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Abstract
This bachelor thesis is devoted to a brief
introduction to a coalitional game the-
ory and to present the intermediate set
as a solution lying between the core and
the Weber set. Firstly we introduce the
game theory as a mathematical science,
the aim of this thesis, and the motiva-
tion for writing it. Next, theoretical ba-
sics are explained, as well as some much-
needed terms, common solutions, and the
intermediate set is introduced. After the
theoretical part, we demonstrate the im-
plementation in MATLAB and Python,
respectively. Examples are given to clar-
ify what is the intermediate set in real
experiments. In conclusion, we compare
both implementations and summarize the
whole thesis.

Keywords: Game theory, Coalitional
game, Core, Weber set, Intermediate set

Supervisor: doc. Ing. Tomáš Kroupa,
Ph.D.
Artificial Intelligence Center,
Faculty of Electrical Engineering,
Czech Technical University in Prague,
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Czech republic

Abstrakt
Táto bakalárska práca sa venuje uvedeniu
do problematiky koaličných hier a ukazuje
medziľahlú množinu ako možné riešenie,
ležiace medzi jadrom a Webrovou mno-
žinou. Úvod predstavuje teóriu hier ako
matematickú vedu, popisuje sa tu cieľ a
motivácia k bakalárskej práci. Ďalej je
bližšie popísaná potrebná teória a pojmy
ku pochopeniu danej problematiky, ako
aj vysvetlenie riešení a uvedenie medziľah-
lej množiny. Po teoretickej časti nasleduje
implementácia v MATLABe a Pythone.
Po implementačnej časti nasledje časť ve-
novaná príkladom pre lešie predstavenie
danej témy. Záver porovnáva implementá-
cie a zhrňuje celú prácu.

Kľúčové slová: Teória hier, Koaličná
hra, Jadro, Webrova množina,
Medziľahlá množina

Preklad názvu: Výpočet medziľahlej
množiny
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Chapter 1
Introduction

Game theory is a branch of applied mathematics. It deals with mathematical
models of strategic interaction and reward distribution among players, also
called agents. Game theory has seen great progress in the last 70 years. The
first games defined were two-player games such as prisoner’s dilemma. This
game is about two prisoners cooperating with the police and testifying against
each other. It studies whether it is profitable if they are both silent or not.
They are divided and they are not informed about the decision of the other
one. It is still used today as a great example and introduction to game theory
however, we are not be discussing game theory in general.

This thesis is devoted to an introduction to coalitional game theory and
computation of intermediate set. We are studying coalitional games with
transferable utilities only. Common solutions, the core, and the Weber set,
are shown as they are needed to understand the aim of this thesis. Also,
the computation of vertices is briefly explained. Examples are provided
to show the differences between the solutions and to give a better general
understanding of the topic.

1.1 Aim of the thesis

The main aim of the theoretical part of this thesis is to show and explain a
solution to coalitional games introduced by Lukáš Adam and Tomáš Kroupa
in International Journal of Game Theory in 2017, the intermediate set [1].
Definition of a convex polytope, some basic terms and common solutions,
the core, and the Weber set is provided. The Vertex enumeration problem is
discussed. The practical part is devoted to the implementation of a solver to
the intermediate set in two programming languages, MATLAB and Python,
along with a comparison of those implementations. The experiments, or
examples in this thesis, are used to show practicality, functionality, and
differences between these programs.
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1. Introduction .....................................
1.2 Motivation

The science of game theory always intrigued me and I have always found it
interesting and practical with a wide range of usage. However, I have never
studied coalitional game theory in particular so when the occasion showed, I
thought it would be great to study a new subject and learn something I can
profit from and put to use in the future. It has great potential in economics
and many branches of informatics.
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Chapter 2
Coalitional game

A coalitional or a strategic game is cooperative if the players can make binding
agreements about the distribution of payoffs or the choice of strategies, even
if these agreements are not specified or implied by the rules of the game [2].
Coalitional game theory examines and predicts creating coalitions between
players in addition to fair, yet still efficient and rational distribution of rewards.
However, it does not address finding and making an optimal strategy for
the game itself, as it is one of the prerequisites that such strategy is already
known. Common solution concepts are the core and the Weber set. This
paper addresses these two slightly as we need them to understand the main
task given which is an introduction of an intermediate set. The intermediate
set is an interpolating solution concept between the core and the Weber
set. Both are represented by convex polyhedrons in n− 1 dimensional space,
where n is number of players. The intermediate set is a union of many convex
polyhedrons. This chapter is heavily inspired and got most of the information
about the intermediate set, the core, and the Weber set from the paper on
the intermediate set [1], and materials to multiagent systems from CTU [3]
[4].

