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Abstract
High-performance MPSoCs are becoming more common in the avionics and automotive

industries for safety-critical, real-time applications, bringing new challenges in scheduling

and thermal management. However, some cutting-edge computing platforms like the

i.MX8QuadMax by NPX used for my research are not yet supported by the proprietary real-

time operating systems (RTOS) used in the industry.

To allow for prototyping and benchmarking of avionic workloads on such platforms and

development of new thermal-aware scheduling algorithms, we developed DEmOS, an open-

source static scheduler running in Linux user-space, mimicking a RTOS scheduler using

existing Linux user-space interfaces. DEmOS was already successfully used to evaluate a new

thermal-aware scheduling algoritm.
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Abstrakt (CZ)

V leteckém a automobilovém průmyslu je stále obvyklejší používání výkonných 

vícejádrových čipů pro aplikace realného času s vysokými bezpečnostními požadavky, 

přinášející nové výzvy v oblasti rozvrhování a řízení teplot. Nové výkonné platformy, 

např. NXP i.MX8QuadMax, kterou používáme pro náš výzkum, však zatím nejsou 

podporovány typicky používanými proprietárními operačními systémy reálného času 

(RTOS).

Pro prototypování a testování avionických systémů na těchto platformách a vývoj 

nových rozvrhovacích algoritmů jsme vyvinuli open-source nástroj DEmOS, statický 

rozvrhovač bežící v user-space na Linuxu, který napodobuje RTOS rozvrhovače 

s využitím již existujících systémových rozhraní. DEmOS byl již úspěšně využit pro 

testování nového rozvrhovacího algoritmu zohledňující výsledné teploty.
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1 Introduction  

In avionics and automotive domains, there is now a strong demand for high-

performance Multi-Processor Systems-on-Chip (MPSoC), due to a rising use of digital 

image processing and machine learning applications [2], and consolidation of system 

components to a smaller number of hardware modules (Integrated modular avionics 

[1]). For some of these uses, GPUs are also vital.

These systems operate under harsh environmental conditions such as dust, vibration 

and extended thermal ranges. To ensure safety and reliability of the system, it is vital to 

operate within a thermal envelope. However, in avionics, thermal management has 

been a long-term problem even for lower-performance platforms [3], and it is further 

exemplified by the higher thermal emission of more powerful MPSoCs, and especially 

GPUs.

One possible solution is the use of active cooling, which brings issues with mechanical 

design and increases weight and costs. An alternative way is to employ passive cooling 

techniques directly on the platform, such as dynamic voltage and frequency scaling 

and thermal-aware scheduling, which is the approach our research group focuses on.

To evaluate the developed models and scheduling algorithms on real hardware, we 

need an execution environment similar to the one provided by a safety-critical, real-

time operating system (RTOS). Many cutting-edge high-performance platforms are not 

yet supported by the RTOSs commonly used and required in both industries, such as 

the i.MX8QuadMax by NXP, which is targeted by our research. Usually, Linux is the 

first operating system supported on these platforms; however, its runtime environment 

differs significantly from the one provided by an RTOS, primarily in the scheduling 

model and provided temporal guarantees.

To allow for prototyping and benchmarking of avionic workloads on such platforms 

and development of new thermal-aware scheduling algorithms, we developed an 

open-source tool called DEmOS [5], a static scheduler running in Linux user-space, 

mimicking a RTOS scheduler using existing Linux user-space interfaces.

The rest of this thesis presents the design, implementation and performance evaluation 

of DEmOS. The project was originally started by Ing. Jiří Záhora and my supervisor, 

Ing. Michal Sojka, Ph.D., who developed a working prototype. I took over the project, 

extended it with new functionality, primarily the power management system, and 

updated many of the existing components to be more robust and extensible. The goal of 

my work was to further develop DEmOS as a tool for other researchers, and further 

research is not the subject of this thesis.
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This section provides an overview of the topics required in later sections. First,

real-time and safety-critical systems are described, including relevant

standards. Then, the Linux kernel features used by DEmOS are briefly

introduced.

2 Background  

2.1 Real-time systems  

In most consumer-facing software systems, emphasis during design and development 

is placed on functionality and its correctness; in cases where "performance" is 

considered, hardware resource usage and total throughput of the system is typically 

prioritized over other parameters like latencies, and no hard timing constraints are 

present.

In contrast, for many domains of embedded development, throughput is generally not 

a prioritized metric, with reliability, deterministic timing and bounded latencies being 

the more important design goals. [6] One example of such a system is the flight control 

module of a helicopter —  to keep the aircraft stable, a set of tasks must be ran 

periodically, and missing any of them due to a temporary lockup may result in 

instability or even a crash. Specification of such a system includes both logical (system 

gives correct results) and temporal (the results are delivered at the correct time) 

requirements, and both must be met for the system to be usable. We call these real-

time systems.

Perhaps somewhat counterintuitively, low latencies are not necessarily correlated with 

high throughput. A common example in software engineering is the use of buffers and 

caches —  if used well, both improve throughput and even average latency, but the 

worst-case end-to-end latency, an important metric for real-time systems, is typically 

negatively impacted. In general, real-time systems tend to rely on simple, deterministic 

components, as they are easier to reason about and verify temporal guarantees for. [7]

We distinguish two types of real-time systems: hard real-time and soft real-time. If a 

deadline has to be met under all circumstances, it is called a hard deadline; a hard 

real-time system is a system where all deadlines are hard. Here, a failure to meet a 

deadline is often catastrophic. Analysis of such systems is easier, as the system can be 

considered fully deterministic. The aforementioned example of an aircraft flight control 

is a hard real-time system; hardware control loops in general are typically hard real-

time systems — an autonomous driving system, a print head controller, a pacemaker, 

etc. These systems are implemented on top of specialized real-time operating systems 
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(RTOS), as general-purpose operating systems (GPOS) are too complex and their 

timing characteristics often too unpredictable to reason about.

Systems where some deadlines may occasionally be missed are called soft real-time 

systems. Here, the full latency distribution is considered, not only the worst-case 

behavior—a deadline should be met "most of the time", otherwise the performance 

deteriorates. This makes the system analysis more complicated, due to its probabilistic 

nature. A common example is audio processing and playback —  a missed deadline 

results in perceptible stuttering, but as long as it occurs infrequently, it is acceptable (or 

rather, designing the system to be hard real-time would be too expensive given the 

complex algorithms commonly used). Deciding whether a system should be hard or 

soft real-time is for many domains up to the designer, and typically involves a trade-off 

between reliability, throughput, development time and costs.

2.1.1 CPU scheduler  

A CPU scheduler is part of an operating system that switches between ready tasks so 

that they can all run concurrently. Schedulers used in GPOSs are typically geared 

towards throughput, fairness (avoiding CPU starvation of any task) and, for desktop, 

interactive use (prioritizing a few tasks the user is actively interacting with). [8] In 

order to efficiently distribute computing time in a highly dynamic environment of a 

typical server or desktop system, the scheduling algorithms are quite complex, making 

it hard to reason about and make any temporal guarantees.

