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Abstrakt
Vzory chůze popisujı́ periodicky se opakujı́cı́ kráčivý pohyb vı́cenohého robotu určenı́m fáze
pohybu jednotlivých nohou. Aby mohl robot autonomně vykonávat úkoly ve špatně přı́stupném
měnı́cı́m se prostředı́, je nutné proces lokomoce automatizovat. Během lokomoce probı́há v
neurálnı́m systému mnoho komplexnı́ch procesů, jejichž některé principy jsou popsány dı́ky
probı́hajı́cı́mu výzkumu lokomoce vı́cenohých organismů. Některé z těchto principů, jako napřı́klad
Centrálnı́ Generátory Vzorů (CGV) a pravidla určujı́cı́ vzájemnou koordinaci nohou, jsou v této
práci využity. CGV je neurálnı́ oscilátor, který v živých organismech produkuje rytmus pro
lokomoci. Koordinačnı́ pravidla určujı́, jak jsou pohyby nohou mezi sebou v rámci fáze ko-
ordinovány. Řı́dı́cı́ systémy navržené pro řı́zenı́ lokomoce často vyžadujı́ proces manuálnı́ho
zadávánı́ velkého množstvı́ hyperparametrů určujı́cı́ch konkrétnı́ vzor chůze, což je proces, který
se tato práce snažı́ automatizovat. V této práci jsou představeny dvě metody, které se různým
způsobem vypořádávajı́ s neznámým vztahem mezi fázı́ CGV a pohybovými akcemi nohou.
Prvnı́ z metod využı́vá aproximace vztahu mezi vzdálenostı́ stavů CGV ve stavovém prostoru a
jejich vzájemným fázovým posunem. Druhá metoda odhaduje neznámou fázi CGV a hledá vztah
mezi fázı́ CGV a jeho stavy. Obě metody úspěšně generujı́ všechny tři požadované vzory chůze,
což je demonstrováno simulacemi šestinohého kráčejı́cı́ho robotu v simulátoru CoppeliaSim.

Klı́čová slova: šestinohý kráčejı́cı́ robot, lokomoce, centrálnı́ generátor vzorů, vzor chůze, stro-
jové učenı́, biologicky inspirovaný
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Abstract
The gait patterns describe periodically repeating motion of a legged robot by determining a phase
of its legs’ movement. If a robot on a long-term mission in an inaccessible unknown dynamic
environment should function autonomously, it is crucial to automatize the locomotion process.
The ongoing research of legged organisms’ locomotion describes some principles of complex
neural system processes, such as Central Pattern Generators (CPGs) and inter-leg coordination
rules used in this thesis. The CPG is a neural oscillator producing rhythm for locomotion in
living organisms. The coordination rules determine how legs’ actions are coordinated within the
CPG’s phase. Many locomotion controllers require a process of hand-setting many gait-pattern-
determining hyperparameters, which this thesis aims to automatize. Two different methods are
proposed in this work, dealing with the unknown relation between the CPG’s phase and the legs’
actions. The first method uses an approximation of a relation between a distance of CPG’s states
in its state space and the phase offset of the CPG’s states. The second method estimates CPG’s
unknown phase and finds the phase’s relation to CPG’s states. Both methods successfully gen-
erate all three desired gait patterns, which is demonstrated by running simulations on a hexapod
walking robot in the CoppeliaSim simulator.

Keywords: hexapod walking robot, locomotion, central pattern generator, gait pattern, machine
learning, bio-inspired
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symbol meaning

a = b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a equals b
a := b . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a is defined as b
Rdim(cpg) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . space in which the CPG exists (R4 in this work)
i, j . . . weight’s index (for most of the work represents relevant leg’s index; i, j = 1, 2, . . . , 6)
t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . time
T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CPG’s period
y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CPG’s state (y ∈ Rdim(cpg))
y(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CPG’s state in moment t (y(t) ∈ Rdim(cpg))
l . . . . . . . . . . . the limit cycle trajectory (closed curve) consisting of states y(t) (l ⊂ Rdim(cpg))
wi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .weight relevant to the i-th leg (wi ∈ Rdim(cpg))
wsig . . . . . . weight attracted by the CPG’s state to produce learning signal (wsig ∈ Rdim(cpg))
mi . . . . . . . . . . . . . . . . . weight determining the phase of its relevant wi weight (mi ∈ [0, 2π))
prbf
i . . . . . . RBF neuron’s signal activating the swing of the i-th leg invoked by the weight wi

φcpg(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .CPG’s phase
φ̂cpg(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . estimated CPG’s phase
φi . . . . . required phase value corresponding to the i-th leg (phase of the i-th leg’s activation)
φi,j . . . . . . . . . . . . . . . . . . . . . . . . . phase offset of the weights wi and wj (i.e., φi,j = |φi − φj |)
∆φ . . . consecutive legs’ phase offset determining the gait pattern (the methods’ input value)
φ(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . phase (used only in example)

Table 1: Table of used common symbols

symbol meaning

‖v‖2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Euclidean norm of the vector v
‖v‖cpg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . special norm of the vector v
dji . . . . . . . . . . . . . . . . . . . . . . . . . . difference between weights wi and wj (dji ∈ Rdim(cpg))
d

cpg
i . . . . . . . . . . . difference between weight wi and the CPG’s state y (dcpg

i ∈ Rdim(cpg))
dsig . . . . . . . . . . difference between weight wsig and the CPG’s state y (dcpg

i ∈ Rdim(cpg))
rji . . . . . . . . . the ”force” of influencing the weight wi by the weight wj (rji ∈ Rdim(cpg))
r

cpg
i . . . the ”force” of influencing the weight wi by the CPG’s state y (wcpg

i ∈ Rdim(cpg))
cεi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . coeficient regulating the εi dynamics
ci . . . . . . . . coeficient regulating the influences dji and d

cpg
i on the wi weight’s dynamics

εi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the radius of the weight’s wi dynamic vicinity

Table 2: Table of used symbols specific for the SNM
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symbol meaning

q . . . . . . . . . . . . . . . index of the leg’s side (q ∈ {0, 1}, where 0 means left and 1 means right)
k . . . . . . . . . . . . . . . . . . . . . . . . index of the leg’s anatomic position (k ∈ {front,middle, hind})
dq(front,middle) . . . . . . . . . . . . . . . . . . . . . . . . . signed distance between weights mq

front and mq
middle

dq(hind,middle) . . . . . . . . . . . . . . . . . . . . . . . . . . signed distance between weights mq
hind and mq

middle

dqk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . signed distance from the mq
k to the mq−1)

k

r
cpg
sig . . . . . the ”force” of influencing the weight wsig by the CPG’s state y (rcpg

sig ∈ Rdim(cpg))
cq(front,middle) . . . . coeficient regulating the dq(front,middle) influence on mq

front weight’s dynamics
cq(hind,middle) . . . . coeficient regulating the dq(hind,middle) influence on mq

hind weight’s dynamics
cqk . . . . . . . . . . . . . . . . . . . . . . . coeficient regulating the dqk influence on mq

k weight’s dynamics
csig . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . coeficient regulating the ε dynamics
ε . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the radius of the weight’s wsig dynamic vicinity
s(t) . . . . . . . . . . . . . . . . . . . . . . . . . signal generated by RBF neuron relevant to the weight wsig
ŝ(t) . . . modification of the signal s(t) to meet the requirements of the phase learning process
p(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CPG’s phase coeficient estimate
a . . . . . . . . . . . . . . . . . . . . the value determining the slope of the p(t) (learns the correct value)
pmi . . . . . . . . . . . . . . . . . . RBF signal given by the phase estimation φ̂cpg(t) and the weight mi

Table 3: Table of used symbols specific for the PLM
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Chapter 1

Introduction

The legged robots’ movement (i.e., locomotion) is a complex problem due to many degrees of free-
dom, increasing with the number of legs. It requieres many hyperparameters to be set correctly.
Every time the conditions change (change of the terrain, malfunction of some joint, etc.), new hyper-
paramters’ values has to be found to preserve the stable locomotion. As the robot can be on a long
term mission in an inaccessible environment without any connection to the outer world, it is important
for the robot to be able to self-learn the necessary parameters.

To propose the learning mechanisms, the researchers inspire in nature, where such problems are
already solved and tested by millions of years of use. Many different biological models clarifying
the locomotion were already proposed and compared (for example, the comparison of stick insect and
cockroach models in [1]). Although the models are not complete, some principles are already being
successfully used in robotics.

One of the easiest concepts to notice, while observing locomotion, is the presence of gaits. Gaits
are periodically repetitive motion patterns. In other words, there can be observed a certain rhythm
in the locomotion. Each leg performs two actions during locomotion, which are altering. It moves
forward performing swing, or it lies on the ground performing stance. For each leg, the swing and
stance repeat periodically.

To periodically repeating actions, a phase is assigned, determining the actions’ course. As the
phase progresses, the relevant actions repeat with the period. Therefore, each action corresponds to a
phase. Consequently, there is a phase difference between each two locomotion actions.

For humans, the phase difference between the legs during walking is half of the period. The legs
are altering each other. Therefore each leg performs stance for half of the period, and the other half
of the period it performs swing. For four and more legged organisms, there are many more possible
combinations. For instance, the four-legged organisms can move the front left leg and the right hind
leg simultaneously, altering with the front right and left hind legs, or each leg can move individually,
or the front legs can move together altering with the hind legs. The swing and stance length and the
phase offset of the legs changes depending on the coordination within the legs.

Different ways of the legs’ coordination are suitable for different situations. The organisms switch
the way of coordinating the limbs (i.e., switch the gait pattern) to move efficiently at differing speeds
or on various terrains, for instance. For quadrupeds, the three most known gait patterns are walk, trot
and gallop. This thesis focusses primarily on hexapods (i.e., six-legged robots), for which the common
gaits are tripod gait, transition gait, and wave gait.

The tripod gait can be seen very often in the insects’ locomotion. It consists of altering the activity
of two triplets of legs. One triplet includes the left hind leg, the right middle leg and the left front leg,
and the other includes the right hind leg, the left middle leg and the right front leg. The legs in the
triplet undergo the same actions (swing and stance) at the same time. If the legs of the first triplet are
performing stance, than the legs from the second triplet are performing swing, and it works alike the
other way around. All the gaits are described in detail in Chapter 2 Problem Statement.

One key aspect is used to determine which gait pattern is the robot using. During one gait-cycle,
each leg performs only one swing, so the leg swings in specific phase. The difference between the
phase of two legs is a phase offset. Two neighbouring legs, which undergo the swing phase one after
the other, are consecutive legs (for instance, the left hind leg and the left middle leg). The phase offset
of two consecutive legs is constant for each given gait pattern (Note that the time duration between
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1. Introduction

swings of consecutive legs, determined by their phase offset, also corresponds to the duration of the
legs’ swing for the particular gait pattern). Therefore, as explained in [2], the gait pattern is determined
by the phase offset of action of two consecutive legs.

Figure 1: Matsuoka’s neural oscillator shown in 2D projection. In (a), the course of one period can
be seen. Each dot represents one iteration of Euler’s method with step size = 0.01. The density of
the dots signifies how much time is spent in each area. In (b), the limit cycle feature is shown. There
are 20 random initialization points (blue crosses). Each of them ends on the limit cycle after a few
iterations. The dotted path shows the trajectory of each of the initializations.

To determine the phase, another bio-inspired concept, called a Central Pattern Generator (CPG),
is often used in combination with the gait pattern concept. CPGs were found in both vertebrates and
invertebrates. It is a neural network behaving as an oscillator generating a rhythmical signal without
any rhythmical input. It is believed the CPGs do function as a rhythmical underlie for locomotion in
living organisms.

A review of open research topics, including CPGs, is presented in paper [3]. Many different
models were created to describe CPGs. Some of the CPG models are described in review [4] together
with the main reasons for using CPGs in robotics. Three of the reasons, the most important of them in
this work’s context, are described in following paragraphs.

The first one is rhythmicity. While observing any living organism during the walk, a rhythm can
be seen in the movement. If no irregularities are in the way, then all movements repeat periodically,
creating a gait pattern. Therefore, the CPG’s function as a rhythmical underlie for the gait patterns in
robotics, as they do for the living organisms.

The second reason is the stability and adaptability of the CPG. A well-known sinus function itself
can generate rhythmical movement. However, rhythm itself is not enough. Robots are being con-
structed to work on uneven terrains, which means the robots must handle perturbations. The sinus
function does not provide any mechanism to do so. As mentioned above, the CPGs do not need any
outside input to generate a rhythmical signal. However, they can accept input from the sensors. The
input influences the course of the cycle and, therefore, the movement which depends on it. Moreover,
the CPGs dispose of the ability of stability due to the limit cycle feature. The limit cycle is a closed
trajectory to which each state of the oscillator converges (see Fig. 1 (b)). It means that if the CPG is
perturbed due to its input, it tends to restore its previous trajectory.

Finally, the third reason is the CPGs’ ability to synchronize. The CPG’s input can be not only from
sensors but also from other CPGs. The mutual connection of the CPGs then leads to mutual binding
and synchronization of the connected CPGs, which is used in many proposed locomotion controllers.

Many approaches and different architectures have been proposed on the topic of learning the hexa-
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1. Introduction

pod to walk with the use of CPGs. Few examples follow. [5] uses a different architecture of CPGs’
interconnection for every gait pattern. In [6] authors propose architecture with one CPG for each leg
(all the CPGs are connected using a one-directional ring hierarchy) and map the actions of the leg’s
joints directly on the CPG signal. Architecture in [2] uses CPG with independent frequency and am-
plitude control, to control the gait dynamic more easily, and focuses on the mapping of the action of
particular joints on the CPG signal. Authors in [7] study also mostly the mapping of the leg actions
to the CPG signal. However, in this study, they modify the signal to suit better different gaits (as
for different gaits different swing and stance duration is suitable). Architecture proposed in [8] goes
even further and proposes a method for avoiding obstacles or changing the gait. [9] learns gait using
reinforcement learning and aims to fine-tune the parameters to gain efficient locomotion. In [10], the
authors aim the parameter tunning more than the architecture design.

All the mentioned examples use some matrix of weights or matrix of connections or any other
predefined tuple of numbers to determine a particular gait pattern. That means a change of many
parameters for different gait. Therefore, if a new gait is required, then it is necessary to create a
new matrix or tuple of parameters by hand. That is limiting for a robot, which is meant to be fully
autonomous. However, [11] presents a set of rules defining the relations between hexapod’s legs,
which hold for any hexapod gait.