2.1 Convex polytope

As defined in [5], a convex polytope is defined as a convex hull of finitely many
points in a Euclidean space. The convex hull of a set of points X in Euclidean
space is the smallest convex set containing X. The convex set Y is such set
that all points on the line segment joining any two points a, b ∈ Y are also in
Y . This definition also defines V-representation or vertex representation.

Another definition is using intersection of half spaces, also known as H-
representation or half-space representation. Convex polytope is an intersection
of a finite number of half-spaces. A closed half-space can be defined using
linear inequality:

a1x1 + a2x2 + . . .+ anxn ≤ b (2.1)

Furthermore, a convex polyhedron can be written as set of solutions to the

3



2. Coalitional game ...................................
system of linear inequalities:

a11x1 + a12x2 + . . . + a1nxn ≤ b1
a21x1 + a22x2 + . . . + a2nxn ≤ b2

...
...

...
...

am1x1 + am2x2 + . . . + amnxn ≤ bm

(2.2)

where m is the number of half spaces. Matrix inequality is often used:

Ax ≤ b (2.3)

where A is a m× n matrix, x is a n× 1 column vector of variables and b
is a m× 1 column vector of scalars [6].

For our needs, we add a subspace defined by a set of linear equations:

c11x1 + c12x2 + . . . + c1nxn = d1
c21x1 + c22x2 + . . . + c2nxn = d2
...

...
...

...
cm1x1 + cm2x2 + . . . + cmnxn = dm

(2.4)

Those can also be written in a matrix form:

Cx = d (2.5)

These further restrict the convex polyhedron and bound it to subspace
determined by these equations. This is used in the computation of core and
the main task at hand, which is the computation of intermediate set.

2.1.1 The Vertex enumeration problem

The key problem that we are dealing with, is finding vertex representation
from half-space representation. Straightforward solution would be:.Get set I ⊆ 1, ...,m. Choose I rows from A and solve AIx = bI and Cx = d at the same time. If only one solution x exists and Ax ≤ b still holds, than x is a vertex

The problem of this approach is that the complexity for some polyhedrons
grows exponentially in m [7].

Some algorithms solve this problem and are capable to reduce the complex-
ity quite significantly. For example:. Lexicographic reverse search [8]. Double Description Method [8]. A Pivoting Algorithm for Convex Hulls and Vertex Enumeration of

Arrangements and Polyhedra [9]
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........................... 2.2. Introduction of a coalitional game

All of the mentioned algorithms are based on the simplex method. However,
the simplex method is for solving linear programming problems and not
finding the vertices of a polyhedron. The task can be transformed into a
linear programming problem. According to [10], the algorithms use more
complex methods but one straight forward to show is:

minimize x0

subject to − x0 +
n∑
j=1

aij ≤ bi i ∈ {1, 2, ...,m}

x0 ≥ 0

(2.6)

This problem can be solved using not only the simplex method, but all
more sophisticated methods for solving linear programming deriving from the
simplex method. Since the algorithms are quite complex and it is not the
aim of this thesis to describe these algorithms, they are just mentioned but
not looked upon more closely.

2.2 Introduction of a coalitional game

As defined in [3] and [4], the player set is denoted as

N := {1, ..., n} (2.7)

where n ∈ N. A coalition is a subset A ⊆ N . The coalition in which all
players are involved is called the grand coalition and is denoted by N . The
empty coalition is labeled as ∅ and if a coalition contains only i-th player, it
is marked as {i}. The power set is the set of all coalitions

P (N) := {A|A ⊆ N} (2.8)

A coalitional game is defined as a pair (N, v) where v is a function

v : P (N)→ R (2.9)

such that v(∅) = 0. Number v(A) is called the worth of A and it can be
interpreted as a utility, or cost, associated with the formation of A. A
coalitional structure is a partition

S = {A1, ..., Ak} (2.10)

of N such that the union of all Ai is N , none of Ai is empty set and intersection
of all pairs (Ai, Aj) is empty. The total utility of S is then

V (S) =
k∑
i=1

v(Ai) (2.11)

5



2. Coalitional game ...................................
An allocation is a vector x = (x1, ..., xn) ∈ R. If x is allocated to players,

coalition A obtains

x(A) =
∑
i∈A

xi (2.12)

The solution of a game v is some set of allocations x ∈ R. It reflects various
aspects of economic rationality, fairness assumptions, or stability. Solutions
can be single-valued or multi-valued. Let Γ be the set of all coalitional games
with a fixed player set N. Solution is a mapping

σ : Γ→ P (Rn) (2.13)

where P (Rn) is the family of all subsets of Rn.