At the same time, the kernel and drivers in GPOS are typically not designed with hard 

real-time applications in mind, and fundamental changes to the system would be 

required to support these, usually sacrificing some throughput and interactivity. Kernel 

and driver preemptibility is one such issue, with some portions of the mainline Linux 

kernel still not preemptible (although the CONFIG_PREEMPT_RT option improves the 

situation) [9], and Windows NT kernel fully preemptible, but with some of the 

proprietary drivers blocking DPC queues for longer periods of time, also making it 

unsuitable for real-time applications. One solution that avoids these issues is using a 

hard real-time hypervisor that runs the GPOS as a fully preemptible guest OS.

For an RTOS scheduler, the main requirement is predictability —  the scheduler 

behavior must be deterministic, allowing the system designer to reason about the 

worst-case temporal behavior of each task. For an RTOS, the environment is typically 

mostly static and the system designer has control over all tasks — the complexity and 

the resulting unpredictability of a GPOS scheduler is therefore not desirable.

2.1.2 Real-time CPU scheduling algorithms  

The goal of a real-time CPU scheduling algorithm is to distribute CPU time (and other 

resources) to tasks in a way so that all deadlines are met. Three types of tasks are 

scheduled: periodic tasks, which must meet a periodic deadline (an instance of the task 

must finish in each period); sporadic tasks, which arrive at arbitrary times and have a 
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hard deadline; and aperiodic tasks, which also arrive at arbitrary times, but without 

any hard deadline.

Two classes of scheduling algorithms are typically used: static (offline, clock-driven) 

scheduling and dynamic (online) scheduling.

Static scheduling  

With static scheduling, the full schedule for periodic tasks is computed offline (at 

design time). At runtime, the scheduling decisions are only done at predefined time 

instants by switching tasks according to the schedule. This way, runtime overhead is 

minimal, and more complex algorithms may be used to find an optimal schedule 

ahead-of-time. As the full schedule is known at design time, it is easier to verify.

On arrival of a sporadic task, an admission test may be performed, and if the pending 

task cannot be feasibly scheduled, it is rejected; otherwise, it is executed during free 

intervals in the schedule. For an aperiodic task, it is queued and ran when the system 

would otherwise be idle (with possible optimizations like slack stealing).

The disadvantage of static scheduling is its inflexibility, as the schedule is fixed and all 

tasks and their parameters must be known at design time.

Dynamic scheduling  

With dynamic scheduling, scheduling decisions are done at runtime, depending on 

which tasks are currently ready to be executed. This lets the system react better to 

sporadic and aperiodic tasks, at the cost of higher overhead and more complex 

verification at design time.

A simple example is the FCFS ("first come, first serve") scheduling algorithm, which 

keeps a queue of all ready tasks and schedules them in the order of arrival.

More complex dynamic schedulers typically assign a priority to each task, and give 

CPU time to the highest-priority task out of all ready tasks. Task priorities are either 

fixed (set at design time) or dynamic (set at runtime, often based on the task 

deadline). As DEmOS only uses a very basic form of FCFS scheduling, these will not be 

explored further — for more details, refer to [6].
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Safety-critical systems are systems which have defined safety requirements,

which must be fulfilled for the system to perform acceptably.

2.2 Safety-critical systems  

For many non-mechanical (e.g. software) systems used by consumers, an occasional 

failure or malfunction is acceptable, although not desirable, as ensuring correct 

functionality under all circumstances would be too complex and/or expensive, the 

impact of a failure is minor, and it is easy enough for the operator to manually recover 

the system back to a valid state. We will call these best-effort systems (also called 

"non-critical"). One example is the audio processing and playback system already 

mentioned above, which is also a soft real-time system.

In comparison, a failure or malfunction in a safety-critical system may result in 

injury, death, severe material or financial loss or other outcomes deemed unacceptable 

by the system designer. This is common in cases where physical machinery is part of 

the system, e.g. flight control in an airplane, or a medical ventilation system. Safety-

critical systems also typically have real-time requirements, but this is not always true 

— for example, the correctness of a compiler output is safety-critical, but no real-time 

requirements are present.

The safety requirements for such software systems are significantly stronger than in 

typical software development —  the system developers must be able to assert safety 

guarantees within a rigorous theoretical framework; this is the subject of system safety 

engineering. During development, possible hazards should be documented, analyzed 

and the system designed with mitigation measures to minimize the probabilistic risk of 

failure — all hazards should either be eliminated, or probabilistic in nature, with the 

associated risk reduced to an acceptable level.

There are multiple commonly used standards, sets of best practices and safety analysis 

procedures, some of them specific to the avionics domain. Unlike with many other 

software development domains, standard compliance is required for most commercial 

usage and ensured using a stringent and typically expensive certification process.

Some of the better known system safety standards are:

DOD MIL-STD 882E  [10], a top-level system safety standard typically required 

in contracts for the USA Department of Defense, defining common terminology 

and safety requirements throughout the full life cycle of system development 

and maintenance

IEC 61508, a generic international safety standard, applicable to all industries

MISRA C, a set of software development guidelines for the C language, aiming to 

make the language safer for use in automotive industry
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DO-178C / ED-12C, a primary guideline by which certification of all commercial 

software-based avionic systems in the USA and Europe for civil (non-military) 

use is done

ISO 26262, an international standard for safety-critical systems installed in road 

vehicles

As it is not feasible to certify a large monolithic operating system due to the code size 

and complexity, specialized microkernels are used for safety-critical systems. Some 

commonly used certified safety-critical operating systems are VxWorks by Wind River, 

Deos by DDC-I and QNX by Blackberry. All the mentioned operating systems also fall 

into RTOS category.

Commonly, an integrated system has both safety-critical and non-critical components. 

As the level of scrutiny and correctness guarantees is typically lower for the non-critical 

components, it is important to isolate parts of the system with differing safety levels to 

constrain the scope of potential failure. At software level, the ARINC 653 standard 

specifies means to achieve such isolation.

2.3 ARINC 653 standard  

ARINC 653 [11] is a software specification, prescribing the baseline operating 

environment in the context of safety-critical RTOSs. It specifies an interface between 

the operating system and applications called Application Executive (APEX), together 

with the communication and scheduling model and isolation requirements on 

memory, CPU and I/O. It allows for safe consolidation of multiple independent 

modules of different safety levels on the same hardware — an important part of the 

IMA architecture, allowing for more efficient hardware resource use, weight savings, 

design simplification and easier maintenance. For our purposes, we will focus on the 

isolation and scheduling requirements.

A failure in one module must not impact other modules, equivalently to running the 

modules without any shared resources. Real-time properties of each module should 

also be preserved, independently of the rest of the system, which may change during 

normal operation (e.g. in avionic context, a module may only be active during a take-off 

and landing).

To minimize interference, each software module runs in an isolated partition. This is 

achieved by providing a separate virtual memory space for each partition (spatial 

isolation) and assigning other resources (CPU, GPU, I/O,...) according to a fixed 

schedule (temporal isolation), where only a single partition runs at a time. The original 

ARINC 653 standard published in 2010 did not address its use in multi-core processor 

systems; due to a growing market demand, however, the 2015 update to the standard 

now supports parallel execution of partitions on multiple cores.
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Each partition may contain multiple processes, which may optionally share the same 

memory space, and which are typically scheduled using a fixed-priority dynamic 

scheduler, local to each partition, as opposed to the global static scheduler. This allows 

for more efficient resource sharing inside the partition, while still supporting hard real-

time applications. Each partition contains an initialization process, which is 

responsible for setting up the partition, including other processes. Dynamic memory 

allocation is allowed, but only from a statically defined pool, so that the upper bound 

on used memory is known at compile time.

