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Ing. Ondřej Kuželka, Ph.D.

December 2020



Gustav Šír: Deep Learning with Relational Logic Representations,
a thesis submitted for the degree of Doctor of Philosophy (Ph.D.),
Study Programme No. P2612-Electrotechnics and Informatics,
Branch No. 3902V035 - Artificial Intelligence and Biocybernetics.
© December 2020

supervisors:
Prof. Ing. Filip Železný, Ph.D.
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A B S T R A C T

In the recent years, we have seen tremendous resurgence of neural networks, applied with great
success in highly diverse domains, ranging from speech recognition to game playing. The unprece-
dented progress of this new deep learning trend has even been seen as paving our way towards
general artificial intelligence. However, the current deep learning models are still limited in many re-
gards. Particularly, in this thesis we address the contemporary problem of learning neural networks
from relational data and knowledge representations. While virtually all standard models are limited
to data in the form of fixed-size tensors, the relational data are omnipresent in the interlinked struc-
tures of the Internet and relational databases. Likewise, in many domains a background knowledge
in the form of relational logic rules or rich graph-based structures is often available, yet impossible
or very difficult to exploit with the standard deep learning models.

To address this issue, we introduce a declarative deep relational learning framework called Lifted
Relational Neural Networks (LRNNs). The main idea underlying the framework is to approach the
neural networks through the lifted modeling paradigm, known otherwise from Statistical Relational
Learning (SRL), where it is used to exploit symmetries in learning problems. Similarly to lifted
graphical models from SRL, LRNNs are then represented as sets of weighted relational logic rules,
used to describe the structure of a given learning setting.

As set out, we demonstrate that this paradigm allows for effective end-to-end neural learning
with relational data and knowledge. The encoding through the weighted relational logic rules then
provides flexible means for implementing a wide variety of novel modeling concepts incorporating
various latent relational patterns. Notably, these also elegantly cover contemporary deep convolu-
tional models, such as Graph Neural Networks, as a simple special case. We explain how to easily
generalize these state-of-the-art models towards higher expressiveness, and also demonstrate the
general LRNN framework on various practical learning scenarios and benchmarks, including com-
putational efficiency.

Additionally, we introduce several enhancements to the framework. Firstly, we present an au-
tomated structure learning of the relational rules, composing the lifted models. Secondly, we in-
troduce two principled optimization techniques used to scale up the integrative framework from
both the logical and neural learning perspectives. Both the optimization methods are then effective
also separately in the respective approaches to learning. Lastly, we demonstrate the framework on
selected use cases in different domains.

Keywords: deep learning, relational data, logic, relational learning, neural-symbolic integration,
inductive logic programming, statistical relational learning, weighted logic, symmetries, lifted infer-
ence, convolutional models, graph neural networks, logic representations, background knowledge
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A B S T R A K T

V posledních letech jsme byli svědky dramatického oživení oblasti neuronových sítí, které se velmi
úspěšně aplikují v nejrozmanitějších doménách, od rozpoznávání řeči po hraní her. Nebývalé úspěchy
tohoto trendu tzv. “hlubokého učení” jsou dokonce často považovány za náznaky schopností obecné
umělé inteligence. Současné modely hlubokého učení jsou však v mnoha ohledech stále velmi
omezené. V této práci se konkrétně věnujeme aktuálnímu problému učení neuronových sítí z re-
lačních dat a reprezentací znalostí. Zatímco prakticky všechny standardní modely jsou omezeny
na data ve formě numerických tenzorů pevné velikosti, relační data jsou všudypřítomná, od vzá-
jemně propojených struktur Internetu po relační databáze. Podobně je v mnoha doménách často
dostupná znalost ve formě relačních logických pravidel či komplexních znalostních grafů, přesto je
jejich využití se standardními modely hlubokého učení nemožné nebo velmi obtížné.

K řešení tohoto problému představujeme deklarativní systém pro hluboké relační učení s názvem
"Lifted Relational Neural Networks" (LRNNs). Hlavní myšlenkou tohoto systému je přístup k neu-
ronovým sítím prostřednictvím paradigmatu známého jako textit lifted modeling, které bylo před-
staveno v oblasti Statistického Relačního Učení (SRL), kde se používá k efektivnímu kódování
symetrií v problémech. Podobně jako “liftované” grafické modely známé z SRL jsou i LRNNs
reprezetované jako sady vážených logických pravidel, sloužící k popisu struktury daného prob-
lému učení.

Jak bylo vytyčeno, v této práci demonstruujeme, že toto paradigma umožňuje efektivní přímé
neurální učení nad relačními daty a znalostmi. Kódování prostřednictvím těchto vážených relačních
pravidel pak poskytuje flexibilní prostředky pro implementaci široké škály nových konceptů predik-
tivního modelování, zahrnujících různé latentní relační vzory. Důležitým aspektem je i to, že tento
přístup elegantně pokrývá moderní konvoluční neurální modely, například grafové neuronové sítě,
jako jednoduchý speciální případ. V práci vysvětlujeme, jak snadno zobecnit tyto nejmodernější
modely směrem k vyšší expresivitě, a také demonstrujeme navržený LRNN systém na různých
srovnávacích testech kvality strojového učení, včetně testů výpočetní efektivity.

V práci poté představujeme i několik vylepšení toho přístupu. Nejprve představíme automat-
ické učení struktury oněch relačních pravidel, reprezentujících celkovou učící architekturu. Poté
uvedeme dvě principiální optimalizační techniky využité pro lepší škálování systému z perspek-
tivy jak symbolického (logického), tak i neurálního přístupu k učení. Obě optimalizační metody
jsou použitelné a účinné i samostatně v těchto příslušných přístupech k učení. Nakonec demonstru-
ujeme systém na vybraných případech použití v různých doménách.

Klíčová slova: hluboké učení, relační data, logika, relační učení, neurálně-symbolická integrace,
induktivní logické programování, statistické relační učení, vážená logika, symetrie, liftovaná infer-
ence, konvoluční modely, grafové neuronové sítě, logické reprezentace, postranní znalost
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[3] Gustav Šourek, Filip Železný, and Ondřej Kuželka. “Lossless Compression of Structured
Convolutional Models via Lifting.” In: International Conference on Learning Representations.
ICLR OpenReview. 2021.

[4] Gustav Šourek, Martin Svatoš, Filip Železný, Steven Schockaert, and Ondřej Kuželka. “Stacked
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former classmate Vojtěch Aschenbrenner, who first started working on the deep relational learning
ideas during his Master’s 8 year ago (under supervision of Ondřej Kuželka), before opting for a
different research subject.

