Bachelor’s Thesis

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Computer Science

Evaluation of Query Expressions
in Relational Algebra

Lukas Kotlik

Supervisor: RNDr. Martin Svoboda, Ph.D.
Field of study: Open Informatics
May 2021

ii

S BACHELOR'S THESIS ASSIGNMENT

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

l. Personal and study details

4 ™
Student's name: Kotlik Lukas Personal ID number: 483719
Faculty / Institute: ~ Faculty of Electrical Engineering
Department / Institute: Department of Computer Science
Study program: Open Informatics
Specialisation: Software

\ J

Il. Bachelor’s thesis details

4)
Bachelor’s thesis title in English:

Evaluation of Query Expressions in Relational Algebra
Bachelor’s thesis title in Czech:

Vyhodnocovani vyrazii dotaza v relaéni algebie
Guidelines:

Based on the analysis of the existing approaches, their identified advantages and

disadvantages, as well as the consideration of various notations and query constructs

of the traditional formal relational algebra query language for the relational database

model, the objective of this thesis is to propose and implement a web application that

would allow for the evaluation of relational algebra query expressions with respect to

reasonably small sample datasets, putting the emphasis on the extent of functionality,

user-friendliness, and visual interface.
Bibliography / sources:

1. Relational algebra, PDF lecture
<https://www.ksi.mff.cuni.cz/~svoboda/courses/192-B0B36DBS/lectures/Lecture-07-

Relational-Algebra.pdf>

2. JavaScript <https://tc39.es/ecma262/>

3. TypeScript <https://www.typescriptlang.org/docs/handbook/>
Name and workplace of bachelor’s thesis supervisor:

RNDr. Martin Svoboda, Ph.D., MFF
Name and workplace of second bachelor’s thesis supervisor or consultant:
Date of bachelor’s thesis assignment: 04.03.2021 Deadline for bachelor thesis submission: 21.05.2021
Assignment valid until: 19.02.2023
RNDr. Martin Svoboda, Ph.D. Head of department's signature prof. Mgr. Petr Pata, Ph.D.
L Supervisor’s signature Dean’s signature)

lll. Assignment receipt

The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

Date of assignment receipt Student’s signature

CVUT-CZ-ZBP-2015.1

© CVUT v Praze, Design: CVUT v Praze, VIC

iv

Acknowledgements

I want to thank my supervisor RNDr.
Martin Svoboda, Ph.D., for help and sug-
gestions he provided to me as well as all
students who helped with application test-
ing. Last but not least, I want to thank
my family and friends for their support.

Declaration

I hereby declare that I have elaborated
this thesis on my own and listed all liter-
ature I used.

Prague, May 19, 2021

Prohlasuji, ze jsem predlozenou praci
vypracoval samostatné, a ze jsem uvedl
veskerou pouzitou literaturu.

Praha, 19. kvétna 2021

Abstract

Relational algebra is a formal query lan-
guage over the relational model giving
relational database systems solid and for-
mally well-defined foundations. In this
bachelor thesis, we designed and imple-
mented a web application that serves as a
tool for easing its learning. The applica-
tion evaluates relational algebra query ex-
pressions over small sample datasets that
can be edited directly in the application.
We put emphasis on user-friendliness, e.g.,
detailed description and highlighting of
errors, or visualization of evaluation trees.
The application also allows for batch pro-
cessing of projects, such as homework as-
signments.

Keywords: relational algebra, query
evaluation, expression parsing, web
application

Supervisor:

RNDr. Martin Svoboda, Ph.D.
Department of computer science
Faculty of Electrical Engineering
Czech Technical University in Prague
121 35 Praha 2

vi

Abstrakt

Relacni algebra je formalni dotazovaci ja-
zyk nad relacnim modelem davajici re-
laénim databazovym systémtim pevné a
formalné dobre definované zaklady. V této
bakalarské praci jsme navrhli a naimple-
mentovali webovou aplikaci, ktera slouzi
jako nastroj usnadnujici jeji uceni. Apli-
kace vyhodnocuje vyrazy dotazu relacni
algebry nad malymi vzorovymi daty, ktera
Ize primo v aplikaci upravovat. Kladli
jsme duraz na uzivatelskou privétivost,
napf. na presné popisy chyb a jejich
zvyraznéni, nebo zobrazeni evaluac¢nich
stromi. Aplikace dale umoznuje hro-
madné zpracovani projektt jako napr. do-
macich tkolu.

Kli¢ova slova: relacni algebra,
vyhodnocovani dotazi, parsovani vyrazu,
webova aplikace

P¥eklad nazvu: Vyhodnocovani vyrazu
dotazu v rela¢ni algebre

Contents

1 Introduction

2 Relational Algebra

2.1 Extensions
2.2 Constructs
2.3 Relational Calculus

3 Existing Solutions

31Raeval,

4 Specification

4.1 Requirements
4.2 Business Processes
4.3 Business Entities
4.4 Concept ..o
45UseCases...........o.o....
4.6 Class Model

5 Documentation

5.1 Used Technologies
5.1.1 JavaScript
5.1.2 TypeScript
5.1.3React
514 HTML
5.15CSS
5.1.6 Other

5.2 Code Packages

5.3 Implementation Challenges
5.3.1 Expression Parsing
5.3.2 Text Position............

5.4 Testing ...t

5.5 Deployment

6 User Documentation
7 Conclusion
Bibliography
A Attachment Content

vii

Chapter 1

Introduction

Relational algebra is a formal basis for relational databases introduced by
Edgar Frank Codd in 1972. Although we do not use relational algebra
directly in practical problems, database systems still use its constructs in the
background for query evaluation. Nowadays, people often first encounter SQL
as the leading query language and might find relational algebra operations
confusing.

Students of computer science learn relational algebra in database systems
courses as it is often their fundamental part. However, there are not many
tools for relational algebra learning. Moreover, existing tools do not cover all
relational algebra extensions as there are several sets of defined operations or
several notations.

One of the not yet sufficiently covered notations is the simplified one that
students learn in database courses not just at FEE, CTU. This notation is
suitable for algebra learning as it is easy to write both by hand and on a
computer. The absence of such a tool is one of the reasons why we decided
to implement our application.

Objectives. The main goal of this thesis is to design and implement an ap-
plication that would evaluate query expression in relational algebra. First, we
will analyze existing solutions and propose the application specification. Dur-
ing the development, we will also create programming and user documentation
and perform application testing.

The implemented application is supposed to evaluate relational algebra
expressions and visualize evaluation trees. Moreover, we will put emphasis
on user-friendliness, e.g., convenient graphical interface, wide customization
possibilities, explicit error descriptions, or many import/export possibilities.
These features should make our application a suitable teaching tool. We list
the main goals below:

user-friendly graphical interface

definition of custom relational data

evaluation of relational algebra query expressions

explicit description of errors

1. Introduction

visualization of evaluation trees

Thesis Outline. Finally, we briefly introduce each thesis chapter:

Relational Algebra — In Chapter 2, we introduce relational algebra. We
compare its major modifications and specify its definition for this thesis.
Then, we present considered operations with several examples. Finally,
we also briefly introduce another formal query languages for relational
database systems — relational calculi.

Ezisting Solutions — In Chapter [3, we analyze existing applications
for relational algebra evaluation. We introduce three applications and
provide examples of their usage. Then, we list their advantages and
disadvantages and compare them.

Specification — In Chapter 4, we provide analysis for our implementation.
First, we list the requirements and present intended business processes.
Then, we describe business entities and the high-level concept. Finally,
we provide detailed use cases and the implementation class model.

Documentation — In Chapter 5, we present technologies we used in
the implementation. Then, we describe the hierarchy of code packages
and the challenges we encountered in the implementation. Finally, we
describe application testing and deployment.

User Documentation — In Chapter 6, we provide a brief user manual
with application screenshots.

Chapter 2
Relational Algebra

Relational algebra is a formal query language for relational databases. It was
introduced by British-American data scientist Edgar Frank Codd' in 1972.
Further researchers extended the original definition of algebra many times so
that there exist several versions.

The data in relational algebra is represented as relations. A relation is a set
of tuples {(a1,v1), ..., (an,vy)}, where a; € Ap are attribute names, v; € D;
are attribute values, and D; are attribute domains (sets of possible attribute
values). This structure of relations is called relational model.

Each relation has a schema: X{aj : D1, ...,a, : Dy}, where X is a relation
name, a; € Ar are attribute names, and D; are usually omitted attribute
domains. The relational schema is important for relational operations as they
may require its specific form?.

To represent the data and the schema of a relation together, we use the
following notation: (R, Ag), where Ar = {a1,...,a,} is a set of attributes and
R = {(a1,v1), ..., (an,vy)} is a set of data tuples. We will use it for formal
description of semantics of relational algebra operations.

We often visualize relations as tables, where columns are attributes and
rows are data tuples® The formal model is defined using sets so that it does
not allow duplicates nor ordering of attributes and data tuples.

Relational algebra states relational completeness. A given query language
is relationally complete if and only if it can express all operations of relational
algebra or possibly even more. For example, SQL/ is relationally complete.

In most cases, we use relational algebra to describe the data retrieval, but
there are more use cases’. For example:

® description of data to be updated in a database (i.e., inserted, modified,
or deleted)

1Codd was born in England in 1923 but later lived in the USA, where he died in
2003. More about his life in a short biography by C. J. Date, accessible on https:
//amturing.acm.org/award_winners/codd_1000892.cfml

ZFor example, set operations in relational algebra require source relations with equal sets
of attributes. For more information about relational algebra operations, see Section [2.2|

3In the thesis, we will use words "attribute"/"column" and "tuple"/"row" interchangeably.

4SQL (Structured Query Language) is the most used language in relational databases.
We can use it for both data definition and manipulation.

SFurther use cases are presented in 1], pages 192-193.

3

https://amturing.acm.org/award_winners/codd_1000892.cfm
https://amturing.acm.org/award_winners/codd_1000892.cfm

2. Relational Algebra

® definition of integrity constraints (i.e., properties of the data that must
be held in all consistent states of the database)

For deeper information about relational algebra, we recommend Chapter 7
of An Introduction to Database Systems [I] by British author C. J. Date. We
will often mention its particular parts in the following sections.

. 2.1 Extensions

In this section, we will go through syntactic and semantic differences in
relational algebra extensions.

Operations. In the original algebra, Codd defined eight operations: restric-
tion (we call it selection), projection, union, intersection, difference, Cartesian
product, natural join, and division.

We will define the mentioned eight operations and eleven additional ones:
rename, left/right semijoin, left/right antijoin, theta join, left/right theta
semijoin, and full/left/right outer join. We can derive all of them from six
fundamental ones: projection, selection, rename, Cartesian product, union,
and difference.

For more information about particular operations, see Section [2.2]

Null Values. An important option is the support of null values. The model
can require all values in rows to be specified or support null meta values
to mark absent values. We chose to support null values in the assumed
relational algebra definition as real-world relational databases assume them,
too.

Attribute Reference. Relational algebra defined by Codd referenced at-
tributes by their positions. Such definition is complicated for users and needs
an ordered attribute set. To solve this issue, we need to refer to attributes by
their name. However, a new issue appears when we join two relations with a
common attribute name.

There exist two attribute naming conventions in relational algebra — we can
use attribute names only or involve a relation name as their prefix. In both
of them, we need a possibility to change names®. The convention without
relation prefixes uses the attribute rename operation. The second convention
uses the relation rename operation.

In the assumed definition, we use the first convention, i.e., attribute names
only and so with attribute rename operation.

Operator Notation. There are three main notations of relational algebra
operators. To distinguish them, we call them textual, formal, and simplified in
this thesis. In the textual notation’, we use words to describe the operations.

5The addition of the rename operation is discussed in Section 7.2 in [I].
"The textual notation is used in [1] to write expressions in a friendly way for people who
do not know relational algebra.

2.1. Extensions

The formal notation uses many special symbols (e.g., Greek letters or),
places unary operators before their operands, and uses subscript for operator
parameters. The simplified notation has fewer special symbols (e.g., no greek
letters) and puts unary operators after their operands. We compare the
notations on the following query — join cars with their owners®:

B textual:
(Owner RENAME id AS owner) JOIN (Car WHERE color = "Blue")

8 formal: poyner/ia(OWner) X oeoor=>Biue” (Car)
® simplified: Owner(id — owner) % Car(color = "Blue")

Value Atomicity. We demand all values in relations to be atomic, i.e., data
tuples cannot contain sequences, objects, or nested relations’. There exist
operations to work with non-atomic values'’, but we do not define them.

SQL Features. The only widely used relational language is SQL (Structured
Query Language). It does not follow all original algebra restrictions, e.g.,
it supports duplicate data rows or ordering. Some extensions of relational
algebra add new features to enable it to express all SQL operations, e.g.,
aggregation functions'!. For this thesis, we do not define these extensions.

Operation Precedence. In a basic definition, we always need to use paren-
theses around operators to determine the order of their evaluation. To make
the notation simpler, we define precedence and associativity of operations.
All relational algebra operations are left-to-right associative, but there is no
widely accepted opinion on their precedence.

We thought of two possible definitions of precedence values. The first
one was to present eight precedence levels of operations and assign lower
precedence values to the operations we usually use as final ones (e.g., division,
outer joins, or set operations). These values would cause those operations to
be evaluated at the end of the execution automatically. On the other hand,
the second possibility was to define only four precedence levels and let the
users control the evaluation order mostly by parentheses.

Finally, we chose the second possibility and use the following precedence
levels (listed from the highest to the lowest):

B projection, selection, rename

® Cartesian product, natural join, left/right semijoin, left/right antijoin,
theta join, left /right theta semijoin, full/left/right outer join, division

8We assume to have a relation Quner with an id attribute and a relation Car with color
and owner attributes, where Car.owner refers to Owner.id.

In other words, we require the first normal form.

%For more information, see Section 7.9 of [I].

1 An aggregation function computes a new value from the input set, e.g., count or average
value. More about aggregation in relational algebra (i.e., Extend and Summarize operations)
in [I], pages 197-202.

2. Relational Algebra

B intersection

® union, difference

These values also follow some existing definitions?{"3| or implementa-

tiond 4415]

Summary. In the following list, we sum up the assumed relational algebra
definition:

B relational model with null values

® no duplicate data tuples and attributes
B no ordering of data tuples and attributes
B only atomic values in data tuples

® attribute names without relation prefixes

B no aggregation functions

. 2.2 Constructs

In the following definitions of assumed relational algebra operations, we will
show both formal and simplified notations. We will describe restrictions
on input relations, the resultﬁ and show examples for some operators. In
most examples, we will use relations Car and Owner, displayed in Tables

and [2.2]

’id owner color Weight‘

1 1 Blue 1000
2 1 Green 1200
3 2 Blue 900

4 3 Black 1100

Table 2.1: Relation Car. We assume that the owner attribute refers to the id
attribute of the Owner relation (i.e., it is a foreign key).

