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Abstract

[EN] This thesis is devoted to the study of Vietoris-Rips complexes and their geometric realization. We first
introduce the necessary basics of category theory and the theory of metric spaces. The notions of a simplicial
set and Vietoris-Rips complex are defined in the usual manner and then via categorical means. We present
an abstract account of geometric realization and show its instantiation in the special case of the realization of
Vietoris-Rips complexes.

Keywords: simplex, simplicial set, Vietoris-Rips complex, geometric realization, category theory.

[CZE] Tato práce je věnována studiu Vietorisových-Ripsových komplex̊u a jejich geometrické realizaci. Nej-
prve zavedeme nezbytné základy teorie kategoríı a teorie metrických prostor̊u. Pojmy simpliciálńı množiny a
Vietorisova-Ripsova komplexu jsou definovány klasickým zp̊usobem a poté kategoriálńımi prostředky. Obecně
zavedeme teorii geometrické realizace a jako speciálńı př́ıklad prostudujeme realizaci Vietorisových-Ripsových
komplex̊u.

Kĺıčová slova: simplex, simpliciálńı množina, Vietoris̊uv-Rips̊uv komplex, geometrická realizace, teorie kategoríı.
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Preface

In many areas of applied mathematics (for example feature extraction, geometry of sensor networks, etc.) the
following ideas are used:

(1) If one wants to extract certain properties of a complicated space, it is often useful to encode these properties
into a combinatorial structure that arises from a clever “triangulation” of the space.

(2) Given a “triangular recipe” for a space (i.e., a specification of the “triangulation”), one wants to produce
a space that fits given specification the best.

Intuitively, one can expect some loss of information which is not considered as significant. Thus the processes
are not supposed to be inverse to each other. However, they should be tied together “as much as possible” in
the sense that one process determines the other.

In this thesis we study a special instance of the above. Namely:

(1) Out of a metric space we produce a simplicial set that is called a Vietoris-Rips complex of the space.

We explain how the complex is supposed to capture a sampling of the space.

(2) Out of a general simplicial set we produce the corresponding metric space that “fits the best” the combi-
natorial structure hidden in the simplicial set.

We show that these two processes can be viewed as an instance of a much more general machinery from
category theory. More in detail, we show that they are adjoint to each other in a precise sense. In fact, the
adjunction arises in a certain canonical way.

We also demonstrate that our approach is equivalent to the “classical” concept of a Vietoris-Rips concept
known from the literature. We believe, however, that the approach of category theory has a potential of further
development.

This thesis has the following structure (we emphasize the main results):

• Chapter 1 is devoted to a brief introduction of the fundamentals of category theory needed in the thesis.
All of the theory is standard and well-known.

• Chapter 2 describes various categories of metric spaces and their cocompleteness properties.

Main result: We show that the category of extended metric spaces is cocomplete.

• Chapter 3 introduces the notions of a simplicial set and a Vietoris-Rips complex in a classical way. Then
we describe Vietoris-Rips complexes and their geometric realization as categorical concepts.

Main result: We show that Vietoris-Rips complex can be described as a presheaf. Also we describe the
geometric realization of simplicial sets as a left adjoint of a special functor.
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Chapter 1

Introduction to Category Theory

Category theory takes a bird’s
eye view of mathematics. From
high in the sky, details become
invisible, but we can spot
patterns that were impossible to
detect from ground level.

Tom Leinster

In this chapter we will briefly go through the fundamentals of category theory that will be used throughout
the thesis.

In Section 1.1.1 we will introduce the concept and formal definition of a category, define what a functor and
a natural transformation is, followed by some examples. Section 1.1.2 is dedicated to the concept of colimits.
Section 1.1.3 describes the notion of an adjunction.

An interested reader could find a more involved treatment in materials listed the References section, for
example [5], [9].

1.1 Categories, Functors and Natural Transformations

1.1.1 Categories

A category consists of two types of “things”: a collection of objects and morphisms (arrows) between them.
Morphisms can be composed. The composition is associative and there are identity morphisms for each object.

Before we give a formal definition of a category let us see an example to get a feeling of what we will be
dealing with.

1.1.1 Example Imagine some kind of collection of all sets together with a collection of all set functions.
Together those two collections construct a category Set .

Notice that for each set A there is the identity function 1A : A −→ A, which sends all elements of A to
themselves. The other observation is that we can compose those functions: whenever there is f : A −→ B and
g : B −→ C, we know that there is g ◦ f : A −→ C.

A B C

g◦f

f

1A

g

1B 1C

Now we abstract the example above.

1.1.2 Definition A category C consists of a collection of objects that will be denoted by A,B,C, etc., and
morphisms (arrows) between them. Each morphism is associated with two operations:

10



1.1. Categories, Functors and Natural Transformations 11

Domain, which assigns to each morphism f an object A = dom(f);
Codomain, which assigns to each morphism f an object B = cod(f);
These operations are best understood if f is represented by an actual arrow starting at its domain and

pointing to its codomain:

A B
f

or f : A B

We also write

homC (A,B) or C (A,B) = {f | f in C , dom(f) = A, cod(f) = B}

for the set of morphisms from A to B called “hom-set”.
The morphisms must obey the following laws:

(1) There is a map compA,B,C : C (A,B)×C (B,C) −→ C (A,C) such that for each f ∈ C (A,B), g ∈ C (B,C),
the morphism comp(f, g) is denoted by g ◦ f .

This is also named as the composition law : whenever the codomain of one morphism matches the domain

of another, there is a morphism that is their composition, i.e. given f : A B and g : B C

there is a morphism h = g ◦ f : A C ;

(2) The composition is associative: (h ◦ g) ◦ f = h ◦ (g ◦ f) whenever

A B C D
f g h ;

(3) Each object X has an identity morphism 1X : X X which satisfies 1Y ◦ f = f ◦ 1X = f for any

X Y
f

.

1.1.3 Examples The following are examples of categories.

(1) Set The category of all small sets and all functions between them as morphisms.

(2) VctK The category of all vector spaces over field K and linear transformations as morphisms.

(3) A poset P could be something to construct a category from. The resulting category P would have
elements of P as objects and there would be a morphism between objects A and B whenever A ≤ B.

Notice that we can compose those morphisms: whenever A ≤ B and B ≤ C (A,B,C ∈P), we know that
A ≤ C. There also is an identity morphism A ≤ A.

A B C

≤AC

≤AB

≤A

≤BC

≤B ≤C

(4) ∆(Simplicial category) A category with objects [n] := {0, 1, ..., n − 1}, n ∈ N and monotone maps as
morphisms.

A monotone map between [1] and [2] could be illustrated as follows:

0 1

0 1 2

or

0 1

0 1 2

etc.

We say that a category is small if both ob(C ) (the collection of objects of C ) and homC (the collection of
morphisms of C ) are actually sets and not proper classes, and large otherwise.

A category is discrete if it has only identity morphisms.

11



12 Chapter 1. Introduction to Category Theory

1.1.4 Definition A morphism f : A −→ B in C is called invertible whenever there exists a morphism g :
B −→ A in C such that g ◦ f = 1A and f ◦ g = 1B .

1.1.5 Definition Every category C has an opposite category denoted as C op which has the same objects as
C . There is a morphism f : B −→ A in C op whenever there is a morphism f : A −→ B in C . A composite of
morphisms g ◦ f in C op is defined to be the composite f ◦ g in C .

1.1.2 Functors

A functor is a morphism of categories. As a category consists of objects and morphisms which have completely
different “behaviour”, functor consists of two parts as well: one of them “takes care” of objects, the other one
— of morphisms.

1.1.6 Definition For categories C and B a functor T : C −→ B consists of two suitably related assignments:
The object assignment T , which assigns to each object C of C an object TC of B and the morphism assignment
(also as written T ) which assigns to each morphism f : X −→ X ′ a morphism Tf : TX −→ TX ′ of B, in such
a way that the equalities:

• T (1C) = 1TC ;

• T (g ◦ f) = Tg ◦ Tf (whenever the composite g ◦ f is defined in C );

hold.

So a functor preserves identity morphisms:

C TC

1C 1TC

and preserves composition:

X TX

Y Z TY TZ

f
g◦f

Tf
T (g◦f)

g Tg

1.1.7 Examples The following are examples of functors:

(1) The underlying functor U : VctK −→ Set . For every vector space V over the field K the object UV is
the set of vectors in V , and each linear transformation f is sent to corresponding set map Uf .

(2) Vice versa, we can define the “free vector space” functor F : Set −→ VctK , which would assign to each
set S ∈ ob(Set) the free vector space F (S) with basis S. Every set map f : S −→ R is mapped to the
corresponding linear transformation defined by the assignment of the elements of the bases f .

(3) Let X and Y be posets considered as categories. Functors correspond to monotone maps.

(4) A functor of type F : A op −→ Set is called a presheaf on the category A .

An extremely important presheaf for this thesis are presheaves of the form ∆op −→ Set . The idea is that,
given F : ∆op −→ Set , the set F ([n]) is the set of “n-dimensional simplices”, for each [n] in ∆. We will
talk more about it later in Chapter 3.