2.2.1 Properties

Again, as stated in [3], we say that a coalitional game v is.Monotone if v(A) ≤ v(B), ∀A ⊆ B. Additive if v(A ∪B) = v(A) + v(B), ∀A ∩B = ∅. Superadditive if v(A ∪B) ≥ v(A) + v(B),∀A ∩B = ∅. Supermodular if v(A ∪B) + v(A ∩B) ≥ v(A) + v(B). Simple if v(A) ∈ {0, 1} and v is monotone and v(N) = 1

An allocation x in a coalitional game v is. Efficient if x(N) = v(N). Coalitionally rational of x(A) ≥ v(A), ∀A ⊆ N. Individually rational if xi ≥ v({i}),∀i ∈ N

2.3 Common solutions of a coalitional game

There are many solutions and representations of coalitional games, in this
section we describe the core and the Weber set since we need them to introduce
the main aim of this thesis, the intermediate set.

2.3.1 The Core

A core of a coalitional game is a possible and commonly used solution concept.
It is the set of all payoff allocation vectors that are efficient and individually,
coalitionally rational. In other words, the core is a set of efficient allocations
upon which no coalition can improve [4]. It is defined as:

C(v) = {x ∈ Rn|x(N) = v(N),
x(A) ≥ v(A),∀A ⊆ N}

(2.14)

6



................................. 2.4. The Intermediate set

The core is a convex polyhedron in Rn of dimension ≤ n − 1 and has a
representation

C(v) = conv{x1, ..., xk}, (2.15)

where x1, ..., xk are the vertices of C(v). However, there is a possibility that
no such vector is found and thus the core is empty. We decide nonemptiness
using a linear program [4]:.Minimize x1 + ...+ xn. subject to

∑
i∈A xi ≥ v(A), ∀A ⊆ N

The following statements are equivalent. The optimal value is v(N). C(v) 6= ∅

2.3.2 The Weber set

Let Πn be the set of all permutations π of the player set N . Let v ∈ Γ(N)
and π ∈ Πn. A marginal vector of a game v with respect to π is the payoff
vector xv(π)(N) ∈ Rn with coordinates

xvi (π) = v

 ⋃
j≤π−1(i)

{π(j)}

− v
 ⋃
j<π−1(i)

{π(j)}

 , i ∈ N. (2.16)

The Weber set of v is the convex hull of all the marginal vectors of v,

W (v) = conv{xv(π)|π ∈ Πn}. (2.17)

Since xv(π)(N) = v(N), the Weber set is a solution on Γ(N). Moreover,
the inclusion C(v) ⊆ W (v) holds true for every v ∈ Γ(N) [1]. Downside of
the Weber set is that it contains too much information, much of it is to no
use, since it contains payoff allocations that does not really make any sense
what so ever.

2.4 The Intermediate set

Defined in [1], the intermediate set lies in between the core and the Weber set.
It is a non-convex solution containing efficient payoff vectors that depend on
some chain of coalitions and marginal coalitional contributions with respect
to the chain. It is denoted as M(v).
Let v ∈ Γ(N). Then:.M(v) 6= ∅. C(v) ⊆M(v) ⊆W (v).W (v) = conv(M(V )). v is supermodular if and only if C(v) = M(v)

7



2. Coalitional game ...................................
2.4.1 Characterization by chains

From [1], a coalitional chain is a subset

H = {A1, ..., Ak} of 2N (2.18)

such that

k ≥ 1, A1 6= ∅, Ai ⊂ Ai+1

for i = 1, ..., k − 1 and Ak = N
(2.19)

We assume A0 := ∅. Let F be the set of all coalitional chains in 2N . The
family F is associated with the following scheme of allocating payoffs x ∈ Rn
among players in a game v:. The players’ organization into chain H = {A1, ..., Ak} depends on their

position in the allocation process.. Each coalition Ai \Ai−1 can distribute the total amount

x(Ai \Ai−1) = v(Ai)− v(Ai−1) (2.20)

to its members, for all i = 1, ..., k. No coalition B ⊆ (Ai \Ai−1) can improve upon x while respecting the
order of coalitions given by H, that is

x(B) ≥ v(Ai−1 ∪B)− v(Ai−1) (2.21)

for all B ⊆ (Ai \Ai−1) and all i = 1, ..., k
For any chain, we may now define a subset

MH(v) = {x ∈ Rn|x satisfies 2.20 and 2.21} (2.22)

And for whole family F the intermediate set is defined as

M(v) =
⋃
H∈F

MH(v) (2.23)

The biggest concern is the number of families since it grows as fast as the
ordered Bell number [11]. For example, there are 57 003 chains in the family
for a ten-player game. For every one of these chains we need to compute the
polyhedron that it represents and as stated before, this is not an easy task
either. Table for the first five ordered Bell numbers:

Number of players Number of chains
1 1
2 3
3 13
4 51
5 181

Table 2.1: Ordered Bell number

8



...................................... 2.5. Example

2.5 Example

To show what all of this means, the glove game from [1] is used as an example.
Glove game is a type of coalitional game where the aim is to have a pair of
gloves. Some players have only left glove, some players have only right glove.
A coalition is needed to have a pair. Our example is simple, containing only
three players, so the player set is

N = {1, 2, 3} (2.24)

Player 1 owns a single left glove, while the remaining players, 2 and 3, owns
a single right glove each. The profit of a coalition A ⊆ N is the number of
glove pairs the coalition owns. In this particular example, the reward function
is

v(a) =
{

1 if A ∈ {{1, 2}, {1, 3}, N}
0 otherwise

(2.25)

First, let’s compute the Weber set. It describes every possible distribution
of the reward, in this case it is a triangle with vertices (1, 0, 0), (0, 1, 0)
and (0, 0, 1).

W (v) = conv{(1, 0, 0), (0, 1, 0), (0, 0, 1)} (2.26)

The visual representation:

Figure 2.1: Weber set, glove game

9



2. Coalitional game ...................................
The core in this particular game is a single point.

C(v) = {(1, 0, 0)} (2.27)

All the reward goes to player 1, as can be seen. This is because there is
a surplus of right-hand gloves on the market, so players 2 and 3 take any
arbitrary low payoff, zero. Obviously, they get an equal reward since they
both have only the right-hand glove, and if they did not get zero, one would
be paid for not contributing at all. Because of that, the first player would be
losing his reward. The core maximizes and rationally distributes the reward,
so the most stable solution for the grand coalition is that the first player gets
all the reward.

The intermediate set is composed of two lines, one connecting (1, 0, 0)
and (0, 1, 0), other connecting (1, 0, 0) and (0, 0, 1). It represents reward
distribution in 2 player coalition, since there is no surplus of anything in this
coalition so the reward between the 2 player can be anything from 0 to 1. It
is up to external factors like strategies or prices.

M(v) = conv{(1, 0, 0), (0, 1, 0)} ∪ conv{(1, 0, 0), (0, 0, 1)} (2.28)

The visual representation:

Figure 2.2: The intermediate set, glove game

10



Chapter 3
Implementation

In this chapter, the implementations in MATLAB and Python are presented
and compared. The basic idea behind the computation itself is the same,
although they differ in game representations and in the construction of chains,
families, inequalities, and equations.

3.1 Game representation

In MATLAB, games are represented by a specially ordered vector, in Python,
a dictionary is used.

3.1.1 MATLAB

Every coalitional game is represented by a vector of rewards for all coalitions
v. These coalitions are represented by bit stream. The streams are ordered
in lexicographical order using matrix, for example:

player 1 player 2 player 3
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

(3.1)

Where 1 means a player is present and 0 absent from the coalition. In
other words, every row represents a coalition, so each number in the vector
v represents a reward for that coalition in that row. It is implemented as a
recursive function that builds the matrix from the most upper right corner.
From there it is built by doubling itself down and adding a new column to
the left. Pseudocode:

generate_bin_matrix(n):
if n == 1 :

A = [0; 1];

11



3. Implementation....................................
else:

rest = generate_bin_matrix(n - 1);
rest = [rest; rest];
#append last under itself
current_c_0 = zeros(1, 2^(n - 1));
#column of 0
current_c_1 = ones(1, 2^(n - 1));
#column of 1
current_c = [current_c_0 current_c_1];
#join them
current_c = transpose(current_c);

return [current_c rest]; #join it all

3.1.2 Python

In Python, coalitional games are represented as dictionaries. It is more
practical and more natural. The downside is that it takes more work for
complex games to write a whole dictionary rather than a simple vector. The
key is a tuple representing a coalition, and a value is a reward for that
particular coalition. Coalitions not present in the keys are rewarded with a
reward equal to 0. As an example, the glove game is used, the same one that
was used before. For this game it would look like this:

coalition reward
(0, 1) 1
(0, 2) 1

(0, 1, 2) 1

(3.2)

Since this is Python, players are indexed from 0, not 1. This representation
is way more practical for games with fewer players and primarily for games
where a lot of coalitions are rewarded with 0.

3.2 Generating family

As stated, we use representation by chains to compute the intermediate set
of a coalitional game. We need to generate all of those chains H and thus get
the family F . As previously shown, the number of these chains grows quite
rapidly.