12Definition by Juliana Freire on The University of Utah, lecture slide 55,
leng.utah.edu/~cs5530/Lectures/relational-algebra-cs.pdf}

**Definition by Ramon Lawrence on The University of British Columbia, lecture slide 66,
https://people.ok.ubc.ca/rlawrenc/teaching/304/Notes/304_3_Relational.pdf|

™RelaX calculator (we will analyze it in Section |3.2), http://clotho.uom.gr/relax/
help.htm#relalg-operator-precedencel

A difference in SQL implementation is that it also has the same value for all
set operations, https://www.ibm.com/docs/en/informix-servers/14.10/14.107topic=|
[statement-set-operators-in-combined-queries,

*°In descriptions of results, we will use Fs = (S, Ag) as an operand for unary operators,
and Er, = (L, Ar) and Er = (R, Ag) as left-hand and right-hand operands for binary
operators. The result descriptions are taken from the Relational Algebra lecture by Martin
Svoboda [2].

https://my.eng.utah.edu/~cs5530/Lectures/relational-algebra-cs.pdf
https://my.eng.utah.edu/~cs5530/Lectures/relational-algebra-cs.pdf
https://people.ok.ubc.ca/rlawrenc/teaching/304/Notes/304_3_Relational.pdf
http://clotho.uom.gr/relax/help.htm#relalg-operator-precedence
http://clotho.uom.gr/relax/help.htm#relalg-operator-precedence
https://www.ibm.com/docs/en/informix-servers/14.10/14.10?topic=statement-set-operators-in-combined-queries
https://www.ibm.com/docs/en/informix-servers/14.10/14.10?topic=statement-set-operators-in-combined-queries

2.2. Constructs

’id name ‘

1 George
2 Adam
3 Michael
4 Joe

Table 2.2: Relation Owner.

Projection. We start with unary operators. Projection takes a relation and
preserves only a given subset of original attributes.

® Formal notation: 7y, a4, (Es)
® Simplified notation: Eglay, ..., ay]

® Result:
Tar,...an(Es) = ({{(a,v) | (a,v) € t,a € {a1,...,an}} |t € S}, {a1,...,an})

For example, we want to receive all colors of cars in our data. The expression
is Car|[color] with the result’’;

color

Blue
Green
Black

Selection. Unlike projection, selection does not change the attribute set of
the input relation but it selects a subset of data tuples. It accepts a condition
f that computes a boolean value for a given row. Selection preserves data
tuples where the condition € is evaluated to true.

® Formal notation: og(Fg)
® Simplified notation: Eg(6)

B Result: og(Es) = ({t |t € SAO(t)}, As)

As example of selection, we want to receive all cars of the owner with id 1.
The expression is Car(owner = 1) with the result:

]id owner color weight‘

1 1 Blue 1000
2 1 Green 1200

70f course, the result contains the row Blue only once.

7

2. Relational Algebra

Rename. The last unary operator is rename of attributes. It preserves
all data tuples and attributes, but it changes the names of certain selected
attributes.

® Formal notation: py, /a,,... b, /an (Es)
® Simplified notation: Eg{a; — b1, ...,an, — by)

® Result: pbl/al,...,bn/an(ES) = ({{(a,v) | (a,v) €, a ¢ {ar,...;an}} U
{(bi,v)|(a;,v) € t,i € {1,...,n}} |t €S} (Ar\{a1,...,an}) U{b1,....;0n})

We can use rename, for example, to change the id and owner attribute names
to be more explicit. The expression is Car(id — carld, owner — ownerld)
with the result:

carld ownerld color weight

1 1 Blue 1000
2 1 Green 1200
3 2 Blue 900

4 3 Black 1100

Union. Union is the first of three set operations we define. All set operations
require input relations with the same attribute sets. The result of set union
contains all data tuples that exist at least in one input relation.

® Both notations: Er, U Egr
® Operand restrictions: equal attribute sets (A, = Agr = A)
® Result: EL UER =(LUR, A)

Assume we have two relations with the same attributes, e.g., OldCar and
LargeCar. We can use set union OldCar U LargeCar to receive all cars in
one relation.

Difference. Difference takes two relations with the same attributes and
returns data tuples that exist in the first relation but not in the second one.

® Both notations: Er, \ Egr
® Operand restrictions: equal attribute sets (A, = Agp = A)
B Result: E, \ Er = <L \ R, A>

Intersection. Intersection is the last set operator in relational algebra. It is
not fundamental as we can derive it using set difference. It takes two relations
with the same attributes and returns data tuples that exist in both of them.

® Both notations: Er, N ER
® Operand restrictions: equal attribute sets (A, = Agp = A)

® Result: ELNEr =(LNR, A)

2.2. Constructs

Cartesian Product. The Cartesian product is the last fundamental relational
algebra operation. It takes two relations with disjoint attribute sets and
returns all combinations of their data tuples. The result has |Ap| + |ARg|
attributes and |L| * |R| data tuples.

® Both notations: Fp x Er
® Operand restrictions: disjoint attribute sets (A N Ar = 0)
® Result: Fp, x Eg = <{tL Utgr | tr € L, tgr € R}, Ap U AR>

Usually, we use the Cartesian product to create all combinations of data and
then select and project intended parts. Later, we will present derived binary
operators that provide advanced possibilities. If we want to select ids of all cars
with added owner names, we can create the expression (Car x Owner(id —
ownerlId))(owner = ownerld)[id,name] with the result:

’ id name ‘
1 George
2 George
3 Adam
4 Michael

Natural Join. Natural join takes two relations and returns combinations of
their data tuples based on equality of values associated with shared attributes.
Unlike the Cartesian product, it has no Operand restrictions. If there is no
common attribute in input relations, it acts like a Cartesian product.

® Formal notation: Fr, X ER
® Simplified notation: Ej x Er

® Result: E, x Ep =
({trUtr |t € L, tp € R,VYa € AL, N AR - tr(a) =tr(a)}, AL U AR)

We use the same example as for the Cartesian product — with natural
join, we save an explicit selection of matched rows, but we must rename
attributes so the common one is Car.owner/Owner.id. The expression is
(CarxOwner(id — owner))[id, name] with the same result as in the previous
example.

Semijoin. Left and right semijoins are modifications of the natural join,
which only return attributes from one input relation. In other words, it returns
data tuples from the left-hand or right-hand input relation that natural join
would join.

® Formal notation: Ep x Er (left), F, x Eg (right)

® Simplified notation: Ej, <x Er (left), E, «> Epr (right)

9

2. Relational Algebra

® Result of left semijoin:
E;xEp = <{tL | tr €L, Atpre R:Vaec A;NAR: tL(a) = tR(a)}, AL>

® Result of right semijoin:
ErxEr={{tr|tr € R, 3t € L:Va € ApNApg :tr(a) =tg(a)}, ARr)

Theta Join. Theta join joins two relations based on the given condition. As
the Cartesian product, it requires input relations with disjoint attribute sets.

® Formal notation: Ej xg Egr
® Simplified notation: EL[0|ERr
® Operand restrictions: disjoint attribute sets (Az N Ar = 0)

® Result: Ep, xg Er = <{t | t=trUtg, t;, € L, tpr € R, H(t)}, ALUAR>

We use the same example as for the Cartesian product and natural join. We
must rename attributes to be disjoint sets. The expression is (Car[owner =
ownerld|Owner(id — ownerld))[id,name] with the same result as in the
previous examples.

Theta Semijoin. Similarly to (natural) semijoins, left and right theta semi-
joins return data tuples from one input relation that would be joined by theta
join.

® Formal notation: Ef, xg Er (left), Ef xg Er (right)

= Simplified notation: Er, (] Er (left), Ey, [0) Eg (right)

® Operand restrictions: disjoint attribute sets (A, N A = 0)

B Result of left theta semijoin:
Er xg Eg = <{tL ‘ tr € L, dtp € R: Q(tL UtR)}, AL>

® Result of right theta semijoin:
E; xg Eg = <{tR | tre R, It € L: Q(tL UtR)}, AR>

Antijoin. Left and right antijoins are opposites to semijoins: they return
data tuples from one input relation that natural join would not join.

® Both notations: Ep > Eg (left), Ef < Er (right)

B Result of left antijoin:
ErvEr=({tr|tr € L, Btre R:Yac ApNApg: tr(a) =tgr(a)}, ArL)

® Result of right antijoin:
E;<ER = <{tR ‘ tr € R, ﬂtL eL:Yae ALNAR: tL(a) = tR(CL)}, AR>

10

2.2. Constructs

For example, we use (right) antijoin to select all owners without a car in
our data. The expression is Car < Owner(id — owner) with the result:

’ owner name ‘

’ 4 Joe ‘

Division. Division preserves all uncommon attributes of data tuples from
the left-hand relation whose all combinations with data tuples from the right-
hand relation exist in the left-hand relation'®. Its behavior is similar to a
universal quantifier. It requires the right-hand attribute set to be a proper
subset of the left-hand one.

® Both notations: Fy + Er

® Restrictions: right attributes are a proper subset of left attributes
(Ar C Ap)

® Result: B ~ Er=({{t |Vtr€ R: (tUtg) € L}, AL\ AR)

Assume we have created a relation Colors(color) with two rows Green and
Blue. To receive ids of owners who own cars of all colors in Colors relation,
we write expression Car[owner, color] + Colors with the result:

owner

QOuter Join. As we assume the relational model with null values, we can
also define outer joins. Outer join naturally joins input relations and further
adds naturally unjoinable data tuples complemented by null values. There
are three types of outer joins: full, left, and right.

® Formal notation: Ey, XC Eg (full), Ef, ™ Eg (left), Er XC ER (right)
® Simplified notation: Ep xp Eg (full), Ef 1, Er (left), Er g Er (right)
® Restrictions: relational model with null values

B8 Result of left outer join: Ep X Er =
<{tL Utr ’ tr €L, tR € R, Va€ A, N Ap : tL(a) = tR(a)} @)
{tLU{(r,null) ‘ TEAR} ‘ tr, EL,ﬂtRERZVaEALﬂAR:
tL(a) = tr(a)}, A U AR>

® Result of right outer join: Ep XC Eg =
({tL Utr ’ tr €L, tp€ R, YVae A, N Ap : tL(a) = tR(a)} @]
{{l,null) |l € AL} Utg | tRE€ R, Pty € L:Vac ApNApg:
tL(a) = tr(a)}, Ap U AR>

18We can define division in other ways, e.g., as a ternary operator, see [1], page 188.

11

2. Relational Algebra

® Result of full outer join: £y XC Fr = Ep X ErU Ep, MXC ER

For example, we can use full outer join to join cars and their owners and
not to lose any data tuple. The expression is Car xp Owner(id — owner)
with the result:

] id owner color weight name ‘

1 1 Blue 1000 George
2 1 Green 1200 George
3 2 Blue 900 Adam
4 3 Black 1100 Michael
null 4 null null Joe

. 2.3 Relational Calculus

Relational algebra is not the only formal query language for relational
databases. In this section, we will briefly present relational calculus. For
more details, we recommend Chapter 8 of the book by Date [I].

Relational calculus is a declarative language in contrast to procedural
relational algebra. Calculus expressions might be more straightforward, but
they do not describe any procedure to retrieve the data. To execute them,
we need to transform them into algebraic expressions first!'|

There are two types?| of relational calculi: tuple and domain. Both types
use variables to represent values in relations. In tuple calculus, variables
are bound with values of particular data tuples from relations. In domain
calculus, they are associated with values from individual attribute domains.
Both types of relational calculi are relationally complete.

Finally, we show examples of tuple calculus expressions. We assume to
have the same relations as for algebraic operation examples (see Tables 2.1
and [2.2). Now we can select ids and colors of cars with owner id 1:

{(c.id, c.color) | ¢ € Car, c.owner = 1}
Or retrieve names of owners who have no car in our data:

{(o.name) | o € Owner, fic € Car: c.owner = o.id}

Y9An example of such an algorithm is shown in Section 8.4 of [I].
20Both types are described in Sections 8.2 and 8.7 of [I].

12

Chapter 3

Existing Solutions

In this chapter, we will go through a few existing applications, which deal
with the evaluation of relational algebra expressions. First, we will describe
each approach in a single section, so that all of them will then be shortly
compared at the end.

The goal of this analysis is to find common features, positives, and negatives
of these solutions and to learn how our final application should work and
look like.

. 3.1 Raeval

Raeval (Relational Algebra Evaluator) [3] is an application free to
download from the project website. We will shortly analyze version 2.0 (Beta)
from April 20, 2011, and version 0.3.1 from September 27, 2012.

Relational Algebra Evaluator is an interactive textual application, which
evaluates relational algebra expressions over relations. We upload the relations
from text files in the CSV/? format. We use English words to write operations
in the expressions, i.e., it uses the textual notation.

Advantages. The first advantage we mention is the possibility to save results
into new, dynamically defined relations. We can use them in other expressions
in the same way as relations loaded from files. We can open an editing table
by the edit keyword and edit the loaded relations, i.e., change their values
or add new rows.

The application supports nested operations by the usage of parentheses.
Also, we can split expressions into multiple lines or use other whitespaces® to
format them visually.

!Textual application (or textual user interface) uses text only to communicate with a
user, i.e., it displays textual information and receives commands as textual inputs. On
the other hand, the graphical application displays pictures, tables, animations, etc., and
provides buttons and other input possibilities for the user.

2CSV (comma separated values) is a simple format of text files that represents tables, it
uses end of lines to separate rows and commas (or semicolons or tabulators) to separate
values in a row.

3 A whitespace is a character that is not displayed but it helps to format the text, e.g.,
space, tabulator, or newline.

13

3. Existing Solutions

Finally, Raeval supports command history to reuse previous commands.

Disadvantages. On the other hand, it is not possible to define brand new
relations in the application. Also, we cannot save the evaluated results into
text files to use them in further application runs.

We have encountered several errors when uploading source relations from
CSV files, specifically when using commas or quotes in string columns. The
application expects that a comma separates columns in the CSV format, and
quotes are optional enclosing of textual inputs. Unfortunately, we were not
able to find a way to use commas nor quotes in string values. Both possibilities
of textual inputs (with or without optional quotes) do not support these
characters. Also, we cannot escape their functionality by a backslash®. The
application always parses commas as separators, and it can result in errors
when uploading files, which contain commas in string values. Quotes do not
result in any error, but the application ignores them so that they are missing
in the uploaded rows.

Similarly, language-specific characters are not supported. For example,
accented Czech letters (e.g., @, ¢, 1) are loaded from a file but displayed
incorrectly. Moreover, the application does not match them with values typed
in the application.

Next, error messages are not much expressive, which means that debugging
becomes harder in more complicated expressions. We show an example of an
error message in Figure (3.1l There is a misspelling of a column name Color
described as Semantic error: expression does not evaluate to a boolean value,
" instead.

The last disadvantage is the impossibility of copying the text from the
application.

Versions comparison. Version 0.3.1 brings a new user interface, which is
more pleasant in colors but still only textual. New functionality is the logging®
of results into text files. This logging saves a given expression and its result,
but it is impossible to trace source relations. We can change the output file of
logging at runtime®. Moreover, logging output files are not compatible with
the input file format, which means we cannot load the saved results back in
the application.

Unfortunately, there are some features, which are worse than in the previous
version. For example, the formatting of displayed relations in the application
is worse (columns are not aligned). Also, version 0.3.1 does not support the
source keyword, which enables the loading of multiple relations at once.

