
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Science

User Interface and User Accessibility
Functions for RoadGraphTool, a Road
Network Processing Tool

Jan Trávníček

Supervisor: Ing. David Fiedler
Field of study: Open Informatics
Subfield: Software
May 2021

ii

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

483686Personal ID number:Trávníček JanStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Computer Science

Open InformaticsStudy program:

SoftwareSpecialisation:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

User interface and user accessibility functions for RoadGraphTool, a road network processing tool

Bachelor’s thesis title in Czech:

Uživatelské rozhraní a funkce pro uživatelskou přístupnost pro programRoadGraphTool na zpracování
silničních sítí

Guidelines:
Road Graph Tool (RGT) is a tool for processing road network graphs. It is able to filter
the map, find the largest strongly connected component, compute various road and
edge parameters, and many more. The tool is currently configured by a text file
configuration, which is cumbersome, considering the number of configurable
parameters. To make the configuration more comfortable, we need to implement a
user interface (UI) for the tool configuration, which is the goal of this thesis. Required
tasks:
1) Gather the requirements for the RGT UI.
2) Design the UI according to requirements, and choose a proper UI framework.
3) Implement the UI.
4) Perform a usability testing, evaluate the testing results, and Incorporate the user
feedback into UI.

Bibliography / sources:
[1] D. A. Norman, The Design of Everyday Things. USA: Basic Books, Inc., 2002.
[2] R. Unger and C. Chandler, A Project Guide to UX Design: For user experience
designers in the field or in the making, 2nd ed. USA: New Riders Publishing, 2012.
[3] https://docs.oracle.com/javase/8/javase-clienttechnologies.htm
[4] J. Vos, W. Gao, J. Weaver, S. Chin, and D. Iverson, Pro JavaFX 8: A Definitive Guide
to Building Desktop, Mobile, and Embedded Java Clients, 1st ed. USA: Apress, 2014.
[5] E. Klimczak, Design for Software: A Playbook for Developers, 1st edition. Hoboken,
N.J: Wiley, 2013.

Name and workplace of bachelor’s thesis supervisor:

Ing. David Fiedler, Artificial Intelligence Center, FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 21.05.2021Date of bachelor’s thesis assignment: 12.02.2021

Assignment valid until: 30.09.2022

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
Head of department’s signatureIng. David Fiedler

Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICPage 1 from 2CVUT-CZ-ZBP-2015.1

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICPage 2 from 2CVUT-CZ-ZBP-2015.1

Acknowledgements
I want to thank my family and my super-
visor Ing. David Fiedler, for motivating
me into writing this thesis.

I also want to thank the Stack Overflow
community for sharing their knowledge
publicly and for free use.

Declaration
I declare that this work is all my own
work, and I have cited all sources I have
used in the bibliography.

Prague, May 10, 2021

Prohlašuji, že jsem předloženou práci
vypracoval samostatně, a že jsem uvedl
veškerou použitou literaturu.

V Praze, 10. května 2021

v

Abstract
Road Graph Tool is a program for pro-
cessing road networks and their extraction
from publicly accessible geographical data.
Given the wide range of road networks
uses, we want to improve the existing un-
comfortable way the program is config-
ured so that it is suitable for a broader
audience. This bachelor thesis aims to cre-
ate a full-fledged user interface, which can
be effectively used without deeper knowl-
edge of map processing problematics. We
are also focusing on functions that im-
prove the program’s usability and make
it more user-friendly. The program’s us-
ability is also tested by volunteers, whose
feedback is used for further improvements.
The output program is developed in Java
using the JavaFX library and the Model-
view-viewmodel architectural pattern.

Keywords: User Interface, GUI, User
Experience, Road Graph Tool, OSM
Processing, JavaFX, User Testing

Supervisor: Ing. David Fiedler
Artificial Inteligence Centre,
Department of Computer Science, FEE

Abstrakt
Road Graph Tool je program určený ke
zpracování silničních sítí extrahovaných
z veřejně dostupných geografických dat.
Vzhledem k širokému spektru využití sil-
ničních sítí chceme vylepšit současnou ne-
vyhovující konfiguraci programu tak, aby
byl použitelný širším okruhem uživatelů.
Cílem této bakalářské práce je vytvoření
plnohodnotného uživatelského rozhraní,
které umožňuje použití programu i bez
větších předchozích znalostí problematiky
zpracování map. Zároveň se zaměřujeme
na funkce, které zvyšují uživatelskou pří-
větivost a použitelnost programu v praxi.
Použitelnost programu je také testována s
pomocí dobrovolníků a jejich zpětná vazba
využita k dalšímu zlepšení. Výsledné roz-
hraní je vyvinuto v jazyce Java s využitím
knihovny JavaFX a architektonického ná-
vrhového vzoru Model-view-viewmodel.

Klíčová slova: Uživatelské rozhraní,
GUI, Uživatelská přívětivost, Road
Graph Tool, Zpracování OSM, JavaFX,
Uživatelské testování

Překlad názvu: Uživatelské rozhraní a
funkce pro uživatelskou přístupnost pro
program RoadGraphTool na zpracování
silničních sítí

vi

Contents
1 Introduction 1
1.1 The Aims of This Thesis 1
2 Road Graph Tool 3
2.1 Processing Open Street Map Data 3
2.2 RGT Procedures 3
2.3 RGT Process 5
2.3.1 Problems 6

3 Analysis 9
3.1 Similar Programs 9
3.1.1 Overpass Turbo 9
3.1.2 QGIS . 10
3.1.3 Osm2garmin 10
3.1.4 Jeography 11
3.1.5 Summary 13

3.2 Requirements 13
3.2.1 Non-functional Requirements 13
3.2.2 Functional Requirements 14

3.3 Selecting Language and
Framework . 15
3.3.1 Electron 15
3.3.2 NW.js . 16
3.3.3 JavaFX 16
3.3.4 Selecting the Best Candidate 17

3.4 Architecture 17
4 Implementation 19
4.1 Integrating GUI into the Existing
Project . 19
4.1.1 Procedure Configuration 19
4.1.2 Custom Components 21
4.1.3 Usage of MVVM in RGT . . . 21
4.1.4 Displaying Other Data 23

4.2 User Experience Design 24
4.2.1 Program Windows and Layout 24
4.2.2 Main Window 26
4.2.3 Communication with the User 26

4.3 Program Features 27
4.3.1 Configuration Environment . . 27
4.3.2 Procedure Parameters 28
4.3.3 Monitoring the Process 30
4.3.4 Map Downloader 30

4.4 Documentation 33
4.4.1 Program Controls 33
4.4.2 Launching program without
GUI . 33

4.4.3 Adding Procedures and
Parameters 34

4.4.4 CSS Styling 34
5 Testing 35
5.1 Usability Testing 35
5.2 Informal Walkthrough 36
5.3 Scenario Testing 37
5.3.1 Scenario 1 38
5.3.2 Scenario 2 40
5.3.3 Scenario 3 40
5.3.4 Scenario 4 and Overall
Feedback . 40

5.4 Results . 40
6 Conclusion 43
6.1 Future Work 43
Bibliography 45
A Acronyms 47
B User Testing Feedback Forms 49
B.1 Informal Walkthrough 49
B.2 Scenario Testing 50
B.2.1 Scenario 1 51
B.2.2 Scenario 2 52
B.2.3 Scenario 3 52
B.2.4 Scenario 4 53
B.2.5 Overall feedback 54

C Detailed Overview of
Procedures 55
D List of Attachments 57

vii

Figures
2.1 Class diagram of RGT Procedures
(before changes). 5
2.2 Visualisation of RGT process. . . . 6
2.3 Class diagram of RGT (before
changes). 7

3.1 Overpass Turbo after running a
query for specific road tags. 10

3.2 Downloading a map from OSM
using OSM Place Search plugin in
QGIS [6]. 11

3.3 Main window of Osm2Garmin
displaying progress of the
downloading. 12

3.4 Main window of the Jeography GIS
[8]. 12

4.1 Simplified class diagram of the
RGT (current state). 20

4.2 Class diagram of Procedures and
Procedure Configurations in the
RGT. 21

4.3 Communication of the MVVM
components. 22

4.4 Class diagram of the MVVM
architecture in the RGT. 23

4.5 Prototype of the main window
layout. 26

4.6 Main window of the RGT. 27
4.7 Dragging a Step Procedure to a
second position in the Step Process
List. 28

4.8 Dragging Input procedure to
Output container shows an error. . 28

4.9 Invalid value inserted into a
parameter. 29

4.10 Hint describing meaning of the
SRID parameter. 29

4.11 Error in parameters discovered
during the process launch. 29

4.12 Process window displaying the
state of map processing running in
background. 30

4.13 Opening map downloader from
menu. 31

4.14 Map Downloader Window. 31

4.15 Selection of the map to download
previewed using JX Map Viewer 2. 32

5.1 User ratings of program guidance. 37
5.2 User’s rating of the program error
communication regarding the invalid
configuration. 39

5.3 User’s rating of list reordering
feature on scale from 1 to 10. 39

viii

Tables
3.1 Comparison of selected frameworks
on mandatory requirements. 16

3.2 Comparison of considered
frameworks in terms of suitability for
the project. 17

4.1 Custom components representing
the procedures’ parameters. 22

4.2 Containers displayed in the main
window. 25

4.3 Table of the supported keyboard
shortcuts. 33

5.1 Amount of users (out of six) who
discovered and used the program
functions on their own or with help
of the moderator during the informal
walkthrough. 36

5.2 Description of the testing
scenarios. 38

5.3 Summary of average ratings
obtained during user testing. 41

C.1 A list of procedures, their
parameters and prerequisites. 56

ix

Chapter 1
Introduction

Road Graph Tool (RGT) is a program for processing road networks obtained
from Open Street Map (OSM) geographical data. The processed graph of
road networks can be used in various further applications, e.g. for navigation,
traffic modelling, or distance measuring. To define the RGT process, the
user needs to specify a configuration, listing the procedures that should be
performed. The configuration is passed to the program on launch, and the
procedures are executed with the specified parameters and in the specified
order.

