

Bachelor's Thesis
May 2021

Matěj Kafka
dev@matejkafka.com

Supervisor: Ing. Michal Sojka, Ph.D.

Department of Cybernetics
Faculty of Electrical Engineering

Abstract
High-performance MPSoCs are becoming more common in the avionics and automotive

industries for safety-critical, real-time applications, bringing new challenges in scheduling

and thermal management. However, some cutting-edge computing platforms like the

i.MX8QuadMax by NPX used for my research are not yet supported by the proprietary real-

time operating systems (RTOS) used in the industry.

To allow for prototyping and benchmarking of avionic workloads on such platforms and

development of new thermal-aware scheduling algorithms, we developed DEmOS, an open-

source static scheduler running in Linux user-space, mimicking a RTOS scheduler using

existing Linux user-space interfaces. DEmOS was already successfully used to evaluate a new

thermal-aware scheduling algoritm.

https://github.com/CTU-IIG/demos-sched/

Thermal and Power Management
in Avionics OS Scheduler

https://github.com/CTU-IIG/demos-sched/

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

483777Personal ID number:Kafka MatějStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Cybernetics

Open InformaticsStudy program:

Artificial Intelligence and Computer ScienceSpecialisation:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Thermal and Power Management in Avionics OS Scheduler

Bachelor’s thesis title in Czech:

Správa teplot a napájení v rozvrhovači avionického operačního systému

Guidelines:
1. Make yourself familiar with DEmOS – a Linux-based simulator of avionics OS scheduler for safety-critical applications.
Also get familiar with ARINC 653 specification of avionics RTOSes.
2. Prepare a Linux kernel for a board with i.MX8 QuadMax CPU. Take the available Yocto distribution as a basis, but allow
independent compilation. Try to resolve the kernel problems that appear when used with DEmOS – either by upgrading
the kernel or patching/modifying the relevant parts of it. Ensure that the GPU is supported by the new kernel.
3. Extend DEmOS to support application initialization and to incorporate mechanisms for thermal and power management
(DVFS, sleep states etc.) for i.MX8 platform. Implement several thermal/power management policies on top of the developed
mechanisms.
4. Evaluate the mechanisms and policies on both synthetic and real-world benchmarks. Besides CPU applications, consider
also GPU applications (OpenCL). If possible, evaluate thermal and power properties of OpenCL applications when running
either on the GPU or on the CPU. Also try to evaluate the overhead (latency) of CPU power state transitions.
5. Document the results thoroughly.

Bibliography / sources:
[1] DDC-I, Inc., “Deos, a Time & Space Partitioned, Multi-core Enabled, DO-178C DAL A Certifiable RTOS – DDC-I.”
https://www.ddci.com/products_deos_do_178c_arinc_653/
[2] THERMAC Project, „Preliminary implementation of a thermal�aware resource management policy“, Deliverable D4.1,
2020
[3] ARINC specification 653P1-2, Avionics Application Software Standard Interface, Aeronatical Radio, Int., 2006
[4] https://github.com/adubey14/arinc653emulator

Name and workplace of bachelor’s thesis supervisor:

Ing. Michal Sojka, Ph.D., Embedded Systems, CIIRC

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 21.05.2021Date of bachelor’s thesis assignment: 25.01.2021

Assignment valid until: 30.09.2022

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
Ing. Michal Sojka, Ph.D.

Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

Abstrakt (CZ)

V leteckém a automobilovém průmyslu je stále obvyklejší používání výkonných

vícejádrových čipů pro aplikace realného času s vysokými bezpečnostními požadavky,

přinášející nové výzvy v oblasti rozvrhování a řízení teplot. Nové výkonné platformy,

např. NXP i.MX8QuadMax, kterou používáme pro náš výzkum, však zatím nejsou

podporovány typicky používanými proprietárními operačními systémy reálného času

(RTOS).

Pro prototypování a testování avionických systémů na těchto platformách a vývoj

nových rozvrhovacích algoritmů jsme vyvinuli open-source nástroj DEmOS, statický

rozvrhovač bežící v user-space na Linuxu, který napodobuje RTOS rozvrhovače

s využitím již existujících systémových rozhraní. DEmOS byl již úspěšně využit pro

testování nového rozvrhovacího algoritmu zohledňující výsledné teploty.

Acknowledgement

I would like to thank my supervisor for

always being fair, upfront and helpful,

and my colleagues Jakub Dupák, Max

Hollmann and Vojtěch Štěpančík for

many discussions on code architecture,

mental support and our shared drive to

always do better.

I would also like to acknowledge the

initial work on DEmOS done by Ing.

Jiří Záhora and my supervisor, Ing.

Michal Sojka, Ph.D., which I expanded

upon over the past year.

In Prague, 21. 5. 2021

...

Declaration

I declare that the presented work was

developed independently and that I

have listed all sources of information

used within it in accordance with the

methodical instructions for observing

the ethical principles in the

preparation of university theses.

Table of contents

1 Introduction

2 Background

2. 1 Real-time systems

2. 1. 1 CPU scheduler

2. 1. 2 Real-time CPU scheduling

algorithms

2. 2 Safety-critical systems

2. 3 ARINC 653 standard

2. 3. 1 Hypervisor-based

implementation

2. 3. 2 Kernel-based implementation

2. 4 Deos™ RTOS

2. 5 Linux cgroup

2. 5. 1 cgroup modes (systemd)

2. 6 CPU performance scaling

2. 7 Linux CPUFreq

2. 7. 1 CPUFreq user-space interface

3 Design

3. 1 Overview

3. 2 Scheduling model

3. 3 Configuration

3. 4 Example run

3. 5 Partitions and processes

3. 5. 1 Process scheduling

3. 5. 2 cgroup usage

3. 5. 3 Process client library

3. 6 Power policies

3. 7 Runtime output

4 Implementation

4. 1 Building

4. 2 Event loop

4. 3 Project and module structure

4. 4 cgroup interface

4. 5 Process client library

4. 6 Scheduler objects

4. 6. 1 Process

4. 6. 2 Partition

4. 6. 3 MajorFrame

4. 6. 4 Slice

4. 7 Synchronization messages

4. 8 Power management

4. 8. 1 PowerManager and

CpufreqPolicy

4. 9 Runtime logging

4. 10 Performance considerations

4. 11 Automated testing

4. 12 Software compatibility

5 Evaluation

5. 1 Evaluation platform

5. 2 Basic functionality

5. 3 Stress testing

5. 4 Evaluation of power management

5. 5 Scheduling overhead

6 Conclusion

6. 1 Possible improvements

7 References

1 Introduction

In avionics and automotive domains, there is now a strong demand for high-

performance Multi-Processor Systems-on-Chip (MPSoC), due to a rising use of digital

image processing and machine learning applications [2], and consolidation of system

components to a smaller number of hardware modules (Integrated modular avionics

[1]). For some of these uses, GPUs are also vital.

These systems operate under harsh environmental conditions such as dust, vibration

and extended thermal ranges. To ensure safety and reliability of the system, it is vital to

operate within a thermal envelope. However, in avionics, thermal management has

been a long-term problem even for lower-performance platforms [3], and it is further

exemplified by the higher thermal emission of more powerful MPSoCs, and especially

GPUs.

One possible solution is the use of active cooling, which brings issues with mechanical

design and increases weight and costs. An alternative way is to employ passive cooling

techniques directly on the platform, such as dynamic voltage and frequency scaling

and thermal-aware scheduling, which is the approach our research group focuses on.

To evaluate the developed models and scheduling algorithms on real hardware, we

need an execution environment similar to the one provided by a safety-critical, real-

time operating system (RTOS). Many cutting-edge high-performance platforms are not

yet supported by the RTOSs commonly used and required in both industries, such as

the i.MX8QuadMax by NXP, which is targeted by our research. Usually, Linux is the

first operating system supported on these platforms; however, its runtime environment

differs significantly from the one provided by an RTOS, primarily in the scheduling

model and provided temporal guarantees.

To allow for prototyping and benchmarking of avionic workloads on such platforms

and development of new thermal-aware scheduling algorithms, we developed an

open-source tool called DEmOS [5], a static scheduler running in Linux user-space,

mimicking a RTOS scheduler using existing Linux user-space interfaces.

The rest of this thesis presents the design, implementation and performance evaluation

of DEmOS. The project was originally started by Ing. Jiří Záhora and my supervisor,

Ing. Michal Sojka, Ph.D., who developed a working prototype. I took over the project,

extended it with new functionality, primarily the power management system, and

updated many of the existing components to be more robust and extensible. The goal of

my work was to further develop DEmOS as a tool for other researchers, and further

research is not the subject of this thesis.