My gratitude also belongs to my dear colleagues Ondřej Hubáček, Matěj Uhrín and Martin Sva-
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1
I N T R O D U C T I O N

All intelligent life forms instinctively model their surrounding environments in order to predict their
possible futures. For it is only with such a model that one can actively navigate their paths through
the environment towards (more) desirable ends.

Artificial intelligence (AI) then tries to understand and automate this interesting ability of living
systems with the subfield of machine learning at the core. This data-driven approach is particularly
useful in cases where the underlying principles of the environment, or system S, are unknown, or it
is rather infeasible to manually derive a set of equations or otherwise explicit mathematical forms
of S.1 As opposed to that traditional scientific approach2 , in machine learning we try to model com-
plex systems S automatically, with much more generic mathematical forms, the representation of
which constitutes the scope of this thesis. This automated approach is based on adapting the inter-
nal parameters or structure of the generic, flexible mathematical forms M to match the presented
data samples D coming from S. This adaptation process, formally driven by minimization of some
“loss” measure L(S,M|D) capturing the discrepancy between the actual system S and its model M,
as measured over some set of observed data D, is then commonly referred to as learning.3

Typically, in supervised statistical machine learning, the data samples (xi,yi) ∈ D are considered
to be randomly drawn from the respective sets, where xi ∈ X is a description of a learning in-
stance i, representing the system S’s input, and yi ∈ Y is the corresponding label, representing
the output of S in scope. For the learning, we then formally assume an underlying joint probabil-
ity distribution PXY on X× Y. The learning algorithm receives samples {(x1,y1), . . . , (xl,yl)} from
PXY, and from these samples it estimates an approximation P̃XY of PXY, as captured by some dis-
crepancy measure L(y, ỹ|x), or a function f : X → Y that well characterizes PXY, e.g. in that f(x)
approximates argmaxyPY|X(y|x). There are many various representations in which the latter two
forms can be expressed, ranging from parametrized distributions, logical rules, and decision trees
to neural networks.

Similarly, there are many ways of representing the learning problem with the respective X and Y,
varying across the wide range of domains where machine learning is being applied, ranging from
computer vision to natural language processing. While the encoding of Y typically follows directly
from the task definition, where Y commonly represents the set of discrete target classes or values
of the continuous target signal, the optimal representation of the input states X has traditionally
been a research subject on its own. Similarly to the representation of the hypothesis space M, the
representation choice for X is highly important, since it necessarily introduces an inductive bias
into the learning process.

1 Naturally, such S include the living (learning) systems themselves which, despite arguably driven by the same laws of
physics as their inanimate environments, do not (yet) succumb themselves easily to these mathematical forms within the
standard realm of scientific reductionism [1].

2 This is not to say that machine learning falls outside of the scientific approach. On the contrary, it can be seen as an
automation of the scientific method itself. It starts by collecting all the observable data D = Dtrain ∪Dtest about the system
S in scope. Consequently, one chooses a hypotheses space M in which to search for the best mathematical explanation of
the observed phenomenon generating Dtrain. Importantly, predictions for left-out states of S, generating Dtest, are then
made, and the possible discrepancy between the predictions and test experiment data Dtest are consequently assessed
to accept or refute the assumed hypothesis, more commonly referred to as a “model” M ∈M.

3 also known as “training” for the respective subpart Dtrain which drives the adaptation process itself.
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While researchers traditionally argued for various levels of abstraction4 , and the corresponding
amount of inductive bias, to be used in encoding of X, the majority agreed upon its mathematical
form. Here, similarly to the typical form studied in the, more traditional, system modeling for
control theory [3], where the systems S in scope naturally compose of fixed-size input x and output
y vectors, the common trait of machine learning techniques is that the sample descriptions xi ∈ X

are typically restricted to value-tuples X = X1 × X2 × . . . × Xn, where n ∈ N and Xj contains
real numbers or categorical values. The sets Xj here are domains of n so-called features that are
typically a-priori crafted by researchers in each specific domain, and used to commonly describe
each considered sample xi in the learning task. This process has been commonly referred to as
feature engineering.

1.1 deep learning

With the many different approaches to the input data X and model M representations being preva-
lent for different tasks in different domains, a great goal of machine learning became to render the
whole process fully automated. Commonly, this is interpreted as involving as little inductive bias
and human intervention as possible, which has been emphasized through the (recent) trend of deep
learning, where generic architectures of large layered models are trained from “raw” data in various
domains [4]. The core idea of deep learning is that the necessary higher-level abstractions of sample
representations x are automatically induced in a hierarchical fashion by the layered, deep (neural)
models, as opposed to the manual feature extraction by domain experts used in “shallow” models.
Having such a generic, end-to-end architecture for variety of systems based on data representations
with minimal preprocessing provides a considerable advantage, as has since been demonstrated
with remarkable success in various tasks, ranging from speech recognition and computer vision to
game playing [5].

Deep learning models generally compose of multiple layers of nonlinear processing units, with
higher-level distributed representations xk being successively extracted from the raw input data x

in each layer k. These levels of abstraction are typically presented through hidden layers of large
neural networks5 – computational models biologically inspired by two types of cells in the primary
visual cortex [6]. The concept of “deepness” then refers to the number of learnable transformations
(layers) an input representation x undertakes before it reaches the output y , where neural networks
with more than two such layers are generally considered as “deep” by most researchers [7]. Since
the resurgence of the neural networks started by the rapid success in decreasing accuracy on speech
recognition tasks in 2010 [8], many variants of these cascading models have been rediscovered or
newly introduced.

Perhaps the most successful variant have been Convolutional Neural Networks (CNNs) [9]6, with
Neocognitron [10] as their first instance. Distinguishing features introduced in CNNs are the use
of shared weights in convolutional layers, and the idea of pooling, first proposed in the Cresceptron
architecture [11]. The shared weights induced by application of convolutional filters introduce equiv-
ariance w.r.t. the respective transformation of the filter, while incorporating the aggregation function
(e.g. max or avg) on top via pooling extends it further into the transformation invariance. This tech-
nique has proved extremely useful across various tasks, particularly in computer vision, where it
provides CNNs with robustness w.r.t. translation in images – an ability unprecedented in the pre-
vious machine learning models, enabling CNNs to achieve superior state-of-the-art (SotA) results
without the, previously common, deformation-invariant feature extraction and preprocessing.