3.2.1 MATLAB

In MATLAB implementation of getting a family for a game is divided into
multiple helper functions. The first one is finding all the coalitions, including
given active players. In other words, find all supersets that include a given
subset of players. Pseudocode:

12



.................................. 3.2. Generating family

find_coalitions(matrix, vector)
positive = all((matrix - ones(size(matrix, 1), 1)* vector)>=0, 2)
# from every row the vector is substracted and all rows that
# still have all positive or equal to zero are selected
return matrix(positive, :)

If we found all coalitions B such that A ⊆ B, ∀A, we can generate all chains
and join them to make family F . Pseudocode:

gen_family(acc_cur, bin_matrix, current):
if sum(current) > 0:

acc_cur = [acc_cur; current]

next_matrix = find_coalitions(bin_matrix, current)
cell = {}
if size(next_matrix, 1) == 1:

cell{end + 1} = acc_cur
else:

next_matrix = next_matrix(2 : end, :)
for i = 1 : size(next_matrix, 1):

cell = [cell gen_family(acc_cur, next_matrix, next_matrix(i, :))]
#recursively add rest of the chains to the family

return cell

Now the final initialization function get_family is called. Pseudocode:

get_family(n):
bin_matrix = generate_bin_matrix(n)
init = bin_matrix(1, :)
return gen_family([], bin_matrix, init)

We initialize the process with a vector of zeros since all coalitions are a
superset to this one, where no player is active.

3.2.2 Python

In Python, helper functions are also needed. First one generates all possible
coalitions from player power set N , for 3 players it is (0, 1, 2), except for
the power set itself, that would be counterproductive later. For this, library
itertools was used, combinations and chain. The pseudocode is not needed
since it is just a call of chain and combinations.

Next, a filter function is needed to find all supersets of a given subset
of players. In Python, since the game is represented by a dictionary, this
function is different than in MATLAB implementation. Pseudocode:

filter_func(curr, N):
ret = []
for coalition in N:
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3. Implementation....................................
check = True
if len(curr) >= len(coalition):

continue
#only longer coalition can
#be superset of current one

for num in curr:
if num not in coalition:

check = False
#check if coalition that is being
#looked upon contains current one

if check:
ret.append([coalition])

return ret

With the filter function, all chains containing a specific coalition may be
generated:

get_chains(chain_curr, curr, N):
acc = []
containing = filter_func(curr, N)
#find all coalitions containing current one
for new in containing:

chain_new = chain_curr.copy()
chain_new.extend(new)
#add coalition to chain
acc.append(chain_new)
acc.extend(get_chains(chain_new, new, N))
#append to accumulator and get rest of the chains
#that extend this one

return acc

This way, the order of coalition in a chain is maintained according to
a definition. Using all helper functions mentioned above, a family can be
generated:

get_family(N):
coals = coalitions(N)
ret = []
for coal in coals:

ret.append([coal])
ret.extend(get_chains([coal], coal, coals))

for sub_chain in ret:
sub_chain.append(N)

ret.append([N])

return ret
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.................................. 3.3. Calculating subset

3.3 Calculating subset

For constructing the whole intermediate set M we need subsets MH . The
basic idea is to build the inequalities and the equations according to the
condition stated above. This problem is approached slightly differently in
MATLAB and Python implementation. After the mentioned inequalities and
equations are built, they are passed to libraries used to calculate the vertex
representation of the polyhedron for the particular chain.

3.3.1 MATLAB

The computation was done using polyhedron from MPT 3.0 library [12]. Some
of the helper functions shown above are used, mainly to find all coalitions
B according to 2.21 and after that create the inequalities and equations,
respectively. Pseudocode:

get_subset(b, n, chain):
bin_matrix = generate_bin_matrix(n)
bin_matrix = bin_matrix(2 : end, :)
# trimming first row of zeros
Ae = []
be = []

for i = 1:size(chain, 1):
#Inequalities

vector = chain(i, :)
value = b(ismember(bin_matrix, chain(i, :),’rows’))
if i ~= 1:
#first one is handled slightly differently,
#since there is no coalition on i-1 position

vector = vector - chain(i - 1, :)
value = value - b(ismember(bin_matrix, chain(i - 1, :),’rows’))

Ae = [Ae; vector]
#append left side
be = [be; value]
#append right side

A = []
b_ = []
for i = 1:size(chain, 1):
#Equations

vector = chain(i, :)
if i ~= 1:

vector = vector - chain(i - 1, :)
n_active = sum(vector)
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3. Implementation....................................
bin_help = generate_bin_matrix(n_active)
bin_help = bin_help(2:end, :)
coalitions = zeros(size(bin_help, 1), n)
indexes = find(vector)
for j = 1:n_active:

coalitions(:, indexes(j)) = bin_help(:, j)
b_i = []
for j = 1:size(coalitions, 1):

temp_idx = coalitions(j, :)
v2 = 0
if i ~= 1:
#again, first one is handled slightly differently

temp_idx = temp_idx + chain(i - 1, :)
index_2 = ismember(bin_matrix, chain(i - 1, :),’rows’)
v2 = b(index_2, :)

index_1 = ismember(bin_matrix, temp_idx,’rows’)
v1 = b(index_1, :)
b_i = [b_i; v1 - v2]

A = [A; coalitions]
#append left side
b_ = [b_; b_i]
#append right side

P = Polyhedron(’A’, -A, ’b’, -b_, ’Ae’, Ae, ’be’, be)
#polyhedron that represent intermediate subset
P.minHRep()
P.irredundantHRep
#getting rid of redundancies
P.computeVRep
#computation of vertex representation

return P

This returns polyhedron with vertex representation calculated that repre-
sents the chain in the intermediate set.

