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Abstract
A topology optimization technique based
on a mesh element perturbation scheme
is proposed within method-of-moments
formalism. The procedure is based on
an inversion-free evaluation of topological
sensitivities, constituting a gradient-based
local step that is iteratively restarted by
the genetic algorithm. The developed al-
gorithm is compared to the existing algo-
rithm, implemented in Antenna Toolbox
for MATLAB, based on a single basis func-
tion removal. The method’s validity and
effectiveness are demonstrated in a vari-
ety of examples. The developed method
is also compared to the known realiza-
tions based on the adjoint formulation of
topology optimization. The viability of
the proposed optimization procedure is
also demonstrated by manufacturing two
obtained designs.

Keywords: Antenna synthesis,
Sherman-Morrison-Woodbury identity,
topology sensitivity.

Supervisor: doc. Ing. Miloslav Čapek,
Ph.D.

Abstrakt
V rámci formalismu metody momentů je
navržena technika topologické optimali-
zace s blokovým poruchovým schématem.
Procedura je založena na vyhodnocení to-
pologické citlivosti bez nutnosti opako-
vané maticové inverze. Lokální krok je
iterativně restartován genetickým optima-
lizátorem. Vyvinutý algoritmus je porov-
nán s již existujícím algoritmem, imple-
mentovaným v anténním toolboxu AToM
vyvíjeném v postředí MATLAB, založe-
ným na strukturální modifikaci na úrovni
bázových funkcí. Vlastnosti metody jsou
ověřeny v sérii příkladů s důrazem na re-
alizované hodnoty fyzikálních kvantit a
výpočetní náročnost. Metoda je rovněž
porovnána se známými realizacemi zalo-
ženými na adjoint formulaci topologické
optimalizace. Funkčnost navrženého op-
timalizačního postupu je rovněž demon-
strována výrobou dvou získaných návrhů.

Klíčová slova: Syntéza antén,
Sherman-Morrison-Woodbury identita,
topologická citlivost.

Překlad názvu: Tvarová syntéza
založená na perturbaci přesných modelů
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Chapter 1
Introduction

Wireless communication systems have become inseparable parts of our every-
day life. One cannot simply imagine living without wireless devices such as
smartphones, which worldwide quantity is immense and is inevitably growing.
According to Cisco forecast [1], the ever-changing mix and growth of wireless
devices that are accessing mobile networks worldwide are among the primary
contributors to global mobile data traffic growth. Globally, mobile devices
are predicted to reach 12.3 billion by 2022. The number of devices is closely
interrelated with the mobile data traffic, which is expected to grow to 77
exabytes (1018 bytes) per month by 2022, a seven-fold increase as compared
to 2017, see figure 1.1. Evolution towards more ingenious devices inevitably
leads to more restrictive demands, which require optimized communication
devices with a primal focus on high data rate, small size, and power efficiency.
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(a) : Global mobile data traffic growth. (b) : Global mobile devices growth.

Figure 1.1: Cisco’s annual internet report predicts the assessment of digital
transformation across various business segments. The left and the right figure
presents the overall growth rate of mobile data traffic per month and the total
number of mobile devices, respectively (data taken from [1]). We define smart
devices as those having advanced computing and multimedia capabilities with a
minimum of 3G connectivity.

Antennas are inevitable parts of every wireless communication systems,
e.g., smartphones, radio frequency identification tags (RFID) or navigation
systems (GPS). They must comply with prescribed performance require-

1



1. Introduction .....................................
ments, e.g., low return loss, wide bandwidth and good antenna gain. With
the increasing number of communication channels, there is a growing demand
for designing compact antennas in mobile communication. However, the
antennas’ performance is affected by miniaturization, and many of the exist-
ing requirements are then beyond the reach of empirical design procedures.
Therefore, achieving miniaturization with satisfactory antenna performance
is a challenging task. These demands force antenna designers to look for
unconventional designs, often found via numerical optimization.

The design of an electromagnetic radiator is a difficult problem, often
composed of two steps: synthesis and analysis [2], see figure 1.2 for an
illustration.

An electromagnetic analysis specifies the geometrical shape, including
material distribution and feeding position, then determines an unknown state
variable that fully describes the state of a structure, e.g., current density or
electric field. The state variable is further used to evaluate the performance
metrics. A skilled engineer often knows how to design a shape of a radiator
and its material distribution to fulfil performance requirements due to his
previous experience with similar antennas. If the conditions are not satisfied,
he somehow modifies the geometry and analyzes it once again. Hence, the
classical antenna design is an iterative and time-consuming process that
handicaps unskilled designers. Nevertheless, the analysis has already been
mastered thanks to modern computational methods [3], and many advanced
electromagnetic simulators exist, e.g., FEKO [4] or CST Studio Suite [5].

Analysis

Synthesis

Structure Performance

2 2.2 2.4

0

−15

−25

f [GHz]

|S
1
1
|[
d
B
]

Dmax = 3.2 dBi

V SWR < 2

Figure 1.2: A comparison of antenna analysis and synthesis. The most important
difference between the two is the non-uniqueness and NP-hardness [6] of the
synthesis problem.

An antenna synthesis attempts to find the optimal geometrical shape of
the radiator, material distribution and feeding network for given performance
requirements. Despite a considerable theoretical development in computer
science [7] and optimization theory [8], the problem of synthesis is far from
being mastered. Theoretically, the main problem is an infinite number of
degrees of freedom since the performance requirement may be accomplished
by almost any shape. The problem of antenna synthesis is recognized as
non-polynomial in time (NP) [6], and the underlying solution algorithms
suffer from the curse of dimensionality [9].

In the current state of the art, the most successful treatments of the syn-

2



......................................1. Introduction
thesis problem are parametric sweeps, surrogate-based optimization [10], topol-
ogy optimization [11] and shape optimization based on exact re-analysis [12].
In fact, these approaches employ a repetitive analysis and are typically
connected to heuristic optimization algorithms [13].

This thesis is highly motivated by a topology sensitivity algorithm based
on exact re-analysis [12] and its fundamental interpretation issue: removal of
a single edge does not have a simple geometrical interpretation. Therefore,
this thesis aims to develop a similar algorithm within method of moments
paradigm [14] with a block perturbation scheme, since a removal of a block,
e.g., discretization element, is easily interpreted in terms of geometrical
modification. Functionality and feasibility of developed procedures in the
field of antenna synthesis are demonstrated in several examples.

3
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Chapter 2
Antenna design

This chapter briefly introduces analysis and synthesis techniques and presents
their interconnection. Afterwards, the solution methods for handling devel-
oped optimization tasks and the most successful treatments of the synthesis
problem are presented in subsequent sections.

Let the antenna analysis be denoted as a process A, which is an insep-
arable part of the antenna design task and may be formulated as follows:
An incident field Ei excites an electromagnetic structure with a fixed shape
and material distribution Ω, and the goal is to evaluate electromagnetic or
geometric performance metrics p

A
{
Ω,Ei

}
=

 p1
...
pN

 , (2.1)

where N is the total number of metrics to be evaluated. Process of analysis A
must necessarily contain a governing equation, a mathematical prescription
of the physical behavior of the system, in the form of integro-differential
equations stemming from Maxwell’s equations.

Simple geometries may be solved by analytical methods [3], but arbitrary
shaped bodies are solved by computational methods by introducing dis-
cretization to the problem. Finite difference methods, e.g., Finite-Difference
Time-Domain method (FDTD) [15], employs the spatial domain and time
interval discretization, and the solution value is determined at these discrete
points by solving algebraic equations containing finite differences. However,
variational methods [3], used in this thesis, leads to a system of linear equa-
tions by expanding the state variable into a set of basis functions, which
accurately model the unknown field distribution and offers flexibility in de-
scribing complex shapes. This is the main idea behind finite element method
(FEM) [16] and method of moments (MoM) [14], two leading schemes in
computational electromagnetics of time-harmonic fields1.

The synthesis task is formulated as an inverse to the analysis

{Ω,Ei} = A−1p = Spuser, (2.2)

1MoM was also employed on EFIE in time-domain [17].

5



2. Antenna design....................................
where solution {Ω,Ei} is non-unique. Figure 2.1 illustrates both the analysis
and the synthesis tasks. Formula (2.2) readily shows that antenna synthesis S
combines two closely interconnected objectives:. Feeding synthesis: Determine the optimal position, shape, amplitude

and phase of the feeder(s) for a fixed antenna geometry Ω to satisfy the
performance requirement on metrics p.. Shape synthesis: Determine the optimal antenna shape with optimal
material distribution for a fixed feeding to satisfy the performance re-
quirement on metrics p. This thesis focuses solely on shape synthesis
objective, assuming a predetermined shape of the feeding region and its
position.

Ei

Ω

?

p

A{Ω,Ei}

A−1p = Spuser

Figure 2.1: Comparison of analysis and synthesis represented as operators A
and S, respectively. Electromagnetic performance p is evaluated for fixed ge-
ometry Ω and incident field Ei (A step). A geometry and feeding should be
determined for the user-defined electromagnetic performance puser (S step).

Formally, shape synthesis task with the assumption of fixed feeding
region can be formulated as:

find the structure to satisfy: min p or pn < cn, n = {1, ..., N},
s.t. Maxwell’s equations hold, (2.3)

Design constraints hold,

where min p is simultaneous minimization of individual metrics. Another
approach is a minimization of weighted sum of all metrics [18]. In general,
there can be several requirements to the performance metrics p, which leads
to multi-criteria optimization. Moreover, the constraints dictate the physical
validness of the resulting design and compliance with given geometrical
restrictions.

Throughout this thesis, Maxwell’s equations are represented by electric
field integral equation (EFIE) [19]

Ei = L (J) , (2.4)

6



.................................... 2. Antenna design

where J is an equivalent current density representing the response of the
material distribution [20, Chap. 3] and Ei represents the incident electric
field. For the problems treated in this thesis, which only contain dielectric
materials and perfect electric conductors, we will specifically use electric field
integral equation [21], see appendix B for details,

Ei (r) = ρ (r)J (r) + jωµ
∫
Ω′

G
(
r, r′) · J (r′) dr′, (2.5)

where ρ (r) is space-dependent complex resistivity, which typically refers to a
volumetric current distribution, while for surface distribution is the resistivity
substituted by a surface impedance [22]

ρ (r)→ 1
jωε0χ (r) in Volume EFIE (2.6)

ρ (r)→ Zs (r) in Surface EFIE (2.7)

and G (r, r′) is dyadic Green’s function [23]

G
(
r, r′) =

[
I + 1

k2∇∇
] e−jk|r−r′|

4π|r − r′|
, (2.8)

with k = ω
√
µε denoting wave-number and I denoting the unit dyad. Fur-

thermore, the arbitrary antenna metric p is evaluated from source current
as

p = f
(
J
(
r′)) , r′ ∈ Ω, (2.9)

where f denotes arbitrary functional.
In order to solve operator equation (2.4), MoM with basis functions

{ψn(r)}, see appendix C for details, is used to recast (2.4) into a linear
equation system

V = (ZG + Ψ(ρ)) I = ZI, (2.10)

where the vector V ∈ CN×1 represents excitation, ZG ∈ CN×N is the
impedance matrix characterizing the system, and Ψ is basis function Gram
matrix [24]. They are defined element-wise as

Vm =
∫
Ω

ψm(r) ·Ei (r) dr (2.11)

Zmn,G = jωµ
∫
Ω

∫
Ω′

ψm(r) ·G
(
r, r′) ·ψn (r′) dr′ dr (2.12)

Ψmn(ρ) =
∫
Ω

ψm(r) · ρ(r)ψn(r) dr. (2.13)

Moreover, impedance matrix Z can be rewritten as

Z = R + Ψ(ρ) + jX, (2.14)

where R is radiation resistance and X is reactance matrix. System (2.10)
allows direct matrix inversion of the impedance matrix to acquire solution.

