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Abstrakt / Abstract

Diferenciální evoluce je považována za
jeden z nejlepších evolučních algoritmů
pro spojité black-box optimalizační
problémy. Originální verze diferenci-
ální evoluce používá náhodný uniformí
operátor křížení, který nebere v potaz
potencialní závislosti mezi částmi řešení
a může tyto vazby narušovat.

Cílem této práce je poskytnout nový
operátor křížení pro diferenciální evo-
luci, který bude vhodnější pro třídu
problémů obsahující závislé kompo-
nenty řešení.

V této práci jsou prezentovány dvě
metody, jak nalézt závislosti mezi pro-
měnnými problému a dvě možnosti, jak
modelovat strukturu vazeb. S užitím
těhto metod byly navrženy čtyři nové
operátory křížení.

Nově navržené algoritmy jsou vyhod-
noceny na množině referenčních funkcí
a jsou porovnány s dalšími optima-
lizačními algoritmy, včetně originalní
diferenciální evoluce.

Výsledky ukazují, že nově navržené
algoritmy dosahují výrazně lepšího
výkonu a škálovatelnosti než původní
diferenciální evoluce ve smyslu potřeb-
ného počtu vyhodnocení účelové funkce
k nalezení globálního optima pro téměř
všechny testované problémy. Něktré z
nich dosahují podobné škálovatelnosti
jako CMA-ES, jeden z nejmodernějších
evolučních algoritmů.

Klíčová slova: Evoluční algoritmus,
diferenciální evoluce, vazebný strom,
mezní produkt, kontrola nelinearity,
maximální informační koeficient, učení
se závislostí.

Překlad titulu: Křížení pro diferenci-
ální evoluci s detekcí závislostí

Differential evolution is considered
one of the best evolutionary algorithms
for continuous black-box optimization
problems. The original version of differ-
ential evolution uses a random uniform
crossover operator, which does not take
possible dependencies between parts of
the solution into account and may even
disrupt these linkages.

This work aims to propose a new
crossover operator for differential evolu-
tion that is more suitable for the class of
problems containing dependent solution
components.

This work presents two methods of
finding dependencies between problem
variables and two possibilities of mod-
eling the linkage structure. Moreover,
those methods enable to design four new
crossover operators.

The newly proposed algorithms are
evaluated on a set of benchmark func-
tions and then compared with other
optimization algorithms, including the
original differential evolution.

The results indicate that all of the
four newly proposed algorithms achieve
significantly enhanced performance and
scalability compared to the original
differential evolution in terms of fitness
function evaluations, which are needed
to find a global optimum for almost
all analyzed problems. Moreover, some
of them achieve comparable scalabil-
ity to the state-of-the-art evolutionary
algorithm CMA-ES.

Keywords: Evolutionary algorithm,
differential evolution, linkage tree,
marginal product, non-linearity check,
maximal information coefficient, linkage
learning.

v



Contents /

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . .1
2 Evolutionary algorithms . . . . . . . . . . .2
2.1 Components of evolutionary

algorithms . . . . . . . . . . . . . . . . . . . . . . . .2
2.1.1 Representation of indi-

viduals . . . . . . . . . . . . . . . . . . . . . .2
2.1.2 Objective function . . . . . . . . .2
2.1.3 Population . . . . . . . . . . . . . . . . .3
2.1.4 Parent selection . . . . . . . . . . . .3
2.1.5 Crossover operator . . . . . . . . .3
2.1.6 Mutation operator . . . . . . . . .3
2.1.7 Replacement strategy . . . . . .3
2.1.8 Initialization . . . . . . . . . . . . . . .3
2.1.9 Termination condition . . . . .3

2.2 General scheme . . . . . . . . . . . . . . . . . .4
2.3 Differential evolution . . . . . . . . . . . .4

2.3.1 Representation . . . . . . . . . . . . .5
2.3.2 Mutation . . . . . . . . . . . . . . . . . . .5
2.3.3 Crossover . . . . . . . . . . . . . . . . . . .5
2.3.4 Replacement strategy . . . . . .5

3 Linkage information modeling . . . . .7
3.1 Family Of Subsets . . . . . . . . . . . . . . .7
3.2 Linkage tree . . . . . . . . . . . . . . . . . . . . . .7
3.3 Marginal product . . . . . . . . . . . . . . . .8

4 Identification of the linkage
structure . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.1 Fitness-based method. . . . . . . . . . 10
4.2 Distribution-based method . . . . 11

5 Experiments . . . . . . . . . . . . . . . . . . . . . . 13
5.1 Algorithms . . . . . . . . . . . . . . . . . . . . . 13

5.1.1 Differential evolution
variants . . . . . . . . . . . . . . . . . . . 13

5.1.2 Other algorithms. . . . . . . . . 15
5.2 Test problems . . . . . . . . . . . . . . . . . . 15

5.2.1 Sphere . . . . . . . . . . . . . . . . . . . . 16
5.2.2 Levy . . . . . . . . . . . . . . . . . . . . . . 16
5.2.3 Rastrigin . . . . . . . . . . . . . . . . . 16
5.2.4 Rosenbrock . . . . . . . . . . . . . . . 17
5.2.5 SoREB . . . . . . . . . . . . . . . . . . . 17
5.2.6 OSoREB . . . . . . . . . . . . . . . . . 17

5.3 Black Box Optimization
Benchmarking problems . . . . . . . 18

5.4 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.4.1 Test problems specifics . . 18
5.4.2 BBOB problems

specifics . . . . . . . . . . . . . . . . . . 18

6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.1 Test problems . . . . . . . . . . . . . . . . . . 20

6.1.1 Separable problems . . . . . . 20
6.1.2 Block-separable prob-

lems . . . . . . . . . . . . . . . . . . . . . . 21
6.1.3 Non-separable problems . 22

6.2 BBOB problems . . . . . . . . . . . . . . . 24
7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 26

References . . . . . . . . . . . . . . . . . . . . . . . . 28
A Abbreviations . . . . . . . . . . . . . . . . . . . . . 31
B Complete BBOB results. . . . . . . . . . . 32
C Implementation and content

of attachments. . . . . . . . . . . . . . . . . . . . 50

vi



Tables / Figures

5.1. Differential evolution variants . 14
5.2. MICE grid resolution B . . . . . . . . 15

2.1. Evolutionary algorithm pseu-
docode . . . . . . . . . . . . . . . . . . . . . . . . . . . .4

2.2. Differential evolution pseu-
docode . . . . . . . . . . . . . . . . . . . . . . . . . . . .6

3.1. Linkage tree . . . . . . . . . . . . . . . . . . . . . .8
5.1. Differential evolution with

dependency detection . . . . . . . . . . 14
6.1. Separable problems graphs . . . . 22
6.2. Block-separable problems

graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.3. Non-separable problems

graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.4. Ellipsoid separable function

graphs . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.5. Bent function graphs . . . . . . . . . . . 25
6.6. Griewank-Rosenbrock F8F2

function graphs . . . . . . . . . . . . . . . . . 25

vii





Chapter 1
Introduction

Striving for the best solution to a particular problem is an essential part of many fields
of human interest. The process of finding the best solution according to some criteria
is called optimization.