4 This has been the traditional subject of dispute between the sub-symbolic and symbolic streams of AI research, such as
the most recent Montreal AI Debate between Yoshua Bengio and Gary Marcus [2]. The subject of this thesis then aims
for the compromise zone between the two notional extremes.

5 but, interestingly, may also be thought of as complicated propositional formulae re-using many sub-formulae [4].
6 We put emphasis here on CNNs as they are discussed throughout the thesis more closely for their resemblance to the

proposed methods.
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problems Although often presented as fully automatic and generic, successful training of deep
neural models typically still involves the choice of architecture and related meta-parameters, which
requires considerable expert knowledge or compute power. Moreover this knowledge has very
limited interpretation w.r.t. the learning (data) domain, since neural networks operate as black-box
models, with most confirmations on their learning being done empirically rather than analytically.

Despite the remarkable success of deep neural learning on various, mainly low-level perception
focused, tasks, it is important to point out that the approaches typically still lack most of the basic
capabilities deemed elementary to AI systems, such as integrating background knowledge, captur-
ing relations and structure, reasoning with abstract concepts and logical inference [12]. Also, the
black-box nature of classic neural networks renders their integration with other systems, possibly
providing such capabilities, rather complicated [13].

1.2 relational representations

Perhaps the main limitation of deep learning, which we target in this thesis, is the attribute-value-
tuple X = X1 × X2 × . . . × Xn representation of samples xi ∈ X, assumed to be identically and
independently drawn (i.i.d.) from the PXY . Despite its long tradition and adoption by majority
of (statistical) machine learning approaches, this representation of X is a source of considerable
limitations in various learning scenarios, where data samples xi are naturally structured, and do
not succumb themselves easily to the precanned form of numeric vectors or tensors x.7

In many real world domains we are interested in modeling, the learning samples (xi,yi) are not
independently drawn nor are they of a fixed size n, but rather exhibit internal external relational
structure [14]. In practice, the real-world data are not stored as numeric tensors, but are present in
interlinked structures of the internet, or spread across multiple tables of relational databases, where
different samples consist of different types of entities, with each entity being characterized with a
different set of attributes. This notion covers biological, social, or computer networks, and generally
all domains exhibiting some topology, such as knowledge bases and graphs. Example of such data
are abundant, including databases of organic molecules, social networks, protein-protein networks,
gene regulatory networks, engineering designs etc., with tasks such as molecule toxicity modeling,
social network analysis, protein function prediction and others.

Historically, the traditional approach towards learning from such structured data was to divide
the problem into two steps of (i) data preprocessing, turning the structures into the requested
feature vectors x, and (ii) then applying the standard machinery of learning models based on this
common representation. Such an approach is often referred to as propositionalization [15], which is a
technique to generate a number of predefined relational features (e.g. subgraphs), and to let these
features act as attributes for the standard attribute-value learners, such as the neural networks.

However, there is a fundamental issue with such an approach, since transforming the structures
into numeric vectors (tensors) necessarily introduces bias, unrelated to the learning problem, by
dropping out parts of the relational input information.8 After all, if a structure, such as a graph,
could be transformed into a fixed-size vector x without loss of information, it would trivially solve
the graph isomorphism problem [17]. Since there is no definite way to turn generic structures into
the standard attribute-value representation without the undesirable loss of information, learning
representations xk from relational data is a fundamental issue for standard neural networks. While
there are neural architectures designed to learn from sequences (e.g. LSTMs) or rectangular grids
(e.g. CNNs), it is difficult or impossible to use these classic neural architectures with data which
have more complicated structure of X, such as the graphs or, worse for the conventional neural

7 However we do note that it was the vectorized representation that stood behind much of the success of neural networks,
enabling for the highly efficient parallel processing, allowing neural networks to scale to unprecedented dataset sizes, in
turn surpassing accuracy of virtually every other machine learning model across the variety of domains.

8 Consequently, neural models utilizing the aforementioned scheme, such as CILP [16], are not, despite their popularity,
truly relational learners, as they learn from the propositional, rather than relational, representation.
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networks, if the input data are nodes in a large interconnected graph or if the samples xi reside in
a relational database.

1.2.1 Relational Learning

Learning with data samples that are rather variously structured or being part of a bigger structure
themselves (and thus interdependent) is generally covered by the area of Relational Machine Learn-
ing [18]. Relational machine learning has roots in earlier research on Inductive Logic Programming
(ILP) [19], which has traditionally been the major opposition to the trend of statistical machine
learning from the attribute-value vectors X = X1 ×X2 × . . .×Xn. ILP typically focuses on learning
logical rules from relational data, for which it uses the relational9 (predicate) language of first-order
logic (FOL) [20]. In ILP, FOL is used as a common formalism for both the input examples xi ∈ X

and hypotheses, i.e. the models M ∈ M, but also background knowledge B on the given domain
(i.e., system S), which can be elegantly incorporated to help in learning of more complex problems.
Apart from the ability to learn from relational data and seamless integration with the background
knowledge, the main advantage of ILP is the transparency to humans. This means that the resulting
models M are typically interpretable, and a syntactic and semantic language bias can be selected
prior to learning so as to restrict the form of hypothesis and their behavior.

While substantially more expressive in representation, ILP itself is not well suited for dealing
with noise and uncertainty. The uncertainty in relational learning naturally arises from the data on
many levels, from uncertainty about the attributes of an object and its type(s) to uncertainty on
membership within a relationship and the overall numbers of objects and relations in scope. To
tackle the issue, many methods arose to merge the expressiveness of mathematical logic, adopted
from ILP, and probabilistic modeling under the notion of Statistical Relational Learning (SRL) [14],
which covers learning of models from complex data that exhibit both uncertainty, within some
probabilistic framework, and a rich relational structure, captured by the (subset of) FOL formalism.
Particularly, SRL has extended ILP by techniques inspired in the non-logical learning world, such
as kernel-based methods, graphical models, or by special operators for representations equivalent
to certain strict subclasses of FOL (e.g. graphs, description logics, etc.).

problems While there have been many interesting concepts proposed within the SRL commu-
nity, the developed systems commonly lack the efficiency, robustness and deep representation learn-
ing abilities of neural networks. Moreover, apart from the increased expressiveness of FOL, they typ-
ically also inherit the extreme computational complexity of ILP, and they are only rarely selected
by practitioners to target real life problems.

