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Abstract

This thesis deals with the problem of se-
quential dynamic pricing in mobility. It fo-
cuses on the domains with a limited num-
ber of resources, where the customers are
buying products constructed from these
resources. When we set a price for any
product, we need to consider the possible
revenue we might get from the resources
that are included in the product if we did
not sell that product. The problem is
inspired by dynamic pricing for the long-
haul bus routes with multiple stations.
We model the problem using Markov De-
cision Process, and we use Monte Carlo
Tree Search to solve the problem.

We use domain knowledge to improve
the standard Monte Carlo Tree Search al-
gorithm. In this thesis, we propose heuris-
tics that evaluate the states and replace
the random rollout.

We show that these heuristics improve
the results when we have limited compu-
tational resources, or we solve large space
problems.

Keywords: dynamic pricing, monte
carlo tree search, markov decision
process, value estimation, rollout
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Abstrakt

Tato bakalarska prace se zabyva pro-
blémem sekvencéni dynamické cenotvorby
v dopravé. Konkrétné na pripady ceno-
tvorby, kde je limitovany pocet zdroju
a zakaznici kupuji produkty slozené z
téchto zdroju. Kdyz volime cenu produktu,
potirebujeme zohlednit pripadné vynosy
ze zdroju, které by nam zustali, pokud
bychom dany produkt neprodali. Tento
problém je inspirovan dynamickou ceno-
tvorbou pro dalkové autobusy s vice stani-
cemi. Tento problém modelujeme pomoci
Markovského rozhodovaciho procesu a po-
uzivame Monte Carlo metodu stromového
prohledavani pro feseni problému.

Pro vylepseni Monte Carlo metody stro-
mového prohledavani pouzijeme znalost
domény, za ucelem vytvoreni heuristiky,
které nasledné hodnoti stavy naseho pro-
blému v Markovském rozhodovacim pro-
cesu. Tyto heuristiky nahradi nahodny
rollout.

Ukazeme, ze tyto heuristiky zlepsi vy-
sledky, kdyz mame omezenou vypocetni
kapacitu, nebo mame rozsahly problém.

Kli¢ova slova: dynamicka cenotvorba,
monte carlo metoda stromového
prohledavani, markovav rozhodovaci
proces, odhad hodnoty, rollout

Pteklad nazvu: Datové-rizend
sekvencéni dynamicka cenotvorba v
dopravée
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Chapter 1

Introduction

Dynamic pricing is a part of revenue management that examines product
pricing strategies maximizing certain objectives, usually revenue. Dynamic
pricing changes the prices of products throughout the time depending on
various factors, for example, demand, products supply, purchase time, etc.
Dynamic pricing is used in many domains such as retail, transportation,
electricity supply, and hotel industry.

We are interested in the usage of dynamic pricing in mobility, more specif-
ically, dynamic pricing for long-distance bus routes. However, the longest
tradition and frequent usage has dynamic pricing in airline revenue manage-
ment [I6]. The bus and train carriers have also adopted dynamic pricing
strategies to maximize revenues or to optimize the utilization of buses and
trains [10].

One of the most significant differences between airline routes and bus
routes is that bus routes often have a set of intermediate stations between
the original and final stations. This means that we are not only pricing one
product, but we are pricing multiple products that often overlap, in our case,
sharing the seat between two stations. For example, consider a bus route
from A to D with intermediate stations B and C, there the ticket from A
to C shares a part with a ticket from B to D. That fact gives an additional
aspect of the shadow price. And we are confronted with the question, what
reward from other products we would have if we did not sell this product.

. 1.1 Problem Overview

It is helpful to describe the domain with the terminology we use. The resource
is a seat on the bus between two stations that has no intermediate station
between them. The product is a ticket for a seat on the bus between arbitrary



1. Introduction

stations, so it is a combination of resources.

Resources have limited supply given by the capacity of the bus, so that we
will call the products resource-constrained. The resources are also perishable,
which means that we can only sell them until a specific time, in our case,
until the departure of the bus.

Nowadays, customers buy tickets mainly online via mobile applications
or web browser applications, which means that the customer can buy the
product anytime before the bus’s departure.We consider sequential pricing,
meaning that the requests for products come up throughout the time, and
we respond to that requests by setting the price.

The objective is usually to maximize the revenue, and we will aim to
maximize the revenue. Still, other objectives can be reached, for example,
maximizing the utility. Maximizing utility means maximizing the overall
amount of transported passengers.

With all aspects described, we define our problem as a Resource-constrained
product sequential dynamic pricing problem (RPDSP problem). For more
detailed information and formal definition, please refer to Section 4.1l

Bl 1.1.1 Solving the RPDSP Problem

To solve the RPDSP problem, we use the Markov Decision Process (MDP) as
a framework to model the RPDSP problem. MDP is a common framework
for solving sequential decision-making under uncertainty. The uncertainty is
given by the arrival of requests for products that we do not know beforehand,
and we do not know what price is the customer willing to pay for the product.

Finding the optimal solution to MDP is a well-examined problem. There
are solutions based on dynamic programming, reinforcement learning, or
mathematical optimization. These approaches have their drawbacks, such as
low scalability or add additional constraints to the definition of a problem.

With the advent of Monte Carlo Tree Search (MCTS) algorithms and
their success on large MDPs, we will use this heuristic search algorithm to
approximate the optimal solution for the MDP.

We will try to improve the most popular algorithm in the Monte Carlo
family, the Upper Confidence Bound applied to trees (UCT), by adding
domain knowledge to that algorithm. For more information on MCTS and
UCT, please refer to Section |3.2.

We incorporate the domain knowledge by crafting heuristic functions to
evaluate the states. The state represents the RPDSP problem at one given
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timestep. The state contains information about free resources and requested
product at the given timestep. By adding domain knowledge, we try to push
more accurate estimates to the UCT, and by that, we try to achieve better
results or make the algorithm faster while preserving the results.

