation of the energy use of the model which
provides useful information about total energy per inference on both CPU
and neuromorphic chips is available as keras_spiking.ModelEnergy.

4.8.4 NxTF

NxTF is a programmatic interface based on Keras that is designed to map
spiking neural networks onto Intel’s Loihi neuromorphic architecture. It is
based on a collaboration between Intel and researchers from the neuroinfor-
matics field. As the team explains, NxTF trades generality for an application
focus towards deep SNNs. The objective is achieved by inheriting from the
Keras Model and Layer interface and providing a specialized DNN compiler.
They add that to compress large DNNs with Loihi, the compiler exploits the
regular structure of typically DNN topologies like convolutional neural net-
works in combination with Loihi’s ability to share connective states.

The NkSDK software stack and workflow to configure a deep SNN on
Loihi is roughly the following. Starting from a trained or converted SNN, the
user defines a model in Python using the Keras-derived NxTF interface. The
network is then partitioned and mapped onto Loihi by the DNN compiler via
the register-level NxCore API. The NxDriver and NxRuntime components are
responsible for the interaction and execution of the SNN with Loihi. See the
figures 4.8.4 and 4.8.4 taken from [?].

4.8.5 SNN toolbox

This toolbox automates the conversion of a pretrained analog to spiking neural
networks (ANN to SNN), and provides tools for testing the SNNs in spiking
neuron simulators or neuromorphic hardware. It supports both PyTorch and
Keras as backends used for development and training. The supported hard-
ware includes Intel Loihi, and SpiNNaker [82].
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Figure 4.3: NkSDK software stack and workflow to configure a deep SNN on
Loihi [11].

Figure 4.4: NxTF layer configuration and supported keras layers [11].
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Chapter 5
Discussion

5.1 Conclusion

In this thesis, limitations of the basic RNN were discussed architecture as
well as the attempts to avoid these limitations using the LSTM and GRU
architectures including but not limited to the problem of vanishing/exploding
gradient. Before diving into the novel approaches, a few topics from complex
analysis and control theory were briefly introduced to help the formalization of
projecting arbitrary functions onto the space of orthogonal polynomials. After
that, novel approach called Legendre Memory Unit is explained, which is based
on projections into a space of a lower dimension of orthogonal polynomials. We
discuss a recent work which introduced the HiPPO framework, that shows that
the problem of maintaining memory representations of sequential data can
be tackled by specifying and solving continuous-time formalisms. Finally, we
discuss how the HiPPO framework based recurrent neural networks generalize
the previously introduced architecture LMU and explain the mechanisms used
in GRU and LSTM as using 1-dimensional projections.

In the practical part of this thesis, we then use these novel architectures
in the experiments where we compare them to the typically used RNN archi-
tectures, LSTM and GRU. We introduce a version of Sequential Spoken Digit
Classification where we clearly hit the limits of the LSTM and GRU architec-
tures as they fail to learn anything while HiPPO based models perform very
well at the task. We then move to a bigger dataset concerned with environ-
mental sound classification where we confirm that this approach works also
on a similar dataset bigger in both complexity and size. We continue with ex-
periments in another domain, specifically in the field of natural language pro-
cessing (NLP). We succesfully test HiPPO based architectures on tasks where
LSTM and GRU perform fairly well and determine that they usually perform
on par with these in some cases even better while enjoying better theoretical
properties. We confirmed that both LMU(HiPPO-LegT) and HiPPO-LegS
can indeed be treated as a drop in replacement for LSTM and GRU in many
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cases. It should be noted, that at least in the NLP domain, currently one
would probably still be better off using a transformer based model for those
tasks. Those models however suffer from other limitations compared to RNNs.

In the last part of this work, we show how the control theory used to derive
the LMU unit relates to neuroscience and the spiking neural networks. We
implement the spoken digit recognition experiment using NengoDL simulator
of spiking neural networks. Brief explanation of the essential concepts in the
field of neuromorphic computation is given. In context of this thesis we explain
how being able to implement recurrent networks on neuromorphic hardware
is beneficial because of considerable energy consumption reduction. Addition-
ally, we showcase some software tools which can be used for the development
of such networks. We also briefly go over hardware platforms that could be
used to run such networks as they should be soon commercially available.
The field of neuromorphic computation is going trough rapid development in
the recent years, even thought it may not live up to the expectations of the
business oriented users in the next few years, the research in this field seems
to be laying the foundation for exascale computation at a reasonable energy
cost. There is already a few neuromorphic solutions available on the market
and the toolkit around those platforms is being very actively developed.