There is an extensive number of engineering optimization problems in the real world
whose input-output relationships are noisy and indistinct. Therefore, one cannot as-
sume anything about the optimized function. However, it is possible to observe its
outputs on given inputs. In this case, the function is called a black box function.

Due to these limited capabilities, all black box optimization algorithms are allowed
to perform just these three steps:

. Create a candidate solution. Check if a candidate is feasible or not. Evaluate its fitness by using the objective function

In the mid-1950s [1–2], a new family of optimization algorithms called Evolution-
ary algorithms has been introduced. Evolutionary algorithms have proven [3] to be
very effective in optimizing black box functions. Among the evolutionary algorithms,
Differential Evolution (DE) [4] has achieved excellent results on real-valued black box
functions.

However, a class of functions containing dependent solution components exists, and
the recognition of those components may be a crucial task that could lead to signifi-
cantly enhanced performance. Nevertheless, DE does not provide any tool capable of
recognizing the dependent components of a solution. Thus, it can be argued that this
particular class of functions is the weakness of DE.

This work aims to propose a way to find dependencies between parts of the solution
and how to represent a dependency structure. It would lead to the proposal of a new
crossover operator for DE well suited for functions with dependent solution components.
This new operator could eliminate the weakness above-mentioned of DE.
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Chapter 2
Evolutionary algorithms

Evolutionary algorithms (EAs) [5–8] is a set of stochastic metaheuristic optimization
algorithms inspired by Darwin’s theory of evolution by natural selection [9]. The the-
ory describes the process of developing organisms over time as a result of changes in
heritable traits. Changes that allow an organism to adapt to its environment better
will help it survive and reproduce more offspring. This phenomenon is commonly called
“Survival of the fittest”, first used by Herbert Spencer [10].

In analogy to the natural environment, EA maintains a population of potential so-
lutions (individuals) for the given problem. The population is iteratively evolved by
encouraging the reproduction of fitter individuals. The fitness is usually the value of the
objective function in the optimization problem being solved. New candidate solutions
are created by combining existing individuals (crossover) or modifying an individual
(mutation). The algorithm runs until a candidate solution with sufficient quality is
found or a certain user-defined limit is reached.

2.1 Components of evolutionary algorithms
In this section, certain parts of evolutionary algorithms are discussed in detail. In gen-
eral, EAs can be divided into various components, procedures, or operators, including:. representation of individuals. objective function. population. parent selection. crossover operator. mutation operator. replacement strategy

To define a particular EA, it is necessary to specify these components. In addition,
the initialization procedure and the termination condition must be defined to obtain a
working algorithm.

2.1.1 Representation of individuals
Each individual is encoded in so-called chromosomes. The representation of chromo-
somes is called genotype . Phenotype refers to the interpretation of the genotype, in
other words, how the objective function treats the genotype. The Representation also
involves genotype-phenotype mapping. For instance, given an optimization problem on
integers. If one decides to represent them by their binary code, 20 would be seen as a
phenotype and 10100 as a genotype representing it.

2.1.2 Objective function
The role of the objective function is to represent the requirement to adapt to. The
objective function defines what is the quality of an individual with respect to the prob-
lem in consideration. Technically, it is a function that takes an individual as input and

2
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produces a measure of the quality of a given individual as an output. The measure of
quality is called fitness, and the objective function is called fitness function.

To remain with the example mentioned above, where the problem is to minimize x2

on integers. The fitness of the individual represented by the genotype 10100 would be
defined as a square of its corresponding phenotype: 202 = 400.

2.1.3 Population
The population within an evolutionary algorithm means a set of individuals. A popu-
lation can be specified only by setting the population size. In other words, the number
of individuals in the population. This parameter is usually determined by the user.

2.1.4 Parent selection
During each generation (one iteration of the algorithm), a specific part of the population
is selected to breed offspring. The choice is made similar to natural selection. Hence
fitter individuals are preferred. Nevertheless, low quality individuals are given a small
but positive chance to be selected. Otherwise, the EA could become too greedy and
get stuck in the local optimum. Parent selection, along with the replacement strategy,
pushes quality improvements. Parent selection, as well as other EA procedures, are
usually stochastic. Individuals selected by parent selection are called parents.

2.1.5 Crossover operator
The crossover is a genetic operator used to combine typically two parents to generate
new offsprings. The idea behind the crossover is that by mating two individuals with
different but desirable features, it is possible to produce offsprings that combine both
of those features. Similar to other genetic operators, the crossover is stochastic.

2.1.6 Mutation operator
The mutation is a unary genetic operator that changes parts of an individual’s chromo-
some, typically randomly. The mutation is used to maintain and introduce diversity in
the population.

2.1.7 Replacement strategy
Replacement strategy defines which individuals survive and become members of the
subsequent generation. Typically, the decision is based on the quality of individuals,
preferring those with higher fitness. The replacement strategy is similar to parent
selection, as both are responsible for promoting quality improvement. However, parent
selection is usually stochastic, while the replacement strategy is often deterministic.

2.1.8 Initialization
The Initialization procedure generates a defined number of individuals of the given
representation, thereby creating the initial population. Initialization is often done ran-
domly due to a lack of knowledge when optimizing black box functions.

2.1.9 Termination condition
The algorithm runs until the termination condition has been reached. Suppose the
optimum of the optimized problem is known. In that case, reaching the optimum (with
a given precision ε ≥ 0) is a natural termination condition. However, since EAs are
stochastic, there is usually no guarantee to reach an optimum, and the condition would
never be satisfied. Therefore, this condition is extended with the condition that stops
the algorithm certainly, such as the limited number of fitness function calls.

3
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Figure 2.1. General scheme of an evolutionary algorithm

2.2 General scheme
In the previous section, the main parts of an EA were introduced individually. By
merging the above-mentioned components, the evolutionary algorithm is formed. This
section describes the way the EA works as a whole.

Firstly, an initial population is generated by an initialization procedure. The fitness
function subsequently evaluates the population. Then a generational process starts and
is repeated until the termination condition is not satisfied. The generational process
starts with parent selection, usually based on fitness. A portion of individuals is cho-
sen to seed the new generation. The chosen individuals are combined by a crossover
operator to produce offsprings, which are then modified by the mutation operator. A
fitness function subsequently evaluates offsprings, and the generational process ends by
creating a new population. Creating a new population is done with respect to the re-
placement strategy that selects some newly created offsprings to replace some members
of the old population.

The algorithm returns the best individual found so far, eventually some statistics
concerning the run of the algorithm. The pseudocode is shown in figure 2.1.

2.3 Di�erential evolution

Differential evolution was introduced by Storn and Price [4] as an efficient evolutionary
algorithm initially designed for multidimensional real-valued spaces.

