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Chapter 1

Introduction

Markov Decision Processes are one of the most well-known methods used for modeling
and solving stochastic planning problems. Until recently, the problems solved in minutes
consisted of tens of states at most. With the development of computing resources and
specialized algorithms, it is easier to solve problems greater than ever. Moreover, such
problems often include time-span limiting the number of actions we can execute.

In this thesis, we aim to survey and extend methods specialized on Finite Horizon Markov
Decision Processes with both fully (MDP) and partially (POMDP) observable environ-
ments. Our task includes the addition of any other methods or interfaces missing to im-
plement such methods and preserving interoperability inside the target framework. In the
end, we evaluate the performance of the implemented methods on benchmarks and new
test instances designed for their purpose.

For our thesis, we choose the Julia programming language. Julia is a young programming
language that starts to emerge into the scientific community’s consciousness. While offering
a high-level approach comparable to the one of Python, it also offers a similar speed
to languages like C or C++ at the same time. Moreover, Julia contains a framework
used for working with Markov Decision Processes specifically. The framework is called
𝑃𝑂𝑀𝐷𝑃𝑠.𝑗𝑙.

The 𝑃𝑂𝑀𝐷𝑃𝑠.𝑗𝑙 framework is an open-source framework for defining, solving, and simu-
lating both MDP and POMDP problems. It builds on several interoperating interfaces to
clearly define the structure of all code associated with the framework. Thanks to this, it is
easy to change the script’s functionality by only a few changes, implement new methods,
or improve existing ones.

As a part of our contribution to the 𝑃𝑂𝑀𝐷𝑃𝑠.𝑗𝑙 framework, we introduce the interface
for defining Finite Horizon (PO)MDPs FiniteHorizonPOMDPs.jl. With this interface, the
user can either define his Finite Horizon problem or use the fixhorizon utility to transform
an existing Infinite Horizon (PO)MDP into a Finite Horizon one.

To present the idea of finite horizon solver, we implement the Finite Horizon Value Itera-
tion in FiniteHorizonValueIteration.jl algorithm, which solves problems defined as Finite
Horizon MDPs. Moreover, we implement the FiniteHorizonValueIteration.jl algorithm in
an easy-to-grasp way, demonstrating its structure and benefits.

Furthermore, we implement the state-of-the-art Finite Horizon Point-Based Value Iter-
ation algorithm in 𝐹𝑖𝑉 𝐼.𝑗𝑙. The Finite Horizon Point-Based Value Iteration presents a

1



2 Chapter 1. Introduction

great heuristic solution for solving finite horizon POMDP problems. Furthermore, it is
an excellent starting point for any future contributions, as the authors of the algorithm
propose improving heuristics.

To benchmark the 𝐹𝐼𝑉 𝐼, we also implement the PointBasedValueIteration.jl algorithm on
which foundation build many heuristics already implemented in 𝑃𝑂𝑀𝐷𝑃.𝑗𝑙 framework.

Besides mentioned solvers and interface, we contribute with additional POMDP mod-
els, policies, and other minor changes necessary to provide the Finite Horizon POMDP
support.

Finally, we benchmark all implemented solvers. We benchmark the MDP solver on cus-
tom MDP problems and the POMDP solvers on well-known POMDP problems from the
literature.

In our experiments, we show that we correctly implemented the solvers. The Point-Based
Value Iteration solver asymptotically reaches the same result as the state-of-the-art SAR-
SOP algorithm. On top of that, the finite horizon solvers show up to a tenfold improvement,
increasing with the rising problem size. Concluding that the specialized finite horizon al-
gorithms are essential in environments with a limited time span.



Part I

Background
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Chapter 2

Fully Observable Markov Decision
Processes

The Markov decision processes (MDPs) are a part of the optimization problem solvers.
The term MDP was probably first used in (Bellman 1957) and came from the name of
Russian mathematician Andrey Markov who researched the stochastic processes, which
create the foundation of MDPs. We describe the MDP problems with the environment.
The environment consists of fully observable states and actions (with a corresponding
stochastic transition model) for which the agent either pays a cost or receives a reward. The
agent is an entity that lives inside of an MDP environment, and its task is to maximize the
reward obtained for its actions. With the agent entity, we can intuitively demonstrate the
MDPs solution. The environment does not change over time. According to the problem’s
description, the problem can have either an infinite horizon or finite horizon, limiting the
number of steps the agent can take.

This chapter will first draw a motivation on why we use MDPs in modeling environments in
planning problems. Then define the background of MDPs, possible approaches to solving
MDPs, and in the end, we are going to discuss the advantages of using time-dependent
MDPs.

The definitions, algorithms, and the construction of the following sections draw from (M.
Kolobov; A. Kolobov 2012).

2.1 MDP and its Features

The Fully Observable Markov Decision Processes (MDPs) are tuples (S, A, T, R) contain-
ing a set of environment states 𝑆, actions 𝐴 that the agent can execute in corresponding
states, stochastic transition function 𝑇 modeling the relationships between origin states 𝑠,
actions 𝑎 and the distributions of the destination states 𝑠′. Finally, the MDPs also contain
the reward function 𝑅 that assigns reward (or penalty) to tuples (s, a, s’) - for transitions
from 𝑠 to 𝑠′ when executing the action 𝑎 More formally:

Definition 2.1 (Infinite Horizon Fully Observable Markov Decision Process
(MDP)). A fully observable MDP is a tuple (𝑆, 𝐴, 𝑇, 𝑅), where:

∙ 𝑆 is the finite set of all possible states of the environment, also called the state space;

5



6 Chapter 2. Fully Observable Markov Decision Processes

∙ 𝐴 is the finite set of all actions an agent can take;

∙ 𝑇 : 𝑆 × 𝐴 × 𝑆 → [ 0, 1] is a transition function mapping the probability 𝑇 (𝑠, 𝑎, 𝑠′) of
reaching the state 𝑠′ if action 𝑎 is executed when the agent is in state 𝑠;

∙ 𝑅 : 𝑆 × 𝐴 × 𝑆 → 𝑅 is a reward function that gives a finite numeric reward value
𝑅(𝑠, 𝑎, 𝑠′) obtained when the system goes from state 𝑠 to state 𝑠′ as a result of executing
action 𝑎.

However, the MDP agent does not have free will. The agent moves according to orders.
The agent’s orders come from a policy. The policy is a function mapping every state to
some action. Based on the agent’s state, the agent executes an action corresponding to a
policy’s mapping of the agent’s current state. We evaluate the policy with a reward, which
the agent receives for following the policy’s mappings. In our context, the best quality is
the maximal one.

Naturally, we want the agent to move in such a way that it maximizes its reward. Such a
policy that is better than any other policy is called optimal policy. To select the optimal
policy, we have to evaluate all possible policies.

In this work, we do not consider separate time steps and different possible histories that
could lead to a given state s in a time t. The history is a sequence ℎ = (𝑠0, 𝑎0, 𝑠1, 𝑎1, . . . , 𝑠𝑛)
of consequent states and actions that ends up in the current state 𝑠𝑛 by following a policy
𝜋. By considering policies ending up in a state 𝑠 with various histories as similar ones, we
vastly reduce the number of possible policies to |𝐴||𝑆|. These relaxed policies are called
Markovian. In the following text, we are using the Markovian Policies.

Definition 2.2 (Markovian Policy). A probabilistic (deterministic) history-dependent
policy 𝜋 : 𝐻 × 𝐴 → [ 0, 1] (𝜋 : 𝐻 → 𝐴) is Markovian if for any two histories ℎ𝑠,𝑡 and
ℎ′

𝑠,𝑡, both of which end in the same state 𝑠 at the same time step 𝑡, and for any action 𝑎,
𝜋(ℎ𝑠,𝑡, 𝑎) = 𝜋(ℎ′

𝑠,𝑡, 𝑎) (𝜋(ℎ𝑠,𝑡) = 𝑎 if and only if 𝜋(ℎ𝑠,𝑡) = 𝑎).

We evaluate a policy with a sum of rewards obtained when executing policy from the initial
state until termination. Other than a whole policy, we can also evaluate a given state 𝑠.
We evaluate a given state 𝑠 using a value function. The value function 𝑉 𝜋(𝑠) returns the
expected reward the agent obtains when executing the actions given by a policy 𝜋 from a
state 𝑠 that end up in a terminal state. The terminal state, or goal state, stands for a sink
state that the agent can not leave. The value function corresponds to 𝑉 : 𝑆 → [−∞,∞] .
In the following text, we will refer to the value function as 𝑉 (𝑠, 𝑡) or 𝑉 (𝑠).

Definition 2.3 (The Value Function of a Policy). Let ℎ𝑠,𝑡 be a sequence that ter-
minates at state 𝑠 and time 𝑡. Let 𝑅

𝜋ℎ𝑠,𝑡

𝑡′ be random variables for the amount of reward
obtained in an MDP as a result of executing policy 𝜋 starting in state 𝑠 for all time steps
𝑡′ s.t. 𝑡 6 𝑡′ 6 𝑡𝑚𝑎𝑥 if the MDP ended up in state 𝑠 at time 𝑡 via sequence ℎ𝑠,𝑡.The value
function 𝑉 𝜋 : 𝐻 → [−∞,∞] of a sequence-dependent policy 𝜋 is a utility function 𝑢 of the
reward sequence 𝑅

𝜋ℎ𝑠,𝑡

𝑡 , 𝑅
𝜋ℎ𝑠,𝑡

𝑡+1 , . . . that one can accumulate by executing 𝜋 at time steps
𝑡, 𝑡 + 1, . . . after sequence ℎ𝑠,𝑡. Mathematically, 𝑉 𝜋(ℎ𝑠,𝑡) = 𝑢(𝑅

𝜋ℎ𝑠,𝑡

𝑡 , 𝑅
𝜋ℎ𝑠,𝑡

𝑡+1 , . . .).

Among the policies evaluated with the value function 𝑉 𝜋 from an initial state, we will
be able to find an optimal MDP solution (or optimal policy) denoted as 𝜋*. The optimal
policy’s value 𝑉 * is called the optimal value function. Such optimal policy then satisfies
𝑉 *(ℎ) > 𝑉 𝜋(ℎ) for all sequences ℎ ∈ 𝐻.
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One possible approach to evaluating the value function is using the expected sum of re-
wards from executing actions given by the policy, called the Expected Linear Additive
Utility.

Definition 2.4 (Expected Linear Additive Utility). An expected linear additive util-
ity function is a function 𝑢(𝑅𝑡, 𝑅𝑡+1, . . .) = 𝐸[ ∑︀|𝐷|

𝑡′=𝑡 𝛾𝑡′−𝑡𝑅𝑡′ ] = 𝐸[ ∑︀|𝐷|−𝑡
𝑡′=0 𝛾𝑡′

𝑅𝑡′+𝑡] that
computes the utility of a reward sequence as the expected sum of (possibly discounted)
rewards in this sequence, where 𝛾 > 0 is the discount factor.

This approach eliminates the possibility of multiple different solution values resulting from
multiple stochastic runs of the same policy. It employs the expected value and does not
need to perform vector equality comparison as its results are scalars.

It turns out that this approach is even better as it guarantees a fundamental property
of MDPs called The Optimality Principle, according to which among the policies that
we evaluated by the expected linear additive utility, there exists a policy that is optimal at
every time step.

2.2 MDPs Techniques

This part will briefly introduce a few fundamental algorithms for MDPs solving: Brute-
Force algorithm, Policy Iteration, Value Iteration, and in the end, we present a possible
solution for its disadvantages: Prioritizations.
After reading this section, the reader should know the options for solving MDPs and be
ready for the following section to discuss the finite horizon’s advantages.

2.2.1 Brute-Force Algorithm

As its name suggests, the Brute-Force is the most naive algorithm. The reader can en-
counter its modifications in all problem-solving classes of computer science. During the
execution of the solver, the method evaluates all possible output combinations and chooses
the best one. As a result of significant performance requirements, the algorithm is rarely
ever used. In MDPs, the number of policies evaluated is |𝐴||𝑆|.

However, as the number of states or actions rises, such evaluation becomes enormous.
Another problem is MDP action outcomes not being deterministic, and MDP structure
often being cyclic. Both of these problems result in a steep complexity rise in terms of
computational resources.

That is why another approach comes in.

2.2.2 An Iterative Approach to Policy Evaluation

The evaluation of cyclic environments requires a suitable equation that captures all transi-
tions and rewards. That means that every state’s value function should correspond to the
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sum of rewards for moving towards successor states. We call such formula as the Bellman
equation, and we write the equation as follows:

𝑉 𝜋(𝑠) =
∑︁
𝑠′∈𝑆

𝑇 (𝑠, 𝜋(𝑠), 𝑠′)[ 𝑅(𝑠, 𝜋(𝑠), 𝑠′) + 𝑉 𝜋(𝑠′)] (2.1)

For all states, the Bellman equation forms a system of linear equations. This system of
linear equations reduces the complexity of the previous approach. It can be solved using
Gaussian Elimination in 𝑂(|𝑆|3). It is still inefficient, but we use the idea to find a solution
with an iterative approach.

The iterative approach starts with a rough estimation and continuously works its way
up to the asymptotically same solution as the linear system. The algorithm stops when
the maximum gap between two consequent value functions of all states is lesser than a
given value, called residual. This solution is optimal (M. Kolobov; A. Kolobov 2012). As
it stores the previous iteration, it is a part of dynamic programming. Every iteration of
this algorithm runs in 𝑂(|𝑆|2).