(5) For every category A and every object A0 of A , we define the representable functor A (A0,—) : A −→ Set
as follows:

(a) An object A is sent to the set A (A0, A) of all morphisms from A0 to A.

(b) Given f : A −→ A′ , the mapping A (A0, f) : A (A0, A) −→ A (A0, A
′) sends h : A0 −→ A to

f ◦ h : A0 −→ A′.

We will slightly generalise the notion of a representable functor in Definition 1.1.12.

12



1.2. Colimits in a Category 13

1.1.3 Natural Transformations

1.1.8 Definition Given two functors T, S : C −→ B a natural transformation τ : S −→ T assigns to each
object X of C a morphism τX : SX −→ TX of B in such a way that every morphism f : X −→ X ′ in C yields
a diagram

X SX TX

X ′ SX ′ TX ′

f Sf

τX

Tf

τX′

such that the square on the right commutes.

Notice that the natural transformation τ is the totality of all the morphisms τX , where each τX is referred
to as a component of τ .

1.1.9 Definition A natural transformation τ with every component τX invertible in B is called natural equiva-
lence or natural isomorphism, in symbols τ : S ∼= T . We also call this type on natural transformation invertible.

1.1.10 Remark The inverse natural transformation τ−1 of a natural transformation τ consists of inverses τ−1
X

of components τX of τ for each X ∈ C .

1.1.11 Definition Natural bijection is a natural isomorphism between two Set-valued functors.

1.1.12 Definition A functor H : A −→ Set such that H is naturally isomorphic to A (A0,—) : A −→ Set is
called a representable functor. The object A0 is called the representing object.

Having defined the notion of categories, functors and natural transformations, we may introduce another
specific type of categories.

1.1.13 Definition Given a small categories B and a category C , we construct the functor category C B also
written as [B,C ] with functors T : B −→ C as objects and natural transformations between two such functors
as morphisms.

1.2 Colimits in a Category

Colimits are a categorical generalisation of well-known constructions from set theory: disjoint union and quotient
set construction. These correspond to colimit notions of a coproduct and a coequalizer.

Let us proceed to a formal definition.

1.2.1 Definition Suppose D is a small category. A functor D : D −→ X is called a diagram of the scheme
D in X .

Informally speaking, the diagram “imprints” the pattern of the scheme in the category we are working with.

1.2.2 Definition A cocone for D : D −→ X is a tuple (X, fd), where fd : Dd −→ X is a collection indexed
by objects of D , such that the triangle

X Dd

Dd′

fd

Dδ
fd′

commutes, for every morphism δ : d −→ d′ in D .

13



14 Chapter 1. Introduction to Category Theory

1.2.3 Definition A cocone (C, injd) for D is called a colimit of D, provided it has the following universal
property:

For every cocone (X, (fd)d∈D) for D there is a unique f : C −→ X such that the triangle

X C

D

f

fd
injd

commutes, for every d in D .

1.2.4 Definition A category X is called cocomplete, if it has colimits of all diagrams.

There are various types of special colimits, we will take a closer look at two of them: coproducts and
coequalizers.

1.2.5 Definition If I is a discrete index category with two objects, a functor D : I −→X is a tuple 〈A1, A2〉
of objects of X . The colimit of D is called a binary coproduct of A1 and A2, and it is written A1 +A2.

The colimit diagram consists of the colimit object A1 +A2 and morphisms iA1
and iA2

called the injections
in the coproduct (though they are not required to be injective in any sense of the word).

A1 A2

A1

∐
A2

iA1
iA2

1.2.6 Example Binary coproducts in Set are disjoint unions of two sets.

If A1 = {a, b}, A2 = {u, v} are sets, then their binary coproduct is comprised of the disjoint union A1 + A2

and injection maps injA1
: A1 −→ A1 +A2, injA2

: A2 −→ A1 +A2.

{a, b} {u, v}

{a, b, u, v}
injA1

injA2

1.2.7 Definition If I is a discrete index category, a functor D : I −→ X can be thought of as a collection
{Di | i ∈ ob(I )}. The colimit of D is called a coproduct of {Di | i ∈ ob(I )}, and is written

∐
i∈I Di.

The colimit diagram consists of the colimit object
∐
i∈I Di and morphisms injDi : Di −→

∐
i∈I Di called

the injections into the coproduct.

Di

∐
i∈I Di

injDi

1.2.8 Examples The coproduct of any two objects exists in many of the familiar categories, where it has a
variety of names as indicated in the following list:

(1) Coproducts in Set are disjoint unions of those sets.

The coproduct is constructed analogously to the binary coproduct in Set .

Notice that every element y ∈
∐
i∈I Di can be written as injDj (x) for some j ∈ I and x ∈ Xj .

14



1.2. Colimits in a Category 15

(2) Coproducts in a poset.

In a poset P , the coproduct of a set of elements {p1, p2, ...} is their least upper bound.

For example, the colimit of a diagram of two elements p, q is an element c such that c ≥ p and c ≥ q, and if
there is any element d with d ≥ p and d ≥ q, then d ≥ c. That is, c is the least upper bound (supremum)
of p and q.

p q

c

d

≥

≥

≥

≥≥

1.2.9 Definition If J is the scheme . . , a functor D : J −→ X is a pair f, g : B −→ A of parallel

morphisms of X . A colimit object ColimD, when it exists, is called a coequalizer of f and g.
The colimit diagram is

B A

ColimD

f

g u , u ◦ f = u ◦ g.

1.2.10 Remark Notice how in the diagram above there is no morphism k : B −→ ColimD, which seemingly
contradicts the definition of a cocone (Definition 1.2.3).

The morphism k : B −→ ColimD is in fact thought of, but is not needed to be illustrated. To fulfill the
cocone properties, we need the following equalities to hold:

k = u ◦ f ;

k = u ◦ g.

Which can be simplified to one equality:

u ◦ f = u ◦ g,

which implies the existence of the morphism k : B −→ ColimD but not necessarily mentions it.

1.2.11 Example In Set , the coequalizer of two functions f, g : X −→ Y is the projection p : Y −→ Y�E on
the quotient set of Y by the least equivalence relation E ⊆ Y × Y which contains all pairs 〈fx, gx〉 for x ∈ X.

As E contains all the pairs 〈fx, gx〉, it is obvious that p ◦ f = p ◦ g.
Having any other set Z together with a morphism z : Y −→ Z such that z ◦ f = z ◦ g, we can construct a

unique morphism m : Y�E −→ Z as follows.

Define m : Y�E −→ Z by the assignment m : py = [y] 7→ zy. This definition uses the fact that p is obviously
surjective.

The verification of the fact that m does not depend on the choice of the representative is left as a small
exercise to the reader.

The notions of a coproduct and a coequalizer are “representative” examples of colimits. In fact, the existence
of all coproducts and coequalizers implies the existence of colimits.

1.2.12 Theorem (Maranda’s Theorem) For a category X , the following are equivalent:

(1) X has all colimits.

(2) X has all coproducts and all coequalizers.

15



16 Chapter 1. Introduction to Category Theory

1.3 Adjunction

The notion of adjunction captures the fact that sometimes two functors are related to each other in some
particularly “good” way. They are not necessary inverse to each other but they still let us “go back and forth”.
Let us consider categories VctK and Set . Instead of looking at every object of VctK as a complicated structure,
we could look only at the set of vectors in that space.

Let us take a closer look at the forgetful functor U : VctK −→ Set and a functor F : Set −→ VctK as
described in Examples 1.1.7.

Each function g : S −→ U(V ) (function from some set to a used-to-be vector space) extends to a unique
linear transformation f : F (S) −→ V (a transformation between a used-to-be set and a vector space). This
correspondence ψ : g 7→ f has an inverse ϕ : f 7→ f |S , the restriction of f to S, hence there is a bijection

ΘS,V : VctK(F (S), V ) ∼= Set(S,U(V ))

of hom-sets.
The bijection ΘS,V is defined “in the same way” for every set S and every vector space V , which means that

the ΘS,V are the components of a natural transformation Θ when both sides above are regarded as functors of
S and V . It suffices to verify naturality in S and V separately.

Naturality in S means that for each morphism h : S′ −→ S the diagram

VctK(F (S), V ) Set(S,U(V ))

VctK(F (S′), V ) Set(S′, U(V ))

Θ

VctK(Fh,V ) Set(H,U(V ))

Θ

commutes. Naturality in V is expressed analogously .

1.3.1 Definition Let A and X be categories. An adjunction between X and A is a triple 〈F,U, ϕ〉, where
F and U are functors

A

X

UF

and ϕ is a function which assigns to each pair X ∈X , A ∈ A of objects a bijection of sets

ϕ = ϕX,A : A (FX,A) ∼= X (X,UA)

which is natural in X and A.

Given such an adjunction, the functor F is said to be a left adjoint to U , while U is called a right adjoint
to F , written F a U .

1.3.2 Theorem Suppose F : A −→X has a right adjoint. Then F preserves any colimit existing in X .

Two categories being connected by a pair of adjoint functors is an extremely useful property that has a lot
of powerful implications (such as the one above). Therefore there are various ways to conclude that there is an
adjunction between two categories. One of them will become handy later Chapter 2.

