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Abstract

While most studies in computer vision fo-
cus on closed set recognition, where the
number of possible categories is fixed and
known a priori, this study provides new
insights into open set recognition. Open
set problems assume that there is an un-
limited number of categories, and most of
them are unknown. This work contributes
to our understanding of the unknown and
how it can be applied in the object detec-
tion setting. To date, research on open
set recognition has been focused chiefly
on images or sequences of images. The
novelty of our work lies in an adaption
of 3D object detection to an open set set-
ting. We analyse the detections from the
popular instance segmentation framework,
discuss the object detection performance
on different examples, and show how un-
known objects can be detected. We de-
scribe our approach to build a 3D open set
object detection system, implement it in
the simulation, and provide tools for eval-
uation. Moreover, this work demonstrates
the method of learning novel classes with-
out manual data labelling. We hope that
the results of our work will bring robots
closer to the ability to know that they do
not know, and benefit from this finding.

Keywords: open set recognition, object
detection, semantic segmentation,
computer vision

Supervisor:
PhD.
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Abstrakt

Zatimco vétSina vyzkumnych praci v ob-
lasti pocitacového vidéni je zamérena na
rozpoznavani v omezeném svété, v némz
je pocet moznych kategorii pevné stano-
veny a predem dany, tato prace poskytuje
nahlédnuti do rozpoznavani ve svété bez
omezeni. Ulohy ve svété bez omezeni pied-
pokladaji, ze pocet kategorii je neomezeny,
a vétsina z nich je neznamé. Tato prace
prispiva praveé k porozuméni neznamého a
toho, jak miize byt pouzito pro detekci ob-
jekti. Vyzkum rozpoznavani ve svété bez
omezeni je v soucasnosti zaméren zejména
na obrazky nebo na posloupnosti obrazkiu.
Originalita této prace spociva v adaptaci
detekce 3D objektt do svéta bez omezeni.
V préci jsou analyzovany detekce z po-
pularniho frameworku pro segmentaci in-
stanci objektt, je diskutovana kvalita de-
tekci objektil na riznych prikladech a je
dale ukazano, jak lze detekovat nezname
objekty. V praci je navrzen a popsan sys-
tém rozpoznavani 3D objektl ve svété bez
omezeni, jeho implementace v simulaci a
prostiedky pro vyhodnoceni. Kromé toho
tato prace demonstruje metodu uceni no-
vych t¥id bez ru¢niho anotovani dat. Vy-
sledky této prace maji potencidl privést
roboty bliz ke schopnosti védét, ze néco
nevi, a moznosti tento poznatek vyuzit.

Klicova slova: rozpoznavani ve svété
bez omezeni, detekce objektu,
segmentace instanci objekti, pocitacové
vidéni
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Chapter 1

Introduction

. 1.1 Motivation

When researchers develop new technologies, they are usually inspired by
natural human behaviour because it is easy to test some hypothesis by
observing the decisions we are making in different life situations. Imagine
that we walk around some object that we have never seen before, trying to
determine what class it belongs to. Even for a human, sometimes one glance
at the object is not enough to correctly classify it. 90% of the time while
observing an object, we can name it confidently, but we cannot determine what
it is just from a few viewpoints. Based on these observations, we will probably
conclude that this object is, for example, a table and will use it as intended.
However, what if, from each point of view, the object looks differently? In
such a case, the logical conclusion would be that this object is unknown.
This thought experiment has led us to believe that robots can make the
same decisions by themselves in similar scenarios. They can exploit multiple
observations made from different viewpoints. The capability of identifying
unknown objects will allow robots to continuously learn new object classes only
by interacting with humans and the environment. Introducing an “unknown”
class to modern systems can prevent them from making wrong or dangerous
decisions. If a robot sees a grenade for the first time, it is much safer for it to
classify this object as “unknown” than give it the label “apple”, even though
some grenades look very similar to apples.

Recent research in computer vision is mainly aimed at closed set problems,
where there is an assumption that the train and test split of the dataset
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contain the same set of possible categories. Many modern recognition systems
assume the world is static and closed, so all classes are known a priori. For
this reason, most of the recent solutions are forced to choose between a small
closed set of possible decisions. This often leads to unwanted consequences
such as wrong decisions about novel objects. For example, many object
detection systems cannot deal with an unlimited number of classes in the real
world, as noted in [10].

There are works that reformulate the recognition setting to an open set
[42, 1]. Open set problems assume that there are unknown categories that
should be treated differently from known ones. Moreover, the identified
unknown objects can be incorporated into the system to extend the knowledge
about existing classes. Some works already made decent progress in open-set
problems [42] 2, 3] 32], but most of them used academic datasets containing
only unrelated images. By contrast, we extend an open set setting to a 3D
world, where much more valuable features can be extracted. Unlike previous
studies, we exploit the appearance of the same object in different conditions
to reason about it.!

. 1.2 Our contribution

Our key contributions are:

8 We study open set recognition from the new point of view. We show
how outputs from the object detector can be used to determine whether
some 3D object is unknown.

8 We formalise Open Set 3D Object Detection. Based on previous works
in object detection and open set recognition, we define the new problem
and discuss possible solutions.

® We propose our approach and create simulation with close-to-real condi-
tions for evaluation. We conduct experiments in simulation to demon-
strate the performance of the proposed approach

® We suggest a method for learning novel classes and describe the dataset
generation process without manual data labelling.

!The code is accessible at https://github.com/sokovninn/learning-unknown
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B 1.3 Short overview of chapters

This work is organised as follows:

® In Chapter 2| we review and categorise recent advances in open set
recognition, object detection and semantic segmentation to build a
theoretical base for our approach.

8 Chapter |3| discusses the representation of unknown objects, formalises
our problem as open set 3D object detection and proposes our approach
to solve this task.

® In Chapter 4| we describe semantic segmentation solution used to reason
about single images, our modifications and talk about other required
tools to build the whole pipeline.

® Chapter |5 shows the results of detecting 3D objects in an open set setting.

® Finally, we summarise our results and talk about future steps in open
set 3D object detection in Chapter [6l



Chapter 2

Related work

B 21 Open set and open world recognition

If we make a common assumption that the labels are drawn from the same
space during the train and test time, then we assume that the given environ-
ment is static. This refers to a closed set recognition. There is significant
progress in solving such tasks with a finite number of classes. However, this
assumption does not hold for the real world in which there is an unlimited
number of labels that appear only during the test time. Adding an “unknown’
class requires a classifier to classify the seen classes while dealing with unseen
ones accurately. This type of task refers to open set recognition [I3]. In
real-world scenarios, the robot only has incomplete information about the
world and needs to successfully divide objects into known and unknown to
be able to acquire knowledge about previously unseen objects.

i

B 2.1.1 Open set classification

The main difference between open set and multiclass classification is that
open set classifiers must label data far from any known class as unknown.
The capability of rejection is very crucial in this setting. In [42] this problem
is firstly formalised, and a 1-vs-set machine based on SVM is developed to
deal with unknown classes. In this study, the open set risk was introduced to
measure the risk of incorrectly labelling samples far from known classes. In [2]
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OpenMax approach was introduced, which estimates the probability of input
being unknown. OpenMax extends SoftMax to an open set using Weibull
CDF probability on the distance between the final feature vector and vectors,
representing all classes computed at the training time. In the following
work [12] Generative OpenMax was proposed. This approach uses generative
adversarial networks (GANSs) to synthesise images from an unknown class.

In [27], it was pointed out that most of the existing datasets comprise
so-called head, tail, and open classes. Head classes are the most represented
classes. Tail classes are underrepresented, and open classes are all other
classes that may be encountered at the test time. The distribution of these
classes is often long-tailed and open-ended. Therefore, the nature of modern
datasets can lead to confusion between the tail and open classes if we use
a method such as OpenMax. The approach in [27] relates visual features
between head and tail classes and more successfully rejects unknowns. In
recent works, self-supervised [34] and unsupervised [48] approaches were
studied to learn more informative features that help to distinguish known
and unknown classes. Works [9} 2], 36] consider the open set classification
problem as out-of-distribution detection, where the terms in-distribution (or
inlier) and out-of-distribution (or outlier) examples are used to describe the
open set nature of real data.