A multi-level health monitoring system is also specified, with high-priority error 

handling processes that allow the system to recover from error states (memory access 

violation, deadline miss,...), both on partition and module level.

The system is configured using an XML configuration file with a specified schema, 

which should be portable between all compliant systems, so that the same applications 

can be used on different platforms without code changes, and, therefore, without the 

need for recertification.

There are 2 common approaches to implementing an ARINC 653 compatible system 

— a hypervisor-based solution, and a kernel-based one.

2.3.1 Hypervisor-based implementation  

A hypervisor is used to implement scheduling, resource access control and APEX. [12] 

This way, it is possible to run a full operating system inside a partition. System 

designers may use a certified RTOS for safety-critical modules, and a better supported 

OS like Linux for best-effort modules, e.g. a car infotainment system —  this allows 

using common, more full-featured libraries. At the same time, the hypervisor only 

implements core functionalities, which results in a smaller codebase, where safety and 

security are easier to verify, resulting in a more reliable system with lower certification 

costs.

2.3.2 Kernel-based implementation  

Typically, an existing safety-critical RTOS kernel is modified to support ARINC-653 

compatible scheduling, and provide the APEX interface. This approach may typically 

offer better performance, but it is less flexible and harder to verify, resulting in higher 

certification costs and lower reliability.

2.4 Deos™ RTOS  

Deos™ [13] by DDC-I is one of the popular RTOSes in the avionics domain. Deos™ 

supports ARINC 653 time and space partitioning and has been certified in numerous 

safety-critical products to DO-178 DAL-A.

7

af://n1181
af://n1183
af://n1185


In each partition, Deos™ RTOS supports one of the following three schedulers: 

harmonic Rate Monotonic, ARINC 653, and POSIX (leveraging a para-virtualized 

RTEMS instance). In a multi-core processor, a single Deos™ RTOS instance handles all 

processor cores. A window has an ID, a fixed length, and spawns across all cores. Each 

core within the window has its own scheduler (e.g. ARINC 653, POSIX). User 

applications (processes with threads) are mapped to the windows, cores, and 

schedulers during the system configuration.

In the context of an IMA architecture, Deos™ provides a set of mechanisms that allow 

a single multi-core platform to host multiple applications of different criticality levels. 

In many cases, just two levels are used: Safety-Critical (SC) and Best-Effort (BE). 

Deos™ extends the ARINC 653 scheduling scheme by allowing SC and BE partitions to 

share a core in a window. Specifically, SC partitions are always granted for execution 

within a given window and BE partitions can be optionally scheduled once all SC 

partitions in the window complete.

2.5 Linux cgroup  

cgroup [14] (abbreviated from "control groups") is a Linux kernel mechanism to 

organize processes hierarchically and distribute system resources along the hierarchy 

in a controlled and configurable manner. For example, it may be used to suspend a 

group of processes, restrict allowed CPU cores and used memory or monitor spawned 

child processes.

cgroup is largely composed of two parts - the core and controllers. cgroup core is 

primarily responsible for hierarchically organizing processes. A cgroup controller is 

usually responsible for distributing a specific type of system resource along the 

hierarchy although there are utility controllers which serve purposes other than 

resource distribution.

cgroups form a tree structure and every process in the system belongs to one and only 

one cgroup. All threads of a process belong to the same cgroup. On creation, all 

processes are put in the cgroup that the parent process belongs to at the time. A process 

can be migrated to another cgroup. Migration of a process does not affect already 

existing descendant processes.

The original version of cgroup was included into mainline Linux kernel in 2007; this 

version is now called cgroup v1. Between 2013–2016, cgroup was redesigned and now 

only uses a single, unified hierarchy, with updated controller interfaces; this version is 

called cgroup v2. This version significantly simplifies cgroup management for both 

kernel and user-space.
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2.5.1 cgroup modes (systemd)  

Before using, cgroup virtual filesystem hierarchy must be mounted. This is almost 

always done automatically by the init system during the startup, which is, for 

mainstream distributions, typically systemd, which mounts the hierarchy in one of 

three possible modes: [15]

Unified — a modern cgroup v2 mode, where a single unified hierarchy is 

mounted as /sys/fs/cgroup; this is the only actively developed mode, 

supporting all cgroup v2 features.

Legacy — a legacy cgroup v1 hierarchy, where each controller is mounted 

separately as /sys/fs/cgroup/<controller>. This mode is not actively 

supported, only exists for backwards compatibility and no major Linux 

distributions use it by default.

Hybrid — this mode is similar to legacy mode, but an extra 

/sys/fs/cgroup/unified hierarchy is mounted, which exposes the core cgroup 

v2 functionality. This mode is also not actively supported, but up until recently, 

most Linux distributions defaulted to it, as Docker and other container 

implementations, which use cgroup for core functionality, did not support the 

unified cgroup v2 hierarchy. However, Docker added support in late 2020 and 

Fedora 31, released in 2019 already defaults to unified mode, with rumors of 

other distributions possibly following suit in the near future.

2.6 CPU performance scaling  

The majority of modern processors are capable of operating in a number of different 

clock frequency and voltage configurations, often referred to as P-states. [16] As a rule, 

the higher the clock frequency and voltage, the more instructions can be retired by the 

CPU over a unit of time, but also more power is drawn over a unit of time by the CPU 

in the given P-state. Therefore, there is a natural tradeoff between the CPU capacity 

(the number of instructions that can be executed over a unit of time), and the power 

drawn by the CPU.

In some situations it is desirable or even necessary to run a program as fast as possible. 

In that case, there is no reason to use any P-states different from the highest one (i.e. 

the highest-performance frequency/voltage configuration available). In some other 

cases, however, it may not be necessary to execute instructions so quickly and 

maintaining the highest available CPU capacity for a relatively long time without 

utilizing it entirely may be regarded as wasteful. It also may not be physically possible 

to maintain the maximum CPU capacity due to thermal constraints, power supply 

capacity or similar. To cover those cases, there are hardware interfaces allowing CPUs 

to be put into different P-states, i.e. switched between different frequency/voltage 

configurations.
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Typically, these interfaces are used along with algorithms to estimate the required CPU 

capacity, so as to decide which P-states to put the CPUs into. Since the utilization of the 

system generally changes over time, that has to be done repeatedly on a regular basis. 

The activity by which this happens is referred to as CPU performance scaling or CPU 

frequency scaling (as it involves adjusting the CPU clock frequency).

For commonly used CPU architectures, the frequency cannot be varied continually, but 

only at fixed steps. For desktop CPUs, the frequency selection is usually quite granular, 

with steps in the order of 100 MHz. In smaller CPUs used for embedded and mobile 

development, commonly only a small set of possible frequencies is available, with 

multiple cores in a cluster often sharing the same P-state.

2.7 Linux CPUFreq  

CPUFreq [16] is a Linux kernel subsystem that controls CPU frequency scaling, 

allowing the system to balance performance with power consumption. Note that the 

term "CPU" is used for logical CPUs here — a single physical processor may contain 

multiple logical CPUs, commonly referred to as "CPU cores".