1.3.3 Definition Suppose U : A −→ X is given. We say that an object F0X, together with a morphism
ηX : X −→ UF0X, is a free object on X (w.r.t. U), provided that the following property is satisfied:

For every f : X −→ UA there is a unique f# : F0X −→ A such that the triangle

UF0X UA

X

ηX

Uf#

f

commutes.

16



1.3. Adjunction 17

1.3.4 Theorem Each adjunction 〈F,U, ϕ〉 between categories X and A is completely determined by the
functor U : A −→ X and an object F0X ∈ A for each X ∈ X together with a morphism ηX : X −→ UF0X
such that F0X together with ηX is free on X.

Then the functor F (a left adjoint) has object function F0 and is defined on morphisms h : X −→ X ′ by
UFh ◦ ηX = ηX′ ◦ h.

1.3.5 Remark There are more criteria that completely determine an adjunction except for Theorem 1.3.4, the
interested reader can read more about them in [5].

1.3.6 Example We now proceed with showing another example of an adjunction. Those types of adjunctions
are called free-forgetful adjunctions.

Whenever a functor U : X −→ A ignores some data or structure in X and has a left adjoint F : A −→X ,
the left adjoint constructs “free objects”.

In the beginning of the present section such an adjunction was presented between VctK and Set . Another
illustration lies in the connection between directed graphs and categories. Both involve vertices/objects and
edges/morphisms. Every directed graph gives rise to a category, and every category is a directed graph (with
extra data).

More formally, there is an adjunction involving the category DirGraph of directed graphs and the category
Cat of categories.

Cat

DirGraph

F U

DirGraph CatF

G FG

. .

. .

Cat DirGraphU

C UC

. .

. .

. .

In the picture above, the functor F turns a graph G into a category FG by viewing vertices as objects
and edges as morphisms. It also inserts identity morphisms at each vertex, and declares the set of morphisms
between two vertices to be the set of all finite paths between them. Composition is then concatenation of those
paths.

On the other hand, the functor U assigns to a category C its underlying graph UC. It just forgets the
identity and composition axioms, which are not needed to specify a graph.

17



Chapter 2

Categories of Metric Spaces

This chapter is devoted to the exploration of a “category of metric spaces”. We use quotes here for the reason
that the notion of a metric space allows a few variations, from which a category can be constructed. The
main goal is to define a cocomplete category, which will be crucial for proceeding in the study of Vietoris-Rips
complexes further in the thesis.

This chapter will be like looking for a light switch in a dark room, where we go step by step and bump into
an obstacle at some point. This will prompt us to come up with new more abstract notions to proceed in the
search.

2.1 Metric Spaces

One of the most natural operations in school geometry is to measure distance between points. This very
fact lays at the heart of the development of geometry, which was initially the science concerned with making
measurements.

In such circumstances, it is natural to try to abstract the properties of distance and allow for a more general
notion of a space where distances could be measured.

This idea is the basis for the concept of metric spaces, we spell out the definition1.

2.1.1 Definition By a metric space we mean an arbitrary set X together with a function d : X × X −→ R
which associates to every pair x, y of elements of X a non-negative real number d(x, y) in such way that the
following axioms are obeyed:

(1) d(x, y) = 0 if and only if x = y,

(2) d(x, y) = d(y, x) for every x, y ∈ X (symmetry),

(3) d(x, z) ≤ d(x, y) + d(y, z) for every x, y, z ∈ X (triangle inequality).

The members of the set X are conventionally called points, the function d is know as the metric and the
value d(x, y) of the metric corresponding to the points x, y ∈ X is said to be the distance between these points.

We can refer to a metric space as (X, dX) or just X, not mentioning the metric explicitly, but implying that
X has an inner structure of an underlying set with a metric function.

2.1.2 Examples These are examples of metric spaces:

(1) The discrete metric space. This space consists of an arbitrary set X and a metric d defined by the formula:

d =

{
0, for x = y,

1, for x 6= y.
(2.1)

(2) The real line R. This is the space consisting of the set R of the real numbers with metric defined by the
formula d(x, y) = |x− y|.

1For a thorough treatment of the theory of metric spaces we refer the reader to the book [2].

18



2.1. Metric Spaces 19

(3) The space of maps. Suppose X is a non-empty set and Y is a metric space with the property sup{d(y, y′) |
y, y′ ∈ Y } < ∞. Consider the set P of all maps f : X −→ Y . Define the distance between two points f
and g in P by the formula

dP (f, g) = sup{d(f(x), g(x)) | x ∈ X}.

It is easy to verify that all of the functions mentioned in above examples are indeed metrics.

2.1.3 Definition Suppose that (X, dX), (Y, dY ) are metric spaces. We say that a map f : X −→ Y is non-
expanding when dY (f(x), f(x′)) ≤ dX(x, x′) for every x, x′ ∈ X.

2.1.4 Definition Let (A, d) be a metric space, let B be a subset of A and let dB : B × B −→ R be the
restriction of d to B. Then dB is the subspace metric of d with respect to B. The metric space (B, dB) is called
a metric subspace of (A, d).

We define Met to be the category of all metric spaces and non-expanding maps as morphisms.

2.1.5 Remark Indeed Met forms a category.

• The identity map 1X : X −→ X is non-expanding and thus it is the identity morphism of (X, d) in Met .

• Having a pair f : A −→ B, g : B −→ C of non-expanding maps between metric spaces (where A,B,C
are metric spaces), their composition g ◦ f is a non-expanding map as well. Additionally, composition of
non-expanding maps is associative.

Met has a lot of interesting properties as a category. But it does not have the property we would want it to
have: Met is not cocomplete.

2.1.6 Proposition Met does not have all coproducts.

Proof. We will prove this statement using a proof by contradiction.
Let us assume that Met has all binary coproducts.
Thus, for every two metric spaces A, B there exists a metric space A+B together with two non-expanding

maps injA : A −→ A+B and injB : B −→ A+B such that, for any other other metric space C together with
two non-expanding maps f : A −→ C, g : B −→ C, there exists a unique m : A + B −→ C, such that the
following diagram

A B

A+B

C

injA

f

injB

g
∃!m

commutes.
Let A and B be one-element metric spaces, A = ({∗}, dA) and B = ({4}, dB). The coproduct then is a

metric space (({∗}, dA) + ({4}, dB), d+) and d+(injA(∗), injB(4)) = r, where r is some real number.
Let C be the two-element metric space C = ({a, b}, dC) with dC(a, b) > r.
The last part of our set up will be in defining f and g. Let f : A −→ C be a non-expanding map defined by

the assignment like f : ∗ 7→ a; g : B −→ C defined by the assignment g : 4 7→ b.

({∗}, dA) ({4}, dB)

({∗}, dA) + ({4}, dB)

({a, b}, dC)

injA

f

injB

g∃!m

19



20 Chapter 2. Categories of Metric Spaces

What would m look like? As a non-expanding map m should abide d+(injA(∗), injB(4)) ≥ dC(a, b), where
d+ is the coproduct metric.

However, the only way to construct a non-expanding map from the coproduct is to send each element from
the coproduct to the same element in C, which makes the diagram non-commutative. Thus, it is impossible to
define any mediating morphism m : A+B −→ C in this case.

This particular coproduct A + B does not exist in Met , therefore Met does not have all coproducts and
therefore is not cocomplete. �

For this reason we will define a slightly different category of “extended” metric spaces: spaces where the
distance between points is allowed to be infinite. In the following section we properly define this category and
try our luck in proving its cocompleteness.

2.2 Extended Metric Spaces

2.2.1 Definition By an extended metric space we mean an arbitrary set X together with a function

d : X ×X −→ R ∪ {∞}

which associates to every pair x, y of elements of X a non-negative extended real number d(x, y) in such way
that the following axioms are obeyed:

(1) d(x, y) = 0 if and only if x = y,

(2) d(x, y) = d(y, x) for every x, y ∈ X,

(3) d(x, z) ≤ d(x, y) + d(y, z) for every x, y, z ∈ X.

Observe that every metric space is thus also an extended metric space.

2.2.2 Remark Analogously to Remark 2.1.5 we can define category Mete of extended metric spaces as objects
and non-expanding maps as morphisms.

2.2.3 Proposition Category Mete has all coproducts.

Proof. Let us propose that the coproduct
∐
i∈I Di of extended metric spaces {Di | i ∈ I} is a disjoint union

the underlying sets of those metric spaces {Di | i ∈ I} and an extended metric d∞.

Recall from Examples 1.2.8 that every element y ∈
∐
i∈I Di can be written as injDj (x) for some j ∈ I and

x ∈ Xj .

d∞ is defined as

d∞(injDi(x), injDj(y)) =

{
dDi(x, y), if i = j;

∞, otherwise.
(2.2)

Observe that d∞ satisfies all requirements for an extended metric:

(1) For each pair x, y ∈
∐
i∈I Di the inequality d∞(x, y) ≥ 0 holds.