This work aims to use the defined rules and create a self-organized learning mechanism to coor-
dinate the legs to produce a gait pattern based on a given phase offset of two consecutive legs. Two
methods are proposed in this work. The first method takes advantage of the similarities between the
phase offset and norm of the difference of two points on the limit cycle in the multidimensional space.
The second method focuses on the problem decomposition and estimates the relation of the CPG’s
phase and the CPG’s states.

To prove both methods working, simulations in CoppeliaSim simulator were run, where both meth-
ods successfully generated each of the three given gait patterns (transition, tripod and wave). For both
methods, the plots, demonstrating the results of each of the proposed mechanisms (which the methods
are composed of), are provided. Finally, the comparison of both proposed methods is presented.

The remainder of the thesis is organized as follows. The definition of the CPG, together with
the mechanism of weights (determining the gait), coordination rules, and the gait patterns definition
is presented in chapter 2. Both the methods are proposed in chapter 3, where the first method is
introduced in section 3.1, and the second method is introduced in section 3.2. The resulting plots
and results of the proposed mechanisms successfully generating the given gait patterns are shown in
chapter 4. The methods are discussed and compared in chapter 5. Finally, the conclusion is presented
in chapter 6.
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Chapter 2

Problem Statement

This work aims to automatize a process of determining which gait pattern should be learned, which
most of the other multi-legged gait controllers require to be done manually before the locomotion
learning process begins. As the robot’s locomotion in this work is implemented by producing a gait
pattern, a CPG is used to determine the rhythm for the gait. This chapter firstly introduces the CPG
used in this work and the role of the weights in the process of locomotion, and secondly, it describes the
gait patterns which this work aims to learn using coordination rules observed from animal behaviour.

2.1 CPG and Weights
In this work, a Matsuoka’s neural oscillator [12] is used as a CPG model. The Matsuoka’s neural
oscillator phase is hard to express analytically, and therefore it is unknown at the beginning of the
learning process. This fact forces the method to be more generalized and not to rely only on oscillators
with a known period. The Matsuoka’s neural oscillator is given by the following differential equations:
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cpg
1 = h(u

cpg
1 )− vcpg

1 , (1)
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cpg
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2 β + 1, (4)

h(x) := max(x, 0), (5)

where the CPG hyperparameters are set to τ = 0.5; γ = 0.25;α = β = 2.5. The Matsuoka’s oscillator
is visualised in Fig. 1. As described by the equations (1) - (5), the CPG’s state is determined by four
variables:

y := (u
cpg
1 , u

cpg
2 , v

cpg
1 , v

cpg
2 ) ∈ R4, (6)

where y stands for the CPG’s state. Therefore, the weights (w1, . . . ,wn) are described also by four
variables:

wi := (ui1, u
i
2, v

i
1, v

i
2) ∈ R4, (7)

for i = 1, 2, . . . , n, where n is the number of weights.
The weights are then used by Radial Basis Function (RBF) neurons to determine when to fire.

RBF neurons’ signals can be used as a trigger for a specific movement (as used in this work to run the
simulation), or as a synchronization signal for other CPGs, for instance. The RBF neuron’s signal is
given by equations:

δi := ‖y −wi‖22 , (8)

prbf
i := exp(−ε · δi), (9)

where prbf
i is the RBF neuron’s current pulse value, and ε is a positive constant.

The gait learning process varies for different architectures of locomotion controllers. Approach
used in this work uses the weights wi corresponding to some important movement actions. In this
work, the i-th weight signalizes the start of the i-th leg’s swing followed by the stance.

As the CPG’s state changes, it activates the weights’ respective RBF neurons, which trigger the rel-
evant movement actions. If the movement actions are triggered in the correct order, then the mechaism
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2.2 Gait Patterns and Coordination Rules

produces the given gait pattern. Hence, based on a model in [13], to learn a gait pattern means to spread
the weights, relevant to the important movement actions, around the CPG’s limit cycle correctly.

Let the limit cycle (the closed trajectory) be called l ⊂ R4. Although there is no time t variable
in equations (1) - (5), there is a time dependence because the equations are differential equations with
respect to time t. Hence the notation y(t) is used to express the CPG’s states dependence on the time
(y is a specific state, y(t) denotes CPG’s states in general by their dependency on time).

If no perturbations occur, then the CPG’s states y(t) repeat periodically with an unknown period
T (i.e., y(t) = y(t+ T )). Despite the fact, that one of the reasons to use CPGs for locomotion is the
preturbaition handeling, this work consideres the learning process with no perturbations. Hence the
states y(t) are considered as periodically repeating.

Since y(t) is periodic, its phase φcpg(t) ∈ [0, 2π) can be defined. The phase repeats periodically
(i.e., φcpg(t) = φcpg(t+ T )). Nevertheless, the period T and the CPG’s phase course φcpg(t) are both
unknown.

If every i-th leg is related to a specific weight wi then assigning the weight a phase value φi means
assigning the respective leg a state of phase in which the leg movement should be triggered. In other
words, if the i-th leg has been assigned phase φi, then the goal is to find the moment ti of the i-th leg
action triggering, for which holds the equality φcpg(ti) = φi.

The concept of CPG and weights was introduced in this section. The following section presents
the rules for organizing the weights within themselves and then the relation between the weights’
organization within the phase and the gait patterns is described.

2.2 Gait Patterns and Coordination Rules
The wi weight determines the beginning of the i-th leg’s swing movement. To produce a stable gait
pattern for hexapod walking robot, the weights have to be organized within the phase like shown in
Figs. 2 and 3.

Figure 2: On the left, a scheme of a hexapod robot is visualized. The arrow indicates the direction of
the forward walk. The colors of the legs correspond to the colors of the respective weights in all plots
in this work. The three cycles with colorful dots on them represent one period of each gait pattern.
The colors of the dots correspond to the colors of the legs of the robot on the left. The arrow indicates
the direction of the phase growth (means that, for example, in the wave gait, the second leg is activated
before third leg, and so on). The dot consists of more colors if the respective weights (visualized as
colorful dots) are overlapping.

As mentioned in [2], the gait pattern is clearly defined by a phase offset ∆φ between two con-
secutive legs. The phase offset values and corresponding gaits are given by Tab. 4. Therefore, the
phase offset value is the input value determining the gait pattern, which the methods, introduced in
this work, should produce.

To organize the weights to produce the given gait pattern, the rules introduced in [11], are used.
The rules give insight into how the weights are related based on the relevant legs’ anatomic position.
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2.2 Gait Patterns and Coordination Rules

Figure 3: The color bars correspond to the swing phase of the corresponding leg movement. The
colors themselves correspond to the colors of the respective legs from the robot scheme in Fig. 2. For
each gait, the table visualizes when the leg’s swing occurs during the period of the corresponding gait
pattern. The leg performs a stance during the rest of the period.

phase offset gait

π/3 wave gait
2π/3 transition gait
π tripod gait

Table 4: Phase offset of consecutive legs for corresponding gait pattern

The rules describe the distribution loading, leg placing and interleg coordination. For purposes of this
work, only the three following coordination rules are important:

1. while a leg is lifted-off, suppress the lift-off of the consecutive leg

2. if the leg touched the ground, initiate the lift-off of the consecutive leg

3. do not lift-off the contralateral legs (e.g., both front legs) at the same time

The first two rules are fulfilled by keeping the given phase offset of consecutive legs. The third
rule implies additional interaction between contralateral legs. The interaction between weights corre-
sponding to the legs can be of three types. The weight (i) is not influenced , or (ii) is repulsed by some
other weight, or (iii) is attracted by some other weight.

The aim is to organize the weights to be near the limit cycle (near enough so their respective RBF
neurons would produce signals with distinct peaks), and the organization of the weights within the
limit cycle has to produce one of the given gait patterns. To do so, the mentioned coordination rules
should be used to determine attractive and repulsive forces between the weights. The produced gait
pattern should correspond to the given input value of the phase offset. In other words, the method
searches for (w1, . . . ,w6), that for each i = 1, 2, . . . 6 the following inequality holds:

dist(wi,y(ti)) ≤ ε̂, (10)

φcpg(ti) = φi (11)

where ti is each time moment for which holds the equality Eq. 11; ε̂ is a small constant which ensures,
that the produced RBF signal pulses (Eq. 9) are distinct. The Eq. 10 represents that the weight is close
enough to the CPG’s state y(ti) (y(ti) = wi is the ideal state) to produce an RBF signal with distinct
pulses. To produce a stable gait pattern a following equality has to be kept:

(φi − φj) mod 2π ≈ (φcpg(ti)− φcpg(tj)) mod 2π, (12)
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2.3 Summary

i (leg number) φi (tripod gait) φi (transition gait) φi (wave gait)

4 0 0 0
6 π 2π/3 π/3
2 0 4π/3 2π/3
3 π π π
5 0 5π/3 4π/3
1 π π/3 5π/3

Table 5: The table shows the phase values of legs organized within the phase to produce the given gait
pattern. The leg numbers are ordered top to down based on the order of the legs’ activity during the
wave gait. Note that the difference between the legs 2 and 3 does not correspond to the given phase
offset in the transition gait as it does for the two other gaits. The reason is that it would conflict with
rule 3. mentioned above.

where i, j = 1, 2, . . . 6; φi is a constant phase value of the relevant leg action depending on the given
gait pattern as shown in Tab. 5. It does not matter in which state of the phase the gait pattern starts.
The most important is the legs’ organization within the period (i.e., relative phase dependencies), not
the phase values themselves.

This section introduced importnat two important concepts for this work. Firstly, the coordination
rules, which determine the interactions within the weights in the methods proposed in this work.
Secondly, the gaits description with use of phase was introduced (i.e., phase assigned to individual
legs’ actions and the phase offset between the legs).

2.3 Summary
In this chapter, the initial state of the problem and the goal were presented. At first, a particular CPG
was introduced, then the weights wi ∈ Rdim(cpg) with their respective RBF neurons, and the relation
between the CPG’s states and its phase were presented. Then the weights’ role in generating the stable
locomotion was introduced, in the context of this work. The gait patterns are given by the phase offset
of two consecutive legs, which is also used as an input for the proposed methods to determine which
gait pattern should the methods learn. Important coordination rules were presented, determining the
relation between the robot’s legs, which imply the interaction rules for the weights corresponding to
the legs.

In the following chapter, two different methods for solving the problem are proposed. The first
considers only the weights wi, their interactions and their position towards the CPG’s limit cycle. The
second method decomposes the problem, focuses on the CPG’s phase course and learns the phase’s
dependency on the time, which is then used to determine the weights’ positions on the CPG’s limit
cycle.

Both methods build on the relation between the CPG’s phase φcpg(t) and its corresponding states
y(t) (points of the CPG’s limit cycle). The relation of the CPG’s states and the CPG’s phase is used
to organize the weights wi around the CPG’s limit cycle, while respecting the given phase offset ∆φ,
to produce the given gait patterns. However, both methods have to solve the problem, that the CPG’s
limit cycle’s shape l (and consequently the CPG’s states y(t)) and the CPG’s phase course φcpg(t) are
both unknown.
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Chapter 3

Proposed Method

The method has to find the place on the CPG’s limit cycle for all wi weights, which have to main-
tain the given phase offsets ∆φ between them. However, both, the limit cycle’s shape l (given by
states y(t)) and the CPG’s phase φcpg(t), are unknown. This section describes in detail two methods
developed to solve the given problem.

The first method in this chapter is tackling the problem in one space Rdim(cpg). It uses the relation
between the phase offset and the norm of the wi weights’ differences (i.e., the distance of the weights).
Hence the section describing the first method is called 3.1 Method Based on Norm Properties. The
method expects the limit cycle’s shape being close to the surface of some ellipsoid.

The second introduced method decomposes the problem and approaches it with a solution con-
sisting of more systems connected. It aims to estimate the CPG’s phase and find the CPG’s state
corresponding to each phase value. Parallelly, it organizes the weights within the phase, to be then
mapped to the CPG’s states corresponding to the weights’ phases. The section describing the second
method is called 3.2 Method Based on the Phase Learning.

Figure 4: The scheme visualizes the dependencies within the weights for both proposed methods.
In (a), the scheme for the method using a special norm is shown. Each weight maintains the given
distance from every other weight. Hence, the number of dependencies for 6 weights is 6(6− 1) = 30.
In (b), the scheme for the method using phase learning is shown. The number of dependencies is
much lower (equal to 10), which resolves in lower computational complexity. Note that extending the
model for more legs, where would be an equal count of legs on both sides of the robot, the complexity
difference becomes even more significant. For n legs in total, the number of dependencies of the
model from (a) is equal to n(n − 1) = n2 − n, and for (b) the number of dependencies is equal to
n + 2(n2 − 1) = 2n − 2. Nevertheless, the mentioned extension is only theoretical and not a subject
of this work. Note that the colors of the dots match the colors of their respective legs from Fig. 2.
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3.1 Method Based on Norm Properties

3.1 Method Based on Norm Properties
The method proposes dynamics for weights wi by using two kinds of forces influencing the weights.
The first kind of force is determined by a repulsive and attractive interactions between the weights
(introduced in section 3.1.2) based on the norm of their differences (relation between norm and phase
is introduced in section 3.1.1). The second kind of force is the weights’ wi attraction by the CPG’s
state y to keep the weights close to the CPG’s limit cycle (mechanism described in section 3.1.3).
The weights interaction forces are then combined with the attraction by the CPG’s state to determine
the weights’ dynamics.

The first kind of force is dependent on the similarity between the phase offset of two weights and
their distance. The CPGs limit cycles can differ in shape, dimensionality. The method consideres the
limit cycle trajectory lying on (or nearby) the surface of an ellipsoid. Hence, the special norm, which
transforms the ellipsoid into a unit sphere and measures the norm of all states y(t) approximately as
one (i.e., ‖y(t)‖cpg ≈ 1, where ‖−‖cpg is a notation of the special norm) is introduced to enable to use
the similarity between the weights’ phase offset and their distance.

The second kind of force forces the weights to stick nearby the CPG’s limit cycle. The learning
process is considered without any outer perturbations influencing the CPG. Therefore, the CPG’s state
y is always considered to be on the CPG’s limit cycle. Hence, the force attracts the weights to the
CPG’s state y (as described in section 3.1.3) as the CPG’s state y is always representing a point of
the CPG’s limit cycle.

The two forces are then combined to produce dynamics for the weights wi to be close enough to
the limit cycle and to be correctly organized within the themselves (introduced in section 3.1.4) to
produce the gait pattern given by the phase offset of consective legs ∆φ.