The CPUFreq subsystem consists of three layers: the core, scaling governors and scaling 

drivers. The core provides the basic framework and user-space interfaces. Scaling 

governors each implement a scaling algorithm, varying the active P-state as required 

depending on system load. Scaling drivers communicate with the hardware, provide 

information on the available P-states and physically change the CPU P-states according 

to the active scaling governor.

Depending on the processor model and kernel configuration, one of multiple available 

CPUFreq drivers is loaded during boot. Most drivers have a similar interface, except the 

intel_pstate driver [17], which is used on Intel CPUs — here, frequency scaling is done 

internally by the processor and the driver. To use generic scaling governors, the driver 

must be switched to the so-called passive mode, where automatic hardware scaling is 

disabled.

On some processors, multiple CPUs share the same selected P-state. To represent this, 

CPUFreq has the so-called policies, which represent a set of CPUs with shared 

parameters. To prevent confusion with the concept of power policy used in DEmOS, 

these will be referred to as "CPUFreq policy" in further sections.

2.7.1 CPUFreq user-space interface  

CPUFreq is, when supported, available to user-space as part of the sysfs virtual 

filesystem, typically accessible under the /sys/devices/system/cpu/cpufreq 

directory. For each existing CPUFreq policy, a subdirectory policy<n> exists, where 

<n> is an integer index. CPUs affected by this policy can be listed by reading the 

affected_cpus virtual file inside the subdirectory. The active governor for a policy is 
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configured using the scaling_governor file, with available values listed in 

scaling_available_governors file.

Most governors only expose general parameters like min/max frequency, except for the 

userspace governor, which allows a user-space client to select a precise P-state for 

each CPUFreq policy, and keeps the selected P-state until requested otherwise, unless 

the thermal envelope is exceeded, which may occur with, for example, the Turbo mode 

of Intel processors.

When userspace governor is selected, current P-state may be selected by writing the 

desired frequency in the scaling_setspeed file. CPUFreq uses frequencies to 

represent the available P-states, but voltage and other parameters are varied 

accordingly.

To set P-states manually on a system where intel_pstate driver is used, 

the  driver  must  be first switched to passive mode by writing to the 

/sys/devices/system/cpu/intel_pstate/status virtual file. Then, it behaves as 

the generic driver and allows clients to use the userspace governor.
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This section describes the external behavior of DEmOS and also provides a

high-level overview of internal design. It contains useful information both for

the end user and a contributor.

Fig. 1. Periodic execution of the defined time window sequence.

3 Design  

3.1 Overview  

DEmOS is a user-space Linux program emulating an avionics real-time scheduler using 

existing Linux kernel features. In addition to scheduling, DEmOS also provides a 

power management subsystem, allowing users to define custom power policies.

Design and terminology used is inspired by the Deos™ operating system, which can be 

configured to run in ARINC 653 compatible mode. DEmOS itself is not ARINC 653 

compatible, neither it attempts to be, although some components are implemented as 

specified. It does not implement the APEX interface, opting to let processes use the 

native Linux API, and only focuses on scheduling. What it strives to preserve is the 

scheduling model, so that the thermal and power characteristics of avionic workloads 

may be analyzed and improved upon using DEmOS.

An epoll-based event loop is used to receive and process events on a single thread. 

Linux cgroup v2 is used to control the scheduled processes. CPU frequency scaling is 

adjusted using the sysfs-based CPUFreq interface.

3.2 Scheduling model  

DEmOS manages partitions, which are groups of processes. Partitions are scheduled 

according to a static schedule defined by the user. Similarly to ARINC 653, time is 

divided into time windows of fixed length, providing temporal isolation. Each 

window contains a set of slices, which bind a partition to a subset of the available 

CPUs for the duration of the time window. Slices provide space partitioning inside a 

time window, allowing multiple partitions to execute in parallel on different CPUs. 

DEmOS schedules all defined windows in an interval called a major frame, which 

repeats periodically. A window execution examples are shown on Fig. 1 and Fig. 2.
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Fig. 2. A time diagram illustrating the behavior of partition scheduler.

 

Processes inside a partition are scheduled in a fixed predefined sequence, without a 

static schedule. Next process is started either when the previous process exhausts its 

time budget for the current window, or when it voluntarily yields after completing all 

work required in the current window. DEmOS exits when either all processes end or 

the scheduler receives a stop signal. See Fig 3 for an example execution diagram.

Two types of partitions are supported: safety-critical and best-effort. Safety-critical 

partitions are started at the beginning of a window, and all processes must complete 

before the end (otherwise, it is a configuration error). Best-effort partitions are 

optionally executed in the remaining free part of a window after the safety-critical 

partition finishes, and automatically preempted at the end of the window. DEmOS may 

skip execution of the best-effort partition if required by the power policy [section 3.6] 

due to thermal constraints.

Each slice contains at most one safety-critical partition, followed by an optional best-

effort partition. DEmOS supports 2 modes of scheduling — either the best-effort 

partition is launched immediately after the corresponding safety-critical partition 

finishes, or all best-effort partitions wait until the last safety-critical partition in the 

whole window finishes, which minimizes interference between safety-critical and best-

effort partitions.
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Fig. 3. A time diagram illustrating the behavior of process scheduler.

Fig. 4. A simplified schema of the YAML-based configuration format.

 

3.3 Configuration  

DEmOS is configured using two different interfaces: a YAML-based configuration file 

and a command-line interface (CLI). The configuration file defines the partitions 

and the static schedule. The CLI then supplements the configuration file via various 

additional runtime options such as power policy, frame synchronization messages and 

logging.

Most CLI options are described in the following sections, with full specification 

available in Appendix 1. The full format of the configuration file is specified in 

Appendix 2.

3.4 Example run  

To illustrate the introduced concepts, see the following example configuration file, 

together with a trace of the execution, recorded using trace-cmd and visualized with 

kernelshark.

set_cwd

partitions: [name, processes: [{cmd, budget, jitter, init}]]

windows: [length, slices: [{cpu, sc_partition, be_partition}]]
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Fig. 5. An example DEmOS configuration file.

In this section, the design of partitions and processes is described, together

with the dynamic process scheduler.

The configuration defines 3 partitions containing 4 processes, which are executed in a 

single window. Processes in partitions SC1 and BE1 execute on CPU 0, and the single 

process inside SC2 executes on CPU 1.

When DEmOS is invoked with this configuration, processes SC1-1 and SC2-1 are 

started together at the beginning of the time window. SC1-1 runs for 100 milliseconds; 

then, it is suspended and SC1-2 is started, while SC2-1 is still running. After SC1-2 

budget is up, CPU 0 stays idle until all safety-critical (SC) partitions are finished, and 

then BE1-1 inside the BE1 partition is started and runs until the end of the window. 

Then, the cycle repeats, as there is only a single window defined.

