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Abstract
This work is focused on the creation of
a collision-free navigation system for a
robotic helicopter. During this work the
matematical model of the quadracopter is
derived and linearized. The regulator for
the UAV is designed based on this model.
The solution for the localization problem
is provided in the form of Kalman fil-
ter. Space-efficient octree structure is pro-
posed to store robot configuration space
and A* algorithm is used for navigation
in this environment. The implementation
of the proposed algorithms is done in pro-
gramming language C++ and tested in
simulation environment Webots.

Keywords: UAV, colision-free system,
A*, octree, path planning

Supervisor: Ing. Jan Chudoba
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Jugoslávských partyzánů 3,
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Abstrakt
Tato práce je zaměřena na vytvoření bez-
kolízního navigačního systému pro robo-
tickou helikopteru. Během této práce je
odvozen a linearizován matematický mo-
del kvadrakoptéry. Regulátor pro UAV je
navržen na základě tohoto modelu. Ře-
šení problému s lokalizací je poskytnuto
ve formě Kalmanova filtru. Pro uložení
konfiguračního prostoru robota bude navr-
žena prostorově efektivní struktura octree
a pro navigaci v tomto prostředí je použit
algoritmus A*. Implementace navržených
algoritmů je provedena v programovacím
jazyce C ++ a testována v simulačním
prostředí Webots.

Klíčová slova: UAV, bezkolizní system,
A*, octree, plánování cesty

Překlad názvu: Bezkolizní navigační
systém pro robotickou helikoptéru
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Chapter 1

Introduction

1.1 Problem overview

The field of autonomous navigation is developing rapidly. Small and ma-
neuverable drones could be helpful in many fields, including rescue missions,
medicine, communications, transport, agriculture and many others. In order
to enable vehicle to fly autonomously stabilization and navigation algorithms
need to be developed.

1.2 Main goals

The aim of the work is a research and design of a collision-free navigation sys-
tem for an autonomous robotic helicopter in an unknown indoor environment.
The robot should find the a path from the current position to the destination
without colliding any obstacles. This path needs to be time and cost-efficient.
In order to solve the autonomous navigation problem, the following sub-
problems need to be solved: localization, environment re-construction, and
collision-free path planning.

1.3 Thesis outline

The testing of the designed methods was done in simulator Webots with
quadracopter Dji Mavic Pro. First, the controller for the UAV needs to be
designed because it is not provided by the simulator. Webots API allows
to control quadracopter by setting the angular speed of propellers. The
mathematical model of the system and design of the controller will be provided

1



1. Introduction .....................................
in section 3. Next step is to build navigation system. Sections 3-5 will be
dedicated to the description of that system. Finally, section 7 provides
implementation details and presents some results.
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Chapter 2

Sensors

Sensors help UAV to gain an information about its current state and the
environment. Global Positioning System (GPS) and the Inertial Measurement
Unit(IMU) sensors can be used to measure the current position and the
rotation of the UAV. Whereas, sensor such as lidars and cameras help UAV
gain information about its environment and make decisions based on the
data. In the next section the description of the most popular sensors for UAV
localization will be provided.

2.1 GPS

GPS, which stand for global positioning system, is a satellite navigation
system that provides an information about distance, time and position in
WGS 84 coordinate system that defines coordinates related to the center of
Earth. The main purpose of this system is to determine the current location
by measuring the time of flight of the synchronised signal from the satellites
to the receiver. The accuracy can vary from several millimeters up to several
meters.

2.2 IMU

IMU, which stand for inertial measurement unit, consists of one or more
accelerometers and one or more gyroscopes. The magnetometer is often
used as a part of the IMU. The accelerometer can measure acceleration
vectors by measuring the amount of static acceleration due to gravity. Using
the acceleration the direction of the gravity force vector is found. The
magnetometer measures magnetic field. By combining vector of magnetic
field and vector of gravity force, the rotation of the UAV can be obtained.

3



2. Sensors .......................................
Gyroscope is a device that can react to the changes in rotation. Measurement
of the angles from the gyroscope should be combined with the measurements
from the accelerometer and magnetometers due to gyroscope drift caused by
integration of inherent imperfections and noise within the device.

2.3 Lidar

Lidar, which stands for Light Detection and Ranging, is a device that measures
information about remote objects using an active optical systems. Lidars use
an infrared LED or a laser light and provides measurements based on the
received reflected light. Light can be diffused in any environment, therefore
lidar is a universal device for detecting objects. There are two types lidars
based on principles of signal processing.

The first type of lidars measures the displacement in the phase between
emitted and received signal. The advantages of this type of lidar includes
high precision of distance measurement. One of the disadvantages is the low
throughput.

The second type of lidars measures the Time-Of-Flight(TOF) of the light
ray that was reflected from the object. This type of lidar allows to measure
objects that are located far away from the device.

Key components of lidar are the light emitter and the light receiver. The
emitter directs the light ray to the mirror that is rotating as a part of the
housing of the lidar. After the ray is reflected, it returns to the mirror and
then to the receiver, which is capable of calculating the signal distance.

