
Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics

Bachelor Project

Disassembly Path Planning

Petr Ježek

Supervisor: Ing. Vojtěch Vonásek, Ph.D.
May 2021

ii

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

483566Personal ID number:Ježek PetrStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Cybernetics

Cybernetics and RoboticsStudy program:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Disassembly Path Planning

Bachelor’s thesis title in Czech:

Plánování cest v úloze rozkládání objektů

Guidelines:
1. Get familiar with the assembly and disassembly path planning [1] and sampling-based planning [2].
2. Implement the matrix-based disassembly planning Breakout local search [6]. Consider 2D solid objects (represented
by triangle mesh) without rotations.
3. Extend [6] by consider rotations of the objects.
4. Implement a sampling-based planner for disassembly planning,e.g., [5]. Consider 2D solid objects with rotations.
5. Extend method from 4) by precomputing manipulation paths for the active objects using a fast sampling-based planner,
e.g. [3,4].
6. Experimentally verify performance of methods from 3), 4) and 5) in a suitable benchmark inspired by [5].

Bibliography / sources:
[1] Ghandi, Somayé, and Ellips Masehian. "Review and taxonomies of assembly and disassembly path planning problems
and approaches." Computer-Aided Design 67 (2015): 58-86.
[2] LaValle, Steven M. Planning algorithms. Cambridge university press, 2006.
[3] J. Denny, R. Sandström, A. Bregger, and N. M. Amato. Dynamic region-biased rapidly-exploring random trees. In
Twelfth International Workshop on the Algorithmic Founda-tions of Robotics (WAFR), 2016.
[4] Vonásek, V., Pěnička, R. & Kozlíková, B. Searching Multiple Approximate Solutions in Configuration Space to Guide
Sampling-Based Motion Planning. J Intell Robot Syst 100, 1527–1543 (2020). https://doi.org/10.1007/s10846-020-01247-4
[5] Duc Thanh Le, Juan Cortés, and Thierry Siméon. A path planning approach to (dis)assembly sequencing. In 2009
IEEE International Conference on Automation Science and Engineering, pages 286–291. IEEE, 2009.
[6] Somayé Ghandi and Ellips Masehian. A breakout local search (BLS) method for solving the assembly sequence planning
problem. Engineering Applications of Artificial Intelligence, 39:245–266, 2015.

Name and workplace of bachelor’s thesis supervisor:

Ing. Vojtěch Vonásek, Ph.D., Multi-robot Systems, FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 21.05.2021Date of bachelor’s thesis assignment: 08.01.2021

Assignment valid until: 30.09.2022

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
Ing. Vojtěch Vonásek, Ph.D.

Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

Acknowledgements
I wish to thank Ing. Vojtěch Vonásek,
Ph.D. for supervising this thesis, valuable
guidance and continuous encouragement.
Moreover, my thanks go to my family and
girlfriend for neverending support.

Declaration
I declare that the presented work was
developed independently and that I
have listed all sources of information
used within it in accordance with the
methodical instructions for observing the
ethical principles in the preparation of
university theses.

Prague, date 18.5.2021

...
Petr Ježek

v

Abstract
Disassembly path planning is an im-
portant sector of robot manipulation
and manufacturing of End-of-life prod-
uct. This thesis focuses on developing suit-
able tools for 2D disassembly planning us-
ing a matrix heuristic method, sampling-
based planners, such as Rapidly-exploring
Random Tree algorithm and guided path
search along the precomputed disassem-
bly paths represented by the Reeb graph.
Moreover, the goal is to provide a state-of-
the-art of disassembly planning and dis-
assembly path planning problems and de-
sign suitable benchmarks to properly eval-
uate the proposed disassembly planners.

Keywords: Disassembly, 2D assembly,
Path planning, Rapidly-exploring
Random Trees, Guided search, Matrix
heuristic

Abstrakt
Plánování cest v úloze rozkládání objektů
je důležitým prvkem při plánování pohybu
a manipulaci robotů a zpracovávání a
recyklaci End-of-life produktů. Tato práce
se zaměřuje na návrh vhodných plánova-
cích algoritmů pro 2D prostředí za pou-
žití heuristických metod, algoritmů založe-
ných na vzorkování, jako například algorit-
mus Rychle rostoucích náhodných stromů
a také na hledání cest podél předpočí-
taných trajektorií, reprezentované Reeb
grafem. Dalším cílem je detailně popsat
problém rozkládání objektů a navrhnout
vhodné hlavolamy, na kterých bude možné
otestovat implementované algoritmy.

Klíčová slova: Rozkládání objektů, 2D
Hlavolamy, Plánování cest, Rychle
rostoucí náhodné stromy, Řízené
prohledávání, Maticová heuristika

vi

Contents
1 Introduction 1
1.1 Goals of the thesis 2
2 Related work for disassembly
planning and disassembly path
planning 3
2.1 Disassembly planning 3
2.2 Notation and used terms 4
2.3 Disassembly Path Planning 5
2.3.1 Methods for disassembly path
planning . 7

2.4 Sampling-based path planning
algorithms . 9
2.4.1 Collision detection 10
2.4.2 The nearest-neighbour search 11
2.4.3 Rapidly-exploring Random Tree
algorithm . 11

2.4.4 Dynamic Region-biased
Rapidly-exploring Random Tree
algorithm . 12

2.5 Conclusion 14
3 Disassembly methods 17
3.1 ML-RRT algorithm 17
3.1.1 C-space representation in
ML-RRT algorithm 17

3.1.2 ML-RRT algorithm overview 17
3.1.3 Sub-manifold nearest-neighbour
search . 19

3.2 Matrix-based algorithm 19
3.2.1 Matrix heuristic 20
3.2.2 Matrix-based algorithm
overview . 24

3.3 DRRRT planner 25
3.3.1 DRRRT planner overview . . . 25

3.4 Conclusion 26
4 Experiments and testing 29
4.1 Used libraries 29
4.2 Implementation details 29
4.3 Proposed assembly problems . . . 30
4.4 Disassembly experiments
evaluation . 30
4.4.1 Easy assembly 31
4.4.2 Rectangular assembly 31
4.4.3 Tight assembly 32
4.4.4 Triangle assembly 32
4.4.5 Hexa 7 assembly 33
4.4.6 Well assembly 33
4.4.7 Screw assembly 35
4.4.8 Bolt assembly 35

4.4.9 20 parts assembly 36
4.4.10 Jingjang assembly 37
4.4.11 Elevator assembly 38
4.4.12 Parallel assembly 38
4.4.13 Lock assembly 38
4.4.14 Bugtrap assembly 39
4.4.15 Rotation assembly 40
4.4.16 Hexa 10 assembly 40
4.4.17 Chessboard assembly 40

4.5 Comparison of the experiments . 41
5 Conclusion 45
Bibliography 47
A Disassembly plan of the Elevator
assembly 51

vii

Chapter 1
Introduction

The problem of disassembly planning is well known and highly important in industrial product
manufacturing of End-of-life products [1, 2, 3], robot manipulation in robot simulation
software, such as Process Simulate, and structural bioinformatics [4, 5]. The general concept
is to take a given object apart, so to extract all parts from an assembly to a disassembled
object — a disassembly. An assembly with a corresponding disassembly can be seen in Fig. 1.1.
Nevertheless, in this thesis, only 2D assemblies are used, such as one in Fig. 1.2.

The problem can be divided into different sub-problems. The main two discussed in this
thesis are Disassembly Sequence Planning and Disassembly Path Planning. The first selects a
part most likely to be disassembled, and the second plans a disassembly path for the proposed
part.

embodied energy of a component can be calculated by summing
the energy consumed in each phase to make the component. The
time, cost, and energy consumption data of the disassembly opera-
tions are from the real factory databases. The value of tool change
time, cost, and energy consumption are generated randomly in a
reasonable range to simulate a real manufacturing environment.
As discussed in Sec. 2.5, the EOL operations for each component
are determined before disassembly. Therefore, each component is
assigned with an EOL coefficient according to the type of the
EOL operation and residual life of the component. The energy
consumption and cost of EOL operation used in the case study is
set by multiplying the coefficient with the embodied energy and
the cost of a new component, respectively. The price of a new,
repaired, or remanufactured component can be searched from the
market. The three types of data, i.e., cost data, time data, and
energy data, are scaled to the same magnitude for the convenience
of calculation. To balance the influence of the three objectives on

fitness in Eq. (9), some prior experiments are carried out to con-
firm the value range of the three objectives. Then, determine the
weights to make sure that the weighted objectives share the same
variable range. In the case study, w1, w2 and w3 are set as 4, 1.3,
and 1, respectively.

The low-level heuristics in the proposed TS-EDHH are GA,
PSO, differential evolution (DE), ABCA, and chaos optimization
algorithm (COA). The code is programmed in MATLAB 2016a. All
the experiments are carried out in a computer with 2.6 GHZ CPU
and 12G RAM. Each result is the average value after repeating the
experiments ten times. The population size of the five algorithms
is set at 20. The number of iterations is set at 2000. The value of
pc (probability of performing crossover) and pm (probability of
mutation) in GA are set at 0.8 and 0.15, respectively. The value of
w (inertia weight), c1 and c2 (learning factors), and Vmax (maximal
velocity) in PSO were set at 0.8, 2, 2, and 0.1, respectively. The
value of cr (crossover probability) and F (scaling factor) in DE
are set at 0.5 and 0.5, respectively. The number of employed bee
and scout bee in ABCA are set at 10 and 10, respectively. The
HSD management strategy of TS-EDHH is triggered at the 20th,
60th, and 120th generation.

4.1 Partial/Parallel Disassembly Sequence Planning (PP-DSP).
In PP-DSP, the disassembly depth is optimized according to the
corresponding fitness. The modules are disassembled in parallel
based on the proposed disassembly rules. The optimal solution
obtained using TS-EDHH, namely, disassembly sequence, direc-
tion and tool, are given in Fig. 6. In total, 11 fasteners and nine
components are disassembled. The main disassembly sequence is
F16–C42–F14–F6–F5–F1–F4–F8–F18–C44–F19 –C45. Two
modules are disassembled in parallel after the disassembly of F8,
namely, (F7, C3, C4, C5, C10) and (F2, C1, C2). F14 and F6, F8,
F18, and F19 are disassembled using the same tools. This can
avoid tool change between the disassembly of the two fasteners.

As shown in Table 2, compared with the other five algorithms,
the TS-EDHH improves the fitness by 21–80%. The energy bene-
fit of TS-EDHH is 8–20% higher than that of the other algorithms.
In terms of variance, TS-EDHH performs best.

To show the run of algorithms, the fitness of the best solution in
each generation is recorded. Then, the experiments are repeated
ten times to obtain the average value. Finally, plot these points
and connect them into lines. In this way, Fig. 7 is obtained. As
shown in Fig. 7, after 120 iterations, the TS-EDHH takes the lead,
while the search speed of other algorithms slows down. It reflects

Fig. 5 Structure of a three-axis transmission case

Table 1 List of fasteners and components

No. Name No. Name No. Name

F1 Vent C4 Bevel gear C26 Bearing
F2 Screw C5 Key C27 Planet gear
F3 Oil pointer C6 Sleeve C28 Planet gear
F4 Bolt C7 Bearing C29 Planet gear
F5 Pin C8 Oil baffle ring C30 Lower sleeve
F6 Bolt C9 Key C31 Lower sleeve
F7 Screw C10 Axle C32 Lower sleeve
F8 Screw C11 Bearing C33 Stellar gear
F9 Screw C12 End cap C34 Lower sleeve
F10 Bolt C13 Fixing plate C35 Bearing
F11 Plug C14 Bevel gear C36 Thrust skirt
F12 Screw C15 Oil baffle ring C37 Thrust skirt
F13 Pin C16 Middle box C38 Thrust skirt
F14 Bolt C17 Bearing C39 Bearing
F15 Plug C18 Bearing C40 Bearing
F16 Screw C19 Upper sleeve C41 Lower box
F17 Screw C20 Planet axle C42 End cap
F18 Screw C21 Key C43 End cap
F19 Screw C22 Key C44 End cap
C1 Vent cap C23 Planet axle C45 End cap
C2 Upper box C24 Planet axle C46 Stellar axle
C3 Fixing plate C25 Bearing C47 Bearing

011016-6 / Vol. 140, JANUARY 2018 Transactions of the ASME

D
ow

nloaded from
 https://asm

edigitalcollection.asm
e.org/m

anufacturingscience/article-pdf/140/1/011016/6275720/m
anu_140_01_011016.pdf by C

zech Technical U
niversity In Prague (C

VU
T) - C

entral Librar user on 03 June 2020

Figure 1.1: Example of complex 3D assembly (right) and disassembly (left), borrowed from [2]

Disassembly planning is applicable for a wide variety of assemblies differing in the number
of parts, mobility of components or individual geometry. It follows that disassembly planning
is a very complex problem. Generally, it is an NP-Hard problem [6], so for a fast performance,
an effective method, often using reliable heuristic, is required. The solution methods are
classified according to the completeness, representation of workspace, and way of searching
the configuration space.

Many disassembly methods originally come from the motion planning problem, and usually,
after some adjustments and improvements, the core idea is applicable to the problem of
disassembly planning. The most suitable fast planners appropriate for various assemblies,
even though not using any heuristic, are the sampling-based planners. The Rapidly-exploring
Random Tree algorithm (RRT) [7] is considered as the breakthrough method whose core idea
is used in plenty of contemporary path planners, such as Dynamic Region-biased Rapidly-
exploring Random Tree algorithm (DRRRT) [8] or Manhattan-like Rapidly-exploring Random

1

1. Introduction ...

(a) : Example of an assembly (b) : Example of a disassembly

Figure 1.2: Example of a complex 2D assembly and corresponding disassembly

Tree algorithm (ML-RRT) [9].
The solution methods based on the ML-RRT algorithm have great results for complex

assemblies, even with many components, but fail in types of assemblies, where parts are close
to each other (coherent or fine assemblies). In motion planning, this problem is called the
narrow passage problem. Also, for disassembling an individual assembly, a reliable disassembly
sequence planner is needed to correctly estimate a part most likely to be dismantled and
eventually a disassembly direction along which to extract the part.

In this thesis, a suitable disassembly planner called the Matrix-based algorithm was designed.
For selecting a proper part to disassemble, a heuristic algorithm inspired by [10] is used.
Part is extracted in two phases: first is shifting along disassembly direction and second the
sampling-based planning.