B 2.1.2 Open world classification

Open world setting requires a recognition system to be capable of continuously
finding novel classes and being able to update itself with additional object
categories with minimum downtime. Open world recognition was presented
and formally defined in [I]. In this setting, the system should be able to
classify known and unknown classes correctly and incrementally learn new
classes using labelled instances, e.g. provided by a human. This type of
scalable system can continuously update itself and increase its knowledge
about the open world.

In [I] Non-Outlier (NNO) algorithm was presented. NNO extends existing
incremental learning approaches that use Nearest Class Mean (NCM) [29, 39]
by transforming the closed set problem to an open set. One representative
example of an open world problem is described in [35], where the NCM prin-
ciple was combined with object tracking and face recognition to incrementally
identify new faces, memorise them, and then track these faces on video.
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B 2.1.3 Open set detection

In [I0] Dhamija et al. noticed that though many modern object detectors
perform well on academic datasets, they fail in the real world. Most detectors
produce false detections identifying unknown objects as some of the known
classes with high confidence. Although these systems were trained to reject
everything other than classes of interest, e.g. by using additional background
class [14], 38, 26] that represents area without any object, unknown samples
are usually classified as known ones. These types of errors are referred to as
false positives or open set errors. Dhamija et al. [I0] states that open set
detection is just starting to develop and is far from being solved.

However, there are some attempts to solve this problem. One of the
promising approaches is extracting epistemic uncertainty from the deep
learning model. Epistemic uncertainty is caused by lack of knowledge and can
be reduced by providing new data [§]. Some of the most relevant approaches
are based on sampling-based techniques such as Monte-Carlo Dropout [11],
or Deep Ensembles [20]. In [3I], 30] MC Dropout is used, that is, performing
inference multiple times while dropout is enabled and then evaluating multiple
results. In [20] several distinct models process the data, and their outputs are
combined to measure uncertainty. However, sampling-based techniques are
computationally expensive as they process the same data multiple times and
thus cannot be used in real applications. In [33] Miller et al. propose GMM-
Det method that requires only one inference to measure uncertainty. This is
achieved by adding an anchor loss [32], which is used for more appropriate
clustering in the feature space, to the total loss during training.

B 2.1.4 Open world detection

The following work is the most relevant for our task. Open World Object
Detection problem was recently formulated in [I7]. In this setting, the model
is tasked with detecting both known and unknown classes and incrementally
learning novel classes without forgetting the old ones. This problem is the
most challenging compared to the ones described above because it includes
three independent research areas: object detection, open set recognition, and
incremental learning. The solution in [I7] is based on modifying the object
detector by 1) adding an explicit unknown class to the dataset, 2) adding the
contrastive clustering term to the loss, which helps to learn discriminative
clusters, 3) adding energy-based unknown identifier, and 4) storing a balanced
set of representatives of each class to mitigate forgetting.
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B 2o Object detection

The task of object detection is to localise objects on the image by assigning
to them tight bounding boxes and confidence scores. At the same time,
locations with no objects should be ignored. There are two main types of
object detectors: two-stage and one-stage. Fast R-CNN [14], and Faster
R-CNN [38] are some of the representatives of the two-stage approach. The
main idea is that firstly CNN processes the image to generate regions of
interest (Rol). Then, fixed-length vectors are extracted from each Rol. And
finally, a sequence of fully connected layers outputs the classification and
bounding box for each Rol. This approach is sequential and, therefore, hardly
parallelisable. Thus, in this case, it is hard to achieve real-time speeds.
One-stage approaches like YOLO [37], SSD [26] or RetinaNet [23] focuses
primarily on speed while sacrificing accuracy. One-stage approaches remove
the second stage and leverage the accuracy gap in other ways, e.g. by strong
data augmentation.

B 2.3 Instance segmentation

Computer vision tasks of this type are more challenging than others because
they combine other two kinds of problems: 1) object detection, where the goal
is to classify each object in the image and find the corresponding bounding
boxes, and 2) semantic segmentation, where each pixel should be classified into
a set of labels without differentiating object instances. Many of the existing
methods to solve instance segmentation are two-stage, which means they are
built from 2 sequential blocks. Firstly, they localise objects using bounding
boxes, and then inside these boxes, semantic segmentation is applied.

Approaches like Mask R-CNN [I5] can not achieve real-time performance.
A better solution for real-time instance segmentation is YOLACT [3], which
is used in our work. YOLACT is a one-stage method that is less accurate
but is much faster than most state-of-the-art techniques. YOLACT does
the same thing as SSD [26] or RetinaNet [23] do for the object detection - it
removes the second stage and makes a higher level of parallelisation possible.
Moreover, there are some extensions of YOLACT like YOLACT++ [4] or
YolactEdge [25] that improve the model in both accuracy and speed. The
general idea under the object detection and instance segmentation is the
same - localisation of objects in the image. Although YOLACT is an instance
segmentation model, we will refer to it as an object detector.



Chapter 3

Our approach

This chapter is dedicated to the formal definition of the problem and a general
description of how our method works.

B 31 Formalising unknown

In the object detection setting, according to [43], the infinite set of possible
object classes can be divided into three categories:

1. Known classes, i.e. classes that have labelled instances in the dataset
(positive examples that the detector is trained to detect).

2. Known unknown classes, i.e. classes for which examples are present in
the dataset and that are explicitly or implicitly labelled as negatives.
Usually, they are part of the background, and the detector is trained to
ignore them.

3. Unknown unknown classes, i.e. classes unseen at training time. The
detector is not trained to ignore them.

In the open set object detection, there are the following types of errors:
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® Closed-set errors
Known class misclassification
Duplicate classification

Background (known unknown) detection

® Open-set errors

Detection and misclassification of instances of unseen classes (un-
known unknown)

The problem of this categorisation is that it is almost impossible to deter-
mine whether some unknown object is present in the dataset or not. Let us
suppose we have a large-scale training dataset without labelled instances of
the class “headphones”. If there is at least one object “headphones” in one
of the thousands of images, the class “headphones” automatically becomes
known unknown. If we will detect this unknown object as known, it is hard
to define the type of error: open-set or closed-set. To determine the type of
error, we need to label each of the millions of objects in the dataset, which is
a highly time-consuming process.

In [10] there is a slightly different definition of the unknown with respect
to objects. The infinite space of labelled objects ) can be divided into:

1. Knoun K C)Y

Krx C K: Known known, i.e. object views present in the dataset.
The model is trained to detect them.

Ky C K: Unknown known, i.e. novel views of trained objects. They
are usually contained in a test set.

2. UnknownU =Y\ K

U CU: Known unknown, i.e. background, garbage or undesirable
object views. The detector is trained to ignore them.

Uy =Y\ (Kx UKy UUk) =U \Ug: Unknown unknown, i.e. views
of objects, which classes are not represented in the training dataset.

Modern object detection datasets contain many unlabelled objects, and
it is hard to guarantee that object in the test is truly from Uy. To address
this problem Dhamija et al. [10] introduce an additional category mixed
unknown Uy; C Uxg UUy. This category represents unlabeled and unseen
object views that are not truly background (e.g. sky, grass, walls, or unseen



3.2. Problem specification

background). As mentioned above, the presence of mixed unknowns cannot
be easily avoided, so modern solutions must be capable of dealing with them.

Before defining the unknown, we need to clarify what we understand under
the term “class”. All possible semantic classes can be divided into things and
stuff [5]. Thing classes have a specific size, shape, and identifiable parts (e.g.
car, person). Stuff classes are amorphous and do not have distinct parts (e.g.
sky, grass). Our work aims to identify things, so in the following text, by
“class” we mean “thing class”.

We use the strong sides of both approaches and define the unknown as
follows:

1. Known classes K: classes that have labelled instances in the training
dataset. A known object (or simply known) is an instance of a known
class.

2. Unknown classes U: classes which are not trained, no example of
these classes is labelled. Instances of these classes might be present in
the background at training time. U is very similar to mixed unknown
Ups. An unknown object (or simply unknown) is an instance of unknown
class.

B 3.2 Problem specification

The closest problem setting to ours is Open World Object Detection introduced
n [I7]. Let us formalise our task definition in this section.