7



2. Antenna design....................................
Consequently, within MoM paradigm, all analytical formulas are ex-

pressed in algebraic forms [14], e.g., consider an antenna metric quadratically-
dependent on current and physical operator L which is represented in the
basis {ψn(r)} as

p ≈ IHLI, L = [Lmn] , Lmn =
∫
Ω

ψm · L(ψn) dr. (2.15)

The synthesis task within MoM paradigm is expressed as a general
optimization problem. The geometry of the structure is described by the set
of N design variables {xi} and the performance metric p is evaluated from
the current vector I. Optimization task reads: find the particular values of
design variables (describing shape or topology) that minimize the antenna
performance metric p with the fixed feeding vector V and the set of the
inequality and equality design constraints

min
xi

p(xi, I)

s.t. ci(xi, I) < 0
cj(xi, I) = 0 (2.16)
xl < xij < xu, j = {1, ..., N}
I(xi) = Z−1(xi)V.

The set of design constraints is introduced to ensure the physical validity of
the optimized problem, such as passivity and limit the optimized region’s
extent.

Subsequent section 2.1 presents solution methods that can be employed
on the optimization task (2.16). Solution methods can be combined with dif-
ferent parametrizations and formulations of the problem, which are described
in section 2.2.

2.1 Solution methods

Consider the naive implementation of the synthesis task, e.g., an exhaustive
search [25], in which design variables are repetitively varied, and a full-wave
electromagnetic simulator evaluates the antenna metric for every parameter
step. The computational burden of this approach scales exponentially with
the number of design parameters, and it is convenient and inevitable to
employ different methods for a large set of parameters in (2.16).

Local techniques often utilize gradient-based algorithms [7], which re-
quires knowledge of the gradients (sensitivities) of antenna metrics p and
constraints with respect to designable variables xi. Sensitivities can be ap-
proximated using finite differences, which means solving the system equations
for each perturbation of the design variable (Topology sensitivity algorithm,
section 2.2.4). Another approach is the employment of adjoint sensitivity
analysis [11], which only requires solving a single equation for an antenna
metric and one for each constraint, and which is independent of the size of

8



.................... 2.2. Problem formulation and design’s parametrization

the design domain. Adjoint sensitivity analysis serves as a cornerstone of
topology optimization (section 2.2.3). Recently, adjoint sensitivity techniques
have been implemented in commercial EM software, e.g., CST Studio Suite [5]
with Trust Region Framework or FEKO [4].

General optimization task often consists of countless local minimas re-
sulting in local optimization techniques becoming insufficient. Therefore,
global optimization algorithms are employed. Global algorithms, e.g., genetic
algorithms [26] or particle swarm optimization [27] algorithms seek inspiration
in nature-like mechanisms like gene reproduction, mutation, or recombina-
tion. It is anticipated that global optimization techniques can guarantee
to reach (near-)optimal design with particular circumstances compared to
the local techniques. A prominent class is formed by genetic algorithms
(GA) [28], e.g., Non-dominated Sorting Genetic Algorithm II (NSGA-II) [18].
Genetic algorithms are directly compatible with the binary representation
of an optimized structure within MoM and have been already employed in
electromagnetics [13].

Both techniques, local and global, may be combined into a memetic
algorithm (MA) [29]. The local step updates the shape of the structure via
gradient algorithm, and GA maintains diversity and resets the local step from
being trapped in the local optimum, i.e., GA enlarges the solution space
by moving solely through an optimization task’s local optima. Generally,
MA converges faster due to the local step with less agents than common
heuristics [30].

2.2 Problem formulation and design’s
parametrization

Optimization tasks within different paradigms are formulated and parame-
terized similarly as in the (2.16) and are presented in subsequent sections.
Firstly, the typical parametric model synthesis is introduced in section 2.2.1.
The differences between shape and topology optimization and their usage are
discussed in section 2.2.2 and section 2.2.3. Finally, section 2.2.4 presents
a new optimization paradigm-topology sensitivity algorithm based on exact
re-analysis.

2.2.1 Parametric model

The most straightforward approach to antenna design task is a sweep over a set
of design parameters. The geometry-related parameters are often considered
as designable variables for antenna synthesis.

As an example, consider the N -element Yagi-Uda antenna, see figure 2.2,
described by a set of geometrical parameters, e.g., distance Di between
elements and length Li of each element. The shape of all elements, the building
material and the feeding network is fixed. Based on such parametrization,
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2. Antenna design....................................

Reflector

Driven
element

1 2 N − 2

Directors

LR LN−2L2L1

DR D1 D2

Figure 2.2: Parametric study of N -element Yagi-Uda antenna.

the optimization task (2.16) can be rewritten as

min
Li,Di

p(Li, Di, I)

s.t. Ll ≤ Li ≤ Lu
Dl ≤ Di ≤ Du (2.17)
I (Li, Di) = Z−1 (Li, Di) V
i = {1, 2, . . . , N}.

Surrogate-based optimization [31] (SBO) can be considered as an ad-
vanced type of parametric optimization. The key idea of SBO is that the
original electromagnetic problem is represented via computationally cheap
representation called a surrogate model [10]. Direct optimization is then
replaced by an iterative procedure, where the optimum design is pinpointed
by an optimizing of a cheap surrogate model in the previous iteration [32].
It is possible to construct and employ such a model to obtain a satisfac-
tory design with lower computational effort than conventional optimization
techniques [10].

2.2.2 Shape optimization

Traditionally, a shape of the structure is defined by a set of boundary curves
or surfaces, and in shape optimization, an optimal form of these boundaries
is computed. Shape optimization can be considered to be an enhanced
parametric model since it can only change the boundary in a sophisticated
way, e.g., varying a triangular hole into a rounded one, see figure 2.3. A crucial
part is handling boundary perturbation during the optimization process since
a reasonably detailed prediction requires a very fine FEM model [33].

Shape optimization methods are used primarily to design elastic struc-
tures, e.g., cars [34], acoustic horns [35], but was also employed to optimize

10



.................... 2.2. Problem formulation and design’s parametrization

Figure 2.3: Shape optimization.

electromagnetic structures’ shapes [36].

2.2.3 Topology optimization

Topology optimization method was primarily developed to design linearly
elastic structures [11], [37]. Later on, the method was successfully employed to
electromagnetic designs as well, e.g., to structural design in photonics [38], [39],
metamaterials [40], electrically small antennas [41], and many others.

Topology optimization of the structure produces non-intuitive designs
with geometric features such as connectivity of the structure, the shape of the
boundary or number and location of holes [11], resulting in unconventional
topologies2, see figure 2.4. The goal of topology optimization is to determine
the optimal layout of a structure within a specified domain. The geometry is
not introduced as a set of parameters (as in parametric model representation,
see section 2.2.1) but rather by a set of subdomain functions defined over the
discretized structure. Therefore, the goal is to find the optimal displacement
of given material, i.e., whether each element contains material or not. This
problem (0/1) originates from integer programming [25] and is considered to
be one of the NP-hard problems [6].

Figure 2.4: Topology optimization.

Topology optimization method commonly replaces the integer variable
with a continuous one. This relaxation allows for the employment of math-
ematical programming methods for continuous problems. Furthermore, it
introduces some penalty function that steers the solution to discrete {0, 1}
values, e.g., by introducing artificial attenuation [39] or/and filtering and
thresholding procedure [42]. With this approach, topology optimization can

2The topology means the connectivity of the structure, which describes both the shape
of boundary and holes in it.
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2. Antenna design....................................
alter the structure configuration by creating and disrupting holes, which leads
to unconventional designs.

However, using topology optimization within FEM paradigm for designing
open boundary problems can lead to the optimization being inefficient since
the entire solution domain, including the extra free-space part, is meshed.
Recent works therefore also deal with MoM formulation of field integral
equations [43], [44], [45], exploiting its advantageous description for planar
metallic structures in radiating free space.

Liu et al. [43] adopted the adjoint formulation of topology optimization
to MoM and demonstrated its feasibility and performance in the design of
planar metallic antennas. The optimization task of maximizing the total
efficiency at target frequencies is formulated as

find ρ ∈ [0, 1]1×Ne ,

min
ρ

−
Nf∑
k=1

η (ρ, I) |fk
,

s.t. I (ρ) = (ZG + Ψ(ρ))−1 V, (2.18)
Ne∑
l=1

ρlsl ≤ S
Ne∑
l=1

sl,

where Ne is the total number of elements defining the size of designable
variable ρ, fk represents target frequencies, sl is the area of each element,
and S is the ratio of the area occupied by metal to the design domain.

The design domain is a 0.21 m×0.20 m PEC plate with the total number
of 1680 design variables (triangles). Target frequencies are 370 MHz and
420 MHz. The optimal design is obtained after 7.3 min running time3. The
resulting design contains greyscale elements removed by setting a threshold
value for the design variable. Figure 2.5 presents the optimal obtained design
by Liu et al. [44] in comparison to the classical bow-tie antenna. The bow-
tie antenna demands the altering to maximize the total efficiency at target
frequencies. The proposed optimization procedure is a good starting point
for comparing the developed optimization framework presented in this thesis.

2.2.4 Topology sensitivity algorithm based on exact
re-analysis with edge perturbation scheme

The topology sensitivity algorithm [12], [47], developed at the department
of the electromagnetic field, is an antenna synthesis method, which can be
considered a special case of topology optimization, see section 2.2.3.

The topology sensitivity algorithm works within MoM paradigm, and in
its original version, the topology perturbation is performed directly over basis
functions rather than over the discretization elements. It is, therefore, the
total number of basis functions N that limits the degrees of freedom (DOF)
for the algorithm.

3Four 2.80GHz CPU cores and 4GB RAM.
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Figure 2.5: The realized total efficiency of two similar planar metallic antennas.
The left design (reproduced from [44]) is obtained by the adjoint formulation of
TO+MoM based optimization. Designs are analyzed in Antenna Toolbox for
MATLAB (AToM) [46].

Most rigorously, the shape synthesis can be defined as an optimization
task: For a given impedance matrix Z, matrix A defining an optimized metric,
matrices {Bn} and {Bm} generating constraints, and excitation vector V,
find a shape such that

min
gi

IHA(gi)I

s.t. IHBn(gi)I = bn

IHBm(gi)I ≤ bm (2.19)
I(gi) = Z−1(gi)V

where the third constraint ensures that a solution gi solves the MoM equation.
Since gi is a binary vector, i.e., the problem is of combinatorial nature, and
the equality constraints might not be satisfied since there is only a discrete
number of solutions. Therefore, the general optimization task (2.19) is relaxed
as

min
gi

p (I,gi)

s.t. I(gi) = Z−1(gi)V (2.20)
gi ∈ {0, 1}N ,

where optimized antenna metric p aggregates constraints from (2.19) and
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2. Antenna design....................................
weights them accordingly

p (I,gi) = IHA(gi)I+

+ α
∣∣∣IHBn(gi)I− bn

∣∣∣+ β
∣∣∣IHBm(gi)I + um − bm

∣∣∣ , (2.21)

where inequality constraints are converted into equality constraints by intro-
ducing slack variable um ≥ 0 for each of them [8]. Generally, antenna metric p
can be composed as a combination of several physical and geometrical metrics.

As opposed to the topology optimization, see section 2.2.3, the algo-
rithm does not introduce a continuous variable for each element but tries
to directly solve an integer programming task (2.20) by introducing an
inversion-free rank-1 modification of the impedance matrix, i.e., basis func-
tion removal or addition, based on exact re-analysis [48]. The fundamental
approach to inversion-free modification is the utilization of Sherman-Morrison-
Woodbury(SMW) identity [49], which significantly reduces computational
burden [47] as opposed to classical pixeling technique [13]. The topology
sensitivity algorithm is implemented as a package in an in-house built EM
simulator AToM [46].

