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Abstract
Learning about objects through manipula-
tion importantly complements visual per-
ception mainly to identify physical prop-
erties of objects such as stiffness, mass, or
surface roughness. This holds both for hu-
man and robot perception. In this work,
I study the classification of deformable
objects by grasping them using four dif-
ferent robotic hands / grippers: Barrett
Hand (3 fingers with adjustable configu-
ration), qb SoftHand (5 fingers, 1 motor),
and two industrial parallel jaw grippers
(Robotiq 2F-85 and OnRobot RG6). The
time series collected during object com-
pression (and sometimes decompression)
are fed into four different classifiers: k
Nearest Neighbors (kNN) and LSTM ap-
plied on raw data, and kNN and SVM
on features. I systematically compare the
grippers’ performance, together with the
effects of: (i) action parameters (grasp-
ing configuration and speed of squeezing),
(ii) knowledge transfer ability, and (iii)
individual sensory modalities. The Robo-
tiq 2F-85 and the Barrett Hand perform
best. The OnRobot RG6 is closely in line,
and qb SoftHand performs significantly
worse. The 2-finger grippers thus pro-
vide a more parsimonious solution to de-
formable object classification relying only
on the stress/strain characteristics in only
2 sensory channels (position and effort),
compared to the Barrett hand with 96 tac-
tile sensors, 3 fingertip torque sensors, and
8 joint encoders. The supervised learn-
ing problem is complemented by principal
component analysis to uncover the sources
of variability in the data. This work pro-
vides a unique contribution in that it de-
ploys four different robot hands/grippers
on the same datasets and systematically
studies their performance. Transfer learn-
ing between different robot hands remains
a future challenge.

Keywords: robotic grippers, tactile
sensors, model-free object classification,
object parameter extraction, LSTM
network
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Abstrakt
Poznávání objektů prostřednictvím mani-
pulace významně doplňuje vizuální vní-
mání a to především při určování fyzi-
kálních vlastností objektů jako je tuhost,
hmotnost nebo drsnost povrchu. Toto
platí jak pro lidské, tak pro robotické vní-
mání. V této práci studuji klasifikaci defor-
movatelných objektů pomocí jejich mač-
kání čtyřmi různými robotickými rukama-
/uchopovači: Barrett Hand (3 prsty s na-
stavitelnou konfigurací), qb SoftHand (5
prstů, 1 motor) a dva průmyslové grippery
(Robotiq 2F-85 a OnRobot RG6). Časové
řady shromážděné během stlačování (a ně-
kdy i dekomprese) objektů jsou přiváděny
do čtyř různých klasifikátorů: k Nearest
Neighbors (kNN) a LSTM jsou aplikované
na surová data a kNN a SVM na extraho-
vané features. Systematicky porovnávám
výkonnost gripperů spolu s vlivem: (i) akč-
ních parametrů (konfigurace uchopení a
rychlost stisku), (ii) schopnost přenášet
znalosti a (iii) modality jednotlivých sen-
zorů. Nejlépe si vedou grippery Robotiq
2F-85 a Barrett Hand. V těsném závěsu
za nimi je OnRobot RG6 a qb SoftHand
si vede výrazně hůře. Dvouprsté grippery
tak poskytují úspornější řešení klasifikace
deformovatelných objektů, které se spo-
léhá pouze na charakteristiky napětí/de-
formace pouhých 2 senzorický kanálů (po-
loha a síla). Ve srovnání s Barrett Hand
s 96 hmatovými senzory, 3 senzory toči-
vého momentu na špičkách prstů a 8 sen-
zory úhlu prstů. Problém učení s učitelem
je doplněn analýzou hlavních komponent,
která odhaluje zdroje variability v datech.
Tato práce představuje jedinečný přínos
v tom, že na stejných souborech dat nasa-
zuje čtyři různé robotické ruce/chapadla
a systematicky studuje jejich výkonnost.
Přenos učení mezi různými robotickými
rukama zůstává výzvou do budoucna.