3.3.2 Python

Since the game was represented by a dictionary, it needs to be converted into
inequalities and equations. After that, matrices for both are completed and
can be computed. For matrix manipulation library numpy [13] was used and
for calculation of vertex representation library cdd [14] was used. According
to the documentation of cdd, the inequalities needs to be shaped like

Ax ≤ b (3.3)

and that differs from [?], so the inequalities are needed to be multiplied by
−1. After that, these are then shaped into matrix form, again according to
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the documentation:

[b −A] (3.4)

or rather in our case

[−b A] (3.5)

The code is not provided since the idea is the same as in MATLAB. The
main difference here is just the creation of the matrices from dictionaries.
That is achieved mainly using tools provided by numpy. Then those matrices
are converted to cdd matrix, and inequalities are marked with linear attribute
set to false, and equations have set this attribute to true. After that, this
matrix is used to create cdd polyhedron object, and vertex representation is
computed by this object.

3.4 Intermediate set

Finally, the computation of intermediate subsets is called iteratively for every
chain. Results are stored in an array and returned. In MATLAB, they are
united in a polyhedron union. In Python there are no such options, so the
intermediate set is returned as an array of polyhedrons.
MATLAB pseudocode:

get_intermediate_set(n, b):
F = get_family(n)
for i = 1:size(F, 2):

P(i) = get_subset(b, n, cell2mat(F(i)))
# for every coaliton generate chain and intermediate subset
# core is an intermediate subset for chain containing only N

return PolyUnion(P)
# finally join them into one object and return

As said, the idea behind Python implementation is the same, so there is no
need to mention the same code in Python.

17



18



Chapter 4
Examples

In this chapter, more examples are shown to understand better what the
intermediate is, how many polyhedrons it can contain, that it indeed is not a
convex object and how it differs from the core and the Weber set. Examples
four through six solve calculating extreme rays over four variables. A minimal
integer representative for each of the equivalence classes is provided. No visual
representation is provided here since these games are four-player, so the space
where the polyhedron occurs is four-dimensional, which is quite challenging to
visualize. Those three examples show that even for unbounded polyhedrons,
the intermediate set can be computed. The last example is a ten-player game.
The reason is purely to show the difference between implementations and to
show how big the solution can be.

4.1 Example 1

Consider a game, majority voting from [4], with a player set

N = {1, 2, 3} (4.1)

As the name suggests, it is a game with a reward of either 1, the voting
passed, the majority of players agreed, or 0, not enough player agreed so the
voting did not pass. So the reward function is

v(a) =
{

1 if |A| ≥ 2
0 otherwise

(4.2)

The Weber set is the same as in the glove game since as the convex cover
of intermediate set does not change.

W (v) = conv{(1, 0, 0), (0, 1, 0), (0, 0, 1)} (4.3)
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4. Examples ......................................

Figure 4.1: Weber set, example 1

The core is empty in this case. It is due to the redundancy of one in the
coalition N . In the glove game, player 1 was more important because it held
the left glove, the only left glove in the game. However, here all players are
equal, so they cannot get all one third, because one is still redundant. But
than there is no one to get a lower reward, since, as said, they are all equal
so their reward should be equal. This problem has no rational, stable, and
fair solution. So the core is

C(v) = ∅ (4.4)

The intermediate set, despite the core being smaller, is larger. It is extend
by a line connecting (0, 1, 0) and (0, 0, 1). The point still stands from the
glove game, and just all three two-player coalitions now hold the reward of 1,
not just two as it was in the previous example.

M(v) =conv{(1, 0, 0), (0, 1, 0)}∪
conv{(1, 0, 0), (0, 0, 1)}∪
conv{(0, 1, 0), (0, 0, 1)}

(4.5)
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Figure 4.2: The intermediate set, example 1

4.2 Example 2

In this example, the reward is based on how many players are in a coalition.
If a player is alone, his reward is zero. For two players, two points, and for
three players, three points. The reward function [1]:

v(a) =


2 if |A| ≥ 2
3 if |A| ≥ 3
0 otherwise

(4.6)

The Weber set is a hexagon. Its vertices lie in all permutations of the
payoff vector (0, 1, 2).