B 3.2.1 General problem

First of all, we have a set of known classes K = {1,...,C} where C is the
number of classes present during the training time. Furthermore, there is an
unlimited set of unknown classes U = {C'+ 1, ...} which may be encountered
during the inference. Let 0 be the label associated with an “unknown” class.
Each known class is by assumption represented in the dataset D = {X,Y'}
with cardinality |D| = M where X is a sequence of images X = {I1,..., Iy}
and Y is a sequence of matching labels Y = {Lq,...,Ly/}. L; encodes k;

10
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instances y1,...,y, present in an image I;. Each label y; is represented as
yj = [u,v,w, h,c, s] where u, v are the coordinates of the center of bounding
box, w,h are the width and height of the bounding box, ¢ is the class
of the object and s is a segmentation mask (can be omitted for default
object detectors). The above refers to the object detection model My, which
produces predictions for a single image in each timestep. Thus, it has neither
the capability of reasoning about image sequences nor comprehension of the
3D environment.

The observer is placed into the real or simulated 3D scene, which contains
N, objects. Each object is represented by a pair (d,l) where d is a 3D
coordinate of the object position and [ is a label from the set S = {0} U K.
The choice of the object representation will be discussed further in Section
3.5.2. The observer can move around the scene to observe objects and reason
about them. In each timestep t, the observer can receive the information
from its sensors and process it.

The task is to localise and correctly assign a label from S to each object in
the scene by a metaclassifier M,y,.

The problem specification assumes that the observer can access both the
object detector My and a meta-classifier M,,. The meta-classifier can use all
the information observed from the scene and all outputs of the object detector.
In essence, M, is intended to solve the core task, which is: based on My
outputs made from the different viewpoints for a single object {y,..., ¥}
decide whether an object is known, formally has a class from the set K, or
has a class “unknown”.

When the observer finds unknown objects {uy, ..., u,} it can ask the oracle
to provide true labels of these objects and optionally query the dataset with
training examples containing only instances of the found unknown objects
to update My. Alternatively, the observer can construct a dataset by itself,
for example, by doing a 3D reconstruction of the objects and creating a
dataset using simulations with a wide range of augmentations. Retraining
should extend the observer knowledge about existing classes. Formally, after
updating itself with new classes, My can identify test instances belonging to
some class from the actualised set K’ = KU{C +1,...,C + n}. Therefore,
M, can assign some of the classes S" = {0} U K’

11
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B 3.2.2 Meta-classifier formalisation

Formally meta-classifier M,, should be measurable classification function
f: R~ S, where f € F and d is the dimension of the feature vector
extracted from multiple outputs of M. F : R% — S is suitably smooth space
of classification functions. Let z € R?, y € K, fy(x) > 0 when class y is
recognised, f,(z) =0 when class y is not recognised (classified as unknown).
The core of our open-set recognition task is to find a function f that minimises
the open set risk defined in [42]. Let us adopt the general definition of open
set risk.

One part of the task is to not label unknowns as knowns. For this, we
can define the open space risk. If we consider the space of all features Sp as
a large ball, which contains both open space O of unknowns and all of the
positive training examples (knowns), open space risk Ro(f) for class y can
be defined as follows:

According to [43] open space O is the space sufficiently far from all known
positives examples [z1,...,2zy] and can be defined as follows:

O = SO — U BT(QSZ)

iEN

where B,.(z;) is a closed ball of radius r centered around training example
Zy.

The more we label open space as known, the greater is the open space risk.
Open space risk is considered to be the relative measure of positively labeled
open space compared to the overall measure of positively labeled space (which
includes the space near the positive examples). We need to minimise it. At
the same time, we want to minimise the empirical risk R, on the training set
T to keep the prediction accurate in closed set terms. T might contain both
labelled knowns and unknowns or only knowns.

Our goal is to balance the open space (unknown) risk with the empirical

12
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(known) risk. In other words, the optimal function f can be found by
minimising the open set risk:

f=argmin{Ro(f) + AR(f(T))}, where X is normalisation constant
f

. 3.3 Unknown classification discussion

We consider unknowns as objects that belong to classes that are not sufficiently
represented by My. We exploit the false positive errors of the detector to
reason about the objects (Figure 3.1). There are 3 main reasons that might
cause problems with class representation:

® Absence of labelled instances.
® Small diversity of possible object appearances in the dataset.

® Weak generalisation capacity of the detector.

In addition, some class representations in the feature space may be very
close to each other, e.g. “skateboard” and “surfboard”. In this case, we can
measure the similarity between these classes and make the decision based on
it. If we train the classifier for this task, we should consider class similarity
when computing the loss. However, it is out of the scope of our work.

B 34 Approach overview

The main components of our approach are illustrated in Figure The
core idea is that at each timestep, YOLACT processes an image and outputs
detections. These detections are then backprojected to 3D and aggregated
into clusters. When clusters contain enough detections, the meta-classifier
makes the decision based on all object observations. The final result is the
position of the object and the assigned label from the set S = {0} U K.
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Figure 3.1: Open set problem illustration. Each point represents a different
view of some object. The closer a point is to the centroid of the blob - the more
confidence score is. a, b, ¢ are views of known objects classified correctly almost
all the time. Unknowns can be divided into several groups by their distance
to decision boundaries and their properties. x1,xo,x3 - views of an unknown
object that often has confusing labels and does not have a clear classification.
Y1,%Y2,ys3 - views of an unknown object that has a consistent classification in
different conditions but with low confidence. z1, 22, 23 - views of the unknown
object that are far from all known classes and most of the time “invisible” for
the detector. Such unknowns are undetectable, which means that they are
consistently classified as background.

B 35 Approach details

In this section, we discuss each part of the system in detail.

B 3.5.1 Backprojection from images to 3D

Our system needs to have access to the absolute 3D coordinates of the points
captured by RGB sensors. Understanding the nature of 3D objects and
the ability to measure the distance between them is essential in our task.
When an RGB camera captures an image of the scene, the agent loses depth
information. This happens because 3D points are mapped onto a 2D plane.
Depth information, which is essential in our case, can be obtained using stereo
cameras or depth sensor. In the simulation, our agent has access to a depth
image of the scene. Given the RGB image, depth image, and sensor positions,
we want to make an inverse projection from the 2D to 3D space. It can be
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Figure 3.2: Scheme of our approach. Details of the YOLACT architecture will
be discussed in Section |4.1.1..

easily done by using inverse extrinsic and intrinsic matrices of cameras.

Firstly, we need an intrinsic camera matrix K that describes the camera’s
internal parameters:

fz 8 Dz
K=10 fy, py
0O 0 1

where f, and f, represent focal length, p, and p, represent principal point, s
is the skew coefficient between x and y axis.

In further computations, we need our intrinsic matrix to have a shape 4x4,
so we add an extra row [0,0,0, 1]. Moreover, we flip the sign of the element
at position (3,3) to correspond to the coordinate system in the simulation.
With the simulated camera parameters, our final intrinsic matrix is:

fo 00 0
, o £ 0 0
K=1o 0 -1 0
0 0 0 1

To compute an extrinsic matrix, we need a rotation matrix R that describes
the camera’s orientation with respect to the world coordinate system and
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column vector T' describing the camera’s centre in world coordinates:

rir T2 713 3]
R=|ro1 roa 1ro3 T = |to
31 T32 733 t3

Now we can produce an extrinsic matrix:
RT C
0 1

where C = —R”T and extra row [0,0,0,1] is added to make the matrix
square.

Finally, to compute the 3D coordinates [z, Y, zw] of the 2D point on
RGB image with coordinates [z,y] in pixel space and its depth on depth
image z in meters, we use this equation:

Tap Tz

-1
vo| _ |BY C| 1|y
Zw 0 1
1 1

B 3.5.2 Object representation and clustering

In the standard formulation of 3D object detection, the task is to assign
a 3D bounding box to localise the object. Our approach is much simpler.
We use the centroid of the first mask given to the object in the image as
an initial centre of the cluster. The cluster is a sphere that represents the
object. The 3D absolute coordinate of the centroid is then associated with
the predicted label. All subsequent detections with centroids close enough
to some of the existing cluster centres are assigned to this cluster. New
detections assigned to the existing cluster update the centre incrementally as
a mean of all assigned mask centroids.

However, this representation simplification may lead to unwanted conse-
quences. If the object is too big, it may have many labels for different parts
because the centroids received from this object are too far from each other.
On the other hand, small objects, which are close to each other, can merge.
A better way to represent objects is to store point clouds or 3D bounding
boxes, but these approaches are harder to implement. For example, point
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clouds require a decision for every point in the mask received from YOLACT,
to which object it does belong. These methods will be investigated in further
research.