1

af://n1122
https://github.com/CTU-IIG/demos-sched/

This section provides an overview of the topics required in later sections. First,

real-time and safety-critical systems are described, including relevant

standards. Then, the Linux kernel features used by DEmOS are briefly

introduced.

2 Background

2.1 Real-time systems

In most consumer-facing software systems, emphasis during design and development

is placed on functionality and its correctness; in cases where "performance" is

considered, hardware resource usage and total throughput of the system is typically

prioritized over other parameters like latencies, and no hard timing constraints are

present.

In contrast, for many domains of embedded development, throughput is generally not

a prioritized metric, with reliability, deterministic timing and bounded latencies being

the more important design goals. [6] One example of such a system is the flight control

module of a helicopter — to keep the aircraft stable, a set of tasks must be ran

periodically, and missing any of them due to a temporary lockup may result in

instability or even a crash. Specification of such a system includes both logical (system

gives correct results) and temporal (the results are delivered at the correct time)

requirements, and both must be met for the system to be usable. We call these real-

time systems.

Perhaps somewhat counterintuitively, low latencies are not necessarily correlated with

high throughput. A common example in software engineering is the use of buffers and

caches — if used well, both improve throughput and even average latency, but the

worst-case end-to-end latency, an important metric for real-time systems, is typically

negatively impacted. In general, real-time systems tend to rely on simple, deterministic

components, as they are easier to reason about and verify temporal guarantees for. [7]

We distinguish two types of real-time systems: hard real-time and soft real-time. If a

deadline has to be met under all circumstances, it is called a hard deadline; a hard

real-time system is a system where all deadlines are hard. Here, a failure to meet a

deadline is often catastrophic. Analysis of such systems is easier, as the system can be

considered fully deterministic. The aforementioned example of an aircraft flight control

is a hard real-time system; hardware control loops in general are typically hard real-

time systems — an autonomous driving system, a print head controller, a pacemaker,

etc. These systems are implemented on top of specialized real-time operating systems

2

af://n1129
af://n1131

(RTOS), as general-purpose operating systems (GPOS) are too complex and their

timing characteristics often too unpredictable to reason about.

Systems where some deadlines may occasionally be missed are called soft real-time

systems. Here, the full latency distribution is considered, not only the worst-case

behavior—a deadline should be met "most of the time", otherwise the performance

deteriorates. This makes the system analysis more complicated, due to its probabilistic

nature. A common example is audio processing and playback — a missed deadline

results in perceptible stuttering, but as long as it occurs infrequently, it is acceptable (or

rather, designing the system to be hard real-time would be too expensive given the

complex algorithms commonly used). Deciding whether a system should be hard or

soft real-time is for many domains up to the designer, and typically involves a trade-off

between reliability, throughput, development time and costs.

2.1.1 CPU scheduler

A CPU scheduler is part of an operating system that switches between ready tasks so

that they can all run concurrently. Schedulers used in GPOSs are typically geared

towards throughput, fairness (avoiding CPU starvation of any task) and, for desktop,

interactive use (prioritizing a few tasks the user is actively interacting with). [8] In

order to efficiently distribute computing time in a highly dynamic environment of a

typical server or desktop system, the scheduling algorithms are quite complex, making

it hard to reason about and make any temporal guarantees.

At the same time, the kernel and drivers in GPOS are typically not designed with hard

real-time applications in mind, and fundamental changes to the system would be

required to support these, usually sacrificing some throughput and interactivity. Kernel

and driver preemptibility is one such issue, with some portions of the mainline Linux

kernel still not preemptible (although the CONFIG_PREEMPT_RT option improves the

situation) [9], and Windows NT kernel fully preemptible, but with some of the

proprietary drivers blocking DPC queues for longer periods of time, also making it

unsuitable for real-time applications. One solution that avoids these issues is using a

hard real-time hypervisor that runs the GPOS as a fully preemptible guest OS.

For an RTOS scheduler, the main requirement is predictability — the scheduler

behavior must be deterministic, allowing the system designer to reason about the

worst-case temporal behavior of each task. For an RTOS, the environment is typically

mostly static and the system designer has control over all tasks — the complexity and

the resulting unpredictability of a GPOS scheduler is therefore not desirable.

2.1.2 Real-time CPU scheduling algorithms

The goal of a real-time CPU scheduling algorithm is to distribute CPU time (and other

resources) to tasks in a way so that all deadlines are met. Three types of tasks are

scheduled: periodic tasks, which must meet a periodic deadline (an instance of the task

must finish in each period); sporadic tasks, which arrive at arbitrary times and have a

3

af://n1137
af://n1141

hard deadline; and aperiodic tasks, which also arrive at arbitrary times, but without

any hard deadline.

Two classes of scheduling algorithms are typically used: static (offline, clock-driven)

scheduling and dynamic (online) scheduling.

Static scheduling

With static scheduling, the full schedule for periodic tasks is computed offline (at

design time). At runtime, the scheduling decisions are only done at predefined time

instants by switching tasks according to the schedule. This way, runtime overhead is

minimal, and more complex algorithms may be used to find an optimal schedule

ahead-of-time. As the full schedule is known at design time, it is easier to verify.

On arrival of a sporadic task, an admission test may be performed, and if the pending

task cannot be feasibly scheduled, it is rejected; otherwise, it is executed during free

intervals in the schedule. For an aperiodic task, it is queued and ran when the system

would otherwise be idle (with possible optimizations like slack stealing).

The disadvantage of static scheduling is its inflexibility, as the schedule is fixed and all

tasks and their parameters must be known at design time.

Dynamic scheduling

With dynamic scheduling, scheduling decisions are done at runtime, depending on

which tasks are currently ready to be executed. This lets the system react better to

sporadic and aperiodic tasks, at the cost of higher overhead and more complex

verification at design time.

A simple example is the FCFS ("first come, first serve") scheduling algorithm, which

keeps a queue of all ready tasks and schedules them in the order of arrival.

More complex dynamic schedulers typically assign a priority to each task, and give

CPU time to the highest-priority task out of all ready tasks. Task priorities are either

fixed (set at design time) or dynamic (set at runtime, often based on the task

deadline). As DEmOS only uses a very basic form of FCFS scheduling, these will not be

explored further — for more details, refer to [6].

4

af://n1144
af://n1148

Safety-critical systems are systems which have defined safety requirements,

which must be fulfilled for the system to perform acceptably.

2.2 Safety-critical systems

For many non-mechanical (e.g. software) systems used by consumers, an occasional

failure or malfunction is acceptable, although not desirable, as ensuring correct

functionality under all circumstances would be too complex and/or expensive, the

impact of a failure is minor, and it is easy enough for the operator to manually recover

the system back to a valid state. We will call these best-effort systems (also called

"non-critical"). One example is the audio processing and playback system already

mentioned above, which is also a soft real-time system.

In comparison, a failure or malfunction in a safety-critical system may result in

injury, death, severe material or financial loss or other outcomes deemed unacceptable

by the system designer. This is common in cases where physical machinery is part of

the system, e.g. flight control in an airplane, or a medical ventilation system. Safety-

critical systems also typically have real-time requirements, but this is not always true

— for example, the correctness of a compiler output is safety-critical, but no real-time

requirements are present.

The safety requirements for such software systems are significantly stronger than in

typical software development — the system developers must be able to assert safety

guarantees within a rigorous theoretical framework; this is the subject of system safety

engineering. During development, possible hazards should be documented, analyzed

and the system designed with mitigation measures to minimize the probabilistic risk of

failure — all hazards should either be eliminated, or probabilistic in nature, with the

associated risk reduced to an acceptable level.

There are multiple commonly used standards, sets of best practices and safety analysis

procedures, some of them specific to the avionics domain. Unlike with many other

software development domains, standard compliance is required for most commercial

usage and ensured using a stringent and typically expensive certification process.

Some of the better known system safety standards are:

DOD MIL-STD 882E [10], a top-level system safety standard typically required

in contracts for the USA Department of Defense, defining common terminology

and safety requirements throughout the full life cycle of system development

and maintenance

IEC 61508, a generic international safety standard, applicable to all industries

MISRA C, a set of software development guidelines for the C language, aiming to

make the language safer for use in automotive industry

5

af://n1153

DO-178C / ED-12C, a primary guideline by which certification of all commercial

software-based avionic systems in the USA and Europe for civil (non-military)

use is done

ISO 26262, an international standard for safety-critical systems installed in road

vehicles

As it is not feasible to certify a large monolithic operating system due to the code size

and complexity, specialized microkernels are used for safety-critical systems. Some

commonly used certified safety-critical operating systems are VxWorks by Wind River,

Deos by DDC-I and QNX by Blackberry. All the mentioned operating systems also fall

into RTOS category.