W (v) = conv{(2, 1, 0), (1, 2, 0), (0, 2, 1),
(0, 1, 2), (1, 0, 2), (2, 0, 1)}

(4.7)
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Figure 4.3: The Weber set, example 2

The core is a single point, and it lies in the middle of the hexagon, the
Weber set. It also is crossing of all lines from the intermediate set, as it is
shown after the core.

C(v) = (1, 1, 1) (4.8)
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Figure 4.4: The core set, example 2

The intermediate set is composed of all lines connecting opposite vertices
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of the Weber set. We obtain that Mi,N (v) = ∅ for every chain {i,N}.

M(v) =conv{(2, 1, 0), (1, 2, 0)}∪
conv{(0, 2, 1), (0, 1, 2), }∪
conv{(1, 0, 2), (2, 0, 1)}

(4.9)

Figure 4.5: The intermediate set, example 2

4.3 Example 3

This game is similar to the previous one. The only change is that for coalitions
with size two, the reward is downgraded to only a point [4].

v(a) =


1 if |A| ≥ 2
3 if |A| ≥ 3
0 otherwise

(4.10)

However, a slight change like this can have a massive impact on the
intermediate set and the core. Since it is not profitable for a two-player
coalition anymore and the most reasonable solution is always the grand
coalition (1, 2, 3). This results in the Weber set, the core and the intermediate
set being identical.

W (v) = C(v) = M(v) =
conv{(2, 1, 0), (1, 2, 0), (0, 2, 1),

(0, 1, 2), (1, 0, 2), (2, 0, 1)}
(4.11)

23



4. Examples ......................................

Figure 4.6: The Weber set, the core and the intermediate set, example 3

4.4 Example 4

This game has the reward function according to this graph:
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0
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Figure 4.7: Example 4

Where the upper part of the node is the reward and the lower part is the
coalition.

The family consists of 51 chains, so the intermediate set is composed by
51 polyhedrons, or less, since some of the subsets may be empty. The final
union:

M(v) =conv{(1, 1, 0, 0), (0, 1, 1, 0), (1, 0, 1, 0), (2, 0, 0, 0), (1, 0, 0, 1)}∪
conv{(1, 0, 0, 1), (1, 0, 1, 0), (0, 1, 1, 0), (0, 1, 0, 1)}∪
conv{(1, 0, 0, 1), (1, 1, 0, 0), (0, 1, 1, 0), (0, 0, 1, 1)}

(4.12)
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4.5 Example 5

The reward function represented by graph:
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Figure 4.8: Example 5

By adding more rewards, more coalitions are more likely to be rational, so
the intermediate set grows significantly.

M(v) = conv{(1, 1, 2, 0), (0, 2, 1, 1), (2, 0, 1, 1), (2, 1, 0, 1),
(1, 2, 0, 1), (3, 1, 0, 0), (1, 3, 0, 1)}∪

conv{(2, 0, 1, 1), (2, 0, 2, 0), (0, 2, 2, 0), (0, 2, 1, 1)}∪
conv{(1, 2, 0, 1), (1, 3, 0, 0), (0, 3, 1, 0), (0, 2, 1, 1)}∪
conv{(1, 1, 2, 0), (1, 3, 0, 0), (0, 3, 0, 1), (0, 1, 2, 1)}∪
conv{(1, 1, 2, 0), (1, 3, 0, 0), (0, 3, 0, 1), (0, 1, 2, 1)}∪
conv{(2, 1, 0, 1), (3, 1, 0, 0), (3, 0, 1, 0), (2, 0, 1, 1)}∪
conv{(1, 1, 2, 0), (3, 1, 0, 0), (3, 0, 0, 1), (1, 0, 2, 1)}∪
conv{(0, 3, 1, 0), (0, 2, 1, 1)}∪
conv{(0, 3, 0, 1), (0, 1, 2, 1)}∪
conv{(1, 1, 2, 0), (0, 1, 2, 1)}

(4.13)

As can be seen, even after the reduction of redundant points and polyhe-
drons, the result is still a union of 10 polyhedrons. The rest of the polyhedrons
belonging to the rest of the chains are contained in those ten.

4.6 Example 6

The last of the examples on extreme rays. Again, represented by a graph.
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Figure 4.9: Example 6
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4. Examples ......................................
This intermediate set, after the union, is made of twelve different polyhe-

drons. The solution is quite long and just from written vectors, quite hard to
imagine. Because of this, I do not see it as necessary to provide a solution. All
the examples above were computed by both implementations. Both handled
it and managed to produce the solution. Generally, the implementation in
Python was faster than the implementation in MATLAB.