3.1.1 Phase Offset and Norm Relation

To understand the relation between the phase and norm, the section is introduced with a simple ex-
ample. Without loss of generality, imagine having a simple system, which behaves as a single CPG
without any perturbations, which is given by equations:

x := cos(φ(t)), (13)

y := sin(φ(t)), (14)

where φ(t) ∈ [0, 2π) is the phase dependent on time. Therefore values of x and y repeat periodically
with period 2π. The CPG’s limit cycle, given by equations Eqs. 13 and 14, is visualized as a unit
circle in Fig. 5 (a), where the angle between two circle’s points by the center of the circle corresponds
to the phase offset between the points.

There is a relation between the distance of the points on the unit circle and their phase offset.
Consider two weights w1,w2 ∈ R2 on the unit circle and their phase offset φ1,2 ∈ [0, π]. As the
weights w1 and w2 are on the unit circle, they are both equally distant from the center c of the unit
circle. Hence, the center c of the unit circle and the weights w1 and w2 form an isosceles triangle.
Moreover, the angle by the center c is known, as it is equal to the weights’ phase offset φ1,2. Hence
the distance between the weights can be computed not only using the of the norm of their difference:

dist(w1,w2) = ‖w1 −w2‖2 , (15)

but also using the weights’ phase offset:

dist(w1,w2) = d(φ1,2), (16)
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3.1 Phase Offset and Norm Relation

Figure 5: There are three different limit-cycles in the figure. (a) a circle, (b) an ellipse, (c) a complex
shape similar to the ellipse. By using different metrics, a different shape is considered as a unit sphere.
For the unit sphere in Euclidean metrics (using the norm ‖−‖2), relations between the weights are
defined by the same rules as for the weights on a unit circle. The figure demonstrates how it would
work for two weights which are on coordinates w1 = (1, 0) (cyan) and w2 = (−1

2 ,
√
3
2 ) (yellow)

in the (a). The phase offset between them corresponds to the angle φ = 2π
3 . The distances between

the weights and the center of the CPG (dotted blue) are equal to 1 and, together with the line joining
the weights (dashed red), form an isosceles triangle. The distance between the weights can then be
computed as the length of the base of the triangle. Because the length of the sides and the angle
between them is known, the base length can be computed. We split the triangle by its height (the line
from the center of the CPG to the middle of the red dashed line) and make a right triangle. Because the
angle by the center of the CPG in the right triangle is half of the φ, and the side adjacent to the center
of the CPG is equal to 1, the half of the base of the isosceles triangle can be computed as sin(φ2 ).
Therefore the distance between the weights w1 and w2 equals to 2 sin(φ2 ) = ‖w1 −w2‖2. Using a
special norm ‖−‖cpgin (b), the blue lines have both norm equal to one and the norm of the weights’
distance is equal to 2 sin(φ2 ) = ‖w1 −w2‖cpg, where φ is the phase offset of the weight. If the special
norm from (b) is used in (c), then the relation between distance and phase offset in (c) is approximately
the same as in (b). Therefore the special norm from (b) is used to approximate the relation in (c).
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3.1 Phase Offset and Norm Relation

d(b) := 2 sin

(
min(b, 2π − b)

2

)
. (17)

The phase-distance relation (given by Eq. 16) is visualized in Fig. 5 (a). If the weight’s phase
offset φ1,2 is given, then the phase-distance relation implies the weights’ distance, i.e., the weights
should be placed on the unit circle in a way that satisfies the equality dist(w1,w2) = d(φ1,2), where
φ1,2 is a fixed constant giving the desired phase offset of the weights w1 and w2.

The example introduced the relation between a phase offset and norm of difference of two points
on the unit circle.1 As the method’s input value is a phase offset ∆φ of consecutive legs, the phase
offset between each pair of the legs’ corresponding weights can be computed. In this work the phase
value for each particular leg is assigned at first, then the phase offsets of the assigned values are
computed to represent the phase offsets between the weights corresponding to the legs.

The weights corresponding to the hind legs are assigned a value of zero (beginning of the phase),
as the activity of the legs goes from hind legs to front legs. Each consecutive leg’s respective phase
value is increased by the given phase offset. For example lets assume the transition gait phase offset
∆φ = 2π/3, then the wi weights are assigned values φ4 = 0, φ6 = 2π/3, φ2 = 4π/3, φ3 = 0,
φ5 = 2π/3 and φ1 = 4π/3, where φi corresponds to the wi weight.

However, this assignment of the values conflicts with the third coordination rule (i.e., do not lift-off
two contralateral legs at the same time) because the weights corresponding to contralateral legs have
the same phase value assigned. Therefore, the value of π is added (with mod 2π operation applied)
to all values of respective weights corresponding to the robot’s left side legs. In case of the transition
gait the final values are φ4 = 0, φ6 = 2π/3, φ2 = 4π/3, φ3 = π, φ5 = 5π/3 and φ1 = π/3. The
phase values determine the phase offset of each pair of the legs. Therefore, using the phase-distance
relation (introduced in Eq. 16), a matrix M of distances between the weights is given, as:

M =

dist(w1,w1) dist(w1,w2) · · · dist(w1,w6)
...

...
. . .

...
dist(w6,w1) dist(w6,w2) · · · dist(w6,w6)

 =

=

‖w1 −w1‖2 ‖w1 −w2‖2 · · · ‖w1 −w6‖2
...

...
. . .

...
‖w6 −w1‖2 ‖w6 −w2‖2 · · · ‖w6 −w6‖2

 =

=

d(φ1,1) d(φ1,2) · · · d(φ1,6)
...

...
. . .

...
d(φ6,1) d(φ6,2) · · · d(φ6,6)

 ,

where φi,j = |φi − φj | is a phase offset (i.e., phase difference) of the weights wi and wj .
The unit circle, which acts as the CPG’s limit cycle given by Eq. 13 and 14 in the given exam-

ple, is called a unit circle because each point of it given as (x, y) has an Euclidean norm equal to 1
(‖(x, y)‖2 = 1). Nevertheless, if a different norm is used, a different shape is considered a unit circle
(or unit sphere for more dimensions).

If the CPG’s limit cycle has the shape of an ellipse, a different than the Euclidean norm can be used
to measure the norm of the limit cycle points to preserve the phase-distance relation (the distance is
invoked by the used norm). The ellipse, depicted in Fig. 5 (b), is an example of what can be considered
as a unit circle if a different norm is used. As the choice of norm depends on the CPG’s limit cycle’s
shape, let the special norm2 of vector v for a specific CPG be denoted as ‖v‖cpg.

1The unit circle represents the limit cycle in the given example.
2The norm can be computed using various approaches. Approach used in this work is described in the Appendix A

Special Norm Finder
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3.1 Repulsion and Attraction Within the Weights

If the CPG’s limit cycle has the shape of the ellipse, a special norm, which measures all the
ellipse’s points as equal to one, have to be used to preserve the phase-distance relation. Therefore, the
distances between the weights are still determined by the phase offsets between the weights. Only the
norm measure changes:

M =

‖w1 −w1‖cpg ‖w1 −w2‖cpg · · · ‖w1 −w6‖cpg
...

...
. . .

...
‖w6 −w1‖cpg ‖w6 −w2‖cpg · · · ‖w6 −w6‖cpg

 =

=

d(φ1,1) d(φ1,2) · · · d(φ1,6)
...

...
. . .

...
d(φ6,1) d(φ6,2) · · · d(φ6,6)

 .

Unfortunately, the limit cycles do not have a shape of a perfect ellipsoid nor the phases are pro-
portional to the angles. However, the shape of the limit cycle lies approximately on the ellipsoid’s
surface.3

The limit cycle shown in Fig. 5 (c) has a shape similar to the ellipse. Therefore the ellipse from 5
(b) can be used as an approximation of the limit cycle from 5 (c). Hence, the relation between the norm
(which consideres the ellipse in 5 (b) as a unit circle) and phase offset is also used as an approximation
for the CPG’s limit cycle’s shape, which is close to the surface of an ellipsoid (i.e., for each l ∈ l:
‖l‖cpg ≈ 1, where l ∈ Rdim(cpg) is the CPG’s limit cycle trajectory).

The special norm ‖−‖cpg, which is used to approximate the relation between the distance and the
phase offset of the CPG’s limit cycle’s points, was introduced in this section. The following section
uses the special norm to determine the attractive and repulsive forces between the weights.

3.1.2 Repulsion and Attraction Within the Weights

Based on the previous section, to ensure the correct organization of the weights, the following equality
has to be adhered to:

d(φi,j) = ‖wi −wj‖cpg , (18)

for all i, j = 1, 2, . . . , 6. The φi,j is a constant for each pair of i and j, what makes the equality’s left
hand side value constant. Therefore, the only way to gain equal values on both sides of the equation
Eq. 16 is to move the weights to adjust the equality’s right hand side value. The equality implies three
interaction rules for the weights:

• if d(φi,j) > ‖wi −wj‖cpg, then the weights are too close to each other and should be mutually
repulsive,

• if d(φi,j) < ‖wi −wj‖cpg, then the weights are too far from each other and should be mutually
attractive,

• if d(φi,j) = ‖wi −wj‖cpg, then the weights are at a required distance from each other and
should not interact.

The given interaction rules for a pair of weights are visualized in Fig. 6. A scheme, visualizing
the relations within the weights, is shown in Fig. 4 (a). To fulfill the interaction rules the following
equations are proposed:

dji := wj −wi, (19)

3The method expects the shape of the limit cycle lying approximately on the ellipsoid’s surface, as mentioned on the
introduction of this chapter.
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3.1 Attraction of the Weights to the Limit Cycle

Figure 6: Illustration of maintaining the given distance of two weights. The blue and green dots
represent the weights. The shaded vicinity, bordered by the dashed ellipse, represents the area in
which the norm value of the weights’ difference is lower than required. The dashed ellipse (the curve
itself) represents the points, which have the required distance from the respective weight. (a) The
weights are too close to each other. Therefore the repulsive forces take them away. Each weight is
forced to the direction opposite to the direction where the other weight is. (b) The weights are too far
from each other. Hence the attraction forces push them against each other.

rji :=

clip2−2

(∥∥∥dji∥∥∥cpg
− d(φi,j)

)
n

dji , (20)

clipzy(x) :=


y x ≤ y
z x ≥ z
x otherwise,

where y < z,

(21)

where rij is a force vector of the weight wj forcing the weight wi and n is the number of weights
(n = 6).

This section defined dynamic rules determining the forces within the weights wi. Those rules were
proposed to hold the coordination rules from Chapter 2 Problem Statement. Next section focuses on
placing the weights wi close enough to the CPG’s limit cycle.

3.1.3 Attraction of the Weights to the Limit Cycle

In the previous section, the attraction and repulsion within the weights were defined. However, for the
RBF neurons to produce the disinct signals, the weights must be placed close enough to the limit cycle.
Therefore, in this section the mechanism of the weights’ attraction to the CPG’s state y is described.

The CPG’s limit cycle shape, denoted in this work as a closed trajectory l ⊂ Rdim(cpg), is not
known. Nevertheless, the CPG’s state y from Eq. 6 is a point on the CPG’s limit cycle, which changes
with time. Therefore, if the weights are attracted by the y, then the weights get closer to the CPG’s
limit cycle. The l is unknown, but the y is an element of the l. Hence, to attract the weights wi to the
CPG’s limit cycle l, the attraction by the CPG’s state y is used.

However, the y is moving around the the CPG’s limit cycle, as it changes with time, and the
weights would be moving around the CPG’s limit cycle too, if the weights would be attracted by the
y all the time. As each weight is meant to stay on one place of the CPG’s limit cycle, the wi weight’s
attraction by the CPG’s state y is defined only within the boundaries of the weight’s dynamic vicinity,
as defined by the following equations:

d
cpg
i := y −wi, (22)
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3.1 Attraction of the Weights to the Limit Cycle

Figure 7: The figure visualizes the functionality of the weight wi (blue dot) being attracted by the
CPG’s current state y (the y is moving in the dynamic system, but it is a static black dot for simplicity
of the visualization) based on the weight’s dynamic vicinity (dashed filled red circle) determined by
the weight’s radius εi. If the y is outside of the weight’s vicinity like in (a), the vicinity grows as
shown in (b). The weight wi is then attracted by the y and the vicinity still grows, as depicted in (c).
If the vicinity is relatively large (i.e., the weight is close to the y), then the y reaches the distance
shorter than half of the εi (the dashed filled green circle), like in (d). The vicinity then starts to shrink,
while the weight wi is still being attracted by the y, as shown in (e). If the y is still in the weight’s
vicinity, it attracts the weight wi, as depicted in (f), and the vicinity changes as described in previous
steps. However, in the dynamic system, the y moves, so it leaves the vicinity entirely, if the εi is small
enough. The weight wi then stops moving.

r
cpg
i := f

(∥∥dcpg
i

∥∥
2

εi

)
d

cpg
i , (23)

f(x) :=

{
−x2 + 1 x ≤ 1

0 otherwise,
(24)

where r
cpg
i is a force vector of the wi weight’s attraction by the CPG’s state y; function f(x) ensures,

that the weight wi is not attracted by the y if the y is outside of the vicinity of wi determined by εi
(εi is a radius of the vicinity). If the y is inside the vicinity of the wi, then the closer they are, the
stronger is the attraction. The εi is defined by equations:

cεi := ψ ·

(
clip10

(∥∥dcpg
i

∥∥
2

εi

)
− 1

2

)3

, (25)

ε̇i :=

{
σ · cεi cεi < 0

ρ · ε2 · cεi otherwise,
(26)

where the hyperparameters are set to ψ = 8, σ = 10 and ρ = 0.25. The equations ensure the following
behaviour of the weight’s vicinity’s dynamics:

• an increase of the εi (and therefore the growth of the dynamic vicinity of the weight wi) if∥∥dcpg
i

∥∥
2
> εi

2 ,

• a decrease of the εi (and therefore the shrinking of the dynamic vicinity of the weight wi) if∥∥dcpg
i

∥∥
2
< εi

2 .

The growth of the weight’s vicinity is essential because it can not be assumed that the weight wi

will be close enough to the y after the initialization. The shrinking is required when the weight reaches
close enough to the limit cycle. If the weight is close to the y, then the vicinity starts to shrink. The
shrinking vicinity ensures that the moving y leaves the vicinity and the weight stops being attracted
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3.1 Combination of the Attractions and Repulsions and the Convergence

by the y. Hence, the weight does not follow the y moving around the limit cycle. The relation of the
weight wi, CPG’s state y and the dynamic vicinity given by εi are illustrated in Fig. 7.

In this section, the attractive force mechanism, forcing the wi weights to be close to the CPG’s
limit cycle with an unknown shape, was proposed. The mechanism of the altering influence of the pro-
posed forces producing the self-organizing dynamics for the wi weights is proposed in the following
section.