Commonly, an integrated system has both safety-critical and non-critical components.

As the level of scrutiny and correctness guarantees is typically lower for the non-critical

components, it is important to isolate parts of the system with differing safety levels to

constrain the scope of potential failure. At software level, the ARINC 653 standard

specifies means to achieve such isolation.

2.3 ARINC 653 standard

ARINC 653 [11] is a software specification, prescribing the baseline operating

environment in the context of safety-critical RTOSs. It specifies an interface between

the operating system and applications called Application Executive (APEX), together

with the communication and scheduling model and isolation requirements on

memory, CPU and I/O. It allows for safe consolidation of multiple independent

modules of different safety levels on the same hardware — an important part of the

IMA architecture, allowing for more efficient hardware resource use, weight savings,

design simplification and easier maintenance. For our purposes, we will focus on the

isolation and scheduling requirements.

A failure in one module must not impact other modules, equivalently to running the

modules without any shared resources. Real-time properties of each module should

also be preserved, independently of the rest of the system, which may change during

normal operation (e.g. in avionic context, a module may only be active during a take-off

and landing).

To minimize interference, each software module runs in an isolated partition. This is

achieved by providing a separate virtual memory space for each partition (spatial

isolation) and assigning other resources (CPU, GPU, I/O,...) according to a fixed

schedule (temporal isolation), where only a single partition runs at a time. The original

ARINC 653 standard published in 2010 did not address its use in multi-core processor

systems; due to a growing market demand, however, the 2015 update to the standard

now supports parallel execution of partitions on multiple cores.

6

af://n1173

Each partition may contain multiple processes, which may optionally share the same

memory space, and which are typically scheduled using a fixed-priority dynamic

scheduler, local to each partition, as opposed to the global static scheduler. This allows

for more efficient resource sharing inside the partition, while still supporting hard real-

time applications. Each partition contains an initialization process, which is

responsible for setting up the partition, including other processes. Dynamic memory

allocation is allowed, but only from a statically defined pool, so that the upper bound

on used memory is known at compile time.

A multi-level health monitoring system is also specified, with high-priority error

handling processes that allow the system to recover from error states (memory access

violation, deadline miss,...), both on partition and module level.

The system is configured using an XML configuration file with a specified schema,

which should be portable between all compliant systems, so that the same applications

can be used on different platforms without code changes, and, therefore, without the

need for recertification.

There are 2 common approaches to implementing an ARINC 653 compatible system

— a hypervisor-based solution, and a kernel-based one.

2.3.1 Hypervisor-based implementation

A hypervisor is used to implement scheduling, resource access control and APEX. [12]

This way, it is possible to run a full operating system inside a partition. System

designers may use a certified RTOS for safety-critical modules, and a better supported

OS like Linux for best-effort modules, e.g. a car infotainment system — this allows

using common, more full-featured libraries. At the same time, the hypervisor only

implements core functionalities, which results in a smaller codebase, where safety and

security are easier to verify, resulting in a more reliable system with lower certification

costs.

2.3.2 Kernel-based implementation

Typically, an existing safety-critical RTOS kernel is modified to support ARINC-653

compatible scheduling, and provide the APEX interface. This approach may typically

offer better performance, but it is less flexible and harder to verify, resulting in higher

certification costs and lower reliability.

2.4 Deos™ RTOS

Deos™ [13] by DDC-I is one of the popular RTOSes in the avionics domain. Deos™

supports ARINC 653 time and space partitioning and has been certified in numerous

safety-critical products to DO-178 DAL-A.

7

af://n1181
af://n1183
af://n1185

In each partition, Deos™ RTOS supports one of the following three schedulers:

harmonic Rate Monotonic, ARINC 653, and POSIX (leveraging a para-virtualized

RTEMS instance). In a multi-core processor, a single Deos™ RTOS instance handles all

processor cores. A window has an ID, a fixed length, and spawns across all cores. Each

core within the window has its own scheduler (e.g. ARINC 653, POSIX). User

applications (processes with threads) are mapped to the windows, cores, and

schedulers during the system configuration.

In the context of an IMA architecture, Deos™ provides a set of mechanisms that allow

a single multi-core platform to host multiple applications of different criticality levels.

In many cases, just two levels are used: Safety-Critical (SC) and Best-Effort (BE).

Deos™ extends the ARINC 653 scheduling scheme by allowing SC and BE partitions to

share a core in a window. Specifically, SC partitions are always granted for execution

within a given window and BE partitions can be optionally scheduled once all SC

partitions in the window complete.

2.5 Linux cgroup

cgroup [14] (abbreviated from "control groups") is a Linux kernel mechanism to

organize processes hierarchically and distribute system resources along the hierarchy

in a controlled and configurable manner. For example, it may be used to suspend a

group of processes, restrict allowed CPU cores and used memory or monitor spawned

child processes.

cgroup is largely composed of two parts - the core and controllers. cgroup core is

primarily responsible for hierarchically organizing processes. A cgroup controller is

usually responsible for distributing a specific type of system resource along the

hierarchy although there are utility controllers which serve purposes other than

resource distribution.

cgroups form a tree structure and every process in the system belongs to one and only

one cgroup. All threads of a process belong to the same cgroup. On creation, all

processes are put in the cgroup that the parent process belongs to at the time. A process

can be migrated to another cgroup. Migration of a process does not affect already

existing descendant processes.

The original version of cgroup was included into mainline Linux kernel in 2007; this

version is now called cgroup v1. Between 2013–2016, cgroup was redesigned and now

only uses a single, unified hierarchy, with updated controller interfaces; this version is

called cgroup v2. This version significantly simplifies cgroup management for both

kernel and user-space.

8

af://n1189

2.5.1 cgroup modes (systemd)

Before using, cgroup virtual filesystem hierarchy must be mounted. This is almost

always done automatically by the init system during the startup, which is, for

mainstream distributions, typically systemd, which mounts the hierarchy in one of

three possible modes: [15]

Unified — a modern cgroup v2 mode, where a single unified hierarchy is

mounted as /sys/fs/cgroup; this is the only actively developed mode,

supporting all cgroup v2 features.

Legacy — a legacy cgroup v1 hierarchy, where each controller is mounted

separately as /sys/fs/cgroup/<controller>. This mode is not actively

supported, only exists for backwards compatibility and no major Linux

distributions use it by default.

Hybrid — this mode is similar to legacy mode, but an extra

/sys/fs/cgroup/unified hierarchy is mounted, which exposes the core cgroup

v2 functionality. This mode is also not actively supported, but up until recently,

most Linux distributions defaulted to it, as Docker and other container

implementations, which use cgroup for core functionality, did not support the

unified cgroup v2 hierarchy. However, Docker added support in late 2020 and

Fedora 31, released in 2019 already defaults to unified mode, with rumors of

other distributions possibly following suit in the near future.

2.6 CPU performance scaling

The majority of modern processors are capable of operating in a number of different

clock frequency and voltage configurations, often referred to as P-states. [16] As a rule,

the higher the clock frequency and voltage, the more instructions can be retired by the

CPU over a unit of time, but also more power is drawn over a unit of time by the CPU

in the given P-state. Therefore, there is a natural tradeoff between the CPU capacity

(the number of instructions that can be executed over a unit of time), and the power

drawn by the CPU.

In some situations it is desirable or even necessary to run a program as fast as possible.

In that case, there is no reason to use any P-states different from the highest one (i.e.

the highest-performance frequency/voltage configuration available). In some other

cases, however, it may not be necessary to execute instructions so quickly and

maintaining the highest available CPU capacity for a relatively long time without

utilizing it entirely may be regarded as wasteful. It also may not be physically possible

to maintain the maximum CPU capacity due to thermal constraints, power supply

capacity or similar. To cover those cases, there are hardware interfaces allowing CPUs

to be put into different P-states, i.e. switched between different frequency/voltage

configurations.

9

af://n1194
af://n1203

Typically, these interfaces are used along with algorithms to estimate the required CPU

capacity, so as to decide which P-states to put the CPUs into. Since the utilization of the

system generally changes over time, that has to be done repeatedly on a regular basis.

The activity by which this happens is referred to as CPU performance scaling or CPU

frequency scaling (as it involves adjusting the CPU clock frequency).

For commonly used CPU architectures, the frequency cannot be varied continually, but

only at fixed steps. For desktop CPUs, the frequency selection is usually quite granular,

with steps in the order of 100 MHz. In smaller CPUs used for embedded and mobile

development, commonly only a small set of possible frequencies is available, with

multiple cores in a cluster often sharing the same P-state.