Algorithm 1: Iterative Policy Evaluation
1 //Assumption: 𝜋 is proper (ends up in a goal state)
2 initialize 𝑉 𝜋

0 arbitrarily for each state
3 𝑛←− 0
4 repeat
5 𝑛←− 𝑛 + 1
6 foreach 𝑠 ∈ 𝑆 do
7 compute 𝑉 𝜋

𝑛 (𝑠)←−∑︀
𝑠′∈𝑆 𝑇 (𝑠, 𝜋(𝑠), 𝑠′)[ 𝑅(𝑠, 𝜋(𝑠), 𝑠′) + 𝑉 𝜋

𝑛−1(𝑠′)]
8 compute 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑛(𝑠)←− |𝑉 𝜋

𝑛 (𝑠)− 𝑉 𝜋
𝑛−1(𝑠)|

9 end
10 until 𝑚𝑎𝑥𝑠∈𝑆𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑛(𝑠) ≤ 𝜖;
11 return 𝑉 𝜋

𝑛

We know how to evaluate the environment’s state given some policy, but we have not yet
described how to choose the best policy for a given evaluation.

2.2.3 Policy Iteration

Given that the iterative policy evaluation is optimal after an undefined number of iter-
ations for a specific policy, we can further improve it by iterating policy evaluation and
policy improvement. For every iteration, we have almost optimal policy evaluation for the
previous policy. We improve the policy by iterating over the state space, where for each
state 𝑠 we select the new policy for a given state as the action that maximizes the re-
ward. The algorithm stops when the policy is the same in two consequent iterations. This
algorithm is called Policy Iteration (Algorithm 2).

However, the policy iteration requires its initial policy to end in the goal state. If the policy
ends up in the goal states, it converges significantly fast. On the other hand, if we do not
meet the initial condition of policy ending in the terminal state, the policy evaluation step
will diverge. Nevertheless, another algorithm can solve this drawback.
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Algorithm 2: Policy Iteration
1 initialize 𝜋0 to be an arbitrary policy ending in the goal state
2 𝑛←− 0
3 repeat
4 𝑛←− 𝑛 + 1
5 Policy Evaluation: compute 𝑉 𝜋𝑛−1

6 Policy Improvement:
7 foreach state 𝑠 ∈ 𝑆 do
8 𝜋𝑛(𝑠)←− 𝜋𝑛−1(𝑠)
9 ∀𝑎 ∈ 𝐴 compute 𝑄(𝑉 𝜋𝑛−1 )(𝑠, 𝑎)

10 𝑉𝑛(𝑠)←− 𝑚𝑎𝑥𝑎∈𝐴𝑄(𝑉 𝜋𝑛−1 )(𝑠, 𝑎)
11 if 𝑄(𝑉 𝜋𝑛−1 )(𝑠, 𝜋𝑛−1(𝑠)) > 𝑉𝑛(𝑠) then
12 𝜋𝑛(𝑠)←− 𝑎𝑟𝑔𝑚𝑎𝑥𝑎∈𝐴𝑄(𝑉 𝜋𝑛−1 )(𝑠, 𝑎)
13 end
14 end
15 until 𝜋𝑛 == 𝜋𝑛−1;
16 return 𝜋𝑛

2.2.4 Value Iteration

Value iteration focuses on improving the value function of all states instead of evaluating
the policy. The algorithm creates a policy at its very end to maximize the reward in a
given state. Thanks to this property, the initial policies are not used in the algorithm and
can not lead to divergence.

The algorithm draws from Bellman equations, which mathematically express the optimal
solution of an MDP.

𝑉 *(𝑠) = 𝑚𝑎𝑥𝑎∈𝐴𝑄*(𝑠, 𝑎)
𝑄*(𝑠, 𝑎) =

∑︁
𝑠′∈𝑆

𝑇 (𝑠, 𝑎, 𝑠′)[ 𝑅(𝑠, 𝑎, 𝑠′) + 𝑉 *(𝑠′)] (2.2)

The equation’s interpretation is maximizing the optimal value function of a given state.
The result can be either zero if the state is among the goal states or a value that maximizes
the result obtained after executing a given action and then following the optimal policy.

To approximate 𝑉 *(𝑠), the algorithm uses the so-called Bellman backup to improve the
current 𝑉𝑛(𝑠) with 𝑉𝑛−1(𝑠′).

𝑉𝑛(𝑠)←− 𝑚𝑎𝑥𝑎∈𝐴

∑︁
𝑠′∈𝑆

𝑇 (𝑠, 𝑎, 𝑠′)[ 𝑅(𝑠, 𝑎, 𝑠′) + 𝑉𝑛−1(𝑠′)] (2.3)

Value iteration is iteratively improving its value function estimation and is guaranteed to
converge to the optimal solution (M. Kolobov; A. Kolobov 2012). Its stopping criterion is
either the maximum residual or the number of iterations.
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Algorithm 3: Value Iteration
1 initialize 𝑉0 arbitrarily for each state
2 𝑛←− 0
3 repeat
4 𝑛←− 𝑛 + 1
5 foreach 𝑠 ∈ 𝑆 do
6 compute 𝑉𝑛(𝑠) using Bellman backup at 𝑠
7 compute 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑛(𝑠) = |𝑉𝑛(𝑠)− 𝑉𝑛−1(𝑠)|
8 end
9 until 𝑚𝑎𝑥𝑠∈𝑆 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑛 (s) < 𝜖;

10 return greedy policy: 𝜋𝑉𝑛(𝑠) = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎∈𝐴
∑︀

𝑠′∈𝑆 𝑇 (𝑠, 𝑎, 𝑠′)[ 𝑅(𝑠, 𝑎, 𝑠′) + 𝑉𝑛(𝑠′)]

2.2.5 Prioritization

One of the most significant drawbacks of Value Iteration is that it requires full sweeps
of the state space. This drawback results in many unnecessary value function evaluations
because some of the state’s values remain the same as the value function updates are
heading from the goals state at first. It can take lots of iterations to evaluate all successor
state’s value functions. Furthermore, due to cyclic moves, the speed of convergence among
states can differ.

Both of these problems often result in flawed performing algorithm execution.

Logical improvement is to, instead of iterating the whole state space, iterate over each
state separately. Iterating over each separate state has two consequences. First, we have
to develop or choose an algorithm that prioritizes states and, second, does not starve some
of them (meaning every state gets updated accordingly).

Furthermore, iterating over the separate states means that we can no longer use the
number of iterations as a termination condition because we do not know which states’
value functions and how often they were updated. The only terminal condition remains
maximum residual.

(M. Kolobov; A. Kolobov 2012) formalizes the intuition in Algorithm 4:

Algorithm 4: Prioritized Value Iteration
1 initialize 𝑉
2 initialize priority queue 𝑞
3 repeat
4 select state 𝑠′ = 𝑞.𝑝𝑜𝑝()
5 compute V(s’) using a Bellman backup at s’
6 foreach predecessor s of s’, i.e. {𝑠|∃𝑎[ 𝑇 (𝑠, 𝑎, 𝑠′) > 0] } do
7 compute 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑠)
8 𝑞.𝑝𝑢𝑠ℎ(𝑠, 𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑠))
9 end

10 until termination;
11 return greedy policy 𝜋𝑉

We will introduce a few priority metrics whose features generally differ and may diverge
under specific conditions. For details, head over to (M. Kolobov; A. Kolobov 2012).
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Prioritized Sweeping

Prioritized sweeping estimates the expected change in the value of a state if a backup were
to be performed on it now.

𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑃 𝑆(𝑠)←− 𝑚𝑎𝑥
{︁

𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑃 𝑆(𝑠), 𝑚𝑎𝑥𝑎∈𝐴

{︀
𝑇 (𝑠, 𝑎, 𝑠′)𝑅𝑒𝑠𝑉 (𝑠′)

}︀}︁
(2.4)

Improved Prioritized Sweeping

Improved Prioritized Sweeping employs the idea that states with fast converging value
functions should be the priority in terms of evaluating order. The consequence is that the
algorithm first iterates the states near the goal and moves to other states only after the
change between state iterations becomes small.

𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝐼𝑃 𝑆(𝑠)←− 𝑅𝑒𝑠𝑉 (𝑠)
𝑉 (𝑠) (2.5)

Focused Dynamic Programming

Focused Dynamic Programming is a particular case of prioritization techniques used when
the start state 𝑠0 is known. In such cases, the start case’s knowledge can be employed and
added as a penalty factor.

𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝐹 𝐷𝑃 ←− ℎ(𝑠) + 𝑉 (𝑠) (2.6)

where:

h(s) is lower bound on the expected reward for reaching s from 𝑠0, and

V(s) is regular value function for given state s.

In the previous sections, we have very briefly introduced the notion of MDPs and their
solving methods. First, we showed the Brute-Force algorithm, which naively evaluated all
possible policies. Then we discussed the value and policy iterations that improved the
performance but still did lots of useless evaluations. And finally, we presented a solution
that intelligently iterates through prioritized states.

2.3 Finite-Horizon MDPs

With all the necessary background layed out, let us present the Finite-Horizon MDPs.

Definition 2.5. Finite-Horizon MDP A finite-horizon MDP is an MDP as described
in Definition 2.1 with a finite number of time steps.
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The Infinite-Horizon MDPs discussed so far are a slightly different class of problems from
Finite-Horizon MDPs. However, the solution of Finite-Horizon is somewhat similar to the
prioritized value iteration of Infinite-Horizon MDPs. Moreover, we can transform each
Infinite-Horizon MDP Finite-Horizon one.

The ability to transform the infinite horizon problem into finite horizon one is critical
because the Finite-Horizon MDP has an acyclic state space, and the acyclic MDPs can
be solved optimally using only one backup if used optimal backup order. (M. Kolobov;
A. Kolobov 2012)

On the other hand, the transformation to Finite-Horizon MDP increases the state space
size by copying a whole former MDP into a single stage of Finite Horizon MDP. This way,
the memory consumption linearly increases with the number of stages.

Furthermore, the transformation to Finite Horizon MDP does not necessarily mean that
the result will be the same or even optimal in an infinite horizon environment. With a
finite horizon, the finite horizon agents focus on getting rewards obtainable in a given time
span. The Infinite Horizon MDPs do not have such a constraint and can focus on getting
a bigger reward later on.

As the finite horizon number is known, we can evaluate all states’ value functions from
maximum horizon time and work our way down to starting time. This way, we evaluate
each state’s successor’s value functions, employing optimal backup order and finding the
optimal policy on the first pass.

In conclusion, in cases where the infinite horizon methods are not sufficient, the MDPs
can be transformed into Finite-Horizon ones. However, while solving the MDP in one pass,
this transformation blows up the state space.



Chapter 3

Partially Observable Markov
Decision Processes

Up until now, we have dealt with fully observable MDPs. In MDPs, the agent has the
perfect knowledge about its state. In practice, however, fully observable environments
are rare. Real-world agents often have only limited knowledge about their surroundings,
making their state uncertain. These environment models are called partially observable
MDPs (or POMDPs). With imperfect state information, the algorithms for MDPs are no
longer valid, and we have to define new methods that deal with probability distributions
instead of deterministic states.

In the following chapter, we will mainly draw from (Russell; Norvig 2010), but also from
(Shani; Pineau; Kaplow 2013), (Pineau; Gordon; Thrun 2003) and (Walraven; Spaan 2019).
We note that we cite the most important takeaways.

3.1 POMDP Models

The POMDPs (Definition 3.1) draw from MDPs, and thus, some of the model methods
remain the same. POMDPs, similar to MDPs, define the transition model 𝑇 , states 𝑆,
actions 𝐴 and reward model 𝑅. Besides that, the POMDPs also define a new model, which
describes the possibility of receiving observations of the agent’s surroundings, called the
observation function 𝑂 and set of possible observations Ω. Unlike MDPs, the POMDPs
define the starting distribution 𝑏0 as the distribution over states instead of a deterministic
state.

The initial state distribution 𝑏0 as well as all other possible state space distributions
are called belief states. The belief states are |𝑆| long vectors describing the probability
distribution over all states in POMDPs. We denote the probability of each state 𝑠 with
𝑏(𝑠). Moreover, the space of belief states is continuous.

To record the effect of executing an action 𝑎 and receiving an observation 𝑜, we have to
execute a so-called belief update. For a given action 𝑎 and observation 𝑜, the belief update
is calculated as the conditional distribution. It stores only the last belief, but it is calculated
from a full history of actions executed and observations received so far starting from the
initial belief state. Every time an agent executes the action and obtains an observation,

13
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Definition 3.1 (Partially Observable Markov Decision Process (POMDP)).
POMDPs (Shani; Pineau; Kaplow 2013) are formally defined as a tuple
{𝑆, 𝐴, 𝑇, 𝑅, Ω, 𝑂, 𝑏0}, where:

∙ S, A, T, R are the same as for fully observable MDPs, often called the underlying MDP
of the POMDP.

∙ Ω is a set of possible observations. For example, in the robot navigation problem(Section
6.3 or 6.4), Ω may consist of all possible wall occurrences in an POMDP.

∙ O is an observation function, where 𝑂(𝑎, 𝑠′, 𝑜) = 𝑃 (𝑜|𝑠′, 𝑎) is the probability of ob-
serving observation o given that the agent has executed action a, reaching state 𝑠′. O can
model robotic sensor noise, or the stochastic appearance of symptoms given a disease.