In order to demonstrate working principle of topology sensitivity algo-
rithm based on exact re-analysis, consider a synthesis problem of minimizing
the radiation Q-factor [24] of an electrically small antenna (ka < 1). Q-factor
inversely proportional to fractional bandwidth (FBW) [50] is defined on the
condition that the antenna is in resonance. Therefore, we assume connection
of an ideal tuning4. The Q-factor minimization task is prescribed as

min
gi

Q (I)

s.t. I(gi) = Z(gi)−1V, (2.22)
gi ∈ {0, 1}N ,

where Q-factor is defined as

Q (I) = 2ωmax{Wm(I),We(I)}
Prad(I) , (2.23)

where Prad is radiated power and We and Wm represent stored electric and
magnetic energy [51], respectively. Figure 2.6 presents optimal topology
of plate made of perfect electric conductor (PEC) found via the topology
sensitivity algorithm minimizing the radiating Q-factor for ka < 0.5.

Although the designs generated with topology sensitivity algorithm out-
performs empirically found designs, the crucial problem is the interpretation
of the basis function removal.

The problem is that a single basis function removal does not have a
simple interpretation of the physical modification of a structure. However,
it can be represented as a cut-out slot alongside the edge corresponding
to the removed basis function [47], see figure 2.7. The essential question

4Self-resonance can also be acquired via suitable shape design.
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gn = 1
gn = 0

Figure 2.6: Optimal topology of a PEC plate with ka = 0.5, reaching minimal
quality factor Q/Qlb = 1.4. Enabled and disabled basis functions are depicted
by a red thick and thin line, respectively. Delta gap excitation [52] is horizontally
centred in the upper row and is highlighted by the pink transparent color.

regards the thickness of a slot since an edge is considered to be infinitesimally
small. Consequently, the final optimized structure is not likely to be easily
manufactured and requires additional regularization constraints.

Edge removal → dslot =?

Figure 2.7: Removal of an edge does not have simple geometrical interpretation.
How wide slot should be carved out?
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Chapter 3
Topology sensitivity algorithm based on
exact re-analysis

Optimization of electromagnetic structures with the topology sensitivity
algorithm is based on the differences induced by the smallest perturbations
of the structure. In principle, the addition or removal of a basis function can
be considered the smallest modification of a structure. This choice, however,
exhibits interpretation issues, see section 2.2.4. The topology sensitivity
algorithm based on exact re-analysis [12], [48] with an addition or removal of
one mesh element is therefore developed in this chapter.

Let us consider an electromagnetic structure analyzed by MoM. In order
to solve the electromagnetic problem described by a linear system (2.10),
with impedance matrix Z (analysis step) and excitation vector V, the matrix
inversion is required

I = Z−1V = YV, (3.1)

with Y being the admittance matrix. As a particular example, but without
lost of generality, the subsequent sections assume a utilization of surface
electric field integral equation (SMoM) with Rao-Wilton-Glisson (RWG) basis
functions [53] and of volumetric electric field integral equation (VMoM) with
piece-wise constant basis functions [54], which are available in electromagnetic
simulator AToM [55] developed at the department of electromagnetic field.
For more details about the aforementioned basis functions see appendix C.1.

The properties of the developed algorithm are dependent on the particular
basis functions used, and, therefore, an implementation significantly differs
between the SMoM and VMoM. Nevertheless, the mathematical background
for the developed algorithm is identical as they share the description via (3.1).

Initial structures are discretized, see figure 3.1, delimiting the bounding
box, i.e., the maximal region spanned by the optimized structure Ωi ⊆ Ω0. A
discretization is fixed during the optimization procedure, limiting achievable
details in the structure, nevertheless accelerating the optimization’s search for
a solution since the MoM matrices are evaluated only once at the beginning
of the procedure.

Consider further a discretized structure Ω0 that is represented with N
basis functions. The solution space of a binary optimization over basis
functions has dimension 2N , while binary optimization over mesh elements
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Ω Ω0 Ωi

⊇

⊇

(A) (B) (C)

Figure 3.1: (A) Continuous structure Ω is discretized into a set of tetrahedrons
(slab) or triangles (plate). (B) Discretized structure Ω0 delimits the maximal
region spanned by the particular shape (C), i.e., Ωi ⊆ Ω0.

operates with solution space of dimensions 2T , with T < N , see table 3.1.
Moreover, the employment of piece-wise constant basis functions leads to an
apparent reduction of the solution space due to the exact relation between the
number of tetrahedrons and basis functions, i.e., T = 3N . The optimization
over mesh elements thus reduces computational time, removes interpretations
difficulties but, on the other hand, sacrifices resolution1.

N edges 18 84 360
Solutions 1.3 · 105 9.7 · 1024 1.2 · 10108

T triangles 16 64 256
Solutions 1.6 · 104 4.6 · 1018 2.9 · 1076

Table 3.1: The complexity of structural optimization for the given number of
unknowns N and corresponding number of triangles T . The red vertical line
represents localized (delta gap) feeding, i.e., two neighbouring triangles must be
fixed during the optimization process.

In this thesis, we solely focus on binary optimization, i.e., presence or
absence of a mesh element {0, 1}. However, arbitrary material (represented
by resistivity ρ) can be assigned to a discretization element {ρ1, ρ2, . . . , ρS}
modifying the binary optimization to general multi-state integer optimization,
effectively obtaining larger solution space, i.e., ST with S being the number
of states. Multi-state topology sensitivity is out of the scope of this thesis.

1Manipulation with mesh elements often requires modification of more than one basis
function.
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............ 3.1. Computational complexity of a naive synthesis algorithm within MoM

3.1 Computational complexity of a naive synthesis
algorithm within MoM

Let us investigate the computational complexity of the naive approach to the
synthesis, i.e., iterative evaluation of an antenna metric after a small structural
modification, see figure 3.2. The impedance matrix is inverted (3.1) each
time the structure is altered by standard LU-decomposition algorithm [56]
with the computational complexity of O(N3).

It is proven, that matrix inversion is equivalent to matrix multiplica-
tion [6], i.e., if t(N) denotes the time of multiplication of two N ×N matrices,
then the time to invert an N × N matrix is of the order O(t(N)). Ta-
ble 3.2 summarizes matrix multiplication algorithms and their computational
complexities. Nevertheless, the best complexity is determined under the
assumption of sufficiently large matrices, i.e., so enormous that the algorithm
is never used in practice, i.e., making it a galactic algorithm [57]. Conse-
quently, Strassen’s multiplication algorithm is often combined with standard
inversion algorithms to enhance their computational complexity. Without
loss of generality, we will assume standard LU-decomposition with O(N3).

Ω

Ω+

Ω−

Figure 3.2: Possible structural modification of the initial topology of a struc-
ture Ω.

Computational complexity is increased to O(N3M) with M being a set
of elements to be removed or added. This computation has to be repeated
in I iterations while modifying a structure. Thus, the optimization by an
exhaustive search is proportional to O(N3MI).

Matrix multiplication algorithm Year Computational complexity

Naive algorithm 1950 O(N3)
Strassen’s algorithm [58] 1969 O(N2.807)

Coppersmith-Winograd algorithm [59] 1990 O(N2.376)

Table 3.2: Computational complexity of matrix multiplication algorithms
throughout the past decades.

Typically,M equals N(or they are at least proportional) since we perform
as many removals/additions as the number of DOFs. Similar consideration
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3. Topology sensitivity algorithm based on exact re-analysis..................
is valid for I, reaching an algorithm with computational complexity O(N5),
which is a considerable computational burden. The inversion of a matrix (with
O(N3)) is the most considerable burden. For this reason, the inversion-free
formulas [49], see appendix D for details, shall be used to accelerate the
optimization process.

3.2 Structure representation

Before the take advantage of inversion-free formulas, the mesh grid must be
properly parametrized. Within the used description, the unknown current I
is evaluated as

I(gi) = Z−1(gi)V, (3.2)
where the binary vector gi ∈ {0, 1}N×1 of disabled/enabled basis functions
represents the i-th modifcation of an initial shape. In order to parametrize
the structure directly by a logical vector of disabled/enabled mesh elements,
the incidence matrix [60], mapping the basis functions to the underlying
discretization elements, is employed. The procedure is first presented on
a planar structure with RWG, i.e., overlapping, basis functions [53], [61].
Afterwards, the parametrization of volumetric tetrahedral mesh with piece-
wise constant basis functions is developed.

Assume a planar metallic structures discretized into a set of triangular
patches analyzed by SMoM with RWG basis functions. All shapes derived from
the initial shape Ω0 can be also represented by the binary vector ti ∈ {0, 1}T×1

of disabled/enabled triangles, which is related to gi as

ti = B (Mgi) , (3.3)

where M ∈ {0, 1}T×N is the incidence matrix [62] and B(.) represents the
Boolean operator, which substitutes all non-zero entries of the matrix to one
and all negative entries to zero. Figure 3.3 presents a particular example of
such parametrization.

The vector ti should be subjected to binary optimization, but it is the
vector gi that enters the matrix description (3.2). However, the opposite
relation to (3.3) is non-unique, i.e., same metallization ti can be formed via
different vectors gi. Therefore, let us investigate an opposite relation. Each
row of transposed incidence matrix MT contains two non-zero entries, i.e.,
two adjacent triangles sharing an edge. Therefore, a product of multiplica-
tion MTti contains unwanted zeros or ones2 and wanted twos3. Thus, the
relation is defined via additional operations to obtain logical vector gi as

gi = ¬B
(
MTti − 2

)
, (3.4)

where ¬ denotes logical negation [63]. Formula (3.4) is valid relation for the
purposes of this thesis, where a basis function shared by two mesh elements
is always enabled.

2None or one of these two triangles is enabled.
3Both of these triangles are enabled.
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Figure 3.3: The initial shape Ω0 is discretized into T = 12 triangles and N = 13
overlapping basis functions (numbered red lines). The incidence matrix M
maps basis functions onto triangles and vice versa. Highlighted rows (columns)
represent particular triangles (basis functions). A particular shape Ωi ⊆ Ω0 can
be represented by the binary vector ti or gi. The enabled triangles and basis
functions are highlighted by yellow and red color, respectively.

As an alternative to the surface MoM, let us assume a volumetric di-
electric body discretized into a set of tetrahedra and piece-wise constant
basis functions4. The parametrization of volumetric shapes within VMoM
is similar to the planar ones. With properly defined incidence matrix M
the relation (3.3) stands. Let us investigate MT for non-overlapping basis
functions, see appendix C.1. Each row of transposed incidence matrix MT

with non-overlapping basis functions contains exactly one non-zero entry,
i.e., a basis function is not shared between mesh elements. Therefore, the
mapping ti → gi is readily given by

gi = MTti. (3.5)

Figure 3.4 presents a particular example of such parametrization.

3.3 Mesh element removal

In this section, we introduce a suitable definition of mesh element removal
via properly defined logical vectors.