The second designed algorithm is the improved application of DRRRT in disassembly
planning. It applies the same heuristic as the Matrix-based algorithm to determine part and
disassembly direction, but after a guided sampling-based search is performed. The search is
guided along a free space skeleton called the Reeb graph.

These designed algorithms are compared to the previously mentioned ML-RRT algorithm,
which was adopted from [9] and evaluated on a wide variety of assemblies.

1.1 Goals of the thesis

The first goal is to investigate the problem of disassembly planning. In this thesis, a
profound classification of types of assembly is provided, with individual examples of assemblies,
partly borrowed from other publications, partly own designed. Also, several taxonomies for
disassembly planning are presented.

The next goal is to implement a disassembly planner based on the Breakout Local Search
Algorithm [10]. The implemented planner is called the Matrix-based algorithm and uses
the matrix heuristic from [10]. The disassembly planning is performed by rotations and
translations of individual parts. It also uses a sampling-based planning algorithm called RRT.

The fourth goal is to implement a sampling-based disassembly planner. The Matrix-based
algorithm uses as a part of its two-phase move the RRT planning, so it can be classified as
the sampling-based planner. Moreover, a planner called ML-RRT from [9] was implemented.
It is further used for the evaluation and performance comparison of the designed algorithms.

The Matrix-based algorithm is further extended using the fast sampling-based planner
from [8] and is called the DRRRT algorithm. It precomputes the manipulation paths in the
form of a Reeb graph, and after the RRT planning is performed along the graph.

All previously mentioned algorithms are experimentally evaluated on the set of benchmarks.
These assemblies are partly adopted, partly own designed.

2

Chapter 2
Related work for disassembly planning and
disassembly path planning

This chapter focuses on the state-of-the-art of disassembly planning and one of its sub-
problem — disassembly path planning. The specific terms for classifying the assemblies and
solution methods are mentioned and explained. In the last section, the crucial key algorithm
RRT is introduced. All the proposed solution methods in the third chapter are based on this
algorithm.

2.1 Disassembly planning

Disassembly planning (DAP) is a problem, whose task is to dismantle an object consisting
of several parts called assembly (Fig. 2.1a) into a disassembled object called disassembly
(Fig. 2.1b). Many applications rely on disassembling during their running process. For
example, in robotics, DAP is widely used to automatically extract pieces from old devices and
End-of-life products [2]. This recycling process is necessary because valuable materials can
be extracted from the whole product in pure form, unlike shredding the parts as recycling
is regularly done. A great advantage is that some sub-assemblies, a nonempty set of parts,
can be refurbished and reused again [3]. For this purpose, partial disassembly planners are
developed [11]. A review of approaches in product disassembly planning can be found in [1].

Assembling product method, known as Assembly by disassembly, is the subsequent applica-
tion of disassembly planning since parts can be manipulated with more precise movements.
The status of motion constraints is known better than in the disassembled state. The applica-
tion is wide, mainly in the industry such as the automotive or aircraft sector. Some types of
software have integrated the finding of collision-free paths of parts in digital mockups, such
as Process Simulate by Siemens PLM Software [12]. The finding of collision-free paths is
a crucial tool for robot manipulation during manufacturing operations. The advantages of
finding the best disassembly sequence or optimizing the disassembly path can significantly
reduce costs during manufacturing products.

In structural bioinformatics and molecular dynamics, disassembly planning is used for
molecular motion tasks such as protein folding and protein-ligand interactions [4, 5].

Due to various DAP tasks of different characters and features, several taxonomies to classify
disassembly problems were proposed in [12]. The first taxonomy divides the DAP problem
into three sub-problems. Disassembly Sequence Planning (DASP) determines a sequence
of collision-free operations, which remove a part from the assembly [13]. Disassembly Line
Balancing (DALB) deals with partitioning all disassembly operations into elementary tasks,
each at a specific time and assigning them to disassembly workstations. At each workstation,
equal time is spent, and precedence constraints are satisfied [14]. This sub-problem is not

3

2. Related work for disassembly planning and disassembly path planning

(a) : Example of an assembly (b) : Example of a disassembly

Figure 2.1: Example of assembly and corresponding disassembly

crucial for successful disassembly but for optimizing the manufacturing process and is not
further discussed in this thesis.

Disassembly Path Planning (DAPP) creates collision-free sequences of positions, called
paths, of parts of a given assembly from the start to goal position. The definition of these
problems differs depending on the resource from which it is taken. In addition, the dissimilarity
of DASP and DAPP in the survey [12] is not very noticeable. For example, in [15] DASP
problem is rather defined as a listing of subsequent disassembly actions, where actions are
defined as a separation of two or more sub-assemblies apart. According to the provided
definitions, the most significant difference between DAPP and DASP is that the DAPP
problem uses information about the part, which is most likely to be disassembled. This
information comes from DASP. This explanation implies that each disassembly problem
solution deals with these three problems in order DASP-(DALB)-DAPP.

This thesis focuses mainly on the DAPP and partly on the DASP problem and presents
solutions to these tasks. The main goal is to investigate DAP methods and implement and
use a suitable solver for simplified disassembly planning, considering that only one piece can
move at one time and implement a suitable path planner to achieve the locomotion of the
objects. Before describing the possible solution methods, the disassembly will be classified in
other taxonomies from [12] and specific terms and expressions for further investigation of the
disassembly task will be explained.

2.2 Notation and used terms

For classifying and understanding the disassembly tasks, the basic terms are introduced.
Parts of assembly/disassembly are also called components. The disassembly problem can
be classified depending on its geometry. It can be unique if the components are entirely
rigid. However, the term rigid is frequently used as well. Geometry is toleranced, if parts
are modelled as rigid with known inaccuracies such as deformation due to gravitation force,
articulated, if several rigid parts are connected with joints, for example, problems presented
in [16] or flexible, if parts can reversibly and freely change shape. In this thesis, all parts are
considered rigid.

The critical parameter of the disassembly is its dimension, which is the sum of degrees of
freedom of each component in the disassembly. The dimension is the main parameter of the
Configuration Space (C-space) used as the concept for the DAPP problem. The dimensionality

4

...................................... 2.3. Disassembly Path Planning

of the space depends on the representation of the models (assemblies). For example, the
assembly in Fig. 2.1a has seven components. Each is rigid, and each has three degrees of
freedom (2D translation and rotation), so the total number of DOFs and final dimensionality
of the assembly and the C-space is 21. The earlier mentioned C-space is defined as the set
of all configurations, where the configuration is the minimal list of parameters defining the
location of the mobile system in the world [12] and the minimal number of parameters is the
counted dimensionality. Part of C-space occupied by obstacles is called Cobst and part which
contains all possible configurations of all parts in the assembly/disassembly is Cfree. It goes
that Cfree = C \ Cobst.

The assembly that is processed in the general DAP problem can be classified depending
on the method of removing parts to achieve the final disassembly, according to [17]. The
1-/m-disassembly means that a maximum of m motions is needed to extract a part from
the whole assembly. The comparison is given in Fig. 2.2a and 2.2b. The direct/indirect
disassembly is a problem, where a part can/cannot be removed without removing other
parts, shown in Fig. 2.2c. The sequential/non-sequential disassembly depends on number of
movable sub-assemblies at one time. Non-sequential can be also called parallel. Assembly in
Fig. 2.2d shows that green, blue and salmon parts have to be disassembled simultaneously.
In the monotone disassembly, a part can be directly moved out of the assembly fully. In
non-monotone one, the part is removed after partial disassembling of one or more parts,
demonstrated in Fig. 2.2e.

The disassembly is complete when all parts are removed from the assembly and selective or
partial if only a specific subset of parts is removed. The disassembly method is destructive if
any part has to be destroyed during disassembly and non-destructive in the opposite case.
An example of destructive disassembly is in Fig. 2.2f, where to extract the yellow part, the
grey one has to be eliminated.

2.3 Disassembly Path Planning

The path planning problem is the sub-task of disassembly planning. According to [12, 6],
DAP sub-tasks, including DAPP, are either NP-hard or NP-complete. For classifying the
DAPP problem, similar features according to [12] are used for the problem nature as for the
more general DAP problem.

The scale of the problem can be gross if free space between assembled parts is significant,
meaning that minor positional errors in disassembling the parts do not lead to losing a
feasible solution. The scale is fine if there is no or very little free space between the parts and
positional errors can lead to collision detection and losing a feasible solution. The examples of
gross and fine assemblies are given in Fig. 2.3. Sequentiality determines the maximal number
of moving sub-assemblies respect to one another during the disassembly operation (number
of hands disassembling, including a hand holding the worktable). Monotonicity expresses if
any part must be transferred to several intermediate placement positions, which lead to a
feasible solution. Therefore, a non-monotone problem requires some parts to move more than
once to solve the problem. Linearity determines if only one or more parts (a sub-assembly)
are removed from the assembly at the same time. Therefore, a linear problem consists of
disassembly operations, each extracting only one part from the assembly. A non-linear problem
includes extracting several connected parts (a sub-assembly) from the assembly. After this
extraction, each sub-assembly is disassembled separately [13]. The last feature, coherency
is more suitable for classifying the assembly problems because it determines whether an
inserted part will touch any previously inserted part. For disassembly problems, the problem
is coherent if the parts are attached in the sub-assembly before being disassembled. The

5

2. Related work for disassembly planning and disassembly path planning

(a) : 1-disassembly (b) : m-disassembly
Direct

(c) : direct/indirect disassembly parts (d) : parallel disassembly

(e) : non-monotone disassembly (f) : destructive disassembly

Figure 2.2: Example of disassembly classifications

other features were also originally defined for assembly problems but were easily applicable
for classifying disassembly problems.

The example classification is made for several assemblies, later also used for evaluation:. Fig. 2.13a is a four part sequential, linear, monotone and non-coherent puzzle. Fig. 2.13c is a four part sequential, linear, monotone and coherent puzzle. Fig. 2.13f is a four part sequential, linear, non-coherent and non-monotone puzzle, because
the yellow part has to be moved to the left to successfully extract the green part. Fig. 2.13h is a three part sequential, linear, coherent and non-monotone puzzle. Fig. 2.13j is a four part sequential, non-linear, coherent and monotone puzzle. Fig. 2.13l is a four part non-sequential puzzle

Finding the solution to the DAPP task depends on the completeness of the selected method.
There are two conditions for drawing a line between the types of completeness. The first is that
if the solution exists, the method must find it. The second is that if the solution does not exist,
the method must report the non-existence of the solution. The method which accomplishes
both conditions is called complete. This method works with the exact representation of the
assembly, mainly using graph-based methods.

6

...................................... 2.3. Disassembly Path Planning

(a) : gross assembly (b) : fine assembly

Figure 2.3: Scale of the problem

The methods, which do not fully accomplish one or both conditions are called resolution
complete and probabilistic complete. Finding the solution with the resolution complete method
depends on the considered accuracy of sampling the C-space. Usually, methods based on
grid search are resolution complete because the grid is divided into small units, and the
completeness depends on their size. Let a box with a tiny hole and a small ball inside be an
assembly. The disassembly is achieved by pulling the ball out through the hole. The solution
does not have to be found due to the low accuracy and resolution of the considered solution
method.

The probabilistic complete method has guaranteed solution in infinite time if it exists, due
to random sampling of the C-space. It implies that after an infinite amount of time, the
C-space will be searched whole, and a solution will be found if it exists. These methods try to
sample the configuration space without explicit representation. They attempt to sample it to a
graph with a finite number of nodes and search for disassembly paths. Probabilistic resolution
complete methods are both dependent on random sampling and resolution of the space where
the method is used. It is usually some method with grid space and random sampling planning.
Incomplete methods are those whose successful solving the problem depends on a heuristic,
which does not have to find the solution, even if it exists.

2.3.1 Methods for disassembly path planning

Various approaches can achieve the solving of DAPP. Each of these approaches is considered
as a separate group of solution methods. These are Graph-based, Grid-based, Sampling-based,
Space Decomposition and Interactive approaches. The Graph-based methods try to represent
the assembly as a graph, where the solution can be searched. The Grid-based methods
discretize the C-space to a grid, which is easier to search than continuous space. The sampling-
based methods represent the configuration space as a finite number of sampled points in it
and search for the disassembly path in this representation. Because these algorithms are
widely used in this thesis, there is a particular chapter 2.4 describing their nature. Space
Decomposition methods divide the whole configuration space into several sub-spaces. The
interactive methods require human-computer interaction, which may speed up the planning
process with the help of human intelligence in optimizing and correcting the paths proposed
by computer.

Graph-based planners can employ three different concepts for path planning. The first
considers the assembly parts as nodes of the graph and the edges as their relations. These

7

2. Related work for disassembly planning and disassembly path planning

p1 p2

p3 p4

p1 p2

p3 p4

d1

p1 p2

p3 p4

d2

p1 p2

p3 p4

p1 p2

p3 p4

Figure 2.4: The directional blocking graph of the directions d1 and d2, where the nodes are parts
and the oriented edges from part p to part q mean that part q hinders motion of part p in direction
d. Beneath is the example of a part of Non-directional blocking graph.

relations can be, for example, connectivity, blocking, or force. The method using this concept
is, for instance, the Blocking graph [18]. The second concept constructs the graph based on
the geometry of the parts in the C-space. The methods using this concept are, for example,
the Visibility graph method [19] and the Roadmap-based method. The third concept creates
a graph from contacts and relations as nodes and the edges as transitions between them. Only
the first two concepts are further explained, also with specific examples.

The Blocking graph was firstly introduced in [18]. The related work appears in two forms:
the Non-directional blocking graph (NDBG) and the Directional blocking graph (DBG). The
DBG has nodes corresponding to parts of the assembly, and oriented transition links from
part p to part q representing that part q hinders the part p in a direction d. These graphs can
be generated for each possible direction. The NDBG is created by separating the whole space
of possible disassembly directions into subsets with similar DBGs. An example of Blocking
graphs is shown in Fig. 2.4. The concept of blocking graph is used in the proposed algorithm
in section 3.2 as the Assembly interference matrix, which is a slightly modified version of
DBG.

The Roadmap-based (or Constraint-based) method, introduced in [20], integrates the
Generalized Voronoi Diagram (GVD) to help to guide the parts towards the goal configuration.
GVD is a locus of points that are equidistant from two or more obstacle boundaries, including
the workspace boundary [21]. The example of Voronoi Diagram in 2D for obstacles represented
by dots is shown in Fig. 2.5a and for a simple assembly in Fig. 2.5b.