However, the existing approach to creating a configuration requires knowl-
edge of the specific procedures, parameters, and keywords (generally, more
profound knowledge of the documentation) the user might not have. It is also
very vulnerable to user’s mistakes (typographical errors, wrong indentation
etc.). Such mistakes invalidate the whole configuration, and for the user, it
is complicated to locate and fix them because the program is not providing
sufficient feedback about it.

The existing configuration method is therefore very uncomfortable and
might dissuade potential users of the program. We also expect the program to
be developed further and the number of configurable options to grow, making
this problem even more serious.

1.1 The Aims of This Thesis

Since the RGT is meant for a broader audience, we want to create a user
interface (UI) operating the RGT providing a more comfortable way than
the existing approach. First, we focused on the analysis of RGT and similar
programs, which we used for collecting requirements for the development.
The development itself aims to create an intuitive environment that is well
accepted by both new and professional users. From the technical side, the
UI is meant to provide an interface for easy addition of other functionality,
primarily for adding and editing Procedures and their parameters. It is also
required to test the developed UI on subjects similar to the future users of
the RGT. We want to gather feedback from testers and use it for further
improvements of the interaction between the user and the program.

1

2

Chapter 2
Road Graph Tool

Road Graph Tool (RGT) is a Java software developed by the Artificial
Intelligence Centre (AIC) of the FEE CTU. Its purpose is to filter and process
road networks from publicly accessible Open Street Map (OSM)1 data. The
road networks are used further in traffic simulations, route planning and other
traffic-related tasks. In the context of AIC, the RGT is developed primarily
to prepare maps for multi-agent traffic simulations.

2.1 Processing Open Street Map Data

As mentioned, the RGT acquires the road network from the OSM, which
provides geographic data for free use. The OSM representation of the map
is built on five main entities: nodes, ways, areas, relations, and closed ways.
These entities can carry tags, metadata represented by a key-value pair
providing additional information about the entity [1]. Except for roads, the
OSM includes information about other places of interest such as hills, rivers,
restaurants, or parks. The RGT filters out the unnecessary information
and also unifies the data in tags. This unification of tag values is needed
because the OSM database obtains the data from various contributors (users,
companies etc.) [2], which leads to inconsistencies, for example, in speed
units2. The RGT can also compute and add values that are missing. A
typical example is a projection of GPS coordinates for more accurate distance
computing.

2.2 RGT Procedures

Processing the map with RGT is carried out by a sequence of procedures.
The procedures are given, and the user specifies which to use, their order and
parameters using the program configuration. There are three main types
of procedures: Input, Output, and Step. RGT process starts with an Input
procedure that loads the data and ends with an Output procedure that saves

1https://wiki.openstreetmap.org/wiki
2Conflict of units of the metric and the imperial system, sometimes even text constants

such as CZ:urban

3

https://wiki.openstreetmap.org/wiki

2. Road Graph Tool
them. The process must include exactly one Input and exactly one Output
procedure, but there can be multiple different Step procedures.

The Step procedures perform additional changes of the road network
graph, mainly changing metadata and filtering entities. Steps also have a
sub-category, validation steps that check whether the entity metadata is in
defined bounds.

RGT currently contains nine procedures: one Input, one Output and seven
Steps:

. Input.OSM File - Loads the data from a .osm file..Output. Database importer - Saves the data to a database.. Step. Node processing - Filters nodes and computes additional properties..Way processing - Unifies speed units and filters roads according to
used allowed types of vehicles..Whole graph processing - Simplifies the graph: deletes the nodes
that are not crossroads nor ends of the roads, and splits edges so
that each edge contains exactly two nodes..Graph IDs generator - Generates new IDs for entities.Major Strongly Connected Component - Finds the major strongly
connected component of the graph and deletes the entities outside
of it.. Validation Step. Max speed validation - Checks the maximum speed values.. Elevation validation - Checks the elevations of nodes and gra-

dients of roads.

Some procedures require to be preceded by another procedure (or multiple
of them), so the data already include the metadata necessary for processing.
Therefore, each procedure contains two lists declaring its added and needed
properties (Graph Procedure Properties). The prerequisites are validated
before the execution of the process. Each procedures’ needed properties are
checked, whether they are included in previous procedures’ added properties.
If not, it means the prerequisites are not met, and the process is not launched.
The procedures are visualised in the simplified class diagram in the Figure
2.1.

A detailed overview of all procedures, including parameters and prerequi-
sites, is in the Table C.1 in the appendix.

4

.................................... 2.3. RGT Process

Figure 2.1: Class diagram of RGT Procedures (before changes).

2.3 RGT Process

RGT currently contains only one Input and one Output procedure, which
offer one option: load the data from an OSM file and save it to a PostgreSQL
database. The principle of the RGT process using these two procedures is
visualised in the Figure 2.2.

Although the RGT was designed to contain minimum dependencies, it
still needs to use external libraries and executables. The most noticeable
example is the Input procedure OSM File, which uses two external executables:
Osmfilter3 and Osmconvert4 to parse and filter the map.

The current version of the RGT is launched with one argument: a path to
YAML5 file containing a configuration. This configuration is deserialised to a
Java object (Config Model), which is passed to Graph Processing Executor,
which executes the procedures in the specified order. For better understanding

3https://wiki.openstreetmap.org/wiki/Osmfilter
4https://wiki.openstreetmap.org/wiki/Osmconvert
5YAML is a serialisation format, which is easy to read by humans. https://yaml.org/

5

https://wiki.openstreetmap.org/wiki/Osmfilter
https://wiki.openstreetmap.org/wiki/Osmconvert
https://yaml.org/

2. Road Graph Tool

Figure 2.2: Visualisation of RGT process.

of the relationships between classes, see the simplified class diagram in the
Figure 2.3.

2.3.1 Problems

As previously mentioned, the RGT initialises the process from a user-defined
YAML configuration. A valid configuration must follow the exact format6

expected by the parser, which requires the user to know the names of proce-
dures and parameters. Since this program is intended for a broad audience,
we cannot expect the users to have this knowledge.

Although the RGT is available from a private repository on GitHub, there
is no description page provided, which complicates the situation even for the
developers.

The second problem is connected with the software architecture. As stated
in the class diagram in Figure 2.3, the procedures are currently initialised
with a variable number of Parameters. Since the Parameters do not specify a
type of value they contain, this approach is very error-prone because the users
might not know what is expected. Hence, to learn the needed parameters,
the users must analyse the source code, which some might find difficult.

6Exact indenting, using case sensitive keywords, etc.

6

.................................... 2.3. RGT Process

Figure 2.3: Class diagram of RGT (before changes).

7

8

Chapter 3
Analysis

This chapter focuses on requirements that specify the desired form of the user
interface and the program’s features. The general goal is to make the program
more user-friendly and add functions that could be practical in connection
with the main functionality.

First, we analyse similar programs to gain inspiration about design and
explore commonly used features. Based on analysis of similar programs and
the RGT (Section 2), we formulate requirements describing the desired UI and
its functionality. Once we have the requirements, we decide which technology
to use and how to integrate the user interface into the existing part of RGT.

3.1 Similar Programs

There are many other open-source programs processing OSM data. Analysing
these programs is a good help for collecting the requirements for this project
but also an inspiration for adding new features. Apart from functionality,
this also helps us understand the users’ expectations [3].

Most of the other OSM processing tools (Osmosis1, Osmium2, Osmnx3,
etc.) are distributed as libraries or console applications. Their approach is
very similar to the current RGT version, where the users need to memorise
the commands and documentation. Although this may be sufficient for the
developers, it is not suitable for users using the program occasionally or users
with limited background in computer science.

Hence, we focused on analysing programs providing a graphical user inter-
face. Some of them are mentioned with a short description.

3.1.1 Overpass Turbo

One of the most popular programs associated with the OSM is Overpass
Turbo4, which serves as a frontend to Overpass API. The Overpass API pro-

1https://github.com/openstreetmap/osmosis
2https://osmcode.org/osmium-tool/
3https://github.com/gboeing/osmnx
4https://overpass-turbo.eu/

9

https://github.com/openstreetmap/osmosis
https://osmcode.org/osmium-tool/
https://github.com/gboeing/osmnx
https://overpass-turbo.eu/

3. Analysis
vides custom parts of the OSM data specified by the user’s request formulated
in the Overpass query language (Overpass QL) [4].

The Overpass Turbo contains a console for the user to formulate their
query. After executing the query, the result is displayed on an interactive
map (Figure 3.1) and may be downloaded. The user can export the map
to different formats or use the OpenStreetMap account to store them [5].
The Overpass API also can be queried directly using the QL command in an
HTTP request [4].

Figure 3.1: Overpass Turbo after running a query for specific road tags.

3.1.2 QGIS

Quantum Geographic Information System5 (QGIS) is an open-source program
for editing and visualising various spatial data types. Although its main
functionality is aimed at visualisation and measuring, the QGIS also provides
a possibility to crop maps or edit values of single entities. QGIS can operate
with multiple layers from various sources (for example, from PostGIS database,
.osm file or raster image).

QGIS also supports plug-in modules that the users can use to extend its
functionality. The plugins may also be used for downloading OSM data or
previewing a map of the whole planet without downloading the full OSM
file [6]. A particular example of downloading a map using map envelope6 is
shown in Figure 3.2.

3.1.3 Osm2garmin

Another program similar to RGT is Osm2Garmin7, which generates maps for
updating Garmin GPS receivers. Osm2Garmin provides a way to download
free maps covering the whole globe or smaller regions according to the user’s

5https://github.com/qgis/QGIS
6a rectangle defined by two latitude and two longitude values
7https://osm2garmin.mantlik.org/

10

https://github.com/qgis/QGIS
https://osm2garmin.mantlik.org/

...................................3.1. Similar Programs

Figure 3.2: Downloading a map from OSM using OSM Place Search plugin in
QGIS [6].

specification. Program is based on the functionality of Osmosis, Mkgmap8

and Tile Splitter9, which process data downloaded using BitTorrent [7].
The main window of the application is shown in Figure 3.3.