(2) For symmetry d∞(injDi(x), injDj(y)) =

{
dDi(x, y) = dDi(y, x) = d∞(injDj(y), injDi(x)), if i = j;

∞ = d∞(injDj(y), injDi(x)), otherwise.

(3) For every x, y, z ∈
∐
i∈I Di the inequality d∞(x, z) ≤ d∞(x, y) + d∞(y, z) holds. This follows easily by

case analysis.

To prove that the object above is indeed a coproduct we have to verify the universal property: given any
{fi : Di −→ C | i ∈ I}, we will show that there is a unique m :

∐
i∈I Di −→ C for which all the triangles

20



2.3. Extended Pseudometric Spaces 21

Di

∐
i∈I Di

C

injDi

∃!m

fi

commute.
In order for the diagram above to commute a potential morphism m must be a non expanding map defined

by the assignment m : injDi(x) 7→ fi(x) for x ∈ Di.
Since we defined

∐
i∈I Di as a disjoint union of {Di | i ∈ I}, there can exist only one such map. The last

part of the proof is showing that m is indeed a non-expanding map.
For each injDi(x), injDj(y) ∈

∐
i∈I Di the inequality dC(m(injDi(x)),m(injDj(y))) ≤ d∞(injDi(x), injDj(y))

must hold.
We will divide the proof in two parts:

(1) Suppose i = j.

Thus d∞(injDi(x), injDj(y)) = dDi(x, y) by definition.

dC(m(injDi(x)),m(injDj(y))) = dC(fi(x), fi(y))

≤ dDi(x, y)

= d∞(injDi(x), injDj(y)).

(2.3)

(2) Suppose i 6= j. Thus d∞(injDi(x), injDj(y)) =∞.

dC(m(injDi(x)),m(injDj(y))) ≤ ∞
= d∞(injDi(x), injDj(y)).

(2.4)

This way we have shown that the coproduct in Mete can be computed as their disjoint sum. �

Thus, to prove cocompleteness of Mete, all we have left is to construct coequalizers in Mete (by Theo-
rem 1.2.12).

2.2.4 Proposition Category Mete has all coequalizers.

Construction of coequalizers in Mete is possible but rather tricky. We will divide it into several steps in the
following section using the notion of an extended pseudometric space.

2.3 Extended Pseudometric Spaces

In this section we will show the construction of coequalizers in Mete step by step.

(1) First we will describe a new category PMete (of extended pseudometric spaces).

(2) The category PMete has coequalizers. We will present their construction.

(3) We will show that there is an adjunction

Mete

PMete

F U

(4) Using the left adjoint F : PMete −→ Mete we will show that the category Mete also has coequalizers.

21



22 Chapter 2. Categories of Metric Spaces

2.3.1 Definition By an extended pseudometric space we mean an arbitrary set X together with a function

d : X ×X −→ R ∪ {∞}

which associates to every pair x, y of elements of X a non-negative extended real number d(x, y) in such way
that the following axioms are obeyed:

(1) d(x, x) = 0, for every x ∈ X,

(2) d(x, y) = d(y, x) for every x, y ∈ X,

(3) d(x, z) ≤ d(x, y) + d(y, z) for every x, y, z ∈ X.

Observe that every extended metric space is thus also an extended pseudometric space.

2.3.2 Remark Analogously to Remark 2.1.5 we can define category the PMete of extended metric spaces as
objects and non-expanding maps as morphisms.

2.3.3 Proposition The category PMete has all coequalizers.

2.3.4 Remark Before presenting the proof itself, let us bring a little intuition behind it, so that formal defini-
tions are not too confusing.

Let A,B be extended pseudometric spaces, f, g : A −→ B morphisms.

A

B

C

gf

c

Imagine that f and g are telling us, which points in B are going to have a “teleport” between them. This
way those points are still different, but there is no distance between them. We group all the points connected
by the same “teleport” with an equivalence relation E, and call them [−]E .

Then we construct a metric which “iterates” through all the possible ways of going trough points and their
“teleports”.

•

• •

• • •

Points with a “teleport” are connected with coloured lines between them. We can see that the path from
the “blue” group to the “red” group is shorter, if we go though the “green” group.

This way, our metric is nothing more than the shortest possible way to “jump” between connected points,
using their “teleports”. Let us proceed with a formal construction of coequalizers in PMete.

Proof. Let A,B be extended pseudometric spaces, f, g : A −→ B morphisms.

A

B

C

gf

c

22



2.3. Extended Pseudometric Spaces 23

Let us propose that the coequalizer C is an extended metric space (B�E, dC), where B�E is a quotient set
by the least equivalence relation E ⊆ Y × Y , which contains all pairs 〈fa, ga〉, for each a ∈ A.

Morphism c is the projection of B to B�E: c : b 7→ [b]E , for each b ∈ B.
To define dC we need to introduce two notions:

(1) Define function d∗ : [−]E × [−]E −→ R as

d∗([x]E , [y]E) = inf{dB(x, y) | x, y ∈ B;x ∼ x; y ∼ y}.

(2) Define an admissible i-track Aix,y as the following set of numbers for each i ∈ N:

• A0
x,y = {d∗([x]E , [y]E)};

• A1
x,y = {d∗([x]E , [x0]E) + d∗([x0]E , [y]E) | x0 ∈ B};

• A2
x,y = {d∗([x]E , [x0]E) + d∗([x0]E , [x1]E) + d∗([x1]E , [y]E) | x0, x1 ∈ B};

• etc.

Define the extended pseudometric dC as

dC([x]E , [y]E) = inf

∞⋃
i=0

Aix,y.

To prove that the construction above is indeed an extended pseudometric we have to verify two properties:

(1) The first property to be proved is symmetry, we check whether the equation dC([x]E , [y]E) = dC([y]E , [x]E)
holds. This is equivalent to proving that Aix,y = Aiy,x for each i ∈ N

• A0
x,y = {d∗([x]E , [y]E)} = {d∗([y]E , [x]E)} = A0

y,x;

•

A1
x,y = {d∗([x]E , [x0]E) + d∗([x0]E , [y]E) | x0 ∈ B}

= {d∗([x0]E , [x]E) + d∗([y]E , [x0]E) | x0 ∈ B} = A1
y,x;

•

A2
x,y = {d∗([x]E , [x0]E) + d∗([x0]E , [x1]E) + d∗([x1]E , [y]E) | x0, x1 ∈ B}

= {d∗([x0]E , [x]E) + d∗([x1]E , [x0]E) + d∗([y]E , [x1]E) | x0, x1 ∈ B} = A2
y,x;

• etc.

The statements above use the obvious observation that d∗ is symmetric.

(2) The second property is the triangle inequality, we check whether dC([x]E , [y]E) ≤ dC([x]E , [z]E) +
dC([z]E , [y]E), for each [z]E ∈ C.

dC([x]E , [z]E) + dC([z]E , [y]E) = inf

∞⋃
i=0

Aix,z + inf

∞⋃
i=0

Aiz,y

= inf{
∞⋃
i=0

Aix,z +

∞⋃
i=0

Aiz,y}

≥ dC([x]E , [y]E).

(2.5)

Last inequality follows from the inclusion
⋃∞
i=0A

i
x,z +

⋃∞
i=0A

i
z,y ⊆

⋃∞
i=0A

i
x,y. The + sign means sum in

the statement above, not coproduct.
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24 Chapter 2. Categories of Metric Spaces

Next step to the definition of C as a coequalizer is to verify that c : B −→ C is a non-expanding map in
order for this projection to exist in PMete.

For each b1, b2 ∈ B the following holds

dC(c(b1), c(b2)) = dC([b1], [b2])

= inf

∞⋃
i=0

Aix,y

≤ A0
x,y = d∗([b1], [b2])

≤ dB(b1, b2).

(2.6)

Observe that c ◦ f = c ◦ g by the definition of c and E. Thus c coequalizes f and g.

In order for C = (B�E, dC) to be a coequalizer we have to verify the universal property.

A

B

C X

gf

c x

∃!m

Let X be an extended pseudometric space, let x : B −→ X coequalize f and g. There should exist a unique
mediating morphism m : C −→ X such that the triangle in the diagram above commutes.

In order for the diagram to commute, the morphism m must by defined by the assignment

m : cb 7→ xb

for each b ∈ B. The above works, since c is surjective.
In addition, the morphism m must be a non-expanding map. To prove this we will show that any way to

”jump” between ”connected points” in C (refer to Remark 2.3.4 to recall what the phrases in quotes stand for)
is shorter than an imprint of this path in the extended pseudometric space B. On the other hand the image
under x of this imprint on B is shorter in X. Then we will use the infimum definition of metric in C to prove
that m in non-expanding.

For each c(b1), c(b2) the inequality dC(c(b1), c(b2)) ≥ dX(m ◦ c(b1),m ◦ c(b2)) must hold.

dC(c(b1), c(b2)) = dC([b1], [b2])
= inf

⋃∞
i=0A

i
x,y

≤ t, ( for all t ∈ Akx,y, for all k ∈ N)
= d∗([b1], [p0]) + ...+ d∗([pk], [b2])

= inf{dB(b1, p0) | b1 ∼ b1, p0 ∼ p0}+ ...