DE [7] utilizes a population of real vectors. The initial population is chosen randomly.
After initialization, for each member ~xi of a population P is generated a so-called mutant
vector . The mutant vector is generated by adding the weighted difference between two
individuals (~xr2 , ~xr3) to a third individual (~xr1). These three individuals are mutually
exclusive. The offspring ~oi is then created by crossing over the mutant vector with ~xi.

Note that the impact of the mutant vector is largely based on the actual variance in
the population. The mutant vector will make major changes if the population is spread.
On the other hand, the mutant vector will be small if the population is condensed in a
particular region. Thus, DE belongs to the family of adaptive mutation algorithms.

Lastly, the newly created offspring is compared to its parent using the greedy criteria.
If the offspring is better than its parent, it replaces its parent in the population.

4
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Formally, the standard DE is defined by specifying the components of an EA, as done
in the paragraphs below.

2.3.1 Representation
Individuals are represented by real-valued vectors:

~xi = {xi,0, xi,1, ..., xi,D−1},∀j : xi,j ∈ R,

where i represents the individual’s index in the population P and D stands for the
dimension of the optimized function. The population is represented as follows:

P = {~x0, ~x1, ..., ~xNP−1}, NP ≥ 4,

where NP is the size of the population.

2.3.2 Mutation
For each individual in the population ~xi, i = 0, 1, ..., NP − 1, DE generates mutant
vector ~mi as following:

~mi = ~xr1 + F · (~xr2 − ~xr3),

with random, mutually exclusive indexes r1, r2, r3 ∈ {0, 1, ..., NP − 1}, which are also
chosen to be different from the running index i. F , called differential weight, is a
constant factor ∈ [0, 2], representing the amplification of the random deviation (~xr2 −
~xr3).

2.3.3 Crossover
After the mutation, the mutant vector ~mi undergoes a crossover with its relevant indi-
vidual ~xi to generate the offspring ~oi. Standard DE us binomial crossover, where the
offspring is generated as follows:

~oi = {oi,0, oi,1, ..., oi,D−1},

∀j : oi,j =
{
mi,j if j = R ∨ rand(0, 1) < CR,
xi,j otherwise,

where: R ∈ [0, D] is a random integer, rand(0, 1) represents a random number between
zero and one, and CR denotes the probability of crossover. Since ~xi is the parent of ~oi,
it can be seen that each individual in the population generates an offspring. In other
words, the parent selection chooses all individuals from the population.

2.3.4 Replacement strategy
To decide which individuals become members of the subsequent generation, DE com-
pares offspring ~oi to its relevant parent ~xi using the greedy criterion. Thus, if ~oi is
better than ~xi, the offspring ~oi will replace the parent ~xi and enter the population of
the next generation.

5
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Figure 2.2. General scheme of the differential evolution
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Chapter 3
Linkage information modeling

It is worth noting that DE, as was described in the previous chapter, uses random, uni-
form crossover. The crossover has no assumptions about the structure of the optimized
function. The original DE does not take possible dependencies between specific parts
of the solution into account.

However, a whole class of problems with dependent solution components exists. DE
using uniform crossover does not take possible dependencies into consideration and
often disrupts linkages between strongly connected components.

The aim of this work is to propose a new crossover operator capable of finding de-
pendencies and taking them into account when generating new offsprings. This chapter
proposes two possible representations of the dependency structure.

3.1 Family Of Subsets
Both representations of the dependency structure are based on the Family Of Subsets
(FOS) [11]. FOS is a way to model linkage information that describes presumed de-
pendencies between variables. FOS F = {F1, F2, ...} represents a subset of a power
set P(I) of I, where I= {0, 1, ..., D − 1} stands for a set of indices and D is a number
of problem variables (dimension of the fitness function). Each block F j ∈ F contains
the indices of those variables that are considered dependent.

3.2 Linkage tree
Many FOS structures exist, and any of them can be used to model the linkage structure.
However, this work focuses on two of them. The first of them is the linkage tree (LT).

“The Linkage Tree is the hierarchical cluster tree of the problem variables using an
agglomerative hierarchical clustering algorithm with a dependency measure M. The
dependency measureM(X1, X2) measures the degree of dependency between two sets of
variables X1 and X2.” [12]

More potential dependency measures M(X1, X2) exist. However, in this work, two
dependency measures are used. They are described in detail in the following chapter
( 4).

The linkage tree is a tree with D leaf nodes and D − 1 inner nodes, where D is the
number of problem variables. Each node of the LT represents a specific set of variables
F j . The key property of the LT is that each F j , which contains more than one variable,
is the union of two other sets Fk, F l ∈F , where j 6= k 6= l (transitively). Formally, for
any subset F j , where |F j | > 1, subsets Fk,F l, for which the following applies, exist:

1) Fk,F l 6= ∅
2) Fk ∩ F l = ∅
3) Fk ∪ F l = F j

7



3. Linkage information modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The hierarchical clustering procedure starts by assigning each problem variable to a

separate block in random order. The procedure proceeds top-down. Therefore, the tree
is initialized with these univariate blocks as leaves. In each step, a new node is created
by merging two nodes of the tree determined, by a given dependency measure M, as
the most dependent. It is important to mention that each node can be merged only
once. The merging process stops when no more merges are possible. In other words, the
root node has been created. Due to the way the procedure works, the root node has to
be a set of all problem variables. The tree itself contains multiple levels of dependency.
From the univariate level at the height of zero to the complete dependency between all
variables at a depth of zero. [12]

Figure 3.1. Example of the linkage tree [13]

The DE using the LT structure (DE LT) builds the LT in every generation. Once
the tree is built, DE LT traverses the tree in the opposite order of merging.

3.3 Marginal product
The second introduced FOS structure is marginal product (MP) [14]. The MP is defined
as set F , where for each Fk,F l ∈ F holds that Fk ∩ F l = ∅. When all variables are
independent, MP is called univariate FOS and F= {{0}, {1}, ..., {D − 1}}, where D
is number of problem variables. On the contrary, when all variables are considered
mutually dependent, MP is called compact FOS.

8
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Before introducing the MP building procedure, it is necessary to define the strength
of block SM(F j), which determines the dependency rate within a certain block F j
according to the given dependency measure M. The strength of blocks is defined as
follows:

SM(Fi) =
{

G
D−1

∑
v∈VM(Fi, {v}) if |Fi| = 1,

1
|Fi|(|Fi|−1)

∑
u∈Fi

∑
v∈Fi
M({u}, {v}) otherwise,

where G ≥ 0 is a user-specified factor defining the degree of strength of univariate
blocks, and V denotes the set of all problem variables.