Consider a particular planar shape Ωi, modelled with SMoM and RWG
basis functions, with logical vector ti and incidence matrix M. The position
and shape of a feed are assumed to be fixed and described by a logical
vector tp

i of protected triangles, i.e., those not entering the optimization. The
set of triangles tested for removal is defined by logical vector t−i

t−i = ti ⊕ tp
i , (3.6)

where ⊕ denotes exclusive disjunction [63] (logical XOR function). The
incidence matrix M contains a piece of information about the connection

4If Schaubert-Wilton-Glisson (SWG) [64] basis functions will be used, then the VMoM
case and SMoM case would be the same.
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Ω0
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Figure 3.4: The initial shape Ω0 is discretized into T = 5 tetrahedra and N = 15
non-overlapping basis functions. The incidence matrix M maps basis functions
onto tetrahedra and vice versa. The highlighted rows (columns) represent
particular tetrahedron (basis functions). A particular shape Ωi ⊆ Ω0 can be
represented by the binary vector ti or gi. The enabled tetrahedrons and basis
functions are not highlighted, since a shape modification is clear.

of each triangle with corresponding basis functions. Therefore, we define a
matrix M− via Hadamard (element-wise) multiplication5 � [56] as

m−j =
(
mj � gT

i

)
t−ij , j ∈ {1, . . . , T}, (3.7)

where aj is j-th row of matrix A and t−ij is j-th position in the binary
vector ti, i.e., it is an identifier denoting if the j-th mesh element shall be
further tested for removal. Each row in M− represents the j-th triangle
composed of corresponding basis functions. The utilization of overlapping
basis functions brings a significant problem in terms of shape resolution while
removing elements. Consider a removal situation in figure 3.5, where the
red triangle is removed. The red triangle is composed of two basis functions,
which are removed. However, a neighboring triangle in the right bottom
corner is composed of only one basis function, which is shared with the red
triangle. Therefore, the removal of red triangle will cause the removal of
another one.

Similarly, we define a set of triangles to be tested for addition. We assume
that protected triangles cannot be removed. Therefore, logical vector t+

i of
tested triangles is

t+
i = ¬ti. (3.8)

Once again, the employment of overlapping basis functions introduces a signif-
icant problem in terms of shape resolution while adding elements. Consider a
situation in figure 3.5, where the blue triangle composed of two basis functions
is added. Since these two basis functions are shared with other triangles,
they are also added back to the set of enabled triangles. In order to sustain
as high resolution as possible (addition/removal of exactly one triangle), we

5More exactly element-wise logical conjuction [63] (logical AND function) in the context
of binary vectors and matrices.

22



.......................... 3.4. Mesh element removal interpretation

Ωi Ωi

metal vacuum protected

to be removed to be added

Figure 3.5: Triangle removal/addition issue caused by the employment of overlap-
ping basis functions. A triangle removal/addition can cause the removal/addition
of a different triangle since basis functions are shared by two adjacent triangles.
The thick dashed line represents an inner shape boundary.

introduce a restriction on the tested set for addition. Notice, in figure 3.5,
the inner shape boundary highlighted by the thick dashed line. It is bounded
via the shared edge of an enabled and a disabled triangle. Therefore, if we
add (enable) this neighboring triangle, we physically add only one triangle.
Thus, the addition of a boundary triangle sustains high resolution. There-
fore, only boundary triangles are tested for addition, effectively turning the
addition process into shape optimization, see section 2.2.2. Nevertheless, the
combination of mesh element removal and addition provides sufficiently good
structure modification, and any shape is reachable. Consequently, we define
the j-th row of matrix M+ similar to (3.7) as

m+
j =

(
¬gT

i �mj

)
t+ij , j ∈ {1, . . . , T}, (3.9)

where the j-th row represents addition of the j-th mesh element composed of
corresponding basis functions. Formula (3.9) is an analogy to the removal
case (3.7), however, resulting list M+ still requires processing of additional
restrictions in order to test only triangles next to the shape’s boundary for
addition.

Similar sets for removals/additions are defined within VMoM with tetra-
hedral discretization and piece-wise constant basis functions. However, the
employed basis functions are non-overlapping, and the issue with multiple re-
movals/additions vanishes. Therefore, non-overlapping basis functions sustain
high shape resolution, do not require additional treatment and formulas (3.7)
and (3.9) are the same.

3.4 Mesh element removal interpretation

As opposed to classical pixeling technique [65], where the corresponding
columns and rows of impedance matrix are removed, we interpret removal
in a different manner. Rather than reducing the size of the impedance
matrix, we retain it (no mesh element is removed), but we alter the complex
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3. Topology sensitivity algorithm based on exact re-analysis..................
resistance ρ(r) of the underlying mesh elements to

ρ(r) = R∞ ⇐⇒ r ∈ mesh element, (3.10)

which is arranged by placing an infinity (or a large number) on corresponding
diagonal elements of impedance matrix Z according to figure 3.6. Follow-
ing matrix inversion zeroes corresponding rows and columns of admittance
matrix Y (consequently, zero current is associated with the removed basis
functions). Therefore, columns and rows of Y containing only zeroes can be
removed

T4

T3

T2

T1

T12

T11

T5

T6

T7

T8

T9

T10
Z11 Z12 Z13 · · · Z1N

Z21 Z22 Z23 · · · Z2N

Z31 Z32 Z33 · · · Z3N

...
...

...
. . .

...

ZN1 ZN2 ZN3 · · · Z8N







0 0 0 0 · · · 0
0 0 0 0 · · · 0
0 0 0 0 · · · 0

0 0 0 Y44 · · · Y4N

...
...

...
...

. . .
...

0 0 0 YN4 · · · Y8N







Z−1

Z11 = Z22 = Z33 =∞

Figure 3.6: Illustration of a triangle removal. The triangular element T1 is
removed via the removal of associated basis functions. This is reflected in the
impedance matrix Z as the infinity placement on the corresponding diagonal
element and in the admittance matrix Y in which corresponding rows and
columns are zeroed.

Projection matrix C, which is used to address the corresponding column
or row of impedance matrix, is further developed. Each row of matrices M±,
introduced in section 3.3, represents a mesh element whose resistance is
altered according to (3.10), i.e., it contains a few6 basis functions which
are modified accordingly. The construction of the projection matrix C is
depicted in figure 3.7. Particular mesh element made of a few basis functions
corresponds to the row of matrix M− which directly provides logical vector g
of these basis functions. Consequently, the projection matrix is defined as

C = diag (g) , (3.11)

where diag(x) is a matrix with vector x placed on its diagonal, and where
all columns of C containing solely zeros are removed afterwards. Consider
an example of multiplication AC in which the projection matrix picks out
corresponding columns.

6Up to three for overlapping basis functions, exactly three for non-overlapping ones.
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Figure 3.7: Projection matrix C for a particular mesh element is constructed
from a logical vector g of corresponding basis functions and is used to pick out
corresponding columns by performing the right matrix multiplication.

Using (3.10) in (3.1) with projection matrix C substituted leads to

Y = (Z + CR∞CT)−1, (3.12)

which after limiting procedure R∞ →∞ leads a “removal” of mesh element
as its material properties are those of vacuum. Direct inversion (3.12) with
infinity on the matrix’s diagonal is not possible and requires an analytical
approach.

In section 3.5 it is shown that inversion of the impedance matrix Z
with complex resistivity (3.10) can be formally performed via the Sherman-
Morrison-Woodbury (SMW) formula [49], greatly reducing the computational
cost.

3.5 Effective structure perturbation

The effective way to avoid repetitive impedance matrix inversion (3.1) with
complex resistivity (3.10) is presented in this section. The admittance matrix
for particular topology perturbation is derived using inversion-free formulas,
see appendix D.

Assume an arbitrary structure (planar metallic/volumetric dielectric)
described by the full impedance matrix ZG (analysis) and further on consider
a particular shape represented by a logical vector ti, which is related to a
logical vector gi via the incidence matrix M. The matrices M± are determined
according to the section 3.3.

Without loss of generality, assume a general shape with the impedance
matrix Z provided by gi (ti), according to figure 3.6. Consequent structural
modification of a shape, i.e., mesh element removal, corresponds to

Ŷ = Ẑ−1 =
(
Z + CR∞CT

)−1
, (3.13)

where ˆ represents the perturbated matrix of the investigated shape. In
order to evaluate all perturbation of the structure, (3.13) must be performed
iteratively, which is computationally demanding. In the following derivation,
the modification of the admittance matrix is determined only for one mesh
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3. Topology sensitivity algorithm based on exact re-analysis..................
element, and subsequent section 4.1 presents the vectorization, where all
possible modification of an actual shape is evaluated at once.

In order to completely avoid inversion (3.13), we perform SMW formula,
see (D.4), on (3.13), which leads to

(
Z + CR∞CT

)−1
= Y−YC

( I
R∞

+ CTYC
)−1

CTY =

= Y−YC
(
CTYC

)−1
CTY, (3.14)

where I is unit matrix sized according to the size of perturbation, i.e., number
of basis function to be removed, and where we implicitly used limit R∞ →∞.
Formula (3.14) still requires matrix inversion, but the admittance matrix Y is
computed only once at the start of the optimization process and, then, all pos-
sible modifications are computed by taking inversion of small matrix CTYC
(3× 3 matrix if three basis functions are removed). Formula (3.14) readily
shows that removing an element composed of a set of basis functions results
in the admittance matrix in which rows and columns corresponding to the
basis functions are zeroed.

A sole removal technique is not sufficient for topology modifications, since
the non-existence of an element addition may cause a premature deadlock [47].
Thus, the optimization process is extended by the addition of a mesh element.
For further clarification assume real indices

{e} : ⇐= gi ← ti, (3.15)
{b} : ⇐= gm ← t+

i , (3.16)

which represents enabled edges {e} and edges to be added {b} (corresponding
to a mesh element), respectively. Sets are determined via relation ← between
logical vectors ti and gi based on employed basis functions. Consequently, a
mesh element addition corresponds to the block matrix inversion as

Ŷ = Ẑ−1 =
(

ZG,ee ZG,be
ZG,eb ZG,bb

)−1

, (3.17)

where ZG is the impedance matrix of a full structure. Performing the block
matrix inversion leads to

Ŷ =
(

YG,ee + xebybbxT
be −xebybb

−ybbxT
be −ybb

)
, (3.18)

with auxiliary variables defined as

xeb = YG,eeZG,eb,

ybb = (ZG,bb − ZG,bexeb)−1. (3.19)

The Block matrix inversion formula above assumes that a set of basis functions
corresponding to the mesh element to be added occupies the last columns
and rows of the matrix. Consequently, the admittance matrix Ŷ requires
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a sorting mechanism, which provides a correct ordering of basis functions
concerning the original impedance matrix of the whole structure Ω0. For the
sake of clarity, we emphasize that updating the admittance matrix in (3.14)
and (3.18), i.e., modifying the shape, results in Ŷ turning into Y in the
next iteration since the updated shape is investigated for the structural
modification again.

Assuming predefined excitation vector V, admittance matrix modification
formulas (3.14) and (3.18) readily provides information about the current
perturbation as

Removal : Î = I−YC
(
CTYC

)−1
CTI, (3.20)

Addition : Î =
(

I
0

)
+
(

xebybb (ZG,beI−Vb)
−ybb (ZG,beI + Vb)

)
, (3.21)

where I is current impressed by the excitation V onto a current shape which
should be modified.

Current modification formulas (3.20) and (3.21) allow direct accumulation
of currents corresponding to all structural perturbations into a matrix

[Î] = [ŶV] = [It1 · · · Im · · · ItT ], m ⇐= t±i , (3.22)

where every tested mesh element is determined by procedures defined earlier
and where a column represents the current after element removal/addition.

3.6 Topology sensitivity

Qualitative description of how effective is a perturbation in terms of antenna
performance p needs to be evaluated for each perturbation column of current
matrix (3.22). The topology sensitivity τ(p) is defined here as

τ(p, ti) = p([Î])− p(I) ≈ ∇p(I). (3.23)

A shape is modified as long as a mesh element with a negative value of topology
sensitivity τ(p) exists, i.e., as long as there is a possibility of improving the
performance. When all the sensitivities are non-negative, the shape is said to
be locally optimal.