...+ inf{dB(pk, b2) | pk ∼ pk, b2 ∼ b2}
≤ dB(b′1, p

′
0) + ...+ dB(p′k, b

′
2), (b′i ∼ bi,∀p′i ∼ pi).

On the other hand, for each b′i, p
′
i the inequality holds:

dB(b′1, p
′
0) + ...+ dB(p′k, b

′
2) ≥ dX(x(b′1), x(p′0)) + ...+ dX(x(p′k), x(b′2)), ( by x being non-expanding)
≥ dX(x(b′1), x(b′2)) ( by triangle inequality)
= dX(m ◦ c(b′1),m ◦ c(b′2))
= dX(m ◦ c(b1),m ◦ c(b2)).

Hence dX(m ◦ c(b1),m ◦ c(b2)) is a lower bound for the set {{dB(b1i, k0i) | b1i ∼ b1, p0i ∼ p0} + ... +
{dB(pki, b2i) | pki ∼ pk, b2i ∼ b2}}.

This implies dX(m ◦ c(b1),m ◦ c(b2)) ≤ t,∀t ∈ Akx,y,∀k ∈ N.

Thus dX(m ◦ c(b1),m ◦ c(b2)) ≤ inf
⋃∞
i=0A

i
x,y = dC(c(b1), c(b2))

�
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2.3. Extended Pseudometric Spaces 25

To show that Mete has coequlizers, we have to show that there is a connection between objects in Mete and
PMete. And indeed there is: we can construct an extended metric space from an extended pseudometric space
in a universal way: we simply glue all the elements with distance 0 together.

2.3.5 Proposition There is an adjunction between Mete and PMete.

Proof. To construct an adjunction between PMete and Mete we will define a functor U : Mete −→ PMete and
a special object function F0. This function F0 would assign to each object (P, dP ) of PMete an object F0(P, dP )
in Mete together with a morphism η(P,dP ) : (P, dP ) −→ UF0(P, dP ) such that F0(P, dP ) with η(P,dP ) form a free
object on (P, dP ) by the Definition 1.3.3. Then due to Theorem 1.3.4 there is an adjunction between PMete
and Mete.

Define the functor U : Mete −→ PMete as a “classical” forgetful functor.

(1) Every extended metric space (X, dX) is mapped by U to an exact copy of itself in category PMete.

(2) Every morphism f : (X, dX) −→ (Y, dY ) in Mete is also mapped to its exact copy in PMete.

Mete PMete

(X, dX) U(X, dX) = (X, dX)

(Y, dY ) U(Y, dY ) = (Y, dY )

U

f Uf=f

Define an object function F0 as follows. Every extended pseudometric space (P, dP ) is mapped to:

(1) An extended metric space F0(P, dP ) = (P ′, dP ′), where:

(a) P ′ is a quotient set by the least equivalence relation E′ ⊆ P × P , which contains all pairs 〈p1, p2〉,
for each p1, p2 ∈ P such that dP (p1, p2) = 0.

(b) Extended metric dP ′ is defined by the rule

dP ′([p], [q]) = dP (p, q).

It is obvious that dP ′ obeys all the axioms for an extended metric from Definition 2.2.1. As we
work with classes of equivalence, we have to verify that dP ′ does not depend on the choice of a
representative.

Let p1, p2 ∈ P and dP (p1, p2) = 0. We want to prove that for each q ∈ P the equality dP ′([p1], [q]) =
dP ′([p2], [q]) holds.

dP ′([p1], [q]) ≤ dP ′([p1], [p2]) + dP ′([p2], [q]) = dP ′([p2], [q]);

dP ′([p2], [q]) ≤ dP ′([p2], [p1]) + dP ′([p1], [q]) = dP ′([p1], [q]).

After reducing we get two inequalities:

dP ′([p1], [q]) ≤ dP ′([p2], [q]);

dP ′([p1], [q]) ≥ dP ′([p2], [q]).

Thus

dP ′([p1], [q]) = dP ′([p2], [q]).

The independence on the choice of the representative in the right equivalence class in dP ′ follows from the
symmetry of dP ′ .
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26 Chapter 2. Categories of Metric Spaces

(2) A morphism η(P,dP ) : (P, dP ) −→ UF0(P, dP ) is defined by the following assignment:

η(P,dP ) : p 7→ [p]E′ ,

for each p ∈ P .

In order for F0(P, dP ) together with η(P,dP ) : (P, dP ) −→ UF0(P, dP ) to be a free object on (P, dP ), the
universal property must be satisfied. This means that for every f : (P, dP ) −→ U(A, dA), where (A, dA) ∈
ob(Mete), there is a unique f# : F0(P, dP ) −→ (A, dA) such that the triangle below

F (P, dP ) (A, dA)

UF0(P, dP ) U(A, dA)

(P, dP )

η(P,dP )

Uf#

f

f#

commutes.
By definition of U , the morphism Uf# is equal to f#. Thus, we only need to prove that there exists a

unique Uf# with the properties needed.
In order for the triangle above to commute, Uf# must be defined by the assignment:

Uf# : [p]E′ 7→ fp.

To verify that Uf# is defined correctly we have to prove two properties:

(1) The value of the morphism Uf# at a given equivalence class does not depend on the choice of the
representative.

Let p, p′ ∈ (P, dP ) and dP (p, p′) = 0 :

dP (p, p′) = 0 implies dUA(p, p′) = 0 implies fp = fp′ by the definition of U.

(2) The morphism Uf# is non-expanding. Let [p], [p′] ∈ UF0(P, dP ):

dU(A,dA)(Uf
#([p]), Uf#([p′]))) = dU(A,dA)(fp, fp

′) ≤ dP (p, p′) = dP ′([p], [p
′]).

Thus, F0(P, dP ) together with η(P,dP ) is a free object on (P, dP ) for each (P, dP ) ∈ PMete and by Theo-
rem 1.3.4 functor F is a left adjoint. �

2.3.6 Proposition The category Mete has all coequalizers.2

Proof. Let A,B be extended metric spaces and let f, g : A −→ B be morphisms in Mete.
We have successfully proved that there exists a coequalizer of Uf and Ug in PMete.

UA UB C
Uf

Ug

c

By Theorem 1.3.2, the functor F as defined in Proposition 2.3.5 preserves all colimits. Thus F0C is a
coequalizer of FUf and FUg.

F0UA F0UB F0C
FUf

FUg

Fc

2This fact is an instance of a more abstract statement about reflective categories. You can read more about it in [7].
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2.3. Extended Pseudometric Spaces 27

Notice that we can define a natural transformation ε : FU −→ 1Mete . Define ε by components εA : F0UA −→
A. The morphism εA maps an equivalence class [x]E′ to its representative x. Definitions of U and F imply
that every [x]E′ consists of only one point. It is easy to see that ε is indeed a natural transformation, thus the
squares (1), (2)

F0UA F0UB

(1)

A B

εA εB

FUf

f

F0UA F0UB

(2)

A B

εA εB

FUg

g

(2.7)

commute.
Since each εA is invertible, we obtain an inverse natural transformation ε−1, thus the squares (3), (4)

F0UA F0UB

(3)

A B

ε−1
A ε−1

B

FUf

f

F0UA F0UB

(4)

A B

ε−1
A ε−1

B

FUg

g

(2.8)

commute as well.
We want to prove that F0C is not only a coequalizer of FUf and FUg, but also of f and g. To achieve

this goal, we have to define a morphism ? : B −→ F0C, which would coequalize f and g such that the universal
property is satisfied.

F0UA F0UB F0C

A B K

FUf

FUg

f

g

Fc

k

∃!m?

(1) To prove that F0C is a coequalizer for f and g, we will first show that Fc ◦ εB coequalizes f and g.

A B F0C
f

g

Fc◦ε−1
B

We will show that Fc ◦ ε−1
B ◦ f = Fc ◦ ε−1

B ◦ g:

Fc ◦ ε−1
B ◦ f = Fc ◦ FUf ◦ ε−1

A by (2.8)

= Fc ◦ FUg ◦ ε−1
A by the properties of coequalizer Fc

= Fc ◦ ε−1
B ◦ g by (2.8).

(2.9)

(2) Next step is to verify the universal property. Let K be an extended metric space and k : B −→ K such
that k ◦ f = k ◦ g. We want to prove that there exists a unique morphism m : F0C −→ K such that the triangle
in the diagram below

F0C

A B K

f

g

k

∃!m
Fc◦ε−1

B
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28 Chapter 2. Categories of Metric Spaces

commutes.
We will show that k ◦ εB coequlizes FUf and FUg:

k ◦ f = k ◦ g iff

k ◦ εB ◦ FUf ◦ ε−1
A = k ◦ εB ◦ FUg ◦ ε−1

A by (2.7) and (2.8) iff

k ◦ εB ◦ FUf = k ◦ εB ◦ FUg.
(2.10)

Thus by the universal property of Fc, there exists a unique m : F0C −→ K such that

m ◦ Fc = k ◦ εB .

Which is equivalent to
m ◦ Fc ◦ ε−1

B = k.