Example of Usage. Firstly, we need to create text source files from which
we load the relations. We assume we have two files, car.tzt and owner.tzt,
both in the CSV format. In car.tzt, we define four columns: Id, Owner,

4Using backslash as an escape character is a standard approach in many programming

situations, e.g., in regular expressions or string literals in Java, JavaScript, C, etc.
®logging is an automatic process of recording the information about the application run
Swe do not need to terminate the application

14

3.1. Raeval

Color, Wheels. In owner.txt, we define three columns: Id, Name, Address.
The files have to have two header lines. There are defined column names in
the first line and attribute domains in the second one. In each file, we define
two data rows, so car.trt may look like this:

Id,Owner,Color,Wheels
id,id,name,number
1,1,Blue,4

2,2,Red,8

and owner.tzt may look like this:
Id,Name,Address
id,name,name

1,Lukas,Praha

2,Jakub,Brno

Having launched the application, we can load the defined relations as

follows:
car := load "car.txt"
owner := load "owner.txt"

To show the result of the expression on the standard output, we need to
write and submit only the expression itself. The result will not be saved. The
following command evaluates a relational algebra expression car(Color =
"Green" || Color ="Blue"):

select car where (Color = "Green") or (Color = "Blue")

To save the result, we must specify the intended name of the result relation.
The next command evaluates an expression car*owner<Id -> Owner> and
saves it into a relation result:

result := car join (owner rename (Id as Owner))

We show in Figure [3.1] how the examples look like in the application.
It also contains one error message when we misspell a column Color with
lower-case c.

Conclusion. Relational Algebra Evaluator is a simple application with all
basic functionality. Although the user interface is only textual, the application
is easy to use. For teaching purposes, we miss a more expressive reporting of
error messages and the support of simplified notation.

8 Author: Nick Everitt, University of North Carolina Wilmington

® Year: 2012

15

3. Existing Solutions

> car = load "car
Id Cwner Color Wheels
id id name number
1 1 Blue 4

2 Red 8

> owner = load "owner txt"
Id Name Address

id name name

1 Lukas Praha

2 Jakub Brno

> select car where (color = "green™) or (color = "blue")

> select car where (Color = "Green") or (Color = "Blue")
Id Owner Color Wheels

id id name number

1 1 Blue 4

= result -= car join (owner rename (Id as «
Id Owner Color Wheels Name Address
id id name number name name
1 1 Blue 4 Lukas Praha

2 Red 8 Jakub Brno

Figure 3.1: Raeval usage example

8 Application type: desktop Java application

® Application availability: free download of an executable .jar file
from the web page

® User interface: textual user interface
® Advantages:

1. Relations can be loaded from pre-defined files.
2. Results can be saved into new variables.

3. There is a possibility of an automatic logging of used expressions
and their results.

® Disadvantages:

1. Error messages are not much expressive.
2. Relations cannot be created in the application.

3. Relations cannot be saved in the input file format.

16

3.2. RelaX

B 32 RelaX

RelaX (Relational Algebra Calculator) [4] is an online relational algebra
calculator. We will analyze version 0.20, which is the current version in
October 2020. RelaX is an interactive web application, which evaluates
relational algebra expressions and translates SQL query expressions into the
syntax of relational algebra. We can define relations right in the application
or load them from files or public online sources. Operations are written in
the formal notation.

Advantages. The application has many useful features; some of them are
even beyond relational algebra. Because RelaX uses formal notation, it
provides more user-friendly options than writing Greek letters on a keyboard.
The first option is to include Greek letters by clicking a button. The second
one is to use English transcriptions of Greek letters instead of writing Greek
letters right away. Our user experience showed that a better solution would
be to support the keywords (projection, selection, etc.) because English
transcriptions are less expressive.

Due to the educational purpose of the application, the visualization of the
interactive evaluation tree’|is useful. It is possible to show the intermediate
results of each subexpression in a query expression. This possibility facilitates
a faster and deeper understanding of the individual operations of relational
algebra.

We can use inline relations (i.e., temporary, nameless relations) in expression
formulations as well. For example, they can provide a closer description of
abbreviated values in other relations (e.g., when values are stored as integers to
save memory, we can replace them with textual descriptions before displaying
them).

The Mobile version of the RelaX website is easy to use. It supports all
the functionality of the desktop application, and the graphical interface is
user-friendly.

Further advantages are closely related to SQL. The first of them is the
evaluation of SQL query expressions. The application shows the result and
the evaluation tree of the equivalent relational algebra expression.

We can order the results by the order by keyword and aggregate them
by the group by keyword. We want to emphasize that these operations
are not a part of the original relational algebra (order by does not respect
unordered rows in a relation, and group by produces new values). Anyway,
these keywords are well-known from SQL and make the result well-arranged.

The application implements many operations to specify column values.
From a long list of operations, we mention a function length(string) which
returns the length of a given string, or a function string LIKE ’regex’
which checks whether the string matches the regular expression. Further

"The evaluation tree is a tree representation of the expression. The nodes represent
individual operations, the leaves contain the input data, and the root contains the result.

17

3. Existing Solutions

interesting functions work with the date data type and extract its parts (days,
years, hours, etc.).

Disadvantages. The assignment of a result of the relational algebra expres-
sion has an unintuitive behavior. We expected that it creates a new relation,
which we can use in further expressions. But the assignment works as a
substitution. It does not save the result into a new relation, but it replaces
usages of the defined variable by the assigned expression. It enables us to
shorten individual query expressions by the reuse of written subexpressions.
It is a nice feature, but, unfortunately, there is no way to save the result in a
new relation. Also, we cannot download the result relations in the compatible
CSV format.

Relation definitions support two ways of working with textual values.
We can enclose them in single or double-quotes. Anyway, textual values
and regular expressions must be enclosed in single-quotes only in query
expressions. That means we cannot use single-quotes inside a string literal in
the application.

We can download a defined relation in a CSV file but uploading this file
back to the application does not work.

The last disadvantage relates to the relational algebra definition assumed
in this thesis — the application uses attribute naming convention with relation
prefixes.

Example of Usage. First, we need to define source relations. We can use the
Group Editor tab in the application. We define two relations Car and Owner
with the same columns as in the example for the previous application. RelaX
also requires a name of the group of relations. The definition of relations may
contain the following text:

group: RelaXTest - Car, Owner

Car = {
Id,0wner,Color,Wheels
1,1,Blue,4
2,2,Red,8

}

Owner = {
Id,Name,Address
1,Lukas,Praha
2,Jakub,Brno

}

The defined relations are displayed with the Preview button and then
loaded to the application with the use Group in editor button. We can see
the loaded relations and their columns in the left part of a screen. Note that
RelaX detected column types simply from values in their rows. Now we are
ready to evaluate two query expressions with the loaded relations.

18

3.2. RelaX

First, we use the Greek symbol o for selection in the expression
Car(Color = "Green" || Color = "Blue"):

o Color = ’Green’ or Color = ’Blue’ Car
It is equivalent to the version with an English transcription:
sigma Color = ’Green’ or Color = ’Blue’ Car

We can comment out a previous expression with a double dash. Now, we
evaluate our second expression Car*0Owner<Id -> Owner>:

Car X p Id — Owner Owner
It is equivalent to the version without special characters:
Car natural join rho Id -> Owner Owner

We recommend using extra parentheses to separate logical parts of the
expression for better clarity, although the application does not require them.
We show the possible equivalent expressions and the result of the second
query expression in Figure 3.2

Conclusion. RelaX is a user-friendly application with many supported
operations beyond relational algebra. For our needs, we miss the simplified
notation of operations and column names without relation prefixes.

® Author: Johannes Kessler, University of Innsbruck

Year: 2020 (still in active development at the time of access, October
2020)

Application type: web application

Application availability: free access on GitHub

User interface: graphical user interface

Advantages:
1. Greek letters can be inserted by a button or replaced by an English
transcription.
Inline relations are supported.

SQL query expressions are evaluated and translated into trees
consisting of relational algebra operations.

4. Many operations beyond the relational algebra are supported, e.g.,
order by, group by, or length.

8 Disadvantages:
1. There is no way to save a result into a new relation.

2. Column names use relation prefixes.

19

3. Existing Solutions

Select DB (... Relational Algebra saL Group Editor
Car m o p « > T ¥ A v o~ = % 2 = Nn U = - x K
Id number ¥ oM X K x> o= - [} BE &
Owner
number 1 /* Query car(color = "green" || color = "blue"): */
Color 2 -- g Color = 'Green' or Color = 'Blue' Car
string 3 -- o (Color = 'Green' or Color = 'Blue') (Car)
Wheels 4 -- sigma Color = 'Green' or Color = 'Blue' Car
number 5 -- sigma (Color = 'Green' or Color = 'Blue') (Car)
6
Owner 7 /* Query car*owner<Id -> Owner>: */
Id number 8 -- Car X1 p Id » Owner Owner
Name 9 -- (Car) pd (p Id » Owner (Owner))
string 18 -- Car natural join rho Id -+ Owner Owner

Address 11 (Car) natural join (rho Id — Owner (Owner))

string
P execute query X download D history

(Car) x (p owner—id (Owner))

Carld Car.Owner Car.Color CarWheels OwnerName Owner.Addn
1 1 '‘Blue' 4 'Lukas’ 'Praha’

2 2 'Red' 8 "Jakub' 'Brno’

Figure 3.2: RelaX usage example

B 33 RAT

RAT (Relational Algebra Translator) [5] is a relational algebra transla-
tor free to download from the project website. We will analyze version 4.2.0.0
from the year 2011, downloaded as the newest oneﬂ

RAT is an interactive desktop application, which translates relational
algebra expressions to SQL and evaluates them. We need to connect to an
existing database to be able to evaluate expressions over the data. It uses
the formal notation of operations.

8The application says it is version 4.2.0.0, but the download link has number 4.1.1, and
the installation file has 4.3.

20

3.3. RAT

Advantages. Because RAT uses the formal notation, it supports more user-
friendly options than writing Greek letters on a keyboard. The first option is
to include Greek letters by clicking on a button. The second option is to use
a keyboard shortcut, which makes the writing of expressions much faster. For
example, Ctrl+P inserts Il for projection, or Ctri+S inserts o for selection.

Due to the educational purpose of the application, display of the evaluation
tree is useful. A tree is simple, it shows the evaluation structure, and each
node describes an individual operation (e.g., projected columns in projection
or a condition in selection).

We can reuse once written expressions later on by assigning them to
variables. We can then evaluate the defined variables, but they cannot be
composed into more complex expressions. Moreover, we can save a whole
group of expressions in the Query library and load them in the next application
run.

An interesting feature is a connection to a database and evaluation of
expressions over its data.

Disadvantages. The application loses its potential because no English
documentation exists. The website of the project is in English, but the
available information is not sufficient. The documentation is in Spanish, so
we found the described functionality only by trial and error.

Due to the educational purpose of the application, error messages are not
expressive enough. The only sign of a syntactic error is the disappearance of
the translated SQL expression.

Unfortunately, there is no way to load the input data to the application
without connecting to a database. We miss a possibility to import relations
from CSV or text files.

The application does not support language-specific characters. It ignores
them in evaluation trees and does not translate the expressions containing
them to SQL.

As in RelaX, the last disadvantages is that the application uses attribute
naming convention with relation prefixes.

Example of Usage. We will not use any data for this example. However, if
we connected the application to a database, the application would evaluate
the expression and show the result. As in the previous cases, we assume
two relations. The first one is named Car and contains columns Id, Owner,
Color, Wheels, the second one is named Owner and contains columns Id,
Name, Address.
In Relational Algebra Statement field, we write an expression

car(color = "green" || color = "blue") and assign it to a variable Q1:

Q1 « o{Color = ’Green’ V Color = ’Blue’}(Car)

In the second expression, we show the attribute naming convention with
relation prefixes. We assign it to a variable Q2:

Q2 + o{Car.Owner = Owner.Id}(Car X Owner)

21

3. Existing Solutions

Now we can use the variable to evaluate the assigned expression. The
application displays the SQL translation in the middle field. The evaluation
tree of the expression is displayed at the bottom of the screen. If there is
only a grey area instead of the tree, we use the third button on the right side
(with arrows) to change the view from the results to the evaluation tree. We
show how these expressions look like in the application in Figure |3.3

File Edit View Data Tool Language Help

R.A Operators) R t
Pi Relational AlgebraTranslator e
Sigma Rational Algebra Statement Clear expression
Cartesian product Q1 + o(Color = "Green’ V Color = "Blue}(Car) o Run
2 g = Car = Owmer’

H R et Q {Car.Owner = Owner.Id}(]

Qzl Save query
H Rz ~
B - ~
I Assignment
Logical Operators SELECT * FROM Car, Owner WHERE Car.Owner = Owner.Id

AND logical

OR logical

Mathematical Operators
Greater than or equal
Less than or equal
Difference logical Car) .

= Logical equality
Set Operators

H Diference
Intersection

IJniti A

Figure 3.3: RAT usage example

Conclusion. RAT loses its potential because no English documentation
exists, and so it is difficult to understand. For teaching purposes, we also miss
the possibility to load relations from a file and more explicit error descriptions.

® Author: Steven Brenes Chavarria, National University of Costa Rica
® Year: 2011
8 Application type: desktop .NET application

8 Application availability: free download of an installation file from
the web page

® User interface: graphical user interface
® Advantages:

1. Keyboard shortcuts for insertion of special characters are supported.
2. The evaluation tree of the expression is displayed.

3. Expressions can be reused by assigning them to variables or storing
them in the library of the application.

22

3.4. Other Solutions

4. The application can connect to a database.
® Disadvantages:

1. Only few relational algebra operations are implemented.
2. There is no documentation in English.

3. The application cannot load the input data from files.

4

Error messages are not sufficient.

. 3.4 Other Solutions

We encountered a few other existing applications during our analysis. Un-
fortunately, we were not able to run them as there is no executable file
to downloaded, or no documentation exists. The project descriptions were
similar to the analyzed applications. For example, they provide relational
algebra to SQL translation or describe the translation of the SQL expressions
into evaluation trees.

B 35 Comparison

Although all three applications have many similarities, they show different
approaches to a problem. We will use our analysis to find the best solutions
to several particular aspects. Furthermore, to summarize all approaches, we
created Table 3.1l

User Interface. Raeval shows that a textual user interface can be user-
friendly. But users expect modern applications to have graphical user in-
terfaces. The graphical interface of both RelaX and RAT is simple, but it
is sufficient for a relational algebra evaluator. The main advantage of the
graphical user interface is the possibility to display an interactive evaluation
tree.

Accessibility. RelaX is the easiest application to use because it requires
a web browser only. Also, it is accessible from mobile devices. We need
to download other applications to a computer, which could cause possible

complications. We need Java installed on a computer for Raeval and .NET
Core for RAT.

Loading of Relations. The most user-friendly way to load source relations
is to load them predefined from a file. Raeval and RelaX provide this
functionality. RAT can connect to a database, which is not necessary for
educational purposes. We miss the possibility to define a relation right in the
application in Raeval and RAT.

23

3. Existing Solutions

Saving of Results. Raeval is the only application that can save the result
of the expression into a new relation in the application. It is the easiest way
to reuse the results in further expressions. Unfortunately, we cannot save the
results to a file in any application. On the other hand, all three applications
have a way to store the expressions. We can use logging in Raeval, download
a text file in RelaX, or store them in a library in RAT.

Additional Features. Besides the main functionality, the covered applica-
tions present many additional features. RelaX and RAT provide a possibility
to insert special characters with buttons. Also, they display an evaluation
tree of the expression. RelaX translates SQL query expressions to relational
algebra operations. On the other hand, RAT translates relational algebra to

SQL.