1.3 problem statement

Regardless of its difficulty, the problem to be solved can be put very simply - integrate deep and rela-
tional learning to enable neural networks learn directly from structured representations as complex
as the expressiveness of relational logic. This includes learning directly from trees and arbitrary
graphs to relational databases (hypergraphs) and rich knowledge bases. Additionally, it should al-
low neural networks to elegantly exploit symbolic background knowledge in the form of relational
rules and logic theories, providing interpretable inference in turn. The integration should be tight,
systematical, and should naturally cover both the worlds, i.e. the classic deep learning and classic
ILP, as special cases.

9 We define relational and first-order logic more formally later in Section 3.1.



1.4 towards deep relational learning 7

1.3.1 Background

Noticeably, given the principal differences of the two approaches to learning, such an integration
may seem as a rather implausible patchwork. Indeed, historically the two encompassing streams
of symbolic and sub-symbolic stances to AI have evolved in a largely separated manner, with each
camp focusing on selected narrow problems of their own. Originally, researchers favored the dis-
crete mathematical logic-based approaches10 towards AI, targeting problems ranging from knowl-
edge representation, rule learning and planning to automated theorem proving. Recently however,
the field got completely dominated by the sub-symbolic techniques with distributed continuous
representations, particularly the neural networks, originally targeting statistical machine learning
problems such as classification, density estimation and generative learning.

However, as the rapid success of deep learning on large perceptual datasets slowly reaches be-
yond tangible limits, researchers start to explore increasingly ambitious goals for neural networks
to strive for, with thoroughly tuned neural architectures continuously taking over new domains
and tasks. Following upon this trend, we have seen an increasing number of neural architectures
designed to model some of the structured mechanisms that were originally considered of a rather
symbolic nature – from language modeling [22] and extracting semantics from images [7], to game
playing [5] and even theorem proving [23].

While it might seem that large neural networks are on their way to solve every AI problem at
hand, they still fundamentally lag behind the logic-based symbolic methods in terms of expressive-
ness and transparency (Section 1.1). Together, however, these two streams of competing approaches
cover absolute majority of the AI landscape, and attempts for their integration in an efficient man-
ner have become of great interest to researchers targeting highly general problems. The subject of
this thesis then falls into this exciting area of AI research.

1.4 towards deep relational learning

It has been recently proposed by several authors that incorporating relational logic learning and
reasoning capabilities into neural networks is crucial to achieve more powerful AI systems [2, 24, 25].
Indeed, we see a rising interest in enriching deep learning models with certain facets of symbolic
AI, ranging from logical entailment [26], rule learning [27], and solving combinatorial problems [28–
31], to proposing differentiable versions of the whole Turing machine [32, 33]. However, similarly to
the Turing-completeness of recurrent neural networks, the expressiveness of these advanced neural
architectures is not easily translatable into actual learning performance [34], and their optimization
tends to be often prohibitively difficult [35].

There has also been a long stream of research in Neural-Symbolic Integration (NSI) [12, 36], tra-
ditionally focused on emulating logic reasoning within neural networks [37–40]. The efforts eventu-
ally evolved from propositional [37, 41] into full first order logic settings, mapping logic constructs
and semantics into respective tensor spaces and optimization constraints [42–44]. Typically, the
neural-symbolic works focused on providing various perspectives into the correspondence between
symbolic and sub-symbolic representations and computing, targeting mostly theoretical expressive-
ness rather than practical learning applications, which is why they have been mostly marginalized
by the mainstream deep learning research.

From the data representation perspective, there has been a continuous effort of applying neural
network learning to increasingly complex relational data [45–49]. While the relational learning has
been traditionally dominated by the approaches rooted in relational logic [19] and its probabilistic
extensions [50–52], the neural networks offer highly efficient latent representation learning, which
is beyond capabilities of the symbolic systems. Neural networks on the other hand have tradition-

10 Interestingly, even the very first proposal of a computational neuron (perceptron) by McCulloch and Pitts [21] was set to
emulate logic gates.
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ally been based on fixed tensor representations, which cannot explicitly capture the unbounded,
dynamic and irregular nature of the relational data and knowledge.

To target this issue, a new approach applying the end-to-end learning paradigm to the raw rela-
tional structures, i.e. skipping the preprocessing (propositionalization) step of turning the data into
fixed tensor representations, have emerged with dynamically structured neural models. The idea
actually dates back to recursively transformed reduced descriptions [53], upon which auto-encoders
with distributed representations (embeddings) and many other works have been building [54, 55].
However, this method has been limited to certain recursive structures only, and the preservation of
information from deeper structures has been disputable [56].

Most recently, the principle has been generalized from recursive tree structures to arbitrary
graphs in the form of Graph Neural Networks (GNNs) [57, 58]. GNN models can be viewed as
a continuous, differentiable version of the famous Weisfeiler-Lehman (WL) label propagation algo-
rithm used for graph isomorphism refutation checking [59]. In GNNs, however, instead of discrete
labels, a continuous node representation (embedding) is being successively propagated into nodes’
neighborhoods, and vice versa for the corresponding gradient updates11.

These recursive [60] and Graph Neural Networks [57] introduced a highly successful paradigm
shift in computation by moving away from fixed neural architectures to dynamically constructed
computation graphs, directly following the structural bias presented by the relational input ex-
amples xi. As opposed to the discussed recurrent [32] and “tensorization” [36] neural-symbolic
approaches, this enabled to exploit the structural properties of the data more efficiently, as they are
simply directly coded into the very structure of the model.

Most recently, this paradigm has become highly popular and achieved remarkable success in
a wide range of tasks [58]. Nevertheless, there are still considerable limitations to this class of
models, stemming from the limited expressiveness of the WL test, which is only based on the
immediate neighborhood information gathered in each iteration [61, 62]. Consequently, information
about more complex relational substructures and representations cannot be properly extracted.

1.4.1 Our Approach

In our approach, we strive for a very direct integration of deep and relational learning via minimal
extensions of both. The core idea is to encode the structure and computation of neural networks in
the language of relational logic.

To provide some intuition behind the idea, it is beneficial to realize that the original concept of
deep learning was not proposed as bound to the neural networks, but rather universally to methods
modeling hierarchical composition of useful concepts, that are then reused in different paths during
the inference of target variables y from the input samples x [4]. Naturally, even this idea was not
really new, as such hierarchical abstractions are rather very common to human thinking and logic
reasoning. In fact, logic is the very science of deduction of useful concepts from simpler premises
in a hierarchical fashion. While constructing a proof in logic, auxiliary lemmas are often created to
reduce the complexity of the theory in scope in a similar fashion.