2.4 Camera

The measurement of distance can be obtained from cameras by using the
triangulation process. These cameras can take a picture of the same point in
space from different angles. The location of this object can be obtained from
the knowledge of the point projections and position of cameras.

Additionally, a RGB-D camera can be used for determining the position
of an object by using structured light that is projected to the scene by a
projector. The sensor(a camera) captures the light, and the position can be
determined with the help of triangulation. The processing of data from the
camera requires lots of computation power. In this work cameras will not be
used. In future works the system can be extended with this option in order
to gain more precise information about the environment.

4



Chapter 3

Mathematical model

In order to stabilize the UAV in the air, regulator needs to be designed. This
regulator should be based on mathematical model, derivation of which will
be provided in this section.

3.1 Coordinate systems

The coordinate systems is defined as following:

. Earth fixed frame or E-frame, where x and y axis forms a plane parallel
to the ground and z axis is perpendicular to it.. Body fixed frame or B-frame with the origin in helicopter’s center of
gravity.

To transform coordinates from E-frame to B-frame the following steps will
be be applied:..1. Rotate system around z axis at an angle ψ. This rotation is called yaw...2. Rotate the result of (1) around y axis at an angle θ. This rotation is

called pitch...3. Rotate the result of (2) around x axis at an angle φ. This rotation is
called roll.

These transformation can be written in the form of matrices:

5



3. Mathematical model .................................

Rx(φ) =

1 0 0
0 cos(φ) − sin(φ)
0 sin(φ) cos(φ)

 (3.1)

Ry(θ) =

 cos(θ) 0 sin(θ)
0 1 0

− sin(θ) 0 cos(θ)

 (3.2)

Rz(ψ) =

cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 (3.3)

R(φ, θ, ψ) = Rz(ψ)Ry(θ)Rx(φ) (3.4)

R(φ, θ, ψ) =

cos θ cosψ sinφ sin θ cosψ − cosφ sinψ cosφ sin θ cosψ + sinφ sinψ
cos θ sinψ sinφ sin θ cosψ + cosφ sinψ cosφ sin θ cosψ − sinφ sinψ
− sin θ sinφ cos θ cosφ cos θ


(3.5)

3.2 Non-linear model

Let the drone velocity in the B-frame system be vB and in the E-frame v.
With this information the following equation can be used to translate vector
of velocity from one coordinate system to an another:

v = R(φ, θ, ψ)vB (3.6)

Let drone angular velocity in the B-frame system be wB = [p, q, r] and in
the E-frame w = [φ̇, θ̇, ψ̇]. Angular velocity transformation is given by:

w = T (φ, θ)wB (3.7)

T (φ, θ) =

1 sin(φ) tan(θ) cos(φ) tan(θ)
0 cos(φ) − sin(φ)
0 sin(φ)

cos(θ)
cos(φ)
cos(θ)

 (3.8)

Newton–Euler equations:
FE = mv̇ (3.9)
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.................................. 3.3. Model linearization

τ = I · ẇB + wB × (I · wB) (3.10)

where τ =
[
τx τy τz

]
is a torque and I is inertia matrix, which is diagonal

because the rotation center coincides with the center of mass.

I =

Ixx 0 0
0 Iyy 0
0 0 Izz

 =

Ix 0 0
0 Iy 0
0 0 Iz

 (3.11)

Forces in E-frame can be described by the following equation:

F =

 0
0
−mg

 +R(φ, θ, ψ)

 0
0
FT

 (3.12)

where FT is a total propellers thrust.

From 3.8 and 3.12 we obtain the following equations:

v̇ =

 0
0
−g

 + 1
m

cosφ sin θ cosψ + sinφ sinψ
cosφ sin θ cosψ − sinφ cosψ

cosφ cos θ

FT (3.13)

φ̇θ̇
ψ̇

 = T (φ, θ)wTB (3.14)

ẇB = I−1(τ − wB × (I · wB)) (3.15)

3.3 Model linearization

During this work, methods that require linear model will be used, therefore
the model needs to be linearized. Linearization of the model will be done with
an assumption that the system will be staying near the chosen equilibrium:

x =
[
xe ye ze 0 0 ... 0

]

u =
[
mg 0 0 0

]
For small angles an approximation can be used:

sin x ≈ x, cosx ≈ 1 (3.16)

7



3. Mathematical model .................................
So that cosφ and cos θ can be approximated as 1, sinφ and sin θ can be
approximated as φ and θ respectively. Considering φ ≈ 0 and FT ≈ mg
equation 3.13 can be linearized

v̇ = g

 θ
−φ
0

 (3.17)

Linearizing equation 3.10:ṗq̇
ṙ

 =


1
Ix

0 0
0 1

Iy
0

0 0 1
Iz


τxτy
τz

 (3.18)

Linearization of equation 3.7 will look like as follows:φ̇θ̇
ψ̇

 =

1 0 0
0 1 0
0 0 1


pq
r

 (3.19)

The resulting state space model can be represented as:

ẋ = Ax+Bu (3.20)

where
x = [x, y, z, ẋ, ẏ, ż, φ, θ, ψ, p, q, r]T , u = [FT , τx, τy, τz]T

A =


O I O O
O O A1 O
O O O I
O O O O


where O is 3x3 zero matrix, I is 3x3 identity matrix,

A1 =

 0 g 0
−g 0 0
0 0 0



B =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 1

Ix
0 0

0 0 1
Iy

0
0 0 0 1

Iz


8



...................................... 3.4. Controller

3.4 Controller

Controller for the UAV stabilization is going to be implemented as the
following. The input controller will receive the desired position xdes, ydes, zdes
and yaw angle ψdes.