B 1.2 Outline

In Chapter |2, we examine related works, firstly revenue management, espe-
cially dynamic pricing. Then we look into different MDP formulations for
dynamic pricing problems and see related work for Monte Carlo Methods,
especially UCT. Chapter [3| describes the theoretical background, mainly the
MDP framework and Monte Carlo Tree Search. In Chapter |4, we formally
define the RPDSP problem, and we describe our MDP definition. In Chapter
5, we present our heuristics and how we implemented the problem. In Chap-
ter |6, we benchmark the results of the heuristics. Chapter [7| concludes our
findings.






Chapter 2

Related Work

Dynamic pricing has become a common practice in today’s world. There
are many different approaches to the problem of dynamic pricing. In this
section, we first describe the possible models for dynamic pricing problems
known in the literature. Next, we discuss the literature considering MDP as
a framework for dynamic pricing. Lastly, we analyze MCTS as a solution
method for the MDP. We also investigate how domain knowledge can improve
MCTS methods.

B 21 Dynamic Pricing

Dynamic pricing is studied in the field of revenue management, also called
yield management.

Revenue management studies modeling of demand distributions, arrival
processes, capacity control, and pricing [I6]. One of the main subjects of
research in revenue management is airline revenue management. Airline
revenue management deals with constrained resources and finite horizon
selling periods, sharing these properties with the bus problem we discuss in
this thesis.

Our problem has several similar properties as network revenue management
introduced by Gallego and Ryzin [II]. The network revenue management
considers multiple products and adjusts the price of each product. The
literature more accurately classifies this problem as a capacity control problem.

The capacity control problem and dynamic pricing mentioned before do
not fully correspond to our problem because we need to find the optimal price
for each time, not just statically set the price to one value. Moreover, in our
case, the products are a combination of resources.



2. Related Work

A more similar definition to our problem provides Liu and Ryzin in their
work [19] where they consider a flight network. A flight network is a graph
of multiple flight routes, where you can buy products consisting of multiple
flights. For each timestep, they decide what price to offer for each product.
This problem has been solved using dynamic programming techniques [21].

. 2.2 MDP Formulation

Sequential dynamic pricing is commonly modeled as MDP. For example, in
the problem of overbooking and seat inventory control [20], dynamic pricing
of on-demand services [12], or retail pricing [5].

Game theory has some similar aspects as MDP, and the problem of dynamic
pricing where there is a non-monopolistic environment can also be described
as a game [6].

The common techniques for solving MDPs representing dynamic pricing are
dynamic programming [I12] or reinforcement learning [20]. These techniques
have their drawbacks in scalability or in terms of defining the problem.

Because our dynamic pricing problem has a large state space, we need to
find a way to solve large MDPs. The common algorithms for solving the
MDP, such as value iteration or policy iteration, do not scale well. These
methods are called offline solvers. We will use online solvers, and a well-suited
technique for solving MDP online is an MCTS [3].

. 2.3 Monte Carlo Tree Search

MCTS is a family of heuristic search algorithms. It combines Monte Carlo
evaluations with tree search [7].

The MCTS has been widely used in game theory, where it lands spectacular
results, for example, in the game of Go [4].

The success of Monte Carlo Tree Search in recent years is connected with
a suitable tree policy. Tree policy decides what states are explored next. The
most popular algorithm in the MCTS family is Upper Confidence Bound
applied to trees (UCT) [14]. UCT uses the UCBI tree policy based on the
multi-arm bandit problem [I], solving the exploration-explotation dilemma.

In the base form, MCTS is a domain-independent search algorithm. Domain
independence is beneficial as we can use the algorithm in any domain. However,

6
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we can improve the performance of MCTS by incorporating domain knowledge.

Incorporating domain knowledge usually means assigning a value to the
state depending on the attributes of the state or ordering the actions based
on their quality.

Rollout randomly traverses the space state from the current node until the
terminal state. Depending on the domain, returns the value obtained in the
terminal state or accumulated in the traversing.

The random rollout is a computationally efficient method, but it can be
successfully altered by biasing the moves using a heuristic [I3]. The rollout
can also be stopped at a certain depth, and the result can be evaluated from
that state [2].






Chapter 3

Theory

To solve the problem of dynamic pricing, we formalize the problem as an
Markov Decision Process (MDP), then we will use Monte Carlo Tree Search
(MCTS) to find the optimal policy. We will use MCTS because classical
methods such as value iteration or policy iteration do not scale well with the
size of the problem.

B 31 mDpP

MDP is a framework for modeling sequential decision-making in stochastic
environments. MDP is an extension of Markov chains. MDP is widely used
in robotics, economy and manufacturing, and it is a suitable framework for
dynamic pricing.

B 3.1.1 Definition

Markov Decision Process gives a mathematical framework for modeling se-
quential decision problems with a stochastic outcome of the actions. We
will use the Finite Discrete-Time Fully Observable Markov Decision Process
(MDP) [15], which is defined as a tuple (S, A, T, R) where:

® S is the finite set of states

® A is the finite set of actions available for an agent.

® 7 is a transition function giving probability 7 (s, a, s’) of going to state
s’ from the state s by performing the action a

9



3. Theory

® R is a reward function returning reward value R(s,a, s’) given by per-
forming an action a, which leads to a transition from state s to state

s'.