There is another structure called Reeb Graph, which has similar features to GVD and is
often used instead of it. The Reeb graph is a structure, which encodes the topology of the
given object [22]. This type of graph consists of nodes and edges. The nodes are the critical
points of a smooth function defined on the whole area of the object called Morse function.

8

................................2.4. Sampling-based path planning algorithms

(a) : Voronoi diagram (black lines) of the
set of dots

(b) : Voronoi diagram (green lines) of a simple
assembly consisting of the yellow and purple
part. The red rectangle is the surrounding
image border

Figure 2.5: Examples of Voronoi diagram

The edges are the topological conjunction between two nodes. For disassembly planning, the
object is represented by the free space in the assembly. An example of Reeb Graph is shown
in Fig. 2.6a and the assembly transferred to Reeb graph in Fig. 2.6b.

The Grid-based planners are similar resolution complete methods that explore a configura-
tion space made of a grid. All grid-based methods have a related feature, approaching the
goal configuration by a gradient search. A possible disadvantage of these methods is that
they can get stuck in the local minima and never reach the goal configuration.

The Space decomposition planners try to disassemble by dividing the C-space into specific
sub-spaces. These sub-spaces are subsequently searched to get the disassembly paths. The
separation is made, for instance, by determining specific disassembly directions. The concept
of separating direction is also used in Assembly Interference Matrix in the proposed algorithm
in section 3.2.

The Interactive planners apply human intelligence through a virtual reality interface to
correct, optimize, and verify the paths proposed by the disassembly method. The individual
human operations are logged, and these data are used for generating instructions in the
automatic disassembly process. The correction is primarily done after planning using one of
the disassembly methods, which finds the collision-free path solution. However, this solution
might not be optimal due to some resolution errors, high-speed rotations, or too long path
possible to shorten. After finding this path, the human corrects and optimizes the path where
it is possible.

2.4 Sampling-based path planning algorithms

In the last decades, sampling-based algorithms have attracted attention in motion planning,
mainly due to computational efficiency and high-dimensional space operational flexibility.
Sampling-based algorithms such as PRM [23], RRT [7] or more recent ones are briefly described
in [24]. All sampling-based algorithms are based on constructing a graph containing feasible
paths. The paths are made out of individual configurations. Those made from collision-free
configurations are added to the graph. Compared to other planning algorithms, the big
advantage is that sampling-based algorithms do not depend on the explicit representation of

9

2. Related work for disassembly planning and disassembly path planning

(a) : Reeb graph of a workspace, with three
circular objects (transfered to three loops
of Reeb Graph) and y-value as a Morse
function. Red point is its maximum, blue
point the minimum and green point the
saddle point.

(b) : Reeb graph of an assembly similar to the
Fig. 2.5b

Figure 2.6: Examples of Reeb graph

the obstacles. The only information needed about the obstacles is if a specific part collides
with any obstacle. Although most of the computational time is spent on collision detection,
they are considered as fast planners in many cases. They also have a good performance in
high-dimensional planning and configuration spaces with many obstacles, where classical
(geometric-based) methods cannot be used at all [24].

2.4.1 Collision detection

Some of the previously mentioned algorithms, such as RRT or PRM, depend mainly on
fast collision detection. In this thesis, the obstacles and the moving part are considered as
two separate polygonal meshes. For this type of representation, a fast solution for collision
checking was introduced in [25] using Oriented Bounding Box Tree (OBBTree).

The Oriented Bounding Box wraps a complex object with a rotated rectangular box. There
is a similarity to Axis-Aligned Bounding Box (AABB), which wraps the object to a box, which
can not be rotated. The comparison of these two boxes is depicted in Fig. 2.7. Using OBBs,
the collisions do not have to be evaluated for the enormous polygonal mesh representing the
object, but only for a box, which surrounds it. If the collision is not detected with the box,
there is no collision with the mesh.

Nevertheless, if the collision is detected, the box has to become tighter. The principle
is in constructing the tree structure, which consists of several smaller OBBs divided from
the greater one, which wrap the mesh even tighter. The collision check is done again and
evaluated the same. If a collision is detected, the boxes are divided again. The depth, how
many divisions are done are determined by the resolution of the algorithm.

The collision detection between the OBBs is also optimized by the separating axis theorem
proposed in [26], which outperforms other collision detection algorithms. The performance is
about one order of magnitude faster.

10

................................2.4. Sampling-based path planning algorithms

(a) : Axis Aligned Bounding Box (AABB) (b) : Oriented Bounding Box (OBB)

Figure 2.7: Example of an oriented and axis-aligned bounding box of a triangle mesh

qnear

qgiven

Figure 2.8: Nearest-neighbour search to qgiven from the set S of k-dimensional points

2.4.2 The nearest-neighbour search

Sampling-based planners, such as RRT, require a fast nearest-neighbour search. The nearest-
neighbour search algorithm is used for finding the closest configuration qnear from the given
set of all configurations to a given qgiven, shown in Fig. 2.8. The naive solution is to measure
Euclidean distance between each configuration in the set and the given configuration and
select the nearest-neighbour as the one configuration with the smallest distance to qgiven. This
naive solution has the complexity of O(n), where n is the number of configurations in the set.

In this thesis, a faster solution with an average complexity of O(logn) is used. The solution
is based on a better configuration organization using k-dimensional tree data structure (k-d
tree). A k-d tree is a binary tree structure for space partitioning.

2.4.3 Rapidly-exploring Random Tree algorithm

This sub-section introduces the Rapidly-exploring Random Tree algorithm [7] which moves the
part from the start position qstart ∈ Cfree to the final position qgoal ∈ Cfree. The algorithm
incrementally searches the configuration space and it is probabilistic complete [27]. The
collision-free configurations are stored in the tree T . The tree is rooted in qstart. Each iteration,
a random point qrand is generated in the C-space. The tree is expanded towards qrand from
the nearest neighbour qnear found in T . During qrand approaching, the collisions of the robot
(moving part) with obstacles (other parts) are detected. The collision-free path is added to the
tree. These operations are repeated until the tree approaches qgoal to a predefined distance
or after Imax iterations are reached. Depending on the number of iterations, the algorithm
scans the workspace more or less thoroughly. An example of several RRTs depending on the
number of iterations is depicted in Fig. 2.9. The visualization of the RRT algorithm is shown

11

2. Related work for disassembly planning and disassembly path planning

(a) : RRT Tree after
10 iterations

(b) : RRT Tree after
100 iterations

(c) : RRT Tree after
1000 iterations

(d) : RRT Tree after
10000 iterations

Figure 2.9: Visualization of RRT expansion after a various number of iterations

qstart
qgoal

qnew
qnear

qrand

qstart

qstart

qstart

qstart

qstart

qstart

qgoal

qgoal

qgoal

qgoal

qgoal

qgoal

(a) : Start and goal po-
sition

qstart
qgoal

qnew
qnear

qrand

qstart

qstart

qstart

qstart

qstart

qstart

qgoal

qgoal

qgoal

qgoal

qgoal

qgoal

(b) : Expansion from
qnear to qrand

qstart
qgoal

qnew
qnear

qrand

qstart

qstart

qstart

qstart

qstart

qstart

qgoal

qgoal

qgoal

qgoal

qgoal

qgoal

(c) : The tree has
grown near qgoal

qstart
qgoal

qnew
qnear

qrand

qstart

qstart

qstart

qstart

qstart

qgoal

qgoal

qgoal

qgoal

qgoal

qgoal

qstart

(d) : The path from
qstart to qgoal is ex-
tracted

Figure 2.10: Visualisation of RRT algorithm. In 2.10a, the tree is initialized. The expansion
process is shown in 2.10b. The final grown tree, where the last expanded point in the region
around qgoal is, is in 2.10c. The final path extracted from the tree is in 2.10d.

in Fig. 2.10.
After finishing iterating from start to goal, the path is pruned. The pruning attempts

to connect the start and goal configuration (Fig. 2.11a). If the path is collision-free, the
algorithm ends, otherwise the configuration qmiddle in the half of the path is taken and the
sub-paths (qstart, qmiddle) and (qmiddle, qgoal) are processed similarly as the start-goal path,
shown in Fig. 2.11b. The algorithm ends when the pruned path from the start to the goal is
completed, depicted in Fig. 2.11c. The algorithm for pruning is Alg. 1.

Algorithm 1: PathPrunning
Input: Path P = {qstart, ..., qgoal}, Pruned path Pp, begin configuration qbegin, end

configuration qend

Output: Updated pruned path Pp

1 if sub-path (qbegin, qend) is collision-free then
2 Pp.add((qbegin, qend));
3 else
4 qmiddle ← FindMiddlePoint(pp); // middle config. P between qbegin and qend

5 PathPrunning(P , Pp, qbegin, qmiddle);
6 PathPrunning(P , Pp, qmiddle, qend);

2.4.4 Dynamic Region-biased Rapidly-exploring Random Tree algorithm

This algorithm belongs to a family of RRT-based methods. Its main advantage is that it
requires fewer iterations for completing the path planning task than basic RRT. It also explores

12

................................2.4. Sampling-based path planning algorithms

qstart
qgoal

qnew
qnear

qrand

qstart

qstart

qstart

qstart

qstart

qstart

qgoal

qgoal

qgoal

qgoal

qgoal

qgoal

(a) : Attempt to connect
qstart with qgoal

qstart
qgoal

qnew
qnear

qrand

qstart

qstart

qstart

qstart

qstart

qstart

qgoal

qgoal

qgoal

qgoal

qgoal

qgoal

(b) : Algorithm depth one
sub-paths

qstart
qgoal

qnew
qnear

qrand

qstart

qstart

qstart

qstart

qstart

qstart

qgoal

qgoal

qgoal

qgoal

qgoal

qgoal

(c) : Final successful connec-
tion from qstart to qgoal

Figure 2.11: Visualization of the path pruning method. In 2.11a the first attempt to prune
the path by connecting qstart and qgoal is made (red). Because it failed (it crosses obstacles),
the path is halved, and the attempt is repeated for each sub-path in depth one of the recursive
algorithm (2.11b). Finally in depth of two, the complete collision-free path from qstart to qgoal is
found in 2.11c.

parts of space where the probability of selecting a random point is low. These parts of free
space are called narrow passages. Dynamic Region-biasing helps sample these narrow passages
by constructing the Reeb graph as a skeleton of the input workspace. After constructing the
graph, the dynamic region (a circle with centre on the Reeb graph) is moved along the graph,
and the RRT algorithm generates nodes inside these regions [8].

The DRRRT method takes the input environment and start and goal configuration of the
part to be disassembled (Fig. 2.12a). Firstly, the free space is triangulated using the Delaunay
triangulation of the free space (Fig. 2.12b). The obstacles (other parts of the assembly, which
are not currently disassembled) are taken as holes in the workspace. The triangulated mesh
is used to compute the Free Space Skeleton represented as the Reeb Graph (Fig. 2.12c), and
then the start and goal are connected to this skeleton, shown in Fig. 2.12d. Then, the first
region is initialized in the start configuration (Fig. 2.12e), and RRT explores the environment
by generating points in the advancing regions along the Reeb graph, depicted in Fig. 2.12f
and Fig. 2.12g. The final path is extracted (Fig. 2.12h), and the active part is moved to the
final position, shown in Fig. 2.12i.

The overview of this planner is shown in Alg. 4. The method ComputeFreeSpaceSkeleton
computes the Reeb graph. For biased tree growing, a search tree and initial region are
initialized, and after, the method Region-biasedRRTGrowth attempts to reach the goal
configuration until Imax iterations. When finished, the final path of the disassembled part is
extracted from the tree and pruned.

Compute Free Space Skeleton

This method overview is shown in Alg. 2. Firstly, the Delaunay triangulation converts the
environment e into mesh M of triangles. It is crucial to triangle only free space, not obstacle
space, because the disassembly manipulation is executed only in free space.

Line 2 computes the Reeb graph from the triangulated mesh using the VTK library [29].
This library employs the algorithm from [22]. The algorithm processes the triangles online
from the mesh M . Each new vertex in the mesh is added to the Reeb graph. For each edge
of the triangle, which is new to the Reeb graph, Arc’s structure is created. Arc connects two
points in the Reeb graph and is made of edges. After adding nodes and arcs, the surface of the
triangle is added. Inserting the surface of a triangle does merging of arcs into one containing
edges from both arcs. After processing all triangles, the final Reeb graph is finished. Then

13

2. Related work for disassembly planning and disassembly path planning
Algorithm 2: ComputeFreeSpaceSkeleton

Input: Environment e, Positions qstart and qgoal

Output: Free Space Skeleton Sfree

1 M ← Triangulation(e); // using [28]
2 RG← ComputeReebGraph(M); // using [29], who are using [22]
3 Sfree ← ConnectReebGraphToStartAndGoal(RG, qstart, qgoal);
4 return Sfree;

the nodes qstart and qgoal are connected to the Reeb graph.

Region-biased RRT Growth

In Alg. 3 the strategy of growing RRT Tree in the dynamic region is shown. On lines 2 - 5,
a standard RRT algorithm is performed with the alteration of generating random points.
Regular RRT selects qrand from the whole configuration space, but Region-biased RRT selects
qrand from the dynamic region R with the center on Sfree. After Imax attempts to expand
the tree are executed, the region is advanced along Sfree to another node of the Reeb graph.

Algorithm 3: Region-biasedRRTGrowth
Input: Tree T , Region R, Free Space Skeleton Sfree

1 for i = 1, . . . , Imax do
2 qrand ← RandomPointFromRegion(R);
3 qnear ← NearestNeighbour(qrand, T);
4 qnew ← Expand(qnear, qrand);
5 T .AddNewNodeAndEdge(qnear, qnew);
6 R← ChangeRegion(Sfree);

2.5 Conclusion

This chapter introduces the problem of disassembly planning. Several taxonomies to classify
assemblies and the disassembly methods are introduced. Also, the nature of the problem
in terms of complexity and resolution is discussed. The representation of assembly as a
graph and the blocking relations between parts are mentioned and are further used in the
Matrix-based algorithm in section 3.2. For the DRRRT algorithm, a particular assembly
representation called the Reeb graph is described, and several examples are given. From the
disassembly methods, the sampling-based planners are explained more profoundly because
they are primarily used in this thesis. Also, the tools, such as fast collision checking and
nearest-neighbour search, used for sampling-based planning are introduced and described.
The RRT and DRRRT algorithms are explained in detail, including their overviews.