3.4.1 Position controller

The position PID controller represents an outer loop of the regulator. The
controller tries to exponentially minimize an error in the current UAV altitude
values and the position in x-y plane.

FT = m(Kpzez +Kiz

∫
ez +Kdz ėz + g) (3.21)

where ez = zdes − z.
For the x and y coordinates desired accelerations will be calculated:

ax = Kpxex +Kix

∫
ex +Kdxėx (3.22)

where ex = xdes − x.

ay = Kpyey +Kiy

∫
ey +Kdy ėy (3.23)

where ey = ydes − y.
ax, ay will be passed to the inner loop of the regulator, FT will be passed
directly to the motor controller.

3.4.2 Altitude controller

The relation between desired acceleration and angles is given as the following:[
φdes
θdes

]
= 1
g

[
sinψdes − cosψdes
cosψdes sin psides

] [
ax
ay

]
(3.24)

ax and ay values will be obtained from the outer loop and ψdes value will
be given as the controller input. Then the PD controller for the moments
calculation will be applied as:[

mx

my

]
=

[
Kpφ 0

0 Kpθ

] [
eφ
eθ

]
+

[
Kdφ 0

0 Kdθ

] [
ėφ
ėθ

]
(3.25)

where eφ = φdes − φ, eθ = θdes − θ. Moment for ψ angle will be given as
following:

mz = Kpψeψ +Kdψeψ, (3.26)
where eψ = ψdes − ψ.
Resulting moments mx,my,mz will be passed to the motor controller.

9



3. Mathematical model .................................
3.4.3 Motor controller

The input for this controller is FT from the outer loop and mx,my,mz from
the inner loop. First, these values will be converted to the motor thrusts:

T1
T2
T3
T4

 =


0.25 −c −c −c
0.25 c c −c
0.25 c −c c
0.25 −c c −c



FT
mx

my

mz

 (3.27)

where c is an arm length, T1, T2, T3, T4 is the thrust values on the front right,
rear left, front left and rear right motors accordingly.
Finally, the thrust values will be converted to angular speed of the motors,
which can be passed to Webots API:

w1
w2
w3
w4

 = K


T1
T2
T3
T4

 (3.28)

where w1−4 is an angular velocity values of the corresponding motors, K is
the proportional coefficient between the thrust and the angular velocity. This
coefficient was determined empirically: trust values of all motors was set to
mg
4 , so that the total thrust is equal to mg, and K was incremented until the
quadracopter has risen up.

3.4.4 Implementation

The Matlab simulation results were obtained for the designed controller of
the circular trajectory:

Figure 3.1: Trajectory tracking in Matlab simulation. The blue line represents
a desired trajectory and the red line represents a measured trajectory

10



...................................... 3.4. Controller

Figure 3.2: Referenced and measured values for the position of the UAV (blue
line - desired, red line - measured)

The next step was to evaluate the designed controller in a physics simulator.
The calibration of the coefficients were done empirically in a simulator.

(a) : Altitude of UAV (b) : Position of the UAV
and start position x = 0, y = 0, z = 0

Figure 3.3: Results of the simulation of the flight with desired position xdes =
2, ydes = −7, zdes = −7, ψ = 0

The results are presented with the following coefficients:
Kpz = 1.8,Kiz = 0.001,Kdz = 0.9
Kpx = 0.6,Kix = 0.001,Kdx = 0.6
Kpy = 0.6,Kiy = 0.001,Kdy = 0.6
Kpφ = 0.06,Kdφ = 0.012
Kpθ = 0.06,Kdφ = 0.012
Kpψ = −0.005,Kdψ = −0.0025

11



12



Chapter 4

Localization

4.1 Problem description

A precise location estimation plays an important role in an autonomous
navigation of Unmanned Areal Vehicles. There are many techniques, where
some of them are suitable for an indoor navigation, some of them for outdoor
navigation, some of them requires additional techniques such as filtering.

4.2 Localization techniques

There are many algorithms which are able to localize the UAV. Simultaneous
Localization and Mapping (SLAM) algorithm is an algorithm where the
position estimation is done by evaluation of the environment simultaneously
with mapping process.

Particle filter algorithm is a SLAM method that relies on random sam-
pling of the state. Each sample is assigned a weight value, which represents
a probability of that sample to be taken from the probability density func-
tion. In the next iteration resampling is done based on these weights. This
algorithm was incorporated by [YFZ+18], where the combination of lidar and
RGB-D camera measurements were used in order to map the environment.
In [Rig12] Particle filter is compared with other filter algorithms that use
non-linear model.

Additionally, the Motion capture system, that follows the position of
the robot, is used for an indoor navigation in laboratories. In an outdoor
environment the information about the current location can be obtained from
the GNSS. Measurements from the GNSS are not accurate, therefore a signal
filtering technique should be introduced.

