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Abstract

Abstract

This thesis further expands the topic of replacing standard transition and heuristic func-
tions in classical planning algorithms by deep neural networks. Three new domains were
implemented: Peg solitaire, Painting robots and Multiagent painting robots. The imple-
mentation consisted of proposing a graphical domain representation and implementing
solvers and data generators for deep neural network learning. Transition and heuristic
neural networks were trained on the generated data and then used to replace the standard
transition and heuristic functions in the solvers. Experiments were conducted to compare
the performance of the standard and neural network solvers. The results show that the
peg solitaire domain is too complex for current network architectures to solve. In the
case of single and multiagent painting robots, the performance in terms of length of the
solution and average number of expanded states is comparable between neural networks
and standard baseline functions.

Keywords: Classical planning, Convolutional neural networks, Deep learning, Planning
domains.

Abstrakt

Tato práce rozv́ıj́ı téma nahrazováńı standardńıch přechodových a heuristických funkćı
v klasickém plánováńı hlubokými neuronovými śıtěmi. Byly naimplementovány tři nové
domény: Peg solitaire, Painting robots a Multiagentńı painting robots. Implementace
pozestávala z návrhu grafické reprezentace domén a implementace řešič̊u a generátor̊u
dat pro učeńı hlubokých neuronových śıt́ı. Na vygenerovaných datech byly natrénovány
přechodová a heuristická neuronová śı̌t, kterými byly nahrazeny standardńı přechodové
a heuristické funkce v řešičech. Byly provedeny experimenty na porovnáńı výkonu stan-
dardńıch a neurálńıch řešič̊u. Výsledky ukázaly, že doména Peg solitaire je př́ılǐs komplexńı
a současné architektury śıt́ı ji neumı́ vyřešit. V př́ıpadě Painting robots a Multiagentńıch
Painting robots jsou délky řešeńı a počet expandovaných stav̊u porovnatelné se stan-
dardńımi funkcemi.

Kĺıčová slova: Klasické plánováńı, Konvolučńı neuronové śıtě, Hluboké učeńı, Plánovaćı
domény.
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Introduction

Deep neural networks are hot. They classify. They regress. They beat you in chess. They

can approximate any continuous function. Nowadays, deep neural networks dominate

the research in the field of machine learning. They provide excellent results in problems

ranging from computer vision to unsupervised reinforcement learning.

Classical planning lives in a completely different realm of the artificial intelligence field

- symbolic AI. As its name suggests, the goal of the classical planning problem is to create

a plan - a sequence of steps needed to achieve a particular goal state. Classical planning

has its applications in logistics, manufacturing or even in robotics.

Classical planning relies heavily on functions. Namely step-generating transition and

heuristic functions. These functions represent an intersection where the worlds of neural

networks and classical planning collide. Both transition and heuristic functions can be

replaced by deep neural networks. However, there are very few domains that have been

adapted to this approach. The main focus of this thesis is to implement new domains and

test the performance of neural network solvers on classical planning problems.

The best domains for this approach are the ones that can be represented visually, in

a form of an image. Images can be easily processed using convolutional neural networks.

This approach was used in [1] to implement the maze and Sokoban domains. This thesis

will build on [1], using the same network architectures on new domains. Specifically,

peg solitaire, painting robots and multiagent painting robots domains were selected for

implementation.

Thesis goals

The goals of this thesis consist of providing general background information on classical

planning and deep neural networks, implementing domains and conducting experiments

to compare the performance of solvers and heuristics.

The goal of domain implementation is to propose a domain representation suitable for

deep neural network learning and implementing solvers and data generators. Data gen-

erators should generate datasets used in neural network training and datasets of problem

1



INTRODUCTION 2

instances used in experiments.

The experiments should compare solvers based on the average solution length, aver-

age number of expanded states and other characteristics that can help to compare the

effectiveness of the solvers.



Chapter 1

Problem definition

The main problem solved in this thesis is a part of a bigger problem of replacing standard

transition and heuristic functions in classical planning by deep neural networks. This

problem was already solved for two domains in [1]. In that work, Sokoban and maze

domains were implemented and adapted for deep neural network learning. In this thesis,

the goal is to implement three new domains and conduct experiments comparing the

performance of the learned functions with standard transition and heuristic functions.

The implementation of domains consists of implementing a solver of a classical plan-

ning problem with domain-specific transition and heuristic functions. Data generators

generating domain instances and training data for transition and heuristic functions also

need to be implemented. Testing new neural network architectures is not a goal of this

thesis, therefore the networks proposed and implemented in [1] will be used. The domains

selected for implementation in this thesis are the peg solitaire domain, painting robots

domain and its multiagent variant.

The experiments will be performed on a datasets that were not used during training.

They will be performed with multiple domain-specific configurations, such as instance size.

All combinations of the deep learned and standard functions will be compared to deter-

mine if the deep learned functions provide satisfactory results. Heuristic networks will

be compared with the selected standard heuristic functions to determine which perform

better.

1.1 Peg Solitaire domain

Peg Solitaire is a one-player puzzle game consisting of a board and a number of pegs. The

game starts with pegs placed on the board with at least one empty square. A peg can

be removed after it is jumped over by another peg. The jump is possible when there is

an empty square next to the neighboring peg. The jumping peg is placed on an empty

3



CHAPTER 1. PROBLEM DEFINITION 4

square and jumped-over peg is removed from the board. The goal of the game is to end

up with only one peg left on the board.

There are more variations of this problem. For example, triangular boards where pegs

can jump in diagonal directions. These variations will not be regarded in this thesis. It

is clear that this problem can be viewed as a problem of classical planning. The goal is

to plan a sequence of jumps to end up on a board with one peg.

1.2 Painting robots domain

The problem solved in the painting robots domain consists of one or multiple robots

moving on the grid. Robots can paint any square of the grid with some color. In this

thesis, robots are only allowed to paint with one color, but a multicolored variant of this

problem also exists. Robots can move freely on the grid, however, they cannot step on a

square that has already been painted. The goal is to plan a sequence of steps that the

robots have to make to paint the provided picture on the grid.



Chapter 2

Background

This chapter is focused on providing a general background on the fields explored in this

thesis. The main goal is to define and explain the problems of classical and satisficing

planning and the algorithms used to solve them, neural networks and their architectures

used in this thesis.

2.1 Classical planning

The main goal of this thesis is to implement new domains of classical planning problems

for deep neural network learning. First, the planning problem will be defined, followed

by the definition of classical planning and the STRIPS representation of the classical

planning problems.

2.1.1 The planning problem

The goal of the planning problem is to construct a sequence of steps leading from the

initial state to the goal state. As stated in [2] planning problem is characterized by the

description of initial and goal states. The agent has a set of actions it can perform in

every state. A sequence of actions leading from the initial to the goal state is called a

plan. The environment in which the agent operates is called a domain.

2.1.2 The problem of classical planning

Classical planning problem is a special case of a planning problem, where the environment

is fully observable, deterministic, finite, static, and discrete in time, action, objects, and

effects [3].

The problem and domain can be represented in various ways. One of the most common

is the STRIPS representation described in [4]. When defining a problem instance in

5
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STRIPS, the domain is defined together with each instance of the problem. Both the

domain and problem are defined using a set of conditions. Each state is described by a

set of conditions or facts, that hold for the current state.