The MP building procedure starts by initializing MP F as univariate FOS and by
assigning the strength of block to each block. In each step, new block Fn is created by
merging two blocks Fa,Fb ∈ F , which are determined as the most dependent by the
given dependency measureM. Then Fn is assigned its strength of block. If the newly
created block meets the following conditions:

1) SM(Fn) ≥ θ1, θ1 ∈ R
2) SM(Fn) ≥ Kmax(SM(Fa),SM(Fb))
3) |Fn| ≤ θ2, θ2 ∈ N

Where thresholds θ1 > 0, θ2 ∈ [1, D] and factor K ∈ (0, 1] are defined by the user,
then Fn is inserted into the FOS F , and Fa,F b are removed from F . The procedure
runs until a newly created block Fn has not met mentioned conditions or until MP has
become the compact FOS.

The DE using the MP FOS structure (DE MP) builds the MP in every generation.
After building the MP, DE MP traverses FOS in the opposite order of merging, in other
words, from the last one added to FOS to the first one.

9



Chapter 4
Identification of the linkage structure

In the previous chapter, two possible representations of the dependency structure were
introduced. In order to represent the dependency structure, it is necessary to determine
the degree of dependence between each pair of variables and between each pair of sets of
variables. The tool used to measure the degree of dependency is called the dependency
measure and is denoted asM.

Formally, M is a function that takes two sets of variables as input and produces a
real, positive number as output. M is defined as follows [12]:

M(Xi, Xj) = 1
|Xi||Xj |

∑
u∈Xi

∑
v∈Xj

pu,v,

where Xi and Xj are sets of variables and pu,v is an element of the dependency matrix
P at position u, v.

The dependency matrix

P =



p0,0 p0,1 . . . . . . p0,D−1

p1,0 p1,1
...

... . . . ...

... . . . ...
pD−1,0 . . . . . . . . . pD−1,D−1

 ∈ RD×D

is a symmetric and positive semidefinite matrix. The dependency matrix captures
the dependency between each pair of variables. The element pi,j denotes the pairwise
dependency strength between i-th and j-th problem variables. Diagonal elements of P
are defined as zeros, i.e ∀i = 0, 1, ..., D − 1 : pi,i = 0.

Several methods of constructing the dependency matrix P exist. Nevertheless, this
work focuses only on two of them.

4.1 Fitness-based method

The first method, called non-linearity check (NC) [15–16], defines whether two variables
interact directly based on fitness values. The method works under the assumption that
non-linear interactions may exist only between dependent variables. It classifies a pair
of variables, either separable or non-separable, by comparing the difference in overall
fitness while making the exact same change for a particular pair of chromosomes of
a given individual xi,j for different values of xi,k, k 6= j. Nevertheless, checking only
one individual is not convincing enough because there may exist linearity between a
dependent pair of variables in some context. Therefore, more individuals must be
checked. In this work, m best individuals from the population are checked. The set of
indices of m best individuals in the population is denoted as C.

10
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For each of chosen individuals ~xi, i ∈ C and each pair of variables j, k, a pairwise
dependency di,j,k is calculated. The overall pairwise dependency between those variables
is determined by aggregating those values as follows:

pj,k = 1
m

∑
i∈C

di,j,k.

In order to calculate di,j,k, four individuals are picked by combining all possible
points that can be created by picking two different values for each xi,j and xi,k [17].
The absolute value of differences in the overall fitness value for those points is used
to calculate the potential dependence between j-th and k-th variables. It is done by
determining whether the adjustment to xi,k affects the change in fitness caused by
modification to xi,j . Define ∆i,j and ∆i,j,k as:

∆i,j = |(f(~xi)|xi,j = aj , xi,k = ak)− (f(~xi)|xi,j = aj + bj , xi,k = ak)|,

∆i,j,k = |(f(~xi)|xi,j = aj , xi,k = ak + bk)− (f(~xi)|xi,j = aj + bj , xi,k = ak + bk)|,

where f denotes fitness function, and aj , ak, bj , bk can be any real value, so that for
every variable j: aj and aj + bj remain within the bound for j-th variable inside the
current population, formally:

∀j : max
~xi∈P

(xi,j) ≥ aj ≥ min
~xi∈P

(xi,j),

∀j : max
~xi∈P

(xi,j) ≥ aj + bj ≥ min
~xi∈P

(xi,j).

Nevertheless, the values that have been empirically found for [17] are used in this work,
those values are

aj = min
~xi∈P

(xi,j) + (max
~xi∈P

(xi,j)− min
~xi∈P

(xi,j)) · 0.35,

bj = (max
~xi∈P

(xi,j)− min
~xi∈P

(xi,j)) · 0.35.

Finally, j-th and k-th variables are said to be dependent when |∆i,j −∆i,j,k| ≥ 0, the
pairwise dependency di,j,k is defined as:

di,j,k =
{

1− ∆i,j,k

∆i,j
if ∆i,j ≥ ∆i,j,k,

1− ∆i,j

∆i,j,k
otherwise.

Note that di,j,k as well as pj,k lie within [0, 1) with zero indicating independent variables.

4.2 Distribution-based method
The second method of constructing the dependency matrix P is called the maximal in-
formation coefficient (MIC) [18]. More methods used to identify dependencies between
a pair of variables based on the distribution of the population exist [14, 17]. However,
MIC achieved better accuracy in comparison to other methods [18–19].

MIC is based on the idea that a relationship between a pair of variables can be
captured by a grid on the scatterplot of the two variables that partitions the data to
encapsulate that relationship.
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In order to calculate MIC, all possible grids up to maximal grid resolution are con-

sidered. Note that maximal grid resolution depends on the sample size. For each pair
of integers (x, y), the largest possible mutual information (MI) [20], achievable by any
x-by-y grid applied to the data, is computed. Those mutual information values are then
normalized by the logarithm of the minimum of x and y. Finally, MIC is defined as the
maximum of those highest normalized mutual information values [18]. Formally:

MICi,j = max
(x,y):x≤B,y≤B

(
max
g:Gx,y

( MIi,j |g
log min(x, y)

))
,

where B is a user-specified value defining maximal grid resolution, Gx,y denotes a set
of all possible x-by-y grids, and MIi,j |g stands for mutual information of i-th and j-th
variables achieved by application of grid g.

As was mentioned above, MIC achieved good results in various comparisons. How-
ever, a big limitation of MIC is its high computational cost. Therefore, several algo-
rithms for approximating the MIC have been published [18–19, 21]. In this work, MICE
minepy implementation [22–23] is used.

In this work, MICE is not calculated from the whole population, but only a subset
C of all individuals from the current population is considered. The dependency matrix
P is then formally calculated as follows:

pi,j = MICEi,j |C .
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Chapter 5
Experiments

In section 2.3, the standard differential evolution was introduced. It was also noted that
DE does not have any tool to recognize or model the linkage information between certain
parts of the solution. In chapter 3, two possible representations of the dependency
structure were introduced assuming known pairwise dependencies, and in chapter 4,
two ways to find pairwise dependencies and thereby build the dependency matrix P
were presented.

Based on those methods, it is possible to propose a modified DE with dependency
detection. The modified version differs from the original in two factors. Firstly, in every
generation, the dependency matrix P and FOS structure based on it is built. Secondly,
the crossover is modified to respect dependent blocks. The block F j ∈ F divides the
set of all variables into two mutually exclusive subsets of variables F j and F \ F j .
Variables within those subsets are crossed over together [11].