13



4. Localization .....................................
In simulation environment, the GPS signal error can be adjusted so that

the signal will be accurate sufficient in order to localize the UAV accurately.
In the laboratory environment, the measurements that are received from
the Motion Capture system can also be used together with Kalman filter
in order to obtain the current location. The Kalman filter would not be a
sufficient solution to use in an outdoor environment due to an error in GNSS
measurements that could become relatively large.

4.3 Kalman Filter

The Kalman filter is a recursive filter that estimates the state of the system
using calculated predictions and measurements. It allows to decrease sensor
measurement errors caused by noise. The Kalman filter algorithm consist of
the following two phases:..1. Predict

During this phase, the a priori state of the system is predicted based on a
linear model of the system. Additionally, the a priori estimate covariance
matrix is predicted.
Prediction of the state using a state space model:

xk = Fx̂k−1 +Bduk + w (4.1)

where xk is predicted(a priori) state in the current iteration, x̂k−1 is a
posteriori state in the previous iteration, w is a process noise that is
caused by model approximation errors.

Prediction of the estimate covariance matrix Pk−1:

Pk = APk−1A
T +Q (4.2)

where Pk−1 is an estimate covariance matrix in the previous iteration
and Q is the process noise...2. Update
During this phase new observations from the sensors will be obtained
and processed. Optimal Kalman gain Kk calculation:

Kk = Pk−1H
T (HPk−1H

T +R)−1 (4.3)

where R is a covariance matrix of noise in measurements, H is an
observation model.
Measurements processing:

yk = Cykm + Zk (4.4)

14



.................................... 4.3. Kalman Filter

Update of the (a posteriori) state estimate:

x̂k = xk +K(yk −Hxk) (4.5)

Update estimate covariance matrix:

Pk = (I −KkH)Pk (4.6)

From 4.5 Kalman filter can be represented as an interpolation between
predicted and measured state:

x̂k = (I −KkH)xk +Kkyk (4.7)

By changing the Kalman gain the contribution of the predicted and estimated
states in resulting state estimate can be controlled.

15
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Chapter 5

Space representation

Robot path planning determines a path which the robot should follow in order
to reach its goal without colliding with any obstacles. The environment of the
robot’s configuration space will be build in order to determine collision-free
path.

5.1 Related Work

There are numerous proposals on how to represent the configuration space for
the robot. Uniform grid map is a representation of the space, where each
cube, or a voxel, has an equal size. The advantages of using this approach is a
high speed of search queries. However, this approach also has disadvantages.
Firstly, the entire space must be represented with the same number of voxels.
Large amount of redundant information has to be stored if the obstacles are
infrequent. Secondly, searching algorithm will be slowed down by the large
amount of traversed nodes. Space usage for 3D space of uniform grid maps
can be decreased by 2.5D grid maps([NSC17]). In this maps, occupation
information is represented as a starting point of unoccupied height of cells in
the x-y plane. This approach causes problems in environment where some
obstacles are located above the robot.

Non-uniform grid maps are more efficient way to store information
about the environment. This methods are based on adaptive and exact cell
decomposition. In case of exact cell decomposition the large cells is divided
into cells with predefined size, whereas in adaptive one the size of the smaller
cells can vary. Quadratic tree layout for 2d space and octree for 3d space
is a frequently used example of exact cell decomposition. In this layout the
density of cells is higher near the obstacles and sparse in free spaces. This
approach also has some disadvantages. It is going to be harder to combine
results from multiple sensors. Moreover, the time of the search for one node

17



5. Space representation .................................
will be increased.

In [CN06] distinct measurements from sensors were used to store informa-
tion about the environment. The main drawback of this method is that the
information about both free and unknown space could not be retrieved.

5.2 Octree

Octree representation belongs to a non-uniform grid map representation. The
map consists of voxels of different sizes, where each voxel can be subdivided
into eight smaller voxels of an the equal size. Each voxel stores information
about its occupancy. Traditional space representation

[HWB+13] describes the probabilistic occupancy model based on octrees.
Instead of storing boolean value indicating occupancy of the cell, the Voxel
is considered as occupied when probability is greater than the predefined
threshold. Due to the fact that data is stored as a tree, the time complexity
of queries compared to uniform mapping will increase from O(1) to O(log(n)),
where n is a number of voxels. Each voxel is represented as the following:
struct Voxel{

Voxel ** children
float occupancy_probability

}

where children is a pointer to an array of the sorted pointers to eight children
voxels.

The depth of the current child, size and center can be retrieved from the
parent values during the tree traversal.

When a new data(hit or miss) arrives from sensors, the tree expands all
levels from the root to the lowest leaf and updates its log-odds value according
to the following equation:

L(n) = L(n− 1) + P (n)
1− P (n) (5.1)

where L(n) is the current log-odds value, L(n−1) is the previous log-oggs value
and P (n) is a prior probability of occupied/free node respectively. Finally,
the occupancy probability can be calculated with the following equation:

P (occ) = 1− 1
1 + exp(L(n)) (5.2)

Parent log-odds value is then set to the maximum value of children’s log-odds
values.