The other widely used representation is PDDL [5]. With PDDL, the domain and

problem are defined separately. PDDL is based on the First Order Logic. PDDL repre-

sentation is commonly used and the problems in this representation are accepted by the

majority of planners. However, in this thesis, following [1], this representation will be

replaced by an own graphical domain representation suitable for neural network training.

2.1.3 Satisficing planning

With satisficing planning, the goal is not to find the best solution, but any possible solu-

tion. This grants freedom in planner implementation. Even though well-known planners

use problems defined in standardized formats, planning algorithms can be implemented

for alternative problem representations. Since the classical planning problem involves the

agent moving between states using actions, a multiple of state-space search algorithms

can be used to find a path between initial and goal states.

Searching the state space

The state space search is a powerful way to find a solution to many problems. There are

many algorithms used to perform state space search, however, the basic idea is always the

same.

When searching the state space, every achieved state is called a node. Search algorithm

expands the node to find the states that an agent can reach by using one of its actions.

The algorithm keeps expanding nodes until the goal state is found.

func t i on g e n e r a l s e a r c h ( i n i t i a l s t a t e )

nodes = i n i t i a l s t a t e

whi l e nodes i s not empty

current node = pop ( nodes )

i f i s f i n a l s t a t e ( cur rent node ) then return current node

n e x t s t a t e s = g e t n e x t s t a t e s ( node )

push ( nodes , n e x t s t a t e s )

end

return f a i l

end

Listing 2.1: General state space search algorithm



CHAPTER 2. BACKGROUND 7

The order in which the nodes are expanded is varied between algorithms. The two

most common algorithms - Breath First Search (BFS) and Depth First Search (DFS)

[6] are different only in the order of the expanded nodes. BFS expands all nodes in the

current depth, and then their ancestors in the next level. Thus, the nodes variable in

Listing 2.1 would be a queue. DFS, on the other hand expands a node on a deeper

level immediately and returns to a higher lever only if the solution was not found in the

current branch of the search tree. In this case, the nodes variable in Listing 2.1 would be

a stack.[3] However, for some problems these simple algorithms do not perform well and

more advanced algorithms are needed.

Heuristics

While searching the state space, the order of expanded nodes is crucial to find the problem

solution efficiently. General algorithms like BFS often search and expand nodes that are

too far away from the solution.

For example, the problem of finding the shortest road between Prague and Brno. BFS

would continuously expand all roads around Prague in a circular manner until it has

found Brno. This means every road in a 180 km radius around Prague would have to be

expanded first. Even cities as far as Dresden would be discovered before Brno, despite the

fact that Dresden lies in a completely different direction from Prague than Brno. To avoid

situations like this, additional information can be provided to the algorithm to expand

the nodes that are more likely to lead to the solution.

This piece of additional information is called a heuristic. In general, a heuristic is a

value that can be computed for a state and it is an estimate of the distance from the state

to its closest goal state. This value can then be used to make informed decisions while

expanding new states. Making informed decisions may lead to expanding less states. The

function that can compute a heuristic is called a heuristic function.

Heuristic function usually computes a heuristic by solving a simplified or modified

problem. One example of simplification is relaxation of the problem. This means that

some of the problem constraints are disregarded and removed. In the case of finding the

shortest road between Prague and Brno, one possible heuristic function could disregard

the need for travelling on roads. The function would then compute crow-fly distance

between the current position and Brno. This value can then be used to expand nodes

that have smaller crow-fly distance to Brno first.

Crow-fly distance in our example is actually called Euclidian distance heuristic and

can be used in problems of pathfinding. Manhattan distance heuristic can also be used if

the agent operates on a grid and can only move in 4 directions. However, not all heuristic

functions are problem specific. Advanced heuristics such as LM-Cut or hmax [7] exist and
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can be used in any problem of classical planning.

Heuristic functions can have many properties. One of the most important heuristic

function properties is admissiblity.

Definition 2.1.1 (Admissible heuristic). ”A heuristic function h is said to be admissible

if h(n) ≤ h∗(n) ∀ n .” [8]

In Definition 2.1.1, h(n) is the heuristic value and h∗(n) is an actual true cost required

for getting from the current state to the end state. This means that the admissible

heuristic never overestimates the actual cost. Use of an admissible heuristic is important

in A* search algorithm, because it guarantees the optimality of the algorithm.

The other important property is goal awareness. As the name suggests, this heuristic

can determine if the state is a goal state.

Definition 2.1.2 (Goal-aware heuristic). A heuristic function h is goal-aware if h(n) =

0 ∀ goal states n .

The heuristic neural networks used in this thesis may not be admissible. Even if they

are trained on the dataset based on an admissible heuristic, there is no way to ensure

that the heuristic network will not overestimate the cost. For this reason, not only A*

but also the greedy best first and pruning search algorithms will be explained in detail.

These algorithms are used in the practical part of this thesis.

Best first greedy search

Greedy search uses the heuristic as the only criterion and expands the nodes with the

smallest heuristic first. This approach does not guarantee a globally optimal solution,

however, it is not a problem in the case of satisficing planning.

Greedy search can be implemented by using a priority queue. Each discovered node is

evaluated by a heuristic function and inserted into the priority queue, with the heuristic

value serving as the nodes priority. The algorithm then expands nodes in the order of

their heuristic values. Pseudocode for this algorithm is shown in Listing 2.2.
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func t i on greedy sea r ch ( i n i t i a l s t a t e )

nodes = new p r i o r i t y q u e u e ( )

nodes . push ( i n i t i a l s t a t e , 0)

whi l e nodes i s not empty

current node = nodes . pop ( )

i f i s f i n a l s t a t e ( cur rent node ) then return current node

n e x t s t a t e s = g e t n e x t s t a t e s ( node )

f o r each s t a t e in n e x t s t a t e s

h = compute heur i s t i c ( s t a t e )

nodes . push ( s ta te , h )

end

end

return f a i l

end

Listing 2.2: Greedy search algorithm

The main shortcoming of greedy search is the complete disregard for the cost of the path

leading to the current state. Greedy search only considers the heuristic value. This of

course means that the optimal solution is not guaranteed, the found solution can be overly

complex, and the time needed to find a solution might be long, especially if the heuristic

does not provide enough information.

A* search

Opposite to the greedy search, A* does consider the cost of the path leading to the

current node. A* does not use the heuristic value as the only criterion when searching for

the solution. In A*, the heuristic only shifts the search in the direction of the expected

solution and the cost of the path is still an essential factor.

Implementation of A* is very similar to greedy search. Priority queue is used to expand

the best nodes first. Here, however, the priority is the sum of the heuristic and the cost

of the path leading to the current state. Pseudocode is shown in Listing 2.3.