3.7 Optimization task

Optimization task within defined formalism is considered to be a binary
problem: for a structure with the impedance matrix Z, find its shape, i.e.,
logical vector ti of disabled/enabled triangles, so that

min
ti

p (I,gi)

s.t. I(gi) = Z−1(gi)V
gi = f (ti) (3.24)
ti ∈ {0, 1}T ,
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3. Topology sensitivity algorithm based on exact re-analysis..................
where p is an optimized metric and f denotes proper relation between both log-
ical vectors, i.e., formula (3.4) and (3.5) for overlapping and non-overlapping
basis functions, respectively. The first governing equation secures that the
equation (3.1) is satisfied. The second governing equation relates to the ge-
ometry and gives a map between logical vectors ti and gi, since optimization
unknowns are the mesh pixels, but electromagnetic quantities are evaluated
over the basis functions.

Antenna metric p can aggregate arbitrary combination of physical p1
and geometrical metrics q

p(I,gi) = p1(I) + αq(gi, ti), (3.25)

which readily provides suitable partition of physical and geometrical require-
ments. Geometrical requirements are crucial in terms of shape’s regularity,
i.e., according to manufacturing demands. Two geometrical metrics are
introduced in the next section to ensure manufacturing feasibility of designs.

3.8 Geometrical metrics

Geometrical metrics are introduced in order to ease the manufacturing process.
These metrics are employed only on planar structure analyzed by SMoM, but
can also be generalized to the volumetric case.

Isolated islands of material are generally unwanted products of topology
optimization [66] and make the manufacture process difficult. Therefore, we
define area spanned by metallization as

Ai(ti) = aTti, (3.26)

where a ∈ CT×1 is a vector containing area of each discretization element
(triangle). Relative area spanned by the metallization Arel ∈ [0, 1] can be
defined as

Arel(ti) = aTti
aTt0

, (3.27)

and relates the area of metallization corresponding to ti to the area of the
maximal optimization region Ω0 corresponding to t0.

The second geometrical metric deals with shape’s regularity. The inci-
dence matrix M is used to define the triangle connectivity matrix

H = B(MMT), (3.28)

and the rows of the triangle connectivity matrix are further normalized as

Ĥ =
[ h1
‖h1‖1

· · · hT
‖hT ‖1

]T
, (3.29)

with ‖.‖p being p-th norm [67]. The regularity of a shape ti is then expressed
as

h(ti) = 1− 1
T

∥∥∥t0 − 2Ĥti
∥∥∥

1
, (3.30)
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which counts enabled/disabled triangles connected to each triangle, i.e.,
h ∈ [0, 1]. The value h = 0 corresponds to the most regular shapes: a region
Ω0 completely filled by metallization (ti = t0) or completely empty (ti = ¬t0).
The value h = 1 indicates the worst possible case, in which one half of all
neighboring triangles is enabled. Particular values of geometry-related metrics
are depicted in figure 3.8 for a few shapes.

0.5 1

0.5

1

h (ti)

Arel (ti)

Figure 3.8: Geometrical metrics, i.e., regularity h and area spanned by metal-
lization, for a few shapes represented by the binary vector ti. The enabled and
disabled triangles are depicted by yellow and white color, respectively.
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Chapter 4
Implementation

In this chapter, the procedures developed earlier are implemented in MAT-
LAB1. Vectorization [68] of removal/addition formulas for current accumu-
lation (3.22) after every possible shape perturbation is introduced. Compu-
tational complexities of developed vectorized formulas are compared to the
naive implementation using for-cycle. Afterwards, the implemented memetic
algorithm is described in section 4.2.

4.1 MATLAB-like vectorization of topology
sensitivity evaluation

The presented algorithm bears many implementation challenges, particularly
for triangular discretization with overlapping basis functions (SMoM with
RWG), since symmetric blocks CTYC in the (3.20) are not equally sized,
i.e., a triangle can be composed up to three basis functions.

Let us start investigating the analytical formula for a 3 × 3 matrix
inversion

A−1 =

a b c
d e f
g h k


−1

= 1
det(A)

ek − fh ch− bk bf − ce
fg − dk ak − cg cd− af
dh− eg bg − ah ae− bd

 , (4.1)

with det(A) being determinant of matrix A

det(A) = a(ek − fh)− b(dk − fg) + c(dh− eg). (4.2)

Formula (4.1) enables evaluation of all symmetric 3×3 block inversions (CTYC)−1

at once. All inversions are described by a set of six vectors since blocks can
be sorted according to figure 4.1. Consequently, all multiplication in (4.1) is
performed element-wisely, obtaining six vectors representing matrix elements
of an inverted block. This is a valid approach for non-overlapping basis func-
tions since a block’s size is always fixed. How to generalize it for overlapping
basis functions?

1Note that different programming language will require a slightly different approach.
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CTYC =⇒



• • •
· • •
· · •





• • •
· • •
· · •






• • •
· • •
· · •




T

Figure 4.1: Effective rearrangement of investigated 3× 3 slices into the third
dimension enabling utilization of analytical inversion formula.

Note that formula (4.1) can be reduced to an analytical formula for 2× 2
matrix if c = f = g = h = 0, k = 1 (similar for 1× 1 matrix). Discretization
with overlapping basis functions does not ensure fixed size of a block for every
mesh element, e.g., a triangle can be composed of up to three basis functions.
Therefore, we introduce dummy basis function which ensures all blocks to be
sized 3× 3 resulting in extension of electromagnetic quantities (Y, I) as

Y =
(

Y 0
0T 1

)
, (4.3)

I =
(

I
0

)
. (4.4)

Consequently, every mesh element consisting of less than three basis functions
is extended by this dummy basis function, effectively enabling vectorization
of (CTYC)−1, but not affecting the physical response of the system.

The matrices M± defined in section 3.3 readily provides MATLAB-
compatible indexation vector v of all possible triplets, e.g., for RWG as

M− =


1 1 0 1 · · · 0
0 1 1 0 0
0 0 1 0 0
... . . . ...
0 0 0 0 . . . 1

 =⇒ v = [1 2 4, 2 3 0, 3 0 0, · · · ]T.

(4.5)
Indexation vector v can be obtained by performing function find(.) row-
wisely, which simply transfer positions of logical ones into triplets of fixed
size. Extension (4.4) is considered, effectively substituting every zero in the
list v by a N + 1 index. The vectorization of removal formula (3.20) is further
presented. Vector indexing is performed MATLAB-like via vector v [69] as

CTYC→ Y(v,v) =



. . .

. . .

. . .
. . .
. . .
. . .


, (4.6)
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where desired 3× 3 blocks form block-diagonal matrix. All these entries are
reshaped to a set of six vectors sxx ∈ C1×1×T according to figure 4.1 and all
blocks are inverted at once

(CTYC)−1 =

s11 s12 s13
s12 s22 s23
s13 s23 s33


−1

=

b11 b12 b13
b12 b22 b23
b13 b23 b33

 = B, (4.7)

obtaining a matrix B ∈ C3×3×T , i.e., all inverted blocks are represented by
6 vectors bxx ∈ C1×1×T . Current product CTI is also divided into triplets
reshaped similarly like in figure 4.1

CTI→ I(v) =



.

.

.

.

.

.


=⇒

I1
I2
I3

 = Im (4.8)

where a slice of vector Im ∈ C3×1×T represents current flowing through basis
functions of m-th mesh element. Multiplication is performed element-wise
(for each block separately) as

(CTYC)−1CTI→

b11 b12 b13
b12 b22 b23
b13 b23 b33


I1

I2
I3

 =
∑
rows

B� IT
m, (4.9)

where the final product of size 3× 1× T is reshaped into 3T × 1 vector IB.
MATLAB-like notation of left indexing is performed, obtaining triplets of
columns as

YC→ Y(:,v) =



. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .


, (4.10)

and multiplied element-wise

Y(:,v)� IT
B =



. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .


=⇒ [Ip] (4.11)

Matrix product [Ip] is evaluated by summing triplets in the matrix in (4.11)
row-wisely, effectively obtaining a matrix of size N × T , where each column
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represents a correction to the current I flowing onto the actual shape, which is
being investigated for structural perturbations. With the implicit expansion
of dimension in MATLAB, the perturbed current accumulated into a matrix
in (3.20) is evaluated as

[Î] = I− [Ip], (4.12)

which is fully compatible with topology sensitivity evaluation (3.23). The
evaluation of removal formula (3.20) is much faster than evaluation based on
scripted-loop. The maximal speedup is nearly 110, see figure 4.2, for a shape
composed of T discretization elements, in which every element is investigated
for removal except two of them representing fixed and predetermined feeding.

0 500 1000 1500 2000 2500
0

20

40

60

80

100
110

number of basis functions N

sp
ee
d
u
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Removal
Addition

0 360 720 1080 1440 1800

number of mesh elements T

Figure 4.2: Speedup of vectorized removal formula (3.20) and addition for-
mula (3.21) compared to the code based on scripted loops. All blue and red
triangles are tested for removal and addition, respectively. The yellow color
depicts fixed triangles that are not tested.

The idea behind vectorization of addition formula (3.21) remains the
same. The triplets are stacked across the third dimension, effectively turning
standard matrix multiplication into element-wise. The vectorized addition
formula requires more operation than the removal formula. Therefore, it is
computationally more expensive, reaching a speedup of almost 10, see fig-
ure 4.2. Since we assume only boundary triangles to be tested for addition,
the tested addition set is likely to be much smaller than the tested removal
set. Therefore, the majority of the computational time is spent evaluating
the removals.

4.2 Algorithm description

Structural perturbation according to the topology sensitivity (3.23) to reach
the local optimum of an antenna metric p can be understood as a discrete
version of a greedy gradient-based algorithm [7]. Since the gradient-based
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algorithms do not ensure convergence to the global optimum, it is combined
with the global optimization technique and forms a memetic algorithm [70].
Genetics used in this work is a single-objective genetics algorithm (SOGA) [71].

The memetic algorithm is further implemented in MATLAB [69] using
AToM package [55] and FOPS package [72]. MATLAB provides an efficient
implementation of matrix manipulations and matrix indexing.

The flowchart of the implemented memetic algorithm is depicted in
figure 4.3. An antenna model, i.e., the mesh of the region (ΩT ), electrical size
(ka), feeding (V), and antenna metric to be optimized (p), is defined first. The
impedance matrix Z is further computed together with necessary matrices
used for antenna metric p evaluation. In the next step, the optimization
procedure combining global and local step in a memetic sense begins.

The global step operates with a set of agents, in which every agent repeats
the local step. At the end of each iteration of the global step, the genetic
operators are employed on locally optimal shapes. This cycle is repeated until
a maximum number of iterations I is reached2. Every iteration is initiated
with a random seed of design variables represented by a vector ti. The initial
impedance matrix Z is truncated according to initial shape ti and inverted.
Afterwards, the current is evaluated for the predefined excitation vector V.

The core of the algorithm, the local step based on topology sensitivity,
is initiated for every candidate proposed by the global step. The tested sets
of candidates for removals and additions represented by matrices M± are
firstly determined in order to obtain information about tested mesh elements.
Perturbation currents [Î]± are evaluated according to vectorized formulas
described in section 4.1. Consequently, the topology sensitivity τ (3.23) is
evaluated via exact re-analysis without the necessity of inverting the actual
impedance matrix. It computes the improvement in terms of antenna metric p
for every perturbation. The best possibility is chosen in each step, i.e., greedy
algorithm [6] is performed. The shape is updated in terms of geometrical ti
and physical Ŷ, Î quantities and the local step is iteratively repeated until
the termination criterion is satisfied, i.e., when the local optimum is reached.
If the maximum number of iteration I is reached, the optimal shape Ω∗
guarantees a good optimal value of the antenna metric p∗.