3.5 Partitions and processes  

DEmOS partitions are groups of Linux processes, which are isolated from other 

partitions temporally (windows) and spatially (CPUs). Except for hardware-related side 

effects arising from shared CPU and memory resources, partitions do not influence one 

another. Partitions are implemented internally inside DEmOS and, except for the 

cgroup structure described below, not backed directly by any system features.

windows:

  - length: 200

    slices:

      - {cpu: 0, sc_partition: SC1, be_partition: BE1}

      - {cpu: 1, sc_partition: SC2}

partitions:

  - name: SC1

    processes:

      - {budget: 100, cmd: proc_SC1-1}

      - {budget: 50, cmd: proc_SC1-2}

  - name: BE1

    processes:

      - {budget: 25, cmd: proc_BE1-1}

  - name: SC2

    processes:

      - {budget: 175, cmd: proc_SC2-1}
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Existing Linux programs may be ran using DEmOS without any modification required. 

The scheduled processes are defined as shell commands (cmd key in the configuration 

file), which DEmOS executes during initialization using the /bin/sh shell. This 

provides flexibility in how the user chooses to start the tasks, and delegates argument 

parsing and similar issues to the native shell. The shell startup overhead is negligible 

for expected uses, as DEmOS is designed for long-running tasks.

Unlike in ARINC 653, where each process has a single thread of execution, 

multithreading in processes scheduled by DEmOS is supported. However, the threads 

are scheduled by the Linux kernel scheduler and not controlled by DEmOS. 

Multiprocessing (creating new child processes) is also supported, as it is needed for 

correct functionality of shell scripts and similar environments; all child processes are 

then treated as a single unit, scheduled together with the original parent process, with 

internal scheduling again done by the kernel scheduler.

3.5.1 Process scheduling  

When a partition is running (scheduled inside the current time window), a second-

level dynamic scheduler manages processes inside the partition. At a given time, at 

most a single process from the partition runs, across all CPUs available to the partition. 

Processes are scheduled in FIFO order.

Each process has a configured time budget (budget key in the configuration file, in 

milliseconds), which is replenished at the beginning of each window. When scheduled, 

the process runs either until the budget is exhausted, or until it signals completion 

[section 3.5.3]. The process selection algorithm of the scheduler differs based on 

whether the partition is safety-critical or best-effort.

Processes from a safety-critical partition are always scheduled starting from the first 

one, and must all complete before the end of the window. In a safety-critical system, 

failing to do so could result in a system failure; DEmOS outputs a warning when this 

occurs, but suspends the process and continues with execution of the next window.

In a best-effort partition, execution may reach the end of a window. Remaining 

budget of the current process is then preserved and in the next window where this 

partition is scheduled, execution continues from the point where it was previously 

stopped. For example, if a process with a 300 millisecond budget is started 100 

milliseconds before the window ends, it will be preempted and then executed with a 

200 millisecond budget next time the partition is scheduled.

Optionally, each process may also have a defined budget jitter (jitter key in the 

configuration file, also in milliseconds). This lets the user simulate processes with 

variable length of execution. If the jitter is non-zero, the actual budget is selected 

uniformly from the range . The jitter must not be 

greater than 2 times the budget.
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3.5.2 cgroup usage  

DEmOS needs to control the processes by suspending/resuming and reacting to process 

exit. CPU affinity of the partition also needs to be changed, depending on the slice the 

partition is currently running under. To achieve these, the Linux cgroup feature is used 

— a cgroup is created for each partition, with another nested cgroup for each process 

in the partition.

When a partition is started, the cpuset cgroup is used to configure the allowed CPU set 

for the whole partition. The freezer cgroup is used to suspend and resume individual 

processes. As the child processes spawned by the original process may outlive their 

parent, the cgroup event monitoring functionality is used to detect when the cgroup is 

empty.

DEmOS needs to run under the root account to create the necessary cgroups 

automatically. Otherwise, DEmOS fails due to insufficient permissions and provides a 

list of shell commands to the user to create the cgroups manually.

3.5.3 Process client library  

DEmOS provides a client library that scheduled processes may use to communicate 

and cooperate with the scheduler. Two functions are exposed: process initialization and 

yielding. To use the library, the program must be linked against it and explicitly call the 

provided API.

Process initialization  

Many processes require a non-trivial amount of time to initialize to a working state. As 

the scheduling intervals may be quite short, it is better to run the initialization before 

the static scheduler starts. If the init boolean key in the configuration file is set, the 

process is scheduled outside the static windows and allowed to run until it signals that 

it completed the initialization by calling an appropriate API function.

To allow for correct detection of the available CPU count (e.g. for spawning worker 

threads), the initialization is done in the widest CPU set (the highest number of CPUs) 

the process will run on. All initialized processes are started in parallel and scheduled 

by the kernel scheduler — no isolation guarantees are provided during initialization.

Process completion (yielding)  

In cases where the process finishes the required work for the current window before its 

budget is used up, it may yield the remaining CPU time through the library API. This 

will immediately suspend the process and schedule the next available one. The 

functionality is similar to the sched_yield POSIX system call, but applies to the whole 

process (and all child processes), not only the calling thread.

17

af://n1257
af://n1261
af://n1263
af://n1266
https://man7.org/linux/man-pages/man2/sched_yield.2.html


3.6 Power policies  

One possible source of inconsistencies between successive runs of the same schedule is 

the kernel power management subsystem, including CPU frequency scaling and sleep 

states. At the same time, thanks to the static partition schedule, DEmOS has more 

information about the future CPU load distribution than the kernel, allowing it, at least 

in theory, to make better power management decisions in sync with the schedule, 

lowering power consumption and platform temperature while still providing 

maximum performance when required.

DEmOS implements a high-level interface to the CPUFreq kernel subsystem, allowing 

it to disable automatic kernel CPU frequency scaling and implement custom power 

policies, which observe various scheduler events and manage CPU frequencies 

accordingly. Multiple power policies are implemented, selectable using the -p 

command-line parameter. A simple interface to add custom power policies by 

modifying the DEmOS source code is provided, described further in the corresponding 

implementation section [section 4.8].

To access the kernel power management features, DEmOS must be running under the 

root account, or another access control mechanism must be used to provide write 

access to the CPUFreq sysfs interface.

3.7 Runtime output  

As DEmOS is a CLI-only application, a status log is provided on the standard error 

output to inform the user of the current state. The granularity of the output can be 

configured by the user, and enough information is provided so that the user does not 

have to use external tools to understand the behavior of DEmOS and the scheduled 

processes.
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This section describes the internal implementation of DEmOS, including

project structure, optimization and tooling. This may be of interest to future

contributors and inquisitive end users.

4 Implementation  

DEmOS is implemented a single user-space C++17 Linux program called demos-

sched, running with real-time priority [18]. An event-driven architecture is used, 

utilizing the libev library [19], which internally uses epoll to receive events. Linux 

cgroup v2 [section 2.5] is used to control the scheduled processes. CPU frequency 

scaling is controlled using the sysfs-based CPUFreq interface [section 2.7.1].

Multiple instances of DEmOS may run in parallel, but at most one instance may have 

active power management enabled. As long as each instance uses different CPUs, there 

should be minimal interference between the instances, except for side effects like 

platform temperature, memory bus contention and similar.

4.1 Building  

DEmOS uses the Meson build system [20] for building and running tests. A Makefile 

wrapper provides common configurations exposed as targets. Some of the more useful 

targets are:

make release, which configures the project for a release build,

make debug, which configures the project for a debug build (enables verbose 

trace messages, debugger symbols and address sanitization),

make aarch64, which configures the project for cross-compilation to 64-bit 

ARM architecture,

make, which builds the project using current configuration,

make test, which builds the project and then runs the test suite [section 4.11].