If the heuristic used in A* algorithm is admissible and goal-aware, the found solution

will be optimal. This makes sense, because the admissible heuristic does not overestimate

the actual cost of the path leading to the solution. Therefore, expanding nodes in the

order of their actual cost summed with the admissible approximation of the cost leading

to the goal state will cause the optimal solution to be found first. This would not hold

if the heuristic was not admissible. Suboptimal solution could be found first if the cost

of the optimal solution was overestimated by the heuristic function. The more rigorous
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proof can be found in [8].

f unc t i on a s t a r s e a r c h ( i n i t i a l s t a t e )

nodes = new p r i o r i t y q u e u e ( )

nodes . push ( i n i t i a l s t a t e , 0)

whi l e nodes i s not empty

current node = nodes . pop ( )

i f i s f i n a l s t a t e ( cur rent node ) then return current node

n e x t s t a t e s = g e t n e x t s t a t e s ( node )

f o r each s t a t e in n e x t s t a t e s

h = compute heur i s t i c ( s t a t e )

g = compute cost ( s t a t e )

nodes . push ( s ta te , h + g )

end

end

return f a i l

end

Listing 2.3: A* algorithm

Pruning search

When the space state is very broad, even algorithms such as greedy or A* search can have

problems with finding a solution. Both of these algorithms can be improved by including

pruning.

Pruning means cutting off the entire branches of the search tree that are less likely

to contain a solution. This can be achieved by computing the next states for one depth

of the tree. Then these states can be sorted by the heuristic. Finally, states that are

less likely to lead to the solution will be removed from the queue. This will lead to a

massive reduction in the width of the search tree, and consequently to faster discovery of

the solution. This type of search is suitable for satisficing planning because if the pruning

cuts away a branch with the optimal solution, it is not a problem. The pseudocode is

shown in Listing 2.4.

The threshold determining which states are likely to lead to the solution has to be

carefully selected by experimentation. Setting the threshold too low can lead to pruning

away a branch with a solution, which in some cases can mean losing the solution altogether.

Setting it too high might not bring any noticeable improvement in performance.
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func t i on prune so lve ( i n i t i a l s t a t e , prun ing constant )

I n i t i a l i s i n g f i r s t gene ra t i on

gene ra t i on = [ i n i t i a l s t a t e ]

whi l e gene ra t i on l ength i s > 0

Compute the next s t a t e s o f each s t a t e in the cur rent

gene ra t i on so r t ed by h e u r i s t i c

n e x t s t a t e s = g e t n e x t s t a t e s s o r t e d b y h e u r i s t i c (

gene ra t i on )

The new gene ra t i on c o n s i s t s o f the f i r s t

prun ing constant e lements o f n e x t s t a t e s

gene ra t i on = new state s [ 1 : prun ing constant ]

i f g ene ra t i on conta in s end s t a t e

re turn end s t a t e

end

end

Listing 2.4: Pruning solver pseudocode

2.2 Neural networks

Neural networks are a powerful machine learning tool. In general, the neural network

consists of connected layers of neurons. Artificial neuron is a mathematical model of the

real neuron. Neurons are interconnected and each connection has its associated weight.

Each neuron is activated by a nonlinear activation function. In the simplest type of

network, neurons are ordered into layers, where neurons from one layer are connected to

the following layer. The first layer of the network is called the input layer, the last is

called the output layer. Layers between them are called hidden layers.

To train a neural network, a large labeled (in case of supervised learning) dataset

is needed. This dataset is then used to learn the weights between neurons using the

backpropagation algorithm. [9].

There are countless ways in which neurons can be connected into the neural network.
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The scheme of how neurons are connected into layers that form a network is called neural

network architecture. There are many types of architectures. For example, feedforward,

convolutional or attention network, which are also used in the practical part of this thesis.

2.2.1 Deep feedforward networks

Deep feedforward networks are one of the most commonly used deep learning models.

They are called feedforward because all the information flows only in the forward direction

- between the input and output layer. This means there are no connections where the

network inputs the data to itself.

Feedforward network can approximate any continuous function with only one hidden

layer. This fact is stated in The Universal Approximation Theorem [10] . The goal of

training feedforward network is to learn the weights between neurons which result in the

best function approximation.

Gradient based learning and gradient descent

As stated above, training the neural network means finding the best values of the param-

eters. First, the proper loss function has to be chosen to correctly measure how well the

model performs. The value of the loss function can then be minimised by using standard

gradient-based algorithms by computing the gradient w.r.t. parameters.

The most common gradient-based optimization method is the gradient descent al-

gorithm. Gradient descent computes the gradient of a function in the current point.

Gradient is the direction in which the function values grow the most. The algorithm sub-

tracts the gradient multiplied by the step length from the current point to get the next

point, which means moving in the opposite direction of the biggest growth. This process

is repeated until the stopping condition is satisfied [11]. The step length is crucial for the

performance and convergence of the gradient descent algorithm. Too small step size will

cause very slow convergence, on the other hand, if the step size is too big, the algorithm

can diverge from the solution. The divergence can be avoided by constantly checking that

with every step taken the function value decreases: F (xi+1) ≤ F (xi). If F (xi+1) > F (xi)

the step size needs to be decreased, for example, halved, and the test should be repeated

until it is safe to take a step leading to a point with a smaller value. When training neural

networks, the step size is often called learning rate.

Gradient descent can be easily adapted for neural network learning. Vanilla gradient

descent for neural networks computes the gradient of the loss function on the entire dataset

and uses it to adjust the parameters. This can be very time consuming if the dataset is

very large. The algorithm can be adjusted by computing the gradient for each dataset
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instance. This adjusted algorithm is called stochastic gradient descent and is usually much

more efficient than vanilla gradient descent[12]. Stochastic gradient descent pseudocode

is shown in Listing 2.5.

f unc t i on sgd ( dataset , model parameters , l r )

whi l e convergence cond i t i on not met

f o r each in s t ance in datase t

g rad i en t = compute gradient ( parameters , i n s t anc e )

parameters = parameters − l r ∗ grad i en t

end

end

return parameters

end

Listing 2.5: Stochastic gradient descent pseudocode

Gradient descent is not the only gradient-based algorithm used to train neural net-

works. Algorithms such as Adam, Adagrad or Adadelta are all more advanced algorithms

that adaptively change the learning rate to converge faster and speed up the learning

process.

Backpropagation

Backpropagation is an algorithm used to compute the gradient of the loss function w.r.t.

model parameters. The process of neural network learning consists of two parts. First is

forward pass, where the information flows from the input layer to the output layer. The

value of the loss function is then computed on the output layer and the backward pass

starts.

The idea behind the backward pass is to compute the gradient by using the chain

rule. Neural networks can be viewed as composite functions, because each layer of the

network is a function that transforms input into output. The gradient is computed in

each layer as f(g(x))′ = f ′(g(x))g′(x), where g is the layer before f in the backward pass.

Backpropagation algorithm computes gradient on the layer and then passes it backward

to the previous layer where the value is used to compute the gradient of that layer. This

way, the gradient backpropagates from the output layer back to the input layer and can be

used in a gradient-based optimization algorithm to find the minimum of the loss function.

[13]
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2.2.2 Convolutional neural networks

Convolutional neural networks (CNN) are a famous class of neural network architectures.

They are widely used in computer vision problems and image classification. Regarding

images, feedforward networks are not very suitable. Feeding an image into a feedforward

network would not provide satisfactory results because an image is a very complex input

with a lot of dependencies between pixels. CNN, on the other hand, does not use fully

interconected layers.

CNN uses image convolution. It applies a number of convolution filters to the image.

The parameters of the convolution function as parameters of the network that need to

be learned. The learned filter is then applied to the image. This ensures that CNN

can classify the object in the image regardless of its position. This property of CNNs is

called the shift invariance. Training a CNN can be also achieved by using gradient-based

algorithm and backpropagation.[14]

In [15] new Transformer architecture using attention mechanism was proposed and

shown good performance. Attention mechanism works with CNNs and serves to highlight

more important parts of the data. This architecture is also used in this thesis as the

heuristic neural network.