Other necessary components for MDP are the utility function and environ-
ment history. Environment history is a sequence of states and actions that is
possible for a given MDP. This thesis only mentions the finite horizon MDP,
meaning that the environment history will always be finite with a fixed time
N. Utility function depends on that history. We can write:

Uh([807a07 S$1,Q1, .-+, SN])

We will consider the utility function equal to the sum of the rewards we
obtain by following the history:

N-1

Un =Y Risi,ai,si11)
i=0

B 3.1.2 Policy

To find a solution, we need to know what action to choose in every reachable
state. It means that we need a mapping from states to actions. That mapping

is called a policy 7.
T:S— A

In the finite horizon, the action may depend on the timestep. Intuitively,
when the simulation is at the end, optimal action might differ from the
action at the start. Policies that depend on the time are called nonstationary.
Stationary policies do not depend on the time and are used mainly in infinite
horizon mdps.

Since we are using finite horizon MDP, we will not consider the discount
factor. The discount factor is used to lower the rewards from the more distant
future by multiplying the reward of the next action by a v € (0, 1).

B 3.1.3 Optimal Policy

To solve MDP, we need to find an optimal policy 7*. An optimal policy is a
policy maximizing the expected utility of the possible environment histories
generated by that policy [I5]. The expected utility of policy starting at the
state s is:

U™(s) = E[Z R(Si, 7(Si), Siv1)]
i=0

10
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Where expectation E depends on a probability distribution over state se-
quences determined by random variable S; over the state space and = [18].
And the optimal policy is policy maximizing that utility:

7, = argmaxU" (s)
™

To solve the MDP, we need to define the utility of the state. The utility of
a state is the expected reward for the next transition plus the discounted
utility of the next state, assuming that the agent chooses the optimal action.
Therefore the utility of the state is given by the following equation:

U™(s) = max P(s'|s,a)[R(s,a,s") +yU(s")]
acA
s'eS
That equation is called the Bellman equation. In this thesis, we consider only
finite horizon MDP’s, so we do not consider the discount factor. Thereby
we assume v = 1. The expected utilities of states are solutions of the set of
bellman equations.

B 3.1.4 MDP Solvers

B Offline Solvers

To find an optimal policy, we need to solve a set of Bellman equations. For
each state, there is one equation. Due to the nonlinearity of the equations,
we can not solve them using linear algebra methods. One approach is to
use iterative methods. Value iteration is a standard iterative algorithm. We
define U;(s) as the utility value for the state at the iteration ¢. The important
concept Bellman update is defined as follows:

Uit1(s) max SIZESP@/\S, a)[R(s,a,s") +Ui(s')]

At the start, the utility values U are initiated as zeros. Then the algorithm
repeats the Bellman update for all the states simultaneously until the maxi-
mum difference between current and preceding utilities are smaller than some
€. The algorithm pseudocode is shown in Algorithm [1. The value iteration
asymptotically converges to the optimal solution [18].

Value iteration and another standard method, policy iteration, are offline
algorithms. They construct a complete policy before the simulation is started.
A disadvantage of offline methods is that they do not scale well with the size
of an MDP because offline algorithms construct policy for each state, and it
takes significant time and memory. Generally, these algorithms are applicable
only to small to mid-size domains [17].

11



3. Theory

Algorithm 1: Value Iteration

Function Value_Iteration(mdp,e):

Ui(s),Uit1(s) < 0, for all s € S;

6+ 0;

while § < € do

Ui(s) + Uiy1(s);

6+ 0;

foreach s € S do
Uit1(8) < maxgeq > g P(5|s,a)[R(s,a,s") +U;(s)];
if \Ui+1(s) — UZ<8>‘ > ¢ then

|6 Ui (s) = Ui(s)l;

end

end
end
return U;

B Online Solvers

A better-suited approach for larger MDPs is to use online planning algorithms.
Online planning algorithm does not construct policy beforehand, but it decides
what action to execute in the current state visited by the simulation. The
advantage of online planning algorithms is that it considers only the subset
of states reachable from the current state.

Generally, the online algorithm is divided into two alternating phases: the
planning and execution phases. In the planning phase, the algorithm decides
what is the best action in the current state. The planning phase usually
builds a tree of reachable states with the root node representing the current
state.

There are two types of nodes: state and action. State node represents the
state and value of the state. Action node represents action executed from the
parent state. These two types alternate, as shown in the |3.1l

The tree is built iteratively, and when a new leaf state node with value
is added, the value of nonterminal leaves can be estimated by estimation
function or given default value. Then the value is backpropagated to the
parent nodes, usually by averaging the values from all leaf nodes. The best
action is the child node of a root with the highest value.

When the planning phase ends, the execution phase executes the best
action and updates the current state. The tree has finite depth as we consider
finite MDPs, but the depth and branching factor are large in problems we
encounter in this thesis.

12



3.2. Monte Carlo Tree Search

C=l3.2440=5,p=10,1.:1]

C=[3,13],t=6,p=[0,1,0] Ot s

Figure 3.1: This tree represents our pricing problem, described in the Chapter
The tree has two types of nodes, state nodes, and action nodes. State nodes are
blue, and action nodes are yellow. State nodes contain information about free
capacity, time step, and requested product. The children of the state nodes are
action nodes, and they are representing what action we can perform. Children of
action nodes are state nodes, representing states obtained by different outcomes
of executing an action.

Because the problems are large, we can not completely search the state
space. We need to use an algorithm that approximates the search in the state
space. We will use Monte Carlo Tree Search that is based on sampling from
the space, and approximates the optimal decision.

. 3.2 Monte Carlo Tree Search

This section will describe Monte Carlo Tree Search (MCTS). MCTS finds
optimal decisions, in our case MDP actions, by building a search tree based
on the sampling from the domain space. MCTS is widely popular in games,
and unlike other game tree searches, it does not use a heuristic evaluation
function. Instead, the values of states are approximated by simulating moves
from the current state and considering the results.