Thus, while the hierarchical levels of abstraction are typically presented by the hidden layers of
neural networks, they may also be thought of as “complicated propositional formulae re-using many
sub-formulae” (quotation by Y. Bengio [4]). This interconnection was also directly followed by, his-
torically popular, Knowledge-Based Neural Networks (KBANN) [37], explicitly demonstrating the
correspondence between the hierarchical structure of logic inference and classic feed-forward neural
networks. However, such direct correspondence was insurmountably limited to the aforementioned
propositional setting, and transferring the same principle to the relational setting has been a major
challenge researchers have been struggling with.

11 The GNN models are further discussed in detail in Section 2.4 as they are highly relevant to the proposed approach.
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Addressing the transfer of this direct neural-logic correspondence from the propositional to the
relational setting is the main contribution of our work. The main underlying insight is that to ad-
dress the relational expressiveness in neural networks, we need to step up from the classic neural
networks to a generalization of the (graph) convolutional architectures, for which we take inspi-
ration in a lifted modeling paradigm known from SRL. Consequently, in the same sense in which
propositional logic is lifted to the relational logic, we propose to lift classic neural networks to a
more expressive version we call “Lifted Relational Neural Networks” (LRNNs).

1.4.2 Lifting

Lifted modeling, also known as templating, has recently attracted significant attention in SRL [63, 64]12.
As opposed to standard machine learning methods, lifted models do not specify a particular model
architecture, but rather a template from which the particular models are being derived as a part of
the inference process itself, given the varying context of the relational input data and background
knowledge.

For example, the most popular lifted model – a Markov Logic Network (MLN) [51] may express
a general template that “friends of smokers tend to be smokers”, which then constrains the prob-
abilistic relationships in all sets of vertices corresponding to particular friends-smokers in a given
social network13. Such lifted templates are typically encoded as weighted FOL formulas. These can
be provided by domain experts, which offers a convenient way of guiding the learning process, al-
though the formulas can also be learned from data, e.g. through the ILP methods [19] (Section 1.2.1).
To make predictions, an MLN template is then combined with the particular set of facts about spe-
cific individuals to define a ground Markov network. In the example with smokers, these facts may
include instances of people who smoke and of people who are in a friendship relation. This then al-
lows to induce the smoking probabilities of people based on their social relationships, as if modeled
by a regular Markov network, yet generalizing over diverse social network structures.

Importantly, this allows the underlying models to respect the inherent symmetries in the data, such
as the equivalent meaning of the friendship relation across all the different people in the network,
by tying the corresponding parameters.14 This can significantly reduce the number of weights that
have to be learned, and allow lifted models to convey a highly compressed representation of input
information, since all the equivalent relational patterns are parameterized jointly by the single
template, which in turn allows for greater generalization. Additionally, exploiting the symmetries
of the ground models themselves can also significantly speedup the inference process15.

The salient properties of our approach then stem from the utilized strategy of applying lifted
modeling to neural networks. While this SRL technique may sound unfamiliar in the context of
deep learning, we have already seen a great success of one simple incarnation of this concept in the
popular CNNs [65], effectively following the very principle. As discussed in Section 1.1, the CNN
filters can be seen as such parameter templates, capturing symmetries in the form of translation
equivariance, while inducing weight-sharing in the respective (ground) neural networks, which can
be seen as a simple instance of the equivariant reasoning emulated by the lifted models.

However, from the proposed fully relational perspective on lifted modeling, the CNN templates
are rather narrowly tuned to the single specific transformation. As opposed to the mere position
shifts over rectangular grids in CNNs, our proposed strategy of neural network-lifting enables to
cope with the most diverse range of structural transformations, coverable by the expressiveness of

12 Although very similar principles are also being explored under different names in other fields, such as database engines
and computer vision.

13 this concept is further explained in more detail in Section 3.4.2.
14 Note the similarity with the aforementioned CNNs (discussed in Section 1.1 and later in Section 2.2)
15 which we also successfully transferred into classic deep learning to significantly speed up (graph) convolutional neural

models, as detailed in Chapter 9.
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relational logic16. This can be seen along the lines of the recent GNN evolution, yet the expressive-
ness of our framework extends even further 17, as the parameterized patterns we are learning may
compose of arbitrary relational structures, as opposed to the mere graph constituting nodes and
edges parameterized with the GNNs.

While there is certainly no lack of similar ad-hoc solutions to tweak neural networks towards
some facets of the sought after abilities of relational learning, we believe that framing the problem
explicitly in relational logic, using the lifted modeling paradigm, yields a more general, highly
expressive, and well founded learning formalism providing these abilities in a more direct fashion.

1.5 contributions

Our main contribution is the introduction of Lifted Relational Neural Networks (LRNNs) – a frame-
work that uses the lifted modeling paradigm (Section 1.4.2) for design of neural architectures with
relational learning capabilities. Similarly to the outlined MLNs (Section 1.4.2), the template in
LRNNs is represented as a set of weighted relational logic rules which, together with sets of re-
lational data samples, defined by sets of weighted literals, define sets of standard neural networks.
Consequently, different neural networks are created for different relational learning samples, yet
all these networks share their weights, associated with the rules. These rules can be very generic,
e.g. set to encode various convolutional architectures (Section 1.1) and their relational extensions,
but they can also contain more specific background domain knowledge, as known from the ILP
(Section 1.2.1). The contributions can be generally sorted into the following topics, referencing the
respective chapters in the thesis.

deep relational learning (chapter 5) While there have been other proposals from NSI
and SRL on adapting neural networks for relational learning (Section 1.4), a salient property of the
LRNNs introduced in Chapter 5, distinguishing it from these previous studies, is that, following
the lifted modeling paradigm (Section 1.4.2), we dynamically construct a different ground network
for each sample, enabling to flexibly exploit particular relational properties of the differently struc-
tured input representations. This can be seen along the lines of the recent evolution in deep learning
with popular structured models such as Recursive Neural Tensor Networks [60] and Graph Neural
Networks [58]. While these models follow a similar strategy to dynamically reflect the input ex-
ample structure in the model computation structure, they do so in a much more restricted setting.
Particularly, the structure of these models is set to follow the structure of each example exactly, lack-
ing the additional expressiveness, flexibility and (possible) knowledge provided by the relational
template. With the relational logic templates, the computation from the input data is not hardwired,
but adaptively constructed in a hierarchical fashion, reminiscent of how theorems are being proved
from simpler premises (Section 1.4.1).