Chapter 3

Implementation

This chapter regards the process and details of implementation. This includes specifying

the languages and tools used to implement new domains as well as the description of the

implemented solvers and data generators.

3.1 Languages and tools

All code used in this thesis was written in Julia programming language in version 1.4.2.

Most of the code uses standard Julia libraries, however, for some functions additional

libraries were used.

JLD library was used for storing and loading the generated datasets produced by data

generators. This library has been chosen because it provides a simple way of storing and

reading data arrays in files.

Flux.jl framework was used for neural network training. Flux.jl is a powerful neural

network framework for Julia language. It provides methods for building and training

neural network models and is on par with other famous frameworks such as Tensorflow.

The code was written in Visual Studio Code editor with Julia language extension.

Remote - SSH extension was used to connect to the university server josef.felk.cvut.cz.

Code was developed on this server because it provides powerful graphics cards that sped

up the training of the models.

3.2 Neural network models

Implementation of neural network models was not a goal of this thesis. Used neural

network architectures were implemented and explained in detail in [1]. There are two

types of networks used - the heuristic and the transition network.

15
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3.2.1 Transition network

The purpose of the transition network is to replace the standard transition function of

the solver. This function is used to generate the next states from the current state. The

transition network architecture works with a graphical representation of the image and

uses convolutional layers.

Transition network uses the architecture described in [1]. There are three convolutional

layers and one residual connection connecting the input and the output of the convolu-

tions. Then there are two convolutional layers with 1x1 kernel to adjust the number of

channels. This network takes one-hot representation with three channels as an input and

outputs one-hot representation of the probabilities of the next states that are learned.

The architecture is shown in Figure 3.1.

Figure 3.1: Transition Network Architecture proposed in [1]

3.2.2 Heuristic networks

The role of the heuristic network is to replace the standard heuristic function of the

solver. Just the same as the transition network, the heuristic network also works with a

graphical representation of the domain. The heuristic network expects one-hot graphical

representation as an input and returns a scalar heuristic value as an output. Two different

heuristic network architectures were used in the experiments.

The first heuristic network is purely convolutional without attention. It uses four

convolutional layers and four fully connected layers. The network architecture is described

in Figure 3.2. This architecture is scale-free, which means that an instance of any size

can be processed without the need to change the architecture.

Figure 3.2: Purely convolutional Heuristic Network Architecture proposed in [1]
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The second heuristic network uses the attention architecture explained in Subsection

2.2.2. It uses five attention masks that are applied at the beginning of the network. The

rest of the network consists of four convolutional layers and one fully connected layer.

The used architecture is described in Figure 3.3.

Figure 3.3: Attention Heuristic Network Architecture proposed in [1]

For experiments in the Peg solitaire domain, both architectures were compared. In

the painting robots domain, only the attention network was used during the experiments.

3.3 Peg Solitaire domain implementation

As stated in the problem definition, Peg Solitaire is a one-player game where pegs are

removed from the board by jumping over one another. The goal is to end up with only

one last peg on the board.

3.3.1 Domain representation

The domain is fully represented by the state of the board. The board is represented as a

2D array of {0, 1, 2}, where 0 represents an empty square, 1 represents a square with a peg

and 2 represents a nonplayable square. For example, the classic 33-square cross-shaped

board representation is shown in Listing 3.1



CHAPTER 3. IMPLEMENTATION 18

board = [

2 2 2 2 2 2 2 2 2 ;

2 2 2 1 1 1 2 2 2 ;

2 2 2 1 1 1 2 2 2 ;

2 1 1 1 1 1 1 1 2 ;

2 1 1 1 0 1 1 1 2 ;

2 1 1 1 1 1 1 1 2 ;

2 2 2 1 1 1 2 2 2 ;

2 2 2 1 1 1 2 2 2 ;

2 2 2 2 2 2 2 2 2 ;

]

Listing 3.1: Board representation example

In the rest of this chapter, the board state will be displayed in a heatmap format.

Black tiles represent empty squares (0), red tiles represent a peg (1) and yellow squares

represent a nonplayable square (2). Board from Listing 3.1 is shown in Figure 3.4

Figure 3.4: Heatmap board representation

3.3.2 Solver

Two solvers were implemented for this domain. The first solver is an implementation of

the A* algorithm. The second one is an implementation of the pruning search. These algo-

rithms are explained in detail in Chapter 2. Both of these algorithms need transition and

heuristic functions which are domain-specific. The pruning search algorithm was chosen

to perform the experiments because it showed better results during implementation.
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The pruning search algorithm was implemented to search by generations. The initial

state is a first generation. All the following states form the second generation. Second

generation next states form the third generation and so on. Each generation is sorted by

the heuristic and all but the first n states are removed from the generation, where n is a

pruning constant.

During the search, it is possible to end up in the same state multiple times. Because of

this, every visited state is stored in a set. If the discovered state is already in the visited

set, it is not inserted into the queue.

Additional check for solvability had to be added to the A* algorithm to stop the search

if it took too long. This was added for the purposes of data generation explained later

in this chapter. The search is stopped if the number of expanded states is above the set

threshold. The threshold was chosen by computing an average number of expanded states

over a set of different solvable problem instances and multiplied by ten.

Pruning search algorithm does not need this check, because if the pruning constant

is set reasonably low, the search will terminate in a reasonable time in the case of this

specific domain. The reason for this comes from the rules of the domain where each move

must remove one peg from the board. Because of this, each generation contains states

with the same number of pegs on the board. With each generation, the number of pegs on

the board decreases by one. In the second to last generation, there are only boards with

two pegs. If these states contain a board with two pegs next to each other, the solution

will be in the next generation and the search will terminate with the found solution. If

such states are not present in the generation, the last generation will be empty and the

search will terminate without solution.

Transition function

Transition function receives a state as an input and returns all possible next states that

can be reached from the input state in a single move. Implementation of the transition

function first finds all squares without a peg. Next, for each empty square, it checks if

there is a square with a peg next to it. If yes, it then checks if that peg can be jumped over

by some other peg in its neighbouring region and the correct direction. If the condition

is met, a new state is created and added to the result of the function.

Heuristic functions

Three heuristic functions were implemented. The simplest one is the number of pegs

remaining on the board. This heuristic was considered mainly because it is trivial to

implement. The function just computes the sum of the array representing the state.
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The next implemented heuristic was the number of detached pegs on the board. De-

tached peg does not have any neighboring pegs and cannot be removed in one jump. The

less detached pegs the board has, the better chance there is to lead to the final state.

The third implemented heuristic is the number of attacking pegs. Attacking peg can

jump over another peg and remove it from the board. This can also be viewed as a number

of next possible states.

The third heuristic showed the best results overall and is used in both solvers. This

heuristic is also used as a baseline in the experiments.

3.3.3 Instance generator

To perform the experiments, a range of problem instances - boards needed to be generated.

Implementing a generator which produces solvable boards proved to be a difficult task.