Usually, the nodes in the tree represent states, and directed links represent
actions. However, due to the stochastic outcome of an action in MDP, we
need to represent the different outcomes of the actions. In our case, there
are two types of nodes, action node and state node. The algorithm always
starts in the state node, and by executing action, it gets to the action node
representing executed action. From that action node, the MDP simulates
outcome of an action and yields a state node.

The state node includes information about the MDP model, state and

13
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1. Selection 2. Expansion

e

3. Simulation 4. Backpropagation

Figure 3.2: Four phases of MCTS

number of visits IV, and the action node includes information about an action,
number of visits IV, and value of the node Q).

MCTS builds a tree from the current state node. MCTS builds the tree
iteratively until it exceeds a computational budget or a number of iterations.
Each iteration includes the following phases [3]:

® Selection: From the root state node ty, a child is recursively selected
until a state node t,, with a terminal state or expandable child is reached.
Child nodes are selected using tree policy. In our case, selecting the child
node means selecting a child action node that generates the child state
node.

® Expansion: Child node t. of the node t,, is added to the tree. Selection
between the children is based on the tree policy.

® Simulation: The rollout starts from the expanded node .. The rollout is
a simulation that chooses actions which transition states until a terminal
state or a certain depth is reached. From that state, the reward is taken,
and it gives value ) to the action node, which leads to node t..

14



3.2. Monte Carlo Tree Search

® Backpropagation: The rewards from the simulation and transitioning
between ty and t. are used to update values @) of the action nodes between
the root ty and the expanded node t..

After the given number of iterations is executed or the time/resource limit
is exceeded, the MCTS selects the best child node of the root. That child
node is an action node. As a criterion for choosing the best child action node,
we use the most visited child.

There are also other methods for selecting actions in the root, such as
choosing the child with the highest value, but that child might not be
sufficiently explored so that the outcomes would not be that robust. It is
important to define a tree policy for selecting the action nodes in the selection
phase. We will use Upper Confidence Bound applied to trees (UCT).

B 3.2.1 Upper Confidence Bound Applied to Trees

The UCT’s tree policy aims to approximate the values of actions from the
current state. It addresses the exploration-exploitation dilemma and decides
whether it is better to explore lesser-explored nodes or exploit nodes with
high rewards.

The UCT selects nodes based on the upper confidence bound formula UCB1
[14]. The UCBLI is based on the multi-armed bandit problem. The choice of
the child node is treated as a choice, which arms to pull. The UCBI1 formula
is following:

In N

ng

UCB1 = v; + Cp

Where v; is the mean value of action node ¢, which we obtain by simulation
and backpropagation part of the MCTS algorithm, C), is an exploration
constant, N is a number of visits of the parent state node, and n; is a number
of visits of action node i. The action with the highest UCB1 value is selected.
As we can see, the v; is an exploitation part, and the term with a number of
visits is an exploration part.

We show the of the UCT in Algorithm [2. This pseudocode is an UCT for
MDPs.

The main difference between this algorithm and UCT that appears in the
literature [3] is that we need to take into account the stochastic outcome of
the actions. We model this by using two types of nodes: action nodes denoted

15



3. Theory

Algorithm 2: UCT Search

Function UCTSearch(sg):

to « node(sg) ;

while within computional budget do
t,, <Selection(ty);
Expansion(ty,);
R+ 0;
R +Simulation(s(t,), R);
Backpropagation(t,, R);

end

return;

Function Selection(?):
while ¢ is nonterminal do
if ¢t is not in tree then

return ¢;
else
n 4  argmax % +c %}(\;(/t));

n’€ children of t
t < generate transition to state node from action node n ;
end

end
return {;

Function Expansion(?):
| add ¢ to the tree

Function Simulation(s, R):
while s is nonterminal do
choose random n € child t;
s’ < Generate state from action node n;
R+ R+ R(s,a(n),s');
s+ s
end

return R;

Function Backup(t, R):

while t is not null do

n parent of t Q(n) < %;
N(n) + N(t)+1;
t < parent of n;

end

16



3.2. Monte Carlo Tree Search

n, and state nodes denoted ¢t. They are alternating, meaning that the child
of the action node is a state node and vice versa.

The next difference is that when we choose an action node, then the
underlying MDP generates from that action node the next state node.

Due to these differences, we need to work with information on what nodes
are in the tree, and when there is a new unvisited node, we save that node in
the expansion part.

B 3.2.2 Rollouts and Value Estimation

In the simulation phase, we gain the reward that is then backpropagated to
all preceding action nodes. That node value is then used in the selection part
in the UCB1 formula.

When we explore a new node in the exploration part, we have to determine
the reward that is then backpropagated. It is done by the simulation part.

The standard method for simulation is to use random rollout. It takes
random actions until it reaches the terminal state, and the cumulative reward
from executing all actions is the reward. That simulation is useful because
we do not need to traverse the subtree completely, which is impossible when
the depth is large as the time to traverse is exponential with depth, but the
rollout is linear with depth.

We can improve the rollout with domain knowledge. With domain knowl-
edge, we can engineer evaluation functions for given states. We can use the
evaluation function to replace the rollout, or we can stop the rollout in a
given depth, and then we can use the evaluation function. Or the rollout
can be informed and use domain knowledge to navigate him in choosing the
actions by biasing the possible actions.

We will describe our heuristics in Chapter |5l
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Chapter 4

Problem Definition

In this section, we describe sequential dynamic pricing for buses. Then
we formalize the problem. Specifically, we consider Resource-Constrained
Product Sequential Dynamic Pricing Problem (RPSDP problem). Then we
model RPSDP problem as MDP.

We consider bus traveling from the first station to terminal station through
a set of stations on the way. We divide the bus trip into segments between
neighboring stations. A resource is a seat for one segment.

Every resource has supply limited by the capacity of the bus. The resources
are perishable, which means that they have a limited selling period given by
departure of the bus from the station, where the resource starts.