18



............................ 5.3. Processing obstacle information

Storing the occupation probability reduces errors introduced by the noise
in the lidar measurements and helps to deal with dynamic obstacles. In order
to keep the size of the tree smaller, compression technique was introduced:
for the log odds value two thresholds were introduced: lmin and lmax. If log
odds value of the voxel is higher than lmax or lower than lmin it is considered
to be stable. If all children voxels of the parent voxel are stable, then the
children can be pruned.

5.3 Processing obstacle information

5.3.1 Limitations

With one layer lidar, only one layer of space can be scanned in one iteration.
That means that the other layers of space remains unknown for the UAV.
This results in the robot being unable to find the path even if a valid path
exists. During flight UAV tilts at different pitch and roll angles, that allows
to obtain information from other layers of the space. Because of that path
finding algorithm will have enough information to construct the path with
first several steps without collisions. Re-planning will be made during all
flight and because of that UAV will be able to quickly react on the changes
of the environment if some new obstacles will be found. Moreover, proposed
path planning algorithm tends to find optimal path. It means that if the
feasible path exists in the current layer of the space, planner will find it.

5.3.2 Data processing

Simulation environment Webots provides an access to lidar measurements as
an array of distances where light hits an obstacle. If there was no obstacle
within the scanning range, those distance would be the maximum lidar
detection distance possible.

Assuming measured distance is returned as a distance from the UAV to the
obstacle, this measurement will be first be rotated and translated according
to the following equation:xy

z

 = R(φ, θ, ψ)

x0
y0
z0

 +

xoyo
zo

 (5.3)

In order to incorporate new obstacle information into the environment
map, Digital differential analyzer algorithm for 3D space([AW87]) is used.
All voxels that the light intersects from the current position of the UAV, the
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lidar measurement will be updated with a new information about free space.
If the measurement is within the bounding box of the distance limit of the
lidar, the last voxel that the ray intersects will be updated with a hit.
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Chapter 6

Path planning

6.1 Problem description

For collision-free path planning, environment space should be represented as
a discrete information about the occupancy of certain place. This space is
then processed by the path finding algorithm, that will be able to generate a
safe path.

6.2 Related works

Being a topic of great interest over the past years, there was an extensive
research done in the field of path planning.

Probabilistic roadmaps(PRM)
The key idea of this algorithm is to connect randomly generated samples of
states together to form a graph in such way so the edges of this graph does
not intersect with obstacles. In order to fin a path from start vertex to goal
vertex, Dijkstra algorithm can be applied. Particular representation of this
approach is Voronoi graph([CB00], [SAC+08]).

Rapidly-exploring random tree(RRT)
The same as PRM, this approach works by generating random samples and
connecting them together into a graph. The algorithm starts by placing first
node in the start point, then every iteration it creates a new vertex in a
random place. Next it checks if the new vertex lies outside any obstacles and
connects it to the nearest existing vertex if no obstacles are lying inside the
path between them. The algorithm finishes when it finds an obstacle close to
the goal point. RRT is able to find some path, that may not be an optimal
path. The optimized version of RRT is RRT* that will generate shortest path
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6. Path planning ....................................
to the goal within all generated vertexes. After finding a new vertex, the
algorithm does not connect it to the nearest neighbour, instead it reconnects
all nodes in the tree within the specified search radius in a way that maintains
a tree structure and also minimizes the total path length. In [WZSM15] RRT
algorithm was proposed as a solution of the problem for a feasible and safe
path between UAVs and RRT* to optimize the path. Additionally, RRT was
incorporated in [YJZ18] as a solution for the path planning problem.

Graph search methods
This group of methods is frequently used in various works. This group includes
algorithms such as BFS, DFS, Dijkstra algorithm, A* and its modifications
such as generalized adaptive A*, A*-lite, D*. These graph algorithms generate
optimal path. For example, in [PGC18] author used bidirectional A* algorithm
to find admissible path and convert this path into B-spline curve. In the work
[YLX13] A* was used in combination with PRM.

Neural networks
Neural networks nowadays are used in many different fields. The concept of
neural networks comes from the the principle by which the brain works. A
signal(number) is transmitted from the input layer of neurons to the output
layer of neurons based on connections that were build during the training
process. According to the universal approximation theorem, neural network
can approximate any continuous function with any precision. In path finding
problem, they was incorporated by [XY18].

Genetic algorithms
This group of algorithms were inspired by natural processes. The algorithm
first starts by generating random properties, followed by operations of crossing-
over, mutations, and population selection each iteration. The population
evolves by each iteration. This approach is presented in work [LPMM18],
where properties were the trajectory of UAVs.

Markov decision process(MDP)
This method s used to solve stochastic, sequential problems. MDP is consist
of state spaces, action spaces, transition probability and cost function. Every
transition from one state to another have its cost or reward. The solution for
this task an optimal policy, or the optimal action for the certain state, which
is found by maximizing the total reward. This method is used in [YZZ17].
A generalization of MDP is POMDP(partially observable Markov decision
process). In POMDP instead of storing state the probability distribution of
different observations in state is stored. This method was used in [ECM17].