14

... 2.5. Conclusion

Algorithm 4: DRRRT
Input: Environment e, Positions qstart and qgoal

Output: Path from qstart to qgoal, Tree T
1 Sfree ←− ComputeFreeSpaceSkeleton(e, qstart, qgoal); // in Alg. 2
2 R← InitialRegion(qstart) ; // first region for biased growing
3 T ← InitializeRRTTree(qstart);
4 for i = 1, . . . , Imax do
5 Region-biasedRRTGrowth(T , R, Sfree); // in Alg. 3
6 if near qgoal then
7 break;

8 p ←− ExtractStartGoalPathFromRRTTree(T);

qstart

qgoal

qstart

qgoal

qstart

qgoal

qstart

qgoal

qstart

qgoal

qstart

qgoal

qstart

qgoal

(a) : Start and goal configura-
tion of yellow part

qstart

qgoal

qstart

qgoal

qstart

qgoal

qstart

qgoal

qstart

qgoal

qstart

qgoal

qstart

qgoal

(b) : Delaunay triangulation of
the space not occupied by the
other parts

qstart

qgoal

qstart

qgoal

qstart

qgoal

qstart

qgoal

qstart

qgoal

qstart

qgoal

qstart

qgoal

(c) : Computed Reeb graph
and Morse function of the free
space

qstart

qgoal

qstart

qgoal

qstart

qgoal

qstart

qgoal

qstart

qgoal

qstart

qgoal

qstart

qgoal

(d) : The Reeb graph with
connected path to start and
goal configuration of the yellow
part

qstart

qgoal

qstart

qgoal

qstart

qgoal

qstart

qgoal

qstart

qgoal

qstart

qgoal

qstart

qgoal

(e) : First initialized region at
start configuration

qstart

qgoal

qstart

qgoal

qstart

qgoal

qstart

qgoal

qstart

qgoal

qstart

qgoal

qstart

qgoal

(f) : Expanding RRT Tree along
the Reeb graph

qstart

qgoal

qstart

qgoal

qstart

qgoal

qstart

qgoal

qstart

qgoal

qstart

qgoal

qstart

qgoal

(g) : The region and the RRT
Tree has reached the goal config-
uration

qstart

qgoal

qstart

qgoal

qstart

qgoal

qstart

qgoal

qstart

qgoal

qstart

qgoal

qstart

qgoal

(h) : The extracted red final path

qstart

qgoal

qstart

qgoal

qstart

qgoal

qstart

qgoal

qstart

qgoal

qstart

qgoal

qstart

qgoal

(i) : The yellow part is moved
to goal configuration

Figure 2.12: Visualisation of the DRRRT algorithm. In 2.12a qstart and qgoal are depicted. Then,
the free space, where the yellow part can move, is triangulated. It can be seen in 2.12b. The
obstacle (purple part) is excluded in triangulation and creates the Reeb graph, shown in 2.12c.
The Morse function determining the Reeb graph is the y-value of the workspace, depicted as the
gradient spectrum in 2.12c. qstart and qgoal are connected to the Reeb graph by a straight line,
shown in 2.12d. The first dynamic region is initialized in qstart, shown at 2.12e. The RRT grows
in the regions, and the regions are advanced along the Reeb graph (2.12f). Until the region reaches
qgoal, the regions are advanced, and the tree is expanded, shown in 2.12g. The final path from
the tree is extracted (the red path in 2.12h). Finally, the yellow part is moved along the red path
from qstart to qgoal, depicted in 2.12i.

15

2. Related work for disassembly planning and disassembly path planning

(a) : Easy assembly (b) : Rectangular as-
sembly

(c) : Tight assem-
bly ([30])

(d) : Triangle assem-
bly ([31])

(e) : 7-Hexa assembly (f) : Well assem-
bly ([30])

(g) : Screw as-
sembly

(h) : Bolt assembly
([18])

(i) : 20 parts assembly
(inspired by [30])

(j) : Jingjang assem-
bly ([13])

(k) : Elevator
assembly (inspired
by [30])

(l) : Parallel assembly
(inspired by [12])

(m) : Lock assembly
([13])

(n) : Bugtrap assembly (o) : Rotation assembly (p) : 10-Hexa assembly

(q) : Chessboard as-
sembly

Figure 2.13: Puzzles used for evaluation

16

Chapter 3
Disassembly methods

This chapter summarizes the solution methods, which were implemented and evaluated in this
thesis. Firstly, the ML-RRT method [9] is presented. This algorithm was implemented (not
designed) as a benchmark comparison to the other two own designed algorithms. These are
the Matrix-based algorithm and the DRRRT algorithm. All of these algorithms are explained,
and the overview of pseudo-codes is presented as well.

3.1 ML-RRT algorithm

The first implemented algorithm in this thesis is a Manhattan-like Rapidly-exploring Random
Tree algorithm (ML-RRT) taken from [9]. The fundamental concept of the ML-RRT algorithm
is based on dividing the C-space, with dimensionality computed as the sum of all DOFs of all
parts, to specific sub-manifolds and letting the RRT algorithm search in those.

3.1.1 C-space representation in ML-RRT algorithm

The sub-manifolds are called active (Ca) and passive (Cp). The active sub-manifold consists
of variable parameters (motion configurations) of the selected part (active part). The passive
sub-manifold has varying passive part parameters. Thus, as an example in Fig. 3.1, the red
part is chosen as the active part, the configuration space is separated into the active red
parameters and passive yellow, blue and green parameters.

3.1.2 ML-RRT algorithm overview

The algorithm tries to move with the selected active part. After the first collision, the passive
parts are moved a little, not to block the active part’s potential movement. After the passive
parts finish moving, the active part moving repeats. After the part is disassembled, the
algorithm repeats for another selected active part.

The main loop is depicted in Alg. 5. The parts are chosen one by one until all are attempted
to disassemble. In the method SelectPart a part to be disassembled is selected. The order
of parts is chosen as the one given by the user. In SetPartition the C-space is divided into
active and passive sub-manifold as described in the previous subsection. Next, the search tree
T for RRT planning is initialized with an initial configuration consisting of the actual position
of the active part. The tree Tall contains an initial configuration consisting of positions of
all parts. The selected part is then disassembled, or after Imax iterations, the failure to
disassemble is reported.

The method for planning the path of the active part is executed in function ExpandML-RRT
in Alg. 6. The main task is to move with the active part. If it is not possible due to collisions,

17

3. Disassembly methods ...

Figure 3.1: Active and passive part of the configuration

Algorithm 5: IterativeML-RRT
Input: Parts P , Configuration Space C, initial configuration qinit

1 n←number of parts;
2 for i = 1, . . . , n do
3 pi ← SelectPart(P);
4 (Ca, Cp)← SetPartition(C, pi);
5 T .add(qact

init);
6 Tall.add(qinit);
7 for j = 0, . . . , Imax do
8 Disassembled← false;
9 Disassembled← ExpandML-RRT(P,C, T , Tall, Ca, Cp); // method from Alg. 6

10 if Disassembled then
11 break;

then the passive blocking ones are relocated. The algorithm is based on the RRT algorithm.
The key difference is the previously mentioned sub-manifold planning. Unlike sampling a
random configuration in the whole configuration space, the configuration qactrand is sampled
only in Ca, shown at line 1. The nearest-neighbour search for finding qnear is also executed
in Ca. The Expand function at line 3 proceeds from qnear towards qactrand until collision. The
last valid collision-free configuration qnew with list P pcol with all colliding parts stopping the
expansion is returned for further steps. The configuration qnew is added to Tall, also the active
part to T and the reference between these two nodes is made.

Subsequently, until the list P pcol contains colliding parts, the active part is attempted
to unblock further moves by perturbing the passive parameters of parts associated with
P pcol. Note that the perturbation is carried out in the nearby neighbourhood of the passive
parameters. The Expand function moves passive parts from qnear towards qpasrand until collision.
During this expansion process, the collisions are detected and added to a list P p

′

col. The new
node qnew has only the passive part perturbed so that the new node is added only to Tall.
The ChangeReference function is further discussed in the next section because it requires an
introduction to sub-manifold nearest-neighbour search. The list P p

′

col is relatively compared to
P pcol and only the blocking parts, which are not in P pcol yet are considered further as parts
hindering the motion of active parts.

18

....................................... 3.2. Matrix-based algorithm

3.1.3 Sub-manifold nearest-neighbour search

There is a noticeably unclear issue with the nearest-neighbour search in the sub-manifold.
Several configurations with the same active parts but different passive ones can be selected as
the nearest-neighbour when using the distance metric in Ca. In the article where ML-RRT is
introduced ([9]), there is no information about how to handle this problem.

The solution designed in this thesis (already mentioned in the Algorithm overview) selects
one neighbour, which was expanded the last. It is achieved by a tree Tall, where all configu-
rations are saved, also with passive parts. Each configuration in T has a reference to a leaf
node in Tall to determine the correct last expanded passive part configuration successfully.
This determination is made at line 2 of Alg. 6. After adding qnew to Tall in the second part of
the Alg. 6, reference of the node qactnear in T has to be changed to the leaf node (qnew) in Tall.

Algorithm 6: ExpandML-RRT
Input: Parts P , Configuration Space C, tree T , all configuration tree Tall, active partition

Ca, passive partition Cp

Output: updated trees T and Tall

1 qact
rand ← SampleConf(C,Ca);

2 qnear ← BestNeighbor(T , Tall, qact
rand , Ca); // the sub-manifold nearest-neighbour

3 (qnew, P p
col) ← Expand(qnear, qact

rand);
4 Tall.AddNewNodeAndEdge(qnear, qnew);
5 T .AddNewNodeAndEdge(qact

near, q
act
new);

6 qnear ← qnew;
7 while P p

col 6= ∅ do
8 qpas

rand ← PerturbConf(C, qnear, P p
col);

9 (qnew, P p′

col) ← Expand(qnear, qpas
rand);

10 Tall.AddNewNodeAndEdge(qnear, qnew);
11 T [qact

near].ChangeReference(Tall[qnew]);
12 qnear ← qnew;
13 P p

col ← P p′

col \ P
p
col;

14 Disassembled← false;
15 if qnear near qact

goal then
16 Disassembled← true;
17 return Disassembled;

An example visualization of the ML-RRT principle is shown in Fig. 3.2. It is supposed
that the tree of the blue part is expanded until the state shown in Fig. 3.2a. After that,
the algorithm samples qrand configuration and the nearest configuration from the blue part
tree qnear is found. The sampling is depicted in Fig. 3.2b. The expansion is not possible
because the orange part is hindering the motion of the blue one. The algorithm detects the
collision and the blocking part. Then the parameters of the blocking part (in this example, the
orange one) are perturbed and expanded to a position shown at Fig. 3.2c. After blocking part
perturbation and expansion, the blue part is released, and its tree can be further expanded as
shown in Fig. 3.2d.

3.2 Matrix-based algorithm

The main concept of the Matrix-based algorithm combines the matrix heuristic method
used in Breakout Local Search algorithm [10] for finding the disassembly sequence, and
RRT algorithm [7]. The heuristic method plans a sequence of pairs of parts and directions
(disassembly sequence). The parts are then moved along the disassembly directions in the

19

3. Disassembly methods ...

(a) : Grown tree of blue part

qnearqrand

(b) : Attempt to expand blue part to qrand

(c) : Relocation of the orange part to clear the way
for the blue part

(d) : After the relocation, the blue part tree can
be further expanded

Figure 3.2: Visualization of the ML-RRT algorithm, where the C-space is on the left and the
workspace on the right. Blue is the active part, red is the stable part, which means that it can
not be moved. Orange is another part blocking the blue one. In 3.2a the grown tree of blue part
configurations is shown. In 3.2b another configuration of the blue part qrand is sampled, and an
attempt to expand the tree to this position is made. The blocking part is detected (the orange
part), and in the second part of the Alg. 6 at line 8 the orange part position is perturbed and then
at line 9, the orange part is expanded to the new sampled position, shown in 3.2c. The blue part
is unblocked and can be further expanded, as shown in 3.2d.

disassembly sequence. Afterwards, the RRT algorithm plans the path towards a predefined
final position. The first part, the assembly sequence computation, requires determining which
part is restricted by which part in each direction. For example, in Fig. 3.3a, the red part is
unrestricted in +x direction (to the right), but the yellow part blocks any other direction,
meaning −x (to the left), +y (up) and −y (down). Moreover, −y direction is not directly
blocked by the blue and green part, but when the red part is moved along that direction, the
swept area (black dotted space) collides with them (Fig. 3.3b). That is the reason why these
parts are also considered blocking. From this information about blocking parts, a disassembly
sequence using the heuristic algorithm is computed. Each part in the disassembly sequence is
then moved along the corresponding direction for a predefined distance. The second phase,
path-finding to the predefined goal position, is executed subsequently.

3.2.1 Matrix heuristic

The algorithm will be demonstrated step by step for the square puzzle, which is depicted
in Fig. 3.3a and for four disassembly directions shown in Fig. 3.3a. The representation
of individual components and their blocking parts is coded in a structure called Assembly
Interference Matrix (AIM). AIM is an n× (n×m) matrix, where n is the number of parts,
and m is the number of disassembly directions. The AIM for the square puzzle is shown in
Fig. 3.4. Each column in this matrix represents one disassembly direction dk for particular
part pj written above the matrix and particular blocking part qi as a row of AIM . Each

20

....................................... 3.2. Matrix-based algorithm

+x

+y

(a) : Disassembly directions

+x

+y

Swept area

(b) : Swept area of the red part

Figure 3.3: Disassembly directions and swept area of the red part

element is either 1, meaning that the swept area of part pj is blocked by part qi in direction
dk, or 0 otherwise. More precisely, the matrix element can be expressed as Isw(pj ,dk)

qi,pj , where
sw(pj , dk) is the swept area of the part pj along the direction dk. For instance, the first
column represents moving of the yellow part in the −x direction. The yellow part’s swept
area collides with a green and blue part, so the third and the fourth element in the column
are 1 and the others 0. Another example is given for the red part moving in −y direction in
section 3.2, where the term swept area is introduced.