3.1.4 Jeography

Jeography is a Geographic information system (GIS) created in Java. Its GUI
(Swing) allows users to browse maps and choose areas of specified shape. The
user can create unions, intersections and other set operations on these areas.
The project also contains several scripts providing additional functionality,
such as saving into a database. The functionality is separated into several
modules, which can be used independently as a library in other projects
(for example, module tiles for previewing maps). The main window of the
program is shown in the Figure 3.4.

8https://wiki.openstreetmap.org/wiki/Mkgmap
9https://www.mkgmap.org.uk/doc/splitter.html

11

https://wiki.openstreetmap.org/wiki/Mkgmap
https://www.mkgmap.org.uk/doc/splitter.html

3. Analysis

Figure 3.3: Main window of Osm2Garmin displaying progress of the downloading.

Figure 3.4: Main window of the Jeography GIS [8].

12

.................................... 3.2. Requirements

3.1.5 Summary

Most of the programs for OSM processing are distributed either as libraries
or as console applications. Such user interface is very similar to the current
approach, and therefore we decided to focus on programs providing a graphical
user interface (GUI). The analysis has shown most of the GUI programs are
able to visualise and filter the map entities but do not provide such complex
metadata processing as the RGT (computing additional entity parameters,
unification of units etc.). We, therefore, could not follow the approach of
particular programs because the visualisation of the map is irrelevant, since
the RGT does not provide any sort of interaction with it.

Out of the programs we have analysed, the Osm2Garmin is the most similar
to RGT. We decided to build RGT GUI in a similar way: listing all the
functionality but not visualising the changes performed on the data.

A widespread feature is downloading maps from within the program. Apart
from programs specifically built for it (Overpass Turbo, Osm2garmin), this
option is available in QGIS or Osmnx. For improving user comfort, the map
download option should also be integrated into the RGT.

Other features regarding the design, usability and functionality are referred
in the following sections.

3.2 Requirements

Creating a list of requirements is a software design standard that helps us
specify the tasks, schedule the work, and agree with our client on what is
needed. The main goal of this thesis is to create a program that helps prepare
a map of road networks for any traffic-related purposes. Therefore, we want
to keep the advantages of the current RGT version: the possibility to run on
any device with Java Runtime Environment (JRE) and keep it available as
open-source. We also want to minimise the difficulties with using the program
so that the users can focus on using the map instead of processing it.

We formulated the following requirements based on the analysis of RGT
and its competitors and consultation with the supervisor and the users of the
program.

3.2.1 Non-functional Requirements

Non-functional requirements (NFRs) are defining qualitative attributes of the
software. Since the processing part of the program is already developed, the
requirements were aimed at GUI and its behaviour on fields of extendibility,
robustness and usability [9].. NFR001 - Cross-platform - The program is available on desktop for all

three leading platforms (MS Windows, Linux, and macOS).. NFR002 - GUI - The program provides a graphical user interface (GUI)
that informs the user about a current program’s state and all exceptions

13

3. Analysis
in a straightforward form, so the user understands what is happening.. NFR003 - Declarative GUI - The GUI is defined using a declarative
language, so it is easy to read and modify.. NFR004- Open-Source - All of the used libraries and frameworks must be
available under a license permitting unrestricted use of this component
for non-commercial purposes.. NFR005 - Current technology - Program uses technologies, frameworks,
and libraries that are being actively maintained.. NFR006 - Extendibility - GUI provides an interface for easy addition
of new procedures and parameters or other features that may appear in
future development.. NFR007 - Exceptions handling - The program informs the user about
any failure, so they are not confused about RGT’s behaviour.. NFR008 - English language - The whole program, including the docu-
mentation, is in English so that most users can understand it.

3.2.2 Functional Requirements

Functional requirements (FRs) are defining the actions a software must be
able to perform. In our case, the UI must provide a possibility to create and
edit a configuration, run the process with this configuration and also check
all the values inputted by the user and warn them in case of invalidation.

The program does not distinguish particular user roles, all of the stated
functions are available to any user.. FR001 - Creating configuration - The user may use a graphical environ-

ment to create a configuration. The user may add and remove procedures
to/from the process and change their execution order and parameters.. FR002 - Real-time validation - Program warns the user if the value
inputted in a parameter is in an unexpected format, so they can immedi-
ately fix the mistake.. FR003 - Configuration import - The user may load a YAML configuration
file to initialise the data in the GUI, so they do not have to input the
same values multiple times.. FR004 - Configuration export - The user may save the configuration
from the GUI environment to a YAML file, so they can reuse it in the
future or share it with other users.. FR005 - RGT execution - The user may execute the RGT process from
within the GUI with the configuration specified in the environment, so
they do not have to use the command line.

14

...........................3.3. Selecting Language and Framework

. The program validates all input data before executing the parsing
process and informs the user in case of any irregularities.. The user may interrupt the process while it is running.. FR006 - RGT monitoring - The program informs the user about the

progress of the map processing, so the user always knows what is hap-
pening.. The program informs the user once the process ends via dialog. In

case of failure, the dialog contains an error message describing the
reason for failure so that the user may fix it.. The progress is represented by a progress bar, so it is evident in
what phase the parsing process is.. The program displays program logs, so the user has detailed infor-
mation about the current program’s activity.. FR007 - Map downloader - The user may download a desired map from

within the GUI, so they do not need to learn about other programs.. FR008 - Help page - The user may open a help page if they do not
understand some of the program’s features properly.

3.3 Selecting Language and Framework

The selection of the framework is defined by the non-functional requirements.
As stated, the UI must support multiple platforms to be available for a broad
spectre of users. Also, the GUI must be defined using a declarative language,
and all of the technologies used must be currently maintained.

Based on these criteria, we selected three candidates for further analysis:
Electron10, NW.js11 and JavaFX12. As listed in the Table 3.1, all of the three
frameworks fulfil the mandatory requirements. Other considered options were
Java Swing and Node.js, which are now understood as deprecated, and the
.NET WPF, which is limited to Microsoft devices13. .

3.3.1 Electron

Electron is a cross-platform framework based on web technologies: Chromium
and Node.js. It provides a desktop wrapper for a web application build
with JavaScript, HTML, and CSS. Electron is distributed under MIT license
and is maintained by OpenJS Foundation14, which is supported by GitHub,
Microsoft, and other software giants. The Electron powers many programs,
such as Facebook Messenger, Visual Studio Code, or Slack.

10https://www.electronjs.org/
11https://nwjs.io/
12https://openjfx.io/
13https://devblogs.microsoft.com/dotnet/announcing-net-5-0-preview-1/
14https://openjsf.org/

15

https://www.electronjs.org/
https://nwjs.io/
https://openjfx.io/
https://devblogs.microsoft.com/dotnet/announcing-net-5-0-preview-1/
https://openjsf.org/

3. Analysis
Mandatory requirements

Requirement Electron NW.js JavaFX
YES YES YES

Cross platform Own executable
for each platform

Own executable
for each platform

Running in JRE

YES YES YES
Open source Available under

MIT license
Available under
MIT license

Available under
GPL

YES YES YES
Currently maintained By OpenJS foun-

dation
By Intel By community

YES YES YES
Declarative GUI HTML, CSS HTML, CSS FXML, CSS

Table 3.1: Comparison of selected frameworks on mandatory requirements.

3.3.2 NW.js

NW.js, previously known as Node-Webkit, is a cross-platform framework very
similar to Electron. It is also web-technology based, uses Chromium and
Node.js, and works as a desktop wrapper for programs written in JavaScript,
HTML, and CSS. Currently, NW.js is supported mainly by Intel and is
available under MIT license.

In comparison to Electron, the NW.js is less popular, having 38 thousand
stars on GitHub15, while Electron over 91 thousand16 (to 24-04-2021). The
Electron has a larger community, which positively impacts documentation,
user-created libraries, and tutorials. As for the technical aspects, the main
difference is the usage of JavaScript contexts17. The NW.js also runs on older
operating systems (such as Windows XP), offers a source code protection18

and supports a broader range of Chrome APIs.19

3.3.3 JavaFX

Next to it, JavaFX, also known as OpenJFX, is a Java library for GUI
development licensed under the General Public License (GPL). It can be used
in connection with a markup language FXML and styled by CSS stylesheets.
The main advantage of choosing JavaFX is the easy integration to the existing
project written in Java. Hence we can avoid inter-process communication
because the GUI and the parsing may run in the same process.

15https://github.com/nwjs/nw.js
16https://github.com/electron/electron
17https://github.com/nwjs/nw.js/wiki/Differences-of-JavaScript-contexts
18http://docs.nwjs.io/en/latest/ForUsers/Advanced/

ProtectJavaScriptSourceCode
19https://www.electronjs.org/docs/development/electron-vs-nwjs

16

https://github.com/nwjs/nw.js
https://github.com/electron/electron
https://github.com/nwjs/nw.js/wiki/Differences-of-JavaScript-contexts
http://docs.nwjs.io/en/latest/For Users/Advanced/Protect JavaScript Source Code
http://docs.nwjs.io/en/latest/For Users/Advanced/Protect JavaScript Source Code
https://www.electronjs.org/docs/development/electron-vs-nwjs

..................................... 3.4. Architecture

3.3.4 Selecting the Best Candidate

Summary of comparison of the selected options (Electron, NW.js, and JavaFX)
is presented in the Table 3.220. Based on these observations, the JavaFX
was selected for development. It is a library that we can add to the existing
project, and all dependencies will be downloaded automatically by Maven.

Suitability for the project
Requirement Electron NW.js JavaFX

NO NO YES
No additional in-
stallations

Chromium,
Python, npm,
and other pro-
grams needed for
development

Chromium, Ninja,
npm and other pro-
grams needed for
development

same as base
program (+depen-
dencies in maven
repositories)

NO NO YES
Easy integration
to RGT

Another process.
Problem with mon-
itoring the parsing

Another process.
Problem with mon-
itoring the parsing

Could be part of
the RGT process,
just separate
threads

YES NOT COM-
PLETELY

YES

Accessible docu-
mentation

big community,
user-friendly
environment

community is not
that big, documen-
tation is chaotic

Javadoc, FXML
documentation,
CSS reference
guide, OpenJFX
documentation.