The first version of the generator used a brute force approach - randomly generating a

board configuration and checking its solvability using the solver. The generator generated

only the configuration of pegs and nonplayable fields and then randomly assigned one

empty field. On a 9x9 board, there are 281 possible configurations of pegs and nonplayable

fields and 81 ways to place the empty field. The vast majority of these configurations

are unsolvable and thus worthless. Chances of the generator to produce a solvable board

with this approach are low. The time needed to generate a reasonable number of boards

would be too long.

The current version of the generator also relies on randomness. However, instead of

randomly assigning every single field of the board, the generator randomly assigns sections

of the board. The 9x9 board is split into 9 3x3 sections. The generator randomly assigns

each section from the set of predefined 3x3 board segments. These segments were defined

to not contain any configuration which would make the board unsolvable. Generating

boards with this approach is much faster than the first approach but still quite slow.

During a few days, a total of 20000 solvable boards were generated. Some examples are

shown in Figure 3.5.

3.3.4 Transition network data generator

The transition network determines which states can be generated from the input state.

To train this network, proper training data had to be generated.

The training process expects the data to be represented as pairs of inputs and labels.

However, generating such labels from full boards and training the network from them

would be ineffective. Since a convolutional neural network is used, the shift invariant

property of such network can be used to train the model with smaller inputs. In other
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Figure 3.5: Examples of generated boards (Yellow squares represent non-playable edges,
red squares represent pegs and black squares represent empty squares)

words, the model can be trained using only data about specific parts of the board and

possible moves on them. The convolution kernel then detects these patterns wherever on

the board.

The input training data consists of 4x4 board sections. These are generated as every

possible combination of pegs and empty tiles. This is generated by iterating numbers from

zero to 24∗4. Each number is then converted to a binary array, which is then transformed

to a 4x4 2D array.

Then, to each one of the combinations, the mask of nonplayable tiles is applied. Masks

are defined to represent edges of the board. The set of masks is defined by hand. There

is a total of 40 masks.

To generate the labels, the transition function is used. If there are no possible moves

from the input, it is disregarded and removed from the data set. There is a total of

3833856 examples in the data set. Example from this data set is shown in Figure 3.6

After the data set is generated in the representation described in Section 3.3.1 one last

step is to convert them to one-hot representation. This dataset is then used to train the

transition neural network.
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Figure 3.6: Example of feature - label data set

3.3.5 Heuristic network data generator

Heuristic function is crucial to correct functionality of the solver. Training a neural

network to compute a heuristic from the input image requires the labels to be a scalar

value.

To achieve this, a sample of 100 boards were randomly selected from the set of boards

generated by the instance generator. The described solver was adjusted to return a list of

every position encountered during search. This list also includes positions cut by pruning.

Positions were then evaluated by the heuristic function. The heuristic values were saved

as the labels and input boards were converted to one-hot representation. Training data

in this format can be used to train the heuristic neural network.

In [1] heuristic data was generated by optimally solving the problem and using the

actual costs of the paths leading to the goal state as labels. This approach was not possible

here, because of the structure of the domain. The rules of peg solitaire state that on each

move, one peg must be removed from the board. The goal is to end up with a board with

only one peg left. These rules split all states in two categories. The first category are the

states where achieving the solution is possible and the cost of the solution is the number

of pegs on the board minus one (the number of pegs that need to be jumped over to end

up on a board with only one peg). The second category are states where achieving the

solution is impossible because the configuration of the pegs on the board can no longer

lead to the board with only one peg left. The role of the heuristic in this domain is to

distinguish between these two categories and eliminate states from the second category

from the search as soon as possible. The number of attacking pegs heuristic does this well

because the states with more attacking pegs will generate more following states and are

more likely to be solvable. For this reason, the values of this heuristic were used as labels
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to train the heuristic network.

The other possible way to train this network is to try to teach it to classify the states

into solvable and unsolvable categories. Unsolvable states would then be removed from

the search. This approach was not implemented and can be explored in further research.

3.3.6 Neural network training

Both networks were trained on the generated datasets. Transition network dataset was

batched to 10 000 batches of 100 instances. Purely convolutional heuristic network dataset

was batched to 5000 batches of 40 instances. Both trainings consisted of 50 epochs.

Attention heuristic network was trained on the same dataset batched to 10 000 batches

of 100 instances.

3.3.7 Neural network solver

Neural network solver uses the same pruning search algorithm as the standard solver,

however, the heuristic and transition functions are replaced by a new function which uses

neural networks. Transition function uses the network output as a guide to determine

new states. Heuristic function uses the neural network output directly.

Solver uses a function to get the next states from output of the transition network. The

output is in a form similar to one-hot representation, but the values can range between

zero and one. This output represents the probability distribution of the pegs on the new

board. Solver takes the input board in the standard array representation described in

Solver section. Then it checks every tile without peg and compares it with the network

output. If the probability of peg on the same position in the network output is greater

than 0.5, the function then checks which peg got jumped over and generates the next

state. This is more efficient than the classic transition function which checks if there are

any pegs that can be jumped over for every tile without a peg.

3.4 Painting robots domain implementation

The painting robots domain consists of one or more robots on a grid. Their goal is to

paint the provided picture on the grid, but they can not step on a square that has already

been painted.

3.4.1 Domain representation

The domain was implemented in two representations. Similarly to peg solitaire, the grid

is represented as a 2D array of zeroes and ones, where a zero is not a painted square and
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one is a painted square. Both representations use a grid represented in this way.

The difference is in the representation of robot positions on the grid. For the purposes

of the solver, it is much more convenient to have the robot position stored as an array of

their coordinates on the grid. This allows the nonneural transition and heuristic functions

to be less complex.

The neural networks, however, need the representation to be an image, or in this case,

a 2D array. The representation for neural networks represents robots on the grid as a

number two. The whole problem instance is then represented by a 2D array of 0, 1, 2.

For the purposes of neural network training, this representation is then converted to a

one-hot representation.

The conversion between these two representations is implemented by a simple function.

The graphical representation for the neural network is shown in Figure 3.7.

Figure 3.7: Example of a problem defined in the representation for neural network. Black
squares are empty, red squares represent the image that needs to be painted and the
yellow squares represent a robot. The goal is to paint a percentage symbol with robot
starting at position (1,1)

3.4.2 Solver

The solver uses the implementation of the greedy best-first search algorithm explained in

Section 2.1.3. Same as in the peg solitaire domain, the visited states are also stored in

a set to avoid expanding the same state multiple times and slow the search down. The

search is also stopped if the number of expanded states is above the threshold, which is

computed in the same fashion as in the peg solitaire domain - average number of expanded
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states computed on solvable solutions multiplied by 10. The solver is able to solve both

single and multiagent versions of this problem.

The solver expects the final image that is supposed to be painted as an input. Together

with the image, an array of the initial robot position, or positions in a multiagent variant,

is expected as an input. The solver then constructs an empty grid in the size of the image

and starts the search for the plan.

Transition function

The transition function is much simpler than the one in the peg solitaire domain. For

each robot, the function checks all four directions around the robot. It then creates new

states by placing robots on the unpainted squares around it. Two new states are created

for each robot move. One with the original robot position left unpainted, and the other

painted by the robot.

Heuristic function

Two heuristic functions were implemented. The first trivial one counts the number of the

remaining squares that need to be painted. This heuristic provides enough information for

best-first greedy search to be effective. This heuristic is admissible, because the number

of squares that need to be painted can never be greater than the number of steps that

the robot has to make to paint them.