There are another three matrices used in the further introduced algorithm. The Directional
Assembly Interference Matrix (DAIM) shown in Fig. 3.5 sums up all columns in AIM one
by one. So an element in DAIM is total number of blocking parts for a part pi in a direction
dk. The element can be also expressed as

DAIM(pi, dk) =
n∑
j=1

I
sw(pj ,dk)
qi,pj . (3.1)

As an example, the element (p1,−x) in DAIM is sum of the first column in AIM .
For the second matrix, called Disassembled Blocking Parts Matrix (DBP), let p2 and p4

be the disassembled parts. By using AIM and already disassembled parts, the DBP of
size (n− c)×m is computed, where c is the number of already disassembled parts, here 2.
The disassembly would look as shown at Fig. 3.6 also with the DBP matrix. Each row in
DBP is representing one non-extracted part pi. For each of these parts, the total number
of interferences with all disassembled parts πj in all directions dk is detected. Easier way to
visualize the process of creating DBP is when all rows in AIM corresponding to disassembled
parts are crossed out and then all disassembled parts sub-matrices are summed up. Example
is in Fig. 3.6. So

DBP (pi, dk) =
∑
all πj

I
sw(πj ,dk)
qi,πj , (3.2)

where qi does not belong to the set of disassembled parts.

21

3. Disassembly methods ...

p1
p2

p3

p4

+x

+y

Figure 3.4: Example of Assembly Interference Matrix

Figure 3.5: Example of Directional Assembly Interference Matrix

The last matrix of the same size as DBP called Not Disassembled Blocking Parts Matrix
(NBP) supposes as before at DBP matrix, that p2 and p4 are disassembled. Each row in
NBP represents a non-extracted part. For each of these parts pi and each direction dk, we
detect the number of interferences of all other not disassembled parts. For easier visualization,
it is proceeded from the same concept of crossed rows of AIM . The difference is that after
crossing, all columns corresponding to not yet disassembled parts are summed up, and the
sum is written to NBP matrix. Note that when summing, we exclude the crossed rows of
AIM . Example is given in Fig. 3.7. Therefore

NBP (pi, dk) =
∑
all qi

I
sw(pj ,dk)
qi,pj , (3.3)

where pj and qi do not belong to the set of disassembled parts.
The heuristic algorithm is depicted in Alg. 7. The inputs are AIM and all parts the

assembly is made of. At the beginning, DAIM is created in CreateDAIM.
The first (random) disassembly direction d1 is chosen in RandomDirection. According to

selected direction a first part to be disassembled π1 is selected in method Min as the one, which

22

....................................... 3.2. Matrix-based algorithm

p1

p3

+x

+y

Figure 3.6: Example of the DBP matrix, the modified puzzle and the reduced AIM matrix

has a minimal number of blocking parts along the direction d1 in DAIM . More precisely

π1 = argmin
i
{DAIM(pi, d1)}. (3.4)

By first disassembling pair of direction d1 and part π1, the final disassembly sequence
DS is initialized. The set of finished parts F contains only π1. In the for-loop, the
matrices DBP and NBP are created using methods DisassembledBlockingParts and
NotDisassembledBlockingParts using the AIM and mainly the information about finished
parts in F . Next disassembly pair of (πi, di) is the one with minimal sum of DBP and NBP
counted in method Min, mathematically as follows

(πi, di) = argmin
k,j

{DBP (pk, dj) +NBP (pk, dj)}. (3.5)

If there is more than one optimal pair, a random one from them is selected. At the end,
disassembly sequence {(π1, d1), ..., (πn, dn)} is returned. Further on, an example run of the
above algorithm for an easy four-component puzzle is also provided with visualization at
Fig. 3.8 and 3.9.

At the beginning of the algorithm, the DAIM from AIM of a given puzzle is created,
as shown in Fig. 3.8a. After that, a random direction d1 is chosen and appropriate part π1
with minimal value in DAIM is selected, see Fig. 3.8b. Next step is creating DBP and
NBP matrices considering p2 as the disassembled part. All pairs of parts and directions
corresponding to the smallest elements of DBP +NBP matrix are found and a random pair
is chosen as the next part and direction to be disassembled (π2, d2). Illustration is given in
Fig. 3.8c. In Fig. 3.9a, parts p2 and p1 are already disassembled. DBP and NBP are created
and best option from DBP +NBP is chosen (part p3). In Fig. 3.9b the last part is processed
in a similar way as the last two parts. The final disassembly sequence is

(o1, o2, o3, o4) = 〈(p2,+x), (p1,−x), (p3,+y), (p4,+y)〉 (3.6)

23

3. Disassembly methods ...

p1

p3

+x

+y

Figure 3.7: Example of the NBP matrix, the modified puzzle and the reduced AIM matrix

3.2.2 Matrix-based algorithm overview

The main algorithm is Alg. 8. The main loop repeatedly computes and evaluates the
disassembly sequences until the assembly is disassembled or Imax iterations are executed.
Note that it is not guaranteed that this method will find a solution due to the heuristic
approach, even if it exists.

In the beginning, AIM is computed using the previously mentioned process. The method
ComputeDisassemblySequence is thoroughly described in Alg. 7 and in section 3.2.1. After
computing the disassembly sequence DS, each part is moved along the disassembly direction.
The part is considered as shifted after moving for a predefined distance without collision.
Depending on reaching this distance, the part is considered shifted from the assembly or
blocked. When the part is successfully shifted, the RRT Tree begins to grow from the part’s
position. The part is navigated towards the final position, and if reached, the part is considered
finished, and the next part from DS is taken. Note that the finished parts have to be kept as
obstacles for other still blocked parts because there might be unexpected collisions with them.

This two-phase movement helps to extract parts from narrow passages (first phase) and
the RRT expansion helps to escape from more complex assemblies, where movements along
the disassembly direction do not ensure successful extraction. The disassembly direction can
be either straight-line movement or a specific angle rotation. The example of RRT expansion
for a yellow part is in Fig. 3.10. It shows the whole process of RRT planning. The tree avoids
configurations where the yellow part collides with blocked parts and finished parts (brown
and salmon).

24

...3.3. DRRRT planner

Algorithm 7: ComputeDisassemblySequence
Input: Assembly Interference Matrix AIM , Parts P

1 DAIM ← CreateDAIM(AIM);
2 n← number of parts;
3 d1 ← RandomDirection();
4 π1 ← Min(DAIM, d1);
5 DS ← {(d1, π1)};
6 F ← {π1};
7 for i = 2, . . . , n do
8 DBP ← DisassembledBlockingParts(AIM , P , F);
9 NBP ← NotDisassembledBlockingParts(AIM , P , F);

10 (di, πi) = Min(DBP +NPB);
11 DS ∪ (di, πi);
12 F ∪ πi;
13 return DS;

Algorithm 8: Matrix-based heuristic algorithm
Input: Parts P , Directions D, Parts final positions F

1 n← number of parts;
2 m← number of directions;
3 Disassembled = false;
4 for i = 1, . . . , Imax do
5 AIM ← CreateAIM(P);
6 DS ← ComputeDisassemblySequence(AIM,P);
7 d← size of DS;
8 for i = 1, . . . , d do
9 Away ← false;

10 Away ← MoveAlongDisassemblyDirection(DS[i]);
11 if Away then
12 RRTExpandToFinalPositions(DS[i], F); // using RRT algorithm from

section 2.4.3
13 n = n− 1;

14 if n = 0 then
15 Disassembled = true;
16 break;

17 return Disassembled;

3.3 DRRRT planner

The third algorithm is based on the DRRRT algorithm (section 2.4.4) combined with the
matrix heuristic algorithm described in section 3.2. The overall principle is to generate
a disassembly sequence using the matrix heuristic. After, an attempt to disassemble the
proposed parts one by one by constructing a free space skeleton and navigating the part along
the skeleton towards the goal configuration is made. Until all parts are disassembled, or Imax
iterations are executed, this whole process is iterated.

3.3.1 DRRRT planner overview

The main loop is depicted in Alg. 9. The main loop is iterated until Imax iterations are executed,
or all parts are disassembled. The first part is the disassembly sequence computing using Alg. 7.
Note that because of further use of a sampling-based algorithm, the disassembly directions are
not further used. However, the more directions will be included in the disassembly sequence

25

3. Disassembly methods ...
Algorithm 9: DRRRT planner with matrix-based heuristic

Input: Environment e, Parts P , Directions D, Parts final positions F
1 n← number of parts;
2 m← number of directions;
3 for i = 1, . . . , Imax do
4 AIM ← CreateAIM(P);
5 DS ← ComputeDisassemblySequence(AIM,P); // method from Alg. 7
6 d← size of DS;
7 for j = 1, . . . , d do
8 Sfree ←−ComputeFreeSpaceSkeleton(e, qstart, qgoal); // method from Alg. 2
9 R← InitialRegion(P, qstart); // first region for biased growing

10 T ← InitializeRRTTree(T, qstart);
11 for k = 1, . . . , Imax do
12 Region-biasedRRTGrowth(T , R, Sfree); // method from Alg. 3
13 if near qgoal then
14 MovePartToGoalPosition(P [j]);
15 break;

16 if all disassembled then
17 break;

estimation, the more accurate movability of each part will be estimated. It means that if too
few disassembly directions are considered, the matrix heuristic can determine the wrong part
to be disassembled.

After computing the disassembly sequence, each part is attempted to disassemble. For each
part, a free space containing holes symbolizing the remaining parts is formed and using the
method ComputeFreeSpaceSkeleton in Alg. 2 the free space skeleton is computed. The part
is advanced along the skeleton in the method Region-biasedRRTGrowth from Alg. 3 until
reaching a goal or Imax iterations are executed.

3.4 Conclusion

In this chapter, three algorithms were introduced. The first, ML-RRT, borrowed from [9] is
used as a comparison to the other algorithms. The first designed algorithm is the Matrix-
based algorithm. It uses a matrix heuristic to compute the disassembly sequence of parts and
corresponding disassembly directions. After that, a unique two-phase movement to extract
the proposed parts in diassembly sequence is performed.

The second designed algorithm is the DRRRT planning algorithm. It uses the same heuristic
as the Matrix-based algorithm, but only for specifying part to be disassembled. After this
selection, a free space skeleton of the assembly called the Reeb graph is computed. Then it is
used for a guided search of the RRT algorithm.

26

... 3.4. Conclusion

p1 p2

p3 p4

+x

+y

(a) : Created AIM and DAIM for given puzzle

p1 p2

p3 p4

+x

+y

(b) : First part disassembling

p1

p3 p4

+x

+y

(c) : Second part disassembling

Figure 3.8: An example run of Matrix heuristic algorithm.

27

3. Disassembly methods ...

p3

p4

+x

+y

(a) : Third part disassembling

p4

+x

+y

(b) : Last part disassembling

Figure 3.9: An example run of Matrix heuristic algorithm.

(a) : Initial position of yellow
part

(b) : RRT Tree for yellow part (c) : Path to the final posi-
tion (red path)

(d) : Pruned path to final
position (red path)

(e) : Record of all configura-
tions of yellow part along the
path to final position

(f) : Final position of yellow
part

Figure 3.10: An example run of the RRT algorithm for the yellow part.

28

Chapter 4
Experiments and testing

This chapter covers details about the testing scenarios, used libraries and software for algorithm
implementation and performed experiments with the proposed disassembly algorithms.

4.1 Used libraries

The proposed algorithms rely on several libraries and software packages:..1. MPNN: Nearest-neighbor Library for Motion Planning [32] — used in all sampling-based
parts of the algorithms for the nearest-neighbour search..2. RAPID: Robust and Accurate Polygon Interference Detection [25] — used for fast collision
detection between triangulated objects..3. VTK: Visualization Toolkit [29] — contains libraries for creating the Reeb graph from a
polygonal mesh..4. Triangle: A Two-Dimensional Quality Mesh Generator and Delaunay Triangulator [33] —
used for triangulating 2D objects

4.2 Implementation details

All algorithms were implemented in C++. The methods for processing files and other file
transfers were implemented in Python. The program was executed on Linux Mint on processor
Intel® Core™ i7 1.8 GHz, and GNU gcc compiler 5.4.0.

All three algorithms were tested on several proposed problems and with different setting
parameters. Each algorithm was executed 100 times on each scenario. The runtime of each
test is measured, and the whole experiment is evaluated as a distribution function. The
distribution function of a number of iterations x is a function f , where f(x) is a value
determining the probability that the algorithm will find a solution in less or equal than x
iterations. Each trial is run until success or until maximal number of iterations are executed.
The maximal number of iterations is considered differently for each algorithm.

For the ML-RRT algorithm, each part has up to 106 attempts to sample the active
configuration space (the sampling in the passive sub-manifold does not count to the iterations).
For the DRRRT algorithm, the strategy is to attempt to dismantle the assembly repeatedly.
Therefore, when the heuristic algorithm proposes the component, the RRT phase has up
to 5 · 104 iterations to build a tree towards the goal. The disassembly cycle (all parts were
attempted to disassemble) is repeated up to 103 times. For the Matrix-based algorithm, the
strategy is similar to DRRRT with a modification that after selecting a part by the heuristic

29

4. Experiments and testing ..
and the locomotion along the disassembly direction, maximally 106 iterations are executed to
find path to goal. The reason is that the Matrix-based algorithm requires relatively more
iterations when exploring the configuration space compared to DRRRT, due to narrow passage
problem. The DRRRT requires fewer iterations because of sampling along the Reeb graph.

The implemented algorithm performance depends on the parameters other than the number
of iterations and the preferred direction in the Matrix-based algorithm. These parameters are:..1. Number of points per arc of the final Reeb Graph highly affects the speed of computing

the Reeb graph but does not affect the path planning performance. The higher the
number is, the more precise the Reeb graph is, but the computational time increases.
The experiments showed that the ideal number of points is from 5 to 50, but 5 points
are used for evaluation...2. Radius of a region in DRRRT affects the number of iterations needed to find the goal
successfully. The experiments showed that it is better to choose a greater radius to
achieve the solution faster...3. Density of points in DRRRT region also affects the number of iterations. The density
with the highest performance was experimentally determined with at least 20 points per
region...4. Maximal surface of the triangle during triangulation influences the runtime of the
triangulation and does not affect the performance of the planning algorithm. It affects
the Reeb graph’s computational speed, so the parameter is let as default and not used in
the evaluation.

4.3 Proposed assembly problems

The experiments were performed on several scenarios that were prepared by hand for this
thesis. Despite many existing publications related to the assembly and disassembly task,
there is no publicly available library of benchmarks for 2D problems. It was supposed to
create a wide diversity of benchmarks to determine the efficiency of each algorithm depending
on a specific task. Each assembly is different in the number of parts, possible disassembly
sequences, the number of obstacles (stable parts which cannot be moved), and other features
described in section 2.3. Some of the assemblies were already shown in the thesis for explaining
the algorithm functionality.