Thus m is the unique mediating morphism F0C −→ K for F0C together with Fc ◦ ε−1
B .

Hence F0C is a coequalizer for f and g and whole diagram below

F0C

A B K

f

g

k

∃!m
Fc◦ε−1

B

commutes. �

The following fact will be crucial in Chapter 3.

2.3.7 Theorem Mete is cocomplete.

Proof. We have proved that Mete has all coproducts in Proposition 2.2.3, so by Proposition 2.3.6 and
Theorem 1.2.12 we conclude that Mete is cocomplete. �
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Chapter 3

Vietoris-Rips Complexes and
Geometric Realization

In this chapter we will introduce the reader to the notion of a simplicial set and continue with defining Vietoris-
Rips complexes with a classical metric spaces approach. See [6] and [3] for a more thorough treatment.

Then we continue with more advanced category theory notions, which allow us to define Vietoris-Rips
complexes as a functor and define geometric realization as a categorical concept.

3.1 Brief Introduction to Simplicial Sets

We have already mentioned the concept of simplices in previous chapters. Now we will properly define them.

3.1.1 Definition Let ∆ be the category whose objects are finite, non-empty, linearly ordered sets [n] =
{0, 1, ..., n} with the usual ordering, we will refer to them as simplices. Morphisms in ∆ are order-preserving
functions (between those sets).

In Examples 1.1.3 we illustrated simplices and order preserving functions as plain sequences of numbers and
arrows between them. Now we will give them a geometrical interpretation.

A simplex (of dimension n) could be imagined as a set of (n+1) points generating a n-dimensional polyhedron.
So [1] could be imagined as two sides of a line segment, [2] — vertices of a triangle, [3] — vertices of a tetrahedron,
etc.

A map [1] −→ [2] defined by the assignment 0 7→ 0; 1 7→ 1; could be illustrated as a map from a line segment
to a triangle.

2

101

0

The simplex category ∆ is generated by two particularly important families of morphisms (maps) called
coface maps d and codegeneracy maps s.

3.1.2 Definition Coface and codegeneracy maps are defined respectively as

di : [n− 1] −→ [n] 0 ≤ i ≤ n; si : [n+ 1] −→ [n] 0 ≤ i ≤ n;

di(k) =

{
k, k < i,

k + 1, k ≥ i. si(k) =

{
k, k ≤ i,

k − 1, k ≥ i. (3.1)

29



30 Chapter 3. Vietoris-Rips Complexes and Geometric Realization

Thus di is the only (order-preserving) injection [n − 1] −→ [n], that ”misses” i; and si is the only (order-
preserving) surjection [n+ 1] −→ [n] that ”hits” i twice.

These morphisms satisfy several obvious relations:

djdi = didj−1, i < j,

sjsi = sisj+1, i ≤ j,

sjdi =


1, i = j, j + 1,

disj−1, i < j,

di−1sj , i > j + 1.

It is not difficult to verify that every morphism of ∆ can be expressed as a composite of coface and code-
generacy maps.

3.1.3 Remark Any simplex obtained as an image of a codegeneracy map si : [n + 1] −→ [n] is called a
degenerate [n+ 1]-simplex.

3.1.4 Definition A simplicial set is a presheaf ∆op −→ Set . More generally, for any category C , a simplicial
object in C is a functor X : ∆op −→ C .

Let X : ∆op −→ C be a simplicial set. It is standard to write Xn for the set X[n] and call its elements
[n]-simplices. We visualize an [n]-simplex x ∈ Xn as an n-dimensional polyhedron, whose (n + 1) vertices are
ordered 0, ..., n.

If X is a simplicial set, the maps

di = Xdi : Xn −→ Xn−1 0 ≤ i ≤ n;

si = Xsi : Xn −→ Xn+1 0 ≤ i ≤ n

are called face and degeneracy maps, respectively: each face map assigns, to each x ∈ Xn, an [n− 1]−simplex
di(x) ∈ Xn−1. Notice, that there are (n+ 1) such maps. By convention, the face di(x) is the one not containing
the i-th vertex of x.

To each x ∈ Xn, the degeneracy maps associate an [n+ 1]-simplex si(x) ∈ Xn+1. The [n+ 1]-simplex si(x)
has x as its i-th and (i+ 1)-faces. The intuition is that the projection that collapses the edge from the i-th to
the (i+ 1)-th vertex to a point returns the n-simplex x.

The morphisms di and si will then satisfy relations dual to the equations for coface and codegeneracy maps
in Definition 3.1.2.

We write sSet for the category of simplicial sets, which is simply the functor category [∆op,Set ] (recall
Definition 1.1.13), thus morphisms f : X −→ Y are natural transformations.

In fact, the data of a simplicial set are completely specified by the sets Xn and the maps di, si (with some
relations to be satisfied) in the sense of the following alternative definition.

3.1.5 Definition (Alternative) A simplicial set X is a collection of sets Xn for each integer n ≥ 0 together
with functions di : Xn −→ Xn−1 and si : Xn −→ Xn+1 for all 0 ≤ i ≤ n and for each n satisfying the following
relations:

didj = dj−1di, i < j,

sisj = sj+1si, i ≤ j,

disj =


1, i = j, j + 1,

sj−1di, i < j,

sjdi−1, i > j + 1.
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3.2. The Classical Approach to Vietoris-Rips Complexes 31

3.2 The Classical Approach to Vietoris-Rips Complexes

3.2.1 Definition ([4]) Given a metric space (X, dX) and a real number ε ≥ 0, its Vietoris-Rips complex is a
simplicial set with the set Vε(X, dX)n of [n]-simplices defined by

Vε(X, dX)n = {(x0, ..., xn) ∈ Xn+1 | max
i,j
{dX(xi, xj)} ≤ ε}.

Morphisms di are defined as follows:

di : Vε(X, dX)n −→ Vε(X, dX)n−1, 0 ≤ i ≤ n,

(x0, ..., xn) 7→ (xdi(0), ..., xdi(n−1)).

Morphisms si are defined as follows:

si : Vε(X, dX)n −→ Vε(X, dX)n+1, 0 ≤ i ≤ n,

(x0, ..., xn) 7→ (xsi(0), ..., xsi(n+1)).

Thus, an (n+ 1)-tuple (x0, ..., xn) is declared to be an [n]-simplex, whenever the set {x0, ..., xn} has a diameter
at most ε in the metric space (X, dX).

3.2.2 Examples The following are examples of Vietoris-Rips complexes:

(1) An abstract example. Having a metric space (X, dX) consisting of three points x, y, z and dX(x, y) =
3, dX(y, z) = 2, dX(x, z) = 5 and varying the parameter ε, its Vietoris-Rips complex is the following
simplicial set:

(a) ε ≥ 5

z

yx

(b) 3 ≤ ε < 5

z

yx

(c) 2 ≤ ε < 3

x

z

y
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32 Chapter 3. Vietoris-Rips Complexes and Geometric Realization

(d) 0 ≤ ε < 2

x

z

y

(2) An applied example [8]. Vietoris-Rips Complexes can be used for a modelling purposes in wireless net-
works.

Figure 3.1: Source [8]

A collection of sensor nodes generates a cover in the workspace as seen in the bottom part of the figure.
The Vietoris-Rips complex of the network is an abstract simplicial complex which has no localization
or coordinate data as seen in top part of the figure. In the example illustrated, the Vietoris-Rips com-
plex encodes the communication network as one [3]-simplex, eleven [2]-simplices, and seven [1]-simplices
connected as shown. The ‘holes’ in this Vietoris-Rips complex reflect the holes in the sensor cover.

3.3 Categorical Approach to Vietoris-Rips Complexes

In this section we describe Vietoris-Rips complexes with the means of category theory. We start with more
advanced category theoretical notions which will allow us to make several important conclusions about Vietoris-
Rips complexes.

3.3.1 Presheaf Categories and Adjoints

3.3.1 Definition ([1]) Given any functor D : D −→ K define the functor

D̃ : K −→ [Dop,Set ]

as follows:

(1) D̃ assigns to each object K in K a presheaf D̃K = K (D ,K) : Dop −→ Set .

(a) Given an object d in D , we define D̃Kd to be the hom-set K (Dd,K).

(b) Given δ : d −→ d′ in D , the map D̃Kδ is the map K (Dδ,K) : K (Dd′,K) −→ K (Dd,K) defined
by pre-composition with Dδ.

(2) The action of D̃ on morphisms of K is defined as follows:

Given ω : k −→ k′ the natural transformation

D̃ω = K (D ,K) −→ K (D ,K ′)

is defined by post-composition with ω.
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3.3.2 Remark It is easy to verify that the construction of D̃ in Definition 3.3.1 indeed yields a functor.

The functor D̃ : K −→ [Dop,Set ] will be the right adjoint of a functor ∗D : [Dop,Set ] −→ K . Explicitly,
the value of ∗ D at an object X of [Dop,Set ] is a particular type of a colimit called a coend. We will not
describe coends in their full generality but apply them in our special case.

3.3.3 Definition For any set S and object C of C , the copower S · C of C by S is the coproduct
∐
S C of

copies of C indexed by S.