Model predictive control(MPC)
The goal of this method is to optimize function based on some chosen
constraints. In the case of the UAV autonomous flight, this constrains
can consist of collision constraints, as well as constrains on velocity and
acceleration([MNG15]).
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6.3 A* algorithm

At the first subsection of this section A* algorithm will be described, the
second subsection will be dedicated to choice of heuristics functions and
the following subsections will be focused on solving issues in using octree
representation in A* algorithm.

6.3.1 Algorithm description

A* algorithm an algorithm for finding an optimal path. It aims to find the
path, that minimizes the cost function

c(x) = g(x) + h(x) (6.1)

where x is the current vertex, g(x) is a distance to the current vertex from the
start vertex and h(x) is a heuristic function. Heuristic function is consistent
when it satisfies the equation h(x) ≥ d(x, y) + h(y), where d(x, y) is the
distance between vertices x and y (or the length of the edge) for every edge
of the graph. A priority queue is used for retrieving the vertex with the
lowest cost with a time complexity O(1) and sorting with time complexity of
O(log(n)).

6.3.2 Heuristic function

It is important to choose an appropriate heuristic function in order to achieve
high speed algorithm. For this work diagonal distance heuristic was used,
where the distance to the destination is calculated assuming that object can
perform diagonal translation. For the 3d space the equation is the following:

d = D(∆x+ ∆y) + (D2 − 2D)min(∆x,∆y) (6.2)

where ∆x and ∆y are the absolute distances between current cell and the goal.
D = 1 and D2 =

√
2 will be used. This distance function is called an octile

distance. In situations where diagonal moves are possible Euclidean distance
can also be used as a heuristic function. The equation for that function is
the following:

d =
√
x2 + y2 + z2 (6.3)

In this case A* will expand more cells due to that fact that decrease in
heuristic will not be proportional with the increase in the distance value of
g(x). This result is also shown in the 6.1, where the filled area represents
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6. Path planning ....................................
the expanded cells. Decrease in the number of expanded cells is especially
noticeable in empty space, which is often the case for the natural environment.
When there are many optimal paths in the map, A* will tend to explore all
of them, because cost function will return the same results for all this paths.
The solution to overcome this problem is to slightly increase the value of the
heuristic function. Increase in 0.1% will be enough to solve this issue.

(a) : Euclidian dis-
tance in empty space.
Number of expanded
nodes: 2343.

(b) : Octile distance
in empty space. Num-
ber of expanded nodes:
545.

(c) : Euclidian dis-
tance in space with ob-
stacles. Number of ex-
panded nodes: 7680.

(d) : Octile distance
in space with obstacles.
Number of expanded
nodes: 7023.

Figure 6.1: Comparison of the expanded area of A* algorithm (a, c) with the
octile distance heuristic function (b, d) with the Euclidean distance heuristic
function
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.................................... 6.3. A* algorithm

6.3.3 Neighbour finding strategy in the octree

Figure 6.2: Face directions

(a) : Edge directions (b) : Vertex directions

Some strategies were developed to find neighbours in the octree structure.
One of the options is to traverse the entire tree and find cells that are sharing a
common face, edge or vertex with the current cell. Also backtracking strategy
can be used for neighbour searching that involves tree traversal through the
octree from the current node.

Works [Vö00] and [KL09] present the relationship between neighbour voxels
based on unique voxel number. This number is called a location code and it
is assigned for each voxel based on the parent number and a position relative
to the parent. The whole octree is then stored inside a hash map with a
location code as a key and voxel information, such as the occupancy, as a
value. The neighbours of the same size can be retrieved by searching its
location codes inside lookup table. If the neighbour does not exist, the code
of the neighbour is then adjusted towards the root of the tree until the code
of an existing voxel will be reached. If the neighbour exists, the search for its
children in appropriate direction will be executed. A voxel will be considered
a neighbour if that voxel does not have children in the search direction. The
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6. Path planning ....................................
advantages of this method is a highly optimal search speed and reduced
memory consumption for storing the octree structure.

In [RVZ16] authors present the possibility of finding neighbours during the
octree construction and store them in a network graph. This method does
not require an additional time for the neighbour finding during the search,
this leads to time reduction during path finding process. Although, it is not
suitable for hardware that has strict memory limitations.

If the size and the position of the voxel is known, then the query for the
neighbour can be performed. For each of the faces, edges and vertexes of the
voxel for the neighbour will be found by searching in the tree coordinates of
the center of the current voxel with an offset equals to the size of the current
voxel in appropriate coordinates. This search will be limited to the same size
and larger voxels only. These neighbour voxels are checked for children in
the direction opposite to the direction of the neighbour voxel.