The product is a combination of resources. We assume a single monopolistic
seller and multiple customers. Customers send requests for products to the
seller. The seller offers a price, and if the price is within the buyer’s budget,
the product is sold.

B 4.1 RPSDP Problem

Formally the RPSDP problem is specified by a tuple (R, P, ¢, Sy, B), where
R is the set of resources, P is the set of products, ¢ is the initial supply of
each resource, S, is the selling period of each resource, and B is the set of
requests.

There is a sequence of n stations on the bus route (sty, sto,...,st,). R is
a set of n — 1 resources r where the r is a ticket for the seat between the
adjacent stations st; and st;;1. The product p is a combination of these
resources. We will consider only combinations of adjacent resources that
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4. Problem Definition

means that the product is a sequence of k resources (7, 7j41,...,7j4+k)-

We discretize the selling period into a sequence of natural numbers 7 =
(1,2,...,tmaz), which are timesteps of equal length.

Each resource has its selling period s,, which means that we cannot sell
this product when the timestep ¢ is higher than s,. Each resource also has
its initial supply cg. We consider the same value of initial supply for each
resource, as it is the number of seats on the bus.

B is the sequence of customer’s requests. Each request is composed of the
timestep t, demanded product p, and customer’s budget b for the product p
at the time ¢.The customer’s budget is the maximum price the customer is
willing to pay for the product p at the time .

We can model the arrival of the requests as a sampling from categorical
distribution, where every product, including the empty product, has its
probability. The sum of the probabilities must be 1. We sample from the
distribution at each time step. The model is memory-less, which means that
the sampling at each timestep is independent of the previous samplings.

Now we describe our simulation. The simulation models interactions
between the seller and customers.

First, we simulate the arrival of the customer’s requests for products. If
there is no request, we increment the timestep ¢ and simulate the arrival of
the customer’s requests again. If there is a customer request for a product, we
increment the ¢ and decide what price we offer. Then the customer accepts or
rejects the price. The customer decides based on his budget. If the customer
accepts the price, we sell the product, increase the revenue, decrease the free
spaces, and increase the ¢, and we wait until the next product is requested.
If the customer does not accept the price, we increase the ¢t and wait for the
next request. We end the simulation after the given number of timesteps is
reached. It means that the bus has departed from the penultimate station.

We can see one step of the simulation in Figure [4.1l

Our objective is to maximize the revenue we obtain in the simulation. We
get revenue from customers who accepted the price.

B 4.2 MDP definition

Because we do not know the customer’s budget when we offer the price, the
outcome of our action (the price offer) is not deterministic. And the problem
is sequential, as is the arrival of the request. With that said, the suitable
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4.2. MDP definition

No request for
product

Price not accepted

Sell the ticket
Price accepted Increase revenue

Reduce free seats

Request for H Offer price
product

Figure 4.1: Illustration of one step in our simulation.

framework is MDP. In Chapter |3, we defined MDP as a tuple (S, A, T, R).
In this section, we specify each component of the tuple for RPSDP problem.

B 4.2.1 State Space - S

State space S consists of states s = (¢, p, t), where ¢ is a supply of all resources.
It is a vector consisting of free spaces for all resources. p is the requested
product. It is a vector composed of ones and zeros. If in the ith position is
one, it means that the product contains resource r;. Otherwise, it does not
include 7;. t is a timestep from the selling period t € 7.

For example, when we are in the state ([2,5],[1,0],4), it means that we
have two free spaces between the first and second station and five free spaces
between the second and third station, and the requested ticket is between
first and second station. And we are in the fourth step of the simulation. In
the following text we will use s; = (¢, p) as a equal replacement of s = (¢, p, t).

B 4.2.2 Action Space - A

Action a is the price we offer in the state s. For our simulation, we consider
a finite set of actions. It is convenient only to offer a finite set of integer-like
prices. Overall, bus companies often offer prices from that set. For example,
if (a = 7), it means that we offer price seven for the product requested in the
state s.
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4. Problem Definition

B 4.2.3 Transition Function - T

Transition function 7 (s¢, a, s¢+1) is composed of two parts. Firstly, it simulates
the customer’s budget, and if the budget is higher than the action a, the
product p; is purchased, then the capacity of new state s;11 is the capacity
of the original state s; minus the product demanded, c¢;+1 = ¢; — p;. If the
product is not purchased then c;y1 = ¢;.

After this acceptance part, the new product p;y1 is demanded. The second
part decides which product is demanded. It depends on the sample from the
categorical distribution of all products, including the empty product. The
empty product represents no request for a product in the current timestep.
The new state i1 iS (C141, Pet1)-

B 4.2.4 Reward Function - R

Reward function R yields reward equal to the action if the price is accepted
and the product is sold in the transition. Otherwise, the reward is equal to
0. We can say that when the new state’s capacity is lesser than the original
capacity by the original product, then the reward is a. If not reward is zero.
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Chapter 5

Implementation

In this chapter, we describe the implementation of the problem. Then we
describe methods for value estimation of nodes in MCTS.

We use Julia programing language. To implement MDPs, we use the
POMDPs.jl library [9], which is an interface for working with MDPs. As a
core UCT algorithm, we use the implementation from the MCTS.jl that is
part of the POMDPs.jl library. We use the MDP simulation based on the
POMDPS.jl, that is developed by the supervisor of this thesis.

We will implement different methods for the simulation part of the MCTS.
The default is random rollout implemented in the MCTS.jl.

We need to set multiple hyperparameters for MCTS. The setting will be
described in the Chapter [6l depth specifies the maximum depth of the tree
built by the MCTS. The number__of iterations specifies how many iterations
of building the tree is executed. Exploration constant C), is a hyperparameter
in the UCB1 formula. With higher C),, the algorithm is more exploratory. The
last hyperparameter is max_ time. It denotes a maximum time for MCTS to
build the tree.