3.1.4 Combination of the Attractions and Repulsions and the Conver-
gence

Given the attraction of the weight wi to the CPG’s state y and the attractions and repulsions with other
weights wj 6=i from the two previous sections, a dynamics for the weight wi is defined as follows:

ẇi = η ·

ci · dcpg
i + (1− ci) ·

n∑
j=1

rji

 , (27)

ci := f

(∥∥dcpg
i

∥∥
2

εi

)
, (28)

where ci · dcpg
i can be rewritten as rcpg

i using the Eq. 23. The combination factor ci is changing the
influence of dynamics between attracting by the state y and the influence from the other weights. It
ensures that if the weight is far from the CPG’s limit cycle, then the attractive force caused by the
CPG’s state y has greater influence, than the force caused by the weights interactions (i.e., the weight
tries to get close to the CPG’s limit cycle at first). If it is close enough to the CPG’s limit cycle, it is
being influenced by the other weights and starts to ”search for its position” within the CPG’s limit
cycle.

To ensure the convergence, a decreasing learning-rate η is introduced. The learning-rate η can be
represented by any function of time, which has a decreasing trend, and its limit of time approaches
infinity equals zero.

In the proposed method, the attraction and repulsion within the weights wi and the attraction
by the CPG’s state y are used to produce the dynamics to self-organize the weights and place them
nearby the CPG’s limit cycle of unknown shape l to produce a gait pattern given by the input value
∆φ. The forces within the weights are proposed based on the phase-distance relation, observed on
the unit circle, which approximates the phase-distance relation on the complex shape of the CPG’s
limit cycle using the CPG-specific special norm ‖−‖cpg. The forces attracting the weights wi to the
CPG’s state y are used to keep the weights close to the CPG’s limit cycle of unknown shape with use
of the weights’ dynamic vicinities. Based on the given input value ∆φ, the final weights’ organization
around the CPG’s limit cycle successfully generates each of the three gait patterns given by the input
value ∆φ, as shown in the results in Chapter 4 Results.

3.2 Method Based on the Phase Learning
This method decomposes the problem, organizing the weights along the CPG’s limit cycle, into two
different tasks. The first one is to organize the weights within the phase to produce a stable gait pattern
(i.e., respecting the coordination rules introduced in Chapter 2 Problem Statement). The second task
is to place the weights on the limit cycle.

The previous method solves the task with the use of the special norm approximatting the phase-
distance relation of the weights wi. The method, proposed in this section, estimates the CPG’s phase
course and maps the weights wi on the CPG’s state using the wi weight’s learned phase mi.
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3.2 Method Based on the Phase Learning

Figure 8: The figure visualizes the whole method based on phase learning. Processes regarding the
mi weights organizing within the phase are presented in the cell with red background. Cell with
blue background includes the process of generating the training signal for the phase learning (phase
estimation) and the phase learning process itself. The mapping of the mi weights on the estimated
phase and its use for organizing the wi weights is shown in the cell with green background. The
weights correspond to the legs by their colors, as shown in Fig. 2. The plots in this figure are not
results of any experiment. They serve only as a visualization of the gait learning pipeline.
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3.2 Weights Within the Phase

Two types of weights, wi and mi (corresponding to the i-th leg), are introduced. The weights
w1, . . .w6 ∈ Rdim(cpg) are weights in the space of the CPG (the same weights as in the previous
section 3.1) defined by the Eq. 7, which are used to produce the RBF neurons signals, as described
by Eqs. 8 and 9. The weights m1, . . . ,m6 ∈ [0, 2π) are used to represent the weights organization
within the phase, wheremi represents the phase in which the i-th leg’s swing should be triggered. The
mi weights are being organized within the interval [0, 2π) to fulfill the coordination rules. The phase
values, given as the mi weights, are used to determine the points on the CPG’s limit cycle to which
the wi weights should be attracted.

The first task is solved by organizing the weights mi within the phase while respecting the coor-
dination rules introduced in Chapter 2 Problem Statement, as presented in section 3.2.1.

The second task is the wi weights placing nearby the CPG’s limit cycle on the positions corre-
sponding to the mi weights. The relation between wi and mi weights is learnd by estimating the
CPG’s phase course (dependency of the phase’s growth on time). The phase estimation φ̂cpg(t), es-
timating the CPG’s phase φcpg(t), is introduced in section 3.2.2.2. To estimate the phase course, a
training signal generated by the CPG, proposed in section 3.2.2.1, is used. The weights mi (rep-
resenting the phase values) determine which point of the CPG’s limit cycle y(t) corresponds to the
CPG’s phase estimation φ̂cpg(t) equal to the weight mi. The corresponding CPG’s limit cycle point is
used to attract the final weight wi, as proposed in section 3.2.2.3. In other words, the CPG’s phase
estimation is used to select the place on the CPG’s limit cycle to which the wi weights are attracted
according to their corresponding mi weights.

3.2.1 Weights Within the Phase

Figure 9: (a) The figure visualizes maintaining the given phase offset of the hind leg (red) from the
middle leg (blue) on the left and the front leg (green) from the middle leg (blue) on the right. The
red, green, and blue dots represent the weights (the blue weight is static in this illustration) within the
phase (black circle). The red (green) arc represents the signed distance, which the hind (front) leg
should maintain from the middle leg. The blank blue circle represents where the blue dot should be,
in relation to the red (green) dot, to fulfill the condition of the given signed distance. The red, green,
and blue arrows represent the movement of the respective parts (red and green weights and the blank
blue circle) (b) The figure depicts the two weights (cyan and magenta dots) which are repulsive to
each other (i.e., they correspond to the contralateral legs) within the phase (the black circle). The cyan
and magenta arrows represent the direction of the forces influencing the corresponding weights. The
mechanism, visualized in (a) corresponds to the bold arrows from the Fig. 4 (b), and the mechanism
presented in (b) is represented by the dashed arrows in Fig. 4 (b).
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3.2 Weights Within the Phase

Figure 10: The figure visualizes the advantage of using only one-dimensional weights, where signed
distance is used. On the left hand side, the example of using two-dimensional weights wi, wj and wk

is shown. Three of infinitely many combinations, respecting the given conditions, are depicted. The
weights are visualized as colorful dots. The dahsed ellipses represent the unit circle of the respective
weights (i.e., the special norm of each ellipse’s point distance from its respective weight is equal to
one). On the right hand side is shown the only valid configuration fulfilling the given conditions for
one-dimensional weights mi, mj and mk using signed distance.

In this section, the method is proposed, which organizes (systematically places) the mi weights
within the phase (i.e., mi ∈ [0, 2π)) according to the coordination rules by using the repulsive and
attractive forces within the weights.

Using only one-dimensional weights, limited by interval [0, 2π), gives a significant advantage in
comparison to the organization of weights in more dimensional unlimited. While moving the weights
in two and more dimensions, two criteria have to be considered, which are that the weights has to
interact within themselves and at the same time the weights has to be kept close to the limit cycle.
Using one-dimensional weights within the interval, only the weights interactions have to be considered
as the limit cycle is represented by the interval itself.

There are only two directions for the movement of the weights within the phase, which have
useful meaning. Consider the interval as a closed circle (i.e., the unit circle in x and y coordinates,
where x = cos(φ) and y = sin(φ) for every φ ∈ [0, 2π)). Given any weight m ∈ [0, 2π), there are
two possible directions for the weight movement on the circle. The weight is moving in the positive
direction around the circle, or in the negative direction around the circle. As the phase progresses from
zero in the positive direction (its value grows), the order within the phase is easily definable (see Fig.
10). The weights of lower values precedes the weights of higher values as the phase proceeds (i.e., as
the robot’s walking cycle proceeds).

The positive and negative direction is used in the weights interaction in the form of signed distance
of the weights. The distance of one-dimensional values is usually denoted as an absolute value of their
difference. However, by removing the absolute value, the signed distance is obtained (i.e., simply the
difference of the values). The distance tells, that b̄ is

∣∣ā− b̄∣∣ far from the ā, in positive or negative
direction, but the signed distance specifies the direction (positive or negative) of the distance (i.e., b̄ is
ā− b̄ far from ā).

The mi weights’ relative position within the phase is clearly defined by the given phase offset
of the weights, corresponding to the difference of the weights’ values. For instance lets assume the
signed distance between first and second weight is given as m1 −m2 = φ2,1 = −φ2,3 and the signed
distance between first and third is given as m3 −m2 = φ2,3 = −φ2,1. Then the weights m1, m2 and
m3 have clearly defined both, order with respect to the phase progression ((i) m1, (ii) m2, (iii) m3)
and differences (phase offsets) between the weights, as shown in the visualization in Figs. 9 and 10.

The mi weights, corresponding to the phase of the i-th leg’s action, are defined within the given
interval [0, 2π). The weights should interact as they are all binded to the circle on which they interact.
The signed distance of the weights is computed as the difference of the weights’ values. To behave as
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3.2 Weights Within the Phase

on the circle, the function g(x), defined in Eq. 29, is applied to the weights’ difference.

g (x) :=

{
sign(x) · (2π − |x|) |x| > π

x otherwise,
(29)

The input phase offset ∆φ together with the coordination rules determine the relation between
the weights. The front legs’ weights mfront should each maintain the phase offset from the relevant
middle legs’ weights g(mfront −mmiddle) = ∆φ, (where middle leg’s weight is mmiddle) and also the
hind legs’ weights mhind should each maintain the phase offset from the relevant middle leg’s weight
g(mhind −mmiddle) = −∆φ. Those equalities imply three interaction rules, similar to the interaction
rules given in section 3.1.2. This method’s interaction rules are:

• if g(mfront −mmiddle) < ∆φ (or g(mhind −mmiddle) > −∆φ), then the weight mfront (or mhind)
should repulse from mmiddle, respectively,

• if g(mfront −mmiddle) > ∆φ (or g(mhind −mmiddle) < −∆φ), then the weight mfront (or mhind)
should atract to mmiddle, respectively,

• if g(mfront −mmiddle) = ∆φ (or g(mhind −mmiddle) = −∆φ), then the weight mfront (or mhind)
should not be influenced by mmiddle, respectively.

Given the third coordination rule, the contralateral legs can not undergo the same action simulta-
neously. Therefore, their respective weights must repulse each other.

The mechanism of weights interaction within the phase and its advantages compared to the mul-
tidimensional organization are illustrated in Figs. 9 and 10. The scheme in Fig. 4 (b) provides an
overview of the relations within the weights. The rules form the following equations:

dq(front,middle) := g
(
mq

front −m
q
middle

)
−∆φ, (30)

dq(hind,middle) := g
(
mq

hind −m
q
middle

)
+ ∆φ, (31)

dqk := g
(
mq
k −m

1−q
k

)
, (32)

where ∆φ is the given phase offset; k ∈ {front,middle, hind} represents the leg’s anatomic position;
q ∈ {0, 1} representing left and right side of the robot, respectively (e.g., m0

front is a weight corre-
sponding to the left front leg). The Eqs. 30 and 31 were created based on the interaction rules. The
Eq. 32 is given by the third coordination rule.

The Eqs. 30 - 31 define the forces, which force the weights based on their mutual interaction. The
influence of the forces dq(front,middle), d

q
(hind,middle) and dqk on their respective weights’ dynamics is given

by their coeficients cq(front,middle), c
q
(hind,middle) and cqk, respectively. The coeficients are normalized by π

(i.e., the half of the phase, which is the absolute value of maximum possible difference of two weights
from interval [0, 2π)). Therefore their values are from interval [0, 1]. They are all computed by the
same formula, but the cqk result is subtracted from one. The reason is that different behavior of the
forces is required.

The forces maintaining the given distance (dq(front,middle) and dq(hind,middle)) should be strongest when
the weights’ distance is very different from the given value. The closer the difference is to the given
value, the less intense the force should be. Therefore, the corresponding coefficients (cq(front,middle) and
cq(hind,middle)) approach the value one if the absolute value of difference of the given value and current
difference is close to the π (what is the maximum possible value of the difference’s absolute value). If
the given value and current difference are approximately the same, the coefficients approach zero and
the force does not influence the weights.
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3.2 Attaching the Weights to the CPG

On the contrary, the repulsive forces dqk should be strongest when the weights’ difference is small
because it is a wrong state. Therefore the influence of the repulsive forces grows with smaller weights’
difference. If the difference approaches π, then the coefficient cqk approaches zero and the repulsive
forces do not affect the weights.

The coeficients are given by the following equations:

cq(front,middle) := clip10

(∣∣∣∣∣d
q
(front,middle)

π

∣∣∣∣∣
)
, (33)

cq(hind,middle) := clip10

(∣∣∣∣∣d
q
(hind,middle)

π

∣∣∣∣∣
)
, (34)

cqk := 1− clip10

(∣∣∣∣dqkπ
∣∣∣∣) , (35)

where the function clipzy(x) is given by Eq. 21. The variables from Eqs. 30 - 35 are then used to form
the dynamic rules for the weights:

ṁq
front =

(
dqfront · c

q
front − d

q
(front,middle) · c

q
(front,middle)

)
· µ, (36)

ṁq
hind =

(
dqhind · c

q
hind − d

q
(hind,middle) · c

q
(hind,middle)

)
· µ, (37)

ṁq
middle =

(
dqmiddle · c

q
middle

)
· µ, (38)

where µ = 5 is a constant hyperparameter chosen empirically and the weights mq
k correspond to the

weights mi as follows: m1 = m0
front, m2 = m1

front, m3 = m0
hind, m4 = m1

hind, m5 = m0
middle and

m6 = m1
middle. Note that all the weights mi are bounded by interval [0, 2π). Hence, if any of the

weights declines below zero, the value of 2π is then added to the weight. Similarly, if the weight rises
above the value of 2π, the value of 2π is then subtracted from the weight. It can be expressed more
easily by defining that the (mod 2π) operation is applied to the weights.

Process, described in this section, corresponds to the illustration in Fig. 8 in the cell with the red
background.

This section introduces the mechanism of organizing the weights mi within the phase to corre-
spond to the given gait pattern and the coordination rules. The following section focuses on using the
learnedmi weights, organized within the phase, to map the wi weights on the CPG’s limit cycle using
the CPG’s phase estimation.

3.2.2 Attaching the Weights to the CPG

Each point y(t) on the CPG’s limit cycle corresponds to some phase φcpg(t). Therefore, each weight
wi can be assigned a point on the CPG’s limit cycle, which corresponds to the weight’s phase given
by the value mi. This subsecion proposes a mapping between the unknown CPG’s phase φcpg(t) and
its corresponding CPG’s states y(t) by estimating the CPG’s phase course to map the weights wi on
the CPG’s limit cycle based on their corresponding phase values mi.