Formally, within the crossover, for each individual ~xi, each block F j is iteratively
considered in random order (crossover probability CR = 1). For each block F j , a new
mutant vector ~mi is randomly generated in the same way as it is generated within the
standard mutation. Suppose mutant’s values for variables contained in F j are different
from those contained in its parent ~xi. In that case, these values are overwritten in
the parent ~xi. It produces ~xnew, which is then evaluated by the fitness function. New
individual ~xnew is only accepted if it has a better or equal fitness value than the original
~xi. Changes in DE pseudocode are captured in figure 5.1.

The main goal of the experiments is to study the performance of various types of
DE with dependency detection differing in creating the matrix P, or in the building of
FOS F . Compare them with each other and with standard DE and other optimization
algorithms.

5.1 Algorithms

5.1.1 Di�erential evolution variants
Within the experiments, seven types of differential evolution are compared. The original
DE, as was introduced in section 2.3. (DE UNIFORM). The remaining six variants of
DE are divided into three pairs according to how they create the dependency matrix P.
The first variant uses the linkage tree (LT) and the second the marginal product (MP)
within each pair. The first pair uses the non-linearity check to create P (DE LT NC
and DE MP NC). The second pair takes advantage of the maximal information coeffi-
cient (DE LT MIC and DE MP MIC). The third pair are DE variants with full prior
knowledge of pairwise dependencies. Therefore, they build optimal P, which is a (0,
1)-matrix with zeros for independent pairs and ones for dependent pairs (DE LT+ and
DE MP+), before starting the generational process.
It is important to note that all newly proposed variants of DE create P and build the
FOS structure in every second generation instead of every generation in order to speed
up the computation.

13
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Figure 5.1. Pseudocode of the differential evolution with dependency detection

Non-linearity check Max. inf. coeff. Optimal
Linkage tree DE LT NC DE LT MIC DE LT+

Marginal product DE MP NC DE MP MIC DE MP+

Table 5.1. Overview of newly proposed variants of the differential evolution.

All the above-mentioned DE variants share the following:

. Initialization of individuals ∼ N (0, 100 · ID), where N is multivariate normal distri-
bution, 0 stands for the zero vector, and ID represents D ×D identity matrix.. The differential weight F = 0.7

Other parameters:

. The crossover probability for DE UNIFORM: CR = 0.9. The degree of strength of univariate blocks:

G =
{ 1 for DE MP+,

2 otherwise.

. Threshold θ1 defining the minimal strength of block to be accepted:

θ1 =
{

10−1 for DE MP MIC,
10−8 otherwise.. Maximal size of blocks: θ2 = 6. Maximum potential degree of strength of block reduction during merging

K =
{ 0.8 for DE MP+,

0.4 for DE MP NC,
0.7 for DE MP MIC.

14
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. Number of checked individuals within non-linearity check method: m = d0.15 ·NP e. The subset used to calculate MICE C = Cb ∪ Cr, where Cb is set of d0.3 ·NP e best
individuals in population and Cr is a set of d0.1 ·NP e randomly chosen individuals
from the remaining.. The maximal MICE grid resolution B is set according to table 5.2 (rounded to the
nearest integer in an upward direction).

Number of samples B parameter
|C| < 25 |C|0.85
25 ≤ |C| < 50 |C|0.8
50 ≤ |C| < 250 |C|0.75
250 ≤ |C| < 500 |C|0.7
500 ≤ |C| < 1000 |C|0.65
1000 ≤ |C| < 2500 |C|0.60
2500 ≤ |C| < 5000 |C|0.55

Table 5.2. The dependence of the cardinality of C on the parameter B, taken from [22].

. Th MICE parameter c, which determines how many more clumps there will be than
columns in every partition, was set default value 15 [22].

All values mentioned above were found empirically unless otherwise stated.

5.1.2 Other algorithms
The Covariance matrix adaptation evolution strategy (CMA-ES) belongs to the class
of evolutionary algorithms. CMA-ES is considered state-of-the-art in evolutionary
computation and has very quickly become the standard tool for continuous optimiza-
tion [24–26]. In this work, Hansen’s implementation of CMA-ES with default parame-
ters is used [27].

The last considered algorithm is the Nelder-Mead simplex algorithm [28], An opti-
mization algorithm, which is not an evolutionary algorithm. Nevertheless, it uses only
function values to find the optimum. Therefore, it may be used for black box opti-
mization. The Scipy implementation, called FMIN, is used [29]. The minimal absolute
difference in the candidate solution between iterations (xtol ) as well as the minimal
absolute difference in fitness function values between iterations (ftol ) is set to 10−12.
Independent restarts are allowed.

5.2 Test problems
The first set of benchmarking problems is called Test problems. These six optimization
problems to minimize are considered to study the impact of various types of linkage
learning on the performance of DE and to benchmark the considered algorithms.

Before introducing the Test problems, it is important to state the property of func-
tions, called additive separability. Additively separable function F is defined as:

F (x0, x1, ..., xD−1) = f0(x0) + f1(x1) + ...+ fD−1(xD−1),

where f0, f1, ..., fD−1 are functions of one variable. It is crucial that the optimum
of a D-dimensional additively separable function may be obtained by performing D
independent one-dimensional optimizations along each dimension, formally:

min
[x0,x1,...,xD−1]∈RD,

F (x0, x0, ..., xD−1) = min
x0∈R

f0(x0) + min
x1∈R

f1(x1) + ...+ min
xD−1∈R

fD−1(xD−1).
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It can be seen that the standard DE, which optimizes each dimension independently,
would be suitable for optimizing additively separable functions. Additively separable
functions are exactly those functions without dependencies.

5.2.1 Sphere

The first benchmark function is the sphere function, also known as De Jong F1 [30].
It is presumable the easiest continuous domain optimization problem. It is convex,
separable, and has one local minimum.

Definition of the sphere function:

fsphere(~x) =
D−1∑
i=0

x2
i .

Global minimum:
fsphere(~xmin) = 0,

~xmin = [0, 0, ..., 0].

5.2.2 Levy

The second considered benchmark problem is the Levy function [31]. Like the sphere, it
is a separable function. Nevertheless, the Levy function is considered more challenging
to optimize.

The Levy function is defined as follows:

fLevy(~x) = sin2(πv0)+
D−2∑
i=0

[
(vi−1)2(1+10 sin2(πvi+1))

]
+(vD−1−1)2(1+sin2(2πvD−1)),

where vi = 1 + xi−1
4 , for all i = 0, 1, ..., D − 1.

Global minimum:
fLevy(~xmin) = 0,

~xmin = [1, 1, ..., 1].

5.2.3 Rastrigin

The Rastrigin function [32–33] is the third benchmark problem. Like the previous
functions, this one is also separable. It is a difficult function to optimize. Due to
regular “noise”, it has many regularly distributed local minima. The Rastrigin function
is defined as:

fRastrigin(~x) = 10 ·D +
D−1∑
i=0

[
x2
i − 10 cos(2πxi)

]
.