External dependencies (libev, yaml-cpp and spdlog) may either be installed using the 

system package manager, or cloned as git submodules. In both cases, the 

dependencies are statically linked.

For native builds, the resulting demos-sched binary is written to build/src/demos-

sched. For ARM cross-compiled builds, it is written to build-aarch64/src/demos-

sched.
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4.2 Event loop  

After a synchronous initialization, DEmOS operates by reacting to timers, messages 

from processes and system signals. Therefore, an event-driven architecture was chosen, 

using the C++ interface of the C-based libev library (ev++.h). Custom wrappers were 

added for eventfd and timerfd, sub-classing the ev::io libev class. File writes to the 

cgroup and sysfs virtual files are done synchronously, as the written data buffers are too 

small to justify the additional overhead of asynchronous writes.

4.3 Project and module structure  

The project directory structure is as follows:

The src directory contains the source code of DEmOS.

The lib directory contains the process library sources. [section 3.5.3]

The test directory contains automated tests, implemented as a set of bash 

scripts. [section 4.11]

The src/tests directory contains a set of testing processes, used by the 

automated tests.

The test_config directory contains DEmOS configuration files that 

demonstrate some of the supported features.

The subprojects directory contains external libraries used by DEmOS, 

managed as git submodules.

Header and implementation files are always in the same directory, using the same 

base-name —  therefore, there is a one-to-one correspondence between a header file 

and its implementation. Some classes are implemented as a header-only module, 

typically for classes which are only used in a single compilation unit. C++ classes are 

used to implement most of the functionality, but inheritance, polymorphism and other 

patterns common for object-oriented programming are avoided in most of the 

codebase.

Main entry point of the scheduler is the main.cpp file, which parses the command-line 

arguments, configures the selected power policy (if any), and invokes the Config 

module to parse the configuration file and create the scheduler objects (MajorFrame, 

Window, Slice, Partition, Process). Then, an instance of the DemosScheduler class 

is created, which starts the event loop, runs the process initialization using the 

PartitionManager class and then starts and manages the scheduler. The Cgroup 

module is used internally by the Partition and Process classes to manage the 

associated cgroups.
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4.4 cgroup interface  

Currently, DEmOS requires the cgroup hierarchy to be mounted in hybrid mode 

[section 2.5.1]. However, the cgroup tree structure created during initialization is the 

same for each controller. Therefore, it should be possible to add support for unified 

mode in the future without major modifications. Together with systemd-run [21], this 

would allow DEmOS to run under non-root accounts without manual cgroup creation.

During initialization, handled by the cgroup_setup module, the /proc/self/cgroup 

virtual file is parsed to retrieve the cgroups that DEmOS is running under, and the 

child cgroup used by DEmOS is then created under the corresponding parent cgroup. 

This way, a user may limit resources used by scheduled processes by assigning DEmOS 

to a custom cgroup. 

Each DEmOS instance configures a top-level cgroup called demos-<pid>, where <pid> 

is the process ID of the instance. This allows multiple instances to run in parallel. 

When a Partition is instantiated, it creates a child cgroup with the same name. When 

a Process is added to the partition, a child cgroup is also created, using a sequentially 

generated name. The resulting cgroup structure is .../demos-

<pid>/<partition_name>/proc<process_index>. The same structure is mirrored 

between the cpuset, freezer and unified hierarchies used by DEmOS.

The Cgroup class is used to encapsulate manipulation of the cgroup virtual files, with 

child classes for each type of cgroup controller. The corresponding cgroup is 

automatically created when the class is instantiated and removed on instance 

destruction (the RAII pattern).

If DEmOS crashes or freezes during execution, the created cgroups will not be cleaned 

up. In this case, a shell script can be found at src/cleanup_crash.sh, which stops all 

running DEmOS instances and cleans up any remaining cgroups.

4.5 Process client library  

The process library is implemented as a C99 static library. A Meson target is provided 

to allow simple linkage to the library. eventfd file descriptors are used for 

communication with DEmOS.

The library exposes three functions, all of which return zero on success and a negative 

integer when an error occurs:

int demos_init() — Initializes the library by loading parameters from the 

DEMOS_PARAMETERS environment variable. If not called explicitly, it is 

automatically invoked the first time any other function from the library is called.
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Fig. 6. A code example demonstrating the process library usage.

This section describes the high-level implementation of scheduler objects

mentioned in the Design section of this thesis.

int demos_initialization_completed() — Informs DEmOS that the 

process completed its initialization, and immediately suspends the process. If the 

process was not configured to initialize in the configuration file (init: yes), 

this function immediately returns an error status and lets the program continue 

execution.

int demos_completed() — Yields the remaining CPU time for the current 

window, immediately suspending the process.

4.6 Scheduler objects  

#include "demos-sch.h"

#include <err.h>

int main()

{

    // initialize the library, checking for errors

    if (demos_init() < 0) {

        err(1, "demos_init");

    }

    // initialize the program here

    // signal that initialization is completed

    if (demos_initialization_completed() < 0) {

        err(1, "demos_initialization_completed");

    }

    while (1) {

        // do work for current window, or exit if done

        // yield the remaining budget for this window (signal completion)

        if (demos_completed() < 0) {

            err(1, "demos_completed");

        }

    }

}
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4.6.1 Process  

The Process class is implemented as a passive interface to the underlying system 

process — it accepts commands from other DEmOS components and forwards events 

received from the system processes without any active processing.

The suspend() and resume() methods freeze and thaw the corresponding freezer 

cgroup, respectively. The exec() method spawns the underlying system process and 

sets up a pair of eventfd file descriptors, which are used by the process client library 

[section 3.5.3] to signal completion. To do so, the library writes to the first descriptor, 

and then initiates a blocking read on the second descriptor, which prevents further 

execution of the process. A completion callback method on the corresponding Process 

instance is invoked as a result of the write, which propagates the event to the parent 

Partition. Next time the process is resumed, Process writes to the second file 

descriptor, which ends the blocking read in the process library and allows it to continue 

execution.

When all processes in the cgroup (the original spawned process and all child processes) 

terminate, the event is also propagated to the parent Partition.

4.6.2 Partition  

The Partition class is also a passive interface to the contained Process instances. Of 

interest is the reset() and disconnect() method pair, which is used both during 

process initialization and during normal scheduling windows to attach/detach to the 

Partition instance. reset() is called with the desired CPU set the processes should 

run on, and a process completion callback. Until disconnect() is called, all process 

completions events invoke the provided callback. 

PartitionManager  

The PartitionManager class contains all defined Partition instances, coordinates 

the process initialization and listens for process termination events. When all processes 

terminate, it notifies the main DemosScheduler instance, which then stops the 

scheduler.

4.6.3 MajorFrame  

The MajorFrame class implements the static partition scheduler. It reuses a single 

timerfd instance to periodically schedule the time windows by indirectly starting and 

stopping the Slice instances contained in each Window instance.
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4.6.4 Slice  

The Slice class implements the process scheduler. When the parent Window is started, 

it attaches to the scheduled partitions, asynchronously iterates over all pending 

processes and resumes them one by one, letting each execute until either the time 

budget runs out or the process signals completion.