latent relational structures (chapter 5) The main advantage of the presented ap-
proach is that it can effectively learn representations of latent relational structures, i.e. relational
patterns that abstract away from particular instances of objects and relationships (Section 5.2). Many
approaches in machine learning rely on finding a latent representation of the objects of interest,
e.g. by using probabilistic models, matrix factorization, or neural networks. Neural networks and
matrix factorization have proven very effective for learning latent representations, but in their stan-
dard form, they cannot be used to find latent representations in the relational settings. Probabilistic
models have been used to find latent relational representations, but the scalability of such meth-
ods is limited by the fact that they run expensive expectation maximization (EM) algorithms [66].
LRNNs allow to combine the modeling flexibility of the probabilistic models with the effective-

16 which, naturally, includes the basic CNN case, too, as demonstrated later in Section 7.2.2.
17 also, our LRNN framework was proposed earlier than most of the GNN works.
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ness of neural network learning to efficiently explore different kinds of latent relational structures.
While there have already been several works that combine propositional or first-order logic with
neural networks [16, 39, 67], to the best of our knowledge, none of these methods is able to learn
representations of latent non-ground relational structures18.

advanced neural architectures (chapter 7) While targeting integration of deep and
relational learning, one of the core desired properties for an integrated system is to keep expres-
siveness of both the worlds as a special case. While much focus has been traditionally devoted to
retain the expressiveness of the logic reasoning, considerably less attention was put on keeping
the expressiveness of the neural models themselves. Indeed, majority of the integrative approaches
are limited to basic fully-connected neural networks (e.g. [67]), or they are simply oblivious of the
used neural architecture due to loose integration [68] (e.g. [69]). Consequently, the existing modern
advances in deep learning architectures are out of scope of these integrated systems. In contrast
to the classic efforts for emulation of complex logic reasoning within simple neural networks [70],
the lifted modeling paradigm in LRNNs results in the ability to use simple relational logic programs
to capture advanced neural architectures – in a tightly integrated and exact manner. Particularly, we
demonstrate in Chapter 7 that a wide range of existing neural models, ranging from simple MLPs
and CNNs to complex contemporary GNNs, can be elegantly and efficiently covered – not only
from the perspective of expressiveness but, importantly, from the practical point of view. 19 As the
GNN models are currently at the forefront of the deep learning research directed towards struc-
tured data, we devote an extra section to compare LRNNs against specialized state-of-the-art deep
learning frameworks through the existing GNN models. We show how to easily encode the core
GNN idea by specifying the underlying propagation rules in the (weighted) relational logic, extend
it into some of the most contemporary GNN architectures and beyond.

structure learning (chapter 6) Additionally, we also contribute a symbolic structure
learning method for LRNNs, allowing to explore non-trivial latent relational learning structures
in a fully automated manner (Section 6). Based on an automatic induction of a hierarchy of la-
tent concepts, the method can be seen as inspired by the meta-interpretive learning idea [71] with
predicate invention, which was previously studied in the context of crisp ILP, where it however
faced severe limitations due to its complexity (Section 1.2.1), and has so far been applied only to
small noiseless problems. With the introduced structure learning of LRNNs, we employ a neural
variant of the predicate invention to successfully target real SRL benchmarks, as well as difficult
artificial problems, adversarially designed against greedy optimization techniques used in classic
deep learning, to prove the added value of the latent predicate invention.

scalability (chapters 9 and 10) Apart from introducing the theoretical foundations for
the integrative framework in Part iii, we devoted a substantial focus to the practical side of the
problem. Virtually all of the methods exploiting the true expressiveness of relational logic struggle
with scalability issues, which are fundamentally inherent to the representation formalism [72]. To
(partially) address these issues in terms of both runtime and memory consumption, we contribute
two principled optimization methods. Firstly, we address the (purely) symbolic part of the frame-
work by introducing a technique incorporating learned domain theories for lossless pruning of the
hypothesis search space (Section 10). While this technique significantly speeds up the structure
learning of the LRNN templates, it can be directly used to scale up any classic ILP algorithm via
pruning of hypotheses that are equivalent to those already considered. Secondly, we address the
(purely) neural part by introducing a lossless compression method designed to scale up training
of the resulting weight-sharing (dynamic) neural computation graphs (Section 9). Importantly, this

18 What we mean exactly by latent relational structures will be better explained in Section 5.2 where we present several
types of latent structures which can be used in our framework.

19 The LRNN framework can be found at https://github.com/GustikS/NeuraLogic.

https://github.com/GustikS/NeuraLogic
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technique is again usable also outside of the LRNN framework, and can be directly used to scale up
standard contemporary (convolutional) models, such as the GNNs, providing significant speedups
over contemporary frameworks.

practical applications (chapters 11 and 12) Using the basic framework in Part iii, we
demonstrate that with merely very simple templates, LRNNs are already able to achieve SotA re-
sults on classic SRL (and GNN) benchmarks, mainly in molecule classification. Within this domain,
we also showcase the use of LRNNs as a practical differentiable programming language, enabling
for elegant encoding of GNNs and their extensions, which we also demonstrate on a practical
example of learning with molecular ring representations (Section 7.5.1).

In the applications of the framework in Part v, we then briefly illustrate some other use cases
of the framework by designing various relational templates for specification of advanced learning
constructs, such as learning with latent predictive categories of attributes, entities and relations for
knowledge-base completion (Section 11.2). Lastly, we reach out to a completely different domain to
show how LRNNs can also be successfully used for learning of relational team embeddings in the
task of soccer match outcome prediction (Section 12). Some additional applications are then also
mentioned in the appendix Section C.

1.6 thesis organization

After this introductory Chapter 1, we continue with the background Part ii, where we introduce
the preliminaries of deep learning (Chapter 2) and relational logic (Chapter 3) representations and
learning paradigms. Additionally, we discuss the evolution of prior work on their integration in
Chapter 4. In the subsequent Part iii, we introduce the LRNN framework itself (Chapter 5), its
corresponding structure learning algorithm (Chapter 6), and its extended use as a differentiable
(logic) programming language (Chapter 7). Subsequently in Part iv, we introduce two optimization
techniques of lossless model compression (Chapter 9) and hypothesis space pruning (Chapter 10),
improving scalability of the framework. Note that both these techniques are also usable on their
own in the respective domains of standard deep learning and ILP, respectively. Finally in Part v,
we showcase some applications of the framework, particularly learning of predictive categories for
knowledge-base completion (Chapter 11) and relational team embeddings in soccer (Chapter 12),
and conclude in Chapter 13. Additionally, we provide some technical and implementation details,
and mentions of other applications in the appendix Part vii.