Table 3.2: Comparison of considered frameworks in terms of suitability for the
project.

3.4 Architecture

As previously stated, the processing part of RGT is still in development, and
we expect source code changes, mainly in procedures and their parameters.
Hence we cannot access the procedures directly from the GUI, because such
approach makes the data and its visualisation too dependent, meaning that
any change of procedures will require a change of the visualisation part.

To avoid this problem, we used the Model-View-ViewModel (MVVM)
architectural pattern. Its great advantage is the loose coupling between the
visualisation and the application logic [10]. The MVVM pattern divides
the program into three components: Model, View, and ViewModel (VM).
The View component visualises the data and communicates with the user.
The changes the users perform in the View properties21 are forwarded to
the relevant variables in ViewModel via data binding. This way, the VM
preserves the program’s current state and works as a mediator between the

20NW.js tutorials are aimed for Linux users, various quick start guides among the official
pages, some are missing prerequisites.

21Properties are a special data type. If two properties are bound together, they automat-
ically share the same value [10].

17

3. Analysis
View and the Model. The Model component holds the application data and
logic and, as mentioned, is entirely independent of the View [10][11].

18

Chapter 4
Implementation

This chapter summarises programming the RGT GUI, encountered problems,
selected solutions and the most critical decisions.

The GUI is implemented directly in the existing RGT project; with the
usage of the JavaFX library. All of the windows and components are defined
in FXML1, a markup language based on XML. The advantage over the
standard JavaFX declaration2 is a more readable hierarchy and cleaner code.
We also selected the MVVM architecture, which uses JavaFX components’
properties and binds them to corresponding values of ViewModel [12].

GUI was implemented in RGT’s private GitHub repository in the user_interface3

branch.

4.1 Integrating GUI into the Existing Project

Since the program is still in development, the GUI must provide an interface
for easy visualisation of procedures added in the future. The GUI is designed
to accept a various number of procedures so that a future developer does not
need to change the core of the GUI dramatically if a new procedure is added.
Also, the possibility to run the program without the GUI must be preserved
so that the program may run on devices with a console environment only, for
example, using remote access on servers.

The whole program is visualised in the class diagram in Figure 4.1.

4.1.1 Procedure Configuration

Currently, the Procedures are initialised with its init() method that accepts
one argument: a map of key-value pairs, where the key is a string containing
the name of the parameter, and the value is an unidentified Java object.
The initialising method then searches for expected keys and loads the paired
values to corresponding parameters.

1https://openjfx.io/javadoc/11/javafx.fxml/javafx/fxml/doc-files/
introduction_to_fxml.html

2Creating and connecting instances of the objects and setting their parameters
3https://github.com/aicenter/road-graph-tool/tree/user_interface

19

https://openjfx.io/javadoc/11/javafx.fxml/javafx/fxml/doc-files/introduction_to_fxml.html
https://openjfx.io/javadoc/11/javafx.fxml/javafx/fxml/doc-files/introduction_to_fxml.html
https://github.com/aicenter/road-graph-tool/tree/user_interface

4. Implementation....................................

Figure 4.1: Simplified class diagram of the RGT (current state).

This is a very error-prone approach because the procedures do not declare
(on the outside) what parameters are required, and the users might not know
what is expected. To learn the needed parameters, the users must analyse
the source code.

To avoid this problem, the Procedure Configurations were created. The
Procedure Configurations store a copy of Procedures’ parameters and display
them on the outside4. Procedure Configurations also handle validation and
parameter changes and provide an interface for visualising the Procedure in
the View. Once the RGT process is launched, the data of Procedure Configu-
rations are used to create instances of Procedures5, which can be executed.
All available Procedures and corresponding Procedure Configurations are
listed in a class diagram in Figure 4.2.

4Using getters and setters
5The init method is now replaced with a constructor.

20

........................ 4.1. Integrating GUI into the Existing Project

Figure 4.2: Class diagram of Procedures and Procedure Configurations in the
RGT.

4.1.2 Custom Components

We have noticed that the Procedures contain only a small amount of parameter
types: integer, real number, text, path to a file, and a list of enumeration
values.

Hence, we can create a custom component6 (Parameter View component)
accepting each of these types and use it as its GUI representation. Inputting
some of the types is also very similar, and therefore, we can merge them. The
three resulted Parameter View components (PV components) are shown in
the Table 4.1.

4.1.3 Usage of MVVM in RGT

Following the MVVM architecture [11], the GUI is divided into three com-
ponents: Model, View and ViewModel (VM). The Model creates and stores

6Predefined GUI component with specific behaviour, which can be reused in multiple
places in the program.

21

4. Implementation....................................
PV component Type of parameter

LabelledTextBox Integer, Real number, Text
InputFile Path to a file

SelectableList List of enum values

Table 4.1: Custom components representing the procedures’ parameters.

the Procedure Configurations and also represents the configuration of the
process The View presents the data in the form of components that the user
can change. The VM then controls a data flow between the Model and the
View, providing the necessary validations and conversions. The number of
procedures and parameters may change, which requires the GUI to create a
representation of the procedures dynamically.

The used architecture of MVVM is demonstrated in the schema in Figure
4.3 and in the class diagram in Figure 4.4. Procedure parameters, meant
to be visualised, are defined in the Procedure Configuration and include
several attributes: name, type, reference to a getter, reference to a setter,
and 1 to N Validators. According to the parameters given by the Procedure
Configuration, the program builds a panel (procedure’s Detail Pane), which
contains the PV components of the given type.

Figure 4.3: Communication of the MVVM components.

The algorithm of initialising the GUI consists of three steps:. Step 1 - A Model component is created. The Model creates the Configu-
ration and all Procedures Configurations.. Step 2 - A View component is created.. Step 3 - For each Procedure Configuration in the Model:. Step 3.1 - The procedure’s Detail pane is created.

22

........................ 4.1. Integrating GUI into the Existing Project

. Step 3.2 - For each parameter defined in the current Procedure
Configuration:. Step 3.2.1 - A PV component and corresponding VM are created,

its values are bound together.. Step 3.2.2 - The PV component is added to the procedure’s
Detail Pane.. Step 3.3 - The Detail Pane is added to the View.

Once the user changes the value of the PV component in the Detail Pane
(see Figure 4.4), the change is automatically propagated to the corresponding
VM, which validates the input using Validators. If the validation is correct,
forwards it to the procedure using the first-class function setter. The VM
also performs the necessary value conversions.

Figure 4.4: Class diagram of the MVVM architecture in the RGT.

4.1.4 Displaying Other Data

Other data (shared data) not dependent on particular procedures do not
require to be initialised dynamically. This includes lists storing the procedures

23

4. Implementation....................................
and the visual components such as buttons labels and other containers
displayed in the View. These data are defined in the main window and bound
to the Main ViewModel (MVM), which provides a connection to the Model
and defines the functions of buttons etc.

The overall solution is described in the class diagram in the Figure 4.4.

4.2 User Experience Design

User Experience (UX) design is a process of defining the interaction between
the user and the product. Since the UX is also affected by other aspects, e.g.
communication with the provider or overall brand experience, [13], we are
limiting this term to usability. Usability is a characteristic of a UI, describing
how easy is this interface to use [14]. According to Nielsen [15], usability is
defined by five main components:. Learnability - How easy is it for a new user to learn and perform basic

tasks.. Efficiency - How quickly are the averagely skilled users able to operate
and perform tasks..Memorability - If a user does not use the program for a while, how
quickly does the knowledge of the UI recover once he starts using it
again.. Errors - How many and how severe errors can a user make in the program.. Satisfaction - How pleasant is the user interface to use.

To know which of the usability characteristics to prioritise, we first need
to understand the context of the user and a typical use case [3]. Since the
RGT is used for processing maps, we can presume the user will primarily use
the RGT in the process of preparations for other projects. Such user will
probably use the RGT occasionally and prepare more maps at once, following
a similar pattern. We can expect a typical user to be a researcher, student or
enthusiast with average or strong IT background. Still, the user’s knowledge
of OSM and map representation can be narrow or none.

Considering the program is to be used by non-proficient users and only
occasionally, we must prioritise the GUI’s learnability. Therefore, we followed
an approach of Klimczak [3] and his Design to learnability. Its primary idea
is to provide a lot of hints and create a simple layout displaying the main
functionality in the user’s main area of focus. Therefore we firstly focused on
the layout of the components.

4.2.1 Program Windows and Layout

The program contains three windows: the main window, the process window
and the map downloader window. The main window provides an environment

24

................................ 4.2. User Experience Design

for creating a configuration and options to save/load it. The main window
also works as an intermediary to other windows: it allows the user to run
the parsing process and open the map downloader window. As the names of
the other two windows imply, the process window displays information about
the running process, and the map downloader window presents an option to
download a map that the user can process later.

There are four main containers to be displayed in the main window (Table
4.2). All existing procedures are presented in the Procedure List, from which
the user can move them to the Process List or vice versa. Details of the
selected procedure are shown in the Procedure Detail Pane, which presents the
custom components according to the procedure’s parameters type. Following
standards of other programs, other functionality, e.g. other windows or links
to important websites, are listed in the Main menu.

Component name Description
Procedure List A list of all procedures implemented in the RGT.

Process List
A list representing the RGT process. The RGT executes
procedures that are in the process list. Procedures can
be moved between this and the Unused Step list.

Procedure Detail Pane
Panel displaying component, which user can edit to
change the parameters of the currently selected proce-
dure.

Main menu
Menu containing options to load and save configuration,
open map downloader window, and open relevant web
pages.

Table 4.2: Containers displayed in the main window.

The first draft of the main window layout was created using Figma7. The
prototype, shown in Figure 4.5, was only made to visualise the layout and
essential functions to agree on how the program will look and what components
should be displayed.

The layout itself follows the way users are scanning websites to put the
component, which is to be used first, to the user’s primary area of focus. One
of the most common scanning patterns is called F-shaped. The principle is
that a user on the first encounter with an application or a web is starting to
scan an area shaped like the letter F [16].

Therefore, the left side is filled by the Procedure list, and the menu (only
indicated in the prototype) is displayed at the top. Other components are
positioned along the window’s borders, the Process list horizontally to copy
a real-life image of the process8 [14]. Process button placed on the bottom
right corner, following a standard placement of confirmation buttons [17].