2.7 Linux CPUFreq

CPUFreq [16] is a Linux kernel subsystem that controls CPU frequency scaling,

allowing the system to balance performance with power consumption. Note that the

term "CPU" is used for logical CPUs here — a single physical processor may contain

multiple logical CPUs, commonly referred to as "CPU cores".

The CPUFreq subsystem consists of three layers: the core, scaling governors and scaling

drivers. The core provides the basic framework and user-space interfaces. Scaling

governors each implement a scaling algorithm, varying the active P-state as required

depending on system load. Scaling drivers communicate with the hardware, provide

information on the available P-states and physically change the CPU P-states according

to the active scaling governor.

Depending on the processor model and kernel configuration, one of multiple available

CPUFreq drivers is loaded during boot. Most drivers have a similar interface, except the

intel_pstate driver [17], which is used on Intel CPUs — here, frequency scaling is done

internally by the processor and the driver. To use generic scaling governors, the driver

must be switched to the so-called passive mode, where automatic hardware scaling is

disabled.

On some processors, multiple CPUs share the same selected P-state. To represent this,

CPUFreq has the so-called policies, which represent a set of CPUs with shared

parameters. To prevent confusion with the concept of power policy used in DEmOS,

these will be referred to as "CPUFreq policy" in further sections.

2.7.1 CPUFreq user-space interface

CPUFreq is, when supported, available to user-space as part of the sysfs virtual

filesystem, typically accessible under the /sys/devices/system/cpu/cpufreq

directory. For each existing CPUFreq policy, a subdirectory policy<n> exists, where

<n> is an integer index. CPUs affected by this policy can be listed by reading the

affected_cpus virtual file inside the subdirectory. The active governor for a policy is

10

af://n1208
af://n1213

configured using the scaling_governor file, with available values listed in

scaling_available_governors file.

Most governors only expose general parameters like min/max frequency, except for the

userspace governor, which allows a user-space client to select a precise P-state for

each CPUFreq policy, and keeps the selected P-state until requested otherwise, unless

the thermal envelope is exceeded, which may occur with, for example, the Turbo mode

of Intel processors.

When userspace governor is selected, current P-state may be selected by writing the

desired frequency in the scaling_setspeed file. CPUFreq uses frequencies to

represent the available P-states, but voltage and other parameters are varied

accordingly.

To set P-states manually on a system where intel_pstate driver is used,

the driver must be first switched to passive mode by writing to the

/sys/devices/system/cpu/intel_pstate/status virtual file. Then, it behaves as

the generic driver and allows clients to use the userspace governor.

11

This section describes the external behavior of DEmOS and also provides a

high-level overview of internal design. It contains useful information both for

the end user and a contributor.

Fig. 1. Periodic execution of the defined time window sequence.

3 Design

3.1 Overview

DEmOS is a user-space Linux program emulating an avionics real-time scheduler using

existing Linux kernel features. In addition to scheduling, DEmOS also provides a

power management subsystem, allowing users to define custom power policies.

Design and terminology used is inspired by the Deos™ operating system, which can be

configured to run in ARINC 653 compatible mode. DEmOS itself is not ARINC 653

compatible, neither it attempts to be, although some components are implemented as

specified. It does not implement the APEX interface, opting to let processes use the

native Linux API, and only focuses on scheduling. What it strives to preserve is the

scheduling model, so that the thermal and power characteristics of avionic workloads

may be analyzed and improved upon using DEmOS.

An epoll-based event loop is used to receive and process events on a single thread.

Linux cgroup v2 is used to control the scheduled processes. CPU frequency scaling is

adjusted using the sysfs-based CPUFreq interface.

3.2 Scheduling model

DEmOS manages partitions, which are groups of processes. Partitions are scheduled

according to a static schedule defined by the user. Similarly to ARINC 653, time is

divided into time windows of fixed length, providing temporal isolation. Each

window contains a set of slices, which bind a partition to a subset of the available

CPUs for the duration of the time window. Slices provide space partitioning inside a

time window, allowing multiple partitions to execute in parallel on different CPUs.

DEmOS schedules all defined windows in an interval called a major frame, which

repeats periodically. A window execution examples are shown on Fig. 1 and Fig. 2.

12

af://n1218
af://n1220
af://n1224

Fig. 2. A time diagram illustrating the behavior of partition scheduler.

Processes inside a partition are scheduled in a fixed predefined sequence, without a

static schedule. Next process is started either when the previous process exhausts its

time budget for the current window, or when it voluntarily yields after completing all

work required in the current window. DEmOS exits when either all processes end or

the scheduler receives a stop signal. See Fig 3 for an example execution diagram.

Two types of partitions are supported: safety-critical and best-effort. Safety-critical

partitions are started at the beginning of a window, and all processes must complete

before the end (otherwise, it is a configuration error). Best-effort partitions are

optionally executed in the remaining free part of a window after the safety-critical

partition finishes, and automatically preempted at the end of the window. DEmOS may

skip execution of the best-effort partition if required by the power policy [section 3.6]

due to thermal constraints.

Each slice contains at most one safety-critical partition, followed by an optional best-

effort partition. DEmOS supports 2 modes of scheduling — either the best-effort

partition is launched immediately after the corresponding safety-critical partition

finishes, or all best-effort partitions wait until the last safety-critical partition in the

whole window finishes, which minimizes interference between safety-critical and best-

effort partitions.

13

Fig. 3. A time diagram illustrating the behavior of process scheduler.

Fig. 4. A simplified schema of the YAML-based configuration format.

3.3 Configuration

DEmOS is configured using two different interfaces: a YAML-based configuration file

and a command-line interface (CLI). The configuration file defines the partitions

and the static schedule. The CLI then supplements the configuration file via various

additional runtime options such as power policy, frame synchronization messages and

logging.

Most CLI options are described in the following sections, with full specification

available in Appendix 1. The full format of the configuration file is specified in

Appendix 2.

3.4 Example run

To illustrate the introduced concepts, see the following example configuration file,

together with a trace of the execution, recorded using trace-cmd and visualized with

kernelshark.

set_cwd

partitions: [name, processes: [{cmd, budget, jitter, init}]]

windows: [length, slices: [{cpu, sc_partition, be_partition}]]

1

2

3

14

af://n1235
af://n1240

Fig. 5. An example DEmOS configuration file.

In this section, the design of partitions and processes is described, together

with the dynamic process scheduler.

The configuration defines 3 partitions containing 4 processes, which are executed in a

single window. Processes in partitions SC1 and BE1 execute on CPU 0, and the single

process inside SC2 executes on CPU 1.

When DEmOS is invoked with this configuration, processes SC1-1 and SC2-1 are

started together at the beginning of the time window. SC1-1 runs for 100 milliseconds;

then, it is suspended and SC1-2 is started, while SC2-1 is still running. After SC1-2

budget is up, CPU 0 stays idle until all safety-critical (SC) partitions are finished, and

then BE1-1 inside the BE1 partition is started and runs until the end of the window.

Then, the cycle repeats, as there is only a single window defined.

3.5 Partitions and processes

DEmOS partitions are groups of Linux processes, which are isolated from other

partitions temporally (windows) and spatially (CPUs). Except for hardware-related side

effects arising from shared CPU and memory resources, partitions do not influence one

another. Partitions are implemented internally inside DEmOS and, except for the

cgroup structure described below, not backed directly by any system features.

windows:

 - length: 200

 slices:

 - {cpu: 0, sc_partition: SC1, be_partition: BE1}

 - {cpu: 1, sc_partition: SC2}

partitions:

 - name: SC1

 processes:

 - {budget: 100, cmd: proc_SC1-1}

 - {budget: 50, cmd: proc_SC1-2}

 - name: BE1

 processes:

 - {budget: 25, cmd: proc_BE1-1}

 - name: SC2

 processes:

 - {budget: 175, cmd: proc_SC2-1}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

15

af://n1246

Existing Linux programs may be ran using DEmOS without any modification required.

The scheduled processes are defined as shell commands (cmd key in the configuration

file), which DEmOS executes during initialization using the /bin/sh shell. This

provides flexibility in how the user chooses to start the tasks, and delegates argument

parsing and similar issues to the native shell. The shell startup overhead is negligible

for expected uses, as DEmOS is designed for long-running tasks.

Unlike in ARINC 653, where each process has a single thread of execution,

multithreading in processes scheduled by DEmOS is supported. However, the threads

are scheduled by the Linux kernel scheduler and not controlled by DEmOS.

Multiprocessing (creating new child processes) is also supported, as it is needed for

correct functionality of shell scripts and similar environments; all child processes are

then treated as a single unit, scheduled together with the original parent process, with

internal scheduling again done by the kernel scheduler.