Each of the following benchmarks has been automatically generated using software to
generate random hexagonal or square grid assemblies or designed in XFig software [34]. Some
of them were inspired by a benchmark in an existing publication, referenced in the caption in
Fig. 2.13.

4.4 Disassembly experiments evaluation

In this section the individual experiments are described in detail, each with a distribution
function. Each experiment parameter, such as runtime and success rate are in Tab. 4.1 and
Tab. 4.2. The runtime in seconds is determined by the average time and standard deviation
separated by a vertical bar.

30

.................................. 4.4. Disassembly experiments evaluation

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

c
u

m
u

la
ti
v
e

 p
ro

b
a

b
ili

ty

Runtime [s]

DRRRT
Matrix

ML-RRT

(a) : Evaluation of the Easy assembly for all three
algorithms

 0

 20

 40

 60

 80

 100

 0.1 0.2 0.3 0.4 0.5 0.6

c
u

m
u

la
ti
v
e

 p
ro

b
a

b
ili

ty

Runtime [s]

DRRRT
Matrix

ML-RRT

(b) : Detail on the ML-RRT and the Matrix-based
algorithm

Figure 4.1: Evaluation of the Easy assembly

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5

c
u

m
u

la
ti
v
e

 p
ro

b
a

b
ili

ty

Runtime [s]

DRRRT
ML-RRT

Matrix

(a) : Rectangular assembly for all three algorithms

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2

c
u

m
u

la
ti
v
e

 p
ro

b
a

b
ili

ty

Runtime [s]

DRRRT
ML-RRT

Matrix

(b) : Rectangular assembly zoomed on first 2
seconds

Figure 4.2: Evaluation of the Rectangular assembly

4.4.1 Easy assembly

The first problem is the easy four-part assembly shown in Fig. 2.13a. The evaluation depicted
as a distribution function is shown in Fig. 4.1. The graph shows that all algorithms solved
the problem comparably fast with a slightly better performance of ML-RRT. The DRRRT
needed at least 0.5 seconds to solve the puzzle. All three algorithms succeeded the scenario in
all tests.

4.4.2 Rectangular assembly

A similar problem to the previous one is the Rectangular assembly (Fig. 2.13b). The
distribution shown in Fig. 4.2 is also similar to the one for the Easy assembly. Note that the
time needed for disassembling has significantly increased, even though only two parts were
added. For the ML-RRT, the average time (shown in table Tab. 4.1) has increased about
six times in comparison with the Easy assembly. The DRRRT has similar performance to
Matrix-based algorithm. The DRRRT has an average time only two times greater compared
to the Easy assembly.

31

4. Experiments and testing ..

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14

c
u

m
u

la
ti
v
e

 p
ro

b
a

b
ili

ty

Runtime [s]

DRRRT
Matrix-double

ML-RRT
Matrix

(a) : Tight assembly for all algorithms

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2 2.5 3 3.5 4

c
u

m
u

la
ti
v
e

 p
ro

b
a

b
ili

ty

Runtime [s]

DRRRT
Matrix-double

ML-RRT
Matrix

(b) : Tight assembly detail on first 4 seconds

Figure 4.3: Evaluation of the Tight assembly

4.4.3 Tight assembly

The third assembly to evaluate is the Tight assembly (Fig. 2.13c). The first graph in Fig. 4.3
shows all three main algorithms. There is also a modification of the Matrix-based algorithm,
where extraction of two parts simultaneously in the same direction is possible (Matrix-double).
The algorithm modification computes the possible disassembly directions for each pair of
parts. The number of parts + pairs of parts is then

Nall =
(
n

2

)
+ n. (4.1)

For the Tight assembly, Nall = 10. That is the reason why this modification is slower than
the single part version. More parts signify more exploring during AIM matrix creation.

In the Tight assembly scenario, the Matrix-based algorithm is in the lead. The reason
is that ML-RRT has problems with narrow passages (and high-dimensional space, which is
the issue shown in follow-up experiments). The probability of sampling a point directly in a
disassembly direction is low, so more iterations (and resulting greater time complexity) are
needed to disassemble the puzzle successfully. Unlike the Matrix-based, which firstly moves
the part along the disassembly direction and then the sampling-based part quickly finishes the
disassembly process. The DRRRT algorithm has a similar behaviour as in the Easy assembly,
although about 10% of tests lasted more than 2 s. The DRRRT is slower because the Tight
assembly was tested on a smaller workspace than the Easy assembly. Moreover, the obstacles
are closer to each other, and it complicates sampling-based planning.

4.4.4 Triangle assembly

The following experiment is done for evaluating the Triangle assembly in Fig. 2.13d. The
graphs in Fig. 4.4 show a more noticeable lead of ML-RRT algorithm compared to the Easy
assembly (Fig. 4.1). Unlike the Tight assembly, the Triangle assembly does not have an overly
fine geometry (parts are not wedged as much), and because of that, the parts have more
space to move. Sampling-based algorithms require fewer iterations to complete the task. The
Matrix-double algorithm confirmed its slower solving due to the higher number of considered
parts (parts and their pairs). The average times (from Tab. 4.1) are comparably similar to
the Easy assembly and, in the case of Matrix-based algorithm, also to Tight assembly (all
three consist of four mobile parts).

32

.................................. 4.4. Disassembly experiments evaluation

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6

c
u

m
u

la
ti
v
e

 p
ro

b
a

b
ili

ty

Runtime [s]

DRRRT
Matrix

Matrix-double
ML-RRT

(a) : Triangle assembly for all algorithms

 0

 20

 40

 60

 80

 100

 0 0.2 0.4 0.6 0.8 1

c
u

m
u

la
ti
v
e

 p
ro

b
a

b
ili

ty

Runtime [s]

DRRRT
Matrix

ML-RRT

(b) : Triangle assembly zoomed on first 1 second

Figure 4.4: Evaluation of the Triangle assembly

4.4.5 Hexa 7 assembly

The next experiment was done for the hexagonal seven-part puzzle shown in Fig. 2.13e. The
optimal disassembly sequence is salmon, brown, yellow, green, grey, blue, and red. Firstly,
the algorithms were executed for assembly with less space for manipulating the parts (black
rectangle in Fig. 4.6). Considering less space was the reason why they were not able to
disassemble the puzzle in most cases. After extending the workspace, the algorithms were
tested again.

The distributions are shown in Fig. 4.5. The Matrix-based algorithm (single) is considerably
faster than the Matrix-double modification depicted in Fig. 4.5b. The ML-RRT algorithm is
tested thoroughly. The version ML-RRT-1M means that up to 106 attempts to sample the
active sub-manifold for each part were made when considering randomly chosen sequence
(specifically salmon, blue, green, yellow, red, brown and grey). This modification was successful
in all tests. The modification ML-RRT-300k, which used only up to 300 ·103 iterations did not
manage to disassemble 10% of tests, which is depicted in Fig. 4.5a at the end of ML-RRT-300k
distribution function as the straight grey line. The reason is that after the first part (salmon),
which was easily extracted, the second part (blue) had to be removed together with other
(passive) parts. The limited mobility of the part led to a higher number of required iterations.
Comparison can be given to the course of a version of ML-RRT called ML-RRT-optimal,
which gets as input the optimal disassembly sequence of parts. The difference between these
two courses is approximately 50 s. The last algorithm tested is the DRRRT algorithm, which
has a better course than the Matrix-based algorithm in half of the cases and four times lower
standard deviation (shown in Tab. 4.1).

4.4.6 Well assembly

Another experiment created for testing is the Well assembly shown in Fig. 2.13f. The ML-RRT
algorithm was tested for several disassembly sequences of parts. The parts are numbered
salmon — 1, blue — 2, green — 3 and yellow — 4. In the evaluation in Fig. 4.7 the first graph
shows a comparison of all algorithms, the second shows a zoomed scope of the first 20 s and the
third one the time range of the first 5 s. The fourth graph compares ML-RRT algorithm for
various disassembly sequences. There is a significant difference in the performance of individual
ML-RRT tests. The fastest appeared to be ML-RRT-4321, with the worst disassembly time
of less than one second. Both ML-RRT-3421 and ML-RRT-3124 are the only other sequences

33

4. Experiments and testing ..

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

c
u

m
u

la
ti
v
e

 p
ro

b
a

b
ili

ty

Runtime [s]

DRRRT
Matrix-double

ML-RRT-1M
Matrix

ML-RRT-300k
ML-RRT-optimal

(a) : Hexa 7 assembly for all algorithms

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40 45

c
u

m
u

la
ti
v
e

 p
ro

b
a

b
ili

ty

Runtime [s]

DRRRT
Matrix

Matrix-double

(b) : Detail on Hexa 7 assembly

Figure 4.5: Evaluation of the Hexa 7 assembly

Figure 4.6: Unsuccessful disassembly of hexagonal assembly, green part is blocked

with a 100% success rate. The ML-RRT-4312 had one unsuccessful case, the ML-RRT-2413
had 75% success rate and the ML-RRT-1234 had just 45% success rate.

This outcome showed the importance of disassembly sequence planning and its impact
on the probability of finding the solution, the iteration complexity of the problem, and the
resulting time complexity. Note that the algorithms were stopped because the maximal
number of iterations was reached (106), not because of the time complexity.

In the evaluation of the DRRRT algorithm, one test was not successful, and the overall
performance was better than the Matrix-based algorithm and ML-RRT-3124. The Matrix-
based algorithm appeared to be relatively fast compared to the ML-RRT-3124. The Well
assembly is a non-monotone assembly because the yellow part has to be partly relocated to
release the green part. It is also a 2-disassembly, especially for the Matrix-based algorithm. If
supposing the disassembly sequence 3421 (heuristically computed by Matrix-based algorithm
and supposing the yellow part is already relocated to the left), each part (excluding the last one)
needs two movements for successful extraction. For example, the green part needs to be moved
right and then upwards. Unfortunately, it is not possible to make two motions of the same part
subsequently. The following motion can be suggested in the next iteration of the algorithm in
another proposed disassembly sequence. The 95% success rate is acceptable, considering that
Matrix-based algorithm was not designed for non-monotone and m-disassembly problems.

34

.................................. 4.4. Disassembly experiments evaluation

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70

c
u

m
u

la
ti
v
e

 p
ro

b
a

b
ili

ty

Runtime [s]

DRRRT
Matrix

ML-RRT-2413
ML-RRT-3124
ML-RRT-3421
ML-RRT-1234
ML-RRT-4312

ML-RRT-optimal-4321

(a) : Well assembly for all algorithms

 0

 20

 40

 60

 80

 100

 0 5 10 15 20

c
u

m
u

la
ti
v
e

 p
ro

b
a

b
ili

ty

Runtime [s]

DRRRT
Matrix

ML-RRT-2413
ML-RRT-3124
ML-RRT-3421
ML-RRT-1234
ML-RRT-4312

ML-RRT-optimal-4321

(b) : Detail of all algorithms on first 20 seconds

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5

c
u

m
u

la
ti
v
e

 p
ro

b
a

b
ili

ty

Runtime [s]

(c) : Detail of all algorithms on first 5 seconds

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14

c
u

m
u

la
ti
v
e

 p
ro

b
a

b
ili

ty

Runtime [s]

ML-RRT-2413
ML-RRT-3124
ML-RRT-3421
ML-RRT-1234
ML-RRT-4312

ML-RRT-optimal-4321

(d) : Only ML-RRT algorithm evaluation

Figure 4.7: Evaluation of the Well assembly

4.4.7 Screw assembly

The Screw assembly, depicted in Fig. 2.13g is a puzzle, where each part except two static parts
(blue and green) has to be extracted using at least two straight-line moves (2-disassembly).
The parts are numbered as 1 — blue, 2 — salmon, 3 — green, 4 — yellow, 5 — red. The
evaluation is shown in Fig. 4.8. The algorithms were tested similarly to the Well assembly,
where various sequences of parts for ML-RRT were tested separately. The results of the
distribution function and in Tab. 4.2 show that the difference between ML-RRT performance
depending on the disassembly sequence, is enormous. The DRRRT and the Matrix-based
algorithm have a 100% success rate, but DRRRT with a four-time better average time. The
Matrix-based algorithm had a better performance than ML-RRT-425 and ML-RRT-452 and
also in 50% of the tests better than ML-RRT-245 and ML-RRT-254. The DRRRT is the
second best algorithm with similar performance to ML-RRT-524. It is possible that the
heuristic, which selects parts for the DRRRT, chose a similar disassembly sequence to 524.

4.4.8 Bolt assembly

The Bolt assembly is classified as a non-monotone puzzle because the green part in Fig. 2.13h
must be partially moved to extract the salmon part and then entirely removed. There are two
possibilities to evaluate the puzzle. The first is that all parts can move, and the second is that
the salmon part is considered a static obstacle (can not be relocated). In the second case, the
assembly is non-linear because blue and red parts have to be extracted simultaneously. Note

35

4. Experiments and testing ..

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12

c
u

m
u

la
ti
v
e

 p
ro

b
a

b
ili

ty

Runtime [s]

DRRRT
Matrix

ML-RRT-245
ML-RRT-254
ML-RRT-425
ML-RRT-452
ML-RRT-524

ML-RRT-optimal-542

(a) : Screw assembly for all algorithms

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2

c
u

m
u

la
ti
v
e

 p
ro

b
a

b
ili

ty

Runtime [s]

DRRRT
Matrix

ML-RRT-245
ML-RRT-254
ML-RRT-524

ML-RRT-optimal-542

(b) : Detail of all algorithms on first 2 seconds

Figure 4.8: Evaluation of the Screw assembly

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25

c
u

m
u

la
ti
v
e

 p
ro

b
a

b
ili

ty

Runtime [s]

DRRRT
Matrix

Matrix-double
Matrix-double-static

(a) : Comparison of all algorithms on Bolt as-
sembly also with and without the salmon part as
static

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10

c
u

m
u

la
ti
v
e

 p
ro

b
a

b
ili

ty

Runtime [s]

DRRRT
Matrix

Matrix-double
Matrix-double-static

(b) : Detail on all algorithms

Figure 4.9: Evaluation of the Bolt assembly

that the assembly is still sequential because the disassembly operations are still two-handed.
The evaluation of the first case was attempted for all proposed algorithms, as shown in Fig. 4.9,
but only DRRRT and Matrix-based algorithms were able to solve the puzzle. ML-RRT did
not manage to disassemble any sequence of parts. The Matrix-based had a 100% success rate,
and the DRRRT did not manage to finish 13% of tests as is visible in Tab. 4.2. The reason is
that the green part must be relocated very precisely to move the salmon part.