. 5.1 Value Estimation Methods

The simulation part of the common MCTS performs rollout to estimate
the value for the current node. We try to use domain knowledge to craft
estimation functions that would perform better than the random rollout.

Both game theory and planning uses the concept of domain knowledge
and heuristic value evaluation. Using domain knowledge, algorithms try to
find the most accurate estimate of the state. We will try to replicate this
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approach in the pricing problem. In our case, the real value of the node is the
accumulated reward from the current state until the end of the simulation.

We try different value estimation heuristics, and we divide them into
categories.

The first category we consider is static evaluation heuristics that directly
evaluate the state node from the information about the state included in the
node. The calculation is fast, but the information from the state might not
be sufficient.

The next category is rollout heuristics. The standard UCT uses random
rollout, but rollouts can also be informed to prefer taking certain actions.
The rollout traverses through the state space, so the information about value
is not limited to the current state node. That is an advantage in the problems,
where the properties of the current state do not provide sufficient information
about the future rewards.

We can combine these two categories using rollout, which is stopped in a
given depth, from where we statically evaluate the reached state.

B 5.1.1 Static Evaluation Heuristics

The first category of methods is estimating the values directly in the current
node. We have implemented the following methods.

® Constant value heuristic: The value of the node is statically set to a
constant value. We describe the choice of the constant in Chapter [6.

v(s) = constant

B Capacity Heuristic: The value of the MCTS node is set as a sum of
free spaces remaining in the given state multiplied by k, which is a
hyperparameter. k is there because this heuristic counts the node’s value
from free spaces, but the value should be given by revenue. By the k,
we try to adjust that discrepancy. We describe the choice of the k in

Chapter |6
v(s) =k Z Ci

The idea is that the more free spaces, the better the potential reward in
the future.

B Time-Capacity Heuristic: The node’s value is set as a sum of free spaces
remaining in a given state multiplied by k, which is a hyperparameter
with the same reason as hyperparameter in the previous case and divided

by a current timestep.
v(s) =k Z i/t
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5.1. Value Estimation Methods

The idea from the previous heuristic is extended by the idea that the
lesser the remaining time, the lesser the potential reward.

Expected Reward Heuristic: Because we have information from the
simulation about the user budgets and information about the demand,
we can use it to evaluate tree nodes. We set the value of the tree node
to the following value:

v(s) = ATZpri * uB;

i=1

Where pr; is the probability that product 7 is sampled, AT is the number
of remaining timesteps from the current state. The user budget is a
normal distribution, and pB; is the mean.

Minimized Expected Reward Heuristic: The expected reward heuristic
does not consider a situation when there are more requested resources
than the capacity. We tackle that problem by taking minimum of the
expected reward heuristic and the number of free resources multiplied
by the mean value of the budget for a product consisting of one resource.
Value of the tree node:

v(s) = min(AT > pri« puBi, Y i * pBp—1)
im1

All the variables are the same as in the previous heuristic, and pB,—;
is the mean for budget for a product consisting of one resource.

This heuristic does not need a hyperparameter k£ as the value from this
heuristic corresponds to the reward from selling the products.

These heuristics are less computationally demanding than the rollouts

because rollouts are traversing N, nodes where N, is a number of remaining
nodes until a node with a finite state. We expect that the more complex
heuristics yield better results because they better approximate the real value
of the state. We also expect that in MCTS with fewer iterations, these
heuristics give better results than the random rollout because they are not
based on randomness.

Il 5.1.2 Rollout Value Estimation Methods

To estimate the value of the node, we can simulate traversing the MDP until
the terminal state is reached. We take the cumulative reward obtained by
traversing the MDP and assign it to the value of the node.

® Random Rollout Heuristic: The baseline method where actions are

chosen randomly. This method is used in the base version of the UCT
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5. Implementation

because it not computationally demanding. This method ensures that
UCT coverges to the global maximum with an increasing number of
simulations because the outcome of the simulation is random.

® Informed Rollout Heuristic: Choosing the action is based on sampling
from the user budget B distribution for the product requested in the
given state. We take that value from the distribution and use that value
as an action instead of a random action.

® Cutoff Mean Heuristic: This is a method where we choose random actions
until a defined number of steps is executed. Then we count the value
as an average reward for one unit of capacity and multiply it by the
original capacity before the rollout. The formula for estimating value is
following: ]
v(s) = 21 i * C1
€1 — ¢4
Where r; is a reward obtained in step ¢ and ¢; is a number of free spaces
available in step ¢. This method can be considered as a static evaluation
method because we do not take the cumulative reward, but we replace
the cumulative reward with an approximation based on shallower rollout.

B 5.1.3 Linear Programming Heuristics

One problem with the mentioned heuristics is that they neglect the fact that
we try to find the optimal solution for setting the prices of different products,
which influences how the capacity is used. We try to estimate the upper
bound of the possible revenue by solving the linear program.

The linear program tries to maximize the reward by finding the optimal
proportion of all products based on the mean budget for the product and
expected demand. The capacity constraints the linear program. The linear
program is given as:

maximize Z By, * xp x edy
P

subject to pr « resy(i) * edp < ¢, i=1,...,|r
P

0<z,<1, p=1,...,|P

Where z, is the free variable, it gives the ratio of the appearance of the
product in the final result. For example, if the x, is 0.5, it means that we
choose the product half the times from the expected appearances of the
product. pB, is a mean for budget distribution for product p, ed, is an
expected demand for the product p, it is a sum of probabilities of arrival
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5.1. Value Estimation Methods

request, for the product p, over each timestep. In other words, it is the total
expected number of requests for product p. res,(i) is requirement of resource
r; in the product p. ¢; is a supply o resources 7;.