It is known, that the CPG’s limit cycle l ⊂ Rdim(cpg) consits of the CPG’s states y(t) which repeat
periodically (i.e., y(t) = y(t + T ), where T is the period). Hence, a phase can be assigned to each
CPG’s state on the CPG’s limit cycle. The phase grows proportionally to time t, and same as the states
y(t), the phase values also repeat periodically (i.e., φcpg(t) = φcpg(t+T )). Therefore, each state y(t)
can be assigned a phase value φcpg(t) ∈ [0, 2π).
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3.2 The Training Signal

As both, the states y(t) and phase φcpg(t), are dependent on time and repeat periodically with
the same time period T , the phase and the state are considered as mutually determining each other.
In other words, there exists a bijection between the states y(t) and the phase φcpg(t). Informally
speaking, in each moment in time t we can look on the phase value φcpg(t) and assign it the current
CPG’s state y(t) as its corresponding state.

As the wi weights’ phase is known (each weight wi is related to its phase value mi), the cor-
responding state yi on the CPG’s limit cycle can be assigned. Both, the phase φcpg(ti) = mi and
the state y(ti) = yi, are given by a moment in time ti. The phase value is known via the weight
mi = φcpg(ti).

As the time ti is known in the moment when the phase equals the weight (i.e., φcpg(ti) = mi), the
ti can be used to determine the state y(ti) which correspond to the phase φcpg(ti). The assigned y(ti)
is the point, which the weight wi tries to achieve.

However, the CPG’s shape (i.e., the states y(t)), as well as the phase dependency on time φcpg(t)
are both unknown. In each moment t only the CPG’s state y(t) is known. To place correctly the
weights wi close to their corresponding y(ti), the phase φcpg(ti) must be known.

This section proposes a solution how to learn the phase course in section 3.2.2.2 using the signal
which is generated by the CPG (hence, it has the same period T and the same phase) as proposed in
section 3.2.2.1, and then, based on the learned (estimated) phase course, the solution how to place the
weights wi near to its corresponding CPG’s states y(ti) is described in section 3.2.2.3.

3.2.2.1 The Training Signal

The mechanism, which estimates the unknown CPG’s phase, requieres the input signal of the same
period T , as the CPG’s phase has. In this section, a mechanism to gain the specific input signal, based
on the CPG, is proposed.

The phase can be measured from an arbitrary moment in time (i.e., it is relative). Each moment in
time t determines the CPG’s state y(t), which always corresponds to the same phase φcpg(t). Hence,
everytime the CPG reaches the state y(t), the phase φcpg(t) has the same value. Therefore, to estimate
the CPG’s phase is the same as to estimate the occurrence of some specific CPG’s state in time (the
estimated phase is considered equal to zero in the moment of the state’s occurrence, i.e., for state y(t0)
in moment t0 the estimated phase value is equal to zero φcpg(t0) = 0).

Hence, to determine the phase course of the CPG, a signal s(t), signalizing the occurrence of the
selected CPG’s state, is used, as it has the same phase course as the CPG.

The signal s(t) is generated by one weight wsig with its corresponding RBF neuron. The RBF
neuron (generating the signal s(t)) fires when the CPG’s state y is close enough to the weight wsig.
The weight is placed (its position is learned) nearby the CPG’s limit cycle, which selects its closest
point of the CPG’s limit cycle as the state y(t0), which indicates the zero value for the estimated
phase. The signal s(t) consists of pulses, which occure as the CPG’s state approaches the state y(t0)
selected by the learned weight wsig.

The phase estimation process expects the input signal fulfilling few requirements. The signal’s
maximum within each period has to be a strict maximum within the period, and its value has to
approach the value one. Therefore, the signal ŝ(t) is proposed, which modifies the signal s(t) to meet
the requirements.

The weight wsig has to be close enough to the CPG’s limit cycle to produce the correct RBF
signal. To do so, the weight wsig is randomly initialized, and then the same mechanism as introduced
in section 3.1.3 is used.

dsig := y −wsig, (39)
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r
cpg
sig := f

(∥∥dsig
∥∥
2

ε

)
dsig, (40)

csig := ψ ·

(
clip10

(∥∥dsig
∥∥
2

ε

)
− 1

2

)3

, (41)

ε̇ =

{
σ · csig csig < 0

ρ · ε2 · csig otherwise,
(42)

ẇsig := η · rcpg
sig , (43)

where function f(x) is defined in Eq. 24; clipzy(x) is defined in Eq. 21; the constant hyperparameters
ψ = 8, σ = 10 and ρ = 0.25 were used; for the decreasing learning rate η, ensuring the convergency,
a function dependent on time, with limit approaching infinity equal to zero, was used.

The signal s(t) is produced by the RBF neuron’s signal (the same mechanism as presentedin 9,
with different variables):

s(t) := exp
(
−ε ·

∥∥y −wsig
∥∥2
2

)
, (44)

where constant hyperparameter ε = 8 was used. The signal s(t) is then modulated to produce the
needed training signal ŝ(t):

ŝ(t) := clip10 ((s(t)− 0.9) · 10) . (45)

The dependence on the time t is not explicit, but the time influences the components (they are
defined by their time derivatives) of which the signal s(t) is composed. Process, described in this
section, corresponds to the first two steps in the cell with blue background in the illustration showed
in Fig. 8.

The training signal ŝ(t), which has the same phase course as the CPG, is proposed with the use of
the weight wsig and its respective RBF neuron. The next step is to estimate the CPG’s phase course
with the use of the learned signal ŝ(t).

3.2.2.2 Phase Learning Process

Given the training signal ŝ(t), the mechanism for learning the phase course is proposed in this section.
To gain the CPG’s phase value φcpg(t), the relation between the phase and time has to be known. The
phase grows proportionally to time. However, growth of the phase by 2π does not have to correspond
to the growth of the time by 2π for all oscillators. The zero point of phase (i.e., moment, when
φcpg(t) = 0) can be assigned to an arbitrary time moment. To determine the phase’s course, the phase
differential (i.e., how fast the phase grows with respect to time) has to be known.

The signal ŝ(t) has distinct peaks repeating periodically, with the value of the peaks being equal
to one. The peaks serve as a marker of the moment when phase value φcpg(t) should be equal to zero.
In other words, each peak resets the phase, so the phase starts to grow from zero again.

To learn the phase growth (the phase’s dependency on time), the parameter p(t) is introduced.
If the p(t) is learned properly, its domain corresponds to the interval [0, 1], where the signal’s peak
value equal to one resets the value of p(t) to one. The value then decreases, and if learned correctly,
it approaches zero at the moment when another peak occures. The peak then resets the value of p(t)
to one again and so on. The p(t) is learned correctly if its functional value declines with the correct
speed.

The decline of p(t) functional value is given by the value of a, which is being learned. The a
represents p(t) function’s differential with respect to time, during most of the period’s duration. In
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3.2 Phase Learning Process

other words, the a is a parameter indirectly estimating the phase’s angular velocity.4 As the p(t) is
meant to decrease, the differential a has to be always negative.

If the absolute value of a is too large, the value of p(t) decreases too fast (i.e., the estimation
estimates the phase growth faster than the phase really grows). Then the value of p(t) is lower than
zero in the moment of the signal’s peak (the signal’s peak resets the value of p(t) to one).

In the other case, if the absolute value of a is too small, then the value of p(t) decreases too slow
(i.e., the estimation estimates the phase growth slower than the phase really grows). Hence, its value
is greater than zero in the moment of the signal’s peak (the signal’s peak resets the value of p(t) to
one).

The function p(t) is given by following equation:

d

dt
p(t) = a, (46)

and if ŝ(t) = 1, then the value of p(t) is reseted to be equal to one. In other words, if there is a signal’s
peak, then the p(t) is set to one, else the value of p(t) decreases based on the value of a.

The a is given by following equation:

a :=

{
a− κ · p(t−) ŝ(t) = 1

a otherwise,
(47)

where t− is the moment right before the moment t (i.e., the p(t−) denotes the value of p(t) right
before it is reset to one by the signal’s peak); hyperparameter κ is a small positive constant (in this
work κ = 0.02); ŝ(t) is given by Eq. 45.

The Eq. 47 implies that the differential a is constant until the signal’s peak occures. If the value
p(t) is not equal to zero in the moment of the signal’s peak, then the value of a changes. The change
is dependent on how far from zero the value p(t) is in the moment of the signal’s peak:

• If p(t−) < 0, then the p(t) decreases too fast. Therefore the a is increased by −κ · p(t−).

• If p(t−) > 0, then the p(t) decreases too slow. Therefore the a is decreased by −κ · p(t−).

If learned properly, the value p(t) decreases periodically from one to zero in exactly T long time
period, given by the input signal ŝ(t). Hence, the estimated CPG’s phase value can be expressed as:

φ̂cpg(t) := 2π(1− p(t)) (48)

The example of learning the phase estimation with differently initialized a are shown in Fig. 11 and
12, where as the training signal was used the RBF neuron signal of weight on the Matsuoka’s neural
oscillator’s limit cycle and the sinus function sin(t), respectively. The progress of the differential a is
shown in Fig. 13.

Process, described in this section, corresponds to the third step in the cell with blue background
in the illustration shown in Fig. 8 (the phase learning) and to the first step in the cell with green
background in the illustration shown in Fig. 8 (where the phase is learned and the mapping of the
weights mi on the learned phase is shown).

The CPG’s phase is estimated and the phase values for weights wi are given by their corresponding
weights mi. The following mechanism uses the estimated CPG’s phase φ̂cpg(t) to assign the wi

weights a CPG’s state y(t) on the CPG’s limit cycle based on the weights learned phase mi.

4The phase’s differetial with respect to time is equal to −2πa
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3.2 Phase Learning Process

Figure 11: Plots of the phase learning process with four different initializations of a, learning the
phase course of the signal with a period of the CPG (Matsuoka’s neural oscillator). The vertical
axis represents both, the value of p(t) and the value of the training signal ŝ(t). The horizontal axis
represents the count of iterations (t = iteration number/100). The ŝ(t) signal is modulated
signal s(t) generated by the RBF neuron coupled with the weight wsig. The weight wsig is close to
the CPG’s limit cycle. The learned phase course p(t) (blue) converges for all the cases to the optimal
value, which is shown by the converging orange line, representing the value of p(t) in the moment of
the training signal’s peaks (̂s(t) = 1). The initial values of a are −0.1, −0.4, −0.7 and −1 in the (a),
(b), (c) and (d), respectively. The progression of the differential a for all the cases is shown in Fig. 22
in the left-hand side plot. Note that the p(t) remains zero until the modified input signal approaches
value one.

Figure 12: Plots of the phase learning process with four different initializations of a, learning the phase
course of the sinus function signal. The vertical axis represents both, the value of p(t) and the value
of the unmodified input signal s(t) = sin(t). The horizontal axis represents the count of iterations
(t = iteration number/100). The input signal ŝ(t) is the modified signal of the sinus function
ŝ(t) = clip10 ((s(t)− 0.98) · 50). The learned phase course p(t) (blue) converges for all the cases to
the optimal value, which is shown by the converging orange line, representing the value of p(t) in the
moment of the training signal’s peaks (̂s(t) = 1). The initial values of a are −0.1, −0.4, −0.7 and −1
in the (a), (b), (c) and (d), respectively. The progression of the differential a for all the cases is shown
in Fig. 22 in the right hand side plot. Note that the p(t) remains zero until the modified input signal
approaches value one.
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3.2 Weights on the Limit Cycle

Figure 13: The plots represent the progression of the differential a for phase learning shown in Figs.
11 on the left hand side and 12 on the right hand side. The vertical axis represents the value of a, and
the horizontal axis represents the count of iterations (t = iteration number/100).

3.2.2.3 Weights on the Limit Cycle

This section introduces a method for organizing the weights wi within the CPG’s limit cycle with the
use of methods introduced in previous sections. In section 3.2.1 the weights mi (for i = 1, . . . , 6)
were organized within the phase (i.e., placed within the interval [0, 2π)). The sections 3.2.2.2 and
3.2.2.1 proposed the metod for estimating the phase based on a signal generated by the RBF neuron
respective to the weight placed on the CPG’s limit cycle. With estimated CPG’s phase φ̂cpg(t), the
weights mi are used to determine when the corresponding weights wi are being attracted by the
CPG’s state y.

The mi weights combined with the phase estimation φ̂cpg(t) produce a signal using the RBF
neurons, generated by following equation:

pmi := exp
(
−ε · g

(
mi − φ̂cpg(t)

)2)
, (49)

where the hyperparameter ε = 24; function g(x) is defined in Eq. 29. The signal sends pulse to the
respective weight wi as the estimated CPG’s phase φ̂cpg(t) approaches the value mi.

The signal pmi has the period of the used CPG and it could be used as a rhythmical input for the i-th
leg to invoke locomotion. However, it does not have the properties of the CPG, like synchronization
ability and perturbation resistance.

The reason is, that the signal-producing mechanism produces the signal based on the estimated
phase φ̂cpg(t), but not based on the CPG’s phase φcpg(t) itself. Once the CPG’s limit cycle phase’s
course estimate is learned, it behaves almost independently on the CPG (if the phase learning process
is still active, the estimated course is being influenced with a delay, else the phase estimation is not
influenced by the CPG’s state).

To actually use the CPG to produce a signal for individual legs, the weights wi have to be placed
on (or nearby) the CPG’s limit cycle. To do so, the pmi RBF neuron signal is used. Each weight mi,
which is placed within the phase, has its corresponding weight wi (introduced in Eq. 7). The pmi signal
determines the moment in time when the weight wi should trigger the action via its corresponding
RBF neuron and in that moment the weight wi should be close enough to the CPG’s current state y
(introduced in Eq. 6) to produce the RBF signal as defined in Eq. 9. Hence the signal pmi is used
to define when the weight wi is attracted by the CPG’s current state y, as defined in the following
equation:

ẇi = (y −wi) · pmi . (50)

The Eq. 50 represents the dynamics for the weights wi, which places them around the CPG’s limit
cycle based on the mi weights organization within the phase.
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3.2 Weights on the Limit Cycle

Process, described in this section 3.2.2.3, corresponds to the cell with green background shown
in illustration in Fig. 8. The final result of the whole section 3.2.2 is shown in the last step of the cell
with green background in Fig. 8.