Global minimum:
fRastrigin(~xmin) = 0,

~xmin = [0, 0, ..., 0].
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5.2.4 Rosenbrock
The Rosenbrock function [34], also known as the Banana function, is the first non-
separable function because it has overlapping dependencies. Each pair of consecutive
variables is dependent. The Rocenbrock function contains a narrow parabolic valley,
where the global minimum is located. However, even though this valley is easy to find,
convergence to the minimum is difficult [35]. The definition of Rosenbrock function is
as follows:

fRosenbrock(~x) =
D−2∑
i=0

[
100(xi+1 − x2

i )2 + (1− xi)2
]
.

Global minimum:
fRosenbrock(~xmin) = 0,

~xmin = [1, 1, ..., 1].

5.2.5 SoREB
The Sum of Rotated Ellipsoid Blocks, abbreviated SoREB [14] is defined as follows:

fEllipsoid(~x) =
l−1∑
i=0

[
10

6i
l−1x2

i

]
,

fSoREB(~x, k) =
D/k−1∑
i=0

[
fEllipsoid

(
Rθ([xki, ..., xk(i+1)−1])

)]
,

where Rθ defines the rotation of a vector around the origin by the angle of θ, and k is
the size of blocks. Rotated blocks of variables that enter to fellipsoid as an input creates
strongly connected components. Variables within the block have strong dependencies
but are entirely independent of any variables outside their block. This feature is called
block-separability.

Within comparison, four types of the SoREB function differing in the size of blocks
(2, 3, 4, 5) were considered. The rotation of θ = π/8 is used.
Global minimum:

fSoREB(~xmin, k) = 0; k ∈ N,

~xmin = [0, 0, ..., 0].

5.2.6 OSoREB
The SoREB function conations only non-overlapping, non-decomposable blocks of size
k. In [14] the overlapping version of this problem was defined as OSoREB (Overlapping
Sum of Rotated Blocks). In addition to the original SoREB problem, SoREB blocks
of length 2 for every pair of successive variables belonging to other original blocks are
used. For OSoREB is used k = 5 and θ = π/8. Definition of OSoREB:

fOSoREB(~x, k) = fSoREB(~x, k) +
D/k−1∑
i=1

[
fEllipsoid

(
Rθ([xki−1, xki])

)]
.

Global minimum:
fOSoREB(~xmin, k) = 0; k ∈ N,

~xmin = [0, 0, ..., 0].

17



5. Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.3 Black Box Optimization Benchmarking problems
Black Box Optimization Benchmarking (BBOB) problems are the second considered set
of benchmark problems. A set of 24 noise-less real-parameter single-objective bench-
mark functions are defined in [36] as Real-Parameter Black-Box Optimization Bench-
marking 2009 Noiseless Functions. Those functions were used for the BBOB workshop
2009. The BBOB problems were selected with the intention to evaluate the perfor-
mance of algorithms with regard to standard difficulties that occur in continuous do-
main search. So they definitely should, at least to a certain extent, reflect the problems
that are dealt with in practice. All BBOB problems are to be minimized.

It is important to note that since BBOB problems cover a wide range of possible
optimization problems, the proposed DE variants may be unsuitable for some of them.
BBOB problems consist of separable and non-separable ones.

5.4 Setup
All the experimental results that are described in this work measure the first time a
global optimum was hit. In other words, the number of fitness function calls needed to
reach the small enough neighborhood of the global optimum for the first time within
the run. The toleration is 10−8.

5.4.1 Test problems specifics
For each problem, each algorithm, and each dimension, twenty-five independent runs
are performed. The performance is considered successful if at least 24 runs converged to
the global optimum or a predefined sufficiently close approximation within 300 000 · D
calls of the fitness function.

The associate population size of evolutionary algorithms is the smallest possible size
so that the algorithm’s performance is considered successful. It is determined by starting
from the smallest possible population and letting the algorithm run 25 times. If the
performance has not been successful, the population size for the next trial will increase
by s. This procedure is repeated until the successful population size is found or a
population size reaches the upper limit T . If the successful population size is found, the
optimal population size is searched for by performing a bisection search between the
current population size and the previous size. Otherwise, the algorithm is considered
unable to optimize a certain problem and dimension. Parameters s and T are set as
follows:

s =
{ 10 for DE LT MIC and DE MP MIC,

4 for otherwise.

T =
{ 50 + 6 ·D for DE LT MIC and DE MP MIC,

50 for otherwise.

5.4.2 BBOB problems specifics
The setup for BBOB problems is partially determined by the authors of BBOB problems
in [37]. For each algorithm, dimension, and optimized function, five different function
instances are used, each of them three times. The number of fitness function calls is
limited to 1000000 · D. The population size is set to 25, except for algorithms using
MIC, for which it is increased to 50. For BBOB problems, algorithms DE LT+ and
DE MP+ are not considered.
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BBOB problems evaluation and results visualization are provided by COCO (COm-
paring Continuous Optimizers) platform [38].
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Chapter 6
Results

In this chapter, the results of the experiments introduced in the previous chapter are
presented. The results are divided into two sections.

6.1 Test problems
Firstly, results of the performance of the algorithms introduced in section 5.1 for the Test
problems. Results are visualized in the form of graphs, which show the dependence of
the number of fitness function calls on the dimension of a certain problem. These graphs
are called scalability graphs. They show the most important facets of the algorithm’s
performance. Moreover, they provide a prediction regarding the performance on higher-
dimensional problems.

Each data point is the median of successful runs. In order to display data over a very
wide range of values in a compact way and get clearer results, a base-10 logarithmic
scale is used for both axes of graphs. It is also worth noting that the y-axis does not
start at zero.

The Test results may be divided into three groups according to separability into
separable problems (sphere, Levy, Rastrigin), block-separable problems (SoREB), and
non-separable problems (Rosenbrock, OSoREB).

6.1.1 Separable problems
The results on separable problems are shown in figure 6.1.

Both algorithms with full prior knowledge (DE LT+, DE MP+) perform very simi-
larly for all three separable problems. DE LT+ is a bit better for the easiest function
(sphere). Nevertheless, DE MP+ achieves a little better results for more difficult prob-
lems than DE LT+ (for Levy and Rastrigin).

Since separable problems do not contain any dependencies between variables, it is
not surprising that there is almost no difference in DE LT MIC and DE LT+ perfor-
mance because, for separable problems, all possible linkage trees should be equally
good. Therefore, it does not matter what dependency matrix P DE LT MIC finds and
subsequently what linkage tree it builds. The linkage tree would be just as good as the
one built by DE LT+.

The DE MP MIC is slightly worse than DE LT+, DE MP+, and DE LT MIC, espe-
cially for higher dimensions. It is tough to recognize separability by MIC because the DE
selection operator aligns individuals with the fitness contours. Therefore, DE MP MIC
may determine some variables as dependent and build suboptimal MP-FOS, which
results in worse performance.