The other implemented heuristic is the distance between robot and the furthest square

that needs to be painted. This heuristic was tested during implementation and did not

provide improvements over the first implemented heuristic.

The first heuristic is used in the solver and will be used during experimentation. Values

of this heuristic are used as labels for the heuristic neural network.

3.4.3 Instance generator

The instance generator generates instances in representation for the solver. It generates

the grid and the array of robot positions separately.

The grid, or the image that needs to be painted, is generated randomly. Random

2D array of zeroes and ones is generated and saved. All of these grids are solvable. If

we let the robot go row by row and paint the squares that need to be painted, it would

eventually solve the problem. Hopefully, the solver is able to provide more efficient plans.

An array of robot positions is also generated randomly. It consists of random Cartesian

coordinates in the range of the board size. The position of the robot does not affect the

solvability if it starts on the blank grid. The solver always creates a new blank grid when
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starting to search for the plan. This means that all generated robot positions are valid

and will not create unsolvable instances.

3.4.4 Transition network data generator

The robot can move only to squares that are right next to the current robot position.

Thanks to this, a 3x3 area is sufficient to reliably train the network to perform transition.

Data for this dataset was generated using the representation for a neural network, where

the robot position is represented by number two.

The generator first generates all possible configurations of painted and unpainted

squares. This is the same problem as generating squares with and without pegs in peg

solitaire. Generator uses the same algorithm to generate this configuration. In this case,

the segment is smaller, so only the numbers 0 to 23∗3 are iterated and converted to a

binary array.

Then for each configuration, a robot is added to each one of the 9 squares. In the

multiagent case, two robots are added to some of the instances, so the network can learn

that multiple robots can not stand on the same square.

Standard transition function is then used to generate labels. Generated inputs and

labels are then converted to one-hot representation and stored as pairs of inputs and

labels. An example from this dataset is shown in Figure 3.8.

3.4.5 Heuristic network data generator

Heuristic used to train the heuristic neural network is the number of squares that are

not yet painted but need to be. This heuristic is not affected by a robot position. This

is an advantage regarding training and generating data for neural network, because the

position of the robot can be left out, leaving a simpler dataset.

The generator generates a number of random grids with painted and not painted

squares. These are then evaluated by the standard heuristic function. Grids are then

transformed to one-hot representation. The generated dataset consists of pairs of one-hot

grids and heuristic values.

3.4.6 Neural network training

Both networks were trained on the dataset generated by the implemented data genera-

tors. The dataset for transition network batched to 10000 batches of 100 instances. The

heuristic network was trained on the dataset batched to 1000 batches of 70 instances.
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Figure 3.8: Example from the transition dataset. There are four possible next moves for
the input on the left. Black squares are empty, red are painted and the robot is yellow.
Pairs are then converted to one-hot representation and used to train the transition neural
network.
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3.4.7 Neural network solver

The neural network solver is the same as the standard solver. It uses the heuristic network

output directly as a heuristic.

The transition network outputs results in the form of a tensor of probabilities. To

extract new states from this representation, a function was implemented. The function

collects all positions with a probability of a robot higher than 0.2 and constructs new states

with the robot in these positions. The 0.2 threshold might seem low, but experimentation

showed that in some cases, the valid robot position probabilities were lower than 0.5. The

solver was constantly tested for generating invalid robot positions with this threshold, but

an invalid robot position was never generated.

To ensure that the solver works correctly, functions that control the output and process

of the search were also implemented. If the transition function generates a state that is

not reachable from input, the search is stopped and an exception is thrown. However,

such a case did not occur during testing or experiments. When the solution is found, it

is also checked to ensure it is correct.



Chapter 4

Experiments

One of the main goals of this thesis is to compare the performance of the classical methods

and neural networks. This can be achieved by conducting a range of experiments. This

chapter regards the methodology and results of the conducted experiments.

The goal of the experiments is to compare the implemented classical functions and

trained neural networks. Average time, length of the solution, the number of expanded

states and coverage will be compared. Coverage is computed as a percentage of correctly

found solutions. All experiments were conducted on the university server josef.felk.cvut.cz.

Experiments compare 4 versions of the solvers. Solver with standard transition func-

tion and standard heuristic function, the solver with standard transition function and

heuristic network, the solver with transition network and standard heuristic and finally,

the solver with transition and heuristic networks.

For every domain, there will be one classical heuristic used in the solvers with the

standard heuristic and blind heuristic. Blind heuristic is zero for every state. Performance

of the heuristic networks will be compared to those two.

4.1 Peg Solitaire domain experiments

Peg solitaire domain uses a pruning search solver. This solver sorts the states by heuristic,

and then continues to expand only the first n states. The pruning constant n is provided

to the solver. This solver is very sensitive to the heuristic. For this reason, to compare

the performance of the heuristic, experiments were run for 4 pruning constants: 1000,

500, 250, 150.

The experiment problem instances are 150 board configurations that were checked by

a solver with attacking pegs heuristic and pruning constant 1000 to be solvable. However,

lowering the pruning constant or the change of the heuristic may lead to the loss of the

solution. For this reason, the solvers are also compared by coverage.

29
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Solver
Pruning const.

1000 500 250 50

Standard tran. + standard heur. 7.53 3.45 1.80 0.38
Standard tran. + blind heur. 1.47 0.72 0.39 0.08
Standard tran. + conv. network 29.20 15.03 7.81 1.68
Standard tran. + att. network 102.07 53.03 27.48 6.06
NN tran. + any heur. incorrect incorrect incorrect incorrect

Table 4.1: Peg Solitaire: Average time in seconds the solver needs to terminate search by
either finding a solution or expanding all possible states

Solver
Pruning const.

1000 500 250 50

Standard tran. + standard heur. 100 93.3 86.67 57.33
Standard tran. + blind heur. 12.66 11.33 4.66 2
Standard tran. + conv. network 8 3.33 2 0.67
Standard tran. + att. network 8 6 4.66 2
NN tran. + any heur. incorrect incorrect incorrect incorrect

Table 4.2: Peg Solitaire: Coverage in %

Solvers were not compared by the length of the solution. In the case of peg solitaire,

all solutions of one instance have to have the same length. On each move, exactly one

peg must be removed from the board. The goal is to end up with one peg on the board.

For this reason, the length of the solution must be the number of pegs on the board - 1

for each problem instance.

During experimentation, the transition neural network showed to be faulty by not

generating all the next possible states. Because of this, all solvers with transition neural

network were excluded from the experiments. In [1] similar situation happened with the

Sokoban domain due to its complexity. In the peg solitaire domain there is no acting

entity, so generating all possible successor states becomes a lot more complex than in the

case of painting robots domain.

Solver
Pruning const.

1000 500 250 50

Standard tran. + standard heur. 23979 12337 6329 1330
Standard tran. + blind heur. 16873 9220 4608 1088
Standard tran. + conv. network 15651 8322 4360 1079
Standard tran. + att. network 14641 7884 4115 975
NN tran. + any heur. incorrect incorrect incorrect incorrect

Table 4.3: Peg Solitaire: Average number of expanded states. Computed only for in-
stances, that the solver can solve.
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Solver
Instance size

7x7 8x8 9x9

Standard tran. + standard heur. 0.96 1.65 1.93
Standard tran. + blind heur. 0.91 2.63 0.42
Standard tran. + NN heur. 3.22 3.9 7.37
NN tran. + standard heur. 2.98 4.79 6.67
NN tran. + blind heur. 5.39 3.59 4.27
NN tran. + NN heur. 8.01 9.29 9.21

Table 4.4: Single agent painting robots on instances checked by solver with standard
transition: Average time in seconds computed only on instances where solver found the
solution

4.2 Painting robots domain experiments

The performance of painting robot solvers and heuristics was tested on a set of six datasets.