Part II

B A C K G R O U N D

In this part we introduce the necessary background preliminaries of (i) deep learn-
ing (Chapter 2) and (ii) relational logic representations (Chapter 3), and also discuss
evolution of prior work related to their proposed integration (Chapter 4).





2
D E E P L E A R N I N G

Deep learning is a machine learning approach commonly characterized by the use of multi-layered
neural networks. Similarly to other (supervised) machine learning models M, a neural network is
a mapping X →

W
Y from the input sample space (attribute-value) representations X to the output

target labels Y, parameterized by W. In the multi-layered networks, this mapping can be seen as
a hierarchical composition of (nonlinear) activation functions which, following the pattern of the
composition, can be conveniently represented as a computation graph.

A computation graph G = (N,E,F), composed of nodes N, edges E and the activation functions F,
is a general way to represent nested mathematical functions using the language of graph theory. The
graphs are directed with the information flowing from the children nodes to parent nodes, where
the children of a node N ∈ N are naturally defined as all those nodes M such that (M,N) ∈ E,
and analogically for the parents. The neural networks are then commonly conveyed by the means
of differentiable, parameterized, data-flow computation graphs G = (N,E,F,W), associated also
with a set of learnable parameters W, commonly called weights. Here, the data flowing through the
directed edges e ∈ E are being successively transformed by the differentiable activation functions
f ∈ F associated with the nodes N ∈ N, commonly referred to as “neurons”. As discussed in the
introduction, the data are then commonly represented as numeric vectors (or tensors) xk. The term
neural “layer” k is then used to refer to a set of neurons {N | depthG(N) = k} residing at the same
depth k in G1. An input layer k = 0 is then commonly used to represent the feature values x of
the input data samples (xi,yi) themselves. An output layer k = depth(G) then corresponds to the
target values y. A “deep” neural network is a graph with multiple layers in between, i.e. with
depth(G) > 3.

By adapting the weights w ∈ W, commonly associated with the edges E → W, the model
M : X →

W
Y can be trained to approximate some target function t : X → Y, representing the

original (deterministic) system S. This is done, as usual, via minimization of some given cost func-
tion (W;Dtrain,M) → R capturing the discrepancy between M and t over the set of training data
samples (xi, t(xi)) ∈ Dtrain. Owing to the differentiability of the used activation functions f ∈ F,
the parameters w ∈W of a graph G can be effectively adapted by gradient-descent routines, which
is a distinguishing feature of all successful deep learning architectures.

dynamic computation graphs In standard neural models, the structure of the computa-
tion graph G is static, and only the values xi = (x1i , . . . , xmi ) forming input to the leave nodes
{N1, . . . ,Nm} ⊂ N are used to encode particularities of individual learning samples xi ∈ D. The in-
put nodes are then associated with identity functions fj(xi) = x

j
i. In contrast, many of the advanced

relational neural models we assume in this thesis are based on dynamic computation graphs, map-
ping each xi onto a new Gi to exploit particular structural properties of each input sample. Con-
sequently, the leave nodes in these dynamic Gi’s are associated with constant functions fji = x

j
i,

outputting the associated input sample values (if any). This enables to train neural models directly
from structured data such as trees, graphs and databases.

1 This notion is somewhat complicated outside the common directed acyclic computation graphs, where the recurrent
connections are normally ignored for the sake of the notion of model depth.

15
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differentiable programming Due to the increasingly complex nature of the computation
graphs G and the operations F utilized in their nodes N, the field has been recently also referred
to as differentiable programming2, reflecting the indirectness of the computation graph encoding. The
term neural architecture is then often used to refer to common programming patterns used in creation
of these programs, reflected also in the structure of the resulting computation graphs. In this chapter,
we briefly review some of the most common and successful neural architectures used in deep
learning 3, which are later referenced throughout the thesis.

2.1 multi-layer perceptrons

A multi-layered perceptron (MLP) is the original and most common neural architecture. It encodes
a directed feed-forward graph, where the interconnections between nodes in subsequent layers k
and k + 1 follow the “fully-connected” pattern where for all Nk,Nk+1 : (Nk,Nk+1) ∈ E, i.e. a

complete bipartite graph. Moreover, each edge is associated with a unique weight as E
1:1−→ W.

Consequently, assuming the common vector form of the input data sample x, the computation
graph can be efficiently reduced to a linear series of full (dense) matrix Wk+1

k multiplications, each
followed by an element-wise application of a non-linear function fk+1, such as the common logistic
“sigmoid” (σ), hyperbolic tangent (tanh) or rectified linear unit (ReLU).

The main idea behind MLPs is then in “representation learning” of the input data x, often re-
ferred to as embedding, where one can think of outputs xk of the individual layers k as transformed
representations of the input x, each extracting gradually more expressive information w.r.t. the
output learning target y.

2.2 convolutional networks

A Convolutional Neural Network (CNN) is also a feed-forward architecture, yet not fully connected
as the MLP. The interconnection patterns in one or more sub-parts of its computation graph G are
characterized by utilizing the particular operations of “convolution” (filtering) and “pooling”, as
outlined in the introduction (Section 1.1). Given a vector input x of size n, the convolutional filter
(kernel) will also be represented by a vector c of some size c < n. Scalar products of the filter
and all the c-length subsequences of the input vector x are then successively calculated to produce
n − c + 1 scalar values. The resulting values are commonly referred to as “feature-maps”. The
second operation is the pooling, which aggregates values from predefined spatial sub-regions of the
input values (feature-maps) into a single output through application of some (non-parameterized)
aggregation function, such as the commonly used mean (avg) or maximum (max). The layers of
these operations can then be mixed together with the previously introduced layers from MLPs in
various combinations.

The main idea behind the convolution operation is the application of the same c-parameterized
filter over different sub-regions of the input, inducing equivariance w.r.t. the filter c transformation.
This enables to abstract away common patterns out of different sub-parts of the input representation.
The main idea behind the pooling operation is then to enforce invariance w.r.t. translation in the
input.

2 Note however that, despite being theoretically Turing-complete (e.g. recurrent neural networks), the learning models
themselves are rarely as expressive in practice as standard programming languages used for their creation.