The second case (the salmon part is static) was possible to evaluate only for the Matrix-
double algorithm (shown in Fig. 4.9 as Matrix-double-static). Interestingly, the performance
is better than the scenario with all part mobile and considered doubles. The reason is that
in the first case, the number of parts is

(3
2
)

+ 3 = 6 and in the second case
(2

2
)

+ 2 = 3.
So the first case planning requires about two times more time to complete the task. From
the average times for Matrix-double-static and Matrix-double in Tab. 4.2, the previously
mentioned comparison corresponds to the measured results.

4.4.9 20 parts assembly

The 20 parts assembly in Fig. 2.13i was possible to evaluate only for Matrix-based algorithm
and the DRRRT. After 25 minutes of disassembling, the ML-RRT managed to extract only

36

.................................. 4.4. Disassembly experiments evaluation

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160

c
u

m
u

la
ti
v
e

 p
ro

b
a

b
ili

ty

Runtime [s]

DRRRT
Matrix

(a) : Comparison of Matrix-based and DRRRT
algorithm on 20 parts assembly

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

c
u

m
u

la
ti
v
e

 p
ro

b
a

b
ili

ty

Runtime [s]

DRRRT
Matrix

(b) : Detail on first minute for 20 parts assembly

Figure 4.10: Evaluation of the 20 parts assembly

Figure 4.11: Unfinished solving the 20 parts assembly by the ML-RRT algorithm

six parts, as shown in Fig. 4.11. The DRRRT was not as fast as the Matrix-based algorithm,
as shown in Fig. 4.10. Despite the reasonably fast runtime, the Matrix-based algorithm did
not manage to disassemble the puzzle in 4 cases. It is not a creditable result considering
that this type of assembly is considerably easier for straight-line parts extraction, not for
sampling-based planning in the configuration space. The reason might be that there was
not enough free space to put the disassembled parts or to manipulate the parts currently
disassembled.

4.4.10 Jingjang assembly

The Jingjang assembly is shown in Fig. 2.13j. This puzzle is non-linear because the pair of
black and white parts has to be removed together. The evaluation of the algorithm is depicted
in Fig. 4.12. This puzzle was evaluated for ML-RRT and Matrix-double algorithm. The
ML-RRT solved the puzzle by tiny repeating movements of each active part and relocating
the blocking parts until the active part was finally released. ML-RRT is not a fast method
to solve the puzzle, which is evident from the extreme time complexity compared to the
Matrix-double.

37

4. Experiments and testing ..

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

c
u

m
u

la
ti
v
e

 p
ro

b
a

b
ili

ty

Runtime [s]

Matrix-double
ML-RRT

(a) : Comparison of Matrix-double to ML-RRT
algorithms on Jingjang assembly

 0

 20

 40

 60

 80

 100

 10 12 14 16 18 20 22 24

c
u

m
u

la
ti
v
e

 p
ro

b
a

b
ili

ty

Runtime [s]

Matrix-double
ML-RRT

(b) : Detail on Jingjang evaluation

Figure 4.12: Evaluation of the Jingjang assembly

There is an interesting situation visible in Fig. 4.12b between 13 and 14 second. The
Matrix-double has a strange plateau in the distribution function. At this time, minimum of
tests have ended. The reason is that the faster tests were solved with the first disassembly
sequence in less than 12 seconds. The plateau is at the time where a new disassembly sequence
is computed, and the next part of the curve are the tests solved by the algorithm in the
second disassembly sequence.

4.4.11 Elevator assembly

This puzzle (Fig. 2.13k) was only supposed to prove that the Matrix-based algorithm does
not work well for m-disassembly and non-monotone puzzles because the disassembly plan
of the Elevator assembly requires many partial relocations of parts. Note that the salmon
part is static. The test evaluation is made in Fig. 4.13. The test showed a 96% success rate
and an average disassembly time is 58 seconds, which is a great performance in comparison
to other difficult assemblies, such as the 20 parts assembly. The Matrix-double algorithm
performed better in almost 70% of tests, but the remaining 30% were by contrast much worse
than the single part variant. The optimal disassembly plan of the assembly to comprehend
the complexity of the puzzle is depicted in Fig. A.1.

4.4.12 Parallel assembly

The Parallel assembly depicted in Fig. 2.13l was disassembled only by the ML-RRT algorithm
because all others were not able to find a solution. In the Parallel assembly, three parts
(salmon, green and blue) have to be moved simultaneously, each part in a different direction.
That means that it is a non-sequential puzzle (actually four-handed). The DRRRT and the
Matrix-based algorithm are not designed for such type of scenarios. The evaluation is depicted
in Fig. 4.14a and statistical evaluation in Tab. 4.2. Similarly, as the Jingjang assembly, the
Parallel assembly is solved by ML-RRT by tiny relocations of parts leading to extraction of
the active part.

4.4.13 Lock assembly

This assembly, shown in Fig. 2.13m, has a static blue part and two pairs of parts (salmon —
yellow and green — red). The parts from the pair have to be disassembled simultaneously for

38

.................................. 4.4. Disassembly experiments evaluation

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300 350

c
u

m
u

la
ti
v
e

 p
ro

b
a

b
ili

ty

Runtime [s]

Matrix-double
Matrix

(a) : Elevator assembly for the Matrix-based al-
gorithm

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

c
u

m
u

la
ti
v
e

 p
ro

b
a

b
ili

ty

Runtime [s]

Matrix-double
Matrix

(b) : Detail of Elevator assembly for the Matrix-
based algorithm

Figure 4.13: Evaluation of the Elevator assembly

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

c
u

m
u

la
ti
v
e

 p
ro

b
a

b
ili

ty

Runtime [s]

ML-RRT

(a) : Parallel assembly for the ML-RRT algorithm

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16 18

c
u

m
u

la
ti
v
e

 p
ro

b
a

b
ili

ty

Runtime [s]

Matrix-double

(b) : Lock assembly evaluation

Figure 4.14: Evaluation of the Parallel and the Lock assembly

successful disassembling (it is a non-linear puzzle). The only algorithm able to disassemble
the Lock assembly is Matrix-double algorithm. The ML-RRT was also attempted but was not
successful even after extending the maximal number of iterations to 5 · 106. The evaluation is
in Fig. 4.14b and in Tab. 4.2.

4.4.14 Bugtrap assembly

In the next experiment, the Bugtrap assembly in Fig. 2.13n was evaluated for the DRRRT,
the ML-RRT and the Matrix-based algorithm. The Matrix-based algorithm can solve the
puzzle not by the first phase of the movement (straight line locomotion along the disassembly
direction) but by the second phase (the RRT-planning). The part to be removed is still moved
along the disassembly direction, but this movement is stopped after a shorter distance dmax
than during the evaluation of other algorithms. The distance dmax is critical to adjust. It can
be seen from the evaluation in Fig. 4.15, where there is a course for dmax and shorter dmax
(Matrix-shorter), that considering shorter dmax makes the first phase faster and the second
phase may begin sooner. Also without shortening, the solution is not guaranteed (the 79%
success rate of the Matrix-based algorithm).

The Bugtrap assembly was considered with and without the static blue part. In the

39

4. Experiments and testing ..

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40

c
u

m
u

la
ti
v
e

 p
ro

b
a

b
ili

ty

Runtime [s]

DRRRT
Matrix

ML-RRT-static
Matrix-shorter

ML-RRT

(a) : Bugtrap assembly for all algorithms

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5

c
u

m
u

la
ti
v
e

 p
ro

b
a

b
ili

ty

Runtime [s]

DRRRT
Matrix

ML-RRT-static
Matrix-shorter

ML-RRT

(b) : Detail on the Bugtrap assembly evaluation

Figure 4.15: Evaluation of the Bugtrap assembly

Fig. 4.15, ML-RRT-static (blue static) achieved better performance than the DRRRT (also
blue part static). The ML-RRT for a mobile blue part has worse performance than with a
static blue part. The ML-RRT with static blue is better than other algorithms because when
the part collides with the static one, the static does not have to be (can not be) relocated, and
the planning of the active part can continue. When all parts are mobile, the blue part must be
relocated after each collision with the active part until collision is detected. These relocations
caused greater computational time demand. However, it did not change the success rate of
the scenario.

4.4.15 Rotation assembly

The Rotation assembly (Fig. 2.13o) was created to test rotations as the disassembly directions
in the Matrix-based algorithm. As is visible from Fig. 4.16, the Matrix-based algorithm with
considered rotations (Matrix-rot) is not as fast and not as successful as the Matrix-based
algorithm without considered rotations and shorter distance during the first phase of the
part movement (Matrix-no-rot-short). The DRRRT algorithm was first tested for the same
settings as other experiments (DRRRT). After adjusting the parameters (greater radius of
the DRRRT region and density of points in the DRRRT region), the performance improved
(DRRRT-params). ML-RRT showed similar performance to Matrix-no-rot in about 60% of
cases.

4.4.16 Hexa 10 assembly

This assembly (Fig. 2.13p) is an extension to the previously mentioned puzzle Hexa 7. It was
not evaluated for the ML-RRT because, in the evaluation of the Hexa 7 assembly (Fig. 4.5),
the performance was the worst even for the optimal disassembly sequence of parts. As well as
at the Hexa 7 assembly, the DRRRT performed better than the Matrix-based algorithm.

4.4.17 Chessboard assembly

This puzzle (Fig. 2.13q) was designed to test algorithms on an assembly with many parts
and test the sampling of the high-dimensional space for the ML-RRT. The DRRRT and
the Matrix-based algorithm had very similar performance, depicted in Fig. 4.18. ML-RRT
had significantly worse average time than both of the previously mentioned algorithms. The

40

.................................... 4.5. Comparison of the experiments

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

c
u

m
u

la
ti
v
e

 p
ro

b
a

b
ili

ty

Runtime [s]

DRRRT
DRRRT-params

Matrix-rot
Matrix-no-rot

Matrix-no-rot-short
ML-RRT

(a) : Rotation assembly for all algorithms

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10

c
u

m
u

la
ti
v
e

 p
ro

b
a

b
ili

ty

Runtime [s]

DRRRT
DRRRT-params

Matrix-rot
Matrix-no-rot

Matrix-no-rot-short
ML-RRT

(b) : Detail on the Rotation assembly evaluation

Figure 4.16: Evaluation of the Rotation assembly

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

c
u

m
u

la
ti
v
e

 p
ro

b
a

b
ili

ty

Runtime [s]

DRRRT
Matrix

(a) : Hexa 10 assembly for all algorithms

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25

c
u

m
u

la
ti
v
e

 p
ro

b
a

b
ili

ty

Runtime [s]

DRRRT
Matrix

(b) : Detail on Hexa 10 evaluation

Figure 4.17: Evaluation of the Hexa 10 assembly

reason can be the non-optimality of the disassembly sequence or large configuration space (64
parts × 3 DOFs = 192 dimensions).

4.5 Comparison of the experiments

This section gives the overall results of all experiments and concludes the algorithm evaluation.
It also compares the performance features of the ML-RRT algorithm in [9] and the evaluated
results in this thesis.

For small (few parts) and coherent (parts far from each other) assemblies, the ML-RRT
algorithm was the fastest. When the number of parts increased, the DRRRT began to be
the best choice. Moreover, when the parts were more close together, the DRRRT or the
Matrix-based algorithm had similar performance.

The ML-RRT algorithm does not have a tool to compute disassembly sequences. If the
optimal sequence is selected, the ML-RRT is faster than other proposed algorithms (supposing
the non-coherent puzzles). In comparison to the publication [9], where the ML-RRT is from,
better results were achieved for the Well assembly (in the article called 2D Narrow puzzle),
even when the salmon part is not considered as static (the 2D Narrow has three mobile and
one static part). For the other tested puzzles, the authors confess that ML-RRT is not suitable

41

4. Experiments and testing ..

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250

c
u

m
u

la
ti
v
e

 p
ro

b
a

b
ili

ty

Runtime [s]

DRRRT
ML-RRT

Matrix

(a) : Chessboard assembly for all algorithms

 0

 20

 40

 60

 80

 100

 80 100 120 140 160 180 200 220 240

c
u

m
u

la
ti
v
e

 p
ro

b
a

b
ili

ty

Runtime [s]

DRRRT
ML-RRT

Matrix

(b) : Detail on the Chessboard assembly evaluation

Figure 4.18: Evaluation of the Chessboard assembly

for coherent puzzles. They used the scaling factor for the parts as a trick to simplify the
scenarios by increasing the space among the parts (in their case, the Diagonal Star Puzzle).

The algorithms DRRRT and Matrix-based can solve coherent (fine) puzzles, such as 20
parts assembly or hexagonal assemblies. Note that these assemblies are as fine as possible
(they were designed to be tight and coherent). Only when they were created, the parts had
to be scaled not to touch each other (collision detection detects touching parts as colliding).
However, a significantly lower scaling factor was used. The authors used 0.98, 0.95 and 0.9,
but in this thesis, 0.998 was used. This clearly explains the slow performance of the ML-RRT
because disassembly planning for coherent assembly is more computationally demanding than
for non-coherent assemblies.

The Matrix-based algorithm showed that it can solve non-monotone assemblies, such as
the Bolt assembly or the challenging Elevator assembly. The Matrix-double modification
was not as useful as supposed. Due to a higher number of parts (in the case of assemblies,
such as 20 parts assembly and Chessboard assembly, the doubles were not even tested), the
computational time for disassembly planning highly increases. When considering rotations as
disassembly directions, the performance was significantly longer in comparison to Matrix-based
algorithm without rotations and shortened first phase straight-line movement.

The DRRRT algorithm did well on all proposed assemblies (except non-monotone and
non-linear), mainly coherent puzzles, such as hexagonal assemblies. The Reeb graph skeleton
helped navigating the almost touching parts to their final positions. The worst performance
was for the Rotation assembly, where the parameters of the DRRRT had to be changed
to improve the performance. The performance was the worst, because the parts had to be
specifically rotated to fit in the small hole in the surrounding box. There were not enough
points generated nearby this narrow passage to successfully extract the part.