5.2 Future work

5.2.1 Parallel training of LMU

The training of both LMU(LegT) and HiPPO RNNs is not very fast, an-
other work [41] is concerned with the possibility of training such RNNs in a
parallel manner. They suggest that most weights in the LMU can be kept
constant without negatively impacting the performance of the network. Sur-
prisingly, this includes the recurrent connections in the LMU. Constant re-
current weights can be replaced by a set of static feedforward Finite Impulse
Response filters arranged in a basis transformation matrix H. This facilitates
parallel training, leading to significant speed-ups. The basis transformation
matrix H can be interpreted as a discrete function basis. They also show that
this technique is applicable to arbitrary polynomial bases, but there usually
exists no closed-form equation describing the state transition matrix.

5.2.2 Discrete Function Bases and Temporal Convolutions

Discrete function bases are further explored in the work [83] with a particu-
lar focus on the discrete basis derived from the Delay Network proposed in
[10]. They characterize the performance of these bases in a delay computa-
tion task and attempt to formulate them as fixed temporal convolutions in
neural networks. Main Results of the work include a numerically stable algo-
rithm for constructing a matrix of Discrete Legendre Orthogonal Polynomials
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in O(qN) The work also demonstrated that the Delay Network can be used to
form a discrete function basis with a basis transformation matrix H in O(qN).
They also prove that linear-time invariant systems similar to the DN can be
constructed using many discrete function bases, however, the DN system is
superior in terms of having a finite impulse response. From the application
focused point of view, the interesting part of this work is neural network ex-
periments, which suggest that fixed temporal convolutions can outperform
learned convolutions. Networks using fixed temporal convolutions are con-
ceptually simple and yield state-of-the-art results in tasks such as psMNIST
[83]. Another work is concerned with Continuous Kernel Convolution For
Sequential Data by formulating convolutional kernels in CNNs as continuous
functions. The resulting Continuous Kernel Convolution (CKConv) allows
them to model arbitrarily long sequences in a parallel manner, within a single
operation, and without relying on any form of recurrence [84].

5.2.3 Simple derivation of DN used in LMU

The Delay Network, originally proposed in [10], is a recurrent neural net-
work capable of delaying an input signal u(t) by θ seconds as discussed in the
previous chapters. The impulse response of the linear time-invariant system
underlying the delay network traces out the shifted Legendre polynomials.
For the rest of this section, it will be referred to as the Delay Network, and
to the LTI system underlying the DN as the DN system. The DN has been
derived from the Padé approximants of a Laplace domain delay e−θs and a
subsequent conditioning coordinate transformation. From this perspective,
the relationship to the Legendre polynomials is rather surprising. And the
HiPPO framework has proposed LTI systems similar to the DN system with
other polynomial bases and various window functions. These systems are
derived in the opposite direction of the original approach in [4]. Given a poly-
nomial basis and a window function, HiPPO framework is able to construct
an LTI system that realizes this basis with the desired weighting applied. An-
other similar approach exists, which has been developed independently, but it
differs mainly in the way of presentation. Its main goal is to provide a simple
derivation assuming a minimal mathematical background. In essence, they
derive the DN system Â, B̂ in two steps.

• They start with a LTI system A,B that traces out the Legendre poly-
nomials as its impulse response over the interval [0, θ].

• Then a matrix Γ that decodes a delayed signal u(t − θ) from the state
vector m(t) and re-encodes this delayed function in terms of the Legen-
dre basis is derived.

This matrix Γ is called the delay re-encoder. Subtracting Γ from A results in
a dampened impulse response. The DN system is simply given as Â = A−Γ
and B̂ = B [83].
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Appendix A
Acronyms

GUI Graphical user interface

DN Delay Network

DA Data Augumentation

LTI Linear-Time-Invariant

CPU Central Processing Unit

GPU Graphics processing unit

API Application Programming Interface

SNN Spiking Neural Network

CNN Convolutional Neural Network

RNN Recurrent Neural Network

LMU Legendre Memory Unit

RMSE Root Mean Squared Error

CMOS Complementary Metal–Oxide–Semiconductor

FDSOI Fully Depleted Silicon On Insulator

XML Extensible markup language

NEF Neural Engineering Framework

GRU Gated Recurrent unit

LSTM Long-Short-Term-Memory

CEC Constant Error Carousel
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A. Acronyms

LagT Laguerre Translated measure in HiPPO framework

LegT Legendre Translated measure in HiPPO framework

LegS Legendre Scaled measure in HiPPO framework
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Appendix B
Contents of enclosed SD card

README.md...................................basic info and instructions
notebooks.............directory with experiments as Jupyter notebooks
src..................directory with Python code used for preprocessing
thesis.................the directory of LATEX source codes of the thesis

thesis.pdf...........................the thesis text in PDF format
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