The first three datasets consisted of 50 instances that were randomly generated by the

instance data generator in three sizes - 7x7, 8x8 and 9x9. These instances were checked

to be solvable in a reasonable time by the solver with the standard transition function.

The next three datasets also contain 50 7x7, 8x8 and 9x9 instances. These, however, were

checked to be solvable using a solver with the heuristic transition network.

This decision was made because during implementation, both standard and neural net-

work transition functions provided correct results, however, the performance was different

for different types of instances. By investigating this problem, it was shown that this is

actually the problem of the heuristic. Both transition functions provide the next possible

moves in different order. Because the heuristic, which counts the number of squares that

need to be painted, does not take into account the robot position, this causes the solution

to be found more quickly with different orders of the next states. Since no new heuristic

was implemented, the experiments were conducted on two sets of datasets to objectively

compare the solvers with neural network transition and standard transition function.

On the dataset checked by the classical transition solver, the average time, solution

length and number of expanded states were evaluated. Coverage was also compared be-

tween the solvers. The search is stopped after the number of expanded states is larger than

the threshold of 20000. This threshold corresponds to the average number of expanded

states multiplied by ten. All combinations of solvers with standard and neural network

transition function and standard, neural network and blind heuristic were compared. On

the dataset checked by the solver with transition neural network, only solvers with the

standard heuristic were compared, because other heuristics were sufficiently compared on

the first dataset. All averages were computed only on the solutions that were found in

the expanded states limit.
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Solver
Instance size

7x7 8x8 9x9

Standard tran. + standard heur. 41.2 53.42 66.72
Standard tran. + blind heur. 69.93 103.65 131.5
Standard tran. + NN heur. 45.89 58.72 72.22
NN tran. + standard heur. 40.96 54.02 65.63
NN tran. + blind heur. 123.16 169.34 212.13
NN tran. + NN heur. 45.116 57.05 70.20

Table 4.5: Single agent painting robots on instances checked by solver with standard
transition: Average solution length computed only on instances where solver found the
solution

Solver
Instance size

7x7 8x8 9x9

Standard tran. + standard heur. 1077.94 1590.52 1845.16
Standard tran. + blind heur. 838.70 1958.28 1117.64
Standard tran. + NN heur. 1802.34 2096.60 3134.65
NN tran. + standard heur. 1333.47 1921.05 1945.27
NN tran. + blind heur. 1938.36 1260.45 1379.63
NN tran. + NN heur. 2332.54 2563.32 1950.03

Table 4.6: Single agent painting robots on instances checked by solver with standard
transition: Average number of expanded states computed only on instances where solver
found the solution

Solver
Instance size

7x7 8x8 9x9

Standard tran. + standard heur. 100 100 100
Standard tran. + blind heur. 94 92 68
Standard tran. + NN heur. 94 92 92
NN tran. + standard heur. 90 76 66
NN tran. + blind heur. 86 70 60
NN tran. + NN heur. 88 68 58

Table 4.7: Single agent painting robots on instances checked by solver with standard
transition:Coverage in %

Solver
Instance size

7x7 8x8 9x9

Standard tran. + standard heur. 0.51 2.99 2.68
NN tran. + standard heur. 3.16 4.30 8.60

Table 4.8: Single agent painting robots on instances checked by solver with transition
neural network: Average time in seconds computed only on instances where solver found
the solution
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Solver
Instance size

7x7 8x8 9x9

Standard tran. + standard heur. 40.81 53.47 66.65
NN tran. + standard heur. 41.28 52.18 67.08

Table 4.9: Single agent painting robots on instances checked by solver with transition
neural network:Average solution length computed only on instances where solver found
the solution

Solver
Instance size

7x7 8x8 9x9

Standard tran. + standard heur. 1036.92 2630.39 1978.28
NN tran. + standard heur. 1508.86 1493.24 2627.14

Table 4.10: Single agent painting robots on instances checked by solver with transition
neural network:Average number of expanded states computed only on instances where
solver found the solution

4.3 Multiagent painting robots experiments

Experiments on the multiagent painting robots domain were conducted on three datasets

consisting of twenty instances of size 7x7, 8x8 and 9x9. The problem instances all con-

tained two robots placed in the opposite corners of the grid.

Datasets of sizes 7x7 and 8x8 were generated randomly, the 9x9 dataset was created

by hand to contain ”pretty” images of symbols and letters. All instances were checked to

be solvable in the 10000 expanded states limit.

The experiments follow the same structure as in the case of the single agent variant.

All combinations of neural and standard functions in a solver are compared.

Solver
Instance size

7x7 8x8 9x9

Standard tran. + standard heur. 84 72 64
NN tran. + standard heur. 100 100 100

Table 4.11: Single agent painting robots on instances checked by solver with transition
neural network: Coverage in %
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Solver
Instance size

7x7 8x8 9x9

Standard tran. + standard heur. 4.91 0.56 0.15
Standard tran. + blind heur. 1.65 2.63 1.06
Standard tran. + NN heur. 1.30 1.22 1.30
NN tran. + standard heur. 4.94 20.71 5.25
NN tran. + blind heur. 6.55 23.33 45.97
NN tran. + NN heur. 5.88 13.99 7.82

Table 4.12: Multiagent painting robots: Average time in seconds computed only on in-
stances where solver found the solution

Solver
Instance size

7x7 8x8 9x9

Standard tran. + standard heur. 52.9 59.86 61.7
Standard tran. + blind heur. 153.0 204.17 291.1
Standard tran. + NN heur. 50.11 63.54 61.7
NN tran. + standard heur. 52.9 72.5 81.0
NN tran. + blind heur. 407.6 796.5 1141.94
NN tran. + NN heur. 54.56 70.72 81.0

Table 4.13: Multiagent painting robots: Average solution length computed only on in-
stances where solver found the solution

Solver
Instance size

7x7 8x8 9x9

Standard tran. + standard heur. 1402.8 758.933 270.6
Standard tran. + blind heur. 1085.15 2193.0 830.45
Standard tran. + NN heur. 709.29 572.9 270.6
NN tran. + standard heur. 1402.8 3601.6 864.26
NN tran. + blind heur. 1279.2 2815.0 2948.61
NN tran. + NN heur. 1281.5 2697.27 847.26

Table 4.14: Multiagent painting robots: Average number of expanded states computed
only on instances where solver found the solution

Solver
Instance size

7x7 8x8 9x9

Standard tran. + standard heur. 100 75 100
Standard tran. + blind heur. 100 90 100
Standard tran. + NN heur. 85 55 100
NN tran. + standard heur. 100 100 100
NN tran. + blind heur. 50 10 90
NN tran. + NN heur. 80 55 95

Table 4.15: Multiagent painting robots: Coverage in %
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Result discussion

The experiments show different results for different domains. It is clear just by looking at

the coverage of the peg solitaire domain, that the solvers using neural networks failed and

performed terribly in comparison with the standard solver. Both single and multi-agent

painting robots, however, show more optimistic results.