7https://www.figma.com/
8A process is in the human mind visualised as a production line, which is horizontal.

25

https://www.figma.com/

4. Implementation....................................

Figure 4.5: Prototype of the main window layout.

4.2.2 Main Window

The second version of the main window design (Figure 4.6) was made in
JavaFX and styled using a CSS stylesheet. Since this is a final version, more
effort was put into styling and looks.

One of the main differences from the prototype (Figure 4.5) is the layout of
lists divided for better partition of the Input, Output, and Step procedures.
Also, top buttons were moved to a menu bar at the top of the window to
follow the standard approach used in similar programs. We also decided to
move the ’Process’ button to improve its visibility.

The functionality of the components is described in Section 4.3.

4.2.3 Communication with the User

To provide sufficient feedback and present the current state, the GUI commu-
nicates with the user on multiple levels: verbal and nonverbal. An example
of nonverbal communication in the main window (Figure 4.6) is the colour
highlights of matching containers (green for input, orange for output) or
arrows in the Process list indicating the direction of processing [3]. The
creating of such hints was based on assumptions.

For more complex messages, the program is using system dialogs and
tooltips9 (Figure 4.10) that provide hints to the user. The system dialogs
are used to notify the user in serious situations, mostly about errors. Error
messages, following Nielsen’s heuristics [14], describe the error and suggest a
solution so that it is clear what the user made wrong and how to react.

9Hints that appear if the cursor is idle in a defined space

26

.................................. 4.3. Program Features

Figure 4.6: Main window of the RGT.

4.3 Program Features

Program features are an overall name for the program’s functionality and
behaviour. The functionality represents actions the program is able to perform,
which are defined in the functional requirements (Section 3.2.2).

The core functionality of the GUI is to provide an environment for the two
main operations: creating a Configuration and executing it. The environment
for creating a Configuration is contained in the main window, which displays
both the current state of the Configuration and Procedures that may be added
or edited. The main window also contains the Detail Panes of the Procedures,
where the user can adjust the parameters so that the Procedure process the
data as desired. The parameters are validated so that the Procedure does
not process invalid data.

Once the user is satisfied with the configuration settings, they may execute
the process. The process is executed in the background, and the GUI displays
its current state in the process window.

GUI also contains functions that are not necessary for processing but have
a positive impact on usability. An example of such a function is the map
downloader that enables users to download a map they may immediately use.

4.3.1 Configuration Environment

A principle of creating a Configuration is that the user moves Procedures
between the Procedure List in the left, containing all procedures, and the
Process Lists, at the bottom of the main window (Figure 4.6). The lists,
which represent the same type of Procedure, are highlighted by matching

27

4. Implementation....................................
colour, and the user can move the Procedures only between the pair (Figures
4.7 and 4.8).

A Procedure can be dragged by mouse and moved to a specific position in
the Process List (Figure 4.7) or moved to the end by a double click. Since
there can be only one Input and Output in the process configuration, the
program replaces the Procedures in the Process List if the user tries to add
another.

The lists also support keyboard shortcuts. The user may use WSAD or arrows
to navigate and select the procedures and move them from/to the process by
pressing Space. The whole configuration can be cleared by pressing the ’Clear’
button or Shift+C. The default configuration, which can be easily adjusted
in the source code, can be renewed using the ’Restore default’ button.

Figure 4.7: Dragging a Step Procedure to a second position in the Step Process
List.

Figure 4.8: Dragging Input procedure to Output container shows an error.

If the user wants to keep configurations for future use, they may export it
to a YAML file using either option in the menu or keyboard shortcut Ctrl+S.
Similarly, a YAML file can be imported to the program, which overwrites the
current configuration, changes settings of procedures and values of parameters.
The importing and exporting is also automatically used by the program itself:
the program imports the last used configuration on startup.

4.3.2 Procedure Parameters

Parameters are displayed in the Detail Pane Presenter component on the
right side of the main window. The Presenter switches the Detail Panes so
that it always displays details of the currently selected Procedure.

The parameters are connected to a ViewModels that validate the inputted
values in real-time. In the case of invalid values, the parameter component
displays an error. For example, text components change colour to red (Figure

28

.................................. 4.3. Program Features

4.9). Therefore, the user is notified immediately after making a mistake,
which improves efficiency and learnability because the user is not afraid to
input various values [14].

Figure 4.9: Invalid value inserted into a parameter.

Some of the parameters also include hints providing information about the
type of the value and its meaning. The Figure 4.10 shows an example of a
description of the SRID parameter.

Figure 4.10: Hint describing meaning of the SRID parameter.

Procedures are also validated before the parsing process is launched. If the
value in the parameter is still invalid, the program notifies the user with a
system dialog (Figure 4.11).

Figure 4.11: Error in parameters discovered during the process launch.

29

4. Implementation....................................
4.3.3 Monitoring the Process

Once the user clicks the ’Process’ button in the main window and the program
verifies none of the parameters includes an error, the RGT process is launched.
The process is represented by the process window, displaying progress on a
progress bar and showing program output in a console (Figure 4.12).

Figure 4.12: Process window displaying the state of map processing running in
background.

The progress bar changes colour according to the state of the process. It
colours green if the process ends successfully and red if the process fails.
Validating the parameters before launch minimises the chances of process
failure. Yet, the process can still fail in case of a mistake in data or other
edge cases, such as lost connection during saving to database.

4.3.4 Map Downloader

The map downloader is a component enabling the user to download a custom
map defined by bounds (rectangle bounded by longitude and latitude values)
or the area’s name. The map downloader is contained in a separate window,
which can be launched from the main window using a menu option shown in
the Figure 4.13 or by pressing Ctrl+D.

To obtain maps, the map downloader uses the Overpass API. According
to the selected option, the inputted values (bounds or name of the area) are
placed in a prepared Overpass QL query and sent to the server. Although
the authors of the API assure us, we can safely use up to 5GB of downloads
per day without disturbing others [4], the maximal size of the rectangle is
limited to 10 000 km2.

The user is also encouraged to use other providers, for example, Geofabrik10

for downloading bigger areas or the Overpass Turbo for their own queries.
10https://www.geofabrik.de/

30

https://www.geofabrik.de/

.................................. 4.3. Program Features

Figure 4.13: Opening map downloader from menu.

The map downloader window shows two options: specify map by bounds
and by name. Both options download maps containing roads only to a folder
specified by the user. Map downloader also does not overwrite the existing
files with the new ones. If a file with a matching name exists in the selected
folder, the new one adds a number at the end11.

The ’specify by bounds’ option is shown in the Figure 4.14. It contains a
rectangle of latitudes and longitudes, where the user can input the values
directly or select a rectangle in map preview. The layout is inspired by the
window of the QGIS OSM plugin (Figure 3.2) we have analysed .

Figure 4.14: Map Downloader Window.

The map preview uses a JX Map Viewer 2 library12. The user can move the
map using the left mouse button and select a rectangle using the right mouse
button (Figure 4.15). Once the user confirms the selection, the longitude

11If the user is downloading multiple maps, he does not have to create unique names, the
program automatically numbers them: map.osm, map1.osm etc.

12https://github.com/msteiger/jxmapviewer2

31

https://github.com/msteiger/jxmapviewer2

4. Implementation....................................
and latitude values are inserted into the text boxes in the map downloader
window.

Figure 4.15: Selection of the map to download previewed using JX Map Viewer 2.

The second option is to download the area by its name. This approach
is handy for downloading irregularly shaped maps (cities, districts). Yet,
the comparison of names while querying is case sensitive, and therefore the
user may need to try different variants to obtain the map they want. The
general idea is that the entities are named in the local language and use
the local name conventions [18]. For example, the user must use the Czech
name ’Praha’ to download a map of the Czech capital, the query for ’Prague’
downloads Prague, Oklahoma, US13.

13https://en.wikipedia.org/wiki/Prague,_Oklahoma

32

https://en.wikipedia.org/wiki/Prague,_Oklahoma

................................... 4.4. Documentation

4.4 Documentation

This section includes information for users about how to use the program
and for developers about how to extend it further. The full documentation
is available at the project’s GitHub page https://github.com/aicenter/
road-graph-tool/tree/user_interface.

4.4.1 Program Controls

The program control focuses on users with an average or advanced knowledge
of computer science. Therefore the GUI is aimed to be controlled with
mouse and keyboard simultaneously. The keyboard is obviously used for
inputting values, but the user can also accelerate selecting the components
using keyboard shortcuts. The summary of keyboard shortcuts is listed in the
Table 4.3. The used keys are concentrated on the left side of the keyboard so
that the user may use the left hand only.

Shortcut Action
W / Up Navigate up in the list of procedures

S / Down Navigate down in the list of procedures
A / Left Navigate left in the process list

D / Right Navigate right in the process list
Space Move selected procedure from/to the process

Alt+A / Alt+Left Move selected procedure one position to the left in
the process list.

Alt+D / Alt+Right Move selected procedure one position to the right
in the process list.

Ctrl+S Export (Save) configuration
Ctrl+O Import (Open) configuration
Ctrl+D Open map downloader

Shift+Enter Start the parsing process.
Shift+C Clear the configuration

Table 4.3: Table of the supported keyboard shortcuts.

4.4.2 Launching program without GUI

The RGT might be launched and used without the user interface. To do
so, the user must use the original Main class with a path to existing YAML
configuration passed as a program argument. If no argument is provided,
RGT automatically uses the default configuration. We recommend creating a
configuration in the GUI environment and then use it as stated.

A more detailed description is available on the project’s GitHub page:
https://github.com/aicenter/road-graph-tool/tree/user_interface.

33

https://github.com/aicenter/road-graph-tool/tree/user_interface
https://github.com/aicenter/road-graph-tool/tree/user_interface
https://github.com/aicenter/road-graph-tool/tree/user_interface

4. Implementation....................................
4.4.3 Adding Procedures and Parameters

A new Procedure may be added to the GUI by completing the following steps:. Step 1 - Create a Procedure P implementing either interface Input,
Output or Step.. Step 2 - Create a Procedure Configuration C representing procedure P .
The C must implement one of the interfaces InputProcedure, Output-
Procedure or StepProcedure according to the type of P .. Step 3 - List the configuration C in the header of its interface for correct
loading and saving.. Step 4 - List the configuration C in the ProcedureListFactory (see
Figure 4.1).