This section presented a method solving the given problem of organizing the weights around the
CPG’s limit cycle to produce a gait pattern given by the phase offset ∆φ of the consecutive legs by
decomposing the problem on two separated tasks, the mi weights organization within the phase and
the estimation of unknown CPG’s phase. The weights mi, organized within a phase (based on the
rules from Chapter 2 Problem Statement), determine the moment when the signal pmi should send a
pulse. The pmi signal determines when the weight wi is attracted by the CPG’s state y, which results
in weights wi being organized along the CPG’s limit cycle. The mi weights are organized within the
phase according to the coordination rules from Chapter 2 Problem Statement. A corresponding CPG’s
state is assigned to each of the weights wi via the estimated CPG’s phase φ̂cpg(t) (as mentioned in the
introduction of this section 3.2.2, there is a bijection between the CPG’s phase and its states). Hence
the organization within the limit cycle also corresponds to the given coordination rules introduced in
Chapter 2 Problem Statement.

Based on the given input value ∆φ, the final weights’ organization around the CPG’s limit cycle
successfully generates each of the three gait patterns given by the input value ∆φ, as shown in the
results in Chapter 4 Results. Moreover, the method, proposed in this section 3.2, eliminates most of the
drawbacks of the method proposed in the previous section 3.1, as discussed in Chapter 5 Discussion.
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Chapter 4

Results

Two proposed methods, the Special Norm based Method (SNM) and the Phase Learning based
Method (PLM), were tested to prove their ability to self-organize the robot’s legs to produce desired
gait patterns. Both methods proved functional for all three desired gait patterns, as shown by simula-
tion results from CoppeliaSim simulator.

In the following section 4.1 the experimental setup is described, then the results for SNM are
presented in section 4.2, and for PLM the results are shown in section 4.3. The last section 4.4
introduces experiments, which were proposed to compare the computational and learning time of the
methods.

4.1 Experiments Setup
The dynamic system, consisting of introduced equations, was run for three different inputs of phase
offset of consecutive legs to demonstrate the solutions.

An Euler’s method with step size s = 0.01 was used to obtain values from differential equations.
The simulation runs for 20000 iterations.

To produce a signal, based on the weights organization (distribution) around the CPG’s limit cycle
to invoke the robot’s movement in the CoppeliaSim simulator, the RBF neurons, introduced in Eq. 9,
were used. The signals obtained from RBF neurons were then modified and their peaks were used to
trigger the predefined swing movement, followed by a predfined stance movement for the robot’s legs.

The methods were both implemented using Python 3 programming language. In the CoppeliaSim
simulator, a hexapod model PhantomX-v3.1 was used to run the simulations. To convert the generated
movement instructions to CoppeliaSim simulator, a Python API was used.

4.2 Method Using Special Norm
The SNM method takes one wi ∈ Rdim(cpg) weight for each of the six legs and organizes them around
the CPG’s limit cycle of unknown shape. The weights are organized with use of attractive and repulsive
forces within the weights and by attractive force invoked by the CPG’s state y. The results of the
experiments proved that the method successfully produces all three desired gait patterns.

Each of the desired gait patterns is determined by the phase offset of two consecutive legs. For all
three given phase offsets (2π/3, π, and π/3) the method organized the weights nearby the limit cycle
in a valid order (see Fig. 14) producing a signal to generate the given gait pattern using RBF neurons
(see Fig. 15). The RBF neuron signals were then used to trigger the swing of the robot’s legs in the
CoppeliaSim simulator (see Fig. 16).

Observing the RBF signals in Fig. 15, the various amplitude of the peaks is visible, as well as
the various width of the pulses (for the transition gait and wave gait in (a) and (c), respectively). The
inconsistency of the pulses could cause problems for some locomotion controllers in mapping the
pulses to the legs’ actions.

The different amplitudes are caused by the weights being differently far from the CPG’s limit
cycle. The weights are influenced by two kinds of forces. The repulsion and attraction to the other
weights and the attraction to the CPG’s limit cycle. Only the repulsive forces within the weights are
forcing the weights away from the CPG’s limit cycle.

The behaviour of the forces within the weights is strongly influenced by the implementation of the
special norm. The special norm’s definition determines the vicinity of the weights mutual influence.
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4.2 Method Using Special Norm

Figure 14: The figure shows the CPG and weights wi of the SNM. The progression of the weights
and the CPG is plotted in the row (a) (the upper plots). In the row (b) (the lower plots), a final state of
the weights is shown. The input values of phase offset of consecutive legs were ∆φ = 2π

3 , ∆φ = π
and ∆φ = π

3 , respectively, from left to right. The values correspond to the transition, tripod, and wave
gait patterns, respectively, from left to right. The red crosses mark the end states of the weights in (a).
Some weights are overlapping, which means that the legs corresponding to the overlapping weights
move simultaneously. The colors of the weights match the colors of their respective leg from Fig. 2.

Figure 15: Plots of the generated transition (a), tripod (b), and wave (c) gait patterns’ signals by
the SNM. The plots show the signals generated by the RBF neurons based on the difference of the
corresponding weight and the CPG’s current state. The left plots show the generating of the signals
initially, and the right plots show the generated signals at the end of the simulation. The horizontal
axis represents the iteration number (t = iteration number/100). The vertical axis represents
the signals’ value. The signals for simultaneously moving legs are overlapping in (b). Note that the
colors of the signals match the colors of their respective leg from Fig. 2.
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Figure 16: A showcase of applying the proposed method using special norm in the CoppeliaSim
simulator. Each sequence of images shows six chosen frames from one cycle of each of the gait
patterns. The images contain a timestamp. The timestamp measures the time since the beginning of
the showed cycle in format seconds:frames, where each second consists of 25 frames. The gates are
transition gait in (a), tripod gait in (b), and wave gait in (c). The arrows between the image sequences
indicate both the direction of the robot’s locomotion and the individual frames’ time passage.

There are many approaches how to find a suitable ellipsoid to generate the special norm, which con-
siders all the points of the ellipsoid’s surface having their norm equal to one. Different approaches
would affect the results differently. The approach used for the shown experiments is presented in the
Appendix A Special Norm Finder.

The various width of the pulses (see Fig. 15) is caused by the specifics of the used CPG and
the RBF neuron functions. The RBF neuron fires the pulse based on the Euclidean distance of its
respective weight wi to the CPG’s state y. However, the CPG’s state y moves with different speeds
through different space regions. Therefore, it is in the RBF neuron’s radius for a longer time period
for some weights than for the other weights. Hence, the pulse of the weights, in whose vicinity the y
moves slower, have a longer duration (i.e., are wider in the resulting plot). The diverse pulses’ width
could cause problems for some locomotion controllers while mapping the legs’ actions on the RBF
signals.

Despite the irregularities of the pulses, the method proved itself by successfully generating all
three given gait patterns.

4.3 Method Using Phase Learning
To produce stable gait patterns, the PLM decomposes the problem of organizing the weights within
themselves and keeping them close to the CPG’s limit cycle.

The method organizes the mi ∈ [0, 2π) weights within the phase (the weights are learned the
values which satisfy the coordination rules) and parallelly it estimates the unknown CPG’s phase
φcpg(t).

Based on the mi weights and the learned phase estimation, the method organizes the wi ∈
Rdim(cpg) weights around the CPG’s limit cycle of an unknown shape, by using the relation of the
CPG’s states y(t) and their respective estimated phase φ̂cpg(t).

The weights wi, organized around the CPG’s limit cycle, produce signal via RBF neurons, which
are used to trigger the swing of the robot’s legs in the CoppeliaSim simulator to produce the given gait
patterns. The results of the experiments proved that the method successfully produces all three given
gait patterns.
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The results of the particular tasks are shown in the following sections (organizing mi weights
within the phase in section 4.3.1, generating the learning signal and estimating the CPG’s phase in
section 4.3.2, placing the wi weights around the CPG’s limit cycle in section 4.3.3).

4.3.1 Weights Within the Phase

The weights mi were organized within the interval [0, 2π), representing the phase of i-th leg swing
triggering. The interval is easily visualized as a unit circle, which represents the limit cycle. The
learning process results consist of the four randomly initialized sets of weights for each given input
value (i.e., for each given gait pattern). Each gait pattern was learned successfully for each of the
random initializations, as shown in Fig. 17 for the transition gait, in Fig. 18 for the tripod gait, and in
Fig. 19 for the wave gait.

Figure 17: The weights mi for the transition gait. (a) Four different random initializations of the
weights and their progression within the first 2000 iterations. (b) Close up of the first 250 iterations
of the weights progression (the area with grey background in (a)). In both, (a) and (b), the vertical
axis represents the value of the weights and the horizontal axis represents the iteration number (t =
iteration number/100). (c) The final weights’ states (colorful dots) of the four different random
initializations mapped on the cycle (black)(horizontal axis is given by cos(mi), and the vertical axis
by y = sin(mi)).

4.3.2 Phase Learning Process and the Training Signal

The method of learning the CPG’s phase dependency on time learns the phase course based on the
signal s(t), which has the same period T as the CPG. The input signal for the method must be periodic
and it must have distinct peaks approaching the value one in its maximum (globally local maximum
within each period). Hence the input signal s(t) is modified in signal-specific function ŝ(t) (the func-
tion ŝ(t) differs for various signals s(t)). The phase’s dependency on time is given by function p(t),
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Figure 18: The weights mi for the tripod gait. (a) Four different random initializations of the
weights and their progression within the first 2000 iterations. (b) Close up of the first 250 itera-
tions of the weights progression (the area with grey background in (a)). In both, (a) and (b), the
vertical axis represents the value of the weights and the horizontal axis represents the iteration number
(t = iteration number/100). (c) The final weights’ states (colorful dots) of the four differ-
ent random initializations mapped on the cycle (black)(horizontal axis is given by cos(mi), and the
vertical axis by y = sin(mi)).
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Figure 19: The weights mi for the wave gait. (a) Four different random initializations of the weights
and their progression within the first 2000 iterations. (b) Close up of the first 250 iterations of
the weights progression (the area with grey background in (a)). In both, (a) and (b), the verti-
cal axis represents the value of the weights and the horizontal axis represents the iteration number
(t = iteration number/100). (c) The final weights’ states (colorful dots) of the four differ-
ent random initializations mapped on the cycle (black)(horizontal axis is given by cos(mi), and the
vertical axis by y = sin(mi)).
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whose decrease is given by its differential a.5

Figure 20: The plots show the progression of eight CPGs (black), where for each CPG, one weight
wsig (red) was randomly initialized. The place of the weight’s initialization is marked by the green
cross.

Figure 21: The plots show the progression of the ε determining the radius of the weight’s dynamic
vicinity for each of the respective weight wsig from Fig. 20. The vertical axis represents the value of
the ε, and the horizontal axis represents the iteration number (t = iteration number/100).

To produce the signal s(t) which has the same period T as the CPG, an RBF neuron depending on
the weight wsig is used, as described in Chapter 3 Proposed Method in section 3.2.2.1.

The CPG’s state y attracts the weight wsig (see Fig. 20) based on the weight’s dynamic vicinity
given by the vicinity’s radius ε (see Eq. 43 and Fig. 21). If the weight is close enough to the CPG’s
limit cycle, it starts to produce the signal s(t) via the weight’s respective RBF neuron (see Fig. 22 (a)).

The phase learning process starts, as the input signal ŝ(t) (the modified signal s(t), see the grey
signal in Fig. 22 (b)) reaches the required value one. Until that, the differential a is set to zero, so the
value of p(t) is constant and equal to zero. After the value one is reached by the input signal ŝ(t), the
differential a initializes to a negative value a0.

The choice of a0 influences the learning process speed significantly. Obviously, the closer the
initialization is to the optimal value, the shorter the learning process. In general, values closer to zero
(e.g., −0.1) are safer to use as an initialization value. The reason is that the differential a changes if in
the moment of the input signal ŝ(t) reaching value one the value of p(t) is not equal to zero, and the
change depends on how far from the value zero the value p(t) is.

The value of a lowers, if the p(t) is greater than zero in the input signal’s peak moment, and grows,
if the p(t) is lower than zero in the input signal’s peak moment.

5The a indirectly represents the phase’s angular velocity, which is estimated as −2πa.
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If the value of a is way too low (e.g., −10), the value p(t) is then too far from the zero at the
time of input signal ŝ(t) approaching one, and the differential a can become positive, what results in
unwanted behavior (this issue will be the subject of future research). Therefore, it is recommended to
use a0 closer to zero. If the a0 value is too close to zero, it slows down the learning process, but it
converges to the correct value.

The initialization of the differential a should always depend on the given input signal ŝ(t). It is a
parameter that has to be tuned to achieve fast learning for the given input signal ŝ(t).

In this work, the initial value for a was set to a0 = −0.4. The example of using different initial
values for two different input signals is shown in Chapter 3 Proposed Method in section 3.2 in section
3.2.2.

The learning process is shown using two different signals (to show that the method works for
signals of different periods), RBF neuron of the weight on the Matsuoka’s neural oscillator in Fig.
11, and sinus function signal in Fig. 12. The progression of a for both training signals of all four
initializations is shown in Fig. 13.

All the phase learning results from simulations in CoppeliaSim are similar, as they are not de-
pendent on the particular gait pattern. Therefore, only one of the phase learning processes (with
a0 = −0.4) generated during the simulations is presented in this section (see Fig. 22).

In all cases, the value of a converges to the same value, which estimates the optimal slope for the
function p(t) to estimate the given signal’s phase.

Figure 22: (a) The unmodified input signal s(t) (see Eq. 44) from RBF neuron. The area between
the red dashed lines is the part of the signal used as an input signal ŝ(t) for the phase learning in
(b), where the phase learning is shown. The blue line represents the estimation of the learned phase
course p(t), and the grey signal ŝ(t) is the modified input signal s(t) from (a). In (c) the progression
of the differential a (green) is shown, which determines the decline of the p(t) in (b). The vertical axis
represents the value of the corresponding variable (s(t) in (a), ŝ(t) and p(t) in (b), and a in (c)) and
the horizontal axis represents the iteration number (t = iteration number/100).

4.3.3 Weights on the Limit Cycle

The function p(t) is used to determine the CPG’s phase estimation φ̂cpg(t), as shown in Eq. 48. To
organize the weights wi (for i = 1, . . . , 6) within the CPG’s limit cycle the RBF neurons’ signals,
corresponding to the weights mi, were used. The i-th RBF neuron fires when the estimated phase
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φ̂cpg(t) is approaching the learned weight mi. The i-th RBF neuron’s pulse determine the moment
when the CPG’s state y attracts the corresponding weight wi.

Figure 23: The figure shows the CPG and weights wi of the PLM. The progression of the weights and
the CPG is plotted in the row (a) (the upper plots). In the row (b) (the lower plots), a final state of the
weights is shown. The input values of phase offset of consecutive legs were ∆φ = 2π

3 , ∆φ = π and
∆φ = π

3 , respectively, from left to right. The values correspond to the transition, tripod, and wave
gait patterns, respectively, from left to right. The red crosses mark the end states of the weights in (a).
Some weights are overlapping, which means that the legs corresponding to the overlapping weights
move simultaneously. The colors of the weights match the colors of their respective leg from Fig. 2.