The algorithm of detection clustering is as follows:

Result: Clusters with assigned labels

cnn = init_ yolact();

env = init_env();

clusters = {};

episode_ over = False;

while not episode__over do

image = env.step();

detecions = cnn(image);

centroids = compute__centroids(detections);

assigned = False;

for centroid, detection in zip(centroids, detections) do

world__position = backprojection(centroid);

cluster = find__corresponding__cluster(world__position,

clusters);

if cluster is None then
cluster = init__cluster(world__position);
clusters.append(cluster);

else
| cluster.update__center(world__position)
end
cluster.append(detection);
end
end

Algorithm 1: Clustering method pseudocode

B 3.5.3 Decision making

We use 2 different known/unknown classification approaches: confidence
thresholding over the constructed feature vector and entropy measurement
over the mean softmax vector.

17
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B Confidence thresholding

When we have enough detection outcomes from the detector assigned to one
cluster, we can decide whether the object is known or unknown. We simulate
the confidence with a normalised feature vector. If the confidence level of the
most confident class known to the detector is smaller than a threshold, then
we classify the object as unknown.

Formally, given:

m (' labels K =[1,...,C] of object classes known to detector

® N classification outcomes ([, c;) of an object classification by detector
with label /; and its confidence c;

® ¢ - C-dimensional vector of the sums of outcome confidences for each
label Kk, i.e. ajp = Z{(lj,cj') s.t. lj:k} Cj

We compute the feature vector using the following:

[ai,... ,aC]T

C
die1 i

The final classification rule is:

L*(U) _ Kargmaac(v)v if mam(v) > 64
unknown,  otherwise

where 6 is threshold from range [0, 1]

In the following text, we will refer to this method as “maxsum”.

B Entropy as an uncertainty measure

Another possibility to reject unknown objects is to measure the epistemic
uncertainty of the detector. Instead of using the top class’s final detection and

18



3.5. Approach details

probability score, we can utilise the full score vector with all class probabilities.
In [31] classification uncertainty is extracted from the final softmax vector ¢
computed as mean of the n softmax scores {si,...,s,}.

1 n
QZE;&

In [31] ¢ is treated as an average vector of class probabilities over a set of
score vectors, produced by multiple forward passes of the same data with
enabled dropout. In other words, it is the average result of the model ensemble.
In our case, ¢ represents the mean score vector over multiple views of the
same 3D object. Therefore, uncertainty may arise when the detector is not
able to recognise the object in different conditions identically. We work with
a detector that produces a probability for a negative “background” class, so
the dimension of ¢ is C' + 1, where C' is the number of object classes. Let us
set the “background” label as 0.

One of the ways to measure classification uncertainty is to use normalised
entropy:

&g log(a)

Hlg) = = log(C' +1)

If ¢ has a uniform distribution, the entropy will be maximal, so the uncer-
tainty is high. If the class probability is concentrated in one class, the entropy
will be low, which means that the detector is confident in its detection.

The classification rule in this case is:

L*(q) — {({0} U K)a’/‘gma:c(q)a it H(Q) < 92 and argmax(q) 7& 0

unknown, otherwise

where 05 is threshold from range [0, 1]
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3.5. Approach details

B 3.5.4 Learning new objects and classes

One of the essential abilities of intelligent systems that function in the real
world is learning. With the ability to identify unknown objects, such a system
can query a human to provide a training set with an unknown or unknown
class or create such a dataset. Before we explain our learning approach, we
need to discuss which properties the learning process in such systems should
have.

o U biect: Label object of
Dgtséftrég ﬁf,’g“fns inl:eres(t1 atnd ctreate Learn new object
® Detected unknowns a se *
o o [ o \
&/ C e A \Z \Z
R - | © ° = S o [&El o

Initialization Knowns detection Unknown detection Application of new
knowledge

Figure 3.3: Scheme of learning.

Ideally, the learning process should be:

® Active: An active learner can query the oracle to label unlabelled data
and use it to improve itself.

® Scalable: Not only knowledge about existing classes can be increased,
but also new classes can be learned.

® Online: Learner can update itself in each step with data that become
available in sequential order.

We use the option of constructing a dataset by a human. However, this
process can be easily automated while it does not require manual labelling.
Our solution is active, scalable, and offline. When an unknown object is
found, we construct the dataset, append it to the training dataset and train
the detector from scratch on the extended dataset (Figure |3.3)). We do not
annotate the new dataset manually. Instead, we use advanced tools to create
it automatically. Thus, the whole learning process can be merged into one
fully automated pipeline.

As discussed in Section [3.3| the first reason for assigning a label unknown
to the object is an insufficient amount of training data in the dataset. In
this case, we can finetune the detector to new instances of the existing class.
In our experiments, we only show how the extension to an additional class
works.
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Chapter 4

Implementation

B 4.1 Toolit

In this section, we describe the tools that we use to implement our solution
and explain the choice of each one.

B 4.1.1 YOLACT

Feature Pyramid Assembly

B
B

Feature Backbone
re

Prediction

% @

Restore’ P
softmax vectors &

‘
Q_ Prototypes

Figure 4.1: YOLACT architecture from [3]. Blue/yellow indicates low/high
values in the prototypes. Grey nodes indicate functions that are not trained. We
modify YOLACT in the Non-maximum Suppression part, where initially vectors
with score probabilities are discarded, and only final detections are propagated
further.
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4.1. Toolkit

Since we want our system to work in real-life scenarios, object detection
should be as fast as possible. YOLACT is a real-time instance segmentation
framework that breaks up the main task into two parallel parts: generating
prototype masks and predicting per-instance mask coefficients. Final instance
masks are then produced as a simple linear combination of prototype masks
with predicted coefficients (see Figure . A convolutional model trained in
this way can achieve 29.8 mAP on MS COCO at 33.5 fps.

Figure 4.2: Visualisation of the YOLACT output

YOLACT does a sequence of decisions (Figure . First, it selects a
subset of all image rectangles. These selected rectangles are called anchors
or prior bounding boxes. Anchors have different scales and different ratios.
They are distributed over the whole image and should represent the most
frequent object positions on the image. Then for each prior bounding box,
YOLACT produces shifts of the shape, prototype mask coefficients and class
probability vector for C' + 1 classes where C' stands for the number of classes
in the training set and 1 for the negative class. In fact, YOLACT classifies
each anchor into one of the following classes:

8 The “background” class which models all examples generated by hard
negative mining. There are no explicit annotations of the background
class in the training set. However, some of the anchors that do not
contain annotated instances are selected to be representatives of the
negative “background” class during training. The “background” class
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4.1. Toolkit

is very broad and includes many samples that are often close to object
class boundaries.

® The “object” classes that are obtained by manual labels from the COCO
dataset. Object classes are more compact than the background class as
they correspond to well-defined objects with coherent appearance.

Then most of the predictions that have too big overlap or too low confi-
dence are filtered by Non-maximum Suppression without taking into account
“background” class. The reason there is no “background” label in the final
detection is that it displaces “object” classes and mostly does not contain
any useful information (Figure |4.3). However, the “background” element of
the probability vector can be used for detecting unknowns. Thus, we modify
YOLACT to extract these probability vectors.

person'
hquldbumg .

Figure 4.3: Background labels.

Next, we briefly describe the main parts of the YOLACT architecture
depicted in Figure

B Anchors

Anchors (or default bounding boxes) were introduced in RPN [38] to address
the problem of object detection at multiple scales. The idea is to predict
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4.1. Toolkit

multiple region proposals with predefined aspect ratios and scales for each
location of the sliding window on the final convolutional feature map. The
right choice of the scale, aspect ratio and the number of anchors can improve
the model performance, as they will better represent the most frequent object
positions on the image. The number of anchors in YOLACT is approximately
20k.

B Feature backbone

As a backbone feature extractor, YOLACT uses ResNet-101 [16] with Feature
Pyramid Network (FPN) [22]. FPN is used to effectively generate a multiscale
feature pyramid which helps to detect objects with different scales. A feature
pyramid is a set of feature maps at different scales. Default bounding boxes
of different aspect ratios are placed on three selected layers of FPN. Finally,
we have features for default bounding boxes with different scales and ratios
as an output of the backbone feature extractor.

B Prediction head

The prediction head is attached to the three selected feature maps (to each
default bounding box). YOLACT modifies the prediction head architecture
suggested in [23] by adding a third branch for mask coefficients and making
some of the convolutional layers shared. The prediction head in YOLACT is
CNN, which has three branches to predict in parallel C' + 1 class confidences,
four bounding box regressors and k prototype mask coefficients. Bounding
box regressors are shape offsets that are needed for anchor transformation
and better localisation of the object.