The parameters are then defined in the Procedure Configurations. The
Procedure Configuration also defines which of these parameters should be dis-
played in GUI and what type of PV component should be used. A parameter
only needs to be declared in Procedure Configuration’s getProcedureParameters()
method and is visualised automatically.

A full description of adding procedures and parameters, including the used
methods, is stated on the project’s GitHub page: https://github.com/
aicenter/road-graph-tool/tree/user_interface.

4.4.4 CSS Styling

The program uses a CSS stylesheet to adjust the look of the components.
This stylesheet can be found in the project resources and is loaded on GUI
initialisation. The developers may use the stylesheet to adjust the application’s
look, for example, the program currently uses forestgreen CSS colour for
highlights, which can be easily replaced with another.

The program also includes an option of changing the theme to dark mode.
However, the dark mode is still not completed and was added more as a
possibility for future development.

34

https://github.com/aicenter/road-graph-tool/tree/user_interface
https://github.com/aicenter/road-graph-tool/tree/user_interface

Chapter 5
Testing

This chapter describes the methods that were used to test the RGT. According
to the tested features, the testing is divided into two groups: functionality
and usability testing. The functionality tests have been performed as the
program was developed and typically covered the newly added feature. At
first, the program was tested only by the author. The supervisor and other
members of AIC tested the GUI in later stages of the development. The
usability testing was performed by volunteers. Its purpose was to check how
the users with no connection to the development are able to perform tasks
and orientate themselves in the layout.

This approach was selected since the GUI testing is generally complicated
to be performed automatically, and using it may not be worth it on such a
small application.

The testing revealed that the procedure Node Processing is incomplete since
it does not compute elevations. Therefore the procedure Elevation Validation
had to be removed from the program temporarily because it was causing
errors that the testers may be confused about.

5.1 Usability Testing

To make the program intuitive and user-friendly, the testing contained a phase
of testing by volunteers. The user-testing was realised when the program
already contained most of the main features, missing only the map downloader,
which was being implemented in parallel with the testing. The primary goal
of the usability testing was to see how are unskilled users able to operate the
GUI.

The usability testing itself was divided into two phases: Informal Walk-
through and Scenario Testing. The Informal Walkthrough was aimed to
test the general intuitiveness and learnability of the program. The Scenario
Testing was then focusing on specific features and tasks.

Each testing phase was followed by a Google form, that testers filled.
Transcription of the feedback from and answers is listed in the appendix B.

35

5. Testing
5.2 Informal Walkthrough

An Informal Walkthrough is a form of usability testing, where the users
explore program features on their own. In order to successfully apply this
method formulated by Riihiaho [19], the program must be finished or nearly
finished, and the users must be familiar with its concept. The session is lead
by a moderator, who interferes minimally with the tester. Still, the tester is
encouraged to share his expectations, struggles, and thoughts, which can be
helpful in further program development. The moderator also can encourage
the tester to explore the features by assigning them a task. The benefits of
this approach is a realistic evaluation of how intuitive and easy to understand
the program is [19].

The Informal Walkthrough testing was realised in the form of a video con-
ference with screen sharing. The recipients were given a detailed description
of the RGT’s purpose and principle, and each session also started with an
additional explanation. The users were asked to explore the program features
but were told nothing about the actual program controls. Once they were
finished exploring, they were asked to perform the following task:

“Parse road network of Andorra1 to your database. Create a projec-
tion of points with SRID 32644 and select only roads for cars and
bicycles.”

Six recipients participated in the Informal Walkthrough testing. Three of
them described themselves as average, two as an expert and one as a beginner
level computer user. After the testers were acquainted with the RGT parsing
principle and functions of the procedures, they started exploring the program
(Table 5.1). All users managed to find and use the main features: assigning
procedures to process, changing their parameters, and running the process.

Feature name On their own With help
Selecting Input and Output enables process 6 -
Clicking the procedure displays details 6 -
Dragging procedures to other list by mouse 6 -
Importing and exporting a configuration 5 1
Parameter changes color on invalid value 3 3
Tooltips 3 2
Selecting procedure by using WSAD 1 2
Other keyboard shortcuts 2 3

Table 5.1: Amount of users (out of six) who discovered and used the program
functions on their own or with help of the moderator during the informal
walkthrough.

At the end of each session, the recipients were asked to fill in feedback
acquiring information about them and their program ratings. The users

1The recipients were provided with a map of this country

36

................................... 5.3. Scenario Testing

rated the program design and layout with an average of 8.5 points out of 10.
However, the program hints and guidance was rated with an average of 6.0
points (Figure 5.1).

All of the feedback questions are listed in the Section B.1 in the appendix.

Figure 5.1: User ratings of program guidance.

Three users encountered a problem with launching the program from the
jar file; two of them were caused by unsupported Java version2. Since the
information was contained in the instructions, we highlighted it so that future
users will not be confused. The third user was not able to launch the jar on
the macOS for unknown reasons. However, the program worked without any
problems when launched from IntelliJ.

The testing also revealed that the parsing process on macOS fails to
launch the external executables osmfilter and osmextract, which only work
on Windows and Linux. Since this issue is not GUI related, we included this
information on the help page but did not examine it further.

5.3 Scenario Testing

The Scenario testing was initiated after the Informal Walkthrough. The
recipients were described the program controls and asked to execute scenarios:
multi-step tasks discovering how different users on different platforms will
deal with the assignment. Creating the scenarios is based on a program
flow-chart, a directed graph in which each node represents a particular state
and each edge represents a user action. Scenarios are finite paths in this
graph, which are selected according to the desired depth of testing [20].

In our case, we selected four scenarios representing the most frequent
actions the users will perform (Table 5.2).

2Java 13 or higher is required

37

5. Testing
Scenario Description

1
Load a configuration -> Change parameters ->
Change order of procedures -> Process config-
uration

2

Clear configuration -> Create a new configu-
ration -> Save configuration -> Change con-
figuration in external text editor -> Load con-
figuration -> Change configuration in GUI ->
Save configuration -> Repeat from the fourth
step

3 Create a configuration using mouse and then
using keyboard shortcuts

4
Create a configuration -> Process configuration
-> Stop process -> Change configuration ->
Process configuration

Table 5.2: Description of the testing scenarios.

Based on Teague, De Jesus and Ueno [21], in order to achieve relevant and
unbiased answers, the users filled feedback immediately after completing a
scenario. The feedback questions, along with detailed scenarios’ description,
are listed in the Section B.2 in the appendix.

A total of five recipients attended the scenario testing on two platforms:
MS Windows and Linux3. None of the recipients has worked with RGT
before.

5.3.1 Scenario 1

In this scenario, the testers were asked to load a prepared configuration and
run the process specified by it. However, the configuration includes mistakes,
which users must fix based solely on error messages. The particular mistakes
were two:. the input file path is set incorrectly,. the specified order of procedures does not follow the prerequisites.

The program does not include any information about the prerequisites4.
Therefore, we wanted to test whether this information is needed5. To measure
the quality of the communication, we also asked the testers to track time,
which we can compare with the reference time of 2 minutes 27 seconds (2:27
in shortened form). Except for testing the communication, this scenario is
also aimed at testing the reordering of the lists.

3Testing on the macOS did not continue after the error occurred during the Informal
Walkthrough.

4Prerequisites are not stated in the program, only in the documentation.
5Too much information in procedure detail pane may become chaotic, and therefore we

want to test if the prerequisites are needed there.

38

................................... 5.3. Scenario Testing

The recipients’ average time was 3:44 (152 % of reference time) with a
maximum of 4:21 (177 % of reference time). Most of the users were satisfied
with the program communication (Figure 5.2); the average rating of reordering
the list was 8.2 out of 10 (Figure 5.3).

Figure 5.2: User’s rating of the program error communication regarding the
invalid configuration.

Figure 5.3: User’s rating of list reordering feature on scale from 1 to 10.

The only difficulty, the users expressed, was with an error message that
shows when the input file does not exist. This error was fixed immediately.

39

5. Testing
5.3.2 Scenario 2

The second scenario is aimed at loading and saving the configuration. The
testers were asked to create a configuration, save it and then change it using
a text editor. After the change, the users loaded the configuration back and
adjusted it in the GUI. This process was repeated several times, and the users
were asked about their preferences regarding changing the configuration. All
of them prefers using the GUI to using the text configuration and would prefer
so even in everyday use. According to their responses, it is also unnecessary
to include the text preview in the main program, which was planned initially
but postponed.

5.3.3 Scenario 3

The third scenario required the user to create a series of configurations using
either mouse or keyboard only. The recipients stated that their preferred way
is using a mouse rather than a keyboard. Mouse drag and drop also achieved
a slightly better rating: average 9.0 out of 10, while using the keyboard:
8.6 on average. Creating the configuration is also very friendly to the users,
reaching an average user-friendliness score of 9.6 out of 10.

5.3.4 Scenario 4 and Overall Feedback

The task in this scenario was to create a specific configuration, stop its
processing, adjust it and then rerun the process. This scenario also tested
how the users read the messages. At the time of testing, closing a process
window terminated the process after completing the currently processed
procedure. Although information about this was presented in the system
dialog, none of the users answered correctly when asked about it in the
feedback form. Therefore, the RGT process termination method was changed
to follow the expectations so that the parsing is terminated immediately.

After completing the fourth scenario, users filled in overall feedback. The
recipients stated that although they do not know anything about OSM,
they could use the program and understand its operations. The GUI’s
overall feedback achieved an average rating of 9.0 points out of 10.0 for
user-friendliness and the same value for layout and readability.

5.4 Results

The testing has proven that the RGT can be built and run on two platforms:
MS Windows and Linux. Although the GUI can also be launched on the
macOS, processing the OSM is not available because this platform is not
supported by external executables that the processing part uses.