Klíčová slova: robotická chapadla,
taktilní senzory, klasifikace objektů bez
modelu, zjišťování vlastností předmětu,
LSTM síť

Překlad názvu: Klasifikace měkkých
předmětů skrze mačkání robotickými
uchopovači
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Chapter 1

Introduction

1.1 Motivation

In the last few years, computer vision achieved signi�cant progress, mainly
thanks to the invention of convolution networks and new architectures like
ResNet [1]. Nowadays, there are o�-the-shelf methods for image classi�cation,
bounding box regression, or segmentation, such as Facebook's Detectron 2,
based on Mask R-CNN architecture. However, this network primarily detects
objects. For all sorts of tasks, such as waste sorting, visual information alone
is not enough and one needs to gain the physical properties of an object from
haptic feedback.

Object recognition using haptic exploration can also be more robust as it
is insensitive to lighting conditions and attributes like color. Nevertheless,
exploring objects by manipulation also brings the danger of damage. However,
in some areas like the previously mentioned waste sorting, this is not a problem.
Recycling is still a process relying on human labor. Plastic, paper and metal
di�er signi�cantly in their material properties, and sorting them through
manipulation would mean a big step forward.

So, what are the limits of modern robots' haptic feedback? Professional
laboratory equipment with a high number of sensors can probably achieve good
results, but what about more industrial-like grippers? Moreover, even when
objects are correctly classi�ed, we may be interested in the structure of the
haptic data. Is there much hidden information, or is it a more straightforward
task? I am going to �nd at least partial answers to these questions.

1.2 Goals

Computational costs when simulating solid deformable objects' interactions
are enormous [2]. Therefore, model-free classi�cation provides an alternative
and real measurements are needed. Using four robotic grippers and two sets
of objects, I will collect s su�cient number of measurements according to the
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1. Introduction .....................................
standards of the machine learning community. Some of the measurements
have already been collected on two robots. This is described in detail in
Section 3.1.

I will design my own pipeline for data preprocessing since the samples
come in series. This will consist of sample synchronisations and discarding
outliers. I will also remake some gripper controlling programs to achieve
higher automation in data collection.

Grippers' capabilities will be tested with the use of four classi�ers, each one
with a di�erent degree of sophistication. Not only will classi�ers be compared,
but I will also try knowledge transfer by testing already trained models on
di�erent datasets. This may reveal the primary sources of variability in time
series. Search for the main source of information in the data will also be done
by ablation study. To gain additional insight into the structure of the data,
principal component analysis will be used for visualization.

1.3 Related work

Sanchez et al. [2] provide a survey of robotic manipulation and sensing of
deformable objects. Objects are considered deformable if they have (1) no
compression strength (ropes and clothes), or (2) have a large strain1, or
present a large displacement. Additionally, a classi�cation based on geometry
is presented. In this work, I am not interested in objects of linear, planar, and
cloth-like type, and will focus on triparametric objects�solid objects such as
sponges or plush toys, which are also the least researched object type [2].

1.3.1 Objects classi�cation

Speci�cally related to this work, Spiers et al. [3] used a single force closure
grasp with an underactuated two-�nger compliant gripper equipped with
force sensors to classify objects of various shapes, sizes, and sti�ness. The
feature space used for classi�cation via Random Forests consists only of the
actuator positions and the force sensor measurements at two speci�c time
instances (�rst contact and getting stuck). A feature variable's importance
was calculated, and the most crucial features were determined. The gripper
used and our qb SoftHand can be considered similar.

A series of neural models (MLP, CNN, LSTM) was developed for the
classi�cation of 16 objects in Bednarek et al. [4]. Not using a hand or
gripper, but a spherical tip with OptoForce 3-axis optical force sensor, they
processed the time series from this sensor using an LSTM employed for
material classi�cation. A similar approach is used for terrain classi�cation on
a legged robot in the same work.

1For linear elasticity, this implies small Young's modulus, e.g. less than 10 MPa.
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....................................... 1.4. Outline

1.3.2 Terrain classi�cation

In 2014, Ho�mann et al. studied the e�ect of motor action, and di�erent
sensory modalities on terrain classi�cation in a quadruped robot running with
multiple gaits [5]. One approach leading to terrain classi�cation with high
accuracy was computing hand-designed features on all sensor time series and
then using SVM. Because both problems (terrain and object classi�cation)
can be viewed as haptic sensing problems, I decided to try extracting the
same features.