For solving the linear program, we use JuMP.jl [§] framework with GLPK

linear program solver.

® Linear Program Heuristic: The value of the node is estimated as the
maximized value from the linear program. We add Linear Program
Heuristic to the static evaluation heuristics
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Chapter 0

Experiments

In this chapter, we present how different heuristic methods performed for the
problem of dynamic pricing. We specify the problem settings and show the
results.

B 6.1 Problem Settings

We need to specify the instances of the problem and the parameters of the
RPSDP problem.

The following attributes define the instance: number of resources, number of
products, number of timesteps, initial capacity (supply of resources), demand
for each product at each timestep, set of actions, and user budget for all
products.

The number of resources gives the number of products because the product
consists of the adjacent resources. The number of products is a triangular
number given by N, (N, + 1)/2, where N, is a number of resources.

Demand for products is given by a categorical distribution for each timestep,
where all products have assigned their probability. We calculate these proba-
bilities from the parameter expected resources, which gives the total amount of
resources requested. From that amount, we calculate the product probabilities
(products are composed of the resources).

The user budget is a distribution from which the simulation samples the
budgets of the customers. We consider the normal distribution, where the
number of resources in the product determines the mean of the distribution.
The mean of the product’s budget distribution is simply the price of the
product with one resource multiplied by the number of resources in the

29



6. Experiments

timesteps capacity number of resources expected resources

1000 55 3 400

Table 6.1: Parameters for the bus pricing problem.

name description
col__depart departure time
col arive arrival time

col_space  current free spaces in bus

col_ price current price of the ticket
date date of bus depart
scrape_time scraping timestamp

Table 6.2: Dataset features.

product.

We set the variables to be similar to the bus line from Prague to London
with two intermediate stations, as we can see in Table |6.1.

We set the expected resources higher than the available resources because,
with higher demand than supply, the dynamic pricing can more strategize
with the price, expecting better requests in the future.

B Data

To evaluate the pricing method on a real-world dataset, we have collected
information about ticket prices and remaining free seats before the departure
of the buses.

The dataset was obtained from the Student Agency and Flixbus reservation
systems by using web scraping techniques. The dataset features are in Table
6.2

Unfortunately, after cleaning and preparing the dataset, it turned out that
there is only a very limited number of usable datapoints that could generate
only few distinct simulations runs. Evaluating stochastic methods such as
MCTS on such a small dataset would not provide convincing results as to the
effectiveness of the proposed heuristics. Therefore, instead, we have opted
to evaluate the MCTS heuristics in fully simulated experiments, where the
number of distinct simulated runs is virtually unlimited, and the statistical
significance of our results is therefore much higher. However, we have used
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number_ of iterations depth C, max time

100 00 40 1 second

Table 6.3: Used parameters for the MCTS.

the dataset to select the parameters for these simulated runs (see Table 6.1).

B 6.2 Parameters Tuning

B 6.2.1 UCT Parameters

The exploration constant in the UCT algorithm is a hyperparameter. We have
tried different exploration constants. The best results UCT with standard
rollout yielded with C), set to 40. For the static evaluation heuristics, the
differences between the performances with different ), were insignificant.

We have tried to vary the depth and number of iterations. It yielded
predictable results. For every method, the higher the depth or number of
iterations, the better the results.

When we were trying the different number of iterations and depth, the
change had a similar impact on all value estimation methods, and the explo-
ration constant was inert to the non-rollout methods. Therefore, we can fix
the hyperparameters of the UCT to the following values 6.3

We set the depth to infinity because we do not want to constrain the MCTS,
and we set the C), to 40 as the best performing value for the rollouts, and
max__time for one iteration is set to 1 second because that time is enough
even for the most complex heuristics.

B 6.2.2 Static Evaluation Heuristics Parameters

We need to set the constant for the Constant Value Heuristic and k for the
Capacity Heuristic and Time-Capacity Heuristic.

When we estimate the value of the tree node in a non-terminal, state we are
replacing the cumulative sum of rewards gained by traversing to the terminal
state by value, which might not correspond to the cumulative sum of rewards.
We tried to use different values for constant € (0.1,1, 2,5, 10, 20, 50, 100, 1000)
in the Constant Value Heuristic.
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For the very same reason, we tried different multipliers k& €
(0.01,0.1,0.2,0.5,0.75,1.25,1.5,2, 5,10, 100) for Capacity Heuristic and Time-
Capacity Heuristic. Furthermore, we tried to square and square root the
value instead of multiplying it.

As we can see in Table [6.4] the best k for Capacity heuristic was k = 2 as
well as for the Time-capacity heuristic. And the best performing constant
for the Constant Value Heuristic was 50. However, the differences between
the results were insignificant, except for the situation when the value of the
Capacity Heuristic was significantly increased. Then the method performed
poorly because the algorithm was only exploiting the best moves.

function revenue function revenue
1 f(x)=0.01xz  1359.65 1 f(x)=0.01xz  1352.90
2 f(x)=0.1%x 1358.90 2 f(x)=0.1x*x 1355.40
3 f(x)=02x%x 1355.75 3 f(x)=02x*x 1356.75
4 f(x)=0.5x*zx 1359.05 4 f(x)=05x*z 1356.90
5 f(x)=0.75%xx  1358.50 5 f(x)=0.75xx  1347.50
6 f(x)=125%z  1356.40 6 f(x)=125%xz  1345.85
7 f(x)=15xzx 1371.00 7 f(x)=15xz 1347.90
8 f(x)=2.0xz 1382.00 8 f(x)=2.0xz 1351.10
9 (x)=b.0xuz 1318.55 9 f(x)=b5.0x%z 1345.25
10 f(x)=10.0 %z 503.10 10 f(x)=10.0xz  1336.80
11 f(x)=100.0xz  465.15 11 f(x)=100.0 =z 1306.05
12 f(x)=a2 489.00 12 f(x)=a> 1333.50
13 f(x)=yx 1358.15 12 f(x)=yx 1351.05

(a) : Capacity Heuristic (b) : Time-Capacity Heuristic

constant revenue

1 01 1346.6
2 1 1341.3
3 2 1342.75
4 5 1340.45
5 10 1342.6
6 20 1346.8
7 50 1347.85
8 100 1343.9
9 1000 1334.55

(c) : Constant Heuristic

Table 6.4: Different parameters for static heuristics.
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Figure 6.1: Revenue results for static heuristics and for static heuristics combined
with the rollouts.