B Non-maximum Suppression

To suppress duplicate detections, YOLACT uses a modified version of NMS,
which is faster but may filter more bounding boxes than needed. As we
mentioned above, NMS in YOLACT considers all classes except the negative
class “background” and therefore outputs only detections of positive classes.
We modify NMS so that with bounding boxes and class confidence scores, it
also returns the corresponding softmax vectors.
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B Protonet

Protonet is the CNN attached to the deepest feature map in FPN. Protonet
predicts k prototype masks for the entire image. Kach prototype mask
activates on a different feature. Some localise instances, some detect instance
contours, and some encode position-sensitive directional maps.

B Mask assembly

Instance masks are computed as a linear combination of k& prototype masks
with & coefficients from the prediction head:

M = o(PCT)

where P is an hxwxk matrix of prototype masks and C' is an nxk matrix
of mask coeflicients for n instances surviving NMS and score thresholding.
Then the instance masks are cropped with the predicted bounding box at the
evaluation time and the ground truth bounding box at the test time.

B Hard negative mining

In the datasets of both instance segmentation and object detection tasks,
there is usually a large imbalance between the number of annotated objects
and the number of background examples (regions that are not annotated).
This imbalance may cause low accuracy or slow training. One technique that
can solve this problem is dataset bootstrapping [41] or typically called hard
negative mining. The idea is to construct training data containing positive
and “hard negative” examples. “Hard negative” instances are false positive
detections of the negative class, which have high confidence scores and affect
the loss most. To filter the excessive number of negative examples, YOLACT
uses hard negative mining. When the classification loss is computed, only
part of the negative examples (which contribute to loss the most) is taken
into account. The ratio is 3:1 (negative:positive), which means that for one
positive example, there are three negatives.
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Understanding this approach is essential for us. If there is an unlabeled
object in the image, it might be chosen as hard negative but might not.
Thus, we cannot be sure whether the detector is trained to reject this object
or not. The background region chosen for training is very sparse, so we
cannot expect the detector to reject all unlabeled instances successfully. This
may cause false positive errors on both types of unknown classes: those had
unlabeled examples in the dataset and those that did not. We can use these
false positives to detect unknown objects in 3D. Moreover, when we receive
detection with a high object class, we consider background class as unknown
since it can never faithfully represent all non-objects.

B 4.1.2 Al Habitat

The most straightforward way to teach an embodied Al agent is to train it in
the real world. This method allows us to see the robot performance in real
scenarios immediately. One of the most significant benefits of such a method
is that the sim2real step is unnecessary. There is no need for additional
modifications of the trained model. Moreover, the confidence that the agent
will perform similarly in a test time as in a training time is high. However,
this approach has many disadvantages. Some of them are:

® Experiments are relatively slow since we have no control over the flow of
time.

® Some of the trials could be dangerous and destructive both for the robot
and the environment.

8 Many experiments are hardly reproducible due to the stochastic nature
of the real world.

® Additional measurements might need additional sensors, which can be
quite expensive.

3D simulators can help to deal with these problems. Platforms for training
embodied agents based on 3D simulators have made significant progress in
recent years. The reasons why do people use them in research are:

1. High speed. Processes in simulation can be parallelized so a larger
amount of experiments can be conducted in the same interval of time
compared to the real conditions.
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2. Easy to reproduce. We can control all aspects of the environment
and receive the same results each time while keeping the parameters
unchanged.

3. Easy to extend. In many simulators, the processes of adding new
robots, objects or scenes are effortless.

4. Cheap. The only thing we need to train embodied Al agent is a powerful
enough machine to run the simulation.

5. Safe. Entire process runs inside the simulation and can be easily reverted.

In our problem setting, we assume that the environment is static, so
no advanced physics simulation is required. As we work mainly on visual
perception, fast and high-quality rendering is essential. For simulating robot
movement in a photorealistic environment, we use the Habitat platform
[28], which includes Habitat Sim and Habitat Lab. Habitat Sim is a high-
performance 3D simulator with configurable agents, multiple sensors, and
generic 3D dataset handling. Its main advantage is extremely fast rendering,
which can achieve 10000 fps on a single GPU. Habitat Lab is a modular
high-level Python library for developing Al in such tasks as robot navigation,
instruction following, and question answering. After training and evaluating
the agent in the simulation, we can transfer the acquired knowledge and skills
to the real robot.

B 4.1.3 Microsoft COCO Dataset

One of the primary capabilities of our system is an understanding of visual
scenes. Closed set problems are much more straightforward than open set
because they do not require the model to reason about unknown object
categories correctly. Nevertheless, models which solve such tasks still require
a considerable amount of data. Qualitative and massive datasets are the main
force power in advancing computer vision problems. In our work, the crucial
role of solving semantic segmentation plays the Microsoft COCO dataset [24].

Microsoft COCO dataset is large-scale object detection, segmentation, and
captioning dataset (see Figure 4.4). Some of the main features that lead
many researchers to use this dataset for training and evaluation are:

® Object segmentation: objects are labelled using per-instance pixel-level
segmentation.
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Figure 4.4: Samples from the Microsoft COCO Dataset.

® Size: the dataset contains more than 200 thousands of labelled images
and around 1.5 million object instances.

® Categories: 80 object categories are selected by their frequency of oc-
currence, usefulness in real applications, and diversity relative to other
categories.

® Recognition in context: images are captured from noncanonical view-
points and contain objects in their natural context.

YOLACT was trained on train2017 and evaluated on val2017 and test-dev
splits of the COCO dataset.

B 4.1.4 RealityCapture

To transfer real objects to the simulation, we need software for producing
high-quality 3D meshes. RealityCaptureE] solves this problem by offering a
high-speed and easy to use method for scanning real objects and scenes. It
offers tools for creating virtual reality scenes and textured 3D meshes. The
process of object reconstruction from the images is almost fully automated.

"https://www.capturingreality.com
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Additionally, we use Blender?| to edit the final meshes produced by Reality-
Capture.

B 415 myGym

Training of YOLACT to recognise previously unknown objects requires ad-
ditional data. To produce the dataset with annotated images for semantic
segmentation, we use myGym [46] - the modular framework for developing and
benchmarking RL algorithms. The main feature of myGym is the integrated
visual module. This module allows working with tasks that incorporate visual
recognition. Moreover, it provides an option to generate synthetic datasets
for integrated computer vision models: YOLACT and VAE [19].

Dataset generator uses PyBullet [7] physics engine to construct scenes and
synthesise images with objects in simulated environments. The generator is
highly configurable and easy to use - camera settings, robots, object appear-
ance, and other parameters can be controlled using a single configuration
file.

Synthetic datasets generated in myGym are helpful not only for simulated
scenarios but, more importantly, for real ones. Sim2Real transfer is possible
due to the high level of data augmentation. A fast and straightforward
technique that helps achieve sufficient accuracy on real photos is domain
randomisation [44]. The primary purpose of this approach is to provide
enough variability of simulated data at the training time such that the model
will be able to generalise real-world data during the test time. The simulated
environment can be randomised at several levels: random colours/textures
applied to all objects, random camera position and orientation, variable light
position, type, and intensity.

B a2 Implementation details

In this section, we discuss some of the implementation aspects.

https://www.blender.org
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B 4.2.1 Scanning of real objects

To reconstruct a 3D object from the images, we take 60 photos on average for
each of the 10 chosen test objects. The choice of the objects was motivated
by the presence of the class in the COCO dataset, the shape of the object,
and the quality of reconstruction. For many objects that were initially in
this set, good reconstruction was impossible for a few reasons: low number
of visual features, transparency, and glossy surface. Figure shows the
scanning process.
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Figure 4.5: The process of scanning 3D object in RealityCapture.

Bl 4.2.2 Agent and objects in the simulated environment

To make our experiments fast and reproducible, we create a virtual copy of a
room with an agent within it using a Habitat simulator. For the experiment,
the indoor space was taken from Gibson dataset [47]. Inside the room, we
place the scanned objects. Half of them are known objects, and another half
is unknown (Figure . The agent is equipped with a set of sensors: 1 RGB
sensor, 1 depth sensor (Fig. position/rotation sensor. Agent can be
controlled by a set of actions: “move forward”, “turn left”, “turn right”, “look
up”, “look down”.