2There are other termination criteria available, e.g., the maximum relative error between
two iterations.
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global step
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Figure 4.3: A flowchart of the implemented memetic algorithm with a local step
based on the topology sensitivity with exact re-analysis.
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Chapter 5
Examples

In this chapter, the developed memetic algorithm based on mesh elements
perturbation scheme is employed on several examples demonstrating its
capabilities. Comparison of the scheme based on mesh elements and its
predecessor based on manipulation with basis functions, see section 2.2.4, is
also made. All computations are performed on a computer cluster at Research
Center for Informatics (RCI) [73] which is available for students of Faculty of
Electrical Engineering in Czech Technical university in Prague. RCI cluster
is a High Performance Computing (HPC) infrastructure that provides 33
computing nodes, each of which consists of 24 physical cores (2× Intel Xeon
Scalable Gold 6146, 3.2 GHz, 384 GB RAM). One computing node was used
for all the evaluations in this thesis.

5.1 Radiation Q-factor

Q-factor is an important parameter of electrically small antennas due to its
inverse proportionality to the fractional bandwidth (FBW) [50].

Q-factor is defined in a standard fashion [74]. Using impedance ma-
trix Z = R + Rρ + jX and stored energy matrix W = ω∂X/∂ω, the so-called
tuned Q-factor is defined as

Q = QU +Qext = 4ωmax{Wm(I),We(I)}
IHRI , (5.1)

where untuned part is

QU = ωWsto
Prad

= IHWI
2IHRI , (5.2)

and where external (matching) part Qext [75] is

Qext = |I
HXI|

4IHRI , (5.3)

where radiated power

Prad = 1
2IHRI, (5.4)
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is substituted. External Q-factor measures the stored energy of a thought
external lumped reactance required to tune system into the resonance if
this is not achievable by shaping the current density itself, i.e., by so-called
self-resonance IHXI = 0.

Developed optimization algorithm cannot enforce equality constraints
such as IHXI = 0. Therefore, we introduce coefficient α ≥ 1 which penalizes
non-zero values of external Q-factor forming a swept optimization problem

min
ti

Q(I) = QU(I) + αQext(I),

s.t. I(gi) = Z(gi)−1V,

gi = ¬B
(
MTti − 2

)
, (5.5)

ti ∈ {0, 1}N .

in which we can choose the preference between self-resonant current density
and low value of Q-factor.

One local step of the memetic algorithm from section 4.2 is employed
on problem (5.5). The considered setup consists of a PEC plate with 2 : 1
aspect ratio, which is uniformly discretized into 128 triangles and 180 basis
functions at electrical size ka = 0.5. A delta gap source is placed in the
top center, see (A) in figure 5.1 of the plate. The optimized metric Q is
further normalized to the fundamental bound Qlb = 35.4 (simultaneous TM
and TE operation) [76] which presents the absolute lower bound to Q-factor.
The optimal shape found via topology sensitivity algorithm with penalty
coefficient α ≥ 1.1 resulting in self-resonant current density is shown in
panel (B) in figure 5.1 reaching normalized Q-factor Q/Qlb = 2.01. The
corresponding current distribution is depicted in panel (C) of the same figure.
Panel (D) in figure 5.1 shows a map of topology sensitivity τ for all possible
removals and additions in the third iteration of the optimization algorithm.
Removing triangles with positive values of topology sensitivity lowers the
optimized metric, e.g., the triangle highlighted by the green color is to be
removed at this step. Removal of this triangle causes a drop in optimized
metric from Q/Qlb = 14.88 to Q/Qlb = 3.90. The reason for this remarkable
improvement is that the structure is effectively separated, the electric short
is removed, and the structure starts to separate electric charge well, which is
the main goal when Q-factor of an electrically small antenna is minimized
(i.e., to maximize polarizability of the structure [77]).

The described greedy algorithm is deterministic, and the optimized
metric always ends in the same local optima for the same initial shape. For
that reason, the full memetic algorithm from figure 4.3 is performed next on
a finer mesh to obtain Q-factor even closer to the lower bound.

Consider the same PEC plate uniformly discretized into 512 triangles
and 744 basis functions at the same electrical size ka = 0.5 and with the same
feeding. In this particular example, we consider normalization of Q-factor
to the fundamental bound QTM

lb [76] generated by TM modes only since for
this particular excitation, and only TM modes can effectively be excited.
Furthermore, the memetic algorithm is employed on (5.5) using both mesh
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Figure 5.1: (A) A uniformly discretized PEC plate with aspect ratio 2 : 1
and electrical size ka = 0.5, where k is the wavenumber and a is the radius
of the smallest circumscribing sphere. The feeding is realized by a discrete
delta gap source highlighted by the brown color. (B) Optimal shape found via
topology sensitivity algorithm. (C) The optimal current distribution is reaching
Q/Qlb = 2.01. (D) Topology sensitivity map determining topology sensitivity τ
for each triangle in the third step of greedy algorithm. If the triangle highlighted
by the green color is removed, the normalized Q-factor Q/Qlb is improved from
the initial value 10.98 to Q/Qlb = 3.90.

elements and basis functions [12] in order to compare both schemes in terms
of realized Q-factors.

Consequently, the optimization task (5.5) is also extended by introducing
geometrical metrics, see section 3.8, as

min
ti

Q(I) = QU(I) + αQext(I) + βArel(ti) + γh(ti),

s.t. I(gi) = Z(gi)−1V,

gi = ¬B
(
MTti − 2

)
, (5.6)

ti ∈ {0, 1}N ,

and the optimal shape is obtained by the memetic algorithm with triangle
perturbation scheme for a fixed values of constants in (5.6), i.e., β = 0.4,
γ = 0.25.

The results are depicted in figure 5.2. Two sets of markers are introduced,
non-dominated and dominated solutions. Non-dominated solutions form
the Pareto-optimal set [18]. Penalty α is used to enforce the self-resonance
(Qext = 0). The vertical shift between both perturbation paradigms is obvious.
The mesh elements perturbation scheme (easily geometrically interpreted)
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pays the price in terms of realized physical quantities, i.e., Q/QTM

lb , as opposed
to the basis function perturbation scheme, which realizes physical quantities
closer to the bound.

Introducing geometrical metrics into the optimization causes that non-
dominated solutions are more vertically shifted, paying the price for realizing
more regular shapes. The effect of geometrical metrics is directly visible
from the realized shapes, e.g., removal of solitary triangles is enforced by
Arel, which impose requirements on the amount of metallization. Realization
of self-resonant shapes is still possible, but at a higher cost in terms of QU.
Optimization of a finer discretization will most likely result in a negligible
difference between the optimized metric of both schemes.
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Qext/Q
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lb

Q
U
/Q

T
M

lb

β = 0 β = 0.4

γ = 0 γ = 0.25

N-D

D

Figure 5.2: Q-factor minimization (5.6) of a structure carved into a PEC plate
with 2 : 1 aspect ratio at electrical size ka = 0.5. The memetic algorithm based
on both perturbation schemes (triangles × basis functions) is used with 96 agents
and 400 iterations with relative maximal relative error for all agents between two
iterations lower than 10−9 for the global step. Different values of weights α, β, γ
denotes preferences with respect to self-resonance, used area and regularity,
respectively. The x-axis can span values from 0 to 1 and the y-axis from 1 to
infinity due to the normalization to QTM

lb . The blue circle markers denote the
basis function perturbation scheme without geometrical constraints, while the
square markers depict optimization based on triangles. The red square denotes
optimization without geometrical requirements. The label “N-D” stands for
“non-dominated” points, and the label “D” stands for “dominated” points [18].
Non-dominated solutions are interconnected by a dashed line to approximate
Pareto optimal set.

Finally, we investigate the computational complexity of both versions
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Figure 5.3: The computational complexity of the full memetic algorithm based
on triangles (TR) and basis functions (BF) for varying number of triangles T
and corresponding number of basis functions N .

of the memetic algorithm, i.e., based on basis functions and mesh element
perturbation schemes. The optimization task (5.5) is performed for various
uniformly discretized plates (up to a plate made of 12×24 pixels) with a fixed
value of alpha. All computations were evaluated on RCI cluster with 48 agents
and 100 iterations in 5 separate runs. Figure 5.3 presents resulting average
computational complexity. It is observed that reduction of solution space in
the case triangular scheme results in lower computational time. Figure 5.2,
however, shows that it is at the cost of realized Q-factor. Nevertheless, finer
discretization can be employed, resulting in better performance of an optimal
shape. The vertical shift of both curves is most likely to monotonically
grow, making mesh element based optimization more effective in terms of
computational time for large-scale structures.

5.2 Total efficiency

Total efficiency as a combination of matching efficiency ηmatch and radiation
efficiency ηrad is also an important parameter of electrically small antennas,
comparing the cycle mean power delivered to the input port with the cycle
mean power radiated by the antenna. This parameter takes into account both
the power dissipated in thermal loss and reflections due to the impedance
mismatch, see figure 5.4. For simplicity, loss-less matching circuitry is assumed
in this example. The total efficiency η is defined as

η = ηmatchηrad =
(
1− |Γ |2

) Prad
Prad + Plost

=
(
1− |Γ |2

) 1
1 + δ

, (5.7)

where Prad and Plost are cycle mean radiated and ohmic lost power, re-
spectively, Γ is reflection coefficient [2] and δ=Plost/Prad is the dissipation
factor [78]. Within MoM paradigm the radiated power and ohmic losses are
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evaluated as

Prad ≈
1
2IHRI, (5.8)

Plost ≈
1
2IHRρI. (5.9)

Transmission line

Pin

Pout Plost

Prad

Antenna

Figure 5.4: An illustration of the power balance of a transmitting antenna. The
input power Pin equals the summation of the radiated power Prad, reflected
power Pout and thermal losses Plost.

Analogously to previous section, the maximization of the total efficiency η
with geometrical constraints included is defined as

min
ti

− 1
Nf

Nf∑
n=1

ηn + βArel(ti) + γh(ti),

s.t. I(gi) = Z(gi)−1V,

gi = ¬B
(
MTti − 2

)
, (5.10)

ti ∈ {0, 1}N ,

where Nf is the number of target frequencies.
The optimization task (5.10) is performed on 0.21 m× 0.20 m sized PEC

plate which is uniformly discretized into 21 pixels × 20 pixels, i.e., into 1680
triangles and 2479 basis functions. The feeding is realized using a delta gap
source in the middle of the plate. The input impedance of the antenna should
be matched to 50 Ω. The surface impedance is set to 0 Ω/m2. The target
frequencies are set to 370 MHz and 420 MHz. Following optimizations are
performed with weights for geometrical metrics β = 0.25 and γ = 0.25 to
regularize the resulting structure.

The total efficiency maximization is firstly performed by the local step
of the implemented algorithm, with an initial shape being with all triangles
enabled. The optimal shape was obtained after 478 iterations with about 550
seconds of computation time. The optimization task was also performed by the
full memetic algorithm with 48 agents and 200 iterations. The corresponding
optimal shape was obtained in 2100 seconds. The total efficiency of optimal
designs obtained by both approaches, mentioned earlier, is compared to the
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Figure 5.5: Total efficiency obtained by the topology optimization algorithm
based on MoM (blue), see section 2.2.3, compared to the total efficiency re-
ceived by employing only local (green) and global (red) step of the implemented
algorithm.

total efficiency of design obtained by Liu et al. [44], see section 2.2.3, and the
comparison is presented in figure 5.5.

The optimization was also investigated in terms of computational ef-
ficiency and the value of the optimized metric. The comparison of three
different optimization solvers is performed with the same optimization pre-
requisites as in the previous paragraph. The structure was firstly optimized
by the local step, i.e., topology sensitivity algorithm, for the random initial
shape. The structure was then optimized by a robust genetic algorithm, i.e.,
“classical” pixeling scheme [13] in which MoM is repetitively employed. Lastly,
the combination of heuristics and topology sensitivity, i.e., the developed
memetic algorithm, is also performed. Ten runs of each computational scheme
were made, and figure 5.6 presents resulting envelopes for computational
time and antenna performance trade-offs, i.e., it shows a realizable optimized
metric value in a particular computational time for each solver. It is clear
that a combination of genetic and local algorithm combines good properties
of both approaches; computation speed of local algorithm and robustness of
the genetic algorithm.