∙ 𝑏0 is an initial state distribution.

the belief is updated. We formulate the update of each state as:

𝑏𝑎
𝑜(𝑠′) = 𝑂(𝑎, 𝑠′, 𝑜)

𝑂(𝑏, 𝑎, 𝑜)
∑︁
𝑠∈𝑆

𝑇 (𝑠, 𝑎, 𝑠′)𝑏(𝑠), (3.1)

where 𝑂(𝑏, 𝑎, 𝑜) corresponds to the probability of obtaining observation o after executing
action a in belief b. This probability is calculated as follows:

𝑂(𝑏, 𝑎, 𝑜) =
∑︁
𝑠′∈𝑆

𝑂(𝑎, 𝑠′, 𝑜)
∑︁
𝑠∈𝑆

𝑇 (𝑠, 𝑎, 𝑠′)𝑏(𝑠). (3.2)

This approach to calculating the normalizing constant is computationally more demanding
than other approaches. However, it allows skipping the computation of the inner sum in
cases where the probability is zero.

3.2 Value Functions for POMDPs

In MDPs, the value function computes the value for each discrete state. With POMDPs
having a continuous space of belief vectors, we need to alter the model method. Instead
of computing a value for a single state, we compute utility vectors of length |𝑆|, called
𝛼-vectors, for belief states. The value of belief state then becomes ∑︀

𝑠∈𝑆 𝑏(𝑠)𝛼𝜋(𝑠), where
𝛼𝜋(𝑠) is the utility of executing a policy 𝜋 in state s. We can interpret this linear combi-
nation as a hyperplane over the belief space (Pineau; Gordon; Thrun 2003). The optimal
policy in a given belief then becomes an action a, whose 𝛼-vector maximizes the dot
product with a given belief:

𝑉 (𝑏) = 𝑉 𝜋*(𝑏) = max
𝜋

𝑏 · 𝛼𝜋 (3.3)

More importantly, the set of 𝛼-vectors creates a piecewise linear, and convex function
(Russell; Norvig 2010), Figure 3.1.
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Figure 3.1: POMDP value function representation using PBVI (Pineau; Gordon; Thrun 2003)

In general, the value function can be iteratively updated with a value iteration algorithm.
The value function update can be formulated using the Bellman update as follows:

𝑉 (𝑏) = max
𝑎∈𝐴

[𝑅(𝑏, 𝑎) + 𝛾
∑︁
𝑏′∈𝐵

𝑇 (𝑏, 𝑎, 𝑏′)𝑉 (𝑏′)]. (3.4)

In the formula above, we use 𝑅(𝑏, 𝑎) = ∑︀
𝑠∈𝑆 𝑏(𝑠)𝑅(𝑠, 𝑎) and 𝑇 (𝑏, 𝑎, 𝑏′) = ∑︀

𝑜∈Ω
𝑃 (𝑜|𝑏, 𝑎)1(𝑏′ =

𝑏𝑎
𝑜) for simplicity. The first formula stands for rewards obtained for executing an action

𝑎 from a belief 𝑏 calculated as a dot product of belief vector and vector of rewards for
executing action 𝑎 in each state. The second formula is the probability of transitioning
from a belief state 𝑏 to a new belief state 𝑏′ given an action 𝑎. It computes the sum of the
probabilities of observations 𝑜 resulting in belief 𝑏′.

The Eq. 3.4 can be also written in terms of vector operations and operations on sets
of vectors (Shani; Pineau; Kaplow 2013), as (note that 𝑟𝑎 denotes the vector of rewards
obtained after executing action 𝑎 in each state 𝑠):

𝑉 ′ =
⋃︁

𝑎∈𝐴

𝑉 𝑎 (3.5)

𝑉 𝑎 =
⨁︁
𝑜∈Ω

𝑉 𝑎,𝑜 (3.6)

𝑉 𝑎,𝑜 =
{︂ 1
|Ω|𝑟𝑎 + 𝛼𝑎,𝑜 : 𝛼 ∈ 𝑉

}︂
(3.7)

𝛼𝑎,𝑜(𝑠) =
∑︁
𝑠′∈𝑆

𝑂(𝑎, 𝑠′, 𝑜)𝑇 (𝑠, 𝑎, 𝑠′)𝛼(𝑠′), (3.8)

In each iteration of the exact value iteration algorithm, the value function is updated
across the entire belief space. For each possible action, observation and 𝛼-vector of old
value function, the Eq. 3.8 computes new 𝛼-vector, costing 𝑂(|𝑉 | × |𝐴| × |Ω| × |𝑆2|)
operations. The alpha vector is then summed with the reward corresponding to a given
action in Eq. 3.7, cross-summed across the observation space in 3.6 and unioned across
the action space in 3.5, adding another 𝑂(|𝐴| × |𝑆| × |𝑉 ||Ω|) to the resulting complexity
of a single iteration which is 𝑂(|𝑉 | × |𝐴| × |Ω| × |𝑆2|+ |𝐴| × |𝑆| × |𝑉 ||Ω|).

As the POMDPs’ belief space is continuous, the algorithm’s performance rapidly decreases
with the growing size of the problems.
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3.3 Point-Based Value Iteration

Most of the POMDP problem simulations are unlikely to reach most of the points in the
belief space. To reduce the complexity of solving POMDPs, approximation algorithms are
at hand. In the past, researchers introduced several approximation algorithms ((Lovejoy
1991) suggests creating a grid-based belief set, (Milos Hauskrecht 2000) suggests creating
a set of reachable beliefs). These algorithms, however, rely on naive approximations and
underperform as a result. For example, creating grid-based belief sets turned out to be
inaccurate in sparse grids or computationally expensive in the case of dense grids.

Adopting yet another strategy can overcome the problems described above. Given the
most probable belief states, we can focus the solver on finding only their corresponding
𝛼-vectors and thus reduce the computation overhead. This algorithm is called Point-Based
Value Iteration (PBVI).

The PBVI (Pineau; Gordon; Thrun 2003) is an anytime algorithm. The Algorithm 5 starts
from an initial belief 𝑏0 and iteratively improves its value function and expands its belief
space. The belief space 𝐵 = {𝑏0, 𝑏1, . . . , 𝑏𝑚} stores the the most probable belief vectors.
The value function updates each belief vector, but unlike other approximation algorithms,
such as grid-based VI, its value function spans over the whole belief space instead of only
one belief vector. The algorithm ends when the two consecutive value function sets equal
to each other or after a predefined number of iterations.

Algorithm 5: Generic PBVI
1 𝐵 ←− 𝑏0
2 while Stopping criterion not reached do
3 𝐼𝑚𝑝𝑟𝑜𝑣𝑒(𝑉, 𝐵)
4 𝐵 ←− 𝐸𝑥𝑝𝑎𝑛𝑑(𝐵)
5 end

Thanks to being an anytime algorithm, the solver can be stopped whenever needed, effec-
tively exchanging computation time and solution quality. It is also possible to choose how
big the maximum gap between iterations of value updates will be.

3.3.1 Improve Function

The value function improvement, or backup, is an adjustment of the value update from
Eqs. 3.5 - 3.8 It maintains only one 𝛼-vector per belief vector, It also chooses only the
best 𝛼, pruning the dominated vectors twice, at each argmax expression, and reducing the
complexity of algorithm. The backup can be compactly written as:

𝑏𝑎𝑐𝑘𝑢𝑝(𝑉, 𝑏) = argmax
𝛼𝑏

𝑎:𝑎∈𝐴,𝛼∈𝑉

𝑏 · 𝛼𝑏
𝑎 (3.9)

𝛼𝑏
𝑎 = 𝑟𝑎 + 𝛾

∑︁
𝑜∈Ω

argmax
𝛼𝑎,𝑜:𝛼∈𝑉

𝑏 · 𝛼𝑎,𝑜, (3.10)

where 𝑟𝑎 represents vectors of rewards for executing a given action 𝑎 in each state, and



3.3. Point-Based Value Iteration 17

𝛼𝑎,𝑜 has the same meaning as in the Equation 3.8.

Algorithm 6: PBVI Improve
1 repeat
2 foreach 𝑏 ∈ 𝐵 do
3 𝛼←− 𝑏𝑎𝑐𝑘𝑢𝑝(𝑏, 𝑉 ) /* execute a backup operation on all points in

B in arbitrary order */
4 𝑉 ←− 𝑉

⋃︀
{𝛼}

5 end
6 until V has converged;

/* repeat the above until V stops improving for all points in B */

The improve function starts with the 𝛼-vector update same as in the exact value update
Eq. 3.8 with the complexity of 𝑂(|𝑆|2× |𝐴| × |𝑉 | × |Ω|). The summation and dot product
in Eq. 3.9 then takes further 𝑂(|Ω| × |𝑆|) and 𝑂(|𝑆)|) for adding a reward vector. With
another 𝑂(|𝑆|) operations for the dot product in 3.9 the complexity of full point-based
backup requires 𝑂(|𝑆|2 × |𝐴| × |𝑉 | × |Ω|+ |𝐴| × |𝑆| × |Ω|).

The PBVI algorithm, unlikely the original value update, does not need to cross-sum the
𝛼-vectors. Furthermore, the 𝛼𝑎,𝑜-vectors can be cached, because they are independent of
the current belief b. Thus, computing the backup of whole |𝐵|, with 𝛼𝑎,𝑜 cached requires
only 𝑂(|𝐴| × |Ω| × |𝑉 | × |𝑆|2 + |𝐵| × |𝐴| × |𝑆| × |Ω|), instead of 𝑂(|𝑉 | × |𝐴| × |Ω| × |𝑆2|+
|𝐴| × |𝑆| × |𝑉 ||Ω|) in case of exact backup (Eqs. 3.5 - 3.8).

The backup runs until the convergence of 𝛼-vector pairs or until a predefined number of
iterations.

3.3.2 Expand Function

After the value function improvement, the algorithm executes the belief space expansion.
At this point, the goal is to reduce the error bound as much as possible. The error-bound
reduction is performed by greedily expanding the belief set with a new furthest belief
accessible from each stored belief. The distance function is defined as follows, with 𝐿
being the chosen distance metric:

|𝑏′ −𝐵|𝐿 = min
𝑏∈𝐵
|𝑏− 𝑏′|𝐿, (3.11)

and the expanded belief results from :

𝑏′ = max
𝑎,𝑜
|𝑏𝑎,𝑜 −𝐵|𝐿 (3.12)

The choice of the distance metric is not crucial as the results appear to be identical. The
authors of the algorithm recommend adding one new belief per 1 old (Pineau; Gordon;
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Thrun 2003).

Algorithm 7: PBVI Expand
1 𝐵𝑛𝑒𝑤 ←− 𝐵 foreach 𝑏 ∈ 𝐵 do
2 𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠(𝑏)←− {𝑏𝑎

𝑜|𝑂(𝑏, 𝑎, 𝑜) > 0}
3 𝐵𝑛𝑒𝑤 ←− 𝐵𝑛𝑒𝑤

⋃︀ argmax𝑏′∈𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟𝑠(𝑏) ‖𝐵, 𝑏′‖𝐿 /* add the furthest
successor of b */

4 end

3.4 Overview of Alternative Point-Based Algorithms

The generic PBVI, while being simple and somewhat clever with its belief set expansion,
becomes cumbersome when solving large POMDP instances. However, we often have to
expand to large belief sets. Furthermore, we want to keep the possibility to compute
a compact value function. To cope with these circumstances, the researchers developed
various alternatives and heuristics.

3.4.1 Perseus

The idea of Perseus (Spaan; Vlassis 2005) comes from the Achilles heel of PBVI. The
PBVI is cleverly expanding its belief space with the most probable belief states. However,
such an approach is significantly demanding. On the other hand, the Perseus algorithm
shows that even running random trials and exploring a large number of belief vectors may
be more efficient if used with clever value updates.

3.4.2 HSVI

The Perseus algorithm randomization is well suited for small and mid-sized problems but
fails in larger ones. The intractability is caused by storing an enormous number of belief
vectors. The HSVI (Smith; Simmons 2012) algorithm solves this issue by employing a
straightforward yet effective heuristic that helps cut down the gap between the upper and
lower bounds on the optimal value function. The HSVI stores the belief vector visits and
backs them up in the reversed order.

3.4.3 FSVI

The FSVI (Shani; Brafman; Shimony 2007) uses another heuristic creating new trajectories
by using the best action in the underlying MDP. Such heuristics focus on searching high
reward policies but tend to fail when obtaining additional information is crucial for getting
the optimal result.

3.4.4 SARSOP

SARSOP (Kurniawati; Hsu; Lee 2008), unlike the others, focuses on calculating an opti-
mally reachable belief space. It focuses on exploring areas that an agent will visit under the



3.4. Overview of Alternative Point-Based Algorithms 19

optimal policy and ignores areas which the agent will not visit under the optimal policy.
The SARSOP obtains the area reachable under the optimal policy heuristically.





Chapter 4

Finite Horizon POMDPs

Unlike the Finite Horizon MDPs, the Finite Horizon POMDPs do not offer a one-pass op-
timal solution. Furthermore, Finite Horizon POMDPs cause additional memory and per-
formance requirements. Causing additional memory and performance requirements does
not mean that it is necessarily a flawed concept. In the following sections, we will explain
why the Finite Horizon POMDPs are actually beneficial, why we need to use appropriate
methods or develop new ones designed specifically for finite horizon problems and de-
scribe the state-of-the-art algorithm for solving Finite Horizon POMDPs. In the end, we
will introduce possible heuristics that the algorithm can employ.