Figure 4.6: RGB and depth sensors inside Habitat simulation.
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Bl 4.2.3 Dataset generation for an unknown object

With a mesh produced by RealityCapture software, we can create a new
dataset using myGym (Figure 4.7). The size of the new dataset with a single
class “dino” is 10800 images for train split and 1200 images for validation
split. The dataset creation process in each of the 4000 iterations is as follows:

1. Reset simulation with random light conditions and textures

2. Initialise 3 cameras with RGB/semantic/depth sensors in specified posi-
tions with random shifts

3. Spawn an object in a random position and with random orientation

4. Render images from RGB sensors and corresponding semantic sensors

5. Save produced RGB images, semantic masks and bounding boxes in

COCO format

Figure 4.7: Samples from the generated dataset with corresponding semantic
masks.
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backpack book laptop keyboard skateboard
dino shoe ukulele computer extension

Figure 4.8: Object set transferred to Habitat simulator. Known are in the first
row, unknown are in the second row.
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Chapter 5

Experiments

In this chapter, we describe the conducted experiments and discuss the
obtained results.

. 5.1 Evaluation metrics

Because our task is not widespread in computer vision, we need to describe
all the metrics we use carefully. 4 essential components are used for metrics
computation. These components are closely related to a classical object
detection task:

® True Positive (TP) - this is a correct positive detection, that is if the
label and prediction for the object at a certain position are the same.

® False Positive (FP) - wrong positive detection. This corresponds to
the case when the object is misclassified, or there is no object at the
predicted position at all.

® False Negative (FN) - this is the case when the object is not detected.

® True Negative (TN) - this implies an absence of prediction on the negative
instance, i.e. the absence of any object. This metric does not apply to
our task because there is an infinite number of instances that should not
be treated as objects.
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Because we can not obtain the True Negative metric, we are not able to
work with the False Positive Rate, which is the required component for the
receiver operating characteristic (ROC) curve.

B Extension of micro F1 score to open-set

We use the following equation to compute a micro F1 score:

Fl— 24 precision * recall

preciston + recall

Open set modification of the F1 score was introduced in [I8]. The most
effortless adaptation of this formula to an open set scenario is to consider the
unknown class to be just an additional class. However, this approach is not
appropriate in open set tasks because we can not correctly treat classified
unknown samples as True Positives. This does not make sense because there
are no representative samples of the unknown class during training. That
is why a much better choice in this case will be the modified precision and
recall that can be computed in such way:

.. ?:1 TPi
recision =
P " (TP + FP)
n TP,
recall = =1

iz (TP + FN;)

where n is the number of classes on which the model was trained (not including
an “unknown” class).

We use the F1 score because it is invariant to True Negatives, which are
not present in our task.

B 5.2 Score distribution study

To study how the data we work with look like, and get some insights, we
visualise the distributions of probability scores for selected real objects. For
each object, we created a video by walking in a circle around the object. All
videos contain on average 360 frames at a speed of 30fps. For simplifying the
process of analysing detections, each video contains only one object and a
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neutral background, which is not detected in most cases. YOLACT process
each frame in the video and outputs detections, which we store for further
analysis. We set the YOLACT confidence threshold to 0.15, which means
that detections with a maximum class confidence value lower than 0.15 are
discarded. Graphs for 10 test objects are in Figure 5.1, Oth, 100th and 200th
frames from the corresponding video are on the right of each graph. Let us
discuss the results for both known and unknown sets so that easy cases are
considered first, and the most difficult ones are considered in the end.
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Figure 5.1: Test set. Known objects are on the left, unknown on the right.
Blue lines correspond to the confidence scores of each detection. The red line
corresponds to the mean confidence score through all detections. White points
encode the normalised number of class wins.
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5.2. Score distribution study

B Known objects discussion

Class distribution plot for the object mouse Class distribution plot for the object apple

(a) : Strong “mouse” class. (b) : Strong “apple” class.

Class distribution plot for the object orange Class distribution plot for the object scissors
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(c) : Strong “orange” class. (d) : Strong “scissors” class.

Class distribution plot for the object banana Class distribution plot for the object umbrella

score
score

Class Class

(e) : Strong “banana” class. (f) : Strong “umbrella” class.

Class distribution plot for the object cup Class distribution plot for the object potted_plant

Score.

“ws¢ JOO® -1 .«

(g) : Strong “cup”, weak “back- (h) : Strong “potted plant” and “vase”
ground”, “table” class is not zero. classes, weak “background”.

ot for the object chair

Class distributi

Class distribution plot for the object monitor

Score

I L.A

Class

class

(i) : Weak “tv”, “laptop” and “back- G) : Weak “chair”, “suitcase”
ro{m 47 classes7 and “background” and many other
& ' classes.

Figure 5.2: Training known set. Blue lines correspond to the confidence scores
of each detection. The red line corresponds to the mean confidence score through
all detections. White points encode the normalised number of class wins.

Figure shows no doubt for some objects (mouse, orange, umbrella) that
they are represented enough in the detector. Most of the distribution mass
through all detections is concentrated in 1 correct class for the top known
objects. The final decision can be made by simply taking a class from a single
peak. An interesting case is represented by the “cup” object. Because in the
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5.2. Score distribution study

COCO dataset, all objects are placed in the natural context, in many images
during training, the cups stand on a table. Probably, sometimes cups are
annotated as part of the table. That is why “table” class confidence in many
detections is not zero, which affects the mean score value.

Some of the known objects are composite (laptop contains a keyboard,
potted plant contains vase), leading to the presence of 2 competing peaks and
the growth of the “background” class. The correct class is still winning, but
consideration about more than 1 class is already needed. These correlations
cannot be easily extracted for all possible object combinations manually.
Instead, a solution that can learn it in an end-to-end manner should be
introduced. Parts of the composite objects can be considered and studied
separately, but in this case, more complex solutions that can accurately
differentiate parts of the objects are needed.

Some objects like “skateboard” or “monitor” (which can be treated as
tv) are detected as many different objects. It can be evidence that these
objects are underrepresented in the training dataset. More labelled instances
can be provided to the model to learn to detect confusing objects better.
Alternatively, the same as for complex objects, we can extract the similarity
correlations between detected classes and make the decision based on them.
For example, a skateboard without wheels looks almost like a surfboard. That
should be reflected in the final decision about the 3D object.

If our solution is based only on taking the class with maximum probability,
the “book” and “chair” objects will be wrongly classified as “background”.
That happens because in many detections, confidence is low, so scores are
distributed over the other classes and negative class. Although the winning
“thing” classes are correct, the detector was not confident in its decisions.

Class distribution plot for the object sign Class distribution plot for the object juice

(a) : Strong “background” but the (b) : Strong “background” but the
number of detections is too small. number of detections is too small.

Figure 5.3: Unknown objects with low number of detections. Blue lines cor-
respond to the confidence scores of each detection. The red line corresponds
to the mean confidence score through all detections. White points encode the
normalised number of class wins.
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B Unknown objects discussion
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Class distribution plot for the object tin Class distribution plot for the object kettle
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(a) : Strong “background” and weak (b) : Strong “background” and weak
“bottle”. “mouse”.

(c) : Strong “background”, weak “ap- (d) : Strong “background” and weak
ple” and “sports ball”. “sports ball”.

Class

Class distribution plot for the object camera Class distribution plot for the object kiwi

score

class

(e) : Strong “background” but the (f) : Strong “background”, weak “ap-
number of detections is small. ple” and “sports ball”.

Class distribution plot for the object basket

Class distribution plot for the object purifier

score

score

Class

(h) : Weak “cell phone”, “remote”
and “background” and many other

(g) : Strong “background”, weak “cup”

and “remote”.

classes.
Class distribution plot for the object headphones Class distribution plot for the object cactus
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(i) : Weak “backpack”, “handbag” and (j) : Weak “bowl”, “cup”, “vase” and
“background”. “background”.

Figure 5.4: Training unknown set. Blue lines correspond to the confidence
scores of each detection. The red line corresponds to the mean confidence score
through all detections. White points encode the normalised number of class
wins.
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5.3. Computation of thresholds

The first difference between known and unknown is that the “background”
class is very high in most cases for unknown objects (Figure |5.4). Objects
like “tin”, “yogurt” or “camera” have a very high score in “background”. It
seems that for many objects, simple thresholding on “background” will work
well to classify unseen objects during training. The internal ability of the
detector to reject objects which are not from trained classes might be enough.