No other forces influence the weights’ positions. As the CPG’s state y only attracts the weights
during periodically repeating time segment (determined by the RBF neurons’ pulses, see Eqs. 49 and
50), the weights are attracted to one segment of the CPG’s limit cycle, as shown in Fig. 23.

The produced RBF neurons’ signal started as unorganized, but the correctly learned weights pro-
duced correct rhythm, as shown in Fig. 24. The signals were then used to trigger the swing of the
robot’s legs in the simulation (see Fig. 25, where a showcase of one gait pattern’s cycle is provided
for each of the given gait patterns).

The pulses for different legs have different widths. Its cause is the same, as for the method SNM
(see section 4.2). RBF neurons’ signal depends on the movement of the CPG’s state y through the
respective weight’s wi vicinity. As the CPG’s state moves with various speeds through different space
regions, it also spends a different amount of time in the radius of different weights. Hence, if the y
moves slower around some weight, then the weight’s RBF neuron’s pulse is wider, then the pulse of
the RBF neuron corresponding to weight, around which the y moves faster.

However, unlike the pulses generated by the SNM, all the pulses have the same amplitude (ap-
proaching value one), which signifies improvement of the signal’s quality in comparison with the
SNM.

4.4 Computational Time
The last two experiments were run to compare the proposed methods in terms of computational time
and learning speed. The locomotion controllers for robots usually consist of many CPGs (six: one for
each leg, eighteen: one for each joint, etc.). Hence, it is assumed that the learning mechanism runs on
many CPGs parallelly, which increases computational time.

The methods have different computational complexity (see scheme in Fig. 4). Therefore, the
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4.4 Computational Time

Figure 24: Plots of the generated transition (a), tripod (b), and wave (c) gait patterns’ signals by the
PLM. The plots show the signals generated by the RBF neurons based on the difference of the respec-
tive weight and the CPG’s current state. The left plots show the generating of the signals initially, and
the right plots show the generated signals at the end of the simulation. The horizontal axis represents
the iteration number (t = iteration number/100). The vertical axis represents the signals’
value. The signals for simultaneously moving legs are overlapping in (b). Note that the colors of the
signals match the colors of their respective leg from Fig. 2.

Figure 25: A showcase of applying the proposed method using the phase learning in the CoppeliaSim
simulator. Each sequence of images shows six chosen frames from one cycle of each of the gait
patterns. The images contain a timestamp. The timestamp measures the time since the beginning of
the showed cycle in format seconds:frames, where each second consists of 25 frames. The gaits are
transition gait in (a), tripod gait in (b), and wave gait in (c). The arrows between the image sequences
indicate both the direction of the robot’s locomotion and the individual frames’ time passage.
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4.4 Computational Time

Figure 26: The figure shows the comparison of progression of the signals generated by the wi weights’
corresponding RBF neurons by both methods for the transition gait. Each line represents the value of
the corresponding signal’s peak. The learning process is finished when none of the lines changes its
value (if the lines have converged). In the upper part (a), the method using special norm is plotted. In
the lower part (b), (c), (d), and (e), the results of the method using the phase learning with four different
a initializations are shown. For all the plots, the same randomly initialized values for the weights wi

were used, and for the plots (b), (c), (d), and (e), the same randomly initialized values for weights mi

were used. The plot is meant to visualize the methods’ comparison with the identical initialization of
the weights. The initial values of a for plots (b), (c), (d) and (e) are equal to−0.1,−0.4,−0.7 and−1,
respectively. The vertical axis represents the value of the signals and the horizontal axis represents
the number of iterations (t = iteration number/100). The colors of the lines correspond to the
weights of their respective legs as shown in Fig. 2. Note that the signals are dependent on the random
initialization. Therefore, the plots are just an example of how the progress can look like.
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4.4 Computational Time

method 4 CPGs 8 CPGs 16 CPGs 32 CPGs 64 CPGs

SNM mean [s] 27.434 49.792 92.849 179.184 351.325
variance [s2] 0.172 0.205 0.035 0.292 2.506

PLM mean [s] 9.425 9.702 9.886 10.582 11.329
variance [s2] 0.115 0.001 0.001 0.002 0.009

Table 6: Computational time of simulating n ∈ {4, 8, 16, 32, 64} CPGs for 20000 iterations compari-
son. The experiment was run ten times for each n. The results, shown in the table, for the given n are
obtained by computing the mean and variance of the ten runs.

experiment, comparing the required computational time for running the learning process on more
CPGs simultaneously, was proposed.

The learning process of both methods ran for 20000 iterations for various counts of simultane-
ously running CPGs (4, 8, 16, 32 and 64), where each test instance was run ten times. The results are
presented in Tab. 6 as the means of the ten runs for each instance (in seconds).

The second comparing experiment was meant to show that the learning speed is dependent on the
random initialization. Therefore not much can be said about the comparison of the methods’ learning
speed.

Both methods were given the same initial values for the weights wi. For the SNM, only one
test instance was run, as it depends only on the initialization of the weights wi. For the PLM,
four instances were run, where the weights mi were initialized identically for all of them, but the
test instances differed in the initialization of the differential a. The initialization value for a was
a0 ∈ {−0.1,−0.4,−0.7,−1}. The results, shown in Fig. 26, are further discussed in the Chapter 5
Discussion.
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Chapter 5

Discussion

The discussion consists of multiple sections. The goal and both proposed methods are briefly re-
minded in section 5.1. Although both methods accomplished the given task, the Special Norm based
Method (SNM) has many drawbacks, discussed in section 5.2. Therefore, the Phase Learning based
Method (PLM) was designed to eliminate the drawbacks of the SNM, as discussed in section 5.3.
The discussion about the initialization effect on the methods is provided in section 5.4. The absence
of the ripple gait6 among the generated gait patterns is discussed in section 5.5. Finally, future work
possibilities are proposed in section 5.6, which concludes this chapter.

5.1 Goal and Methods’ Mechanism
The gait pattern is generated by moving the robot’s legs in the correct order. The CPG is used to
provide a periodic rhythm for the robot’s locomotion. To represent the legs’ activity, the weights
wi ∈ Rdim(cpg) are introduced to be spread around the CPG’s limit cycle to produce signals via their
respective RBF neurons if the CPG’s state is close enough to the corresponding weight. The aim of
this work was to organize the weights around the CPG’s limit cycle to produce a stable gait pattern
using the coordination rules, introduced in Chapter 2 Problem Statement, to determine the relations
between the weights, which enables them to interact and self-organize.

To accomplish the goal, two methods were proposed. Both methods are meant to produce the
same result. However, each of them solves the task with a different approach.

The SNM handles both problems at once. It takes the weights, organizes them within themselves,
and at the same time keeps them close to the CPG’s limit cycle.

The PLM separates the two tasks into independent parallelly running processes. It uses additional
weights mi (each mi weight is related to the wi weight), which are organized within the phase. To
determine the wi weight’s position on the CPG’s limit cycle, the weight is assigned its corresponding
limit cycle point, using the estimation of the unknown CPG’s phase as each point on the CPG’s limit
cycle corresponds to some phase.

For the SNM, the experiments demonstrated the forces of attraction to the CPG’s limit cycle and
the forces initiated by the weights’ interaction are able to place the weights wi near enough to the
CPG’s limit cycle to produce a signal with distinct peaks for triggering the legs’ actions.

The experiments results for PLM showed a working mechanism of phase estimation and its use to
map the estimated phase values to the CPG’s states y(t), which can be used for any task of assigning
a phase-related action to a specific CPG’s state. The experiments with PLM also proved that the pro-
posed mechanism for self-organizing the weights within the phase (assigning the weights values from
interval [0, 2π) while fulfilling the coordination rules) is relatively fast, deterministic, and providing
wanted configurations.

The experiments showed how the proposed mechanisms, organizing the weights around the CPG’s
limit cycle, work. For all the given phase offsets (∆φ ∈ {π/3, 2π/3, π}), both methods generated
correct corresponding gait patterns (wave gait, transition gait and tripod gait). The following sections
discuss the drawbacks of the SNM and how the drawbacks are eliminated by using the PLM. Then
the methods’ initialization and the absence of ripple gait are discussed, followed by the proposed
improvements for future work.

6One of the common gait patterns for hexapod walking robots.
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5.2 SNM: Consequences of Using the Special Norm
The SNM uses the special norm approximating the relation between the phase offset of the CPG’s
states and their distance. The weights’ final positions are dependent on the used special norm, as the
weights’ movement is given by the special norm of the weights’ differences. However, the method has
many drawbacks.

Firstly, the computational complexity of the learning process is high while using the special norm.
Computing the norm itself requires costly operations, 7 which are frequently used during the learning
process.

In the SNM, all the weights wi are restricted by all the other wi weights (see Fig. 4 (a)) to reduce
the number of possible configurations in the multidimensional space (as illustrated in Fig. 10). Every
two weights maintain the given distance between each other, given by their phase offset and costly
computed by the special norm of their difference.

Hence, the time, needed for the SNM computation, grows significantly with the greater number of
simultaneously simulated CPGs. The Tab. 6, shows the computational time of the two methods while
simulating 4, 8, 16, 32 and 64 CPG’s simultaneously. Usually, 6, 18, or more CPGs are used at the
same time to produce a gait pattern for a hexapod walking robot.

The computational units deployed on robots are limited by performing many other tasks, not only
the locomotion computation. Therefore, the growth of computational complexity is not negligible.

Secondly, even though the amount of restrictions is large, the method can result into different legs’
coordination. Unfortunately, not all of the results do fully correspond to the given coordination rules.

For instance, consider three weights being all on the limit cycle and should maintain the given
order (first, second, third) according to the limit cycle’s direction. Even after being restricted to move
only within the unknown limit cycle, there are still two possible configurations, which are both valid
in terms of the given restrictions of the given distance maintaining. Both orders, (first, second, third)
and (third, second, first), on the CPG’s limit cycle are valid in terms of the given distance maintaining
restrictions.

The problem of multiple configurations, fulfilling the given restrictions, is shown in the results of
the SNM. Specifically, the generated transition gait has the weights in reversed order (see Fig. 14) in
comparison to the illustrated example in Fig. 2. The produced gait is stable. Nevertheless, it does not
fully correspond to the coordination rules. Rules 1. and 2. are kept reversely. Usually, the middle leg
is the consecutive leg of the hind leg. However, the weights’ reversed order makes the hind leg the
consecutive leg of the middle leg. Therefore, the legs’ movement does not travel from hind legs to
front legs, but in reverse from front legs to hind legs.

Thirdly, the approximation defined by the special norm may not be precise enough. The reason
why the weights in Fig. 14 are so far from the limit cycle (for the transition and wave gaits) is, that the
unit sphere, given by special norm, only approximates the limit cycle. Therefore, the force, determined
by the special norm, pushes the weights farther from each other in some direction than the dimension
of the CPG’s limit cycle in that direction is.

Moreover, the weights’ distance from the limit cycle determines the signal, which the weights’
corresponding RBF neurons generate. As can be seen in Fig. 15, the peaks’ values vary for individual
weights’ signals. The peaks’ amplitudes variance could cause issues for some locomotion controllers
while mapping the signals to the legs’ movements.

Although, the SNM results could be improved by fine-tuning the parameters or finding better
special norm formula, I decided to create different approach, which would eliminate the drawbacks by
its design. The result is the PLM.

7like the dot products of matrix and two vectors, see Appendix A Special Norm Finder, where the implementation of the
special norm ‖−‖cpg is described
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5.3 PLM: Eliminating the SNM’s Drawbacks
The PLM was designed with SNM’s drawbacks in mind. Most of the SNM’s disadvantages were
caused by usage of the special norm to approximate the distance and phase offset relation, which
defined a connection between CPG’s phase and CPG’s states. By using the special norm, the SNM
simultaneously tackled both problems of organizing the weights within the period and keeping the
weights close to the limit cycle. The PLM decomposes the two problems into two separate tasks and
eliminates the three most significant SNM’s drawbacks.8

Firstly, the computational complexity was lowered. Instead of interactions between all weights,
only a few interactions are necessary while organizing the weights within the phase, as shown in Fig.
4 (b). As the weights mi, used for being organized within the phase, are only one-dimensional, it
reduces the computational complexity of computing their distances9.

Secondly, the PLM brings the advantage of easily definable order of the weights on the limit cycle
(as shown in Fig. 9 (a)) by using only one-dimensional weights to be organized within the phase. The
definable order solves the problem of the weights’ final state being configurated reversely within the
limit cycle, as mentioned in the section 5.2 as a drawback of the SNM.

Thirdly, because the weights wi (for i = 1, . . . , 6) are influenced only by the attractive force of
the CPG’s current state in the PLM, the weights are close to the limit cycle. Therefore, all the peaks in
the RBF neurons’ signal are similar and approaching value one. See the difference between the Figs.
15 and 24 of the RBF neuron’s signal of transition and wave gaits.

Overall, the PLM eliminates all the SNM’s drawbacks introduced in section 5.2. However, both
methods are dependent on their initial state.

5.4 Effect of Initialization
The common issue of both proposed methods is their dependency on the initialization, as the initial
state strongly influences the methods’ learning speed.

The SNM is dependent only on the initialization of the weights wi. If they are initialized far from
the limit cycle and in a very different order than is required, the learning process can last for about
20000 iterations or more. On the other hand, if the initialization is close to the final result, the learning
process can be swift. As the initialization is random, no estimation can be done.

For instance, see the Fig. 27 the Special norm method column. For transition gait, the gait is
relatively stable around 4000-th iteration, and after that, the weights are only being fine-tuned. Never-
theless, for the wave gait, the gait is becoming stable around 10000-th iteration.

The PLM depends mainly on two initialization factors. The differential a, influencing the phase
learning, and the initialization of the weights wi.

The differential a, indirectly representing the phase’s angular velocity, and its initialization value’s
influence is already described in section 4.3.2. The initialization of the weights wi influences the
learning speed by how far from the final positions the weights are initialized. The weights are attracted
only for a short time segment during each period. Therefore, if the weights are initialized far from
their final positions, it can take many cycles for them to get to the final positions.

The third initialization factor of the PLM is the initialization of the weights mi. However, as can
be seen in Figs. 17, 18 and 19, organizing the weights mi within the interval [0, 2π) stabilizes around
2000-th iteration. That is faster than the phase learning process. Therefore, it does not slow down
the process of organizing the weights wi as the weights mi are already organized correctly at the
beginning of the weights wi being organized around the limit cycle.