In this chapter, we will mainly draw from (Walraven; Spaan 2019).

4.1 Finite Horizon Problems

The real-world problems span from non-stop operational agents to the ones that are time-
limited. Say, an elevator focusing on short-term rewards from personnel transport in the
former case and the electric vehicle charging provider focusing on day-to-day forecasts in
the latter case.

The Finite Horizon POMDPs are defined in line with Definition 3.1, but their time-span is
limited by the horizon ℎ or 𝑡𝑚𝑎𝑥. We call each specific time moment a 𝑠𝑡𝑎𝑔𝑒. Distinguishing
between stages opens up the possibility of different state spaces in various stages. Note
that the transition is defined as a mapping from state 𝑠 in stage 𝑡 and action 𝑎 to state 𝑠′

in stage 𝑡 + 1. The observation function Ω, observation set 𝑂, and reward function 𝑅 are
typically extended with the stage information as well.

In this chapter, we consider the discount 𝛾 = 1, as we focus on problems, which do not
include the discount factor. In such cases, we want to obtain the policy that maximizes
the expected sum of rewards:

𝐸

[︃
ℎ∑︁

𝑡=1
𝑟𝑡

]︃
, (4.1)

where 𝑡 = 1 is the first time step and ℎ stands for the horizon number, meaning there are
ℎ steps total. In finite horizon problems, we store different value functions 𝑉 𝜋(𝑡, 𝑏) and

21
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policies 𝜋(𝑡, 𝑏) for each time step, mapping both time and state to the optimal action and
its value. The value function computes the expected sum of rewards the agent obtains
when following the policy from belief 𝑏 and stage 𝑡 to stage ℎ. We define the formula as
follows:

𝑉 𝜋*(𝑡, 𝑏) =

⎧⎪⎪⎨⎪⎪⎩
max𝑎∈𝐴

[︃ ∑︁
𝑠∈𝑆

𝑅(𝑠, 𝑎)𝑏(𝑠) +
∑︁
𝑜∈𝑂

𝑂(𝑏, 𝑎, 𝑜)𝑉 𝜋*(𝑡 + 1, 𝑏𝑎
𝑜)

]︃
𝑡 ≤ ℎ

0 𝑡 > ℎ

(4.2)

where 𝑏𝑎
𝑜 is the belief updated with observation 𝑜 obtained after executing action 𝑎 defined

in Eq. 3.1.

The optimal policy 𝜋* corresponding to the optimal value function is defined as:

𝜋*(𝑡, 𝑏) = argmax𝑎∈𝐴

[︃∑︁
𝑠∈𝑆

𝑅(𝑠, 𝑎)𝑏(𝑠) +
∑︁
𝑜∈𝑂

𝑂(𝑏, 𝑎, 𝑜)𝑉 𝜋*(𝑡 + 1, 𝑏𝑎
𝑜)

]︃
. (4.3)

For time steps from 1 to ℎ the policy returns optimal action corresponding to optimal
value-function in time 𝑡 and belief 𝑏.

4.2 Limitations of POMDP Algorithms in Finite Horizon
Settings

The existing POMDP solvers work with discounting reward, but it turns out that they
can not easily generalize to the finite horizon setting without discounting. This section
will discuss the approaches that could be leveraged in Finite Horizon POMDP solving and
why the existing solvers can not apply the discount factor 𝛾 = 1.

In the first part, we discuss possible high-level approaches from both MDP and POMDP
solvers and why we can not use them. In the second part, we will review a few Infinite
Horizon POMDP solvers and discuss why they are not the correct choice for solving Finite
Horizon problems.

4.2.1 Solution Strategies for Finite Horizon Problems

The first approach solves the POMDP as if it is a fully observable MDP. This model
change is possible thanks to the finite number of reachable beliefs of POMDP. Thanks
to that, we can treat each belief as an MDP state and solve it with MDP solvers. This
approach, however, creates up to (|𝐴||𝑂|)ℎ beliefs and often becomes intractable.

The second approach assumes solving the Finite Horizon POMDP as if it is an infinite
horizon one. In this approach, we can safely assume discounting. However, because of
wrongly assuming the infinite horizon, the policy does not have the information that
its execution is terminated after a finite number of steps, meaning that it could focus on
obtaining the unreachable reward obtainable only after the maximum number of steps. The
second disadvantage is that the policy focuses on early reward because of the discounting,
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even if there is a larger reward later on. The agent, however, does not obtain the larger
reward because its value is negatively decreased by discounting and, as such, becomes
lower than the early small reward.

The third approach supposes that the Finite Horizon POMDP states are reachable in
all stages with a terminal state after the horizon stage, resulting in |𝑆| × ℎ + 1 states.
This approach is inefficient as it increases the number of beliefs and the other solution
representation as 𝛼-vectors, resulting in an undesired increase in both performance and
memory requirements.

4.2.2 Discarding the Discount Factor in Infinite Horizon Algorithms

In the text above, we discussed possible approaches to solving Finite Horizon POMDPs
without discounting and why they are often intractable or have other undesirable effects.
In the following text, we will describe why the solvers introduced in the section on Infinite
Horizon POMDPs can not be used in the Finite Horizon setting with discount factor 𝛾 = 1.
Besides, we discuss their optimality and whether they compute bounds on their results.

The optimality of the result refers to the policy starting from a known initial belief. The
results may be suboptimal if starting from the other than the initial belief. We will start
from the basic solvers and work our way to the most advanced heuristics presented in this
work.

Exact Value Iteration can be used with the discount factor 𝛾 = 1. It computes the optimal
solution for any initial belief. However, it is intractable for problems with large state
spaces.

Point-Based Value Iteration does not suffer from computing the value function for the
whole belief space. It incrementally expands its belief space, and it can evaluate its methods
without using the discounting factor. Unfortunately, the worst-case error bound assumes
a discount 𝛾 < 1, which opposes our requirements. The number of beliefs in PBVI can
still become large, and the improved algorithms based on PBVI show better benchmark
results.

Perseus algorithm also requires the lower bound to be initialized with 𝛾 < 1. It does not
keep track of the upper bound. It is randomized and, in particular, does not provide any
guarantee on performance and optimality.

Both SARSOP and HSVI incrementally expand their set of belief points, and their backup
and upper bound update are well-defined for 𝛾 = 1. They produce the upper bound on
the optimal value function and thus guarantee the optimality in the limit. However, their
lower bound initialization, as in the preceding algorithm, requires a discount 𝛾 < 1. Thus,
to employ both algorithms in the finite horizon environment, we need to adapt them.

All algorithms presented in the previous section as infinite horizon solvers lack at least
one of the three declared properties - the possibility to run with discount factor 𝛾 = 1, the
optimality of the result, or the missing computation of their result’s bounds. The algorithm
we will present in the next section meets all the required properties. It also draws on
the well-performing properties of the Finite Horizon POMDP solvers. Furthermore, the
algorithm converges to optimality, computes both bounds, and does not require problems
to contain discounting.
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4.3 FiVI: Finite Horizon Point-Based Value Iteration

This section describes FiVI (Walraven; Spaan 2019), a point-based value iteration algo-
rithm for solving finite horizon POMDPs. The algorithm unifies techniques and concepts
from existing state-of-the-art point-based value iteration algorithms, and it provides attrac-
tive convergence characteristics and optimality guarantees. (Walraven; Spaan 2019)

On the following pages, we will consecutively describe the functions essential for the correct
execution of FiVI - the value function, backup, and the bound update. With the knowledge
of value function update, backup, and the bounds update, we describe the high-level FiVI
overview. After that, we cover the belief space expansion, convergence of the algorithm,
and possible heuristics.

4.3.1 Time-Dependent Value Functions and Backups

The standard way of computing value functions in point-based value iteration algorithms
is to run a value function update similar to the one defined by Eqs. 3.9, 3.10 and 3.8.
In FiVI, we have to extend the value update with the non-stationary staged environment
elements. The algorithm utilizes staged value functions 𝑉𝑡 ranging from stage 1 to the
horizon stage. Each value function 𝑉𝑡 is represented by a set of 𝛼-vectors Γ𝑡.

The vectors constituting to a value function are defined by a time-dependent backup
function:

Γ𝑡 =
⋃︁

(𝑏,𝑣)∈𝐵𝑡

𝑏𝑎𝑐𝑘𝑢𝑝(𝑏, 𝑡) (4.4)

The FiVI needs to keep track of beliefs’ upper bounds 𝑣 to converge. The 𝑏𝑎𝑐𝑘𝑢𝑝(𝑏, 𝑡)
operator exploits the knowledge of next step value function Γ𝑡+1 to compute 𝛼-vectors of
Γ𝑡. The FiVI defines the time-dependent 𝑏𝑎𝑐𝑘𝑢𝑝(𝑏, 𝑡) operator as following:

𝑏𝑎𝑐𝑘𝑢𝑝(𝑏, 𝑡) = argmax
{𝑧𝑏,𝑎,𝑡}𝑎∈𝐴

𝑏 · 𝑧𝑏,𝑎,𝑡, (4.5)

where

𝑧𝑏,𝑎,𝑡 =

⎧⎪⎨⎪⎩
𝑟𝑎 +

∑︁
𝑜∈Ω

argmax
{𝑧𝑘,𝑡+1

𝑎,𝑜 }𝑘

𝑏 · 𝑧𝑘,𝑡+1
𝑎,𝑜 𝑡 < ℎ

𝑟𝑎 𝑡 = ℎ

, (4.6)

and 𝑧𝑘,𝑡
𝑎,𝑜 denotes the back-projection of vector 𝛼𝑘,𝑡 ∈ Γ𝑡:

𝑧𝑘,𝑡
𝑎,𝑜(𝑠) =

∑︁
𝑠′∈𝑆

𝑂(𝑎, 𝑠′, 𝑜)𝑇 (𝑠, 𝑎, 𝑠′)𝛼𝑘,𝑡(𝑠′) ∀𝑠. (4.7)

The vector 𝑟𝑎 represents the immediate reward vector for executing given action 𝑎 from
all states. We also assume that the backup has access to all vector sets and the reward
vectors 𝑟𝑎.
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4.3.2 Time-Dependent Value Upper Bounds and Bound Updates

Computing the upper bound of belief, typical for Point-based Value Iteration algorithms,
enables the solution quality assessment. The FiVI algorithm stores the upper bound value
as 𝑣 in the belief-bound pairs (𝑏, 𝑣) kept in belief sets B𝑡. Generally, we compute the upper
bound values 𝑣 by employing linear programming interpolation. However, this approach
is computationally expensive, and the researchers introduced the sawtooth approximation
in (M. Hauskrecht 2000).

Algorithm 8: Sawtooth approximation (UB)
Input : belief 𝑏′, set 𝐵 containing belief-bound pairs
Output: upper bound corresponding to belief 𝑏′

1 for (𝑏, 𝑣) ∈ 𝐵 ∖ {(𝑒𝑠, ·) | 𝑠 ∈ 𝑆 do
2 𝑓(𝑏)←− 𝑣 −

∑︀
𝑠∈𝑆 𝑏(𝑠)𝐵(𝑒𝑠)

3 𝑐(𝑏)←− min𝑠∈𝑆 𝑏′(𝑠) / 𝑏(𝑠)
4 end
5 𝑏* ←− argmin{𝑏|(𝑏,𝑣∈𝐵∖{𝑒𝑠 | 𝑠∈𝑆}} 𝑐(𝑏)𝑓(𝑏)
6 return 𝑐(𝑏*)𝑓(𝑏*) + ∑︀

𝑠∈𝑆 𝑏′(𝑠)𝐵(𝑒𝑠)

The sawtooth algorithm simplifies the upper bound update by imposing the weights 𝑐𝑏

only to so-called corner beliefs. The corner belief marked 𝑒(𝑠) stands for the belief that
has a deterministic distribution over a given state 𝑠 (𝑏(𝑠) = 1.). The Algorithm 8 takes a
belief 𝑏′ and a belief set 𝐵 and returns the upper bound interpolation for 𝑏′. The 𝐵(𝑒𝑠)
notation denotes the upper bound of belief 𝑒(𝑠) in the belief set 𝐵.

In the finite horizon settings we update the upper bound value of the belief 𝑏 in time 𝑡 < ℎ
as follows:

𝑣 = max𝑎∈𝐴

∑︁
𝑠∈𝑆

𝑅(𝑠, 𝑎)𝑏(𝑠) +
∑︁
𝑜∈𝐼

𝑂(𝑏, 𝑎, 𝑜)𝑈𝐵(𝑏𝑎
𝑜, 𝐵𝑡+1), (4.8)

where we interpolate based on the belief set 𝐵𝑡+1 from the next stage. In the horizon stage
we compute only max𝑎∈𝐴

∑︀
𝑠∈𝑆 𝑅(𝑠, 𝑎)𝑏(𝑠) as the upper bound value of the sink state is

zero.

4.3.3 Algorithm Description of FiVI

With the two most essential algorithms described, we can overview the complete algorithm.
The FiVI algorithm is an iterative algorithm that takes the POMDP, required precision,
and time limit as the inputs and outputs the vector of 𝛼-vector sets Γ𝑡 and the upper
bound of the initial belief 𝑏0.