’ Raeval \ RelaX \ RAT ‘

Application desktop web desktop

type

Accessibility free download free online usage free download

Licence Apache 2.0 unspecified unspecified

Requirements Java web browser .NET Core

User interface textual graphical graphical

Languages ENG ENG, GER, SPA, | ENG, GER, SPA,
KOR, POR ITA

Null values sup- | no always always

port

RA operations all basic all all basic

Operators textual notation formal notation formal notation

Alternatives to | no insertion by but- | insertion by but-

operators tons, English tran- | tons or keyboard
scriptions shortcuts

Relation im- | import from CSV | import and export | connection to a

port/export files using CSV files or | database
online sources

Expression im- | export to the text | export to the text | import and export

port/export file file using application

library

SQL support no SQL to RA trans- | RA to SQL trans-
lation lation

Error messages | sufficient explicit, real-time | no

Multiple expres- | expression (com- | expression history | expression library

sion support mand) history

Complex strings | no yes no

handling

Batch process- | yes no no

ing

Table 3.1: Comparison of the existing solutions

24

Chapter 4

Specification

In this chapter, we present the application specification. It starts with the list
of requirements and their description. Then, we show main business processes’
in UMLP| activity diagrams. We also describe the identified business entities®
in the next section. In the Concept section, we present the general approach
to the implementation. Then, we describe the use cases®. The last section
contains the description of the implementation classes formed from business
entities. In the text, we show only several important UML diagrams. We
provide all models in the thesis attachment.

B a1 Requirements

In this section, we will identify the project requirements. We will split the
requirements into a few groups.

Application. The application should be accessible on the internet. It should
be easy to use, so there are three related requirements. The strongest one
is for a simple, modern, user-friendly graphical user interface. Also, the
application should support both the Czech and the English language, so
Czech, as well as foreign students, could use it. The third requirement is to
provide saving and loading of all the application data as a project, so the
users could easily save all their work and continue in the next application
run.

Relational Algebra. The application should accept the simplified syntax of
relational algebra expressions. There should be support for relational algebra
with null values as well as without them. It should provide all the operations

'Business process is a sequence of user actions and application reactions which the
application should support, it is described in the analysis.

2UML (Unified Modeling Language) is used to graphically describe the specification,
design, and documentation of software systems. Its specification is accessible on https:
/ /www.omg.org/spec/UML/About-UML/|

SBusiness entities are real-world objects that relate to the intended application in some
way, they do not necessarily correspond to classes used in the final implementation.

4Use case is a detailed description of the particular feature which the application should
support.

25

https://www.omg.org/spec/UML/About-UML/
https://www.omg.org/spec/UML/About-UML/

4. Specification

described in the Relational Algebra chapter (outer joins only if null values
support is selected).

Query Expressions. The main purpose of the application is to define and
evaluate relational algebra expressions. It should provide a user-friendly input
field for the expressions. Pairs of the typed parentheses should be highlighted.
Since relational algebra uses not frequently used and hard-to-write symbols,
e.g., set union or set difference, the application should provide a user-friendly
way to type them. The error messages should be explicit to easily find both
the syntactic and semantic errors. Also, the errors should be highlighted in
the input field.

The application should support work with multiple expressions at once.
The user should be able to import or export them using text files.

Evaluation. After an evaluation of an expression, the application should
display the evaluation tree, which helps students to understand each relational
algebra operation and its semantics. The tree should be interactive and allow
the user to view each intermediate relation created during the evaluation.

On the other hand, maximal computing effectiveness is not expected. The
algorithms used for the evaluation of the operations can be implemented in a
naive way. It is important only to reliably evaluate the expressions over units
of relations and dozens of rows.

Data. The expressions should be evaluated over defined relations. The
relations should be imported or exported using CSV files (each file with one
relation definition). The application should support all main CSV types (i.e.,
CRLF/CR/LF line separators, comma/semicolon value separators). Also,
the user should add the relations from the evaluation tree to defined ones. It
should be possible to edit all the defined relations right in the application.
The application should handle complex string values in quotes.

Batch Processing. The application should provide batch processing of mul-
tiple input files and saving the results and reports to new files. This feature
enables teachers to evaluate the work of the students at once and see their
results and errors.

Let us now summarize found requirements.
Application:

1. Web application
2. User-friendly GUI
3. Cgzech and English language support

4. Import/export of all the application data as a project

26

4.1. Requirements

Relational algebra:

1. Expressions in simplified syntax
2. Support for relational model with or without null values

3. Support for all relational algebra operations
Query expressions:

1. Input field for relational algebra expressions

2. Highlighting of parentheses

3. Alternatives to typing special symbols

4. Explicit descriptive messages for both syntactic and semantic errors
5. Highlighting of errors in the input field

6. Support of multiple expressions in one project

7. Import/export of expressions
Evaluation:

1. Displaying of the evaluation tree
2. Displaying of the intermediate result for each evaluation tree node

3. Evaluation of the expressions over small data sets
Data:

1. Import/export of relations from CSV files

2. Support of all main CSV types

3. Loading relations from evaluation tree nodes
4. Editing of the data for the evaluation

5. Handling of complex string values
Batch processing:

1. Processing of multiple input files

2. Creating of the report files

27

4. Specification

. 4.2 Business Processes

The application has a specific purpose, so there are not many business
processes to describe. There are three main ones: define relations, evaluate
expressions, and select the node from the evaluation tree to display. We
split the first two mentioned processes into two smaller ones each. Also, we
describe the process of importing/exporting the project and batch processing.

In the Edit relation definitions business process, the user manipulates the
relation definitions. The user can load them from CSV files, save them in
CSV files, and edit them in the application. These manipulations can be
done in an arbitrary order so that the business process contains a loop.

In the Confirm relation definitions business process, the user confirms
the edited relation definitions. After that, the application parses individual
relations from valid definitions. Finally, it displays a message with parsing
information.

In the FEdit the expression business process, the user manipulates the
relational algebra expressions. The user can load them from a file, save them
in a file, and edit them in the application. These manipulations can be done
in arbitrary order so that the business process contains a loop.

In the Fvaluate the expression business process, the user confirms the
selected expression, and the application parses it to the evaluation tree (it
triggers the Use the evaluation tree business process with the root node
selected). When an error occurs, the application displays it. We show this
business process in the Figure 4.1 as well.

Confirms the
expression

User

Relations loaded,
expression edited

Successful
parsing?

Parses the selected
expression

Creates the Evaluates the
evaluation tree evaluation tree

Use evaluation tree
oo

Figure 4.1: Evaluate the expression business process

Application

no result

In the Use the evaluation tree business process, the user selects an individual
node of the evaluation tree. The application displays an intermediate relation
evaluated in the node. The user can add it to the relation definitions or save
it in a file. The user can change the selected node multiple times so that the
business process contains a loop.

28

4.3. Business Entities

In the Load/save the project business process, the user loads the project
data from a file or saves the current project.

In the Process multiple project files business process, the user selects several
saved projects. For each project, the application parses relation definitions,
evaluates expressions, and creates a report. Finally, it saves the reports in a
zip archive.

. 4.3 Business Entities

In the analysis, we identified a couple of entities that exist in our intended
system. We describe them in the following section and show them in UML
diagrams 4.2, 4.3, and |4.4.

Row Entry Column
has b= is ine=
value

Error

message

type

Stored Relation Loaded Relation

C5V File is loaded from

_ 1
e | - >

Figure 4.2: Relation and related entities

is saved to Text File

= tent
o

Evaluation Tree Expression

/ 0.1

evaluates to has selected

expression text

has root

0.1 1

Evaluation Tree ™+ | Expression Parser

Node
——————————— - message =TT
«throws wthrows
type

+parent 0.1

RA operation

+children 0.2

Figure 4.3: Expression and related entities

Stored and Loaded Relations. In the analysis, we found out it is advanta-
geous to distinguish two types of relations — stored and loaded. A Stored
Relation represents an editable state which might be invalid when edited.
When valid, it can create a Loaded Relation. The application uses Loaded
Relations for evaluation as it needs no validity checks.

Both relation types have common attributes. They have a name, at least
one Column, and an arbitrary number of Rows. The difference is that we do

29

4. Specification

Settings

Loaded Relation Stored Relation

- CsV line separator
- CSVvalue separator

e - name
wcreaten
= =

has selected has has =

- has

01
Expression -t has is loaded from JSON File

- content
is saved to

Figure 4.4: Project and related entities

, +
- expression text 1 1{- nullvalues support

- has selected

1 01

not require Row Entries in the Stored Relation to have correct column types
(e.g., all entries can be strings). There always is one Stored Relation selected
for editing in the Project. The number of Loaded Relations is not limited.
After evaluation, each Evaluation Tree Node contains a Loaded Relation as
it must be valid. Stored Relations can be loaded from CSV Files or saved in
them.

Column. The Column represents an attribute in the relational schema. It
has a name and a type. We plan to support three column types in the
application: number, string, and boolean.

Row. The Row represents a data tuple in the relational schema. Each Row
belongs to a Relation and contains at least one Row Entry.

Row Entry. The Row Entry entity represents individual value in a data
tuple. The Column to which it belongs determines its type.

Evaluation Tree Node. The Evaluation Tree Node represents a single
relational algebra operation parsed by an Expression Parser from Expression
text. It has one child if it is a unary operation, two children if it is a binary
operation, or no child if it represents a relation. When being evaluated, it
can throw a Semantic Error. After evaluation, it creates a result relation.

Expression Parser. We use the Expression Parser to parse the Evaluation
Tree from the user input. When the input is invalid, it throws an Error.

Expression. The Expression represents one relational algebra expression
defined by the user. There always exists an Expression selected for editing in
the Project. Expressions can be loaded from a Text File or saved in it.

Project. The Project wraps all data in the application: Stored Relations,
Loaded Relations, Expressions, null values support setting, and user Settings.
The Project can be loaded from the JSON?| File or saved in it.

®JSON is a transmission data format based on JavaScript object syntax. We will
introduce JavaScript in Section 5.1\

30

4.4. Concept

Settings. The Settings describe the custom behavior of the application.
They do not affect the main functionality. Specifically, they contain the used
CSV separators and selected language.

Error. Invalid user inputs can trigger an error in the application. To describe
them explicitly, we define a custom Error entity. We distinguish two Error
types: syntactic and semantic.

CSV, Text, JSON Files. The application uses three types of files: CSV
Files for storing Relations, Text Files for storing the Expressions, and JSON
Files for storing the whole Project.

. 4.4 Concept

We intend the application as an online tool to be easily accessible from all
devices and operating systems. We plan to process all data in the browser
as in a single-page application. This solution avoids many complications
related to the backend and the network communication. There are three
main sections on the webpage: relation definition, expression definition, and
result display.

Relation Definition Section. In this section, the user maintains relations.
It provides a sheet where the user edits the data in the selected relation.
The user can create new relations or delete existing ones. Also, the user can
import or export relation definitions using CSV files.

There are three supported column types: number, string, and boolean. All
entries in the column must have the same type. When null values support is
off, we must specify all input values. The application highlights and describes
the errors in the sheet.

If there is no error in the selected relation, the user can load it in the
application and use it in the expressions. Loading a new relation overwrites a
loaded one with the same name. The user can delete all the loaded relations
and clear the workspace.

Expression Definition Section. In this section, the user maintains the
expressions. It provides a textual input where the user edits the selected
relational algebra expression. There can be several expressions in the project.
They can be loaded from a text file or saved in it.

We expect the expressions to be in simplified notation. The user can use
whitespaces for formating because they are ignored in the parsing. Also, to
make writing easier, the user can insert operation symbols using buttons.
We plan to support standard C-like one-line comments following after two
slashes.

For implementation clarity, we divide the parsing into two stages. The first
stage creates an evaluation tree consisting of relational algebra operations. The
second stage parses parameterized RA operators, i.e., projection, selection,
rename, and theta joins. When the parameter is a condition, we use an

31

4. Specification

evaluation tree for representing the logic-algebraic expression. We implement
existing algorithms for building the evaluation trees. We split the input into
tokens and use the Shunting-Yard algorithm to create its postfix form®. For
projection and rename parameters, we implement specific parsing as their
syntax is uncommon.

The leaves of evaluation trees represent references or constants (relations in
RA trees; columns or literal values in algebraic trees). Other nodes are unary
or binary operations. We evaluate the trees recursively, i.e., nodes transform
leaf values and propagate them to the root. Implemented RA operations use
simple iterating through input rows as we expect small data inputs.

We parse the input periodically to highlight errors while the user edits the
expression. Also, we check the cursor position and find suggestions. If the
cursor is between RA operators, we suggest the names of all loaded relations.
If the cursor is inside a parameterized RA operator, we suggest available
column names. The user can use the suggestions for autocompletion.

If an error occurs in the parsing, the application highlights it in the
input. If it happens after the user evaluation command, the evaluation fails.
Otherwise, the application reports the error but continues in parsing to find
cursor position and other errors. We provide a detailed error description as
the application is a learning tool.

Result Display Section. The result section displays the result relation and
the evaluation tree of the expression. We already need the tree for the
evaluation, so this section only creates its visual representation.

By default, it displays the relation from the root node. The user can select
a different node, and the application displays its intermediate result. The
selected relation can be added to relation definitions or saved to a CSV file.

Other Features. The application provides several features that do not belong
to any described section. They are project management, batch processing,
and settings.

The user can import or export the current project using a JSON file. In
the file, the application saves the stored relations, expressions, and the null
values support. It does not save loaded relations nor evaluation trees.

The batch processing is not part of the evaluation section because the
user does not edit the input, and the results are not displayed. The user
selects multiple saved project files. For each project, the application loads its
defined relations, evaluates its expressions, and creates a text report file. The
report file contains defined relations, expressions, and evaluation results or
errors. Also, it computes the number of used operations. When finished, it
downloads report files in a zip archive.

The user can select the application language, the used CSV type, and the
null values support. The language and CSV settings are saved in the browser
storage to remain to the next application run. The null values support is a
part of the current project.

SWe describe the algorithm in depth in Section |5.3.1

32

4.5. Use Cases

. 4.5 Use Cases

The next stage of the analysis is defining the use cases. The use case (UC) is
a particular feature which the application provides. Use cases follow up on
the requirements and describe their behavior in more detail. They identify
classes for the final model. Usually, for a use case, we create a primitive
design of the application screen.

Load expressions
from a file

Manage

the expressigns

Save expressions
to afile

wextends

Manage the project
OO

wextend»

Load
relation definitions

Process multiple
expression input

files OO

Manage the settings

\/ °o

from a file

wextends

Evaluate
the relational algebra

expressio -

Manage relation Load a relation

deﬁnition% .

definition

wincludes

-
-

|
wextend»

Save
relation definitions

Save
the selected relation
to a file

Add
the selected relation
in the application

Display a relation
777777 from an evaluation e
tree node > wextends»

to a file wextend»

Figure 4.5: Project use cases

We described eight major use cases and six minor ones as shown in Fig-
ure 4.9k

8 The Manage relation definitions UC describes how the user creates,
deletes, imports, or exports the relation definitions. It is extended by
Load relation definitions from a file and Save relation definitions
to a file use cases.

® The Load a relation definition UC describes how the user edits the
relation definition and how the application loads it.

® The Manage the expressions UC describes how the user creates,
deletes, imports, or exports the expressions. It is extended by Load
expressions from a file and Save expressions to a file use cases.

® The Evaluate the relational algebra expression UC describes how
the user edits the expression and how the application evaluates it. It
includes the Display a relation from an evaluation tree node use
case.

33

4. Specification

The Display a relation from an evaluation tree node UC describes
how the user uses an evaluation tree. It is extended by Save the
selected relation to a file and Add the selected relation in the
application use cases.

The Process multiple project input files UC describes how the user
selects files for batch processing and how the application process them.

The Manage the project UC describes how the user loads or saves
the project.

The Manage the settings UC describes how the user changes the
settings of the application.

For each use case, we created a mapping on requirements and its screen
design. You can find these files in the thesis attachment. For example, we
show the Fuvaluate relational algebra expression use case in Figure [4.6 and
list its steps:

1.