8The three drawbacks, discussed in section 5.2, are computational complexity, various possible outputs and the weights’
RBF neurons producing signals of different amplitudes.

9The SNM computes the special norm (i.e., the dot products of matrix and two vectors) of the difference of two vectors,
and the PLM only applies the function from Eq. 29 to a difference of two real numbers.
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Figure 27: The figure shows the comparison of progression of the signals generated by the wi weights’
corresponding RBF neurons by both methods for each gait. Each line represents the value of the
respective signal’s peak. The learning process is finished when none of the lines changes its value
(if the lines have converged). On the left-hand side are shown the peaks of the signals generated by
the method using special norm. The results of the method using phase learning are shown on the
right-hand side. The plots visualize the transition gait, tripod gait, and wave gait from top to bottom,
respectively. The vertical axis represents the value of the signals and the horizontal axis represents
the number of iterations (t = iteration number/100). The colors of the lines correspond to the
wi weights’ respective legs as shown in Fig. 2. Note that the signals are dependent on the random
initialization. Therefore, the plots are just an example of how the progress can look like.
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To compare the learning speed of both methods, additional experiments were run, where the same
randomly initialized weights wi were used for each CPG (see Fig. 26). Observing Figs. 27 and 26, the
observation is following: iteration numbers of gait becoming stable for the SNM are approximately
(4000, 8000, 10000, 6000) and for the PLM the iteration numbers are approximately (6000, 4000,
10000, 6000) for a initialized to value a0 = −0.4. The variances of the values are significant and the
values are similar for both methods. Therefore, the learning speed comparison does not provide much
information.

The duration of the learning process is given by the initialization of the methods’ parameters, and
the given phase offset determines the resulting gait pattern. Nevertheless, two common gait patterns
are given by the same phase offset, which resolves in the methods generating only one of them, as
discussed in the following section.

5.5 The Ripple Gait
One of the common hexapod gaits is called ripple gait, which is similar to the transition gait, as the
phase offset ∆φ of consecutive legs is for both the gaits equal to 2π/3. However, the coordination of
the legs for the ripple gait is a bit different than the transition gait. In comparison with the transition
gait, all legs’ activity from one of the sides of the robot’s body is shifted by π/3, resolving in the
simultaneous action of two legs, one from each side of the robot’s body, at the same time.

The following values are only an example of a valid ripple gait configuration, as more configura-
tions are valid: φ4 = 0, φ6 = 2π/3, φ2 = 4π/3, φ3 = 4π/3, φ5 = 0 and φ1 = 2π/3 (see Tab. 5 for
comparison with the transition gait values). The pairs of legs, undergoing the swing simultaneously,
are hind right and middle left, middle right and front left, and front right and hind left. To generate the
ripple gait by the methods, the value ∆φ = 2π/3 has to be the input.

However, the proposed methods generate the transition gait for the input value of 2π/3. Therefore,
I conclude that the coordination rules, presented in Chapter 2 Problem Statement, tend to prefer the
transition gait to the ripple gait.

The difference between the transition gait and the ripple gait is in the phase offset of the contralat-
eral legs, which is equal to π for the transition gait and 2π/3 for the ripple gait. Hence, if the repulsion
forces between the contralateral legs would be weaker, then the methods could possibly generate the
ripple gait.

Despite that both solutions, ripple gait and transition gait, are valid solutions for the given input
value ∆φ = 2π/3, both the proposed methods behave deterministically and always generate the
transition gait.

The reason why this work’s implementations of the coordination rules tend to prefer the transi-
tion gait over the ripple gait is a subject of future research, together with other model’s extensions,
discussed in the following section.

5.6 Future Work
There are many options for future work, which are of both kinds, directly extending the proposed
model and building on the proposed model.

The possible model extensions include tuning the hyperparameters, debugging of the proposed
mechanisms (for instance, the unwanted behavior caused by a > 0 or adjusting the RBF neurons to
produce pulses of identical width for all weights), finding heuristics for the initialization of randomly
initialized parameters, or extending the model to be able to generate gait patterns for robots with higher
(or lower) number of legs.

The robot’s body on a long-term mission can eventually decay. Hence, practical future work
would be to automatize the locomotion process even more, to be able to generate an efficient gait
pattern, based on the coordination rules, for the robot with malfunctioning joints or limbs.
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Chapter 6

Conclusion

In this work, two methods for self-organizing the legs’ actions within the CPG’s limit cycle to produce
the given gait patterns for the hexapod walking robot were proposed, tested, simulated and compared.

Each leg was assigned a weight to be represented in the CPG’s space. To organize the weights
around and nearby the CPG’s limit cycle, a set of dynamic rules was proposed based on the biologically
inspired coordination rules introduced in [11].

Gait pattern is determined by a phase offset of consecutive legs, as described in [2]. Hence, the
phase offset of consecutive legs was used as the input value to determine the desired output gait pattern.

Both methods successfully produced all given gait patterns. The method based on the special norm
is straightforward, but it has many drawbacks, including high computational complexity.

The drawbacks were successfully eliminated by proposing and using the second method based on
learning the CPG phase’s dependency on time, which enabled to decompose the problem into two
simpler tasks. Moreover, the second method provides a tool for mapping any action, given by the
phase value, on the CPG’s limit cycle.

In future work, I would like to improve the phase learning mechanism to be resistant against
positive values of the differential a, which causes unwanted behavior, and extend the model to generate
a gait patterns for differing number of legs. Also, if reasonably changed from random to deterministic,
the initialization process could improve the learning speed of the whole process. Another improvement
could be made to the RBF neurons to make the width of its pulses equally wide for weights on different
places of the CPG’s limit cycle.
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Appendix A

Special Norm Finder

The work consists of two methods for self-organizing the weights around the CPG’s limit cycle. The
first proposed method, proposed in Chapter 3 Method in section 3.1 is based on the relation between
phase offset of two consecutive legs and the distance of their relevant weights. However, to use the
relation, a special norm ‖−‖cpg has to be used to approximate the distances of the CPG’s limit cycle’s
points in relation to the CPG’s phase. The CPG’s limit cycle is a closed trajectory, which, for some
CPGs, lies nearby the surface of some ellipsoid. Therefore, it was proposed that the norm, which
transforms the ellipsoid into the unit sphere, can be used to approximate the relation between the
CPG’s phase and the distance of the CPG’s limit cycle’s points.

In this appendix, the ellipsoid norm, which transforms the ellipsoid into a unit sphere, is intro-
duced in section A.1. Then one method for finding a suitable ellipsoid, to approximate the relation
between the CPG’s phase and the distance of the CPG’s limit cycle’s points, is proposed in section A.2.
The proposed method for the ellipsoid finding is the method, which was used to run the simulations
presented in this work.

A.1 Norm Given by the Ellipsoid’s Semi-Axes
The norm is defined with the use of a scalar product in this section. Then the relation between the
ellipsoid’s semi-axis and the ellipsoid norm is introduced, where the ellipsoid norm is the norm, which
considers the ellipsoid as a unit sphere.

For space Rn, the scalar product is defined as a function:

〈x|y〉 : Rn × Rn → R, (51)

where x,y ∈ Rn, which meets the following requirements for all vectors x and y:

• 〈x|y〉 = 〈y|x〉

• 〈x|−〉 : Rn → R is a linear mapping

• 〈x|x〉 ≥ 0, 〈x|x〉 = 0⇔ xi = 0 for i = 1, 2, . . . n,

where each xi is a element of the vector x (i.e., x = (x1, x2, . . . , xn)). The scalar product is usually
given as:

〈x|y〉 := xGy, (52)

where G is a positive definite matrix. The scalar product invokes the norm:

‖x‖ :=
√
〈x|x〉, (53)

which needs to meet three requirements:

• ‖x‖ ≥ 0, ‖x‖ = 0⇔ xi = 0 for i = 1, 2, . . . n

• ‖ax‖ = |a| ‖x‖, where a is scalar

• ‖x + y‖ ≤ ‖x‖+ ‖y‖ (i.e., the norm preserves the triangle inequality)
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A.2 Ellipsoid Finder and Special Norm

The unit sphere is a shape in n dimensions, for which each of its surface points has the norm equal to
one. Therefore the unit sphere does not have to be necessarily shaped like a sphere. The norms ‖−‖1
and ‖−‖∞ generate unit spheres, which in two-dimensional space are squares, for instance.

To consider the ellipsoid as a unit sphere, the corresponding norm, which considers every norm of
a point on the ellipsoid’s surface equal to one, has to be found. Without loss of generality, consider
only the ellipsoids with their center placed in the origin of the space for now (i.e., c = (0, 0, . . . , 0),
all other ellipsoids are only shifted in space, but the properties are the same). Ellipsoid is defined by
its semi-axes, which define the ellipsoid’s size in the directions of the axes. As all the points of the
ellipsoid’s surface are required to have their norm equal to one (i.e., the distance of the points from
the center of the ellipsoid is equal to one), the semi-axes vectors should also have their norm equal
to one. For each ellipsoid’s dimension, one semi-axis is required (i.e., n-dimensional ellipsoid has n
semi-axes). Hence, the semi-axes are considered as the basis of the space where the ellipsoid exists.
Let the semi-axes be denoted as b1, b2, . . . , bn ∈ Rn. Then the matrix B is defined as:

B := (b1, b2, . . . , bn) , (54)

where the bi for i = 1, 2, . . . n are column vectors representing the ellipsoid’s semi-axes. As the
matrix B is a matrix of the ellipsoid’s basis (i.e., the ellipsoid’s semi-axes), its inverse matrix B−1

is a matrix, which transforms the ellipsoid’s semi-axes into a standard basis vectors (i.e., vectors in
format ei = (0, . . . , 0, 1, 0, . . . , 0), where the value one is on the i-th position) whose Euclidean norm
is equal to one (i.e., ‖ei‖2 = 1). That is the searched transformation, which ”sees” the semi-axes as
vectors with norm equal to one. Therefore, to compute the norm of vector v, while considering the
vector being in the ellipsoid’s space (defined by the ellipsoid’s basis), we can simply transform the
vector v from the ellipsoid’s basis to standard basis to gain its transformed version (i.e., vector v̂), and
then compute its Euclidean norm:

v̂ := B−1v, (55)

‖v̂‖2 =
√
v̂T v̂ =

√(
B−1v

)T
B−1v =

√
vT
(
B−1

)T
B−1v =

√
vTGev, (56)

where matrix Ge :=
(
B−1

)T
B−1. Therefore, the norm of the vectors, given in the ellipsoid’s basis,

is given as: √
vTGev := ‖v‖e , (57)

where the ‖−‖e denotes the norm invoked by the ellipsoid’s basis. Note that the norm also provides
the definition of the scalar product for the ellipsoid’s space:

〈x|y〉 := xTGey. (58)

In this section, the norm, which for all the ellipsoid’s surface points gives value one, was presented,
which is used in the next section to determine the special norm invoked by the shape of the CPG’s
limit cycle.

A.2 Ellipsoid Finder and Special Norm
The previous section introduced the norm, which measures all of the ellipsoid’s surface points’ norm
as one. In this section the method from the previous section is used to gain the special norm for the
given CPG. The CPG’s limit cycle is a closed trajectory l ⊂ Rdim(cpg) consisting of points l ∈ l,
which for some CPGs could be approximated by a closed curve on the surface of some ellipsoid. The
limit cycle consists of the CPG’s states y(t). In this section, a method for finding an ellipsoid, whose
surface is close to all states of the CPG’s limit cycle, is proposed.

52



A.2 Ellipsoid Finder and Special Norm

The states of the CPG’s limit cycle should be as close as possible to the searched ellipsoid’s
surface. Therefore, one possible solution can be an ellipsoid, which contains all the states inside its
volume and has the minimal possible size (i.e., the minimal ellipsoid wrapper of the limit cycle). The
following solution approximates the idea of the minimal wrapper.

The limit cycle’s point, which has the greatest Euclidean norm, has to be on the ellipsoid’s surface.
Hence, the point with the maximum Euclidean norm gives the first ellipsoid’s semi-axis.

Because the point with the second greatest norm would be a point very close to the first (as the
points are the points of a curve), it can not be chosen as the second semi-axis. The semi-axis has to be
perpendicular to each other. Therefore, I propose to reject all the points by the first semi-axis, which
is the projection of all the points to the linear subspace, which is perpendicular to the first semi-axis.
Hence, all the points are now perpendicular to the first semi-axis. I propose to repeat the process for
the new set of points (the rejected original points), find the one with the greatest Euclidean norm, and
make it the second semi-axis. Then again reject all the remaining points by it.

The process repeats, until there is n = dim(cpg) semi-axes chosen. The algorithm is shown as
pseudocode in Algorithm 1, where the matrix P is a matrix of rejection by the vector bi (i.e., the

Algorithm 1 Find the ellipsoid’s basis: B = (b1, b2, . . . , bn)

Require: lj ∈ l; l ⊂ Rdim(cpg); m ≥ n; if k 6= j then lj 6= lk for k, j = 1, 2, . . . ,m
B := ()
L := (l1, l2, . . . , lm)
for i in (1, 2, . . . , n) do

bi = arg maxl∈L ‖l‖2
append bi to B

P := bi ·
(

1
bTi bi

bi

)T
lj := lj − P · lj for j = 1, 2, . . . ,m
L := (l1, l2, . . . , lm)

end for
return B = (b1, b2, . . . , bn)

matrix of projection on the linear subspace perpendicular to vector bi); L is a finite subset of limit
cycle’s points (the lj are uniformly distributed within l).

In this work, the single CPG was simulated for few thousands of iterations, and in each iteration,
its state was stored and then used as the lj point. The lj points were used as an input for the algorithm
and the output matrix B was then used to generate the matrix Ge, as described in previous section
A.1. With the matrix Ge, the ellipsoid norm ‖−‖e can be defined. The ellipsoid’s basis (its semi-axis)
are generated based on the CPG’s states. Hence, I propose to use the ellipsoid norm ‖−‖e as the
searched special norm:

‖−‖cpg := ‖−‖e . (59)

The proposed approach is not optimal, but it serves its purpose well, as was proved by successfully
run simulations presented in this work.
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Appendix B

Content of the Enclosed CD

CD
source code

coppeliasim
dynsys framework
helpstring.txt
loco learn self org plm
loco learn self org snm
main.py
README.md
requirements.txt
results plm.txt
results snm.txt
robot
utils

transition gait plm.mp4
transition gait snm.mp4
tripod gait plm.mp4
tripod gait snm.mp4
wave gait plm.mp4
wave gait snm.mp4
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