At the very beginning, the algorithm initiates its model representations of belief sets 𝐵,
𝛼-vectors Γ, the reward vector of each action 𝑟𝑎, the variables storing the number of
iterations 𝛿 and time elapsed 𝜏 ′ (lines 1 - 5).

Following lines 6 - 34, execute the body of the algorithm. The do-while loop consists of 3
main parts - belief expansion, belief backup, and belief upper bound update.
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Algorithm 9: Finite Horizon Point-Based Value Iteration (FiVI)
Input : POMDP M, precision 𝜌, time limit in seconds𝜏
Output: sets Γ𝑡 for each time step 𝑡, upper bound 𝑣𝑢

1 Γ𝑡 ←− ∅ ∀𝑡
2 B𝑡 ←− ∅ ∀𝑡
3 𝑟𝑎 ←− (𝑅(𝑠1, 𝑎), 𝑅(𝑠2, 𝑎), . . . , 𝑅(𝑠|𝑆|, 𝑎)) ∀𝑎
4 add corner beliefs to B𝑡 with upper bound ∞ (∀𝑡)
5 𝜏 ′ ←− 0, 𝛿 ←− 0
6 do
7 𝛿 ←− 𝛿 + 1
8 expand(M, {Γ1, . . . , Γℎ}, {𝐵1, . . . , 𝐵ℎ}, r)
9 for t = h, h - 1, . . . , 1 do

10 Γ𝑡 ←− ∅
11 for (𝑏, 𝑣) ∈ 𝐵𝑡 do
12 𝛼←− 𝑏𝑎𝑐𝑘𝑢𝑝(𝑏, 𝑡)
13 Γ𝑡 ←− Γ𝑡 ∪ {𝛼}
14 end
15 for (𝑏, 𝑣) ∈ 𝐵𝑡 do
16 𝑣 ←− −∞
17 for 𝑎 ∈ 𝐴 do
18 𝑣 ←− 𝑟𝑎 · 𝑏
19 if t < h then
20 for 𝑜 ∈ 𝑂 do
21 if 𝑂(𝑏, 𝑎, 𝑜) > 0 then
22 𝑣 ←− 𝑣 + 𝑂(𝑏, 𝑎, 𝑜)· UB(𝑏𝑎

𝑜, 𝐵𝑡+1)
23 end
24 end
25 end
26 𝑣 ←− max(𝑣, 𝑣)
27 end
28 end
29 end
30 𝑣𝑙 ←− max𝛼∈Γ1 𝛼 · 𝑏0
31 𝑣𝑢 ←− upper bound 𝑣 associated with (𝑏0, 𝑣) ∈ 𝐵1
32 𝑔𝑎 ←− 10⌈log10(max(|𝑣𝑙|,|𝑣𝑢|))⌉−𝜌

33 𝜏 ′ ←− elapsed time after the start of the algorithm
34 while 𝜏 ′ < 𝜏 ∧ 𝑣𝑢 − 𝑣𝑙 > 𝑔𝑎;
35 return ({Γ1, . . . , Γℎ}, 𝑣𝑢)
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The belief expansion on line 8 finds new beliefs 𝐵𝑡 to shrink the gap between the upper
and the lower bound.

The lines 9 - 29 are iterating over all non-terminal stages backwards, computing belief
backup Γ𝑡 ←−

⋃︀
(𝑏,𝑣)∈𝐵𝑡

𝑏𝑎𝑐𝑘𝑢𝑝(𝑏, 𝑡) on lines 11 - 14 and belief upper bound value on lines
15 - 27 of stage 𝑡 with the model representations of stage 𝑡 + 1.

An iteration ends with a check of termination conditions - the maximum gap 𝑔𝑎 and
minimal time elapsed 𝜏 . The difference between the upper bound 𝑣𝑢 of initial belief 𝑏0 and
the lower bound 𝑣𝑢 denotes the current gap. The algorithm stops if the gap is at most one
unit at the 𝜌-th significant digit or if a time limit 𝜏 has been exceeded.

The FiVI algorithm returns the vector of 𝛼-vector sets {Γ1, . . . , Γℎ} denoting the lower
bound and the upper bound 𝑣𝑢 of the initial belief 𝑏0. The gap implicitly defines a guarantee
on the quality of computed solution (Walraven; Spaan 2019).

4.3.4 Belief Points and Convergence of the Algorithm

The optimality and speed of convergence of FiVI and Point-Based algorithms heavily
depends on the quality of expanded belief backup executions. The algorithm can take one
of two directions. Either randomly select new beliefs or steer the new beliefs into space,
where the optimal policy would go as well. However, we do not know the optimal policy
beforehand.

The FiVI algorithm uses a heuristic procedure similar to HSVI (Smith; Simmons 2012),
or SARSOP (Kurniawati; Hsu; Lee 2008) to explore the promising areas.

The algorithm chooses the action and observation that lowers the gap as much as possible,
effectively reducing the overall gap. We will motivate this by the term 𝑈(𝑡, 𝑏, 𝑎)−𝑉 (𝑡, 𝑏, 𝑎)
which shows the difference between the potential upper bound 𝑈(𝑡, 𝑏, 𝑎) of the belief 𝑏 in
the stage 𝑡 after executing action 𝑎 and its expected value function 𝑉 (𝑡, 𝑏, 𝑎). The value
function 𝑉 is, by definition, maximizing its value and the upper bound 𝑈 minimizing,
reducing the resulting gap, and improving the quality of the result.

The expected value function for belief 𝑏 in stage 𝑡 after executing the action 𝑎 is:

𝑉 (𝑡, 𝑏, 𝑎) =
∑︁
𝑠∈𝑆

𝑅(𝑠, 𝑎)𝑏(𝑠) +
∑︁
𝑜∈𝑂

𝑂(𝑏, 𝑎, 𝑜)𝑉 (𝑡 + 1, 𝑏𝑎
𝑜), (4.9)

and the potential upper bound:

𝑈(𝑡, 𝑏, 𝑎) =
∑︁
𝑠∈𝑆

𝑅(𝑠, 𝑎)𝑏(𝑠) +
∑︁
𝑜∈𝑂

𝑂(𝑏, 𝑎, 𝑜)𝑈𝐵(𝑏𝑎
𝑜, 𝐵𝑡+1). (4.10)

After choosing the best action a, the algorithm chooses the observation leading to a belief
with a maximum gap in stage 𝑡 + 1:

𝑜 = argmax{𝑜∈𝑂 | 𝑂(𝑏,𝑎,𝑜)>0}{𝑈𝐵(𝑏𝑎
𝑜, 𝐵𝑡+1)−max𝛼∈Γ𝑡+1 𝛼 · 𝑏𝑎

𝑜}. (4.11)
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All expanded beliefs with stage 𝑡 > 1 contribute to the final bounds and the gap associated
with the initial belief 𝑏0.

The expand algorithm (Algorithm 10) expands at most one belief for each stage 𝑡. It adds
the resulting belief to the next stage belief set 𝐵𝑡+1 as the new belief comes from the stage
𝑡 belief 𝑏. The procedure follows the rules outlined in the lines above, starting from the
initial belief. We do not have to consider the stage 𝑡 = ℎ as we are not interested in the
terminal beliefs.

Algorithm 10: Belief expansion (expand)
Input: M, {Γ1, . . . , Γℎ}, {𝐵1, . . . , 𝐵ℎ}, r

1 𝑏←− 𝑏0
2 for t = 1, . . . , h - 1 do
3 𝑎←− argmax𝑎∈𝐴{𝑟𝑎 · 𝑏 + ∑︀

{𝑜∈𝑂| 𝑂(𝑏,𝑎,𝑜)>0} 𝑂(𝑏, 𝑎, 𝑜)· UB(𝑏𝑎
𝑜, 𝐵𝑡+1)}

4 𝑜←− argmax{𝑜∈𝑂 | 𝑂(𝑏,𝑎,𝑜)>0}{ UB(𝑏𝑎
𝑜, 𝐵𝑡+1)−max𝛼∈Γ𝑡+1 𝛼 · 𝑏𝑎

𝑜}
5 𝐵𝑡+1 ←− 𝐵𝑡+1 ∪ {(𝑏𝑎

𝑜,∞)}
6 𝑏←− 𝑏𝑎

𝑜

7 end

The number of iterations performed by FiVI is at most (|𝐴||𝑂|)ℎ as is the number of all
beliefs. However, this number of iterations is unlikely as the algorithm leads its exploration
to the promising areas of belief space.

4.3.5 Backup and Update Heuristics

In every iteration, the FiVI algorithm recomputes the value function and upper bound
update for each belief. Both approaches are pretty clean and straightforward. However,
they can quickly become inefficient. In value function update, the algorithm executes
backup on all beliefs. We note that the number of beliefs is increasing with every iteration.
In the upper bound update, the algorithm interpolates the upper bound of every belief
using all other beliefs, but only a part of all beliefs affect the resulting value.

The authors of the FiVI algorithm describe possible solutions to both problems.

To reduce the complexity of value function backup, the authors propose to take inspiration
from the Perseus (Spaan; Vlassis 2005) algorithm. In each iteration, Perseus randomly
selects only a part of beliefs and updates them. This approach ensures each new Γ𝑡 set to
be at least as good as the previous one. Furthermore, one backup may improve the value
of multiple beliefs, thus removing the requirement to execute backups for all beliefs.

To reduce the complexity of error-bound updates, the authors propose to store the depen-
dencies of all beliefs’ error-bound updates. Thus, the single error bounds are not computed
from all other beliefs but only from a part, allowing more efficient upper bound updates.
This approach is called Dependency-Based Bound Updates (DBBU).

Finally, both improvements can be combined, as they increase the efficiency of different
parts of the algorithm. For a more throughout description, we refer reader to (Walraven;
Spaan 2019).
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Chapter 5

Implementation

This chapter focuses on the practical part of the thesis. In the beginning, we present the
𝑃𝑂𝑀𝐷𝑃𝑠.𝑗𝑙 framework we extended with this work and the assigned tasks. Then, we
follow up with the analysis and description of the implemented methods. The following
chapter presents the benchmark problems, and in the end, we present the validations and
benchmarks.

This thesis aims to survey and extend the methods implemented in the 𝑃𝑂𝑀𝐷𝑃𝑠.𝑗𝑙
library, emphasizing the finite horizon ones. To add any other methods or interfaces missing
to implement such methods and maintain interoperability with the rest of the library.
Furthermore, to evaluate the performance of the implemented methods on benchmarks
and design new test instances, if applicable.

5.1 POMDPs.jl

𝑃𝑂𝑀𝐷𝑃𝑠.𝑗𝑙 (Egorov; Sunberg; Balaban; Wheeler; Gupta; Kochenderfer 2017) is an open-
source framework for solving MDPs and POMDPs written in Julia. It builds on the in-
terface of the same name, unlike other frameworks for solving MDPs, the 𝑃𝑂𝑀𝐷𝑃𝑠.𝑗𝑙
supports solving POMDPs and is not dependent on a specific external problem definition
format. For new users, the 𝑃𝑂𝑀𝐷𝑃𝑠.𝑗𝑙 presents a fast, easy to learn, and prototype
modular tool.

Its design supports the possibility to easily 1) define new problems, 2) create new solvers,
or 3) run experiments. Through the unified interface, the goals of 𝑃𝑂𝑀𝐷𝑃𝑠.𝑗𝑙 are to
simplify adapting to the code written by others, offer simple benchmarking, and mainly
build an open-source environment open to new contributions.

The main advantages of 𝑃𝑂𝑀𝐷𝑃𝑠.𝑗𝑙 are thus:

1. Its simplicity thanks to providing a minimal set of types and functions necessary
to define problems, solvers, or experiments in a partially observable setting.

2. Its expressiveness of interfaces providing the flexibility to solve both fully or par-
tially observable problems, continuous or discrete. Furthermore, this paper extends
interfaces by allowing for differing between infinite and finite horizon POMDPs. It

31



32 Chapter 5. Implementation

also supports using explicitly defined distributions or generative models. The combi-
nation of 𝑃𝑂𝑀𝐷𝑃𝑠.𝑗𝑙 interfaces and Julia Languages makes it easy to prototype,
effectively removing the need for problem definitions of another format.

3. Its interface extensibility by allowing new algorithms to be implemented with min-
imal effort.

4. Its usability by offering more than 20 solvers that are easy to run and interchange.

The interface offers unified methods for defining problems (such as states for representing
all states of the problem), or methods for executing the selected algorithm (solve method
has the same parameters for all solvers). It also unifies the structures for storing resulting
policies (AlphaVectorPolicy for storing 𝛼-vectors and corresponding actions of POMDP
policies) or structures for passing the parameters to the solver. Given that the interface
defines these methods, the users can use them without changes, no matter the problem or
the solver.

5.2 Assignment

At the assignment time, the 𝑃𝑂𝑀𝐷𝑃𝑠.𝑗𝑙 framework does not include the Finite Horizon
POMDP solvers, which are the main task of this work. The interface deemed essential
for such solvers has been proposed but not implemented. Such an interface is needed as
the solvers need to operate over single stages while the current interface supports only
handling the whole problem representation.

Because of that, the objective of this thesis is to implement the interface for Finite Horizon
POMDPs. On top of that, we are to implement the selected algorithms as proof of work.
For that, we selected the Finite Horizon Value Iteration for MDPs and Point-Based Finite
Horizon Value Iteration for POMDPs.