4.7 Example 7

As mentioned in the introduction to this chapter, this is the last example, a
ten-player game. This game is in [15], example XI.4, page 253. The game
is represented in ten-dimensional space, the computation is quite difficult.
Implementation in MATLAB could not finish this computation and produce
a result even after significant time given, about two hours. MATLAB used
all of the sixteen Gigabytes of RAM and stalled after that. Implementation
in Python handled it in about two to five minutes, depends on processes in
the background. Comparison is discussed further in the final chapter. The
reward function was:

v(N) = 5,
v({1, 3, 5, 7, 9}) = 4,
v({3, 5, 7, 9}) = v({1, 5, 7, 9}) = v({1, 3, 7, 9}) = 3,
v({3.5.7}) = v({1, 5, 7}) = v({1, 3, 7}) = 2,
v({3, 5, 9}) = v({1, 5, 9}) = v({1, 3, 9}) = 2,
v({1, 2}) = v({3, 4}) = v({5, 6}) = 1,
v({7, 8}) = v({9, 10}) = 1,

otherwise v = 0

(4.14)

The family consists of 57 003 chains. For every one of these chains, a
polyhedron had to be computed. After union and reduction of redundant
polyhedrons, the intermediate set consists of eight hundred sixty two unique
polyhedrons. Polyhedron with highest dimensionality, which is by definition
n− 1, in this case 9, is a convex cover of two hundred points.
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Chapter 5
Conclusion

In the last chapter a comparison between MATLAB and Python implementa-
tions form my point of view are given. The time required and difficulties i
had with the implementation itself is analyzed, as well as time and efficiency
of the computation. Lastly, the whole thesis is summed up.

5.1 Comparison

To begin with, I would like to say that I have much more experience with
Python than I have with MATLAB, so this can influence my opinion and my
views. I started with MATLAB, and I designed the matrices here. The most
significant trouble was to design a way to represent the reward function since
MATLAB does not have dictionaries, or at least I am not aware of such a thing.
As mentioned before, I chose to represent it as a vector, lexicographically
ordered by a binary matrix. Next, I had to find a way to find and select
certain coalitions from this matrix to form chains, so I had to implement
the find function. All these problems were much simpler in Python since in
itself, Python has many handy tools to work with dictionaries and arrays. If
such function was not in default Python, it was found in library numpy or
implemented using said library. Thus the preparation for the computation
itself was more straightforward in Python.

In the computation, I had to build matrices with inequalities and equations.
This was again simpler in Python. Also, since I was building them row by row,
it was more efficient in Python because MATLAB does not cope well with
appending a row to matrix every iteration, it is not memory efficient. This
may have been caused by my inexperience, and it might be solved quite easily
however, as I said, I am not that experienced. Using Python and numpy,
building the matrices was not hard. Just a few simple tricks were more than
enough to form them:

for i in range(len(chain)):
coal = chain[i]
value = game[coal] if coal in game else 0
if i > 0:

coal = list(set(coal).difference(set(chain[i - 1])))
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5. Conclusion......................................
if chain[i - 1] in game:

value = value - game[chain[i - 1]]
ae_row = np.zeros(len(N) + 1)
ae_row[np.array(coal) + 1] = 1
#"activate" all players in coalition
ae_row[0] = -value
#give reward to coalition
#Matrix in specific for to use with cdd
Ae.append(ae_row)

This is a short example of how the equation part was done in Python. To
me, it was more natural and intuitive.

The computation itself was faster in Python, and it used less RAM memory
in the process. From all the experiments done, the most demanding was
the ten-player game mentioned in examples, and, as said, implementation in
Python handled it in about two to five minutes. For MATLAB, the 16GB
of RAM memory in my computer was not sufficient, so this implementa-
tion did not produce any result. However, MATLAB handled the rest of
the experiments well, although it was slightly slower than Python. Both
implementations produced the same results in terms of correctness.

5.2 Conclusion

The coalitional game theory examines and predicts the formation of coalitions
between players and splitting payoffs between them. Common solution
concepts are the core and the Weber set. We introduced the intermediate
set as a solution lying somewhere in between them. The intermediate set is
always nonempty, unlike the core, so it brings at least some information. On
the other hand, unlike the Weber set, it is not unnecessarily large. It is a
core-like solution but not for only grand coalition N , but also for the whole
family of chains F . The intermediate set is generally not a convex polyhedron,
unlike the core and the Weber set. It is a union of convex polyhedrons
computed for every chain, which, as stated, makes the computation quite
costly. Implementation of the computation of the intermediate set has been
made using MATLAB with the use of library MPT 3.0 and Python with the
help of libraries numpy and cdd. The latter was used for the computation
itself. In the thesis, the pseudocode has been demonstrated. For future work,
both implementations can be optimized, especially the one using MATLAB.
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