The optimization task was also repeated for stainless steel with electric
conductivity σ = 1.45 × 106 S/m in order to be closer to the realizable
antenna, which is to be realized by cutting into a metallic sample made of
stainless steel. Maximization of total efficiency (5.10) with same weights
for the geometric metrics and at same target frequencies as in the previous
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Figure 5.6: Optimization task (5.10) is performed by three different solvers;
topology sensitivity (TS) as a local step, pure genetic algorithm (GA) and
their combination. All solvers perform ten separate runs for different initial
shapes. The results, therefore, form shaded regions with envelopes depicted by
dashed lines. The optimized metric is the mean value of total efficiency at target
frequencies from (5.10).

paragraph is performed, forming two dipole-like sheets of different length,
i.e., path in which current resonates at the target frequencies, see figure 5.7.
The red curve illustrates the addition of the third target frequency, which
causes the creation of another dipole-like current path.

350 370 400 420 450 500 550

0.6

0.7

0.8

0.9

1 (A) (B)

f [MHz]

η
[−

]

Two target frequencies
Three target frequencies

(A)

(B)

Figure 5.7: Antenna structures obtained by the proposed algorithm with an
assumption on stainless steel used as a conductor. Two dipole-like paths resonate
at each target frequency (A) and (B). Addition of the third target frequency
results in the creation of a third dipole-like path.

The optimal antenna depicted in bottom left of figure 5.7 which exhibits
maximal total efficiency on 370 MHz and 420 MHz was modelled in CST Studio
Suite in order to obtain confidence in the evaluated results and approach
the manufacturing of this design. In contrast to the previous setup, the
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feeding region now lies on a slab made of epoxy laminate dielectric substrate
IS400 [79] with permittivity εr = 3.9, which also carries both metallic parts
of the antenna, see figure 5.8. Realistic thickness 0.5 mm of metallization is
also introduced. Comparison of total efficiency of the previous and simplified
design with the design used in the CST model is presented in figure 5.9
where we directly observe frequency shift caused by the finite thickness of
metallic parts and involvement of dielectric substrate. Thus, the design
requires manual tuning. The manually tweaked design was manufactured, see
inset (B) in figure 5.9, but the feeding region tuning and precise efficiency
measurement in the anechoic chamber will be performed later before the
thesis defense.

Figure 5.8: The optimized antenna was modelled in CST Studio Suite (left)
introducing finite thickness of the metallization. Copper pads for placement of
the SMA connector are realized on a dielectric substrate IS400 (εr = 3.9) (right).
The pads are connected to the metallic parts of the antenna by vias.
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Figure 5.9: (A) Comparison of the total efficiency of optimized design obtained
by the developed algorithm on a simplified model (blue curve) and design post-
processed in CST Studio Suite (red curve). In contrast to the optimized design,
the design analyzed in CST contains dielectric, which provides mechanical support
and also contains feeding, which is the major reason for the difference between
the curves. The total efficiency was computed via frequency solver with adaptive
meshing turned on in order to obtain accurate data. (B) A post-processed model
is manufactured by cutting into a metallic sample made of stainless steel.
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5.3 Scattering cross section of a dielectric slab

In this section, we study the maximization of scattering cross section σscat
for a volumetric body discretized into a set of tetrahedral elements in order
to present the versatility of the implemented algorithm. The scattering cross-
section represents the amount of power scattered by the object overpower flux
supplied by the incident wave [80]. In the optimization of cross-sections, a fixed
incident field V is considered in the form of a plane wave [81]. Maximization
of scattering cross-section is rewritten as a minimization task and reads

min
ti

− σscat(I) = −1
2

IHRI
S0

,

s.t. I(gi) = Z(gi)−1V,
gi = MTti, (5.11)
ti ∈ {0, 1}N ,

where the incident field is a plane wave with power flux S0. The relation
between binary vectors ti and gi is different from the previous section since
we assume employment of non-overlapping basis functions with VMoM.

The optimization task (5.11) is attempted by the implemented algorithm
based on tetrahedral perturbation scheme and compared to the original version
based on basis function perturbation. The figure 5.10 presents realizable
maximal scattering cross sections of 2l × l × l/5, l = 200 nm slab made
of gold [82] at frequency range f ∈ [160, 624] THz by both versions of the
algorithm and is compared to the upper bound [83]. In principle, the algorithm
with the tetrahedral element perturbation scheme cannot achieve values found
by the algorithm based on basis functions perturbation1, nevertheless, it offers
direct geometrical interpretation and lower computation times, which is also
clear from table 5.1. It can also be seen that the reduction of the solution
space in the tetrahedral scheme results in lower number of investigated
shapes and drop in computation time. More significant drop was nevertheless
expected due to the employed vectorization, see section 4.1. Hence, this
clearly indicates that the implementation can be further improved.

5.4 PIFA design

In this example we consider a practical example of antenna design. Example
covered in this section is inspired by course Antenna design and construction
(in Czech: Návrh a konstrukce antén) in which we designed a planar inverted F-
antenna (PIFA) in electromagnetic simulator CST Studio Suite. The goal was
to design an antenna with minimal reflectance |S11| in two frequency bands:
E−GSM ∈ [880, 935] MHz and DCS ∈ [1710, 1880] MHz, with additional
specification:

1Three times fewer degrees of freedom but hard to interpret in terms of geometrical
modification.
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Figure 5.10: Maximization of scattering cross-section of 2l× l× l/5, l = 200 nm
slab made of gold [82] at f ∈ [160, 624] THz. The plane wave is polarized
along the longer edge of the slab and impinges perpendicularly to it. The
slab is discretized into 460 tetrahedra which results in 1380 basis functions.
The algorithms with both perturbation schemes, i.e., basis function (BF) and
tetrahedra (TE) based algorithms, are compared to the bound. The dashed line
presents a particular example of realized shapes, and their current distributions,
and some real parameters characterizing the algorithm are presented in table 5.1

BF+TSGA TE+TSGA

agents / iterations 120 / 200
degrees of freedom N = 1380 T = 460

computation time [s] 1600 900
evaluated shapes 7.1× 107 2.5× 107

realized σscat/πa
2 2.77 2.67

Table 5.1: The complexity of developed algorithm maximizing scattering cross
section (5.11) of a slab made of gold at frequency f = 3.31 THz, see dashed line
in figure 5.10. The comparison between basis function (BF) and tetrahedral
(TE) based perturbation scheme for the algorithm...1. Ground plane with dimensions 3 mm× 60 mm× 120 mm...2. Feeding stub of height 10 mm...3. N-connector with inner diameter 7 mm and outer diameter 3.04 mm...4. Antenna motive etched into a copper cladding with thickness 35µm

placed on a dielectric slab with relative permittivity εr = 3 and thickness
1 mm.

Three designs were collected across the class and will further be used as
a comparison to the design proposed by the developed topology sensitivity
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algorithm. The performance of collected designs, i.e., parameter |S11|, is
depicted in figure 5.11. All students approached the design in similar manner
trying to design L-shaped PIFA [84], where the top patch consists of two
separate current paths for both frequency bands. Since the set of design
variables (length of L-slot, etc.) is small, the goal was to satisfy |S11| < −12 dB
only for middle frequencies of both bands. Figure 5.11 illustrates that good
matching is acquired only in one of the two bands. Furthermore, only the
red-line design is considered as counter example of human-powered design
to developed optimization algorithm, since it satisfies reasonable matching
in both bands. This last design is also manufactured and measured, see red
curve in figure 5.14. Frequency shift in the DCS band is probably caused by
improper simulation model, since, the top conductive patch is not realized on
a dielectric substrate, but by copper slab.
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Figure 5.11: Three designs of PIFA made in CST studio collected across the
class and their performance in terms of reflectance |S11|.

PIFA was also optimized via the developed memetic algorithm to obtain
an optimal shape in terms of minimal reflection |S11|. As opposed to the
previous design, we do not emphasize a goal in terms of a particular number,
but in terms of the achievement of |S11| as minimal as possible. In order
to control shape’s regularity, geometrical constraints are involved in the
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optimization task, which reads

min
ti

Nf∑
n=1
|S11|n (1 + αArel(ti)) (1 + βh(ti))

s.t. I(gi) = Z(gi)−1V,

gi = ¬B
(
MTti − 2

)
, (5.12)

ti ∈ {0, 1}N .

Since the PIFA is optimized within SMoM paradigm, we assume infinites-
imally thin plates made of PEC and no dielectrics involved. This initial shape
of PIFA was modelled in AToM and discretized into 1240 triangles and 1804
basis functions. The shape was split into two regions: controllable region
(293 triangles), where the algorithm can perform triangular perturbation,
and fixed region, where the algorithm cannot alter the shape, see figure 5.12.
A region close to the feeding stub is also considered to be fixed in order to
provide unbiased current distribution around the feeding.

Controllable region

Fixed region

Figure 5.12: Discretized model of PIFA exported from AToM. Model is split
into two regions. Structural perturbation is performed by the algorithm only in
the controllable region.

The model was optimized to minimize reflection |S11| not only at the
middle frequencies of both bands but also at sides of each band, i.e., Nf = 6
in (5.12). The constants α and β, weighting the geometrical metrics, are
chosen to be 0.2 and 0.4, respectively. The controllable region was optimized
by the implemented memetic algorithm with 120 agents and 400 iterations.
The computation was performed on RCI computer cluster and took 266
minutes.

The resulting shape was also modelled in CST to receive a more realistic
design since the design optimized by the memetic algorithm was obtained
under a few assumptions, e.g., infinitesimally small thickness of metal or no
dielectrics involved. Nevertheless, the top patch of PIFA is often etched onto
a dielectric substrate. Therefore, a model transferred into CST requires an
additional post-processing technique in order to tune the design’s |S11|. The
top patch is realized on dielectric substrate IS400 [79] of thickness 0.51 mm
with εr = 3.9. The metallization is realized by copper folio of thickness 35µm.
Both original and CST designs are summarized in terms of parameter |S11|
in figure 5.13.

The post-processed model is further manufactured, see figure 5.14, and
measured in an anechoic chamber in order to get rid of unwanted reflections.
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The comparison of obtained designs and measured manufactured antenna
in terms of performance is depicted in figure 5.14 and compared to the
human-powered design described earlier.
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Figure 5.13: Comparison of reflectance |S11| for human-powered design (red), an
optimal shape obtained by the developed algorithm (green) and optimal shape
transferred to CST Studio Suite (blue) in order to obtain manufacturable design
(finite thickness of metallization, dielectrics, etc.).
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Figure 5.14: Comparison of reflectance |S11| of manufactured PIFA designs
obtained by human design (red) and topology sensitivity algorithm (blue). The
designs are simulated in CST Studio Suite and compared with manufactured
antennas, see photos.
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Chapter 6
Conclusion

The topology sensitivity algorithm based on exact re-analysis with block per-
turbation scheme was implemented for surface and volumetric electromagnetic
structures. The algorithm is defined within method of moments paradigm
with triangular and tetrahedral discretization with RWG and piece-wise
constant basis functions, respectively. The local step employs inversion-free
formulas to avoid repetitive matrix inversions and approximates topology
gradient by finite differences. The original formulation of the topology sensi-
tivity algorithm based on basis functions is associated with the interpretation
issue of geometrical modification. The issue is handled by implementing a
mesh element perturbation scheme since a mesh element removal is directly
interpreted in geometrical alteration.

The local step is combined with a genetic algorithm to form a memetic
framework which is implemented in MATLAB. The inversion-free formulas for
the topology sensitivity evaluation of each possible mesh element modification
are vectorized, greatly reducing computational time compared to a code based
on scripted loops.