For example, the voxel A for which the neighbours should be found, is
located in depth 14, it has a size of 1 meter in all directions and a center
at coordinates (0, 0, 0). The neighbour B that lies in the northern direction
(marked as N in 6.2) and shares a common face with A and is located at
the same depth should have center at coordinate (0, 0, 1). The voxel can be
found by traversing the tree from the root node. If this voxel will not be
presented in the tree, then its parent(voxel in lower depth) would be found by
the search algorithm, and set as B. If B would be the same size as A(located
at the same depth), the algorithm will check for children in the appropriate
direction will be executed: in case of neighbour in the northern direction,
there will be all children voxels that share the southern face(marked as S in
6.2) with the voxel B. That procedure will be done recursively for all found
children. Neighbour of A would be the last voxels that do not have children
in the southern direction.
The time complexity of search for one neighbour is then O(d), where d is the
depth of the tree.
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6.3.4 Dealing with unexpanded voxels

Figure 6.3: Destination is set too far away from the start. Goal voxel is colored
red, start voxel is colored green

Lidar scans is limited to a relatively small distance. This leads to the low
depth expansion of the octree in places where no lidar measurements are
available. If the goal node will be chosen far away from the start node, the
appropriate voxel where goal is located can be too large. In 6.3 the example
of that behaviour is shown. Green voxel is a voxel where the UAV is located
and the red voxel is the result of search 10 meters away in x and y coordinates
from the starting point.

Figure 6.4: Common neighbours of the start and the goal voxel(filled with blue
color)

6.5 shows the common neighbours for the start and goal nodes. In this case
A* will find a path that consists of the one of the blue voxels and red voxel.
In order to solve this issue depth limit will be introduced. If the tree is not
expanded to the provided minimal depth limit in some point, new node will
be created at this limit. This virtual node will not exist in the tree, however,
its size and metrics can be determined, so that A* is able to process it.
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6. Path planning ....................................
6.3.5 Accessible neighbours

Figure 6.5: Neighbours of the blue voxel

For neighbours that share the same edge or a vertex require additional
constraints to decide whether they are accessible or not. For example, 6.5
demonstrates neighbours of dark blue voxel as blue voxels. Red voxel should
not be considered as a neighbour voxel because it can not be directly accessed
from the initial dark blue voxel without causing collisions. That means that
for every neighbour that shares the same edge with the current one, it is
required to check two adjacent directions. For every neighbour that shares the
same vertex accessibility can be checked by checking three adjacent directions.
For example, for neighbour in the NW direction(6.3a) is accessible only when
neighbours in the N direction and the W directions are not occupied. For
neighbour in the FSW direction(6.3b) neighbours in the F, S and W directions
should be checked.
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Chapter 7

Implementation

7.1 Environment

The implementation of the proposed methods was made in the simulator
Webots with the quadracopter Mavic Dji Pro, which has Quad X configuration.
Lidar Robotis LDS-01 which is a one layer lidar with a 360 degree field of view
and maximum distance up to 3.5 meters and a distance accuracy ± 15mm was
used. Language that was chosen for implementation is C++. Open-source
Octree solution, octomap, was incorporated and extended with neighbour
search algorithm and coorditate searching with limited depth([HWB+13]).

7.2 The main loop

The main loop is implemented as following:
double current_state [3]
double desired_state [3]

// Hover to the appropriate position
while ( current_state [2] != desired_state [2]){

scanSpace ()
adjustPosition (0, 0, desired_state [2])
scanState ()

}

double next_goal
point3d path []

// Generate initial path
path = AStar( desired_state )
double path_update_time = now ()

while( current_state != desired_state ){
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7. Implementation....................................
curr_time = now ()
// Path re - planning every 1 second
if ( curr_time - path_update_time >= 1){

path_update_time = curr_time
path = AStar( desired_state )

}

next_goal = calcNextState ( curr_time - path_update_time , path
)
scanSpace ()
adjustPosition ( next_goal )
scanState ()

}

Function scanSpace reads measurements from lidar and puts them into the
map. adjustPosition function gives the desired position of the UAV to
regulator and scanState function reads the measurements from gyroscope,
IMU and GPS. Function calcNextState calculates next state based on linear
interpolation of the points in the path:
function calcNextState (time , path){

// Set constant velocity to 0.5m/s
vel = 0.5
traj_time = euclidean_dist (path[i], path[i -1])/vel for i =

1.. path. length

// Calculate the cumulative sum
traj_time_cum = cumsum (0, traj_time )
idx = i if traj_time_cum [i -1] < time < traj_time_cum [i]
k = time/ traj_time [idx - 1]
return (1 - k) * path[idx - 1] + k * path[idx]

}

7.3 Octree implementation details

Octomap framework does not allow to directly access the size, depth and
coordinates properties of the voxel. Because of that new search function
was implemented. In Octomap each voxel has a unique key. With the given
coordinates the key of the leaf voxel can be retrieved. Then this key can be
used to retrieve the index of the child in particular depth. Moreover, key of
the node allows to get coordinates of the voxel center. So the search function
is pseudocode will look like as following:
function search (x, y, z, minDepth ){

OcTreeKey leafKey = getKey (x, y, z)
OcTreeNode currentNode = root
for (d in 0... max_depth ){

int childIdx = getChildIndex (leafKey , d)
if ( currentNode . hasChild ( childIdx )){

currentNode = currentNode . getChild ( childIdx )
} else {
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if (depth < minDepth ){
depth = minDepth ;
currentNode = new OcTreeNode ()

}

key = adjustKeyAtDepth (d)
double size = getSize (d)
point3d center = getCenter (key)
return new NodeWithMetrics ( currentNode , size , center )