3.5.1 Process scheduling

When a partition is running (scheduled inside the current time window), a second-

level dynamic scheduler manages processes inside the partition. At a given time, at

most a single process from the partition runs, across all CPUs available to the partition.

Processes are scheduled in FIFO order.

Each process has a configured time budget (budget key in the configuration file, in

milliseconds), which is replenished at the beginning of each window. When scheduled,

the process runs either until the budget is exhausted, or until it signals completion

[section 3.5.3]. The process selection algorithm of the scheduler differs based on

whether the partition is safety-critical or best-effort.

Processes from a safety-critical partition are always scheduled starting from the first

one, and must all complete before the end of the window. In a safety-critical system,

failing to do so could result in a system failure; DEmOS outputs a warning when this

occurs, but suspends the process and continues with execution of the next window.

In a best-effort partition, execution may reach the end of a window. Remaining

budget of the current process is then preserved and in the next window where this

partition is scheduled, execution continues from the point where it was previously

stopped. For example, if a process with a 300 millisecond budget is started 100

milliseconds before the window ends, it will be preempted and then executed with a

200 millisecond budget next time the partition is scheduled.

Optionally, each process may also have a defined budget jitter (jitter key in the

configuration file, also in milliseconds). This lets the user simulate processes with

variable length of execution. If the jitter is non-zero, the actual budget is selected

uniformly from the range . The jitter must not be

greater than 2 times the budget.

16

af://n1251

3.5.2 cgroup usage

DEmOS needs to control the processes by suspending/resuming and reacting to process

exit. CPU affinity of the partition also needs to be changed, depending on the slice the

partition is currently running under. To achieve these, the Linux cgroup feature is used

— a cgroup is created for each partition, with another nested cgroup for each process

in the partition.

When a partition is started, the cpuset cgroup is used to configure the allowed CPU set

for the whole partition. The freezer cgroup is used to suspend and resume individual

processes. As the child processes spawned by the original process may outlive their

parent, the cgroup event monitoring functionality is used to detect when the cgroup is

empty.

DEmOS needs to run under the root account to create the necessary cgroups

automatically. Otherwise, DEmOS fails due to insufficient permissions and provides a

list of shell commands to the user to create the cgroups manually.

3.5.3 Process client library

DEmOS provides a client library that scheduled processes may use to communicate

and cooperate with the scheduler. Two functions are exposed: process initialization and

yielding. To use the library, the program must be linked against it and explicitly call the

provided API.

Process initialization

Many processes require a non-trivial amount of time to initialize to a working state. As

the scheduling intervals may be quite short, it is better to run the initialization before

the static scheduler starts. If the init boolean key in the configuration file is set, the

process is scheduled outside the static windows and allowed to run until it signals that

it completed the initialization by calling an appropriate API function.

To allow for correct detection of the available CPU count (e.g. for spawning worker

threads), the initialization is done in the widest CPU set (the highest number of CPUs)

the process will run on. All initialized processes are started in parallel and scheduled

by the kernel scheduler — no isolation guarantees are provided during initialization.

Process completion (yielding)

In cases where the process finishes the required work for the current window before its

budget is used up, it may yield the remaining CPU time through the library API. This

will immediately suspend the process and schedule the next available one. The

functionality is similar to the sched_yield POSIX system call, but applies to the whole

process (and all child processes), not only the calling thread.

17

af://n1257
af://n1261
af://n1263
af://n1266
https://man7.org/linux/man-pages/man2/sched_yield.2.html

3.6 Power policies

One possible source of inconsistencies between successive runs of the same schedule is

the kernel power management subsystem, including CPU frequency scaling and sleep

states. At the same time, thanks to the static partition schedule, DEmOS has more

information about the future CPU load distribution than the kernel, allowing it, at least

in theory, to make better power management decisions in sync with the schedule,

lowering power consumption and platform temperature while still providing

maximum performance when required.

DEmOS implements a high-level interface to the CPUFreq kernel subsystem, allowing

it to disable automatic kernel CPU frequency scaling and implement custom power

policies, which observe various scheduler events and manage CPU frequencies

accordingly. Multiple power policies are implemented, selectable using the -p

command-line parameter. A simple interface to add custom power policies by

modifying the DEmOS source code is provided, described further in the corresponding

implementation section [section 4.8].

To access the kernel power management features, DEmOS must be running under the

root account, or another access control mechanism must be used to provide write

access to the CPUFreq sysfs interface.

3.7 Runtime output

As DEmOS is a CLI-only application, a status log is provided on the standard error

output to inform the user of the current state. The granularity of the output can be

configured by the user, and enough information is provided so that the user does not

have to use external tools to understand the behavior of DEmOS and the scheduled

processes.

18

af://n1268
af://n1272

This section describes the internal implementation of DEmOS, including

project structure, optimization and tooling. This may be of interest to future

contributors and inquisitive end users.

4 Implementation

DEmOS is implemented a single user-space C++17 Linux program called demos-

sched, running with real-time priority [18]. An event-driven architecture is used,

utilizing the libev library [19], which internally uses epoll to receive events. Linux

cgroup v2 [section 2.5] is used to control the scheduled processes. CPU frequency

scaling is controlled using the sysfs-based CPUFreq interface [section 2.7.1].

Multiple instances of DEmOS may run in parallel, but at most one instance may have

active power management enabled. As long as each instance uses different CPUs, there

should be minimal interference between the instances, except for side effects like

platform temperature, memory bus contention and similar.

4.1 Building

DEmOS uses the Meson build system [20] for building and running tests. A Makefile

wrapper provides common configurations exposed as targets. Some of the more useful

targets are:

make release, which configures the project for a release build,

make debug, which configures the project for a debug build (enables verbose

trace messages, debugger symbols and address sanitization),

make aarch64, which configures the project for cross-compilation to 64-bit

ARM architecture,

make, which builds the project using current configuration,

make test, which builds the project and then runs the test suite [section 4.11].

External dependencies (libev, yaml-cpp and spdlog) may either be installed using the

system package manager, or cloned as git submodules. In both cases, the

dependencies are statically linked.

For native builds, the resulting demos-sched binary is written to build/src/demos-

sched. For ARM cross-compiled builds, it is written to build-aarch64/src/demos-

sched.

19

af://n1274
https://man7.org/linux/man-pages/man7/sched.7.html
http://software.schmorp.de/pkg/libev.html
af://n1278
https://mesonbuild.com/

4.2 Event loop

After a synchronous initialization, DEmOS operates by reacting to timers, messages

from processes and system signals. Therefore, an event-driven architecture was chosen,

using the C++ interface of the C-based libev library (ev++.h). Custom wrappers were

added for eventfd and timerfd, sub-classing the ev::io libev class. File writes to the

cgroup and sysfs virtual files are done synchronously, as the written data buffers are too

small to justify the additional overhead of asynchronous writes.

4.3 Project and module structure

The project directory structure is as follows:

The src directory contains the source code of DEmOS.

The lib directory contains the process library sources. [section 3.5.3]

The test directory contains automated tests, implemented as a set of bash

scripts. [section 4.11]

The src/tests directory contains a set of testing processes, used by the

automated tests.

The test_config directory contains DEmOS configuration files that

demonstrate some of the supported features.

The subprojects directory contains external libraries used by DEmOS,

managed as git submodules.

Header and implementation files are always in the same directory, using the same

base-name — therefore, there is a one-to-one correspondence between a header file

and its implementation. Some classes are implemented as a header-only module,

typically for classes which are only used in a single compilation unit. C++ classes are

used to implement most of the functionality, but inheritance, polymorphism and other

patterns common for object-oriented programming are avoided in most of the

codebase.

Main entry point of the scheduler is the main.cpp file, which parses the command-line

arguments, configures the selected power policy (if any), and invokes the Config

module to parse the configuration file and create the scheduler objects (MajorFrame,

Window, Slice, Partition, Process). Then, an instance of the DemosScheduler class

is created, which starts the event loop, runs the process initialization using the

PartitionManager class and then starts and manages the scheduler. The Cgroup

module is used internally by the Partition and Process classes to manage the

associated cgroups.

20

af://n1293
af://n1295

4.4 cgroup interface

Currently, DEmOS requires the cgroup hierarchy to be mounted in hybrid mode

[section 2.5.1]. However, the cgroup tree structure created during initialization is the

same for each controller. Therefore, it should be possible to add support for unified

mode in the future without major modifications. Together with systemd-run [21], this

would allow DEmOS to run under non-root accounts without manual cgroup creation.

During initialization, handled by the cgroup_setup module, the /proc/self/cgroup

virtual file is parsed to retrieve the cgroups that DEmOS is running under, and the

child cgroup used by DEmOS is then created under the corresponding parent cgroup.