Although both algorithms using non-linearity check (DE LT NC, DE MP NC) cor-
rectly recognize the separability of the problem and build the optimal FOS, they have
achieved significantly worse results than other newly-introduced variants of DE. The
difference is mainly caused by the fact that DE LT NC and DE MP NC use fitness
function evaluations to find dependencies, in contrast to DE LT+, DE MP+, and
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DE LT MIC, which also build optimal FOS but do not waste fitness function evalu-
ations.

It also provides an explanation of why DE LT NC outperforms DE MP NC. Since
DE LT NC, DE MP NC build optimal FOS, the DE LT NC performs comparably to
DE LT+ within the crossover. Similar to DE MP NC and DE MP+. Moreover, since
DE LT+ and DE MP+ perform similarly, DE LT NC and DE MP NC use a compara-
ble number of fitness function evaluations within the crossover. It is a fact that LT FOS
has a necessarily higher cardinality than MP FOS for the same dimension. Therefore,
DE LT NC finds the optimum within a fewer number of generations than DE MP NC.
Since the dependency matrix is built in every second generation, DE MP NC uses more
fitness function calls to find dependencies, resulting in decreased performance in com-
parison to DE LT NC.

CMA-ES achieved interesting results. For the sphere function, CMA-ES is a constant
factor better than DE LT+, DE MP+, DE LT MIC, and DE MP MIC. Nevertheless,
as the difficulty of optimization of functions grows, the performance of CMA-ES de-
creases. For the Levy function, CMA-ES performs similarly to the four mentioned
algorithms, and for the hardest function (Rastrigin), CMA-ES is significantly worse
and achieves results comparable to DE LT NC and DE MP NC. However, it is worth
noting that CMA-ES scales better than NC variants of DE.

Finally, FMIN outperforms all algorithms for low dimensions of the sphere. Neverthe-
less, it scales very badly and gets outperformed by all algorithms in higher dimensions.
FMIN is unable to find optimum, even for low dimensions, of harder functions such as
Levy and Rastrigin. It is not surprising that FMIN is not able to find the global op-
timum of multimodal problems since FMIN performs the downhill simplex algorithm,
which is a local optimizer rather than a global one.

6.1.2 Block-separable problems

The results on block-separable problems are shown in figure 6.2.
The separable problems are represented by the SoREB function with variable sizes

of blocks (2, 3, 4, 5). The relationships between particular pairs of DE variants that
use the same technique to build the dependency matrix are worth noting.

Firstly, DE MP+ is a constant factor better than DE LT+. It is not surprising since
the block-separable structure of a problem may be represented by MP FOS very well.

However, for the second pair, which uses the non-linear check, it can be seen that
the LT variant (DE LT NC) outperforms the MP variant (DE MP NC). Although
DE MP NC builds the same FOS as DE MP+, which perfectly captures the problem’s
structure, it cannot achieve better results than DE LT NC. It points to the fact that
worse performance within the crossover is compensated by a lower number of fitness
function evaluations used to find dependencies.

Lastly, MIC variants (DE LT MIC, DE MP MIC) perform almost similarly for block
sizes two and three. For k = 4 and k = 5, DE LT MIC achieves better results than
DE MP MIC for lower dimensions. Nevertheless, the dependent blocks are easier to
recognize for the higher dimensions, and the DE MP MIC outperforms DE LT MIC.

The relationship between MIC variants and NC variants is also worth noting. It can
be seen that for k = 2, both MIC variants perform similarly to DE LT+ and better
than NC variants. However, as the size of blocks increases, more dependencies occur.
Hence NC variants outperform MIC variants. It is caused by the weaker ability of MIC
to recognize dependencies.
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Figure 6.1. Scalability graphs of separable problems. Each point is the median of successful
runs.

The original DE UNIFORM performance shows up as the worst of all considered
algorithms for block-separable problems. For bigger sizes of blocks, DE UNIFORM is
even worse.

CMA-ES performs similarly for all SoREB variants, regardless of the size of blocks,
in terms of the required number of evaluations. Since other algorithms need more
evaluations for SoREB with bigger blocks, CMA-ES outperforms all algorithms except
DE MP+ for k = 5. Nevertheless, DE LT+ and DE MP+ outscale CMA-ES, with
scalability comparable to DE LT NC and DE MP NC.

Last considered algorithm FMIN shows the best results for small dimension, but
the worst scalability of all algorithms and the inability to find the optimum for higher
dimensions.

Lastly, note that DE LT+ and DE LT NC need, on average, more evaluations to find
optimum for D = 5 than for D = 8 if k = 5. It shows certain limitations of LT when
all variables are pairwise dependent.

6.1.3 Non-separable problems
The results on non-separable problems are shown in figure 6.3.

Firstly, it is worth noting that no DE variant that builds MP-FOS is capable of finding
the optimum of the presented non-separable problems, even for a small dimension. It
is probably caused by the overlapping dependency structure of both problems, which
is impossible to model well enough by MP-FOS.
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Figure 6.2. Scalability graphs of block-separable problems. Each point is the median of
successful runs.

DE LT+ and DE LT MIC perform almost identically. The same trend may be ob-
served in figure 6.1, which represents results for separable functions. For the Rosen-
brock, DE LT+ and DE LT MIC scale better than DE LT NC. Nevertheless, for OS-
oREB, DE LT+ and DE LT MIC are only a constant factor better than DE LT NC.
The slightly better relative scalability of DE LT NC for OSoREB towards DE LT+
and DE LT MIC corresponds to the results obtained in figure 6.2 because OSoREB
is in a sense closer to the block-separable problem than Rosenbrock, and the depen-
dency structure of OSoREB may be captured better within LT-FOS than the structure
of Rosenbrock. Therefore the impact of correct recognition of dependencies, which
DE LT NC does, increases.

The same phenomenon may be seen in the performance of DE UNIFORM, which is
a constant factor better than DE LT NC for Rosenbrock, which is the function with a
relatively small number of dependencies. Nevertheless, OSoREB contains more depen-
dencies between variables than Rosenbrock. Therefore, as the number of dependencies
increases in OSoREB, the scalability of DE UNIFORM decreases and DE UNIFORM
is unable to find the optimum of OSoREB in higher dimensions.

On the other hand, the opposite trend can be viewed in the performance of CMA-ES,
which outperforms all other algorithms. Nevertheless, for the Rosenbrock, the difference
is less significant, and DE LT+ and DE LT MIC seemed to scale better than CMA-ES.
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Figure 6.3. Scalability graphs of non-separable problems. Each point is the median of
successful runs.

For non-separable problems, similarly, as for others, FMIN shows up as the best
algorithm for low dimensions but scales the worst. Therefore, it is almost useless for
higher dimensions.