These algorithms are the foundations for many improvements already published, making
them an excellent starting point for future additions to the library. These algorithms
are introduced in (Shani; Pineau; Kaplow 2013) and (Walraven; Spaan 2019) and are
recommended implementations to any reader interested in developing a new algorithm for
the 𝑃𝑂𝑀𝐷𝑃𝑠.𝑗𝑙 framework.

We were to evaluate the implemented algorithms against their infinite horizon counter-
parts. However, while implementing them, we found out that the author of the infinite
horizon point-based value iteration 𝑃𝑂𝑀𝐷𝑃𝑠.𝑗𝑙 algorithm, which we formerly wanted to
use as a benchmark, implemented the algorithm in such a way that it only supports spe-
cific POMDPs with two states. Thus, we extended our work to fix and update the infinite
horizon point-based value iteration.

5.3 Finite Horizon POMDPs

This chapter introduces the interface for defining Finite Horizon POMDPs FiniteHorizon-
POMDPs.jl1. We implemented the interface in line with the initial design proposed by the

1https://github.com/JuliaPOMDP/FiniteHorizonPOMDPs.jl,
commit bcda69dd41c18c3327d17fec0cf31f3077ce356e, version 0.3.1
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𝑃𝑂𝑀𝐷𝑃𝑠.𝑗𝑙 co-author Zachary Sunberg in May 2019. Zachary Sunberg also wrote the
minimal working example to preserve the interoperability and the idea of the library. The
extensions and improvements are part of our work.

The goal of the Finite Horizon POMDPs interface was to create a 𝑃𝑂𝑀𝐷𝑃𝑠.𝑗𝑙-compatible
interface for defining MDPs and POMDPs with finite horizons. Its key ideas were in
particular, to:

• provide a way for value-iteration-based algorithms to start at the final stage and
work backward,

• be compatible with generic 𝑃𝑂𝑀𝐷𝑃𝑠.𝑗𝑙 solvers and simulators,

• provide a Finite-Horizon wrapper for Infinite-Horizon MDPs, and

• be compatible with other interface extensions like constrained POMDPs and mixed
observability problems.

And its implementation was to contain the declaration of the following interface functions:

• HorizonLength(::Type<:Union{MDP,POMDP}) = InfiniteHorizon()

– FiniteHorizon
– InfiniteHorizon

• horizon(m::Union{MDP,POMDP})::Int

• stage_states(m::Union{MDP,POMDP}, t::Int)

• stage_stateindex(m::Union{MDP,POMDP}, t::Int, s)

• stage_actions(m::Union{MDP,POMDP}, t::Int, [s])

The whole idea of the interface lies on the concept of the HorizonLength type, which
returns the FiniteHorizon or InfiniteHorizon type corresponding to either a (PO)MDP
being a finite or infinite horizon. In the case where (PO)MDP is a finite horizon, we
can obtain the horizon value by calling the horizon method and the current stage by
calling stage method. Furthermore, the interface extends the methods defined for infinite
horizon problems by declaring their finite horizon counterparts. Methods belonging to this
group are 𝑠𝑡𝑎𝑔𝑒_𝑠𝑡𝑎𝑡𝑒𝑠, which returns states for given stage only, 𝑠𝑡𝑎𝑔𝑒_𝑠𝑡𝑎𝑡𝑒𝑖𝑛𝑑𝑒𝑥 which
returns the index of a given state in a given stage; 𝑠𝑡𝑎𝑔𝑒_𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 which returns
observations for a given stage and 𝑠𝑡𝑎𝑔𝑒_𝑜𝑏𝑠𝑖𝑛𝑑𝑒𝑥, which returns the index of a given
observation in a given stage. FiniteHorizonPOMDPs.jl also defines ordered_stage_states
and ordered_stage_observations which return ordered states or observations of a given
stage. At the time of writing this work, the stage_actions method is not implemented, as
most of us known (PO)MDP problems contain actions that span all stages.

By using the combination of methods from FiniteHorizonPOMDPs.jl and other interfaces,
the user can define his own finite horizon (PO)MDP problem, (PO)MDP solver or other
(PO)MDP tool. At the same time, we recognize it can be difficult, or even lengthy to define
one. For exactly these cases, the interface contains the utility, whose goal is to transform
the user-defined infinite horizon (PO)MDP into a finite horizon one. The design concept
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of the proposal was formerly to define a simple function that would transform a received
infinite horizon (PO)MDP into a finite horizon (PO)MDP wrapper:

• fixhorizon(m::Union{MDP,POMDP}, T::Int) creates one of

– FiniteHorizonMDP{S, A} <: MDP{Tuple{S,Int}, A}
– FiniteHorizonPOMDP{S, A, O} <: POMDP{Tuple{S,Int}, A, O}

Finally, this utility became a set of methods that can easily create a package of its own.
However, it is necessary to keep the utility inside the FiniteHorizonPOMDPs.jl package
to be easily found and ready to use when using the interface.

Other than fixhorizon method, the utility defines new output types to recognize trans-
formed (PO)MDPs. These types are called FixedHorizonMDPWrapper and FixedHorizon-
POMDPWrapper. If there is no need to differentiate between them, the third type, FH-
Wrapper, is used. Thanks to this distinction, Julia Programming Language can dispatch
the correct method on each call dynamically.

To distinguish between the states of the infinite horizon (PO)MDP and the finite horizon
one, the fixhorizon utility introduces a new structure. It wraps the pairs of states or
observations and stages into tuples (state, stage), encoding the stage information without
much performance loss.

The 𝑓𝑖𝑥ℎ𝑜𝑟𝑖𝑧𝑜𝑛 utility defines various methods from multiple interfaces. Namely, the
𝑃𝑂𝑀𝐷𝑃𝑠.𝑗𝑙 interface methods ensuring proper functionality no matter the finality of
(PO)MDP: 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛, 𝑟𝑒𝑤𝑎𝑟𝑑, 𝑖𝑠𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙, 𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡 etc. 𝑠𝑡𝑎𝑡𝑒𝑠 and 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠
methods wrapping the Infinite Horizon methods in Cartesian product with stages. Fur-
thermore, the 𝑓𝑖𝑥ℎ𝑜𝑟𝑖𝑧𝑜𝑛 utility defines FiniteHorizonPOMDPs.jl interface methods de-
scribed in the text above such as 𝑠𝑡𝑎𝑔𝑒_𝑠𝑡𝑎𝑡𝑒𝑠 or 𝑠𝑡𝑎𝑔𝑒_𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠. Other than that,
the 𝑓𝑖𝑥ℎ𝑜𝑟𝑖𝑧𝑜𝑛 utility implements methods from POMDPModelTools.jl, which define dis-
tributions for (PO)MDPS or methods for ordering states, actions, and observations. The
𝑓𝑖𝑥_ℎ𝑜𝑟𝑖𝑧𝑜𝑛 utility also implements the methods from 𝑅𝑎𝑛𝑑𝑜𝑚.𝑗𝑙, offering the mean to
compute probabilistic data about the distributions - 𝑚𝑒𝑎𝑛, 𝑚𝑜𝑑𝑒, 𝑠𝑢𝑝𝑝𝑜𝑟𝑡, or 𝑝𝑑𝑓 .

To define the Finite Horizon (PO)MDP instance, the user has to define the methods de-
clared in POMDPs.jl (Egorov; Sunberg; Balaban; Wheeler; Gupta; Kochenderfer 2017)
and from other library’s interfaces based on his solver’s choice. At this moment, the user
is open to choose whether he wants to continue to implement his own Finite Horizon
(PO)MDP or if he leverages the utility to transform his Infinite Horizon (PO)MDP to
Finite Horizon one. We implement both approaches as a part of this work at JuliaPOMD-
P/FiniteHorizonPOMDPs.jl.

5.4 Finite Horizon Value Iteration

The Finite Horizon Value Iteration2 (FHVI) extends the original Value Iteration algorithm
(defined in Section 2.2.4) with the knowledge of Finite Horizon MDPs (from Section 2.3).
The algorithm offers a one-pass optimal solution. The FHVI iterates over the stages in
reversed order from the last stage (excluding the terminal stage) to the first one and solves

2https://github.com/JuliaPOMDP/FiniteHorizonValueIteration.jl,
commit 8b634e55e54c920b3845358bee4d462bb944b0f3, version 0.3.0
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each stage with the Value Iteration algorithm. In the end, FHVI combines the resulting
policies of all stages into the resulting policy of a whole solver.

The algorithm is written in line with the 𝑃𝑂𝑀𝐷𝑃𝑠.𝑗𝑙 solvers’ architecture, consisting
of three essential pillars - the structure for storing the algorithm parameters FiniteHori-
zonSolver, the policy structure FiiteHorizoVakuePolicy and the method executing the
algorithm, solve.

As the algorithm is one-pass, the FiniteHorizonSolver structure contains only the boolean
verbose parameter, denoting whether to print debugging output or not.

struct FiniteHorizonSolver <: Solver
verbose::Bool

end

The algorithm policy FiniteHorizonValuePolicy contains the Q matrix consisting of state
and action index mapping to value, util array mapping given state index to the best reward
obtained after executing all actions executable from given state, policy array mapping
given state index to the action index corresponding to the utility value of given state. The
include_Q boolean flag for storing the Q matrix and m for storing the MDP problem
definition.

mutable struct FiniteHorizonValuePolicy{Q<:Array, U<:Array,
P<:Array, A<:Array, M<:MDP} <: Policy

qmat::Q
util::U
policy::P
action_map::A
include_Q::Bool
m::M

end

The solver also defines value and action methods to obtain the value or the action of the
given state.

The solve method checks whether the MDP is a Finite Horizon one, initializes the policy
and utility vector, and then reverse iterates over stages (excluding the terminal stage),
executing the Value Iteration and updating the policy in each iteration.

function solve(solver::FiniteHorizonSolver, m::MDP)
# check finality of MDP
# initialize policy and utility

# iterate reversely over stages
# execute Value Iteration over the given stage
# update policy with the result of Value Iteration

# return policy
end
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5.5 Point-Based Value Iteration

The Point-Based Value Iteration3 (PBVI) algorithm is the second version of the package.
However, the former algorithm worked only for two states and completely omitted the
expansion phase. The former algorithm initiated the initial belief space with the uniformly
distributed beliefs. We fully reimplemented the former algorithm but inspired ourselves
with the former version.

The algorithm accepts problems defined in 𝑃𝑂𝑀𝐷𝑃𝑠.𝑗𝑙 interface.

We hand over the PBVI’s setting by the PBVISolver structure, which accepts the following
parameters: num_iteration denoting the maximal number of iterations the solver is to
run, 𝜖 denoting the maximal gap between the 𝛼-vectors from consecutive iterations of step
improvement and verbose storing the boolean flag for printing the debug output.

struct PBVISolver <: Solver
max_iterations::Int64
𝜖::Float64
verbose::Bool

end

The PBVI uses the AlphaVectorPolicy defined in POMDPPolicies.jl. The AlphaVectorPol-
icy contains the POMDP pomdp to which the policy belongs, n_states storing the number
of states, a list of 𝛼-vectors alphas, and a mapping from 𝛼-vectors to actions 𝑎𝑐𝑡𝑖𝑜𝑛_𝑚𝑎𝑝.

struct AlphaVectorPolicy{P<:POMDP, A} <: Policy
pomdp::P
n_states::Int
alphas::Vector{Vector{Float64}}
action_map::Vector{A}

end

The solve method’s parameters are in line with the POMDPs interface. That is, the method
solve accepts two parameters, solver’s settings solver and POMDP pomdp to be solved.
The algorithm is based on section 3.4. It first initializes all necessary representations, then
it iterates over the 𝛼-vectors and improves them, and finally expands the belief space.
If the expansion algorithm does not find any new belief worth visiting, it terminates the

3https://github.com/JuliaPOMDP/PointBasedValueIteration.jl,
commit a8f93740be6947e46f98fab2f23cf03a89c91bd6, version 0.2.1
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algorithm.

function solve(solver::PBVISolver, pomdp::POMDP)
# initialize all POMDP representations

# iterate up to max_iterations times
# improve 𝛼-vectors
# expand belief space
# check whether the belief space expanded, if not terminate early

# return 𝐴𝑙𝑝ℎ𝑎𝑉 𝑒𝑐𝑡𝑜𝑟𝑃𝑜𝑙𝑖𝑐𝑦
end

5.6 Finite Horizon Point-Based Value Iteration

Finite Horizon Point-Based Value Iteration4 (FiVI) is the state-of-the-art algorithm that
leverages the point-based approach and employs the heuristics of the best performing
infinite horizon POMDP problem solvers in Finite Horizon environments.

The solver accepts its parameters in the form of FiVISolver structure. FiVISolver supports
two arguments. precision denoting the maximum tolerance in the gap between upper and
lower bound and time-limit during which the solver is to be executed.

struct FiVISolver <: Solver
precision::Float64
time_limit::Int64

end

The solver outputs the resulting policy and the upper bound of the initial belief. The
policy is stored in the StagedPolicy which we contributed with to the POMDPPolicies.jl5.
The StagedPolicy stores the array of the resulting policies for each stage staged_policies
and the problem definition pomdp.

struct StagedPolicy{M<:FiniteHorizonPOMDPs,
FHWrapper, P<:Policy}<:Policy

pomdp::M
staged_policies::Array{P, 1}

end

The solve method definition is based on the interface. It accepts the algorithm parameters
and the problem definition. The algorithm checks whether the problem is a finite horizon
POMDP, initiates all variables needed to run the algorithm, and sets the upper bound
of the beliefs in the terminal stage to zero. The algorithm then iterates in the outer loop
until one of the terminal conditions evaluates to true. The inner loop iterates over the
stages in the reversed order. It sequentially empties the vector of 𝑎𝑙𝑝ℎ𝑎-vectors, backups

4https://github.com/Omastto1/FiVI.jl, commit f7caaa2fbdff9a2364fc64b4158396714459666b
5https://github.com/Omastto1/POMDPPolicies.jl, commit f15f49f6d9d546fd6ee0020c61cc7753503532b0
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the 𝛼-vectors of beliefs, and updates their upper bound. If the terminal conditions evaluate
to false, the algorithm expands its belief space.