42

.................................... 4.5. Comparison of the experiments

Puzzle Method Runtime [s] Success rate [%]

Easy
DRRRT 0.68 | 0.1 100.0
Matrix 0.61 | 0.21 100.0
ML-RRT 0.3 | 0.09 100.0

Rectangle
DRRRT 1.61 | 0.21 100.0
Matrix 1.5 | 0.25 100.0
ML-RRT 2.0 | 0.69 100.0

Tight

DRRRT 1.13 | 0.14 100.0
Matrix 0.67 | 0.19 100.0
Matrix-double 2.91 | 1.47 100.0
ML-RRT 0.85 | 0.14 100.0

Triangle

DRRRT 0.67 | 0.06 100.0
Matrix 0.82 | 0.32 100.0
Matrix-double 2.7 | 0.52 100.0
ML-RRT 0.2 | 0.05 100.0

Hexa 7

DRRRT 7.27 | 1.64 100.0
Matrix 8.78 | 5.98 100.0
Matrix-doubles 30.56 | 2.48 100.0
ML-RRT-1M 178.56 | 41.27 100.0
ML-RRT-300k 163.57 | 26.11 88.0
ML-RRT-optimal 96.48 | 35.59 100.0

Well

DRRRT 3.52 | 2.12 99.0
Matrix 7.38 | 7.39 95.0
ML-RRT-1234 15.25 | 6.08 45.0
ML-RRT-2413 29.5 | 14.82 75.0
ML-RRT-3124 5.13 | 3.27 100.0
ML-RRT-3421 2.15 | 0.65 100.0
ML-RRT-4312 1.13 | 1.09 99.0
ML-RRT-4321 0.4 | 0.14 100.0

Table 4.1: Statistical evaluation of benchmarks. Runtime is shown in format avg | std. dev made
out of 100 trials.

43

4. Experiments and testing ..

Puzzle Method Runtime [s] Success rate [%]

Screw

DRRRT 0.6 | 0.12 100.0
Matrix 2.47 | 1.68 100.0
ML-RRT-245 1.94 | 0.68 100.0
ML-RRT-254 1.99 | 0.62 100.0
ML-RRT-425 4.32 | 1.83 100.0
ML-RRT-452 4.31 | 1.89 100.0
ML-RRT-524 0.7 | 0.13 100.0
ML-RRT-542 0.28 | 0.1 100.0

Bolt

DRRRT 3.96 | 3.25 100.0
Matrix 2.46 | 1.4 100.0
Matrix-double 8.17 | 3.86 100.0
Matrix-double-stat 4.48 | 3.69 100.0

20 parts DRRRT 44.55 | 17.25 100.0
Matrix 28.79 | 12.38 96.0

Jingjang ML-RRT 103.04 | 53.01 100.0
Matrix-double 12.41 | 1.6 100.0

Elevator Matrix 58.02 | 17.4 96.0
Matrix-double 64.81 | 54.82 97.0

Parallel ML-RRT 56.14 | 6.37 100.0
Lock Matrix-double 6.38 | 2.92 100.0

Hexa 10 DRRRT 16.18 | 3.15 100.0
Matrix 26.91 | 17.15 100.0

Bugtrap

DRRRT 1.78 | 0.87 100.0
Matrix 6.35 | 7.22 79.0
Matrix-shorter-dist 0.94 | 0.15 100.0
ML-RRT 5.19 | 2.23 100.0
ML-RRT-static 0.72 | 0.28 100.0

Rotation

DRRRT 41.64 | 22.71 100.0
DRRRT-params 15.95 | 9.29 100.0
Matrix-rot 28.41 | 14.56 98.0
Matrix-no-rot 6.48 | 10.06 95.0
Matrix-no-rot-short 1.27 | 1.01 100.0
ML-RRT 1.81 | 0.69 100.0

Chessboard
DRRRT 99.49 | 8.62 100.0
Matrix 106.6 | 15.73 100.0
ML-RRT 155.51 | 18.85 100.0

Table 4.2: Statistical evaluation of benchmarks. Runtime is shown in format avg | std. dev made
out of 100 trials.

44

Chapter 5
Conclusion

The main goal of this thesis was to investigate the problem of disassembly planning and disas-
sembly path planning, provide a thorough description of the problem nature and implement a
suitable path planners to complete the disassembly task. Two algorithms were designed and
implemented from scratch, and one (the ML-RRT algorithm) was adopted from [9] to be a
comparison to the designed ones.

The first proposed algorithm, the Matrix-based algorithm, uses a heuristic method, adopted
from [10], to compute the disassembly sequence of parts and disassembly directions (can
be translation or rotation) and after a unique two-phase movement moves the parts from
the disassembly sequence. The move consists of shifting along the disassembly direction
and sampling-based planning. The advantage is the fast escaping of parts from the narrow
passages and the ability to solve non-monotone and coherent assemblies. Apart from the
thesis assignment, the Matrix-based algorithm was extended to consider simultaneous two
part extraction (along the same disassembly direction, so the problem is non-linear) as the
Matrix-based double algorithm.

The second algorithm is based on a fast sampling-based planner called DRRRT [8]. This
algorithm heuristically computes disassembly sequence the same way as the Matrix-based
algorithm. Then a free space skeleton of a free assembly workspace called Reeb graph is built,
and guided search is used for creating the path for the selected part in the disassembly sequence.
This algorithm improves the performance of the Matrix-based algorithm for non-coherent
problems and surprisingly also for coherent problems, such as hexagonal assemblies.

The comparison of the algorithms with each other and also with the ML-RRT was executed
on a wide variety of assemblies, described in section 4.4 and 4.5. The assemblies were
partly adopted from available literature, but also many benchmarks were own designed. All
considered benchmarks are depicted in Fig. 2.13.

The ML-RRT was very slow for coherent assemblies, and sometimes it even was not able to
disassemble them. This algorithm does not have a disassembly sequence planner, such as the
matrix heuristic in the Matrix-based algorithm, so it failed when a non-optimal disassembly
sequence was considered. It also failed for non-monotone and non-linear problems, such as
Bolt assembly and Lock assembly. It struggled with the high-dimensional assemblies, such as
the Chessboard assembly, where it was significantly slower than the other designed algorithms.
However, for simpler assemblies, the ML-RRT was the fastest method. Moreover, it was the
only algorithm able to solve a non-sequential problem, the Parallel assembly.

The possibilities of further improvement of the proposed algorithms are to extend the
methods to disassemble 3D problems. Also, the extension for non-sequential and non-linear
assemblies for any number of simultaneously moving parts would be a goal the future research
may aim to. Next, a more advanced disassembly sequence planner to plan a move of sub-
assemblies and also put forward more direction possibilities, will be the further research.

45

46

Bibliography

[1] M. M. L. Chang, S. K. Ong, and A. Y. Nee, “Approaches and challenges in product
disassembly planning for sustainability,” Procedia CIRP, vol. 60, pp. 506–511, 2017.

[2] F. Tao, L. Bi, Y. Zuo, and A. Nee, “Partial/parallel disassembly sequence planning for
complex products,” Journal of Manufacturing Science and Engineering, vol. 140, no. 1,
2018.

[3] M. Santochi, G. Dini, and F. Failli, “Computer aided disassembly planning: state of the
art and perspectives,” CIRP Annals, vol. 51, no. 2, pp. 507–529, 2002.

[4] J. Cortés, L. Jaillet, and T. Siméon, “Molecular disassembly with RRT-like algorithms,” in
Proceedings 2007 IEEE International Conference on Robotics and Automation, pp. 3301–
3306, IEEE, 2007.

[5] J. Cortés, D. T. Le, R. Iehl, and T. Siméon, “Simulating ligand-induced conforma-
tional changes in proteins using a mechanical disassembly method,” Physical Chemistry
Chemical Physics, vol. 12, no. 29, pp. 8268–8276, 2010.

[6] L. Kavraki, J.-C. Latombe, and R. H. Wilson, “On the complexity of assembly partition-
ing,” Information Processing Letters, vol. 48, no. 5, pp. 229–235, 1993.

[7] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path planning,” 1998.

[8] J. Denny, R. Sandström, A. Bregger, and N. M. Amato, “Dynamic region-biased rapidly-
exploring random trees,” in Algorithmic Foundations of Robotics XII, pp. 640–655,
Springer, 2020.

[9] D. T. Le, J. Cortés, and T. Siméon, “A path planning approach to (dis)assembly sequenc-
ing,” in 2009 IEEE International Conference on Automation Science and Engineering,
pp. 286–291, IEEE, 2009.

[10] S. Ghandi and E. Masehian, “A breakout local search (BLS) method for solving the
assembly sequence planning problem,” Engineering Applications of Artificial Intelligence,
vol. 39, pp. 245–266, 2015.

[11] I. Aguinaga, D. Borro, and L. Matey, “Path-planning techniques for the simulation of
disassembly tasks,” Assembly Automation, 2007.

[12] S. Ghandi and E. Masehian, “Review and taxonomies of assembly and disassembly path
planning problems and approaches,” Computer-Aided Design, vol. 67, pp. 58–86, 2015.

47

[13] P. Jiménez, “Survey on assembly sequencing: a combinatorial and geometrical perspec-
tive,” Journal of Intelligent Manufacturing, vol. 24, no. 2, pp. 235–250, 2013.

[14] C. Becker and A. Scholl, “A survey on problems and methods in generalized assembly
line balancing,” European journal of operational research, vol. 168, no. 3, pp. 694–715,
2006.

[15] A. J. Lambert, “Disassembly sequencing: a survey,” International Journal of Production
Research, vol. 41, no. 16, pp. 3721–3759, 2003.

[16] J. Cortés, L. Jaillet, and T. Siméon, “Disassembly path planning for complex articulated
objects,” IEEE Transactions on Robotics, vol. 24, no. 2, pp. 475–481, 2008.

[17] H. Srinivasan, N. Shyamsundar, and R. Gadh, “A framework for virtual disassembly
analysis,” Journal of Intelligent Manufacturing, vol. 8, no. 4, pp. 277–295, 1997.

[18] R. H. Wilson, “On geometric assembly planning.,” tech. rep., STANFORD UNIV CA
DEPT OF COMPUTER SCIENCE, 1992.

[19] D. Coleman, “Lee’s O (n2 log n) visibility graph algorithm implementation and analysis,”
2012.

[20] M. Garber and M. C. Lin, “Constraint-based motion planning using voronoi diagrams,”
in Algorithmic Foundations of Robotics V, pp. 541–558, Springer, 2004.

[21] O. Takahashi and R. J. Schilling, “Motion planning in a plane using generalized voronoi
diagrams,” IEEE Transactions on robotics and automation, vol. 5, no. 2, pp. 143–150,
1989.

[22] V. Pascucci, G. Scorzelli, P.-T. Bremer, and A. Mascarenhas, “Robust on-line computation
of Reeb graphs: simplicity and speed,” in ACM SIGGRAPH 2007 papers, pp. 58–es,
ACM Trans. Graph, 2007.

[23] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Probabilistic roadmaps
for path planning in high-dimensional configuration spaces,” IEEE transactions on
Robotics and Automation, vol. 12, no. 4, pp. 566–580, 1996.

[24] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion planning,”
The international journal of robotics research, vol. 30, no. 7, pp. 846–894, 2011.

[25] S. Gottschalk, M. C. Lin, and D. Manocha, “RAPID: Robust and accurate polygon
interference detection,” 1997.

[26] S. Gottschalk, M. C. Lin, and D. Manocha, “OBBTree: A hierarchical structure for
rapid interference detection,” in Proceedings of the 23rd annual conference on Computer
graphics and interactive techniques, pp. 171–180, 1996.

[27] M. Kleinbort, K. Solovey, Z. Littlefield, K. E. Bekris, and D. Halperin, “Probabilistic
completeness of RRT for geometric and kinodynamic planning with forward propagation,”
IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. x–xvi, 2018.

[28] J. R. Shewchuk, “Triangle: Engineering a 2D quality mesh generator and delaunay
triangulator,” in Workshop on Applied Computational Geometry, pp. 203–222, Springer,
1996.

48

[29] W. J. Schroeder, L. S. Avila, and W. Hoffman, “Visualizing with VTK: a tutorial,” IEEE
Computer graphics and applications, vol. 20, no. 5, pp. 20–27, 2000.

[30] E. Masehian and S. Ghandi, “ASPPR: A new assembly sequence and path plan-
ner/replanner for monotone and nonmonotone assembly planning,” Computer-Aided
Design, p. 102828, 2020.

[31] R. H. Wilson and J.-C. Latombe, “Geometric reasoning about mechanical assembly,”
Artificial Intelligence, vol. 71, no. 2, pp. 371–396, 1994.

[32] A. Yershova and S. M. LaValle, “MPNN: Nearest neighbor library for motion planning,”
2006.

[33] J. R. Shewchuk, “Triangle a two-dimensional quality mesh generator and delaunay
triangulator.” http://www.cs.cmu.edu/~quake/triangle.html. Accessed: 2021-04-20.

[34] S. Sutanthavibul, B. V. Smith, and P. King, “FIG: Facility for interactive generation of
figures,” 1985.

49

http://www.cs.cmu.edu/~quake/triangle.html

50

Appendix A
Disassembly plan of the Elevator assembly

51

A. Disassembly plan of the Elevator assembly................................

Figure A.1: Disassembly plan of the Elevator assembly. Read from left to right.

52

	Introduction
	Goals of the thesis

	Related work for disassembly planning and disassembly path planning
	Disassembly planning
	Notation and used terms
	Disassembly Path Planning
	Methods for disassembly path planning

	Sampling-based path planning algorithms
	Collision detection
	The nearest-neighbour search
	Rapidly-exploring Random Tree algorithm
	Dynamic Region-biased Rapidly-exploring Random Tree algorithm

	Conclusion

	Disassembly methods
	ML-RRT algorithm
	C-space representation in ML-RRT algorithm
	ML-RRT algorithm overview
	Sub-manifold nearest-neighbour search

	Matrix-based algorithm
	Matrix heuristic
	Matrix-based algorithm overview

	DRRRT planner
	DRRRT planner overview

	Conclusion

	Experiments and testing
	Used libraries
	Implementation details
	Proposed assembly problems
	Disassembly experiments evaluation
	Easy assembly
	Rectangular assembly
	Tight assembly
	Triangle assembly
	Hexa 7 assembly
	Well assembly
	Screw assembly
	Bolt assembly
	20 parts assembly
	Jingjang assembly
	Elevator assembly
	Parallel assembly
	Lock assembly
	Bugtrap assembly
	Rotation assembly
	Hexa 10 assembly
	Chessboard assembly

	Comparison of the experiments

	Conclusion
	Bibliography
	Disassembly plan of the Elevator assembly