1.3.3 Prior work at FEE, CTU

In his master's thesis [6], Pavel Stoudek used three of the four robotic grippers
used in this work. He also wrote control programs and collected pilot series
of data. His work was an important source of information for me. However,
his work focused on elasticity estimation rather than object classi�cation.

Finally, Michal Mare² in his bachelor's thesis [7] designed sets of soft objects,
wrote programs for controlling Barrett Hand, recording and processing data,
used LSTM for classi�cation, and attempted to extract properties like sti�ness
and density. Unfortunately, it was later found out that the ground truth
values of sti�ness and density are not valid, and therefore I did not try to
repeat this task. This work is a natural continuation of his, which was also
my primary source of information.

1.3.4 Thesis contribution

In the work of Michal Mare² [ 7], only one robotic hand was used for object
classi�cation. Here, I will compare more robotic hands and grippers to assess
their individual performance on the same dataset. In addition, compared to
Mare² [7] who used only the LSTM classi�er, I will use four di�erent classi�ers
to have more robust results.

Michal Mare² already tried knowledge transfer and ablation experiments,
but I will deliver a more systematic overview over all hands/grippers. Finally,
I will use principal component analysis to gain insight into the structure
of the data. Feature-based analysis is based on results from feature-based
classi�cation.

1.4 Outline

First, I will present all objects sets, robotic hands and grippers, classi�ers,
method of analysis, and data preporcessing in Chapter 2.

Next, the con�gurations of all hands/grippers used during the measurements
will be presented in Chapter 3. All created datatasets are going to be

3



1. Introduction .....................................
described.

In Chapter 4, all obtained results will be presented and analyzed. Summary
and observations will be noted.

Finally, in Chapter 5, I am going to discuss the results, identify the
limitations, and suggest possible improvements that could be made in the
future.

4



Chapter 2

Materials and methods

In this chapter, I am going to present the basic materials and methods used
in this work. I will �rstly introduce soft objects and foams, which we are
exploring. Then I show the grippers used for collecting data. In the last part,
I will explain the methods used for classi�cation and unsupervised analysis.
Some information about object sets, Barrett Hand, and LSTM neural network
are paraphrased from Michal Mare²'s work [7] (it will be pointed at the
appropriate places). Some information about rest of the grippers is taken
from Pavel Stoudek's work [6].

2.1 Objects and foams

I used two sets of deformable objects. The �rst is the ordinary object set
consisting of 9 mostly cuboid objects with di�erent sizes and degrees of
deformability. The second set is the polyurethane foams set consisted of
20 polyurethane foam blocks of similar size, along with reference values for
elasticity and density provided by the manufacturer.

Ordinary objects set

The �rst set consists of mainly toy-like soft objects bought in stores; see
Fig. 2.1. Cuboids are preferred over spheres, as the contact surface area does
not change during deformation. In addition, all objects are highly homoge-
neous, as we are more interested in material properties like elasticity/sti�ness
(elasticity is closely related to the sti�ness, but sti�ness takes into account
both the material's elasticity and geometry) and not the shape or mass
distribution. Deformation of all objects can be studied as elastic (objects
do not permanently deform during squeezing), although some objects have
memory foam-like behavior (e.g.,blue dieand blue cube). The yellow cube
is composed of the same material as theyellow sponge�it has been cut out
from another exemplar of the same sponge, aiming at the dimension of the
Kinova cube. The same is true forblue dieand blue cube. Conversely,white
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2. Materials and methods................................

Figure 2.1: Objects. Picture from [7].

die, kinova cube, yellow cubeand blue cubehave roughly the same dimensions
but di�erent material composition and hence sti�ness. The dataset has been
deliberately designed to test which of the object properties are critical for
model-free haptic object recognition. Source of this information is Mare²'s
work [7].

Figure 2.2: Ordinary objects set approximately spread out on the elasticity and
volume axes (reference values for this object set are not available). Object names
are displayed.

This set is also visualized in Fig. 2.2, approximately spread out by the
sti�ness/elasticity of the objects and their volume. We will later see that the
distances in this graph, at least partially, correlate with misclassi�cation rate.
An overview of the object names, labels, and dimensions is in Table 2.1.
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