Nevertheless, there are examples such as “basket”, “headphones”, “com-
puter” with winning “thing” classes where there are much more peaks in
comparison with knowns. Classes that correspond to these peaks do not
correlate with each other well. Thus, the amount and the semantic differ-
ence between the most probable classes can serve as a good indicator of the
unknown.

9w

For some objects like “ukulele”, “juice”, and “sign” (Figure 5.3)), the detector
is insensitive. There are two reasons for this: 1) These objects were present
in the training dataset, and the detector learned to reject them very well,
so they are represented well as negative examples, 2) Detector did not learn
to reject these objects, but their appearance is so different from any known
class, that the detector can not even misclassify them as something else. The
same happens to people. When someone does not even imagine the existence
of some entity and has never seen anything similar to it, it is tough to notice
this entity. In both cases, the insensitivity can be fixed by expanding the
boundaries of knowledge. The more we know, the more we realise how much
we do not know.

B 53 Computation of thresholds

Having the data described and visualised in the previous section, we can
compute the thresholds for the methods described in[3.5.3. While we want
to find a decision boundary between known and unknown, we can treat this
problem as a binary classification task. We use SVM with a linear kernel,
train it on the extracted 1D features and take only the final hyperplane
as threshold. For testing, we use 10 objects transferred to the simulation
and train on the remaining 20 objects (except “sign” and “juice” due to the
small number of detections). The number of knowns and unknowns is equal.
Although the dataset size is insufficient to train a decent model, we find that
the obtained results show that our approach may serve as a good baseline.
We note that much more data is needed to get better estimates of the learned
parameters. Decision boundary and train values for both approaches are in
Figure [5.5] Although we separately consider the “background” class in the
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5.3. Computation of thresholds

final decision using entropy values, in this section, for training and testing,
we rely only on entropy values. The reason is the small size of the dataset.

Figure 5.5/ shows that there is a correlation between the extracted features
and the fact that the object is known or unknown. However, the entropy
values are not much higher for unknown objects. Both our methods do not
consider the similarity of the classes. That is why the entropy value will
be the same for 2 different cases: 2 strong peaks for classes from the same
subcategory (“tv” and “laptop” for “monitor” object) and 2 strong peaks
from different subcategories (“sports ball” and “apple” for “kiwi” object).
The entropy of the mean score distribution vector oversimplifies the problem.
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Figure 5.5: Maxsum and entropy decision boundaries on the train set. For
maxsum, points above the thresholds are classified as known. For entropy, points
under the threshold are classified as known.
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5.3. Computation of thresholds

To display the performance of our classifiers on the dataset, we plot ROC
curves. On the training data, both classifiers perform relatively well according
to the AUC scores (Figure [5.6). Maxsum method performs slightly better,
possibly because now the “background” class is not considered for the entropy
method. The entropy of unknown objects which have a strong “background”
class in the distribution is low (e.g. “tin” and “webcamera”). However,
performance on the test set is poor, as we observe from the low AUC scores
(Figure 5.7)), which is caused by the small size of the dataset and the simplicity
of the proposed classifiers.

ROC entropy

ROC maxsum

False Positive Rate

(b) : Simulated objects.

False Positive Rate

Figure 5.7: ROC curves for the test data.
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5.4. Real and simulated object comparison

Table 5.1l shows no considerable difference between the results on the real
test objects. Interestingly, there is a difference between the results on real and
simulated objects for the entropy method. The difference in object structure
or light conditions caused the increase of entropy in the score distributions for
unknown objects. According to the results, entropy measuring for simulated
objects is a better choice.

H Test set and Method Precision Recall F1 score Accuracy H

Real maxsum 0.62 0.60 0.58 0.60
Real entropy 0.60 0.60 0.60 0.60
Habitat maxsum 0.78 0.60 0.52 0.60
Habitat entropy 0.86 0.80 0.79 0.80

Table 5.1: Test results

B 5.4 Real and simulated object comparison

In the same way as for real objects, we produce videos for the objects
transferred to the Habitat simulation. In the same manner, we can visualise
the class distribution score through all frames (Figure 5.8).
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Class distribution plot for the object backpack_habitat Class distribution plot for the object shoe_habitat
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(a) : Strong “backpack” class. (b) : Weak “person” and “background”.

Score

Class distribution plot for the object keyboard_habitat Class distribution plot for the object extension_habitat
358
(c) : Strong “keyboard” and weak “re- (d) : Strong “remote” and weak “back-
mote” classes. ground”.

Class distribution Class distribution plot for the object computer_habitat

score

(e) : Strong “laptop”, weak “keyboard” (f) : Weak “cell phone” and “back-
and “background”. ground”, many “electronics” classes.

Class distribution plot for the object skateboard_habitat Class distribution plot for the object dino_habitat
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(g) : Strong “surfboard” class. (h) : Strong “bird” class.

Class distribution plot for the object book_habitat I Class distribution plot for the object ukulele_habitat
(i) : Strong “background” and weak (j) : Strong “background” but the num-
“book” classes. ber of detections is too small.

Figure 5.8: Simulated test set. Known objects on the right, unknown on the
left. Blue lines correspond to the confidence scores of each detection. The red
line corresponds to the mean confidence score through all detections. White
points encode the normalised number of class wins.

Moreover, we can compare the class probability distributions for both real
and simulated objects. We use boxplots to visualize the main properties of
detections received from YOLACT (Figure [5.9). According to the data on
boxplots, the score distributions are very similar in both worlds for many
objects. Therefore, sim2real transfer of the obtained model seems possible.
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5.4. Real and simulated object comparison

However, some real/simulation object pairs differ a lot due to minor differences
in object appearance. For us, this similarity level is enough to show how our
3D open set object detection approach works in simulated but close-to-real
scenarios.

Comparison between real and habitat for the backpack Comparison between real and habitat for the shoe
o - 10 -
- -

Score
Score

Class : Class
(a) : Backpack (b) : Shoe
Comparison between real and habitat for the keyboard Comparison between real and habitat for the extension

(c) : Keyboard (d) : Extension

Comparison between real and habitat for the laptop Comparison between real and habitat for the computer

- -
-—ava -aba

Score
Score

Class Class

(e) : Laptop (f) : Computer

Comparison between real and habitat for the skateboard Comparison between real and habitat for the dino
o - e 1 I - e
- v - vt
& ‘ &

coss s
(g) : Skateboard (h) : Dino
‘Comparison between real and habitat for the book Comparison between real and habitat for the ukulele

Class Class

(i) : Book (j) : Ukulele

Figure 5.9: Real and simulated objects boxplot comparison. Known objects are
on the left, unknown on the right. Blue is for real objects, red for simulated.
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B 55 Open-Set 3D Object Detection

Now that we have insights about known and unknown differences, thresholds
for the proposed methods and the confidence that the obtained results will not
differ a lot in the real world, we can evaluate our approach in the simulation.
Objects are placed at the RGB sensor level on stands (Figure [5.11al). The
trajectory of camera movement inside the simulated environment is made
manually so that every object is observed from many different viewpoints

(Figure 5.10).

Figure 5.10: A trajectory of observer movement used for evaluation. The
trajectory is projected onto a top-down map of the indoor space. The red square
is a start position, arrow in a circle is the current agent position. White circles
show the ground truth position of all added objects. Black circles stand for
detected 3D objects centres and classified as “unknown”; green ones decode
objects classified with known labels.

There are hyperparameters that we use to configure our method:

® unknown threshold - decision threshold for maxsum (0.58) or entropy
(0.32)
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5.5. Open-Set 3D Object Detection

® yolact threshold - YOLACT confidence threshold (0.3)

B cluster radius - the radius of the sphere that represents an object
(0.5m)

® seen threshold - number of times an object is seen to make the first
classification (50)

B seen ratio - ratio of the number of detections to the number of times
object was seen (0.15)

We conduct experiments for both decision making approaches described in
3.5.3. Observer moves around the room with a predefined trajectory (Figure
5.10). YOLACT processes images in each timestep and outputs detections if
any object detection has a confidence higher than yolact threshold. These
detections are then assigned to clusters with radius cluster radius which
represent 3D objects. When object is captured on RGB sensor more than seen
threshold times and seen ratio is high enough, we classify the object using
one of the approaches. Low seen ratio means that we receive detections in
the some place rarely and, most probably, that are false positives. The main
parts of this process are illustrated in Figure [5.11l At the end of the episode,
we have all detected objects with assigned labels from the set S = {0} U K.
Detected objects are compared with ground truth object information, i.e.
object 3D position and label.
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(c) : Almost all 3D objects are detected, white label is the class associated with 3D
position.