3.3.4 Lemma For any C, Y ∈ C and S ∈ Set we have the following bijection

C (S · C, Y ) ∼= Set(S,C (C, Y ))

natural in Y .

Proof. Immediate from the properties of coproducts. �

In particular, we may form copowers Xd′ · Dd, for any d, d′ ∈ D and any X : Dop −→ Set . A morphism
f : d −→ d′ of D induces a map

Xd′ ·Df : Xd′ ·Dd −→ Xd′ ·Dd′,

defined by requiring that the following diagram:

∐
x′∈Xd′ Dd

∐
x′∈Xd′ Dd

′

Dd Dd′

injx′

Df

injx′

Xd′·Df

(3.2)

to commute for every x′ ∈ Xd′.
Intuitively Xd′ ·Df applies Df to the copy of Dd in the component corresponding to x′ ∈ Xd′ and includes

it in the component corresponding to x′ in Xd′ ·Dd′.
The morphism f : d −→ d′ also induces a map

Xf ·Dd : Xd′ ·Dd −→ Xd ·Dd,

defined by the universal property of coproducts:∐
x′∈Xd′ Dd

∐
x∈XdDd

Dd

injx′
injXf(x′)

Xf ·Dd

(3.3)

which maps the component corresponding to x ∈ Xd′ to the component corresponding to Xf(x) ∈ Xd.

3.3.5 Definition Consider the diagram whose objects are copowers Xd′ ·Dd for d, d′ ∈ D and X : Dop −→ Set ;
and whose arrows consist of morphisms Xd′ ·Df : Xd′ ·Dd −→ Xd′ ·Dd′ and Xf ·Dd : Xd′ ·Dd −→ Xd ·Dd
for each f : d −→ d′ ∈ D . A wedge under this diagram is an object e of K together with morphisms
γd : Xd ·Dd −→ e such that the squares

Xd′ ·Dd Xd′ ·Dd′

Xd ·Dd e

Xd′·Df

Xf ·Dd γd′

γd
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34 Chapter 3. Vietoris-Rips Complexes and Geometric Realization

commute for each f .

The coend, denoted by
∫ d
Xd ·Dd, is defined to be a universal wedge: having any other wedge e together

with morphisms γd, there exists a unique morphism m :
∫ d
Xd ·Dd −→ e such that the following diagram

Xd ·Dd
∫ d
Xd ·Dd

e
γd

∃!m

αd

commutes for all d ∈ D .

3.3.6 Remark ([6]) Equivalently,
∫ d
Xd ·Dd is a coequalizer of the diagram

∐
f :d−→d′ Xd

′ ·Dd
∐
dXd ·Dd

∫ d
Xd ·Dd,

ω

θ

where ω and θ are defined by the universal property of coproducts:

Xd′ ·Dd Xd′ ·Dd′

∐
f :d−→d′ Xd ·Dd

∐
dXd ·Dd

injf injd′

Xd′·Df

ω

Xd′ ·Dd Xd ·Dd

∐
f :d−→d′ Xd ·Dd

∐
dXd ·Dd

injf injd

Xf ·Dd

ω

where ω and θ are defined by the universal property of coproducts.
Any cocomplete category K thus has all coends in the sense of Definition 3.3.5.

Now we have defined everything we need to give a proper definition of ∗D.

3.3.7 Definition Define the functor ∗D : [Dop,Set ] −→ K for any cocomplete K as follows:

(1) Action on objects is defined by the assignment:

X ∗D =

∫ d

Xd ·Dd.

(2) If α : X −→ Y is a map of X : Dop −→ Set and Y : Dop −→ Set , then α ∗D : X ∗D −→ Y ∗D is defined
by the universal property of coends.

3.3.8 Remark Since the diagram below commutes (as we will show now), the morphism α : X −→ Y indeed

induces a wedge
∫ d
Y d ·Dd together with morphisms βd ◦ (αd ·Dd) from the diagram

Xd′ ·Dd Xd′ ·Dd′

Y d′ ·Dd Y d′ ·Dd′

Xd ·Dd

Y d ·Dd
∫ d
Y d ·Dd

Y d′·Df

Y f ·Dd

βd

βd′

Xd′·Df

Xf ·Dd

αd·Dd

αd′ ·Dd αd′ ·Dd
′

(3.4)

for X to the object Y ∗D, where each αd′ ·Dd is defined by the universal property of coproducts:

Dd

∐
x′∈Xd′ Dd

∐
y′∈Y d′ Dd

αd′ ·Dd

injx′

injα
d′ (x
′)

(3.5)
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By the definition of (3.3), (3.5) the following diagram:

Xd′ ·Dd Y d′ ·Dd

Dd

Xd ·Dd Y d ·Dd

αd′ ·Dd

αd·Dd

Xf ·Dd Y f ·Dd

injx′

injXf(x′)

injα
d′ (x
′)

injα
d′ (Xf(x

′))

(3.6)

is commutative.
So is the following diagram

Dd Dd′

Xd′ ·Dd Xd′ ·Dd′

Y d′ ·Dd Y d′ ·Dd′

injx′

αd′ ·Dd

injα
d′ (x
′)

Xd′·Df

Y d′·Df

αd′ ·D
′

injα
d′ (x
′)

injx′

Df

(3.7)

by definition of (3.2), (3.5).
Hence the universal property of the coend defines a map α ∗D : X ∗D −→ Y ∗D.

3.3.9 Theorem The functor ∗D is a left adjoint to D : K −→ [Dop,Set ] for any cocomplete K .

Proof. We will prove the adjointness of two functors by showing the bijection of sets

K (X ∗D,K) ∼= [Dop,Set ](X, D̃K)

for each X ∈ [Dop,Set ] and for each K ∈ K .

Each γ : X −→ D̃K ∈ [Dop,Set ](X, D̃K) is a natural transformation and thus consists of components

γd : Xd −→ D̃Kd. From the properties of natural transformation, we know that the following diagram

Xd′ K (Dd′,K)

Xd K (Dd,K)

γd′

γd

Xf K (Df,K) (3.8)

commutes for all f : d −→ d′.
Inspecting the elements we obtain the identity

x′ γd′(x
′)

Xf(x′) γd′(Xf(x′)) γd(x) γd′(x
′) ◦Df

Xf

γd′

K (Df,K)

γd
= =

for all x ∈ Xd′ for all d′ ∈ D .
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From the property of copowers from Lemma 3.3.4, we know that the following sets are naturally isomorphic:

Set(Xd, (D̃K)d) ∼= K (Xd ·Dd,K).

Thus there exists a bijection of sets defined by the assignment:

γd : Xd −→ (D̃K)d 7−→ γ′d : Xd ·Dd −→ K,

where γ′d is defined by the universal property of copower as follows:∐
x∈XdDd K

Dd

injx

γ′d

γd(x)
(3.9)

With this definition of γ′ the square

Xd′ ·Dd Xd′ ·Dd′

Xd ·Dd K

Xd′·Df

Xf ·Dd γ′
d′

γ′d

(3.10)

commutes for all d, d′ ∈ D as we show below. The object K together with the morphisms γ′d : Xd ·Dd −→ K
is thus a wedge.

To show that (3.10) commutes, we will show that

Dd

Xd′ ·Dd Xd′ ·Dd′

Xd ·Dd K

Xf ·Dd γ′
d′

γ′d

Xd′·Dd

injx′

commutes for all f : d −→ d′ and x′ ∈ Xd′.
Observe that the diagram

Dd Xd′ ·Dd

Xd ·Dd

K

injx′

Xf ·Dd

γ′d

injXf(x′)

γd(Xf(x′))

commutes: upper triangle from the definition of Xd · Dd (see (3.3)), lower triangle from the definition of γ′d
(see (3.9)).

And that

Dd Dd′

Xd′ ·Dd Xd′ ·Dd′

K

Df

injx′

Xd′·Df

injx′

γ′
d′

γd′ (x
′)
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commutes: the top square by the definition of Xd′ ·Df (see (3.2)), the right triangle by γ′d′ (3.9).
Since the following diagram

Dd Dd′

K

Df

γd′ (x
′)

γd(x)

commutes from the definition of γd (see (3.8)), we have proved that the diagram (3.10) commutes.
An object K together with morphisms γd, d ∈ D is thus a wegde and the universal property defines us a

unique morphism γ′ :
∫ d
Xd ·Dd −→ K.

Hence there is a bijection
[Dop,Set ](X, D̃K) ∼= K (X ∗D,K)

γ : X −→ D̃Kd 7−→ γ′ :

∫ d

Xd ·Dd −→ K.

It is straightforward to show that this bijection is natural in K. �

3.3.2 Vietoris-Rips Complex and its Geometric Realization

In this section we are already equipped with all the category theory we need. Here we instantiate the general
theory introduced in Section 3.3.1.

Our first goal is to give a categorical definition of a Vietoris-Rips complex. Intuitively speaking, Vietoris-Rips
complex is a simplicial set generated from a metric space in a special way: the intuition from Definition 3.2.1 is
that we have a certain sieve, which only allows simplices with a certain diameter through it and those simplices
then construct a simplicial set.