Although none of the recipients had previous experience with OSM process-
ing, they were able to quickly learn the basics from the documentation and
use the RGT to perform the desired tasks. They were also able to discover

40

....................................... 5.4. Results

and use the program’s main features without the help of the moderator during
the Informal Walkthrough.

In comparison with the reference solution, the testers were able to perform
a task and fix the mistakes (scenario 1) in 152 % of reference time on average,
which we accept as sufficient.

As shown in the Table 5.3, the users were generally pleased with using the
program. The worst rating was given to program guidance.

Field name Average rating
Mouse control 8.6

Keyboard control 8.6
Program communication 9.4
Real-time validation 9.6

Layout and readability 9.0
Monitoring the process 8.8
Hints and guidance 6.0

Table 5.3: Summary of average ratings obtained during user testing.

The user testing was also a good source of inspiration. During the Informal
Walkthrough, users were encouraged to speak and share their thoughts. Their
ideas significantly helped to enhance the program’s communication with the
user and revealed several errors in the design.

41

42

Chapter 6
Conclusion

The aim of this thesis was to create a user interface for the program Road
Graph Tool. After analysing other OSM parsers and the Road Graph Tool
itself, we managed to create requirements for this task. Based on the require-
ments, the JavaFX library was selected for the development of the GUI, using
a Model-View-ViewModel architectural pattern.

The program is currently available on two platforms: Linux and Microsoft
Windows. Although the GUI may be launched on the macOS, the external
executables needed by the processing part of the program do not support
this platform. All of the used components are available for free use for
non-commercial purposes and are currently being maintained.

The GUI currently provides an environment for the user to create a con-
figuration and execute an RGT process specified by it. The user interface is
prepared for future modifications of the code, and developers may add other
functionality using a simple interface.

Usability of the user interface was tested by volunteers proving it is easy
to learn and therefore suitable even for users with little knowledge of the
problematics of map processing. The users’ feedback was taken into account
and used for further development. However, the second round of the testing
was not realised due to time reasons. Hence, some of the program functionality
remains untested and may need further attention.

6.1 Future Work

In future, we would like to focus on the second round of user testing to ensure
the added functions work as expected and are understood by different users.
We would also like to improve the help page on GitHub to attract more people
to use the RGT once it is made a public project.

43

44

Bibliography

[1] OSM Beginners Guide 1.3. url: https://wiki.openstreetmap.org/
wiki/Beginners_Guide_1.3 (visited on 04/20/2021).

[2] "Source" tag page. url: https://wiki.openstreetmap.org/wiki/
Key:source (visited on 04/20/2021).

[3] Erik Klimczak. Design for software. a playbook for developers. 1st ed.
Online: Wiley, 2013. isbn: 9781119943693.

[4] Overpass Turbo. url: https://wiki.openstreetmap.org/wiki/
Overpass_API (visited on 05/08/2021).

[5] Overpass Turbo. url: https://wiki.openstreetmap.org/wiki/
Overpass_turbo (visited on 01/07/2021).

[6] Searching and Downloading OpenStreetMap Data. url: https://www.
qgistutorials.com/en/docs/downloading_osm_data.html (visited
on 05/16/2021).

[7] František Mantlík. OpenStreetMap Garmin Maps generator User Guide.
url: https://osm2garmin.blog.mantlik.cz/downloads/ (visited
on 01/07/2021).

[8] Jeography Main Page. url: https://jaryard.com/projects/jeography/
(visited on 05/14/2021).

[9] “IEEE Trial-Use Standard for Software Non-Functional Sizing Mea-
surements”. In: IEEE Std 2430-2019 (2019), pp. 1–87. doi: 10.1109/
IEEESTD.2019.8870263.

[10] Waseem Sheikh and Nadeem Sheikh. “AModel-View-ViewModel (MVVM)
Application Framework for Hearing Impairment Diagnosis - Type Depen-
dency Architecture”. In: 2020 Intermountain Engineering, Technology
and Computing (IETC). IEEE, 2020, pp. 1–6. isbn: 978-1-7281-4291-3.
doi: 10.1109/IETC47856.2020.9249181. url: https://ieeexplore.
ieee.org/document/9249181/ (visited on 04/25/2021).

[11] Raffaele Garofalo. Building Enterprise Applications with Windows Pre-
sentation Foundation and the Model View ViewModel Pattern. 1st. USA:
Microsoft Press, 2011. isbn: 0735650926.

45

https://wiki.openstreetmap.org/wiki/Beginners_Guide_1.3
https://wiki.openstreetmap.org/wiki/Beginners_Guide_1.3
https://wiki.openstreetmap.org/wiki/Key:source
https://wiki.openstreetmap.org/wiki/Key:source
https://wiki.openstreetmap.org/wiki/Overpass_API
https://wiki.openstreetmap.org/wiki/Overpass_API
https://wiki.openstreetmap.org/wiki/Overpass_turbo
https://wiki.openstreetmap.org/wiki/Overpass_turbo
https://www.qgistutorials.com/en/docs/downloading_osm_data.html
https://www.qgistutorials.com/en/docs/downloading_osm_data.html
https://osm2garmin.blog.mantlik.cz/downloads/
https://jaryard.com/projects/jeography/
https://doi.org/10.1109/IEEESTD.2019.8870263
https://doi.org/10.1109/IEEESTD.2019.8870263
https://doi.org/10.1109/IETC47856.2020.9249181
https://ieeexplore.ieee.org/document/9249181/
https://ieeexplore.ieee.org/document/9249181/

6. Conclusion......................................
[12] Johan Vos et al. Pro JavaFX 9. A Definitive Guide to Building Desktop,

Mobile, and Embedded Java Clients. 4th ed. ProQuest Ebook Central:
Apress L. P., 2017. isbn: 9781484230428. url: https://ebookcentral.
proquest.com/lib/cvut/detail.action?docID=5199561 (visited on
04/29/2021).

[13] Justin Misfud. Difference between usability and user experience. url:
https://usabilitygeek.com/the-difference-between-usability-
and-user-experience/ (visited on 05/07/2021).

[14] Afifa Lodhi. “Usability Heuristics as an assessment parameter. For
performing Usability Testing”. In: 2010 2nd International Conference
on Software Technology and Engineering (2010). doi: 10.1109/ICSTE.
2010 . 5608809. url: http : / / ieeexplore . ieee . org / document /
5608809/.

[15] Jakob Nielsen. Usability engineering. San Francisco: Morgan Kaufmann,
1993. isbn: 01-251-8406-9.

[16] Kara Pernice. Text Scanning Patterns: The Eyetracking Evidence. url:
https://www.nngroup.com/articles/text-scanning-patterns-
eyetracking/ (visited on 04/30/2021).

[17] John Moore Williams. 10 Essential UI Design Tips. url: https://
webflow . com / blog / 10 - essential - ui - design - tips (visited on
04/30/2021).

[18] Name tags in OSM entities. url: https://wiki.openstreetmap.org/
wiki/Names (visited on 05/08/2021).

[19] Sirpa Riihiaho. “User Testing When Test Tasks Are Not Appropriate”.
In: ECCE ’09. Helsinki, Finland: VTT Technical Research Centre of
Finland, 2009. isbn: 9789513863401.

[20] J. C. Huang. “An Approach to Program Testing”. In: ACM Computing
Surveys 7.3 (1975), pp. 113–128. issn: 0360-0300. doi: 10.1145/356651.
356652. url: https://dl.acm.org/doi/10.1145/356651.356652.

[21] Ross Teague, Katherine De Jesus, and Marcos Nunes Ueno. “Concurrent
vs. post-task usability test ratings”. In: CHI ’01 extended abstracts on
Human factors in computing systems - CHI ’01 (2001), pp. 289–. doi:
10.1145/634067.634238. url: http://portal.acm.org/citation.
cfm?doid=634067.634238.

46

https://ebookcentral.proquest.com/lib/cvut/detail.action?docID=5199561
https://ebookcentral.proquest.com/lib/cvut/detail.action?docID=5199561
https://usabilitygeek.com/the-difference-between-usability-and-user-experience/
https://usabilitygeek.com/the-difference-between-usability-and-user-experience/
https://doi.org/10.1109/ICSTE.2010.5608809
https://doi.org/10.1109/ICSTE.2010.5608809
http://ieeexplore.ieee.org/document/5608809/
http://ieeexplore.ieee.org/document/5608809/
https://www.nngroup.com/articles/text-scanning-patterns-eyetracking/
https://www.nngroup.com/articles/text-scanning-patterns-eyetracking/
https://webflow.com/blog/10-essential-ui-design-tips
https://webflow.com/blog/10-essential-ui-design-tips
https://wiki.openstreetmap.org/wiki/Names
https://wiki.openstreetmap.org/wiki/Names
https://doi.org/10.1145/356651.356652
https://doi.org/10.1145/356651.356652
https://dl.acm.org/doi/10.1145/356651.356652
https://doi.org/10.1145/634067.634238
http://portal.acm.org/citation.cfm?doid=634067.634238
http://portal.acm.org/citation.cfm?doid=634067.634238

Appendix A
Acronyms

AIC Artificial Intelligence Centre
AND Automotive Navigation Data
API Application Programming Interface
CSS Cascading Style Sheets
CTU Czech Technical University
FEE Faculty of Electrical Engineering
FR Functional Requirement
GIS Geographical Information System
GPL General Public License
GUI Graphical User Interface
IT Information Technology
JBDC Java DataBase Connectivity
JRE Java Runtime Environment
HTTP Hypertext Markup Language
MVM Main ViewModel
MVVM Model-View-ViewModel
NFR Non-Functional Requirement
OSM Open Street Map
OQL Overpass Query Language
QL Query Language
RGT Road Graph Tool
SRID Spatial Reference Identifier
UI User Interface
UX User Experience
VM ViewModel

47

48

Appendix B
User Testing Feedback Forms

This appendix includes transcriptions of Google Forms used for gathering
feedback. Numbers in brackets represent the number of people voting for this
option. For example, ’(5x)’ means five recipients selected this answer. If the
brackets are missing, none of the recipients selected this option. Some of the
questions required a rating on a scale of 1-10. The 10 is the highest mark.
The 1 is the lowest. Please note the answers where the recipients used their
own words may be simplified.