This way, a user may limit resources used by scheduled processes by assigning DEmOS

to a custom cgroup.

Each DEmOS instance configures a top-level cgroup called demos-<pid>, where <pid>

is the process ID of the instance. This allows multiple instances to run in parallel.

When a Partition is instantiated, it creates a child cgroup with the same name. When

a Process is added to the partition, a child cgroup is also created, using a sequentially

generated name. The resulting cgroup structure is .../demos-

<pid>/<partition_name>/proc<process_index>. The same structure is mirrored

between the cpuset, freezer and unified hierarchies used by DEmOS.

The Cgroup class is used to encapsulate manipulation of the cgroup virtual files, with

child classes for each type of cgroup controller. The corresponding cgroup is

automatically created when the class is instantiated and removed on instance

destruction (the RAII pattern).

If DEmOS crashes or freezes during execution, the created cgroups will not be cleaned

up. In this case, a shell script can be found at src/cleanup_crash.sh, which stops all

running DEmOS instances and cleans up any remaining cgroups.

4.5 Process client library

The process library is implemented as a C99 static library. A Meson target is provided

to allow simple linkage to the library. eventfd file descriptors are used for

communication with DEmOS.

The library exposes three functions, all of which return zero on success and a negative

integer when an error occurs:

int demos_init() — Initializes the library by loading parameters from the

DEMOS_PARAMETERS environment variable. If not called explicitly, it is

automatically invoked the first time any other function from the library is called.

21

af://n1312
https://www.freedesktop.org/software/systemd/man/systemd-run.html
af://n1318

Fig. 6. A code example demonstrating the process library usage.

This section describes the high-level implementation of scheduler objects

mentioned in the Design section of this thesis.

int demos_initialization_completed() — Informs DEmOS that the

process completed its initialization, and immediately suspends the process. If the

process was not configured to initialize in the configuration file (init: yes),

this function immediately returns an error status and lets the program continue

execution.

int demos_completed() — Yields the remaining CPU time for the current

window, immediately suspending the process.

4.6 Scheduler objects

#include "demos-sch.h"

#include <err.h>

int main()

{

 // initialize the library, checking for errors

 if (demos_init() < 0) {

 err(1, "demos_init");

 }

 // initialize the program here

 // signal that initialization is completed

 if (demos_initialization_completed() < 0) {

 err(1, "demos_initialization_completed");

 }

 while (1) {

 // do work for current window, or exit if done

 // yield the remaining budget for this window (signal completion)

 if (demos_completed() < 0) {

 err(1, "demos_completed");

 }

 }

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

22

af://n1330

4.6.1 Process

The Process class is implemented as a passive interface to the underlying system

process — it accepts commands from other DEmOS components and forwards events

received from the system processes without any active processing.

The suspend() and resume() methods freeze and thaw the corresponding freezer

cgroup, respectively. The exec() method spawns the underlying system process and

sets up a pair of eventfd file descriptors, which are used by the process client library

[section 3.5.3] to signal completion. To do so, the library writes to the first descriptor,

and then initiates a blocking read on the second descriptor, which prevents further

execution of the process. A completion callback method on the corresponding Process

instance is invoked as a result of the write, which propagates the event to the parent

Partition. Next time the process is resumed, Process writes to the second file

descriptor, which ends the blocking read in the process library and allows it to continue

execution.

When all processes in the cgroup (the original spawned process and all child processes)

terminate, the event is also propagated to the parent Partition.

4.6.2 Partition

The Partition class is also a passive interface to the contained Process instances. Of

interest is the reset() and disconnect() method pair, which is used both during

process initialization and during normal scheduling windows to attach/detach to the

Partition instance. reset() is called with the desired CPU set the processes should

run on, and a process completion callback. Until disconnect() is called, all process

completions events invoke the provided callback.

PartitionManager

The PartitionManager class contains all defined Partition instances, coordinates

the process initialization and listens for process termination events. When all processes

terminate, it notifies the main DemosScheduler instance, which then stops the

scheduler.

4.6.3 MajorFrame

The MajorFrame class implements the static partition scheduler. It reuses a single

timerfd instance to periodically schedule the time windows by indirectly starting and

stopping the Slice instances contained in each Window instance.

23

af://n1332
af://n1336
af://n1338
af://n1340

4.6.4 Slice

The Slice class implements the process scheduler. When the parent Window is started,

it attaches to the scheduled partitions, asynchronously iterates over all pending

processes and resumes them one by one, letting each execute until either the time

budget runs out or the process signals completion.

4.7 Synchronization messages

DEmOS may be ran by another program which needs to synchronize with DEmOS

time windows. One such example is the thermobench [22] tool, which measures the

thermal properties of the SoC the scheduled processes are running on. To facilitate this,

DEmOS provides the -m <message> and -M <message> command-line parameters,

which cause DEmOS to print the provided message to the standard output at the

beginning of each window or each major frame, respectively.

4.8 Power management

The power management module needs to receive events from multiple parts of the

scheduler. The abstract class SchedulerEvents specifies hooks (event handlers) for

events relevant for the power management (window switch, partition completion, etc.).

An instance of this class is passed to all relevant scheduler objects, which directly call

the event handlers when relevant events occur. This approach was chosen over a more

generic event propagation architecture to keep the code paths short and easily

auditable, as most of the event handlers are called from latency-sensitive code paths.

The SchedulerEvents class is implemented by a number of so-called power policies,

which use the PowerManager module described below to change CPU P-states in

reaction to the received events. One such power policy is the MinBE, which executes

safety-critical partitions in the highest P-state and best-effort partitions in the lowest

one:

24

af://n1342
af://n1344
https://github.com/CTU-IIG/thermobench
af://n1346

Fig. 7. Code sample of the MinBE power policy, one of the predefined power policies

available in DEmOS.

4.8.1 PowerManager and CpufreqPolicy

The PowerManager class wraps the user-space CPUFreq interface. During

initialization, it configures the CPUFreq driver, switching the intel_pstate driver to the

passive mode, if applicable. Then, an instance of the CpufreqPolicy class is created

for each existing CPUFreq policy kernel object, which automatically activates the

userspace governor The instance provides a list of available frequencies, which may

be set using the write_frequency() method — the frequency is applied for all CPUs

managed by the policy.

4.9 Runtime logging

A single global instance of the spdlog library [23] logger is used for logging to the

standard error output. The user selects the desired log level by setting the

SPDLOG_LEVEL environment variable; the info log level is selected by default.

Trace messages are logged for all operations using the SPDLOG_LOGGER_TRACE()

macro, which can be deactivated at compile-time to reduce overhead for the release

build. It is possible to fully reconstruct the scheduler run from the trace logs.

The warning and error messages are designed to communicate the issue clearly and

offer solution and workarounds. As an example, the following warning message is

emitted when a potential conflict with another program is detected during CPUFreq

policy initialization:

class PowerPolicy_MinBE : public PowerPolicy {

private:

 PowerManager pm{};

public:

 PowerPolicy_MinBE() {

 // run initialization on max frequency

 for (auto &p : pm.policy_iter()) p.write_frequency(p.max_frequency);

 }

 void on_sc_start(Window &) override {

 // run SC partitions on max frequency

 for (auto &p : pm.policy_iter()) p.write_frequency(p.max_frequency);

 }

 void on_be_start(Window &) override {

 // run BE partitions on min frequency

 for (auto &p : pm.policy_iter()) p.write_frequency(p.min_frequency);

 }

};

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

25

af://n1351
af://n1353
https://github.com/gabime/spdlog

Fig. 8. An example of a warning message outputted by DEmOS.

4.10 Performance considerations

Although DEmOS is not a hard real-time application, low predictable latency and

minimal overhead are still important. Several steps were taken during development to

ensure good performance.

First, all scheduler objects are allocated during initialization, and no dynamic heap

allocation is allowed after the scheduler starts, to avoid unpredictable allocator latency.

Stack-based buffers of fixed size are used for I/O. To verify, an allocation tracker

module was developed, which logs all allocations occurring after initialization.

Internally, it overrides the new and delete C++ operators. While this does not capture

direct calls to malloc() (which is not used in DEmOS) and internal libc allocations, it

still exposes many subtle C++ issues such as accidental object copies. The allocation

tracker is enabled in a separate build configuration invoked by make alloc_test.

Second, fstream-based I/O is only allowed in non-critical sections of code. For latency-

sensitive cgroup manipulation and similar I/O, cached raw file descriptors are used

with the raw write and read POSIX system calls. This avoids internal buffering and

object creation overhead.