}
}

}

Instead of hard-coding indexes of children in directions, byte operations will
be used: each index of the child in binary form represents the shift in x, y and
z coordinate from the center of the parent node. For example, index 4 can
be written as 100. First digit, one, indicates the positive offset of the child
center in x direction related to the parent’s center and other digits indicates
negative offset in other directions. That means that all children that are
sharing the northern face with the parent voxel have 1 in the third place, all
southern children have 0 in the third place and so on. The pseudocode for
finding children in face directions will look like as following:

function faceChildren (){
// Direction order: N, S, W, E, F, R
int children [ NUM_FACE_DIRS ][4];
for (i = 0...7) {

if (i & 1 == 0){
children [4]. push(i)

} else {
children [5]. push(i)

}
if (i & 2 == 0){

children [2]. push(i)
} else {

children [3]. push(i)
}
if (i & 4 == 0){

children [0]. push(i)
} else {

children [1]. push(i)
}

}
}

For edge and vertex directions index of children can be found as an inter-
section of the children of adjacent directions. For example, RN direction
the intersection of children in R direction and in N direction will give the
appropriate set of children. For RNW direction the intersection of R, N and
W children sets will be found.

31



7. Implementation....................................
7.3.1 Parameter adjustments

The maximum resolution of the map was taken as the bounding box of the
UAV with additional 10 centimeter space, 0.7 meters, which allows to check
occupancy of only one voxel to decide if it is free, whereas the maximum
depth of the tree is 16. Experiments show that this size of bounding box is
enough to ensure flight though the centers of the voxels without colliding
with the neighbour voxel.

We want to set minimum depth of the node as high as possible and avoid
paths that can be generated in situation 6.3. Because of that we will select
a depth were voxel size is less that the maximum observed distance. In our
case the size of the node in depth 14 is 2.8 meters in one dimension, whereas
in depth 13 cells reaches 5.6 meters in one dimension. With maximum lidar
resolution distance of 3.5 meters, the value of minimum query depth will be
set to 14.

7.4 Results

The following experiment shows that the UAV is able to map an environment,
generate collision-free path and follow it. The initial position of the UAV was
(0.2, 0.3, 0). Random goal points where chosen. First the UAV hovered to the
desired z point, which in our case is 1. Then it followed the trajectory, that
was re-generated by A* every 1 second, at the speed 0.5 m/s. The following
images demonstrate the resulting path of the quadracopter marked as blue.
Mapped obstacles are represented as grey blocks.
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Figure 7.1: Path 1

Figure 7.2: Path 2

33



7. Implementation....................................

Figure 7.3: Path 3
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Chapter 8

Future optimizations and improvements..1. Adding more sensors to the system will help to map the surrounding
environment better. For example, it could be cameras or RGB-D camera...2. More sophisticated physical model of the system can be proposed that
better approximates the UAV physics. Wind effect, aerodynamics and
body shape could be taken into account...3. The proposed GNSS localization is not accurate enough for a real outdoor
environment, therefore SLAM algorithm can be incorporated to deal
with the localization problem...4. The designed algorithm is able to generate only C0-continuous trajectory.
In order to achieve smooth flight, C1(velocity) and C2(acceleration)
continuity should be ensured. Moreover, A* generates a path that
lies near the obstacles. In order to solve this issue gradient descent
optimization could be applied as described in [ZWY+20]. During this
algorithm the B-spline curve is generated. Convex hull property of this
curve allows to examine only those points, that are convex combinations
of the control points...5. Another optimization can be done in path planning algorithm. Accord-
ing to [KL02], D*-lite algorithm was primarily developed for dynamic
environments. This algorithm make of use of previously constructed
path and build new one on the top of previous calculations.
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Chapter 9

Conclusion

During this work mathematical model of quadracopter was derived. Based
on this model the regulator was developed and tested in both Matlab and
simulation environment Webots.

Localization problem was solved by incorporating of the Kalman filter
algorithm on raw sensor measurements.

The memory-efficient probabilistic space representation was proposed and
solutions for the issues that are connected with that representation were
provided.

Finally, time-efficient path planning algorithm was proposed.

All pieces were connected together and implemented in programming
language C++. Program were tested in simulation environment Webots and
results were provided. Provided results prove an ability of designed algorithm
to generate collision-free path and quadracopter was able to follow this path.

Proposed autonomous navigation system is efficient in terms of memory
consumption and speed of computations. Mapping the environment with
one layer lidar brings some limitations to the whole algorithm. With some
assumptions made, we were able to construct the path through the space,
but in future system should be extended with sensor with larger field of view.
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Appendix A

Abbreviations

Symbol Meaning

BFS Breadth-first search
DFS Depth-first seach
IMU Inertial Measurement Unit
GPS Global Positioning System
GNSS Global navigation satellite system
RRT Rapidly exploring random tree
PRM Probabilistic road map
TOF Time-Of-Flight
UAV Unmanned aerial vehicle
PID Proportional - Integral - Derivative (controller)
SLAM Simultaneous Localization and Mapping
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Appendix B

List of Notation

Symbol Meaning

XT Transpose matrix
xT Transpose vector
X−1 Inverse matrix
ẋ time derivation of x
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