Unlike in the (Walraven; Spaan 2019), our algorithm expands its belief space as the last
thing it does in the outer loop. By using this approach, the algorithm successfully executes.
If the algorithm executed the belief space expansion at the beginning of the loop, it would
calculate with the infinity initiated upper bounds of beliefs and end up with errors. The
algorithm’s author also uses this approach in the implementation of the algorithm here6.

function solve(solver::FiVISolver, pomdp::POMDP)
# check finality of pomdp, if pomdp is infinite throw error

# initiate empty vectors for 𝛼-vectors, belief space, and belief set
# initialize elapsed time to zero

# set upper bound of belief in terminal stage to zero

# iterate while all terminal conditions evaluate to true
# iterate stages in reversed order

# empty the vector for 𝛼-vectors in t-th stage

# backup all belief in t-th stage with the 𝛼-vectors
# from t+1-th stage
# update upper bound of all belief vectors with the belief
# space from t+1-th stage

# check terminal conditions (time elapsed > time_limit
# or gap lower then maximum allowed)

# expand belief space and update belief set

# initialize StagedPolicy
# return policy and upper bound of initial belief

end

5.7 Optimizing and Profiling

To optimize the solvers and find possible bottlenecks, we used the package Profiler.jl.

It turns out that even if the algorithms are optimized, the most significant bottlenecks come
from incorrectly implemented user-defined functions. As the solvers heavily depend on the
interface methods, every detail on the user’s side is relevant. Such functions allocate small
memory blocks each time the solver calls them, resulting in massive overhead in memory
consumption. Thus, we obtain the most significant performance gains when the methods
return tuples or generators instead of arrays.

Based on the profiling of methods, we have implemented speed-ups and improvements
to the implementations of solvers. The most beneficial changes are connected to memory

6https://github.com/AlgTUDelft/ConstrainedPlanningToolbox/blob/master/src/main/
java/algorithms/pomdp/cgcp/FiniteVI.java
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handling as well. Consider pushing the new values to the array. To reduce the memory over-
head, we preallocate the array before the loop. Other memory consumption improvements
come from caching results instead of computing them again each time it is necessary.

The next improvement we made was to vectorize the code. However, this was often not
an improvement, as Julia uses intelligent optimization for loops. The Julian vectorization
using the dot operator makes the code more readable. However, it is the programmer’s
task to verify whether the vectorization improves the algorithm’s performance.





Part III

Experiments
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Chapter 6

Domains

In this chapter, we describe benchmark problems for both MDP and POMDP solvers, and
in the end, we benchmark and validate solvers implemented as part of this work.

For MDPs, we have come up with custom, straightforward, dynamically sized problems
sufficient for our validations of MDP solvers. Two problems that we defined are called 1D
Grid and Pyramid. The 1D Grid imitates a simplified version of MDP 4 x 3 Grid published
in (Russell; Norvig 2010). The Pyramid’s design resembles an exploration problem with
a limited horizon, wherein each stage 𝑡 the agent can visit up to 𝑡 states. The Pyramid
simulates a specific finite horizon problem, where each stage has different states. The 1D
Grid and Pyramid MDP problems are defined here1.

Unlike the MDPs, the scientists are still actively researching the POMDPs. Thus, in our
benchmarks, we use well-known POMDP benchmark problems Mini Hallway and Hallway
introduced in (Littman; Cassandra; Kaelbling 1995). Furthermore, one of the authors
published implementations of these and other problems at (Cassandra 1999). However,
the author uses a format, which the 𝑃𝑂𝑀𝐷𝑃𝑠.𝑗𝑙 framework does not support yet.

As there is no literature on MDP problems, and the POMDPs problems’ implementa-
tion format does not match any format supported by 𝑃𝑂𝑀𝐷𝑃𝑠.𝑗𝑙, we implemented the
benchmark problems mentioned above to the framework.

In the following text, we briefly describe each benchmark domain’s properties (Table 6.1).

Domain |𝑆| |𝐴| |Ω| Observability Transitions Observations
1D Grid custom 2 - Fully Observable Stochastic -
Pyramid custom 2 - Fully Observable Stochastic -

Mini Hallway 13 3 9 Partially Observable Deterministic Deterministic
Hallway 60 5 21 Partially Observable Stochastic Stochastic

Table 6.1: The domains used in our experiments

1https://github.com/JuliaPOMDP/FiniteHorizonValueIteration.jl/tree/master/test/instances
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6.1 1D Grid

1D Grid is a custom MDP problem (Figure 6.1) with a user-defined number of states with
goal states on both ends. The agent can execute two actions (𝑙𝑒𝑓𝑡 and 𝑟𝑖𝑔ℎ𝑡) with a 30%
chance of executing the wrong one. For each action, the agent pays one point, and for
reaching the terminal state, the agent receives ten points.

The 1D Grid imitates a simplified version of MDP 4 x 3 Grid published in (Russell; Norvig
2010). We design the 1D Grid problem as the infinite horizon problem. In experiments, we
transform the problem into the finite horizon one and evaluate the performance of finite
horizon VI and infinite horizon VI, solvers.

Figure 6.1: 1D Grid environment

6.2 Pyramid

Pyramid is a pyramid-like MDP problem (Figure 6.2) explicitly designed for Finite Hori-
zon MDP solvers. It resembles an exploration problem, where the MDP’s state space is
increasing by one state in each stage.

Starting in the first stage with one state at the Pyramid’s top, the pyramid problem grows
"downward", increasing its number of states in each stage (the first stage has 1 state, ..., the
nth stage has n states). The Pyramid MDP has two possible actions, moving 𝑑𝑜𝑤𝑛− 𝑙𝑒𝑓𝑡
or 𝑑𝑜𝑤𝑛 − 𝑟𝑖𝑔ℎ𝑡. By default the terminal states are contained in the last (horizon + 1 )
stage. Optionally, the user can define additional goal states. For each action, the agent
pays one point. For reaching a goal state, the agent receives ten points. For reaching a
terminal state, the agent receives zero points.

In experiments, we evaluate the difference between specialized and generalized VI algo-
rithms. In the Pyramid problem, the Finite Horizon Value Iteration evaluates only 𝑛
states in the 𝑛𝑡ℎ stage, but the Infinite Horizon Value iteration evaluates all states in each
iteration.

Figure 6.2: Pyramid environment

6.3 Mini Hallway

Mini Hallway(Littman; Cassandra; Kaelbling 1995) is a small navigation POMDP prob-
lem consisting of 13 states (Figure 6.3). The environment consists of 3 rooms where the
agent can face four directions and one terminal room denoted by a star where the agent’s
orientation does not matter. The agent can receive nine observations (relative locations
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of surrounding walls in each position) and execute three actions (𝑓𝑜𝑟𝑤𝑎𝑟𝑑, 𝑟𝑜𝑡𝑎𝑡𝑒𝑙𝑒𝑓𝑡,
𝑟𝑜𝑡𝑎𝑡𝑒𝑟𝑖𝑔ℎ𝑡).

The Mini Hallway problem models a hallway with a robot whose task is to enter the room
marked with the star. For reaching the room denoted by a start, the agent receives one
point. The actions cost zero points. The transitions and observations are deterministic,
and the problem defines the initial state belief as a uniform distribution over all twelve
non-terminal states.

The Mini Hallway problem has sufficient size in finite horizon experiments to show the
performance difference between the FiVI and PBVI algorithm. In more significantly sized
finite horizon problem benchmarks, the PBVI’s performance rapidly decreases, making
the algorithm execution so long that the benchmark does not make sense.

Figure 6.3: Mini Hallway environment

6.4 Hallway

Hallway(Littman; Cassandra; Kaelbling 1995) is a middle-sized navigation POMDP prob-
lem (Figure 6.4) consisting of 60 states. The environment consists of 14 rooms where an
agent can face four directions and one room marked with a star with four goal states. Other
than that, the model contains 21 observations (relative locations to surrounding walls, to
the star denoting the goal states, and to three numbered landmarks in each position) and
five actions (𝑠𝑡𝑎𝑦𝑖𝑛𝑝𝑙𝑎𝑐𝑒, 𝑚𝑜𝑣𝑒𝑓𝑜𝑟𝑤𝑎𝑟𝑑, 𝑡𝑢𝑟𝑛𝑟𝑖𝑔ℎ𝑡, 𝑡𝑢𝑟𝑛𝑙𝑒𝑓𝑡, 𝑡𝑢𝑟𝑛𝑎𝑟𝑜𝑢𝑛𝑑).

Both transitions and observations are extremely noisy. For reaching goal states, the agent
receives one point. The agent does not pay for executing actions. The problem defines the
initial state belief as a uniform distribution over all 56 non-terminal states.

The Hallway problem represents a middle-sized problem sufficient for benchmarking the
Point-based Value Iteration algorithm against the SARSOP in infinite horizon environ-
ments. However, the Hallway problem is unbearably large for benchmarking the Point-
Based Value Iteration in finite horizon environments.

Figure 6.4: A Hallway environment

In POMDPs benchmark problem definitions in 𝑃𝑂𝑀𝐷𝑃𝑀𝑜𝑑𝑒𝑙𝑠.𝑗𝑙, we have changed the
transition from terminal states. In (Littman; Cassandra; Kaelbling 1995) the authors define
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the transitions from terminal states with the initial belief distribution. In our implemen-
tation, we define the transitions from terminal states as deterministic transitions to the
same terminal states.



Chapter 7

Validations and Benchmarks

In the validations and benchmarks section, we are using algorithms implemented in the
𝑃𝑂𝑀𝐷𝑃𝑠.𝑗𝑙 framework. All experiments were executed on a 2.6Ghz i7 CPU with four
cores and 16GB RAM. The algorithms were not run in parallel, nor were they multi-
threaded. Results for MDP solvers were evaluated using BenchmarkTools.jl package. The
benchmarking stopped either after evaluating 10 000 algorithm executions or after 100
seconds. The POMDP results were evaluated for each algorithm iteration separately. For
each policy resulting from each iteration of each algorithm, we simulated the policy’s
behavior by running POMDPSimulators.jl simulations 10 000 times.

In the following text, we evaluate the performance of all algorithms we implemented as
part of this thesis - Finite Horizon Value Iteration, Point-Based Value Iteration, and Finite
Horizon Point-Based Iteration.

7.1 Finite Horizon Value Iteration

To benchmark the Finite Horizon Value Iteration, we evaluated the algorithm against
the Infinite Horizon Value Iteration. In our benchmarks, we used the MDP problems
defined in the previous section - 1D Grid and Pyramid and transformed them into a Finite
Horizon POMDP. We evaluate the results against our theoretical memory requirement
assumptions.

In our benchmarks, we evaluate the improvement connected with using specialized Finite
Horizon Value Iteration. While both solvers guarantee their convergence, the Finite Hori-
zon Value Iteration offers a one-pass solution, but the Infinite Horizon Value Iteration
converges after an unknown number of iterations.

Furthermore, the Infinite Horizon Value Iteration updates the value function of all states
in each iteration. On the other hand, the Finite Horizon Value Iteration only updates the
value of states that corresponds to a given stage and ends after horizon iterations.

7.1.1 1D Grid

In the 1D Grid problem, we used problems with 5, 11, 25, 51, and 101 states in each
stage. The terminal states were at the edges and the starting point in the middle. In this
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problem, it takes the agent 𝑛−1
2 actions to get to one of the terminal states. It takes the

same amount of iterations to update the value functions of all states correctly. Thus, for
solving the finite horizon 1D Grid problem, the Finite Horizon Value Iteration algorithm
requires at least

𝑛−1
2

2

2 less memory. For every iteration out 𝑛−1
2 iterations that the Finite

Horizon Value Iteration executes, the Finite Horizon Value Iteration needs at least 𝑛−1
2

lesser states (every iteration evaluates only states corresponding to a given stage instead
of all states). Furthermore, the Finite Horizon Value Iteration initiates state values for a
new stage, which corresponds to halving in the memory requirements formula.

The benchmarking results are validating our assumptions. Consider 1D Grid problem with
51 states. According to our assumption, it would take 25*25

2 less memory. Thus, we assume
the memory requirement of Finite Horizon Value Iteration to be 312.5 times lesser than
the memory required for the Infinite Horizon Value Iteration used on the finite horizon
1D Grid problem. 312.5 times reduction equals to reduction to 0.32 %. The experiment in
Table 7.2 validates our prediction.

Similar trends can be seen in Table 7.1. The dependence between the number of states of
one stage in Finite Horizon 1D Grid Problem and the time needed to solve the problem
is in Figure 7.1.