. 6.3 Results

We run the methods on the described problem with set hyperparameters
from the previous section. We used a machine with a processor Intel Core
i5-8250U CPU @ 1.60-3.40GHz with four cores and 8 GB of RAM. We run
the simulation 50 times for each method.

B Rollouts With Static Evaluation

Firstly, we examine whether the combination of static evaluation and rollout
is useful. We benchmark all the static evaluation heuristics against the
rollout that randomly traverses the space until the specified rollout_ depth
and evaluate the state in that depth using static evaluation heuristics. We
set rollout_ depth = 10.

We can see the results in Figure The experiment shows that for
all static evaluation heuristics, the rollout decreases the revenue, there-
fore, impairing the results. A possible explanation is that we used low
number_of_iterations. Therefore, the rollouts end up in a set of states that
do not generalize well the real state space, and it is better to generalize the
state space from the current states.
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method name mean revenle mean runtime
1 Capacity 657.900 0.442018
2 Time-Capacity 625.050 0.426530
3 Constant 620.825 0.460681
4 Linear Program 569.875 58.056911
5 Informed Rollout 542.050 14.924433
6 Minimized Expected Reward 537.450 0.594055
7 Expected Reward 519.800 0.572911
8 Random Rollout 518.550 15.220228
9 Cutoff Mean 423.350 3.371367

Table 6.5: Mean runtime for methods ordered by the revenue results.

B Results for Heuristic

Now we show how all static evaluation heuristics and rollout heuristics
performed. We exclude the combinations as the static evaluations outperform
them. For the results, see the boxplots in Figure 6.2. And for their runtime
see Table 6.5l

Surprisingly, the best performing heuristic was simple Capacity Heuristics
outperforming even the more complex static evaluation heuristic for the
same number of iterations. We also tried different problems settings with
different number of resources, timesteps and demands. And for all settings
the Capacity Heuristics remained the best performing method.

The additional information in the more complex heuristics might create
noise that does not provide information for the real value of the states.
The Linear Program Heuristics, Expected Reward Heuristic, and Minimized
Expected Reward Heuristic probably overestimate the values of the states.

The Constant Value Estimation performed well against other heuristics.
Constant value estimation reduces the MCTS because the values of the nodes
depend only on the rewards from transition within the built tree and do not
consider the simulation phase, which might mean that in our settings of the
problem, the longer horizon is not that important for the decisions.

The longer horizon might matter if we set the budgets to be increasing
over time. It would also model the real situation that the people buying the
tickets later are willing to pay more, and from the data, we know that the
bus companies using dynamic pricing are increasing the prices over time.

The static evaluation heuristics generally outperformed the rollout heuris-
tics. The reason might be that the number of iterations was low to approxi-
mate precisely the values of the states in the built tree.
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revenue

--% =

400 -

method

Figure 6.2: Revenue results for evaluation methods.

B Number of lterations

We find the Capacity Heuristic as the best method, outperforming the Random
Rollout Heuristic. It can be due to the low number of iteration. We compare
how they perform with a different number of iterations. We can see the result
in Figure 6.3,

With the higher number of iterations, the rollout heuristic is improving
more than the static evaluation method. Static evaluation yields a solid
approximation of the state value even with a small number of iterations.
The rollout needs more iterations to approximate the real value of the state
closely. With the high number of iterations, the rollout outperforms the static
evaluation, but the simulation is significantly slower.
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Figure 6.3: Revenue results for different number of iterations for Random Rollout
Heuristic and Capacity Heuristic.
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Chapter 7

Conclusion

In this thesis, we had the following main objective: Improve the methods for
solving sequential, resource-constrained dynamic pricing in mobility.

We examined the related literature in the domain of dynamic pricing. We
formally defined the problem as RCSDP and identified the MDP framework
as a well-suited tool for modeling our problem of dynamic pricing. With the
size of the problem, we identify online solvers as the more sensible method
for solving MDP. We used MCTS as a solution technique and incorporated
domain knowledge into the MCTS algorithm, specifically by substituting
random rollout by function evaluating the state or by informed rollouts. As
the main contribution of this thesis, we propose multiple value estimation
heuristics using the domain knowledge we have.

The experiments show that the less complex heuristics yield better results
than the complex heuristics. Overall the best heuristic was heuristic working
only with the remaining capacity. The other finding was that with the
increasing number of iterations of MCTS, the rollout heuristics performed
better, while the static, less complex heuristics did not record such an increase
in the performance. The takeaway is that when we have limited computational
power, it is better to use static evaluation heuristics because they perform well
even with a small number of iteration, and the heuristic is less computationally
demanding itself than the rollout.

There are many possibilities for future work. First, we can enhance the
simulation by using real-world data to better simulate the demand model.
We can enhance the model to enable the cancelations or simulate requests for
more products at one timestep.

There is also room to improve the MCTS. Other heuristics can be crafted,
for example, by classifying the states based on the results from previous
simulations. Nested Monte Carlo Tree Search might improve the results as it
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yielded good results in large MDPs.
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