Now we will approach this from another point of view. Refer to objects of ∆ as “abstract simplices”. We
will interpret each abstract simplex as a certain metric space. In order to do that we will define a functor
Jε : ∆ −→ Mete.

Since Jε will be a functor, it will not only assign to each abstract simplex [n] a metric space Jε[n] (the
“discrete simplex metric space”), but the abstract structural relations between simplices of various dimensions
will be preserved.

This “interpretation” functor Jε will be then used to describe the construction of a Vietoris-Rips complex
of a metric space.

3.3.10 Definition Given ε ≥ 0 we define the discrete simplex functor Jε : ∆ −→ Mete as follows:
The object [n] is mapped to the metric subspace ({ε · e0, ..., ε · en}, d) of Rn+1 equipped with the Manhattan

distance, where (e0, ..., en) denotes the canonical basis of Rn+1.
The action of Jε on morphisms is defined by the assignment on the coface and codegeneracy morphisms in

∆:

(1) the morphism di : [n− 1] −→ [n] is mapped to:

Jεd
i : Jε[n− 1] −→ Jε[n]

({ε · e0, ..., ε · en−1}, d) −→ ({ε · e0, ..., ε · en}, d), where

ε · ej 7→ ε · edi(j);

(2) the morphism si : [n+ 1] −→ [n] is mapped to:

Jεs
i : Jε[n+ 1] −→ Jε[n]

({ε · e0, ..., ε · en+1}, d) −→ ({ε · e0, ..., ε · en}, d), where

ε · ej 7→ ε · esi(j).
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We will refer to this functor as to the interpretation of a simplicial category.

3.3.11 Definition Given an extended metric space (X, d) and ε > 0, we define the Vietoris-Rips complex of

(X, d) to be the presheaf J̃ε(X, d) : ∆op −→ Set .

3.3.12 Remark The beauty of category theory lays in such short and powerful definitions like this one. Let
us compare this definition to Definition 3.2.1 from Section 3.2.

The functor J̃ε(X, d) : ∆op −→ Set maps an object [n] ∈ ∆ to a hom-set Mete(Jε[n], (X, d)) (refer to the

Definition 3.3.1 for a full description of J̃ε). Thus we get a set of maps from a metric space of n points, where
the distance of each two separate points is exactly ε.

To have a map f : Jε[n] −→ (X, d) ∈ Mete(Jε[n], (X, d)) means to get a sequence of (n+ 1) points of (X, d),
with each pair having distance at most ε (a “discrete ε-simplex” in (X, d)). To have all such maps is equal to
having all such sequences. Definition 3.3.11 therefore yields the same data as Definition 3.2.1.

The functor Jε interprets abstract simplices as metric spaces. These simplices can be thought of as “building
blocks” of a simplicial set. A natural question arises: if we can interpret separate simplices as metric spaces,
can we extend this interpretation from simplices to simplicial sets? That is, can we use the discrete simplex
functor Jε to give a “geometric realization” of any simplicial set X?

The answer is positive: we just need to “glue together” the interpretations of the simplices of X based on
the relations between the simplices in X.

Moreover, no further work is needed — we use the results of Section 3.3.1 to define the “geometric realization
of X”, namely we use the existence of a left adjoint to the “Vietoris-Rips functor” J̃ε.

3.3.13 Theorem The functor J̃ε : Mete −→ sSet has a left adjoint ∗ Jε : sSet −→ Mete. We call ∗ Jε the
ε−geometric realization functor.

Proof. The category Mete is cocomplete, sSet is a presheaf category [∆op,Set ], and Jε is a functor of the form
∆ −→ Mete.

Therefore Theorem 3.3.13 is an instance of Theorem 3.3.9. �

3.3.14 Example Let X be a simplicial set

e4

e3
v4

v3e2

e1e0

t

v1

v2

v0

generated by the non-degenerate simplices t ∈ X2; e0, e1, e2, e3, e4 ∈ X1; v0, v1, v2, v3, v4 ∈ X0, satisfying the
obvious face conditions (e.g. d0(e2) = v2).

We will now describe what the coend construction from Definition 3.3.7 amounts to for the simplicial set X.
Simplicial sets can be imagined as a collection of simplices together with the information about face and

degeneracy relations between the simplices. The first step in the geometric realization of X is to construct a
collection of interpretations of abstract simplices in X. We obtain the copower

Xn · Jε[n],

(i.e., the extended metric space obtained as the Xn-fold coproduct of Jε[n]), for each [n] ∈ ∆.
The non-degenerate simplices in X are thus interpreted as ten interpretations of [0]-simplices, five interpre-

tations of [1]-simplices and one interpretation of a [2]-simplex as shown below:
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ε

ε

ε

ε

ε

ε ε

ε

Since Mete has all coproducts, we can form the coproduct
∐

[n]∈∆Xn · Jε[n], the extended metric space

formed by the disjoint union of Xn · Jε[n] indexed by all objects [n] ∈ ∆. Recall from Remark 3.3.6 that this is

the first step in construction of the coend
∫ [n]

Xn · Jε[n] (the geometric realization of X).
In the next step of geometric realization the face and degeneracy relations present in X are used to “glue

adjacent simplices together”: more formally, we form a quotient of the extended metric space
∐

[n]∈∆Xn ·Jε[n].
Of course, the resulting quotient space is precisely the coend

X ∗ Jε =

∫ [n]

Xn · Jε[n].

The informal notion of gluing simplices together is captured formally by describing an equivalence relation
on the set of points of

∐
[n]∈∆Xn · Jε[n]. Recall from Section 2.3 that forming a quotient of an extended metric

space is a two-step process.
We will now describe the equivalence relation that gives rise to the quotient extended pseudometric space,

using the fact that the second step (forming an extended metric space) consists only of an identification of
points with mutual distance 0).

Since X ∗ Jε is a coend, the diagram

Xm · Jε[n] Xm · Jε[m]

Xn · Jε[n]
∫ [n]

Xn · Jε[n]

Xm·Jεf

Xf ·Jε[n] γ′m

γ′n

(3.11)

has to commute for each f : [n] −→ [m] ∈ ∆, where γ′ is the universal wedge of the coend
∫ [n]

Xn · Jε[n].
Element-wise, the images of any point in Xm · Jε[n] along both paths in diagram (3.11) have to be equal.

Recall from Remark 3.3.6 that the coend
∫ [n]

Xn · Jε[n] can be computed as a quotient of the coproduct∐
[n]∈∆Xn · Jε[n]. Informally this means that certain points of the metric space

∐
[n]∈∆Xn · Jε[n] are “glued

together”.

The equivalence relation giving rise to the quotient metric space
∫ [n]

Xn ·Jε[n] is therefore defined using the
pairs

Xm · Jε[n] Xm · Jε[m]

Xn · Jε[n]

Xm·Jεf

Xf ·Jε[n]

of morphisms for each f : [n] −→ [m] in the following way.
For every point (x, ε · ei) ∈ Xm · Jε[n] we obtain a pair (Xf(x), ε · ei) and (x, Jεf(ε · ei)) = (x, ε · efi) of

points in
∐

[n]∈∆Xn ·Jε[n] which are to be equal in
∫ [n]

Xn ·Jε[n]. The set of all such pairs generates the desired

equivalence relation. Compare this description of the equivalence relation to the one in [3].
For example, given any x ∈ X1 and choosing f = d0 : [0] −→ [1], the following two points will be equal in∫ [n]
Xn · Jε[n]:

(d0(x), ε · e0) ∼ (x, ε · ed0(0)). (3.12)
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The element d0(x) ∈ X0 is the endpoint of the [1]-simplex x in X. Being a [0]-simplex, d0(x) is interpreted
as a point in X0 · Jε[0]. However, the [1]-simplex x is interpreted as a pair (x, ε · e0), (x, ε · e1) of points with
distance ε in X1 · Jε[1].

Obviously, the interpretations of d0(x) and of the endpoint (x, ε · e1) (of the interpretation of x) should
coincide. This is the geometric meaning of the equivalence (3.12).

The family of diagrams 3.11 then represents all the identifications of points in
∫ [n]

Xn · Jε[n] given by all
morphisms in ∆.

Thus the ε−geometric realization of X depicted above is the following metric space:

3ε

ε

2ε

ε
ε

ε

3εε

x4
x3

x1

x2

x0

carried by points {x0, x1, x2, x3, x5} with the metric denoted in the figure.
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Summary and Future Work

In this thesis we have laid down the basics of the categorical approach to Vietoris-Rips complex.
The foundational observation was that one can work within the category Mete of extended metric spaces

and non-expanding maps. We showed that the categorical properties of Mete ensure the basic correspondence
between spaces and simplicial sets. Namely, we gave the “singular construction” that yields a Vietoris-Rips
complex for every metric space, and the geometric realisation that produces a metric space out of a simplicial
set.

Moreover, the above two processes are adjoint to each other in a precise sense of Category Theory.
In fact, we assume that one can build up homological theories starting with our setup. However, such a

general theory would require mastering much deeper techniques of homology theory and category theory than
those presented in the thesis. We therefore postpone this topic to future work.
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