10.

The user edits the current expression. String values are between quotes.
The user can type a backslash before a quote to use it inside a string.

The application suggests available relation or column names at the cursor
position. The suggestions are ordered by the sequence or characters
before the cursor.

IF the user selects the suggestion THEN:
a. The application inserts the suggestion at cursor position.
IF there is an error in the input THEN:

a. The application underlines the error. If the user moves the mouse
over it, error description appears.

IF the user clicks a button with a special symbol THEN:

a. The symbol is inserted at the cursor position. GO TO step 1.
Once the user finishes the editing, they click the "Evaluate" button.
The application parses the evaluation tree from the input.

IF there is an error in the input THEN:

a. The application displays and highlights the error. GO TO step 1.
The application evaluates the parsed tree.

IF there is an error in during the evaluation THEN:

a. The application displays and highlights the error. GO TO step 1.

34

4.5. Use Cases

11. The application saves the evaluation tree and the use case Display a
relation from an evaluation tree node is triggered with the root node

selected to display as default.

RQ301 - Input field for
relational algebra

relational model with or simplified syntax

RQ302 - Highlighting of
parentheses

|

RQ202 - Support for

without null values expressions

RQ201 - Expressions in | ‘
S

RQ203 - Support for all

|

RQ303 - Alternatives to
typing special symbols

|

relational algebra operations

RQ403 - Evaluation of the
expressions over small data
sets

Evaluate
the relational algebra

RQ304 - Explicit descriptive
messages for both syntactic
and semantic errors

A expression

RQS505 - Handling of complex

|

string values

RQ305 - Highlighting of
errors in the input field

|

«Errors
RASyntaxError
- message: string
7 .
. N

s

(
|

|

| «Errors

: RASemanticError

|

|

|

|

|

Some(relational= "Algebra")[expression]

- message: string

& ! B

'
wthrows
'

| athrows»

» |
\
Ay |
ExpressionParser

N !
«throws 1
~

RATreeNode +parent0.1 Project

|
| ~ T)
| +children 0.2

wusen

_____ < has oot nullValuesSupport- boolean
wcreates on| o1 selectedExpression: int has b\j;
0.1 - selectedStoredRelation: int =
=~ =
~—_ I - selectedTreeNode: int 1ot

Expression

name: string
text: string

Figure 4.6: Detailed use case: Evaluate relational algebra expression

Further, we show the Load relation definition in Figure [4.7 use case:

1. 1. IF the user clicks on the "Rename" buttons THEN:

a. IF there is no relation with the name in the input field THEN:

8 The name of the displayed relation is changed to the value in

the input field.
b. GO TO step 1.

2. IF the user changes values in the table THEN:

a. The values are propagated to the relation instance.
b. IF the new value is invalid THEN:

® The invalid value is highlighted in the table. When the user
moves a mouse over the invalid value, error description appears.

c. GO TO step 1.

35

4. Specification

3. IF the user clicks on the "+" button in the last table column THEN:
a. A new column is added and displayed. GO TO step 1.

4. IF the user clicks on the "+" button in the last table row THEN:
a. A new row is added and displayed. GO TO step 1.

5. IF the user clicks on the "Load" button THEN:

a. IF the displayed relation is valid THEN:

® A (loaded) Relation instance is created from the displayed data.
It overwrites a loaded relation with the same name.

b. IF the displayed relation is invalid THEN:

® An error message is displayed.
6. IF the user clicks on the "Delete loaded" button THEN:

a. All (loaded) Relation instances are removed. GO TO step 1.

RQ403 - Evaluation of the expressions
RQ304 - Explicit descriptive messages over small data sets
for both syntactic and semantic errors _ -
T Load a relation - RQ504 - Editing of the data for the
h definition ———— _I> evaluation
RQ305 - Highlighting of errors in the 3 --h‘-q.‘_
input field ! L“x& RQ505 - Handling of complex string
| values
V
«Errors . s e
i Relation definition:
‘ eerd ” i |
4 Columno Columnl Columnz Column3
} string number boolean string
+
({thr'ow» ,/77 abed : frue abed
! e abcd 2 false abcd
I -
-
+ |
|
storedRelation = _r_/_’ ______________________________ |
- |
columniames: stringf] | Relationd ‘ Rename | Load | Delete | Delete loaded Import Export
columnTypes: string[] : ; ; .
name: string =t 4 | !
N Errorand label !
rowData: string[][] j =1 : randmessage s |
|
I : T
é___________::::::::::::::: ,,,,,,,,,,,,,,,,, |
| wcreaten !
| Project ‘
1
Relation \i/ - nullValuesSupport: boolean
name: string selectedExpression: int
N 0.* =@ has loaded 0.1| - selectedStoredRelation: int
selectedTreeNode: int

Figure 4.7: Detailed use case: Load relation definition

36

4.6. Class Model

. 4.6 Class Model

In the use cases, we referred to several classes that evolved from business
entities. We defined these classes for further implementation so that they do
not fully correspond to the business entities. In the Class model, we specify
data types for intended JavaScript implementation. As the main idea of each
class remains the same, we will describe the changed entities only.

In the class model, we do not mention files because they are not a part of
the application. We define store managers to separate the process of data
storing and data itself. We present the main methods of classes that are
important for their behavior, not their data.

Relation-related Classes. We found out that Column entities only represent
pairs of the name and the type. As they always appear in a set, we can
replace this set with a key-value map, where keys are the names and values
are the types.

A similar simplification happens to the Row Entry entity. As it only
describes a pair of the column name and the column value, we also replaced
it with a key-value map.

We present the enumeration SupportedColumnType to specify column
types in detail. We define the ColumnContent data type that extends Sup-
portedColumnType by null, as it is a separated type in JavaScript.

Note that we do not use these specific types in the StoredRelation class. It
uses string values only as it may be in an invalid state when the user edits
it. When the Relation class is created from a valid StoredRelation class, the
values are cast from strings to specific types for easier evaluation.

We show the model of the Relation-related classes in Figure 4.8|

wenumerations

Relation StoredRelation
SupportedColumnType has column
o pes - namesstring L ________ - columnNames: string] | _ _ _____=
Number o o1 «creates - columnTypes: string(] wthrows - message:string
String h - name:string
Boolean N os - rowbata: string[][]
0.* B
- has loaded
A has has stored

has columns
types 0.1 1

wError»
RASyntaxError

«dataTypes

- nullvaluesSupport: boolean
Row

ColumnContent

- boolean
- null
- number

selectedExpression: int
- selectedStoredRelation: int

RelationStoreManager
+ oadl): edRelation]
o

‘, values: Maps<string, CelumnContent> ‘

- string - selectedTreeNode: int

Figure 4.8: Model of the classes related to a relation

37

4. Specification

Expression-related Classes. The Evaluation Tree entity does not exist in
the Class model, and the tree is represented by its nodes only. The eval
method recursively evaluates the subtree of the node. The getResult method
reuses once evaluated results to save computations.

We show the model of the Expression-related classes in Figure [4.9.

ExpressionParser

« »
- message: string throw

wthrows has tree root

Project

«Errors

ExpressionStoreManager

nullvaluesSupport: boolean
- selectedExpression: int
wusen wuser
- selectedStoredRelation: int

selectedTreeNode: int

RASyntaxError

0.1 1

«Errors

_Exprassion
RASemanticError

——————————————— - name:string
o] _ '

+parent 0.1

Figure 4.9: Model of the classes related to an expression

Project-related Classes. The Project class contains information about the
selected expression, relation, and node of the evaluation tree. We moved the
evaluation tree root from Expression entities to the Project as there is always
only one evaluation tree in the application.

The BatchProcessor class separates the evaluation of multiple selected files
and the Project. That means the batch processing does not affect the state
of the loaded Project.

38

Chapter 5

Documentation

In this chapter, we provide a programming documentation for the application
we proposed. We present the used programming languages, frameworks,
and libraries in the first section. In the second section, we describe code
packages. Then, we present the implementation challenges we encountered,
the application testing, and deployment.

B 51 Used Technologies

Now, we will briefly present programming languages, frameworks, and libraries
we used in the application implementation.

As we design a static web page application, we thought of two programming
languages: Java or JavaScript, both commonly used for web development.
Finally, we chose JavaScript. Because there are some disadvantages in plain
JavaScript code, we finally decided to use TypeScript that adds static syntax
and types checking to JavaScript.

B 5.1.1 JavaScript

JavaScript [6] is a programming language, which corresponds to ECMAScript
specification. JavaScript is mainly run in web browsers as a client-side of
web applications, but we can also use it in servers or desktop applications.
JavaScript files have a . js extension.

The first version of ECMAScript (ES) was presented in 1997 by Brendan
Eich, and then it was used in the Netscape Navigator web browser. A year later,
it received an international technical specification ISO/TEC 16262. JavaScript
is a marketing name for an ES implementation, but there are essential
differences between JavaScript and Java (they only share a similar syntax).
Besides JavaScript, another relevant implementation of ES specification is
JScript by Microsoft. ECMAScript became popular, and the majority of web
browsers supports it in the early 2000’

All ECMAScript versions are backward compatible. It ensures that an
old code always works properly. On the other hand, old browsers may not
support new features. We can solve this problem by adding a polyfill — a code
that substitutes missing functionality using the available features. Anyway,

39

5. Documentation

polyfills cannot implement new syntax. For syntax substitution, we can use
transpilers, e.g., Babel!| or Google Closure Compiler?. These tools change the
new syntax in a code to the old one.

The sixth edition of ECMAScript brought many important innovations. It
was released in 2015 after a long development. For example, it supported
Unicode characters in string literals, provided the Promise object for asyn-
chronous computations, presented new definition keywords let and const
for block-scope variables, or the class keyword for easier creation of objects.

In the last six years, there is a new version of ECMAScript standardization
every year. Development was moved to GitHub so that a wider group of
people could contribute. Anyway, no other edition brought as many changes
as the sixth one. In the year 2021, the twelfth version is expected to be
released.

Originally, JavaScript was a web scripting language, but it became a general-
purpose programming language. The purpose of a scripting language is to
manipulate and automate the facilities of an existing system. A web scripting
language adds dynamic features to web pages in browsers or computations to
servers.

JavaScript executes computation in a host environment. On the client
side, the host environment is provided by a web browser. The web browser
provides all objects which the program uses, e.g., an abstract representation
of the whole screen, displayed elements, or browsing history. Also, it provides
listeners for events, as JavaScript is event-driven and has no main function.
On the server-side, the host environment provides communication with clients
by request and response objects and access to the files.

Together with HTML and CSS3, JavaScript constitutes the three pillars of
the World Wide Web. JavaScript code can be inserted in <script> elements
right in HTML files, but it is ineffective as it slows down rendering. The
better option is to place scripts in separate files. Also, it separates the logical
and graphical parts of the application.

JavaScript is a mized paradigm language. It has functional as well as
object-oriented features. Objects in JavaScript are not class-based, but we
use prototyping to create them. Class-based objects (e.g., in Java) have a
unique state but share methods within the class. In JavaScript, objects share
methods defined in the prototype of the constructor function, but they can
have their unique functions as well. We can add a new property to an object
at runtime. As for the data content, we can see objects as collections of
key-value pairs, where the key is the name of the property, and the value is
the property itself.

JavaScript uses hoisting. It means that it moves the declarations of variables
and functions to the top of the current block of code. We can then access a
variable that was not declared yet.

!Babel is accessible on |https://babeljs.io/|
2Google Closure Compiler is accessible on https://developers.google.com/closure/
compiler.

SWe will present HTML and CSS in Subsections [5.1.4 and |5.1.5]

40

https://babeljs.io/
https://developers.google.com/closure/compiler
https://developers.google.com/closure/compiler

5.1. Used Technologies

Unfortunately, hoisting and other specific ECMAScripts behavior can lead
to mistyping errors. For example, assume we have an object car with a
property color. Typing car.colour = ’Blue’ is not an error in JavaScript,
but it creates a new property in the car object. To prevent these errors,
we can use the strict mode. Modules and definitions of classes (with class
keyword) use this strict mode automatically. We can also use the strict mode
in other files if we add "use strict" on the first line.

B 5.1.2 TypeScript

Although we can use the strict mode, we still miss some useful features in
JavaScript. The programming language TypeScript [7] is a typed superset
of JavaScript, which provides these features. TypeScript files have a .ts
extension.

TypeScript works as a static syntax checker of the code. Before the code
runs, TypeScript checks whether the code has a valid syntax. Because it is
a superset of JavaScript, all valid JavaScript code is valid in TypeScript as
well. Also, it does not change the runtime behavior of the JavaScript code.
TypeScript code is compiled to JavaScript before executing.

As the name suggests, TypeScript enforces types. Once we assign a type
to a variable, we cannot change it to a different type. TypeScript determines
the type of the variable automatically after an assignment of a value:

let str = "string value...";
str = 1; // Error: Type ’1’ is not assignable to type ’string’.

or we can determine it explicitly in a variable declaration:

let str: string;
str = 1; // Error: Type ’1’ is not assignable to type ’string’.

We can create types with named values with the enum keyword. TypeScript
supports enums with numeric, string, or combined values. We can create new
types by combining the existing ones. For example, the following code creates
a type, which accepts numeric as well as string values:

type NumOrStr = number | string;
let a: NumOrStr = 1;
a = "we can assign string as well";

Also, we can create special types by the explicit enumeration of the possible
values:

type SpecialType = "some string" | 123 | false;

The next important feature of TypeScript are interfaces. An interface
determines a set of properties that a given object has to provide to pass
type checking. We do not have to say explicitly that an object implements

41

5. Documentation

an interface (e.g., we do have to say this in Java), as TypeScript compares
shapes® of objects and interfaces automatically:

interface NameHaving {
name: string;
}
// no explicit implementation of NameHaving interface
let person = {name: "Joe", age: 50};
let sthWithName: NameHaving = person; // no error

As we can see, an object can provide more properties than the interface
and still pass type checking. That is called a structural type system. We
can force a class to provide all properties of one or more interfaces with the
implements keyword.

B 5.1.3 React

React [8] is a widely used JavaScript framework that makes the creation
of user interfaces easy and fast. We can use it for the development of web,
desktop, or mobile applications.

React provides a syntactic extension of JavaScript. Files with React specific
syntax have .jsx extension (or .tsx if TypeScript is used). This syntax
allows to use HT'ML-like definitions of elements right in the JavaScript file, so
the code is more readable. For example, we can define a paragraph element
as follows:

const element = (
<p color="red">
Hello, world!
</p>
);

This block of code is changed to plain JavaScript after compilation:

const element = React.createElement (
J J
| 2
{color: ’red’},
’Hello, world!’
)

To embed JavaScript code in React element definitions, we have to wrap it
in curly brackets.

React elements are not the same as HITML elements. They are plain,
i.e., without functions, so they are fast to create. Also, they are immutable,
which means they need to be created again after each their modification.
Immutability seems like an ineffective feature but React can track which

4A shape of an object is a set of its properties, i.e., its data and methods.

42

5.1. Used Technologies

particular parts were actually changed and create again only them. Rendering
the web page transforms React elements to standard HTML.

React components are at a higher level than elements — components consist
of elements. They provide a render function, which returns the representing
React element. Components accept parameters, called props (properties). In
props, we can define how the component looks like, or provide some more
complex data. Props are immutable, too. We store mutable inner variables
of components in their state.