Figure 5.11: Example images from RGB sensor with corresponding top-down
maps. Images captures 3 different phases: a)initial phase, b)middle phase and
¢)final phase.

From Table it can be noted that entropy performs better than maxsum.
All decisions except object “dino”, which was classified as “unknown” by
entropy and “cat” by maxsum, are the same. The top-down view of the
detected objects and their labels for the entropy method is in Figure
Figure shows that both approaches can classify unknown objects, pre-
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5.5. Open-Set 3D Object Detection

serving the ability to classify known ones. Both approaches have problems
with the object “shoe”, which YOLACT almost all the time detects as “cat”
with high probability. Object “skateboard” has an unusual appearance and
is not represented in the COCO dataset enough, so YOLACT classifies it
with many different labels from different views. The unknown object with the
label “ukulele” was not detected at all. That happened because this object
has such an appearance that it is very different from any known object. This
type of unknown cannot be detected with our approach. However, we expect
that with an increasing number of known classes, the sensitivity to unknown
objects will also increase.

Moreover, our method detected the wall and classified it as a “refrigerator”.
There were more “refrigerators” detected during the whole trial, but they
disappeared with time because seen ratio was too small.

Object “dino” has very confusing labels of different animals (“cat”, “bird”,
“elephant”), which is interesting because, even though this class was not
present in the dataset on which YOLACT was trained, we can treat this
object as an “unknown” animal. We chose “dino” to retrain YOLACT.

Confusion matrix Confusion matrix

unknown - unknown -

True label
True label

skateboard skateboard

no object {4 0 0 0 1 0 no object NN 0 0 1 (]
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5 g g g g & s 3 g : 2 g
e o o o c 9 2 o o o © I
g X Bl aQ o 2 g x 2 b o =1
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Predicted label Predicted label

(a) : Maxsum (b) : Entropy

Figure 5.12: Detection results. Unknown objects are merged into 1 unknown
class.

H Method Precision Recall F1 score H

maxsum 0.5 0.5 0.5
entropy 0.57 0.57 0.57

Table 5.2: Evaluation results
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B 56 YOLACT retraining

After identifying an unknown object and getting response from the oracle
with a true label, we can extend our set of known classes. Our approach is
straightforward:

1. Generate new dataset as described in Section 4.2.3
2. Extend COCO dataset with newly generated dataset

3. Train YOLACT on the extended dataset from scratch

We use the same hyperparameters as described in [3]. As a backbone CNN
for extracting visual features, we use ResNet-101 [16]. Table [5.6/ shows no
considerable difference between the mAP scores of the original model and
the retrained one. The old classes were not forgotten while the new class was
learned. Interestingly, the mAP score on validation of the new class is 97.29,
while the highest score between COCO classes is 61.31 for the class “bear”.

Although such a training approach is scalable in terms of new classes,
it is computationally heavy - the learning process takes a few days. More
intelligent and more efficient solutions should be used in the future work. Our
approach can serve as a proof of concept.

H Training set val2017 val2017 4 “dino” test-dev H

train2017 28.47 27.85 28.40
train20174+“dino”  28.68 29.53 28.90

. 5.7 Performance with retrained YOLACT

To make sure that adding a new class works as it should, we conduct the
same experiments as described above using a retrained detector. Results of
the score distributions on different views of the objects extracted from the
video are in Figure [5.13] Both in real and simulated conditions, the detector
successfully identifies a new object as “dino”. However, the “background”
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component is not zero, so there is still room for improvement in the dataset
generation process.

Additionally, we study how the retrained detector works as a part of
the whole approach pipeline. We evaluate retrained YOLACT on the walk
around the indoor space. Figure shows that a new object is detected and
classified correctly in both approaches and the other detections are the same
as for the basic model. However, the entropy approach failed to classify the
object “book” correctly. Quantitative results are in the Table For the
maxsum method, all metrics are higher, because as we mentioned above, we
do not count the correct detections of the unknown when computing precision
and recall. Thus, the open set F1 score is higher when 1 of the unknown
objects become known, and we detect it correctly, as it should be.

H Method Precision Recall F1 score H

maxsum 0.71 0.63 0.67
entropy 0.57 0.50 0.53

Table 5.3: Evaluation results with retrained YOLACT
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Figure 5.14: Detection results with retrained YOLACT.

Figure [5.15/ shows detections made in the same place and time during the
evaluation trial. Retrained YOLACT outputs correct detection with high
confidence on the object “dino”.

dino: 0.97

unknown

Figure 5.15: YOLACT outputs on the same frame in basic version on the left
and retrained version on the right.

. 5.8 Results discussion

In our experiments, we show that our approach is reasonable but still needs
improvements in each component. From the distributions we obtained for
known and unknown objects, we see that unknown objects have more confusing
labels and the background component is relatively high. Maxsum and entropy
of the mean score distribution vector perform well but do not fully correspond
to the distributions we receive. We do not extract semantic similarity to
use it for known/unknown classification, which is crucial in our problem
setting. Evaluation in the simulation seems to be a good approximation of the
performance in the real world. The process of learning a new class succeeded
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5.8. Results discussion

on both real and simulated data, even though the dataset was generated in
the simulation.

The test object set, which we transfer to the simulation, does not contain
the best representatives of known and unknown objects in terms of stability of
the produced detections. Nevertheless, this set better corresponds to the real
world, where there are unknown objects which are undetectable (“ukulele”) or
too similar to another object (“shoe” is similar to “cat” for the detector) and

known objects that are not represented enough in the detector (“skateboard”
or “book”).

Overall, our method can serve as a baseline, and our evaluation protocol
can be used for testing more complex and accurate systems. We have found
out that such systems should take the correlations between outputs into
account.
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Chapter 6

Conclusion and perspectives

B 61 Summary

In this work, we formalise open set 3D object detection and provide a so-
lution that combines existing approaches from different research fields. We
consider the open set setting from a new perspective, trying to exploit the
understanding of 3D objects. We show that detections made from different
viewpoints may serve as a good indicator of newness. To evaluate such a
system, we create a simulation with close-to-real conditions and conduct
controlled experiments. We demonstrate that it is possible to develop a model
that can identify unknown objects while preserving the ability to correctly
assign labels to classes present during training. Certainly, more complex
models can be developed to solve this problem, and our pipeline can speed up
this process. Finally, we demonstrate how the process of learning new classes
can be carried out. Such a learning process takes a long time, although it
is effective, as we demonstrated. We make a step to develop the ability to
recognise unknown objects, which will improve robots’ understanding of the
environment and make their decisions more accurate and safe.
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6.2. Future work

. 6.2 Future work

Better decision making. The similarity of predicted classes for one object
captured in different conditions is a good indicator of whether an object is
unknown. We plan to develop a more complex model capable of understanding
deeper relationships between objects, classes and sequences. The possible
solution may be based on transformers [45], a popular architecture for sequence
prediction. Transformers are usually used in Natural Language Processing
tasks. However, some works adapt transformers for the Computer Vision
field. For example, DETR [6] is an object detection framework based on
transformers. DETR is competitive and conceptually simple at the same
time.

Dynamic environment. In our work, we assumed that all objects in
the environment are static so that they can be identified by their absolute
3D coordinates in some coordinate system. However, what if the object
can move? How to represent it then? Furthermore, how to be sure that
the object the robot saw last time 5 minutes ago in the same place is the
same object? Many of these problems can be solved using 3D Dynamic
Scene Graphs [40]. Nevertheless, further research of object representation in
dynamic environments is still needed.

Better object representation. Our representation of objects as spheres
with fixed radius is unrealistic. We need a clustering method capable of
dealing with objects of all possible shapes and sizes. For example, it can be
bounding boxes or point clouds extracted from semantic masks.

Speeding up the detector. Although the detector used in our work
is fast, the total speed is too low for the real applications in combination
with other parts of our approach. Therefore, we need to use some of the
modifications of YOLACT or find an alternative. When our system is fast
enough, the next logical step will become possible - transferring the model to
the real world.
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