Third, indirection and abstraction is minimized throughout the codebase. The

interfaces are designed to be hard to misuse and well-documented, but the control flow

and full code path must be always clearly visible. Specifically, dynamic dispatch and

generic event chains are avoided where possible, preferring direct method calls, with

code paths going through the minimum necessary number of modules. For critical

scheduler functionalities, the code paths were analyzed line by line to ensure no

unpredictable behavior.

4.11 Automated testing

An automated test suite to validate correctness of DEmOS functionality is

implemented, and may be ran through Meson using make test. The tests are written

as bash scripts, using the tap-functions library [24], which outputs the test results in

the Test Anything Protocol (TAP) [25], which is supported by Meson. All test scenarios

>>> 10:23:09.762 [warning] `cpufreq` governor is already set to 'userspace'.

 This typically means that another program (or another instance of DEmOS)

 is already actively managing CPU frequency scaling from userspace. This DEmOS

 instance was started with power management enabled, and it will overwrite the

 CPU frequencies the other program may have set up.

 Note that running multiple DEmOS instances with an active power policy

 is NOT supported, and later instances may crash when the first one exits.

1

2

3

4

5

6

7

8

26

af://n1359
af://n1364
https://github.com/goozbach/bash-tap-functions
https://testanything.org/

invoke the demos-sched command externally; the internal behavior is currently not

tested.

4.12 Software compatibility

DEmOS works on all Linux distributions where cgroup v2 is supported and mounted in

hybrid mode, including the Microsoft WSL2 kernel, which was used for development.

For the optional power management, the CPUFreq kernel subsystem is required.

27

af://n1366

This section describes the platform DEmOS was developed and tested on and

presents benchmarks of the functionality documented in previous sections.

5 Evaluation

5.1 Evaluation platform

For evaluation of thermal characteristics, the testbed described in a previous paper [25]

was used, with the ARM64-based Toradex i.MX8QuadMax platform. On software side,

the Linux kernel version 5.4.70 from the official Yocto distribution provided by Toradex

was used, with a custom Debian distribution providing the user-space environment.

For measuring thermal properties, the Thermobench tool was used.

The option of compiling a custom Linux kernel was explored, but ensuring full

compatibility, especially with regards to the required GPU drivers proved problematic,

and as the required power management features could be implemented without

modifications to the kernel, the official kernel image was used instead.

5.2 Basic functionality

All features described in this thesis are implemented, and most are tested using the

automated test suite. Test configurations are prepared for features which are hard to

test in an automated way.

5.3 Stress testing

To ensure that DEmOS scales well for a larger number of scheduler objects, multiple

stress tests were done. To run the larger configurations, the limit on the number of

opened file descriptors had to be manually raised by calling ulimit -n 100000, as

DEmOS keeps a file descriptor opened for each cgroup it manages, and two file

descriptors for each managed process.

First, a configuration of 10 000 partitions was evaluated, each containing one process.

Due to the way DEmOS spawns the scheduled processes, where each forked child

process is immediately suspended, in combination with higher memory usage by

DEmOS itself, the system ran out of memory during process initialization and invoked

the OOM killer mechanism. Interestingly, even the copy-on-write mechanism used by

Linux [26] to lower the physical memory usage of forked processes did not work well

enough to allow DEmOS to finish initialization.

28

af://n1368
af://n1370
af://n1373
af://n1375

Fig. 9. Average time for processing of one frame for varying window lengths.

For a smaller set of 1 000 partitions, each containing one process, DEmOS successfully

initialized all processes and started scheduling in 9.3 seconds, on average over 8 runs.

The initialization is dominated by the time to spawn all scheduled processes (6.1

seconds on average). After initialization, the scheduler is responsive and its scheduling

latency (see below) is not dependent on the number or scheduled partitions.

Next, a set of 1200 processes, split equally between 3 partitions was tested. DEmOS also

successfully initialized in 4.0 seconds on average over 8 runs, with process spawning

again taking up majority of the initialization time.

5.4 Evaluation of power management

To validate that the implemented power management feature lowers the operating

temperature as expected, the ADASMark™ [2] automotive benchmark suite was used.

For all tests, 400 frames were processed in each benchmark run, and the final

temperature of the CPU package was recorded.

The benchmark was ran 5 times outside of DEmOS, using all 6 available CPUs in

highest P-state (1.5 GHz and 1.2 GHz for the A72 and A53 cores, respectively). Then,

another 5 runs were recorded under DEmOS, with a power policy that set the minimal

supported frequency (600 MHz) for all cores.

Without DEmOS, the average recorded temperature from all runs was 61.6 °C. With

the power management applied, the averaged temperature dropped to 53.3 °C. The idle

temperature of the board was recorded at 44.6 °C.

5.5 Scheduling overhead

To test the scheduling overhead, the same 400 frame ADASMark™ benchmark was

used. Each of the following measurements was repeated 5 times and averaged. First,

the benchmark was ran outside of DEmOS to get a baseline; here, each frame was

processed in 404 milliseconds on average. Then, the benchmark was ran under DEmOS

in a single repeating window, with windows lengths of 1000, 100, 10, 5, 2 and 1

milliseconds. The results are plotted in Fig. 4.

29

af://n1380
af://n1384

By subtracting the baseline frame time and dividing the difference by the number of

DEmOS major frames that were executed per single frame, we get an estimate of the

overhead DEmOS adds for each window switch. For the 1 millisecond window length,

the estimated overhead is approximately 60 microseconds.

30

6 Conclusion

As a result of this project, DEmOS, a Linux user-space scheduler was released.

Compared to the original prototype, it is more robust and maintainable, better

documented, and offers multiple new features, most important of which is the power

management system.

As shown by the evaluation and our previous paper [4], although DEmOS is not a truly

real-time scheduler, its overhead is low enough for further experimental work.

6.1 Possible improvements

As shown by the stress testing, the approach used for spawning the scheduled

processes is non-optimal and replacing the fork and exec with posix_spawn

could improve the initialization time and scalability.

In addition to the CPUFreq subsystem already used by DEmOS, Linux kernel

provides the CPUIdle subsystem, which manages CPU sleep states. Thanks to

the static partition schedule, DEmOS has precise information about the available

idle time, which should in theory allow it to lower the thermal output by

controlling the CPU sleep states without affecting performance.

To aid analysis of schedule execution, DEmOS could store machine-readable

logs during operation, which could be later use to reconstruct and visualize the

schedule directly, without using external tools.

31

af://n1389
af://n1392

7 References

Integrated Modular Avionics (IMA) Development Guidance and Certification Considerations (2005),
RTCA DO-297 / EUROCAE ED-124

[1]

EMBC, The ADASMark™ Benchmark (2018), [Online]. Available: https://www.eembc.org/adasmark/
(Viewed 2021-05-21)

[2]

Ellis, M., Anderson, W., and Montgomery, J., Passive Thermal Management for Avionics in High

Temperature Environments (2014), SAE Technical Paper 2014-01-2190, 2014, [Online]. Available:
https://www.sae.org/publications/technical-papers/content/2014-01-2190/

[3]

Ondřej Benedikt, Michal Sojka, Pavel Zaykov, David Hornof, Matěj Kafka, Přemysl Šůcha, Zdeněk
Hanzálek, Thermal-aware scheduling for MPSoC in the avionics domain: Tooling and initial results (in
submission) (2021)

[4]

DEmOS scheduler (2021), [Online]. Available: https://github.com/CTU-IIG/demos-sched (Viewed
2021-05-21)

[5]

Jane W. S. Liu, Real-Time Systems (2000), U.s.a: Prentice Hall, June 15, 2000, ISBN 9780130996510.[6]

Giovani Gracioli, Ahmed Alhammad, Renato Mancuso, Antônio Augusto Fröhlich, and Rodolfo
Pellizzoni, A Survey on Cache Management Mechanisms for Real-Time Embedded Systems. (2015),
ACM Comput. Surv. 48, 2, Article 32 (November 2015).

[7]

CFS: Completely fair process scheduling in Linux (2019), [Online]. Available:
https://opensource.com/article/19/2/fair-scheduling-linux (Viewed 2021-05-21)

[8]

The real-time endgame is moving quickly now (2020), [Online]. Available:
https://wiki.linuxfoundation.org/realtime/rtl/blog (Viewed 2021-05-21)

[9]

“Department of Defense - Standard Practice Safety System” (2012), MIL-STD-882E.[10]

ARINC, “Avionics Application Software Standard Interface Part 1 - Required services (ARINC

Specification 653P1-2)” (2019), Airlines Electronic Engineering Committee - Aeronautical Radio, Inc.
(ARINC), 2551 RivaRoad, Annapolis, Maryland 21401-7435, Tech. Rep.