6.2 BBOB problems
The results on BBOB problems are presented by graphs of Empirical cumulative dis-
tribution functions (ECDFs) [39]. These ECDFs show on the y-axis the proportion of
cases for which the number of fitness function evaluations needed to find the optimum
was smaller than the value given on the x-axis. For the x-axis, a base-10 logarithmic
scale is used, and the total number of fitness function evaluations is divided by dimen-
sion. Each graph also shows the performance of the best algorithm of BBOB workshop
2009 for a certain problem, which is noted as best 2009 .

All results in this section were obtained by the COCO platform. Complete results
contains 25 function for various dimensions (2, 3, 5, 10, 20, 40). Complete results are
shown in Appendix B. In this section, only selected functions of dimensions 5 and 20
are shown. These functions were chosen to represent the characteristic trend seen for
more functions.

Firstly, the set of functions on which all DE variants perform similar but worse than
CMA-ES and best 2009. This set is represented by the so-called Ellipsoid separable
function in figure 6.4.

Secondly, for a number of functions, MP variants of DE are outperformed by other DE
variants, especially for higher dimensions. Nevertheless, LT and UNIFORM variants
are outperformed by CMA-ES and by best 2009. An example of such a function may
be seen in figure 6.5.

The third observed trend within BBOB functions is a significantly worse performance
of DE variants against CMA-ES and best 2009. DE variants are unable to find the global
optimum for the majority of these functions, especially in higher dimensions. Note that
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Figure 6.4. Graphs of the empirical cumulative distribution functions of the introduced
algorithms on the Ellipsoid separable function for dimensions 5 and 20.
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Figure 6.5. Graphs of the empirical cumulative distribution functions of the introduced
algorithms on the Bent function for dimensions 5 and 20.
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Figure 6.6. Graphs of the empirical cumulative distribution functions of the introduced
algorithms on the Griewank-Rosenbrock F8F2 function for dimensions 5 and 20.

these functions are mainly Multi-modal functions with a weak global structure. This
trend is captured in figure 6.6.
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Chapter 7
Conclusion

To conclude, the main goal of this work was to propose a crossover operator with
dependency detection for DE.

Two representations of the dependency structure were introduced in chapter 3. First
is the linkage tree (LT), which contains multiple levels of dependency, from univariate
level to complete dependency, and the second is the marginal product (MP), which
contains every problem variable exactly once.

Two approaches to finding pairwise dependencies between variables were introduced
in chapter 4. Firstly, the fitness-based approach, called non-linearity check (NC), de-
termines the possible dependency between a pair of variables according to the fitness
values. Secondly, the distribution-based approach, known as maximal information co-
efficient (MIC), identifies dependencies based on the distribution of the population.

Subsequently, six new variants of DE differing in the crossover operator were pro-
posed in section 5.1. Except for four regular variants using the above-mention methods
(DE LT NC, DE MP NC, DE LT MIC, DE MP MIC), two artificial variants with full
prior knowledge of the dependency structure (DE LT+, DE MP+) were also designed.

According to the results presented in section 6.1, newly proposed methods, as base-
lines, achieve fair scalability. All of them achieved greater scalability compared to the
original DE (DE UNIFORM) for almost all tested problems, independently of the de-
pendency structure. They also showed enhanced scalability in comparison to the FMIN
algorithm. Moreover, some of them exhibited greater scalability than the state-of-the-
art evolutionary algorithm CMA-ES in some cases. The application of any of the four
proposed regular variants of DE would result in increased performance in comparison
to the original one.

According to the results from the previous chapter, it may be concluded that linkage
tree representation, thanks to its robustness, seems to be a better choice than marginal
product representation.

It is worth noting that the results obtained by the NC methods should be compared
to the MIC results with careful consideration. For instance, while NC methods can
easily recognize the separability of two variables, the same task is challenging for MIC
ones because the DE selection operator aligns individuals with the fitness contours.
On the other hand, MIC variants, in contrast to NC ones, do not need any fitness
function evaluations to find dependencies. The limitation of MIC is that DE usually
takes advantage of relatively small populations. However, MIC achieves better results
with more samples because it is a statistical method. On the other hand, MIC would
probably be more noise resistant than NC. Nevertheless, so far, no experiments have
not been presented to substantiate this assumption. Hence there is space for future
work to prove or refute this hypothesis.

Although all four regular variants of DE enhance the performance of the original DE,
they have some limitations which could be reduced by further adjustments.

For instance, incremental dependency updating described in [17] could significantly
reduce the amount of fitness function evaluations used by NC methods to find depen-
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dencies and decrease the difference in performance between NC methods and methods
with full prior knowledge.

Lastly, how to deal with problems containing overlapping sub-components remains
unanswered. Because neither LT nor MP is able to represent these types of structures
clearly. Moreover, the optimal linkage structure of these problems is unknown. Hence
it would be very interesting to find the optimal structure for these problems.
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Appendix A
Abbreviations

BBOB Black box optimization benchmarking
CMA-ES Covariance matrix adaptation evolution strategy

COCO Comparing continuous optimizers
DE Differential evolution

DE LT Differential evolution which uses the linkage tree to represent the structure
of a problem

DE LT+ Differential evolution which uses the linkage tree to represent the structure
of a problem and has full prior knowledge of pairwise dependencies

DE LT MIC Differential evolution which uses the linkage tree to represent the structure
of a problem and finds dependencies by maximal information coefficient

DE LT NC Differential evolution which uses the linkage tree to represent the structure
of a problem and finds dependencies by non-linearity check

DE MP Differential evolution which uses the marginal product to represent the
structure of a problem

DE MP+ Differential evolution which uses the marginal product to represent the
structure of a problem and has full prior knowledge of pairwise dependen-
cies

DE MP MIC Differential evolution which uses the marginal product to represent the
structure of a problem and finds dependencies by maximal information
coefficient

DE MP NC Differential evolution which uses the marginal product to represent the
structure of a problem and finds dependencies by non-linearity check

DE UNIFORM The original version of differential evolution
EA Evolutionary algorithm

ECDFs Empirical cumulative distribution functions
FOS Family of subsets

LT Linkage tree
MI Mutual information

MIC Maximal information coefficient
MP Marginal product
NC Non-linearity check

OSoREB Overlapping Sum of Rotated Ellipsoid Blocks function
SoREB Sum of Rotated Ellipsoid Blocks function
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Appendix B
Complete BBOB results
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Appendix C
Implementation and content of attachments

Here, a brief description of the program used to generate results 6 is provided. All
source codes together with README.txt file are on the enclosed CD. The program
offers two functionalities for users.

Firstly, the procedure of finding the population size of chosen algorithms for chosen
problems and dimensions, as was described in section 5.4.1.

Secondly, finding the median of successful runs of the selected algorithm for selected
problem and dimension.

The content of attachments:

. BcThesis.pdf. comparison.c. comparison.h. fitnessFunctions.c. fitnessFunctions.h. main.c. Makefile. mine.c [23]. mine.h [23]. parameters.c. parameters.h. README.txt. search.c. search.h. utils.c. utils.h
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