4.7 Synchronization messages  

DEmOS may be ran by another program which needs to synchronize with DEmOS 

time windows. One such example is the thermobench [22] tool, which measures the 

thermal properties of the SoC the scheduled processes are running on. To facilitate this, 

DEmOS provides the -m <message> and -M <message> command-line parameters, 

which cause DEmOS to print the provided message to the standard output at the 

beginning of each window or each major frame, respectively.

4.8 Power management  

The power management module needs to receive events from multiple parts of the 

scheduler. The abstract class SchedulerEvents specifies hooks (event handlers) for 

events relevant for the power management (window switch, partition completion, etc.). 

An instance of this class is passed to all relevant scheduler objects, which directly call 

the event handlers when relevant events occur. This approach was chosen over a more 

generic event propagation architecture to keep the code paths short and easily 

auditable, as most of the event handlers are called from latency-sensitive code paths.

The SchedulerEvents class is implemented by a number of so-called power policies, 

which use the PowerManager module described below to change CPU P-states in 

reaction to the received events. One such power policy is the MinBE, which executes 

safety-critical partitions in the highest P-state and best-effort partitions in the lowest 

one:
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Fig. 7. Code sample of the MinBE power policy, one of the predefined power policies

available in DEmOS.

4.8.1 PowerManager and CpufreqPolicy  

The PowerManager class wraps the user-space CPUFreq interface. During 

initialization, it configures the CPUFreq driver, switching the intel_pstate driver to the 

passive mode, if applicable. Then, an instance of the CpufreqPolicy class is created 

for each existing CPUFreq policy kernel object, which automatically activates the 

userspace governor The instance provides a list of available frequencies, which may 

be set using the write_frequency() method — the frequency is applied for all CPUs 

managed by the policy.

4.9 Runtime logging  

A single global instance of the spdlog library [23] logger is used for logging to the 

standard error output. The user selects the desired log level by setting the 

SPDLOG_LEVEL environment variable; the info log level is selected by default.

Trace messages are logged for all operations using the SPDLOG_LOGGER_TRACE() 

macro, which can be deactivated at compile-time to reduce overhead for the release 

build. It is possible to fully reconstruct the scheduler run from the trace logs.

The warning and error messages are designed to communicate the issue clearly and 

offer solution and workarounds. As an example, the following warning message is 

emitted when a potential conflict with another program is detected during CPUFreq 

policy initialization:

class PowerPolicy_MinBE : public PowerPolicy {

private:

    PowerManager pm{};

public:

    PowerPolicy_MinBE() {

        // run initialization on max frequency

        for (auto &p : pm.policy_iter()) p.write_frequency(p.max_frequency);

    }

    void on_sc_start(Window &) override {

        // run SC partitions on max frequency

        for (auto &p : pm.policy_iter()) p.write_frequency(p.max_frequency);

    }

    void on_be_start(Window &) override {

        // run BE partitions on min frequency

        for (auto &p : pm.policy_iter()) p.write_frequency(p.min_frequency);

    }

};
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Fig. 8. An example of a warning message outputted by DEmOS.

4.10 Performance considerations  

Although DEmOS is not a hard real-time application, low predictable latency and 

minimal overhead are still important. Several steps were taken during development to 

ensure good performance.

First, all scheduler objects are allocated during initialization, and no dynamic heap 

allocation is allowed after the scheduler starts, to avoid unpredictable allocator latency. 

Stack-based buffers of fixed size are used for I/O. To verify, an allocation tracker 

module was developed, which logs all allocations occurring after initialization. 

Internally, it overrides the new and delete C++ operators. While this does not capture 

direct calls to malloc() (which is not used in DEmOS) and internal libc allocations, it 

still exposes many subtle C++ issues such as accidental object copies. The allocation 

tracker is enabled in a separate build configuration invoked by make alloc_test.

Second, fstream-based I/O is only allowed in non-critical sections of code. For latency-

sensitive cgroup manipulation and similar I/O, cached raw file descriptors are used 

with the raw write and read POSIX system calls. This avoids internal buffering and 

object creation overhead.

Third, indirection and abstraction is minimized throughout the codebase. The 

interfaces are designed to be hard to misuse and well-documented, but the control flow 

and full code path must be always clearly visible. Specifically, dynamic dispatch and 

generic event chains are avoided where possible, preferring direct method calls, with 

code paths going through the minimum necessary number of modules. For critical 

scheduler functionalities, the code paths were analyzed line by line to ensure no 

unpredictable behavior.

4.11 Automated testing  

An automated test suite to validate correctness of DEmOS functionality is 

implemented, and may be ran through Meson using make test. The tests are written 

as bash scripts, using the tap-functions library [24], which outputs the test results in 

the Test Anything Protocol (TAP) [25], which is supported by Meson. All test scenarios 

>>> 10:23:09.762 [warning] `cpufreq` governor is already set to 'userspace'.

    This typically means that another program (or another instance of DEmOS)

    is already actively managing CPU frequency scaling from userspace. This DEmOS

    instance was started with power management enabled, and it will overwrite the

    CPU frequencies the other program may have set up.

    

    Note that running multiple DEmOS instances with an active power policy

    is NOT supported, and later instances may crash when the first one exits.
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invoke the demos-sched command externally; the internal behavior is currently not 

tested.

4.12 Software compatibility  

DEmOS works on all Linux distributions where cgroup v2 is supported and mounted in 

hybrid mode, including the Microsoft WSL2 kernel, which was used for development. 

For the optional power management, the CPUFreq kernel subsystem is required.
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This section describes the platform DEmOS was developed and tested on and

presents benchmarks of the functionality documented in previous sections.

5 Evaluation  

5.1 Evaluation platform  

For evaluation of thermal characteristics, the testbed described in a previous paper [25] 

was used, with the ARM64-based Toradex i.MX8QuadMax platform. On software side, 

the Linux kernel version 5.4.70 from the official Yocto distribution provided by Toradex 

was used, with a custom Debian distribution providing the user-space environment. 

For measuring thermal properties, the Thermobench tool was used.

The option of compiling a custom Linux kernel was explored, but ensuring full 

compatibility, especially with regards to the required GPU drivers proved problematic, 

and as the required power management features could be implemented without 

modifications to the kernel, the official kernel image was used instead.

5.2 Basic functionality  

All features described in this thesis are implemented, and most are tested using the 

automated test suite. Test configurations are prepared for features which are hard to 

test in an automated way.

5.3 Stress testing  

To ensure that DEmOS scales well for a larger number of scheduler objects, multiple 

stress tests were done. To run the larger configurations, the limit on the number of 

opened file descriptors had to be manually raised by calling ulimit -n 100000, as 

DEmOS keeps a file descriptor opened for each cgroup it manages, and two file 

descriptors for each managed process.

First, a configuration of 10 000 partitions was evaluated, each containing one process. 

Due to the way DEmOS spawns the scheduled processes, where each forked child 

process is immediately suspended, in combination with higher memory usage by 

DEmOS itself, the system ran out of memory during process initialization and invoked 

the OOM killer mechanism. Interestingly, even the copy-on-write mechanism used by 

Linux [26] to lower the physical memory usage of forked processes did not work well 

enough to allow DEmOS to finish initialization.
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Fig. 9. Average time for processing of one frame for varying window lengths.