5.1 The failure of the Peg solitaire domain

The peg solitaire failed both in terms of transition and heuristic neural networks. The

transition network did not function at all and the use of heuristic networks resulted in

coverage not exceeding 8% as seen in Table 4.2. Even the blind heuristic provided better

coverage than any of the heuristic networks. Blind heuristic in the case of pruning solver

implemented in this thesis means that the states that are pruned are not sorted in any

particular order, and the solution is essentially found by chance.

When the coverage is this low, the comparison based on the number of expanded states

shown in Table 4.3 is not relevant. The comparison based on the average time in Table 4.1

shows that the solvers with heuristic networks took significantly more time than solvers

with standard heuristics. Especially the attention network solver took the longest to find

the solution. This is might be caused by the computational complexity of this network.

5.1.1 Possible causes of the transition network failure

The first big issue with peg solitaire neural network solvers is the transition neural network.

It does not work properly. Outputs of this network were thoroughly investigated with the

following findings.

Transition network can currently generate valid next states, however it can not gener-

ate all of them. The most representative example of this phenomenon is shown in Figure

5.1. It is clear that this extremely simple problem can be solved because there is a peg
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that can be jumped over resulting in only one peg left on board. However, the transition

network does not pick up this move and returns no valid next moves.

However, if the same instance is flipped by 180 degrees, the transition network correctly

returns the next step. This behavior was observed with multiple network configurations

- both 3x3 and 5x5 kernel sizes, various number of channels in convolutional layers and

various numbers of training epochs.

Figure 5.1: Board where neural network does not pick up valid move (left) and where it
does (right)

The first obvious cause might be insufficient training data. The network was trained

on 4 by 4 grids with all possible combinations of pegs. This seemed to suffice from a

theoretical perspective, but might not be enough for the network to function properly.

The other potential cause is the combination of network architecture and the domain.

The peg solitaire domain does not have an agent. The agent in this case is the entity

moving the pegs on the board, but is not present in the domain representation. The

proposed transition neural network performed well on domains containing an agent moving

in an environment. For example, in the maze domain in [1] or even in the painting robots

domain implemented in this thesis. New network architecture performing well on domains

without an agent is an interesting topic that can be explored in further research.

5.1.2 Possible causes of the heuristic networks failure

The main issue of the heuristic networks is the choice of the heuristic they were trained on.

The number of attacking pegs heuristic, which is actually the number of the next possible

states, performed very well with the pruning solver. However, this heuristic might be too

complex for the neural network to learn properly. Even the standard function computing

this heuristic is complex. This is the most probable reason why the heuristic networks
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did not perform well. New heuristic network architectures for more complex heuristics is

a topic that can be explored in further research.

5.2 The (partial) success of the Painting robots do-

mains

The experiment results show that the solvers in both domains function properly. The

coverage in the case of single-agent domain is never lower than 58 % as seen in Table 4.7

in the case of the solver with transition and heuristic neural networks on a 9 by 9 grid.

The multiagent domain coverage is never lower than 55 % in the case of two solvers on

an 8 by 8 grid in Table 4.15. This grid size, however, has a generally lower coverage. This

might be caused by the instances being more complex.

The transition networks work properly in these domains. All next states are generated

and there are no wrong moves made. It was demonstrated that the lower coverage of

single-agent domains solvers with transition network was caused by the dataset, which

was generated and checked by the solver with the standard transition function. The

performance of the solver with the standard transition function on the dataset checked

by the solver with transition network is comparable as shown in Tables 4.8 - 4.11.

The heuristic neural network also provides satisfactory results in both domains. The

average solution lengths of the heuristic network are comparable to the standard heuristic.

Blind heuristic provides plans that are too long. These results can be seen in Tables 4.5

and 4.13. This shows that the network was able to learn the heuristic and use this

information to provide a plan with a solution length that is much better than using the

blind heuristic.

The number of expanded states is slightly larger for solvers using the heuristic network

in the single agent domain. In the multiagent domain, the heuristic network solvers have

a lower number of expanded states than the solvers using the standard heuristic. The

blind heuristic is the best for both domains in terms of the number of expanded states,

the price, however, is a large length of a solution. This can be seen in Tables 4.6 and 4.14.

The main disadvantage of transition and heuristic networks is the time they need to

compute the result. Same as in the peg solitaire domain, in both single and multiagent

painting robot domains, neural solvers were the slowest, as shown in Tables 4.4 and 4.12.

This is caused by the computational complexity of these networks. However, some more

advanced heuristics, such as LM-Cut are also very computationally demanding and the

difference in time complexity might be smaller.
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Conclusion

The main goal of this thesis - to implement new domains of classical planning for neural

network learning was fulfilled. The peg solitaire and single and multiagent painting robots

domains were implemented.

Implementation consisted of creating a domain representation, creating data gener-

ators for neural network training and implementing solvers. Transition and heuristic

networks were trained on the data generated by data generators.

With trained networks implemented into the solvers, experiments were conducted to

compare the performance of the solvers. The experiments compared solvers based on

coverage, time, length of the found solution and the number of expanded states.

The experiment results showed that the peg solitaire domain was too complex for the

used neural network models to solve. Transition network did not work properly, and the

heuristic network did not provide any improvement over the blind heuristic. On the other

hand, neural network solvers in the painting robot domains provided satisfactory results

comparable to the standard methods. The downside of neural network solvers is the time

needed to find the solution, which is larger than the standard methods.

Outcomes shown in this thesis further expand the findings in [1] that standard transi-

tion and heuristic functions in classical planning problems can be replaced by deep neural

networks and perform well in comparison with standard methods. This thesis also shows

that the current network architectures used for transition and heuristic networks are not

able to solve more complex domains or domains without an agent. The best example is

the peg solitaire domain where the networks were not able to learn the transition and

heuristic functions on this domain properly.

Results of this thesis show that there is still room for improvement and further research.

The research of this field is still ongoing in the classical planning group at the faculty.

The optimistic results in the case of painting robots domain prove that this field is worth

expanding further.
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Source code

A compressed folder containing the source codes and model parameters is attached to this

thesis. Training data for the networks and generated instances are not included due to

their size. The folder has the following structure:

• painting robots

– experiments.jl - scripts used in experiments

– heur att network.jl - script for training heuristic network

– heur data generator.jl - huristic training data generator

– robots expansion run.jl - script for training transition network

– robots problem generator.jl - instance data generator

– robots solver.jl - solver for painting robots domain

– robots step gen.jl - transition network data generator

– tests.jl - unit tests

– parameters - folder containing neural network models parameters

• peg solitaire

– boards.jl - instance data generator

– experiments.jl - scripts used in experiments

– heur att network.jl - script for training attention heuristic network

– heur conv run.jl - script for training convolutional heuristic network

– heur gen.jl - huristic training data generator

– peg expansion run.jl - script for training transition network

– pruning solver.jl - pruning solver for peg solitaire domain
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– solver.jl - A* solver for peg solitaire domain

– step generator.jl - transition network data generator

– step masks.jl - masks used in transition function data generation

– parameters - folder containing neural network models parameters
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