[11]

S. H. VanderLeest, "ARINC 653 hypervisor," (2010), 29th Digital Avionics Systems Conference, 2010,
pp. 5.E.2-1-5.E.2-20.

[12]

DDC-I, Deos, a Time & Space Partitioned, Multi-core Enabled, DO-178C DAL A Certifiable RTOS
(2021), [Online]. Available: https://www.ddci.com/products_deos_do_178c_arinc_653/ (Viewed 2021-
05-21)

[13]

Control Group v2 (2015), [Online]. Available: https://www.kernel.org/doc/Documentation/cgroup-
v2.txt (Viewed 2021-05-21)

[14]

systemd, Control Group APIs and Delegation (2018), [Online]. Available:
https://systemd.io/CGROUP_DELEGATION/ (Viewed 2021-05-21)

[15]

CPU Performance Scaling (2017), [Online]. Available: https://www.kernel.org/doc/html/v5.12/admin-
guide/pm/cpufreq.html (Viewed 2021-05-21)

[16]

intel_pstate CPU Performance Scaling Driver (2017), [Online]. Available:
https://www.kernel.org/doc/html/v5.12/admin-guide/pm/intel_pstate.html (Viewed 2021-05-21)

[17]

sched (7) — Linux manual page, [Online]. Available: https://man7.org/linux/man-
pages/man7/sched.7.html (Viewed 2021-05-21)

[18]

libev, [Online]. Available: http://software.schmorp.de/pkg/libev.html (Viewed 2021-05-21)[19]

The Meson Build system, [Online]. Available: https://mesonbuild.com/ (Viewed 2021-05-21)[20]

systemd, systemd-run, [Online]. Available:
https://www.freedesktop.org/software/systemd/man/systemd-run.html (Viewed 2021-05-21)

[21]

32

af://n1401

Thermobench (2021), [Online]. Available: https://github.com/CTU-IIG/thermobench (Viewed 2021-
05-21)

[22]

spdlog (2021), [Online]. Available: https://github.com/gabime/spdlog (Viewed 2021-05-21)[23]

TAP functions for bash (2012), [Online]. Available: https://github.com/goozbach/bash-tap-functions
(Viewed 2021-05-21)

[24]

Test Anything Protocol (2021), [Online]. Available: https://testanything.org/ (Viewed 2021-05-21)[25]

Michal Sojka, Ondřej Benedikt, Zdeněk Hanzálek, Testbed for thermal and performance analysis in

MPSoC systems (2020), DOI: 10.15439/2020F174, [Online]. Available: https://annals-
csis.org/proceedings/2020/drp/pdf/174.pdf

[26]

Andrew Baumann, Jonathan Appavoo, Orran Krieger, and Timothy

Roscoe, A fork() in the road (2019). In Workshop on Hot Topics in Operating Systems (HotOS ’19),
May 13–15, 2019, Bertinoro, Italy. ACM, New York, NY, USA. https://doi.org/10.1145/3317550.
3321435

[27]

33

Appendix 1: DEmOS command-line

interface

The following command-line parameters are supported:

-c <CONFIG_FILE> — Path to the configuration file.

-C <CONFIG_STRING> — Inline configuration string in YAML format.

-p <POWER_POLICY> — Name of the selected power management policy. If not

set, power management is disabled. If multiple instances of DEmOS are running

in parallel, this parameter must not be passed to more than one instance.

-g <CGROUP_NAME> — Name of the root cgroups created by DEmOS. If not set,

demos-<pid> is used, where <pid> is the process ID of the current instance.

-m <WINDOW_MESSAGE> — If set, DEmOS prints WINDOW_MESSAGE to the

standard output at the beginning of each time window.

-M <MF_MESSAGE> — If set, DEmOS prints MF_MESSAGE to the standard output at

the beginning of each major frame.

34

Appendix 2: DEmOS configuration file

format

Configuration files are written in the YAML format. They can have either canonical or

simplified form, with the latter being automatically converted to the former. Canonical

form is most flexible, but for same cases a bit verbose. Verbosity can be reduced by

using the simplified form. Both forms are described bellow.

Canonical form of the configuration file

Configuration file is a mapping with the set_cwd, partitions and windows keys:

set_cwd (optional, default: true) is a boolean specifying whether all scheduled

processes should have their working directory set to the directory of the

configuration file; this allows you to safely use relative paths inside the

configuration file and scheduled programs.

partitions is an array of partition definitions.

Partition definition is a mapping with name and processes keys.

processes is an array of process definitions.

Process definition is mapping with cmd, budget, jitter and init keys.

cmd is a string with a command to be executed (passed to /bin/sh

-c).

budget specifies process budget in milliseconds.

jitter (optional, default: 0) specifies jitter that is applied to the

budget for each invocation.

init (optional, default: false) is a boolean specifying if process

should be allowed to initialize before scheduler starts

35

windows is an array of window definitions.

Window definition is a mapping with length and slices keys.

length defined length of the window in milliseconds.

slices is an array of slice definitions.

Slice definition is a mapping with the cpu key and optional sc_partition

and be_partition keys.

cpu is a string defining scheduling CPU constraints. The value can

specify a single CPU by its zero-based number (e.g. cpu: 1), or a

range of CPUs (cpu: 0-2), or combination of both (cpu: 0,2,5-7).

sc_partition and be_partition are strings referring to partition

definitions by their names.

Example canonical configuration can look like this:

set_cwd: yes

partitions:

 - name: SC1

 processes:

 - cmd: ./safety_critical_application

 budget: 300

 init: yes

 - name: BE1

 processes:

 - cmd: ./best_effort_application1

 budget: 200

 - name: BE2

 processes:

 - cmd: ./best_effort_application2

 budget: 200

 - cmd: ./best_effort_application3

 budget: 200

windows:

 - length: 500

 slices:

 - cpu: 1

 sc_partition: SC1

 be_partition: BE1

 - cpu: 2,5-7

 be_partition: BE2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

36

Simplified form of the configuration file

The slice keyword may be omitted. Then it is expected that there is just one

slice inside window scheduled at all CPUs.

is the same as

Partition may be defined directly inside windows.

is the same as

If process budget is not set, then the default budget 0.6 * length of

window is set for sc_partition processes and length of window is set for

be_partition processes.

{

 partitions: [{name: SC, processes: [{cmd: echo, budget:100}]

}],

 windows: [{length: 500, sc_partition: SC}]

}

1

2

3

4

partitions:

 - name: SC

 processes:

 - cmd: echo

 budget: 300

windows:

 - length: 500

 slices:

 - cpu: 0-7

 sc_partition: SC

1

2

3

4

5

6

7

8

9

10

windows: [{length: 500, sc_partition: [{cmd: proc1, budget:

500}] }]

1

partitions:

 - name: anonymous_0

 processes:

 - cmd: proc1

 budget: 500

windows:

 - length: 500

 slices:

 - cpu: 0-7

 sc_partition: anonymous_0

1

2

3

4

5

6

7

8

9

10

37

You can use xx_processes keyword for definition of partition by the list

of commands:

windows: [{length: 500, sc_processes: [proc1, proc2]}]1

38

	6469642691ff9abd871b6ca3e73846c4c635302eb6cc5b13436743238e250624.pdf
	6469642691ff9abd871b6ca3e73846c4c635302eb6cc5b13436743238e250624.pdf
	6469642691ff9abd871b6ca3e73846c4c635302eb6cc5b13436743238e250624.pdf
	Introduction
	Background
	Real-time systems
	CPU scheduler
	Real-time CPU scheduling algorithms
	Static scheduling
	Dynamic scheduling

	Safety-critical systems
	ARINC 653 standard
	Hypervisor-based implementation
	Kernel-based implementation

	Deos™ RTOS
	Linux cgroup
	cgroup modes (systemd)

	CPU performance scaling
	Linux CPUFreq
	CPUFreq user-space interface

	Design
	Overview
	Scheduling model
	Configuration
	Example run
	Partitions and processes
	Process scheduling
	cgroup usage
	Process client library
	Process initialization
	Process completion (yielding)

	Power policies
	Runtime output

	Implementation
	Building
	Event loop
	Project and module structure
	cgroup interface
	Process client library
	Scheduler objects
	Process
	Partition
	PartitionManager

	MajorFrame
	Slice

	Synchronization messages
	Power management
	PowerManager and CpufreqPolicy

	Runtime logging
	Performance considerations
	Automated testing
	Software compatibility

	Evaluation
	Evaluation platform
	Basic functionality
	Stress testing
	Evaluation of power management
	Scheduling overhead

	Conclusion
	Possible improvements

	References