For a smaller set of 1 000 partitions, each containing one process, DEmOS successfully 

initialized all processes and started scheduling in 9.3 seconds, on average over 8 runs. 

The initialization is dominated by the time to spawn all scheduled processes (6.1 

seconds on average). After initialization, the scheduler is responsive and its scheduling 

latency (see below) is not dependent on the number or scheduled partitions.

Next, a set of 1200 processes, split equally between 3 partitions was tested. DEmOS also 

successfully initialized in 4.0 seconds on average over 8 runs, with process spawning 

again taking up majority of the initialization time.

5.4 Evaluation of power management  

To validate that the implemented power management feature lowers the operating 

temperature as expected, the ADASMark™ [2] automotive benchmark suite was used. 

For all tests, 400 frames were processed in each benchmark run, and the final 

temperature of the CPU package was recorded.

The benchmark was ran 5 times outside of DEmOS, using all 6 available CPUs in 

highest P-state (1.5 GHz and 1.2 GHz for the A72 and A53 cores, respectively). Then, 

another 5 runs were recorded under DEmOS, with a power policy that set the minimal 

supported frequency (600 MHz) for all cores.

Without DEmOS, the average recorded temperature from all runs was 61.6 °C. With 

the power management applied, the averaged temperature dropped to 53.3 °C. The idle 

temperature of the board was recorded at 44.6 °C.

5.5 Scheduling overhead  

To test the scheduling overhead, the same 400 frame ADASMark™  benchmark was 

used. Each of the following measurements was repeated 5 times and averaged. First, 

the benchmark was ran outside of DEmOS to get a baseline; here, each frame was 

processed in 404 milliseconds on average. Then, the benchmark was ran under DEmOS 

in a single repeating window, with windows lengths of 1000, 100, 10, 5, 2 and 1 

milliseconds. The results are plotted in Fig. 4.
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By subtracting the baseline frame time and dividing the difference by the number of 

DEmOS major frames that were executed per single frame, we get an estimate of the 

overhead DEmOS adds for each window switch. For the 1 millisecond window length, 

the estimated overhead is approximately 60 microseconds.
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6 Conclusion  

As a result of this project, DEmOS, a Linux user-space scheduler was released. 

Compared to the original prototype, it is more robust and maintainable, better 

documented, and offers multiple new features, most important of which is the power 

management system.

As shown by the evaluation and our previous paper [4], although DEmOS is not a truly 

real-time scheduler, its overhead is low enough for further experimental work. 

6.1 Possible improvements  

As shown by the stress testing, the approach used for spawning the scheduled 

processes is non-optimal and replacing the fork and exec with posix_spawn 

could improve the initialization time and scalability.

In addition to the CPUFreq subsystem already used by DEmOS, Linux kernel 

provides the CPUIdle subsystem, which manages CPU sleep states. Thanks to 

the static partition schedule, DEmOS has precise information about the available 

idle time, which should in theory allow it to lower the thermal output by 

controlling the CPU sleep states without affecting performance.

To aid analysis of schedule execution, DEmOS could store machine-readable 

logs during operation, which could be later use to reconstruct and visualize the 

schedule directly, without using external tools.
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Appendix 1: DEmOS command-line

interface

The following command-line parameters are supported:

-c <CONFIG_FILE> — Path to the configuration file.

-C <CONFIG_STRING> — Inline configuration string in YAML format.

-p <POWER_POLICY> — Name of the selected power management policy. If not 

set, power management is disabled. If multiple instances of DEmOS are running 

in parallel, this parameter must not be passed to more than one instance.

-g <CGROUP_NAME> — Name of the root cgroups created by DEmOS. If not set, 

demos-<pid> is used, where <pid> is the process ID of the current instance.

-m <WINDOW_MESSAGE> — If set, DEmOS prints WINDOW_MESSAGE to the 

standard output at the beginning of each time window.

-M <MF_MESSAGE> — If set, DEmOS prints MF_MESSAGE to the standard output at 

the beginning of each major frame.
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Appendix 2: DEmOS configuration file

format

Configuration files are written in the YAML format. They can have either canonical or 

simplified form, with the latter being automatically converted to the former. Canonical 

form is most flexible, but for same cases a bit verbose. Verbosity can be reduced by 

using the simplified form. Both forms are described bellow.

Canonical form of the configuration file

Configuration file is a mapping with the set_cwd,  partitions and windows keys:

set_cwd (optional, default: true) is a boolean specifying whether all scheduled

processes should have their working directory set to the directory of the 

configuration file; this allows you to safely use relative paths inside the 

configuration file and scheduled programs.

partitions is an array of partition definitions.

Partition definition is a mapping with name and processes keys.

processes is an array of process definitions.

Process definition is mapping with cmd, budget, jitter and init keys.

cmd is a string with a command to be executed (passed to /bin/sh 

-c).

budget specifies process budget in milliseconds.

jitter (optional, default: 0) specifies jitter that is applied to the 

budget for each invocation.

init (optional, default: false) is a boolean specifying if process

should be allowed to initialize before scheduler starts
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windows is an array of window definitions.

Window definition is a mapping with length and slices keys.

length defined length of the window in milliseconds.

slices is an array of slice definitions.

Slice definition is a mapping with the cpu key and optional sc_partition 

and be_partition keys.

cpu is a string defining scheduling CPU constraints. The value can 

specify a single CPU by its zero-based number (e.g. cpu: 1), or a 

range of CPUs (cpu: 0-2), or combination of both (cpu: 0,2,5-7).

sc_partition and be_partition are strings referring to partition 

definitions by their names.

Example canonical configuration can look like this:

set_cwd: yes

partitions:

  - name: SC1

    processes:

      - cmd: ./safety_critical_application

        budget: 300

        init: yes

  - name: BE1

    processes:

      - cmd: ./best_effort_application1

        budget: 200

  - name: BE2

    processes:

      - cmd: ./best_effort_application2

        budget: 200

      - cmd: ./best_effort_application3

        budget: 200

        

windows:

  - length: 500

    slices:

      - cpu: 1

        sc_partition: SC1

        be_partition: BE1

      - cpu: 2,5-7

        be_partition: BE2
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Simplified form of the configuration file

The slice keyword may be omitted. Then it is expected that there is just one 

slice inside window scheduled at all CPUs.

is the same as

Partition may be defined directly inside windows.

is the same as

If process budget is not set, then the default budget 0.6 * length of

window is set for sc_partition processes and length of window is set for

be_partition processes.

{

  partitions: [ {name: SC, processes: [{cmd: echo, budget:100}] 

}],

  windows: [ {length: 500, sc_partition: SC} ]

}

1
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partitions:

  - name: SC

    processes:

      - cmd: echo

        budget: 300

windows:

  - length: 500

    slices:

      - cpu: 0-7

        sc_partition: SC
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windows: [ {length: 500, sc_partition: [{cmd: proc1, budget: 

500}] } ]

1

partitions:

  - name: anonymous_0

    processes:

      - cmd: proc1

        budget: 500

windows:

  - length: 500

    slices:

      - cpu: 0-7

        sc_partition: anonymous_0

1

2

3

4

5

6

7

8

9

10

37



You can use xx_processes keyword for definition of partition by the list

of commands:

windows: [ {length: 500, sc_processes: [proc1, proc2]} ]1
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