B.1 Informal Walkthrough

Transcription of a feedback form used to gather feedback after Informal
Walkthrough testing. Six recipients attended the Informal Walkthrough
testing.. How would you describe the level of your computer skills?. Advanced (3x). Average (2x). I am a beginner (1x). Do you have any experience using computer networks?. Yes, I have worked with road networks.. I have heard about it but never used it. (2x). No. (4x).What operating system are did you use for testing?.Microsoft Windows (4x).MacOS (1x). Linux (1x). Did you launch the program on the first try?. Yes. (3x). No. (3x). If not, what was the problem?.Old Java version. (2x)

49

B. User Testing Feedback Forms
. Problem launching from the jar on MacOS. (1x). Did you understand that the list of procedures on the left represents all

procedures, and the list at the bottom represents the process?. Yes, without problems. (1x). Yes, but I would appreciate more hints. (5x). No.. How would you rate the program’s hints and overall guidance? [scale
1-10]. 1 (1x). 5 (1x). 6 (1x). 7 (1x). 8 (1x). 9 (1x). How would you rate the program’s design? [scale 1-10]. 8 (3x). 9 (3x).What would you like to improve in the program?. "When trying to open a new map, it would be useful to remember

the previous path, so the user doesn’t have to click to the maps
again.". "I’d prefer if the steps can be reorganized using arrows instead of
WASD."

B.2 Scenario Testing

The feedback form for Scenario Testing also included the instructions for
performing specific scenario. For clarity, are the scenarios separated into
sections. Each section is starting with instructions followed by questions and
answers. Five recipients attended the testing.

The feedback started with gathering information about the volunteers:.What operating system are did you use for testing?.Microsoft Windows (4x). Linux (1x). Have you worked with RGT before?. Yes. No (5x)

50

................................... B.2. Scenario Testing

B.2.1 Scenario 1. Instructions:. This scenario requires time tracking. Start the stopwatch once you
open the program. Try to keep precision +-10s.Load configuration
config-scenario1.yml from <rgt-folder>/scenarios. This configura-
tion parses the map of Andorra from <rgt-folder>/maps subfolder,
so please update the input map first. The configuration includes
some errors. Follow the program’s error messages and fix and run
the process with this configuration. Stop the time tracking once
you see a “Successfully finished” dialog.

. How much time [minutes:seconds] did it take to create a configuration
and run it?. 4:01 (1x). 3:40 (1x). 3:21 (1x). 4:21 (1x). 3:17 (1x). Average time: 3:44. Did you find the program’s communication sufficient?. Yes. (4x). Yes, but it could be better. (1x). No, but it was not terrible.. Absolutely not.. Did you use keyboard shortcuts?. Yes.. No. (5x). How friendly is the list reordering? [scale 1-10]. 7 (1x). 8 (3x). 10 (1x). Is there something you would like to add? You may do it here..

51

B. User Testing Feedback Forms
B.2.2 Scenario 2. Instructions:. Clear previous configuration. Now create another one with at least

5 procedures and save it in a file. Open this file via text editor
and change the order of procedures. Try also changing parameter’s
values. Now load the configuration. If you kept the expected type
of parameters, the configuration is loaded. If not, an error message
appears. Adjust this configuration and save it again. Repeat this
process 5 times.

. Does the configuration loading work as you expected?. Yes. (5x). No.. Do you prefer GUI or text configuration?.GUI. (5x). Textual configuration.. If you were working with RGT every day, what would you prefer, GUI
or text configuration?.GUI. (5x). Textual configuration.. I am not sure..Would you appreciate a preview of textual configuration in GUI?. Yes. (1x). No. (4x). Is there something you would like to add? You may do it here.

B.2.3 Scenario 3. Instructions:. This scenario is not exactly specified. Please, try to brute force test
the program control. Start with using mouse only, then keyboard
only and then combine these two approaches.

. Please, rate using keyboard shortcuts. [scale 1-10]. 6 (1x). 8 (1x). 9 (1x). 10 (2x)

52

................................... B.2. Scenario Testing

. Please, rate mouse drag and drop.[scale 1-10]. 8 (2x). 9 (1x). 10 (2x).What is your preferred way to control the RGT?. Using keyboard shortcuts. (1x). Using the mouse. (4x). Is there something you would like to add? You may do it here.

B.2.4 Scenario 4. Instructions:. Create a configuration parsing the map jihocesky.osm.pbf (can be
found in /maps subfolder) and saving it to your database. Also
add procedures NodeProcessing(srid = 32633, WayProcessing (only
roads for pedestrians), WholeGraphProcessing. Close the process
window approximately in the middle of the process and add a
GraphIDsGenerator procedure. Then process it again.

.When you close the process window, what happens with the running
parsing process?. I am not sure. (2x). Procedure will stop after completing the procedure. correct. Process will stop immediately (the thread is killed). (3x). Process will stop as soon as possible but does not have to complete

the procedure.. Do you like the current way the process window displays over the main
window? Should it remain modal?. I do not mind the way it is. (5x). I think the Process window should NOT be modal so I can work

with the Main window while the process is running.. How friendly is the environment for creating configurations? [scale
1-10]. 9 (2x). 10 (3x). How do you like the information overview about the parsing process?
[scale 1-10]. 7 (1x). 8 (1x). 9 (1x)

53

B. User Testing Feedback Forms
. 10 (2x). Is there something you would like to add? You may do it here.. "The modal process window forbids me from, for example, minimis-

ing the program, which is annoying but nothing I cannot handle."

B.2.5 Overall feedback

At the end of the Scenario testing, the users were asked to fill in overall
feedback .. Did you find any unhandled errors during the testing?. Yes.. No. (5x). How were you satisfied with the overall program’s communication?

[scale 1-10]. 9 (3x). 10 (2x).Was there a situation when you didn’t know what was happening due to
the lack of information from the program’s side? If yes, please describe
it... Did you understand all of the error messages?. Yes, without problems. (5x). Yes, but with some problems.. No, some of them were very unclear.. How do you rate parameter validation? [scale 1-10]. 9 (2x). 10 (3x). How easy is the user interface to learn and use?
[1 - very difficult to use, 10 - very easy to use]. 8 (1x). 9 (3x). 10 (1x). Please rate the program’s layout and readability. [scale 1-10]. 8 (1x). 9 (3x). 10 (1x). Is there something you would like to add? You may do it here.. "Add some textual descriptions to the process list, the colour high-

lights are not enough." (1x). "I would add the navigation using WSAD also to Arrows." (3x)

54

Appendix C
Detailed Overview of Procedures

Inputs

OSMFile

Filters and loads road network from .osm files
into program’s graph representation. Uses two
external executables, osmfilter and osmconvert,
to process the map.

Parameters inputFile [string]

Outputs

DbImporter Provides connection and saving to a Post-
greSQL database representation.

Parameters Connetion parameters - Address, Port,
Database name, User, Password

Steps

NodeProcessing

Creates a spherical projections of GPS coor-
dinates so Earth curvature and elevation is
taken into account during the computation of
distances

Prerequisites -

Parameters srid (Spatial Reference ID) - code representing
coordinate system and type of projection

WayProcessing Unifies speed units, keeps roads selected types
of vehicles can use

Prerequisites NodeProcessing

Parameters
Allowed transport modes - means of transport
that the user will use in the simulation. Roads
for omitted means of transport are deleted.

WholeGraphProcessing Simplifies graph, removes nodes that are not
crossroads, recomputes length of roads.

Prerequisites NodeProcessing, WayProcessing
Parameters -
GraphIDsGenerator Generates new IDs for entities (from 1 to N).
Prerequisites -
Parameters -

MajorConnectedComponent
Creates a major strongly connected component
of the graph. Finds the biggest connected part
of the map and deletes others.

Prerequisites -
Parameters -

MaxSpeedValidation Logs all entities, where max speed is not in
interval <minmaxspeed; maxspeed> to a file.

55

C. Detailed Overview of Procedures
Prerequisites WayProcessing

Parameters
maxspeed - upper limit of maximum permitted
speed on a road
minmaxspeed - lower limit of maximum permit-
ted speed on a road

ElevationValidation Logs all entities, where max speed is not in
interval <minmaxspeed; maxspeed> to a file.

Prerequisites NodeProcessing, WholeGraphProcessing

Parameters

maxElevation - upper limit of maximum per-
mitted speed on a road
minElevation - lower limit of maximum per-
mitted speed on a road
maxGradient - maximal slope of the road
minEdgeLength - minimal length of the road

Table C.1: A list of procedures, their parameters and prerequisites.

56

Appendix D
List of Attachments

. ./source-code/ - Source code of the program.

the

57

	Introduction
	The Aims of This Thesis

	Road Graph Tool
	Processing Open Street Map Data
	RGT Procedures
	RGT Process
	Problems

	Analysis
	Similar Programs
	Overpass Turbo
	QGIS
	Osm2garmin
	Jeography
	Summary

	Requirements
	Non-functional Requirements
	Functional Requirements

	Selecting Language and Framework
	Electron
	NW.js
	JavaFX
	Selecting the Best Candidate

	Architecture

	Implementation
	Integrating GUI into the Existing Project
	Procedure Configuration
	Custom Components
	Usage of MVVM in RGT
	Displaying Other Data

	User Experience Design
	Program Windows and Layout
	Main Window
	Communication with the User

	Program Features
	Configuration Environment
	Procedure Parameters
	Monitoring the Process
	Map Downloader

	Documentation
	Program Controls
	Launching program without GUI
	Adding Procedures and Parameters
	CSS Styling

	Testing
	Usability Testing
	Informal Walkthrough
	Scenario Testing
	Scenario 1
	Scenario 2
	Scenario 3
	Scenario 4 and Overall Feedback

	Results

	Conclusion
	Future Work

	Bibliography
	Acronyms
	User Testing Feedback Forms
	Informal Walkthrough
	Scenario Testing
	Scenario 1
	Scenario 2
	Scenario 3
	Scenario 4
	Overall feedback

	Detailed Overview of Procedures
	List of Attachments