The developed procedure was applied to several optimization problems
to prove its efficiency in the field of antenna synthesis. The implemented
algorithm was compared with the original version based on perturbation
of basis functions. The performance was also compared with the known
realizations found via adjoint formulation of topology optimization. The
developed algorithm was also compared to a human-powered antenna synthesis.
Two designs covered in examples were manufactured.

It was proven that the topology sensitivity algorithm operating over
mesh elements is more efficient in terms of computational time for large-
scale structures rather than an algorithm operating over basis functions.
Combination with geometrical metrics results in more easily manufactured
designs since a mesh element removal is easily geometrically interpreted.
Nevertheless, the reduction of solution space most likely results in optimized
metrics being further from the bound.

The developed algorithm can be enhanced in many ways, and it will be
the topic of future work.

53



6. Conclusion......................................
6.1 Future work

Future work will aim at deepening our knowledge of antenna synthesis with the
topology sensitivity algorithm. Achievable details in the structure are limited
due to the fixed discretization. Therefore, the obtained designs require
re-meshing and re-optimization in order to reach structural convergence.
Performing adaptive re-meshing of a locally optimal shape, e.g., mapping
to finer mesh after each iteration, see (A) and (B) in figure 6.1, would be a
great enhancement for the algorithm. Furthermore, optimization of structures
discretized in a different manner, e.g., equilateral triangular discretization,
see (C) in figure 6.1, may result in designs being more conforming with the
task and also may result in physical quantities being closer to the bound.

In this thesis, two possible structural modifications (basis functions, mesh
elements) were considered. However, arbitrary large structural modification,
e.g., two mesh elements, may be employed, which will result in optimiz-
ing a cheap model, which can provide an initial shape for the consequent
optimization process.

In this thesis, a mesh element was subjected to binary optimization.
Nevertheless, arbitrary material can be assigned to a mesh element, modifying
the binary optimization to general multi-state integer optimization, enlarging
the solution space.

Even though the optimization process was accelerated by introducing
inversion-free formulas, it is still considered to be a high computational burden.
An introduction of symmetries into the optimized model, see (D) in figure 6.1,
will reduce the number of unknown and also guarantees geometrical symmetry
in the final design.

Genetic operators employed in this thesis were fixed and the same for
all optimization tasks. However, their settings can be modified based on
the locally optimal shape in each iteration to be more conforming with
the local step. Furthermore, several other global algorithms, e.g., particle
swarm optimization, may also be more compatible and more efficient with
the developed local step.

Simultaneous optimization of multiple metrics requires aggregation of
them with given weights. However, to reveal the true trade-off between
all the parameters and to do it effectively, they should be optimized in a
multi-objective sense.

Future work will also aim at the optimization of designs in nanophotonics
and comparison of their performance with those found with a standard tool
in the field, which is the adjoint formulation of topology optimization.

Simplifying assumptions within the optimization process, e.g., infinitely
thin metallization or no dielectrics involved, negatively affect a resulting design
if it is further manufactured. Therefore, the design requires manual tuning
in a common EM-simulator to obtain a manufacturable model. It would be
more convenient and certainly is a future topic to introduce dielectrics into
the optimization process since the most accurate manufacturing processes are
based on etching the conductive material onto a dielectric substrate.
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PEC

PMC

Similarity operator

(A) (B)

(C) (D)

Figure 6.1: Mapping of a shape (A) onto a finer mesh (B). Different kind of
triangular discretization (C) for the optimization which can result in an optimal
shape with better geometrical and physical performance than discretization used
in this thesis. Introduction of symmetries, e.g., perfect electric or magnetic
conductor (PEC or PMC), can significantly reduce degrees of freedom for the
optimization, thus, computational time.
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Appendix B
Electric Field Integral Equations

The derivation of electric field integral equation (EFIE) starts from an assump-
tion of incident electric field Ei being scattered by a dielectric or conducting
obstacle under time-harmonic steady state at angular frequency ω and conven-
tion ∂/∂t→ jω, with j being imaginary unit. In order to solve the scattering
problem, let us begin with the vector wave equation

∇×∇×E − k2E = −jωµJ , (B.1)

where k = ω
√
µε denotes wave-number in material background. Employing

common vector identities, Gauss law and charge conservation leads to

∇2E + k2E = jωµJ − 1
jωε∇∇ · J , (B.2)

where current density J aggregates polarization currents in the obstacle J s as
well as current density producing the incident field J i. Since equation (B.2)
is linear, a dyadic Green’s function [23]

G
(
r, r′) =

[
I + 1

k2∇∇
]
e−jk|r−r′|

4π|r − r′|
, (B.3)

with I denoting the unit dyad, can be employed to get [21]

E (r) = Ei (r)− jωµ
∫
Ω′

G
(
r, r′) · J s (r′) dr′. (B.4)

When relation (B.4) is accompanied by a constitutive relation describing
the material obstacle r ∈ Ω made of resistivity ρ(r)

E(r) = ρ(r)J s(r), r ∈ Ω, (B.5)

integro-differential equation, known as EFIE, for the unknown current den-
sity J s is formed and reads

Ei (r) = ρ(r)J s (r) + jωµ
∫
Ω′

G
(
r, r′) · J s (r′) dr′, r ∈ Ω (B.6)

As formulated, the EFIE describes scattering by a penetrable body char-
acterized by electric susceptibility χ (r) and the resistivity ρ−1 (r) = jωε0χ (r).
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B. Electric Field Integral Equations ............................
The modification to highly conducting scatteres is, however, straightforward.
In such a case, the current density is assumed to exist only on the surface
of the body and resistivity is replaced by surface impedance Zs (r) [22]. In
the surface case, the equation (B.6) is enforced only on the surface of the
obstacle.
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Appendix C
Method of Moments

Method of moments (MoM) [14] is a mathematical technique for solving
operator equation

L(f) = g, (C.1)

where L is a linear operator, g is a known function and f is an unknown
vector function. MoM employs an expansion of the unknown function f into
a sum of weighted basis functions {ψn(r)}

f ≈
N∑
n=1

anψn, (C.2)

where an are unknown weights. The set of basis functions is assumed to be
linearly independent and such that for N → ∞ and appropriately chosen
weights an, the sum (C.2) uniformly converges to the exact solution of (C.1).
Due to the assumed linearity of L, substitution of (C.2) into (C.1) yields

N∑
n=1

anL(ψn) = g. (C.3)

Next step is the formulation of inner product or moment between a function
ψn and a testing function wm as

〈wm,ψn〉 =
∫
Ωm

w∗m ·ψn drm, (C.4)

where ∗ denotes complex conjugate. Testing functions wm are assumed to
be linearly independent. Applying (C.4) on (C.3) using N testing functions,
leads to an N ×N system of linear equations. This method is equivalent to
Ritz method or, when testing functions and weighting functions are identical,
to Galerkin method [21]. In this later case, the system of N equations for N
unknown weights an reads

N∑
n=1

an 〈ψm,L(ψn)〉 = 〈ψm, g〉 , m = 1, ..., N, (C.5)
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C. Method of Moments .................................
which can be symbolically reduced to

Za = b. (C.6)

Finding suitable basis and testing functions is a crucial task for acquiring
desired accuracy and a well-behaved system matrix and heavily depends on
the particular operator equation to be solved. In the case of this thesis, the
operator equation is EFIE.

In this thesis MoM is employed on volumetric and surface structures
forming a set of natural steps:..1. choosing appropriate discretization (triangular, tetrahedral, ...)..2. choosing compatible basis and testing functions (Rao-Wilton-Glisson [53],

piece-wise constant [54], ...)..3. filling a system matrix and evaluating the unknown field..4. evaluating unknown state variable a by matrix inversion of system matrix..5. visualisation of unknown field inside each discretization element.

C.1 Basis functions

The electric and magnetic currents on planar geometries are expanded using
a sum of weighted basis functions (C.2). The most popular choice of basis
functions for modelling surface current distribution are Rao-Wilton-Glisson
(RWG) triangular basis functions [53]. RWG function, see figure C.1a, is
defined as

ψn(r) =



ln

2A+
n
ρ+
n (r) r ∈ T+

n ,

ln

2A−n
ρ−n (r) r ∈ T−n ,

0 otherwise,

(C.7)

where T+
n and T−n are two conjoined triangle associated with n-th edge of

length ln. Vectors ρ+
n (r) and ρ−n (r) point toward the vertex r+

n and away
from the vertex r−n

ρ+
n (r) = r+

n − r r ∈ T+
n , (C.8)

ρ−n (r) = r − r−n r ∈ T−n . (C.9)

These basis functions are assigned only to interior edges shared by two
adjacent triangles. Therefore, a triangle can be composed of up to three
basis functions. Basis functions with similar properties can be employed on
volumetric bodies. Schaubert-Wilton-Glisson (SWG) basis functions [64] can
be used. However, in this thesis, we assume utilization of piece-wise constant
basis functions with tetrahedral discretization [54].
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................................... C.1. Basis functions

Each tetrahedral element always contains exactly three basis functions,
which is usually chosen to be unit-vectors or triplets ψn(r) = {x̂, ŷ, ẑ}, see fig-
ure C.1b. This choice readily provides conversion of volumetric quadrature
to surface integrals.

ρ−n

ρ+n

r−n

r+n

A−
n

A+
n

ln

ψn (r) =
ln

2A±
n
ρ±n

(a) : RWG basis function between two
triangluar elements.

ŷ

ẑ

x̂

Ti

(b) : Piece-wise constant basis function
on a tetrahedral element.

Figure C.1: Two type of basis functions used in this thesis. RWG basis functions
are used to express currents impressed onto planar structures. Piece-wise constant
basis functions are used with tetrahedral discretization to determine current
distribution in volumetric bodies.
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Appendix D
Block matrix inversion

Matrices can be partitioned into blocks, i.e., submatrices. Mathematical
operations, e.g., matrix multiplication or inversion, may be defined over them.
Properties of block matrices can be found in [85]. Since a row and a column
of the impedance matrix represents an electromagnetic interaction between
basis functions, the impedance matrix can be partitioned into blocks.

Most fundamental operation for this thesis is a matrix inversion. Let
matrix A be partitioned as

A =
(

A11 A12
A21 A22

)
, (D.1)

where Aii, i = 1, 2, are submatrices. An inversion formula for the correspond-
ing blocks of the block matrix A−1 [86] is(

A11 A12
A21 A22

)−1

=
(

A−1
11 + A−1

11 A12S−1
A11

A21A−1
11 −A−1

11 A12S−1
A11

−S−1
A11

A21A−1
11 S−1

A11

)
,

(D.2)
or equivalently(

A11 A12
A21 A22

)−1

=
(

S−1
A22

−S−1
A22

A12A−1
22

−A−1
22 A21S−1

A22
A−1

22 + A−1
22 A21S−1

A22
A12A−1

22

)
,

(D.3)
where SA11 = A22 −A21A−1

11 A12 and SA22 = A11 −A12A−1
22 A21 are Schur

complements of A11 and A22 [86], respectively.
If and only if both the matrix A11 and the Schur complement S are

nonsingular, then A is nonsingular [87]. The formula (D.2) is efficient for a
known matrix A−1

11 and sufficiently small blocks A12, A21,A22 as compared
to full inversion of matrix A.

Equating the first element of (D.2) and (D.3) leads to

A−1
pert = A−1

11 + A−1
11 A12(A11 −A12A−1

22 A21)−1A21A−1
11 , (D.4)

where Apert = A11−A12A−1
22 A21. Equation (D.4) is the Shermann-Morrison-

Woodbury formula (SMW) [49]. SMW expresses the inversion of a matrix
after a modification in terms of the inversion of the original matrix. If A11 is
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much bigger than A22, then A22 and A11 −A12A−1

22 A21 are inverted with
less computational time than Apert [88]. SMW formula is widely applied on
the field of statistics, asymptotic analysis or optimization [49].
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