Figure 7.1: Comparison of Finite and Infinite Horizon
Value Iteration solvers on various sized staged 1D Grid problem
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Number of states 5 11 25 51 101
IH VI [ms] 0.165 0.933 10.850 218.452 2115.453
FH VI [ms] 0.014 0.089 0.289 1.045 3.466
Improvement [×] 11.8 10.5 37.6 209.0 610.3

Table 7.1: Mean solving time comparison of Finite Horizon
and Infinite Horizon Value iteration of various sized staged 1D Grid problem

Number of states 5 11 25 51 101
IH VI [MB] 0.044 1.118 17.904 313.767 4336.078
FH VI [MB] 0.009 0.051 0.225 0.987 3.768
Reduced to [%] 20.34 4.54 1.25 0.31 0.08

Table 7.2: Memory consumption comparison of Finite Horizon
and Infinite Horizon Value iteration of various sized staged 1D Grid problem

7.1.2 Pyramid

In the Pyramid problem, we define the number of horizons instead of the number of states.
In the pyramid problem, the number of states in the last stage is equal to the horizon of
this problem. The Pyramid MDP problem requires less memory than the 1D Grid problem,
and thus we extend our validations to 5, 11, 25, 51, 101, 251, 501 horizon Pyramid MDP.

Unlike the 1D Grid MDP, the agent in Pyramid MDP needs to execute number of horizons
actions to get into the terminal state. The memory requirements in Table 7.4 show memory
reduction increasing with the horizon. However, for the Pyramid problem, the memory
reduction is lower than in the 1D Grid problem. The memory reduction is lower because
the Finite Horizon Value Iteration deals with the states corresponding to given stage 𝑡 and
the following stage 𝑡 + 1, which correspond to a more significant part of the whole state
space in the case of the 1D Grid problem.

As expected, the specialized Finite Horizon Value Iteration outperforms the general Infinite
Horizon Value Iteration in terms of performance as well. The time-wise performances are
shown in Table 7.3. The distribution of time-wise performances for each size of the problem
is in Figure 7.2.

Horizon 5 11 25 51 101 251 501
IH VI [ms] 0.058 0.119 0.518 3.651 27.456 401.497 3289.083
FH VI [ms] 0.021 0.031 0.099 0.236 0.668 2.605 9.605
Improvement [×] 2.8 3.8 5.2 15.5 41.0 154.1 342.4

Table 7.3: Mean solving time comparison of Finite Horizon
and Infinite Horizon Value iteration of various sized staged Pyramid problem
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Figure 7.2: Comparison of Finite and Infinite Horizon
Value Iteration solvers on staged Pyramid problem with different horizons

Horizon 5 11 25 51 101 251 501
IH VI [MB] 0.011 0.028 0.096 0.376 1.481 6.923 23.574
FH VI [MB] 0.007 0.015 0.041 0.119 0.376 1.970 7.304
Reduced to [%] 59.0 52.6 42.7 31.8 25.4 28.5 31.0

Table 7.4: Memory consumption comparison of Finite Horizon
and Infinite Horizon Value iteration of various sized staged Pyramid problem

7.2 Point-Based Value Iteration

Formerly, we wanted to benchmark the FiVI against the state-of-the-art algorithm SAR-
SOP (Kurniawati; Hsu; Lee 2008). However, the SARSOP implementation in 𝑃𝑂𝑀𝐷𝑃𝑠.𝑗𝑙
runs an external solver that requires a specific POMDP format as input. The 𝑆𝐴𝑅𝑆𝑂𝑃.𝑗𝑙
parser does not support the 𝐹𝑖𝑛𝑖𝑡𝑒𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑃𝑂𝑀𝐷𝑃𝑠.𝑗𝑙 interface methods declared as
part of this thesis, and as such, could not be used.

Another solver that we considered to be a suitable reference did not contain a correctly im-
plemented algorithm. The solver is called 𝑃𝑜𝑖𝑛𝑡𝐵𝑎𝑠𝑒𝑑𝑉 𝑎𝑙𝑢𝑒𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛.𝑗𝑙, and we decided
to implement it on top of the original assignment.

This section serves as the validation of the correct algorithm implementation. We evaluate
the Point-Based Value Iteration against the SARSOP solver. The SARSOP is based on the
PBVI, and as such, the PBVI should not outperform the SARSOP. However, the PBVI
can obtain an asymptotically similar reward after an extensive solution execution.

In Figure 7.3, we can see that the PBVI starts with a decent 0.3 mean reward, then dips,
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and in the end reaches a similar reward as the SARSOP. In the beginning, the PBVI’s
explored space contains only a tiny part of the belief space. The starting reward can
be awarded to 𝛼-vector correctly executing an action corresponding to maximizing the
value function of the belief unknown to the solver. PBVI did not yet calculate the value
function of those specific beliefs, thus making them inaccurate. In the middle dip, the
algorithm starts to explore the first most promising beliefs. The solver knows that the
beliefs are promising but yet does not know which way to go. The solver finally explores
the optimal path in the last iteration and gradually updates all other beliefs with new
actions, obtaining the same reward as SARSOP.

The SARSOP leverages heuristics to explore the state-space reachable under the optimal
policy efficiently. The PBVI does not. The use of heuristics results in PBVI being signifi-
cantly slower than SARSOP. The advantage of heuristics highlights more than hundreds
of times more efficient memory consumption of SARSOP.

Figure 7.3: Comparison of the expected reward depending on the length of problem solving
between Point Based Value Iteration and SARSOP on the Hallway problem.

7.3 Finite Horizon Point-Based Value Iteration

The FiVI algorithm presents a state-of-the-art algorithm for Finite Horizon POMDP
solvers for 𝑃𝑂𝑀𝐷𝑃𝑠.𝑗𝑙. Moreover, the FiVI is a great starting point for further con-
tribution, as the authors propose further heuristics in (Walraven; Spaan 2019).

This section shows that we correctly implemented the 𝐹𝑖𝑉 𝐼.𝑗𝑙 solver. As we failed to
benchmark the FiVI against the more advanced SARSOP, we benchmark the FiVI algo-
rithm against the PBVI algorithm. In the benchmark scenario, the FiVI easily dominates
PBVI, the base solver for Infinite Horizon POMDPs, in terms of time performance.
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We have benchmarked the FiVI and PBVI on the staged Mini Hallway problem. Mini Hall-
way offers a moderate problem for FiVI but is a significant challenge in size for PBVI. The
choice of Finite Horizon POMDPs with fewer states, as TigerPOMDP or BabyPOMDP
from 𝑃𝑂𝑀𝐷𝑃𝑃𝑜𝑙𝑖𝑐𝑖𝑒𝑠.𝑗𝑙, does not represent a suitable sized benchmark. On the other
hand, the finite horizon Hallway problem would take the PBVI hundreds or thousands of
seconds to solve.

We benchmark the Mini Hallway problem with multiple choices for the horizon value.
We show the results in Table 7.5. With different horizon choices, we simulate multiple
various-sized problems. The horizon values are 3, 6, 9. With the uniformly distributed
initial belief, horizon 3 offers only a slight possibility for reaching terminal states. Horizon
6 is a middle-sized problem in which the agent has more steps to execute and improves
its expected reward. Horizon 9 simulates a long-range problem, challenging for the PBVI
solver.

In the first two benchmarks, we can see that the PBVI almost reaches a similar expected
reward as the FiVI. However, the time needed to obtain such a policy is far greater. In the
last benchmark, the PBVI does not solve the problem in the time limit and stops with the
expected reward of 0.31. The FiVI, on the other hand, converges and obtains an expected
reward of 0.58.

The most significant problem for leveraging the PBVI in Finite Horizons is that it starts
with only an initial belief, and it has to expand its belief space iteratively. FiVI, on the
other hand, starts with the initial belief and another |S| beliefs in each stage. This way,
the FiVI algorithm contains significantly more beliefs in its first stage, allowing it to solve
problems significantly faster.

Expected reward Time[s]
horizon 3 6 9 3 6 9
PBVI 0.23 0.31 0.31 18.59 90.45 279.69
FiVI 0.24 0.33 0.58 2.36 30.52 37.59

Table 7.5: Comparison of expected rewards and time needed to solve the problem with Finite
Horizon or Infinite Horizon Value Iteration on Mini Hallway problem.
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Conclusion

In this work, we introduced the interface for Finite Horizon (PO)MDPs to the POMDPs.jl
framework, surveyed and analyzed existing methods, and extended the framework with
the new solvers, mainly specialized in Finite Horizon problems.

POMDPs.jl is an open-source framework for using POMDPs implemented in Julia. POMDPs.jl
combines interoperable interfaces that users can use to implement their own (PO)MDP
problem or solver. Users can also use any of the already existing tools the framework offers,
for example, simulating.

At the beginning of the thesis, we introduced all the necessary background for MDPs
and POMDPs, both Infinite Horizon and Finite Horizon, and the motivation on why it is
beneficial to use Finite Horizon (PO)MDPs in a time-constrained environment.

On top of that knowledge, we implemented a missing interface for Finite Horizon (PO)MDPs
called FiniteHorizonPOMDPs.jl according to its design presented in the package template.
With the interface set up, we implemented the fixhorizon utility. Thanks to the fixhorizon
utility, anyone who has already implemented their own (PO)MDP in POMDPs.jl frame-
work can transform their Infinite Horizon (PO)MDP into a Finite Horizon one with only
a few lines of code.

To solve the finite horizon problems, we implemented the modified version of the Value
Iteration algorithm, the FiniteHorizonValueIteration.jl. It specializes in solving the Finite
Horizon MDPs. The FiniteHorizonValueIteration.jl solver builds on top of a custom im-
plementation of Infinite Horizon Value Iteration. It introduces the Finite Horizon solvers
to an uninformed user in an easy-to-grasp way, demonstrating its structure and benefits.

During the survey of POMDP methods, we found out that we can not use the majority
of already implemented solvers in POMDPs.jl. As a solution to a missing benchmark-
ing method for the Finite Horizon POMDPs, we implemented an additional solver, the
𝑃𝑜𝑖𝑛𝑡𝐵𝑎𝑠𝑒𝑑𝑉 𝑎𝑙𝑢𝑒𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛.𝑗𝑙. Apart from being a benchmark for the other algorithm
that we implemented, it is an essential algorithm that is a foundation for many other
solvers.

With the interface and benchmark solver contributions completed, we implemented the
state-of-the-art Finite Horizon Point-Based Value Iteration algorithm in package 𝐹𝑖𝑉 𝐼.𝑗𝑙.
The FiVI solver presents a great heuristic solution for solving finite horizon problems. Fur-
thermore, it is an excellent starting point for any future contributions, as the algorithm’s
authors propose improving heuristics. And finally, the FiVI demonstrates the necessity
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for specialized Finite Horizon solvers, as it dominates the performance of general solvers
in finite horizon problems. Other than that, the use of finite horizon solvers often results
in different policies focusing on rewards reachable in a given time span. Thus, the finite
horizon solvers often improve the resulting reward.

Other than mentioned solvers and interface, we contributed with additional POMDP mod-
els, policies, and other minor changes necessary to provide the Finite Horizon POMDP
support. The benchmark problems used in our validations are implemented in POMDP-
Models.jl, the 𝑆𝑡𝑎𝑔𝑒𝑑𝑃𝑜𝑙𝑖𝑐𝑦 used in 𝐹𝑖𝑉 𝐼.𝑗𝑙 is implemented in 𝑃𝑂𝑀𝐷𝑃𝑃𝑜𝑙𝑖𝑐𝑖𝑒𝑠.𝑗𝑙.

Finally, we provided benchmarks and experiments to validate our methods’ correctness
and their advantages.

The finite horizon methods clearly show that their infinite horizon counterparts do not
perform well on specialized finite horizon problems. The benchmarks show up to a hun-
dredfold improvement in performance and memory efficiency from finite horizon solvers on
benchmarked finite horizon problems. Furthermore, finite horizons tend to perform even
better with more extensive problems. Thus, making the specialized finite horizon solvers
essential in environments with a finite horizon.

The PBVI benchmark against the SARSOP algorithm shows that even that the PBVI is a
generic solver without any clever heuristic, it still achieves similar results in the long run.

As future work, we deem it essential to improve the support for Finite Horizon POMDPs.
The POMDPs.jl main framework packages support Finite Horizon POMDPs, but there
are still a few minor packages that do not. For example POMDPSimulators.jl. Other than
that, Finite Horizon (PO)MDPs may well deserve a discrete belief designed for finite
horizon specifically, as it could simplify some implementations.

In terms of algorithm improvements, in particular the performance of 𝐹𝑖𝑉 𝐼.𝑗𝑙, it can be
improved with caching of 𝛼-vectors, or heuristics introduced in (Walraven; Spaan 2019)

We believe that our framework addition will be of great use to everyone searching for
a way to solve their Finite-Horizon (PO)MDP problem with an already written package
that is also efficient. The POMDPs.jl is an excellently designed framework for POMDPs
oriented tasks, and with the advent of Julia, it will get even more attention.

In conclusion, with the new interface, solvers, and other minor methods, we contribute
to an extensive framework POMDPs.jl and further improve its library environments. We
introduce a whole new branch of finite horizon problems and tools not supported by
POMDPs.jl at the time of its completion. Finally, we test the correctness and efficiency
of the newly implemented solvers.
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Appendices

A Attached files

We are attaching a folder with the source codes of all the packages we have implemented
or contributed to. The folder also contains a directory with the experiments and corre-
sponding data.
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