React uses one-way binding. It means that components know their children
but do not know their parents. Parents affect their children by the modification
of props, which causes React to rerender affected parts. We can use some
props as callbacks®|to pass the information from children to parents. One-way
binding causes that we must store the shared state of components in some
common ancestor.

React does not use inheritance between components. Instead, it recom-
mends using composition. When the application structure is well designed,
we can reuse components by changing their props.

There is an easy way to get started with a new React app. Create React
App [9] allows preparing all required configuration and dependencies with a
single command. It can save plenty of time as it hides a complex structure of
dependencies and provides a default configuration for both development and
production.

B 514 HTML

As mentioned before in the JavaScript introduction, HTML, CSS, and
JavaScript constitute the pillars of the World Wide Web. We do not use
HTML in our code directly, as we create it by React or JavaScript functions.
Anyway, we should briefly introduce it, as it is a key part of the compiled
application.

HTML [10] stands for HyperText Markup Language. It is similar to XML,
but it has a predefined set of elements, attributes, and structure. The HTML
files have .html or .htm extensions. The current version is HIML5 from
2014. It is backward compatible with previous versions. Because authors of
HTML decided to ensure backward compatibility even in the future, there are
no longer any new versions. All new features are only extensions of HTMLS5.

HTML describes the web page content as an element tree. The root
element is <html> which has <head> and <body> children. Each element has
an opening and closing tag. In the opening tag, we can specify attributes
associated with a given attribute. Between the tags, we place contents of a
given attribute, i.e., its successors.

5Callbacks are functions given as parameters, in our case, they are functions of a parent
which we call in a child.

XML (Extensible Markup Language) is used mainly for data storage and transmission.
It represents the content as a tree of elements with attributes. Unlike HTML, it has no
predefined tags — users can use custom names. Its specification is accessible on https!
//www.w3.org/TR/xml/

43

https://www.w3.org/TR/xml/
https://www.w3.org/TR/xml/

5. Documentation

HTML <head> element contains page metadata, for example:

B title, author, language, keywords, description
® links to external resources (e.g., CSS files or font definitions)

® appearance on small (mobile) screens

There is no compulsory metadata, but the more metadata we specify, the
better the page works. The metadata also helps web search engines to classify
pages, or browsers to render page contents correctly.

Besides metadata, we can define CSS in <style> elements or client-side
JavaScript in <script> elements.

We define the visible content of the page in the <body> element. There
is a lot of available elements to use in the body. All of them are containers
and can contain nested elements or plain text. We should use their various
types to describe semantic parts of the page. For example, it is possible to
use a button element like a paragraph container. We can use CSS styling to
make buttons appear the same as paragraphs. But doing so we violate the
semantic meaning, and so the page structure becomes hard to understand.
Also, modern browsers often use semantic meaning for advanced features as
text reading or forms pre-filling.

In HTML, we can refer directly to JavaScript and CSS. For example, we can
call a JavaScript function when an event is triggered, and style the element
with a CSS class:

<button class="my-button" onclick="clickHandler()">
Click me
</button>

Let us describe what the code does. We define a button element by its
opening tag <button> and closing tag </button>. In the opening tag, we
assign values to its class and onclick attributes. We assume that there exists
a CSS class my-button and a JavaScript function clickHandler. Between
the tags, we add the text Click me as the content of the button.

B 515 CsSS

The last pillar of web pages to introduce is CSS [I1I], which stands for
Cascading Style Sheets. CSS defines over 500 properties that change the
appearance of HTML elements. Properties usually form groups with specific
focus, e.g., font styling, or positioning. The current CSS version is CSS3 from
the year 2005. There are no new versions because backward compatibility is
guaranteed, so the CSS3 is only extended by new features.

There are three ways to include CSS in a web page. We can specify a
property value as an attribute of a given element in an HTML file, which is
called inline styling:

<button style="width: 100px; border: 2px dotted green;">

44

5.1. Used Technologies

The second way is to define CSS in <style> element in the HTML head:

p{
font-size: 16px;
b
.my-button {
width: 100px;
border: 2px dotted green;
b

The last way is to define CSS in a separated .css file. The definition looks
the same as in the <style> element. The last approach is the recommended
one because it separates the page content from its appearance.

In inline styling, we define property values that apply only to a given
element. In a general styling definition in HTML head or .css files, we
must describe which elements are the intended targets. To do so, we can use
element tags or define our CSS classes (e.g., my-button abovd’)). Further,
we can combine tags and classes by selectors. For example, the following
styling will apply to all elements with the my-button class that are direct
descendants of any div element:

div > .my-button {
background-color: blue;
color: #ffffff;

3

More advanced styling can use CSS pseudoclasses. Elements gain and lose
these classes at runtime by user actions. For example, the following definition
overwrites the color styling defined above when the user moves the mouse
over the my-button element:

div > .my-button:hover {
color: rgb(255, 0, 0); /* color property overwritten */
font-width: bold; /* new property set */

}

Note that the background color will still be blue. Also, we can see that
there are many predefined keywords and functions in CSS.

One element can correspond to multiple style definitions. Inline styling has a
higher priority and overwrites general styling. If there are more corresponding
definitions at the same priority level, the last defined is applied. Unspecified
properties keep default browser values.

We can create rich, adaptive web pages with CSS. Using media queries, we
can change the styling on different screen sizes. Furthermore, with advanced
CSS properties, we can create animations with no JavaScript code needed.

"Using classes is an often approach, so that CSS presents a shortcut for their reference —
.my-button is equivalent to [class="my-button"], that means all elements with the class
attribute equal to my-button.

45

5. Documentation

B 5.1.6 Other

There are millions of JavaScript users and projects® worldwide. The large
community provides many open source” and permissively licensed!’|libraries
and frameworks. These libraries make the development easier and faster,
as a wide range of problems was already solved in previous projects. For
their installation, we used the JavaScript package manager npm [13]. Let us
now provide a short description of the particular libraries we utilized in our
project.

jest. Jest [I4] is a JavaScript testing framework. It provides intuitive
functions for unit testing. Testing expressions are easy to understand as they
form sentence-like chains.

lodash. Lodash!!is a general-purpose JavaScript library. It provides func-
tions to advanced work with arrays, objects, and strings. We used its function
isEqual for deep equality checking of JavaScript objects'?.

FileSaver.js. FileSaver.js'?|is a library for saving files from JavaScript to
the user device. We used it for all downloads from the application.

JSZip. JSZip'Yis a library for managing ZIP files in JavaScript. We used it
to zip up CSV relation definitions and the results of batch processing before
downloading.

visx. Visx'® is a powerful library for advanced visualization in React. It
provides a wide range of visualization components for graphs, drawing, maps,
zooming, and many more. We used it for rendering the evaluation tree.

export-svg-with-styles. Export-svg-with-styles'%|is a specific-purpose library
for downloading HTML SVG components as PNG pictures. We used it for
exporting the evaluation tree as a PNG file.

8Over 97% of webpages use JavaScript in April, 2021, according to Q-Success [12].

90pen source projects also have benefits for their owners as anyone can contribute. For
example, we found a bug in React when developing our application, reported it and people
offered help with fix: https://github.com/facebook/react/issues/21094/

104 mermissive" license is simply a non-copyleft open source license — one that guarantees
the freedoms to use, modify, and redistribute, but that permits proprietary derivative works.",
a description by Open Source Initiative, [cit. 2021-04-30]. Accessible from: https://
opensource.org/fag#permissive|

“'Lodash is accessible on https://github.com/lodash/lodash.

12There is no such feature in plain JavaScript. Both equality operators ==’ and ’===
use reference comparison when used on objects. It means that they return true only if both
compared objects refer to the same memory address.

13FileSaver.js is accessible on https://www.npmjs.com/package/file-saver,

1478Zip is accessible on https://stuk.github.io/jszip/k

15Visx is accessible on https://github.com/airbnb/visx!

6 Export-svg-with-styles is accessible on |https://www.npmjs.com/package/
export-svg-with-styles|

’

46

https://github.com/facebook/react/issues/21094
https://opensource.org/faq#permissive
https://opensource.org/faq#permissive
https://github.com/lodash/lodash
https://www.npmjs.com/package/file-saver
https://stuk.github.io/jszip/
https://github.com/airbnb/visx
https://www.npmjs.com/package/export-svg-with-styles
https://www.npmjs.com/package/export-svg-with-styles

5.2. Code Packages

JSDoc. JSDoc!"|is a documentation generator for JavaScript projects. It
creates a HTML documentation based on comments in the source code.

better-docs. As JSDoc is implemented for JavaScript, we use the better-
docs'®| extension to support TypeScript files.

B 52 Code Packages

We logically structure the code of the application into eleven packages, which
wrap related functionalities. Packages contain code files as well as tests in
sub-packages. In this section, we go through each of them and describe their
purpose.

Expression. The expression package defines the Expression interface and
provides functions for its maintaining. It contains the core application algo-
rithms'?| in ExprParser and ValueParser classes that parse the relational
algebra and logic-algebraic expressions, respectively. EzprTokens.ts and Val-
ueTokens.ts files define tokens used in the tokenization. The ExpressionSto-
reManager provides expression importing and exporting using text files. This
package closely relates to ratree and vetree packages.

Ratree. The ratree package contains nodes of evaluation trees of the rela-
tional algebra expressions. Most nodes represent one specific operation, but
similar operations share a single node (e.g., NaturalJoinNode provides natu-
ral join and semi joins, SetOperationNode provides set union, intersection,
and difference). RATreeNode, BinaryNode, and UnaryNode abstract classes
define the interfaces of all extended nodes. The RATreeFactory provides a
centralized creation of new nodes.

Vetree. The vetree package contains nodes of evaluation trees of the logic-
algebraic expressions. We distinguish five types of VETreeNodes:

B ComparingOperator represents operators that produce a boolean value
from all input types (i.e., ==, |=, <, >, <=, >=).

® ComputingOperator represents mathematical operators (i.e., +, -, *, /)
® LogicalOperator represents logical operators (i.e., A,V,—)
B LiteralValue represents constants

B ReferenceValue represents variables (i.e., column names)

We use VETreeNodes to represent conditions in SelectionNodes and
ThetaJoinNodes in the ratree package.

17JSDoc is accessible on https://github.com/jsdoc/jsdocl
B Better-docs is accessible on https://github.com/SoftwareBrothers/better-docs|
19We will describe these algorithms in depth in Section |5.3.1]

47

https://github.com/jsdoc/jsdoc
https://github.com/SoftwareBrothers/better-docs

5. Documentation

Relation. The relation package defines two relation representations used in
the application.

The StoredRelation class represents relations edited by the user. We
store their data in string arrays because they have an order (given by position
in the editing table) and can be in an invalid state (we cannot use the
ColumnContent data type). The RelationStoreManager provides importing
of the StoredRelations from a file and exporting them to it.

The Relation class represents relations loaded in the application. We
represent individual relation rows by the Row class. They always are in a valid
state, which means we can use specific ColumnContent data types. They use
unordered maps to store the data (because the formal relational schema has
no order).

Project. The project package defines the Project interface. We use it in
the ProjectStoreManager to load the project from a file or save it.

Components. In the components package, we implemented the user interface.
The MainScreen component wraps four page sections: RelationSection,
ExpressionSection, ResultSection, and ManagementSection. These sec-
tions correspond to their description in the analysis.

Most components use the React framework for updating, but there are
two exceptions. The MessageBox uses plain JavaScript to display messages
and errors in a pop-up box. The XTextArea uses React to create its root
container, but other logic is in plain JavaScript as it gives us more control.

We define the component-specific CSS styles in the css subpackage. General
styling of the application is defined in the indez.css file in the project root
directory.

Batch. The batch package provides the BatchProcessor class for processing
multiple project files. As we implemented all parsing and evaluating algo-
rithms in other packages, most code in the BatchProcessor is the formatting
of report files.

Utils. The utils package provides auxiliary functions used in the whole
application. Some of them are simple, e.g., date formatting or modulo
operation for negative numbers. We implemented advanced string functions
in StringUtils and IndexedStringUtils. The FileDialog handles the
uploading of files from the user device. The LocalStorage wraps access to
the browser storage and provides initial values of stored variables. We define
reserved column and relation names in the keywords.ts file. The application
uses the Mail class for automatic error reporting.

Types. In the types package, we implemented custom data types. Sim-
ple but interesting data types are ISToISMap and NNToSMap. They are
specific-purpose wrappers of the built-in key-value map allowing us to use
IndexedStrings and pairs of numbers, respectively, like keys. An advanced

48

5.3. Implementation Challenges

data type is IndexedString which allows storing characters and their indexes
in the original text?Y,

Error. The error package provides custom error types and functions. Besides
RASyntaxError and RASemanticError, we implemented CodeError class
which represents unexpected errors in the application. ErrorWithTextRange
is a predecessor of RA errors and stores the error range to highlight in the
input text. We use ErrorFactory in the application for creating errors with
their predefined messages.

Language. The last package we mention is the language package. The
main file in the package has the same name and contains a map of supported
languages in the application. We define each language in a separated file as a
LanguageDef object which provides over 150 phrases used in the application.
We implemented the application to be easily expandable by new languages.
The contributor only duplicates and translates one file and edits three lines
in the language.ts file.

M 53 Implementation Challenges

Now, we will describe several implementation challenges that we encountered.
The most challenging tasks were dynamic parsing of unfinished expressions
and highlighting of errors in the input field. We used proven approaches (e.g.,
the Shunting-Yard algorithm or HTML textarea element) as well as our own
ideas (e.g., solution of errors in the user input or extension of the built-in
string object).

B 5.3.1 Expression Parsing

The key algorithm of the application is the parsing of relational algebra
expressions. The algorithm takes textual input from the user and creates an
evaluation tree of operation nodes. The user uses the infix form that means
that binary operators are between their operands (in our case, between their
source relations). This form is comfortable for a human but hard to work with
for a computer. For computer processing, we need to change the expression
to the prefix or postfix form?!'. In these forms, operators are before or after
their parameters, respectively. In particular, we use the postfix form that.
For example, we change an expression:

Car*0Owner (name = "Lukas")

20We will describe its implementation in depth in Section |5.3.2l

21Prefix and postfix forms are often called normal and reverse polish notations. The
normal polish notation was invented by a Polish logician and philosopher Jan f.ukasiewicz
in 1924. More about his life and work in an article by Peter Simons on the Stanford
Encyclopedia of Philosophy, 2020, accessible on https://plato.stanford.edu/archives/
sum2020/entries/lukasiewicz/| [cit. 2021-05-05].

49

https://plato.stanford.edu/archives/sum2020/entries/lukasiewicz/
https://plato.stanford.edu/archives/sum2020/entries/lukasiewicz/

5. Documentation

to the following representation:
Car Owner (name = "Lukas") *

To do so, we use the Shunting- Yard algorithm. This algorithm receives an
array of infix form tokens and returns its postfix form. Before we describe
the Shunting-Yard algorithm, we introduce how the application parses the
infix form tokens.

Parsing of Tokens. The textual input is processed from the start to the
end. When we reach the next character, we find the maximum following
sequence that constitutes one syntactic part of the expression. For example,
after reading C, we add all the following letters to create a relation name
Car.

We need to know the assumed syntax rules to create correct parts. Usually,
the first character describes the current syntactic part unambiguously. In am-
biguous situations, we need additional checking. For example, after reaching
* we must check whether the next character is > before we return a natural
join token to handle right semi-joins.

We add metadata needed for the Shunting-Yard algorithm to the parsed
tokens. Besides the textual representation, we store a token type and the
precedence of binary tokens. The parsing of the example above creates the
following array:

{Relation "Car"},

{Binary operator (Natural join) "*" with precedence 10},
{Relation "Owner"},

{Unary operator (Selection) "(name = "Lukas")"}

Shunting-Yard Algorithm. The algorithm changes an array of tokens in the
infix form to the postfix form. It was invented by Edsger Dijkstra in the
year 1961 [I5]. The general version of the algorithm can process complex
expressions with constants, left- or right-associative operators, and functions.
For our purposes, we implemented a simplified version as no considered
operators are right-associative. Also, our implementation does not support
functions, although some operators act like functions. These operators are
selection, projection, rename, and theta joins. They accept a parameter that
affects their behavior. In fact, that means that all unary operators should
be actually treated as binary, and, analogously, theta joins as ternary. To
handle this, we use the Shunting-Yard algorithm at two levels. The first level
works with tokens where each parameterized operator constitutes one token.
After creating an evaluation tree from these tokens, we handle parameterized
operators. In selections and theta joins, we also use the Shunting-Yard
algorithm to build an evaluation tree for their algebraic-logical condition.
Algorithm 1] describes our simplified Shunting-Yard implementation. It uses
only one auxiliary data structure — a stack of encountered binary operators
and parentheses. We can see that it does not push parentheses to the result

50

5.3. Implementation Challenges

array as the operator evaluation order is determined unambiguously in the
postfix form. The algorithm recognizes mismatched parentheses. A closing
parenthesis before an opening one causes an error on Line 14. A missing
closing parenthesis causes an error on Line 23.

Algorithm 1: The Shunting-Yard algorithm
Input: inTokens: an array in the infix form
Data: operators: a stack for storing of operators
Result: postTokens: an array in the postfix form
1 foreach token in inTokens do
2 if token is a relation or token is a unary operator then
3 L postTokens.push(token);

else if token is a binary operator then

5 while head of operators is a binary operator and
token.precedence <= head.precedence do
6 head = operators.pop();
postTokens.push(head);

8 | operators.push(token);

9 else if token is an opening parenthesis then

10 L operators.push(token);
11 else if token is a closing parenthesis then

12 while true do

13 if operators is empty then

14 L throw ERROR: mismatched parentheses;
15 head = operators.pop();

16 if head is an opening parenthesis then

17 L break while;

18 else

19 L postTokens.push(head);

20 while operators is not empty do

21 head = operators.pop();

22 if head is an opening parenthesis then

23 L throw ERROR: mismatched parentheses;

24 else
25 L postTokens.push(head);

26 return postTokens

Evaluation Tree. After receiving a token array in the postfix form, we can
process it from the end to the start. We describe the algorithm in our example.
Recall the expression after changing it to the postfix form:

Car Owner (name = "Lukas") *

o1

5. Documentation

We start with a binary operator * (natural join). We need to supply two
parameters for it. To do so, we recursively process the previous part: a unary
selection operator (name = "Lukas"). This operator needs one parameter, so
we process the relation part Owner. Relations need no parameters and so
we stop the recursion branch. This branch created the right-hand source for
the natural join. To get the left-hand one, we repeat the same process and
receive a single relation Car.

Although the Shunting-Yard algorithm handles mismatched parentheses,
the given postfix expression may still be invalid in other ways. For example,
if we omit the relation Car in the original infix form, the Shunting-Yard
algorithm does not find the error. We find the error while building the
evaluation tree when there is a missing left-hand source for natural join.

A.
e (Name = "Lukas")
B.

(Name = "Lukas")

(Name = "Lukas")

Figure 5.1: Three possible representations of an expression. The infix form (A),
the postfix form (B), and the tree form (C).

Continuos Parsing. Previous algorithms were able to detect errors, but they
were not able to solve them. It is sufficient when we want to evaluate an
expression — when an error occurs, we terminate the process and report it to
the user. The user can solve it and try again. The problem is when we need
to parse incomplete expressions to find available suggestions at the cursor
position. Also, users expect to see errors during typing, not only after the
evaluation.

There are multiple places where an error can occur. The first one is
the parsing of tokens. When the user types, parameterized operators or
parentheses are often unclosed. When the expected closing character is
missing in the input (e.g., closing parenthesis after opening parenthesis in
selection), we add it at the input end. Further, we skip and ignore unexpected
characters (e.g., question mark outside quotes or closing parenthesis before
opening one). These simple solutions ensure an error-free Shunting-Yard
algorithm.

Other errors can occur in the building of an evaluation tree. We chose
to solve them before the Shunting-Yard algorithm starts. At the time, the
expression exists as an array of tokens in the infix form. We described a few
rules which the well-formed expressions must follow. Rules for each adjacent

52

5.3. Implementation Challenges

H Relation ‘ Unary ‘ Binary ‘ Opening ‘ Closing ‘

Relation X v v X v
Unary X v v X v
Binary v X X v X

Opening v X X v X
Closing X v v X v

Table 5.1: Rules for expressions in the infix form. Each adjacent pair of tokens
must belong to any v-marked cell. Rows describe the first token in a pair and
columns the second one. We can see common patterns in the behavior. Relations,
unary operators, and closing parentheses expect the same token types before
them, as well as binary operators and opening parentheses. Also, relations and
opening parentheses expect the same token types after them, as well as unary
operators, binary operators, and closing parentheses.

pair of tokens are displayed in Table |5.1. Besides these rules, the first token
of an array must be a relation or an opening parenthesis, and the last token
must be a closing parenthesis, relation, or unary operator.

We process an array from the start to the end and check the rules for each
adjacent pair. If any pair does not follow the rules, we insert a new token in
the middle. We can solve all violations by inserting a single relation token or
a single binary operator token. We use the relation with a forbidden empty
name so that such a relation is not defined. As the inserted binary operator,
we use a natural join.

These solutions ensure that the application builds a valid evaluation tree
every time. All errors are stored, passed to the presenting components, and
highlighted to the user.

B 5.3.2 Text Position

In the previous section, we have described how to find and handle errors in
unfinished expressions. The next step is to report them in a user-friendly way.
We use a usual approach — highlight the error by underlining it and display
its message when the cursor is over it.

The problem is to locate an error in the advanced stages of input processing.
In the beginning, we have the whole input as one string. As the processing
continues, we split the input text multiple times to describe individual tokens,
we may skip some white spaces, or add new characters to solve errors. After
that, the character index does not correspond to its original position in the
input. We implemented a custom string representation to handle it. Also, we
extended a textarea element for a simpler presentation.

IndexedString. The idea of an IndexedString is simple — we store a
text as an array of pairs {character: string, index: number}, called
IndexedChar. When we create a new IndexedString, we set character in-
dexes to their original values. After creation, no IndexedString method
changes indexes in IndexedChars.

53

5. Documentation

The most important method is getRange that returns indexes of the first
and the last IndexedChar. There are more additional methods for handling
character indexes, e.g., getFirstIndex, or getLastIndex. Besides these
functions, IndexedString implements many built-in string methods with
identical signatures.

XTextArea. Now we know how to find and locate errors. Also, we can find
a cursor position in the string and suggest available relation or column names,
or match pairs of parentheses. The last step is to display this information.
To do so, we extended a textarea HTML element by additional methods.

These methods compute the pixel position of the character on the screen.
We use a monospace font so that all characters have the same pixel width.
With this assumption, we compute an upper-left corner [x, y] position of a
character on the i-th index as follows:

line = number of newlines before the i-th character
lastNewLine = last newline index before the i-th character
x = (1 - lastNewLine - 1) * fontWidth

y = line * lineHeight

The position is relative to the upper-left corner of the textarea. For proper
rendering, we need to change it by the current vertical and horizontal scroll
values. At the final position, we can render a div element with suggestions or
with an underlining style.

A possible alternative is not to use a textarea element at all. It is possible to
implement a custom input element that uses editable div elements. In such a
solution, we do not need to compute positions as we can enclose each character
group in a single element. It brings many custom feature possibilities as well
as implementation difficulties. The built-in textarea element handles newlines,
scrolling, text inserting, or undoing. Because of these verified features, we
chose to reuse a textarea element.

N 54 Testing

Testing is an important part of each software project. Sufficiently large test
coverage can detect a majority of errors in the code before the deployment.
It means that we do not have to change the software when customers already
use it. It is more user-friendly as the application is always available. Also,
the project costs are lower as error solving is more expensive in later stages
of the development.

Unit Tests. The most frequent tests are called unit tests. They test short
blocks of code, usually single functions. Developers should write unit tests
just after finishing a new code or even before it.

We use the jest [14] framework for unit testing. In each unit test, we follow
the AAA pattern: arrange, act, assert. First, we prepare input data and

o4

5.4. Testing

expected output, then we call the tested function, and finally, we compare its
output with the expected one.

We use unit tests for testing particular parts of complex algorithms. Most
of the unit tests are for correct expression parsing and evaluation. There are
many classes and functions from multiple packages that cooperate. These
packages contain a subpackage /tests where their unit tests are.

Crucial tests are in the expression package. They check valid parsing
of tokens, changes of the infix token form to the postfix one, and correct
automatic expression completion.

The longest unit tests are in the ratree package for testing relational
operators. These tests contain many relation definitions as we tried to
capture many input combinations. We tried to reuse the input relations in
several test files, but we do not think it adds much clarity as there still exist
differences. Retrospectively, we understand we should have created one set of
relations and used them in all tests.

Similar but more straightforward tests are in the wvetree package as the
operators process simpler inputs — not relations, but numbers, strings, and
booleans. Further strong testing is, for example, for IndexedString in the
types package, string utils in the wutils package, and relation classes in the
relation package.

Logging. Logging is a common technique in software development. We
use it to capture program behavior by saving its state in certain moments.
Usually, we save the state as messages in files or print them in the console.

Logging does not substitute tests. We use it mainly for debugging, as we
can easily add new information to the log as needed. Server developers use
logging for security. When the server crashes, saved logs can help to identify
the crash cause. Also, when hackers attack, logging can approximate their
position or describe their intentions.

User Testing. During the development, we can test our code to ensure
its correctness. Anyway, correct algorithms do not imply a user-friendly
application. To handle it, we can use the feedback of real-world users in later
development stages. In our case, we presented our application to a group
of approximately 20 CTU students in April 2021. At the time, they were
learning relational algebra, so our application could have helped them.

Acquired feedback from involved students as well as teachers led to the
following improvements:

® modern colors, clear layout, bigger font size

® simplified relation definition — no exposing of inner double representation
of relations

® better behavior of suggestions in the expressions — appearing on
Ctrl+Space, highlighting of matched letters

55

5. Documentation

More intensive usage of the application could be an opportunity for revealing
the remaining errors. When an unexpected error occurs, the application
shortly describes it in a pop-up message box and asks the user to report
their last actions. We understand that users do not want to write detailed
reports, so we also use automatic reporting. As there is no backend server,
the application saves its current state and sends it as an email. The email
contains, e.g., a detailed error description, current loaded and edited relations,
or current expressions.

Other Testing Methods. Unit tests are not the only development tests. For
example, integration tests inspect the correct cooperation of multiple classes,
functions, or modules. We use unit tests only, but some of them actually
focus on the integration aspect as well. For example, a parsing method
of ExprParser uses other ExprParser methods, IndexedString utils, and
much more. A unit test for this method explicitly inspects only its expected
output, but it tests its integration in the background.

There exist test techniques for testing graphical user interfaces. They
automatically test the content of the page and simulate user interaction. We
decided not to use them as their preparation is complex and potential benefits
would most likely not outweigh the necessary time overhead. The page content
(e.g., button titles, page layout) often changed in the development, so it was
faster to test its behavior manually.

B 55 Deployment

We used localhost??| for the development of our application. It is a common
approach, as it is easily accessible and quick. The application in development
never runs under the same conditions as the production version. Often, many
configuration errors occur after deploying.

Fortunately, there are modern solutions that hide complex configurations
and let programmers focus on the code itself. One of them is Create React
App [9]. Tt is a set of predefined scripts for both development and deployment.
We solve most of the tasks by a single command. Easy deployment and
maintaining was the reason why we designed our application as a single page
application with no backend.

A modern approach is not to maintain an own server but to use hosted
cloud servers. We chose GitHub Pages®>. for hosting. It is directly connected
with the project repository and for free.

22 ,0calhost is a reserved IP address that works as a loopback. Data sent to localhost do
not leave the computer, but they appear to come from the network.
23GitHub Pages overview is accessible on [https://pages.github.com/

56

https://pages.github.com/

5.5. Deployment

Launch of the Application. To launch the application on your localhost,
follow these steps:

1.

install Node.js**

install npm [13]

open your terminal in the folder with project source files

in the terminal, run npm install to install all project dependencies

in the terminal, run npm start to launch the application in your browser

you can edit the files and see updates realtime in the browser

24Node.js is accessible on https://nodejs.org/en/

o7

https://nodejs.org/en/

o8

Chapter 6

User Documentation

In this chapter, we present the application usage. We named the final version
of the application as Rachel (Relational Algebra CHecker and EvaLuator).
We start with a description of basic terms we will use in the following text:

B FEditable relations — They are the relations we can edit. They are not
available for usage in queries directly (see Loaded relations below).

® Selected relation — It is the editable relation that is edited in a given
moment. The application displays it in the container in the upper part
of the screen.

B Loaded relations — They are available for usage in queries. We create
them from valid editable relations by loading.

8 FExpressions — There may be multiple relational algebra expressions in
the application.

® Selected expression — It is the expression that is edited in a given moment.
The application displays it in the text area in the second part of the
screen.

B Project — We use the project to save/load our work using .rachel'| file.
It stores editable relations, expressions, and an indicator of whether we
assume null values.

® Application — The application always contains one project, which can be
saved or overwritten by loading a new one. Furthermore, the application
provides additional settings or batch processing of multiple project files.

Typical Workflow. Now, we will describe the high-level workflow in the
application. We will describe particular parts in depth in the following
paragraphs.

When using the application for the first time, we must prepare our relations
first. To do so, we use the relation section of the page. In the relation
section, we can create new editable relations, delete them, or import/export
them using CSV files. At each time, we can edit the selected relation in

The .rachel extension describes JSON files generated by the application.

99

6. User Documentation

the container. Once we prepare (valid) relations, we load them into the
application.

After loading the relations, we can use them in query expressions. In
the expression section, we can create new expressions, delete them, or im-
port/export them using a text file. Each time, we can edit the selected
expression in the text area. Once we are done with editing, we can evaluate
the selected expression.

After the evaluation of the selected expression, the application displays its
evaluation tree and result in the bottom part of the page. We can use the
evaluation tree to browse intermediate relations created during the evaluation.

Anytime in the described process, we can save the project to a file and
continue later on.

Relation Section. We define relations in a sheet in the upper part of the
screen. To be able to use a relation in the expressions, we need to load it to
the application when all its values are valid. After loading, we can continue
editing the relation while the last loaded (valid) state is still available in the
expressions. We show this section in Figure 6.1\

Relations Loadall Remove loaded Import Export

Id Owner Color Electric Weight
number v number v string ~ boolean v number v

1 1 1 Blue True 1000

2 2 1 Green false 1200

3 3 2 Blue F 850.42

4 4 3 Black 1 111111111

+
- Car Rename Delete Revert

Figure 6.1: Relation section

There are four buttons in the header menu, which affect all relations:

B The Load all button loads all valid editable relations into the applica-
tion memory. If any loaded relation with the same name exists, it is
overwritten. Invalid relations are skipped.

® The Remove loaded button removes all loaded relations (editable relations
are not changed).

® The Import button enables us to import new editable relations from
CSV files.

® The Fzxport button saves all editable relations in CSV files. The saved
relations may be in an invalid state.

60

6. User Documentation

In the menu above the sheet, we can select one relation to be edited. A
star before the relation name marks changed relations since the last loading.
We can add a new editable relation by the + button.

In the first row of the sheet, we define column names and types. Column
names cannot be duplicated inside one relation and must contain letters,
numbers, and underscores only and not start with a number. Also, column
names 'null", "true" and "false" are forbidden. There are three supported
column types in the application: number, string, and boolean.

The + buttons in the last column and last row adds a new column or row,
respectively.

Other sheet cells define the data itself. We can use integers or decimals in
number columns and character sequences in string columns. Note that the
application trims trailing whitespaces before loading, so the string " a b ¢ "
is loaded as "a b c¢". If null values are supported, "null" inputs are valid
in all column types and are loaded as null values. Also, empty inputs in
number and boolean columns are loaded as null values.

When the cursor hovers over the first row, a button for deleting a given
column appears. Similarly, when over the first column, a button for deleting
a given row appears.

There are four buttons in the menu under the sheet, which affect the
selected relation:

8 The Load button loads the relation into the application memory. If any
loaded relation with the same name exists, it is overwritten.

8 The Rename text field renames the relation. We cannot change the name
to any existing relation name. Allowed characters are the same as in
column names, but forbidden words are "F", "L", and "R".

® The Delete button deletes the relation from the editable list.

® The Revert button reverts the relation to the last loaded state (if the
relation was not loaded yet, it is reverted to its initial state).

Expression Section. The second section of the application provides the
input for expressions. We show it in the Figure |6.2

Expressions [Import Export

_ Expression 2 Expression3 +

1 Car*Owner

O @0 <= un\v * x < *> = < < [*F *L* *R* = [[

- Expression 1 Rename Delete

Figure 6.2: Expression section

61

6. User Documentation

There are two buttons in the header menu, which effects all expressions:

® The Import button enables us to load new expressions from text files.

® The Ezport button saves all expressions in a text file.

We can have multiple named expressions loaded in the application at a
time. Again, we use the upper menu for selecting an expression to edit and
the + button for adding a new one.

In the text area, we define the expression itself. We can use buttons
under the text area to insert RA operators. While typing, the application
suggests relation or column names available at the cursor position. We can
use arrows/Enter keys or mouse to insert the suggestion. Pressing Ctri+Space
hides or displays the suggestions list.

To use quote characters inside string literals in expressions, we must escape
their default behavior (i.e., starting or ending a string) by a backslash.
Similarly, to use a backslash character, we must type it twice.

There are three buttons on the bottom of the section, which affect the
selected expression:

® The Evaluate button evaluates the selected expression and updates the
result section.

® The Rename text field renames the selected expression. There are no
restrictions on expression names.

® The Delete button deletes the selected expression.

Result Section. The result section appears after the evaluation of an ex-
pression. It displays the evaluation tree and the result relation. Moreover,
for every individual operation node within the tree, we can display a relation
with data corresponding to a given intermediate result. We can also sort
the rows in a relation using the specific column values. We show the result
section in Figure 6.3l

The Ezport button above the evaluation tree downloads the tree as a PNG
image. We can use the Add and Ezport buttons above the table to add the
displayed relation to the editable ones or save it in a CSV file.

Management Section. The last-mentioned section is the upper one. It
provides general management of the application.

® The Load button loads the whole project from .rachel files. Rachel files
contain all editable relations, all expressions, and a configuration value
indicating whether usage of null meta values is enabled.

® The Save button saves the current project to a new .rachel file.

® The Batch button lets us select multiple project files to be all processed
and their reports generated.

62

6. User Documentation

Result | Export

Evaluation tree of (Car*Owner):

Car Owner

Result relation (Car*Owner):

Add Export
Id Owner Color Electric Weight Name
1 1 1 Blue true 1000 George Smith
2 1 Green false 1200 Adam "Driver \" Jackson
S 3 2 Blue false 850.42 Michael Trueman

Figure 6.3: Result section

® The Samples button shows prepared sample projects. It is a convenient
starting point for users who are just getting acquainted with Rachel.

® In the Settings, we can set:
Null values support — whether the project supports null values in
relations and expressions
CSV separator — used value separator in downloaded CSV files
Theme — the theme of the application (light/dark)
Language — the language of the application (English/Czech)

® The About button navigates to the project repository.

Operators. Rachel provides a wide set of relational algebra operationﬂ
In the following list, we show their syntax and precedence (lower numbers
mean higher precedence). Anyway, we recommend using parentheses to avoid
unexpected precedence behavior.

8 Precedence level 1 — unary operations:

Projection: Relation[column, ...]
Selection: Relation(condition)

Rename: Relation<01ld -> New, ...>
8 Precedence level 2 — joins and division:

Natural join: A * B
Cartesian product: A X B

Left/right semijoin: A <x B, A *> B

2The application uses simplified syntax as defined in Section There are little
differences in rename and outer join operators as they use symbols available on keyboards.

63

6. User Documentation

Left/right antijoin: A > B, A < B

Theta join: A [condition] B

Left/right theta join: A (condition] B, A [condition) B
Full/left/right outer join: A *F* B, A *Lx B, A *R* B

Division: A + B

B Precedence level 3 — intersection:
Intersection: A N B

® Precedence level 4 — union and difference:

Union: A U B
Difference: A \ B

We use algebraic operators (4, -, *, /) in the conditions to calculate new
number values. If a number column evaluates to null, null is returned.
Other input types trigger an error.

Comparison operators (==, =, <, >, <=, >=) accept any pair of input
operands of the same type and produce a boolean value, i.e., true or false.
Inequality checking of booleans uses false < true. Inequality checking
of strings uses alphabetic comparison (e.g., "abc" < "def", "a" < "aa").
If a column evaluates to null, the only condition which returns true is
column == null. Different input types trigger an error. There are two ways
to write equality (==, =) and inequality (!=, <>) operators.

We can use boolean values in selection and theta semijoins with no testing
operator (e.g., Relation(BooleanColumn)). Theta joins always require some
testing operator (e.g., RelA[BooleanColumn = true]RelB).

Logical operators (not,and,or) accept boolean values and computes a
new boolean value. When a column of boolean type evaluates to null, it
holds: !column == false, column && boolean == false for any boolean
value, and column || boolean == boolean for any boolean value. Other
input types trigger an error. There are three ways to write logical operators:
negation (!, ~, =), and (&&, &, A), or (||, |, V).

Tips. In expressions, we can use C-style line and block comments.

We can use Ctri+FEnter in the relation table to load the current relation.
In the expression textarea, we can use it to evaluate the current expression.

All tabulators loaded into the application in files are replaced by four
spaces. In case of editing the files outside Rachel, we recommend using spaces
to ensure expected indenting.

We can use a mouse to move relations and expressions in their menus.

Known lIssues. The application does not support the Internet Explorer?
browser. We decided not to support it as Microsoft recommends using newer
browsers and announced the end of its support as well.

3Internet Explorer was the major Microsoft browser in the previous Windows operating
systems. Nowadays, Microsoft recommends using the Microsoft Edge browser.

64

Chapter 7

Conclusion

The goal of this thesis was to design and implement an application for the
evaluation of relational algebra query expressions. Before we started our
implementation, we analyzed similar existing tools. First, we found out that
no application supports the simplified notation suitable for learning relational
algebra. We identified advantages and disadvantages of three applications:
Raeval [3], RelaX [4], and RAT [5]. Their common disadvantage is a weak
reusability of defined relations, expressions, and evaluation results. Further-
more, their error descriptions are often insufficient. The analysis confirmed
that a user-friendly application should have a graphical user interface, be
accessible online, and provide a detailed user manual.

Having analyzed existing applications, we created a list of requirements
for our implementation. We used them together with the described business
processes to identify business entities in our solution and its general concept.
For example, we defined two types of relations — one for evaluation (i.e., it
follows the formal definition) and one for editing (i.e., it has ordered rows
and may contain invalid values). Finally, to properly design the application,
we created detailed use cases and a class model.

The core aspect of the application is the parsing of relations and expressions
and evaluation of queries. Although it might seem trivial, many difficulties
appeared during the implementation. The biggest challenges related to user-
friendly highlighting of errors and suggestions in expressions. We needed
to correctly parse unfinished expressions to determine available suggestions
while users are in the middle of typing. To do so, we implemented their
automatic completion and fixing. Furthermore, we needed to map characters
to their positions in the original string to highlight invalid parts. For this
purpose, we implemented an extended a string data type capable of storing
the original positions of individual characters.

Contributions. The implemented application, named Rachel, is a web
teaching tool ready for usage. It is available at https://kotliluk.github}
io/rachel/l Its main features are:

® user-friendly graphical user interface

® evaluation of relational algebra query expressions

65

https://kotliluk.github.io/rachel/
https://kotliluk.github.io/rachel/

7. Conclusion

® built-in environment for relation definition and editing
B visualization of evaluation trees and intermediate results

® support of the relational algebra definition assumed in this thesis, i.e.,
19 operations, column names without relation prefixes, atomic values

® support of the simplified operator notation
B errors with detailed messages and highlighting in the text

B suggestions of available relations or columns in particular parts of ex-
pressions

B possibility to edit multiple expressions at a moment

® wide range of import/export actions, e.g., for relations, expressions, or
whole project with all relations and expressions

® automatization of homework processing, i.e., loading multiple student
projects, evaluating them, and generating reports

Future Work. Although about 20 students used the application in the
testing phase, not yet revealed errors or further user suggestions might appear
the next year, when roughly two hundred students will use it on FEE, CTU.
We plan to respond to the teaching needs that might come after this more
extensive use.

We also have several ideas for further improvements, e.g., the possibility
to support duplicate data rows, the date data type, or advanced functions
in conditions as the length of strings. However, we do not find them crucial,
and so we did not implement them yet. Furthermore, we will release the
application as an open-source project so that interested people can contribute.

66

1]

2]

8]

[9]

Bibliography

DATE, C.J. An Introduction to Database Systems. Sth ed. Boston:
Pearson/Addison-Wesley, 2003. ISBN 0-321-19784-4.

SVOBODA, Martin. Database Systems — Relational Algebra
Lecture [online]. 2020-03-31 [cit. 2021-04-28]. Accessible from:
https://www.ksi.mff.cuni.cz/~svoboda/courses/192-BOB36DBS/
[Lectures/Lecture-07-Relational-Algebra.pdfl

EVERITT, Nick. Raeval — Relational Algebra Fvaluator [computer
application]. Versions 2.0 and 0.3.1. Wilmington (North Car-
olina, USA), 2011-2012 [cit. October, 2020]. Free download
from: https://code.google.com/archive/p/relational-algebra/,
orhhttp://people.uncw.edu/narayans/courses/csc4b55/Relational,
|20Algebra/Relational’20Algebra/20Interpreter.html, Requires in-
stalled Java.

KESSLER, Johannes. RelaX — Relational Algebra Calculator [online
application]. Version 0.20. Innsbruck, 2020 [cit. October, 2020]. Accessible
from: https://dbis-uibk.github.io/relax/landing.

CHAVARRIA, Steven Brenes. RAT — Relational Algebra Translator [com-
puter application]. Version 4.2.0.0. San José (Costa Rica), 2011 [cit.
October, 2020]. Free download from: https://www.slinfo.una.ac.cr/

Requires installed .NET framework version v2.0.

GUO, Shu-yu, Michael FICARRA and Kevin GIBBONS, ed.
ECMAScript® 2022 Language Specification [online]. 2021-04-06 [cit. 2021-
04-21]. Accessible from: https://tc39.es/ecma262/|

TypeScript: The starting point for learning TypeScript [online]. [cit. 2021-
04-21]. Accessible from: https://www.typescriptlang.org/docs/|

React — A JavaScript library for building user interfaces [online]. [cit.
2021-04-21]. Accessible from: https://reactjs.org/|

Create React App [online]. [cit. 2021-05-05]. Accessible from:
//create-react-app.dev/

67

https://www.ksi.mff.cuni.cz/~svoboda/courses/192-B0B36DBS/lectures/Lecture-07-Relational-Algebra.pdf
https://www.ksi.mff.cuni.cz/~svoboda/courses/192-B0B36DBS/lectures/Lecture-07-Relational-Algebra.pdf
https://code.google.com/archive/p/relational-algebra/
http://people.uncw.edu/narayans/courses/csc455/Relational%20Algebra/Relational%20Algebra%20Interpreter.html
http://people.uncw.edu/narayans/courses/csc455/Relational%20Algebra/Relational%20Algebra%20Interpreter.html
https://dbis-uibk.github.io/relax/landing
https://www.slinfo.una.ac.cr/rat/rat.html
https://www.slinfo.una.ac.cr/rat/rat.html
https://tc39.es/ecma262/
https://www.typescriptlang.org/docs/
https://reactjs.org/
https://create-react-app.dev/
https://create-react-app.dev/

7. Conclusion

[10] FAULKNER, Steve, EICHOLZ, Arron, LEITHEAD, Travis, DANILO,
Alex, MOON, Sangwhan, NAVARA Erika Doyle, O’CONNOR Theresa,
BERJON, Robin. HTML 5.2 - W3C' Recommendation [online]. W3C,
2021-01-28 [cit. 2021-05-05]. Accessible from: https://www.w3.org/TR/

[11] BOS, Bert. All CSS specifications [online]. W3C, 2021-01-20 [cit. 2021-05-
05]. Accessible from: https://www.w3.org/Style/CSS/specs.en.html|

[12] Q-SUCCESS. Historical yearly trends in the usage statistics of client-side
programming languages for websites, April 2021 [online]. 2021-04-21 [cit.
2021-04-21]. Accessible from: https://w3techs.com/technologies/
history_overview/client_side_language/all/yl|

[13] NPM, Inc. npm Docs [online]. [cit. 2021-05-05]. Accessible from:
|//docs.npmjs.com/|

[14] Jest - Delightful JavaScript Testing [online]. 2021-05-03 [cit. 2021-05-05].
Accessible from: https://github.com/facebook/jest|

[15] DIJKSTRA, E. W. Algol-60 Translation. Amsterdam: Stichting Mathe-
matisch Centrum, 1961. Accessible from: https://ir.cwi.nl/pub/9251|

68

https://www.w3.org/TR/html52/
https://www.w3.org/TR/html52/
https://www.w3.org/Style/CSS/specs.en.html
https://w3techs.com/technologies/history_overview/client_side_language/all/y
https://w3techs.com/technologies/history_overview/client_side_language/all/y
https://docs.npmjs.com/
https://docs.npmjs.com/
https://github.com/facebook/jest
https://ir.cwi.nl/pub/9251

Appendix A
Attachment Content

analysis/ — models for the analysis
code/ — source codes of the application
documentation/ — generated HTML documentation for source codes

examples/ — prepared files with projects, relations, or expressions to
import into the application

thesis/ — LaTeX source of the thesis text

69

	Introduction
	Relational Algebra
	Extensions
	Constructs
	Relational Calculus

	Existing Solutions
	Raeval
	RelaX
	RAT
	Other Solutions
	Comparison

	Specification
	Requirements
	Business Processes
	Business Entities
	Concept
	Use Cases
	Class Model

	Documentation
	Used Technologies
	JavaScript
	TypeScript
	React
	HTML
	CSS
	Other

	Code Packages
	Implementation Challenges
	Expression Parsing
	Text Position

	Testing
	Deployment

	User Documentation
	Conclusion
	Bibliography
	Attachment Content