3 We introduce these architectures explicitly, despite being commonly known, as we further work with the introduced
notions in detail, especially in Chapter 7.
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2.3 recursive and recurrent networks

A Recursive Neural Network (RNN)4 is a neural architecture which differs significantly from the
previous in that it is based on the dynamic computation graphs (Section 2), i.e. the exact form of the
computation graph is not given in advance. Instead, the computation graph structure Gi directly
follows the structure of each input example xi, which takes the form of a k−regular tree. This
enables to learn neural networks directly from differently-structured regular tree examples xi, as
opposed to the fixed-size tensors x (which can also be seen as graphs with completely regular grid
topologies).

The leaf nodes N0j in each input sample tree xi can be associated with feature vector values
(embeddings) xji. Every c leaf nodes xj, . . . , xj+c with the same parent node N1j in the respective
computation tree Gi are consequently combined by a given c-parameterized operation c, such as a
c-weighted dot-product, to compute the representation of the parent N1j . This combining operation
c then continues recursively for all the interior nodes, until the representation for the root node
Nk=d is computed, which forms the output of the model for xi. Similarly to the convolution in
CNNs, the parameterized combining operation c over the children nodes remains the same over
the whole tree [55]5.

The main idea behind recursive networks is that neural learning can be extended towards struc-
tured data by generating a dynamic computation graph for each individual example tree. The
learning then exploits the convolution principle to discover the underlying compositionality of the
learning representations in recursive structures.

Additionally, the basic form of the commonly known Recurrent Neural Networks [35] can then
be seen as a “restriction” of the idea to sequential structures, i.e. linear chains of input nodes6.
The computation graph G in the form of a linear chain is then successively unfolded along the
input sequence to compute the hidden representation for each node Ni based on the previous
node’s Ni−1 representation and the current node features xi (current input). The main idea behind
recurrent networks is that the hidden representation can store a form of memory or state of the
computation.

2.4 graph neural networks

Graph Neural Networks (GNN) [73]7 can be seen as a further extension of the CNN principles
to completely irregular graph structures xi = {Ni,Ei}. For that purpose, they dynamically unfold
each computational graph Gi from each input structure xi, similarly to the recursive networks.
However, a GNN is a multi-layered feed-forward neural architecture, where the structure of each
layer k exactly follows the structure of the whole input graph xi. Every node Nxi in each input graph
xi can now be associated with a feature vector (embedding), forming the input layer representation
h in the computation graph Gi as h(NGi)

(0) = features(Nxi).
8

For computation of the next layer k+ 1 representations of the nodes in Gi, each node N calcu-
lates its own value h(N) by aggregating A (“pooling”) the values of the nodes M : (N,M) ∈ Ei

4 Note that the abbreviation is also used for the recurrent neural networks, in this thesis however, we use it solely to refer
to recursive networks.

5 In some works, this architecture is further extended to use a set of different parameterizations, depending for instance
on given types associated with the nodes, such as types of constituents in constituency-based parse trees.

6 We note that modern recurrent architectures use additional computation constructs to store the hidden state, such as the
popular LSTM cells, which are more complex and do not directly follow from the input structure.

7 also known as “Graph Convolutional Networks”, which slightly differ from the original GNN proposal [57], but share
the general principles discussed.

8 Interestingly, however, this is not necessary in general, as the variance in the graph topologies of the individual examples
can already provide enough discriminative information on its own.
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adjacent in the input graph xi (“message passing”), transformed by some parametric function CW1

(“convolution”), which is being reused with the same parameterization Wk
1 within each layer k as:

h̃(N)(k) = A(k)({C
(k)

Wk
1

(h(M)(k−1))|M : (N,M) ∈ Ei}) (1)

The h̃(k)(N) can be further combined through another CW2
with the central node’s N representation

from the previous layer k− 1 to obtain the final updated value h(k)(N) for layer k as:

h(N)(k) = C
(k)

Wk
2

(h(N)(k−1), h̃(N)(k)) (2)

Note that in contrast to recursive networks, a different parameterization is typically used at each
layer. This general “aggregate and combine” [61] computation scheme covers a wide variety of the
popular GNN models, which then reduces to the choice of particular aggregations A and transfor-
mations CW . For instance in GraphSAGE [74], the operations are

h̃(N)(k) = max{ReLU(W · h(k−1)(M))|M : (N,M) ∈ Ei}

and
h(N)(k) =Wf · [(h(N)(k−1),act(k)(N)]

while in the popular Graph Convolutional Networks [75], these can be even merged into a single
step as

h(k)(N) = ReLU(Wk · avg{h(k−1)(M)|M : (N,M) ∈ Ei ∪ {N}})

and the same generic principle applies to many other GNN works [61, 76, 77].
GNNs can be directly utilized for both graph-level as well as node-level classification tasks. For

output prediction on the level of individual nodes, we simply apply some activation function on
top of its last layer representation, e.g. query(N) = σ(h(N)(d)). For predictions on the level of the
whole graph G, all the node representations need to be aggregated by some pooling operation such
as query(G) = σ(avg{h(d)(N)|N ∈ G}).

By following the same pattern at each layer k, the computation will produce increasingly more
aggregated representations, since at layer k each node N effectively aggregates representations
from its “k-hops” neighborhood. Intuitively, the GNN inference can thus be seen as a continuous
version of the popular Weisfeiler-Lehman algorithm [59] for calculating graph fingerprints used for
refutation checking in graph isomorphism testing.

A large number of different variants of the original GNNs [57] have been proposed, recently
achieving state-of-the-art empirical performance in many tasks [58, 78]. In essence, each introduced
GNN variant came up with a certain combination of common activation and aggregation functions,
and/or proposed extending the architecture with additional connections [76] or layers borrowed
from other neural architectures [79, 80], nevertheless they all share the same introduced idea of
successive aggregation of node representations. For a general overview, we refer to [58, 78].

2.4.1 Spectral GNNs

Here we discussed “spatially” represented graphs and operations. However, some (older) GNN
approaches represent the graphs and the convolution operation in spectral, Fourier-domain [58].
There the update operation is typically conveyed in the matrix form as

H(k) = f(Â×H(k−1) ×Wk−1)
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where Â is an altered9 adjacency matrix of the graph, encoding the respective neighborhoods, H(k)

contains the successive hidden node representations at layer k, andWk are the learnable parameters
at each layer. However we note that, not considering the specific normalizations and approximations
used, these again follow the same “aggregate and combine” principles, and can be rewritten accord-
ingly [61]. While theoretically substantiated in graph signal processing, spectral GNN models are
generally inadvisable as they introduce substantial limitations in terms of efficiency, learning, gen-
erality, and flexibility [58], and we do not consider them further in this thesis.

2.4.2 Knowledge Base Embeddings

Knowledge Base Embeddings (KBEs) are a set of approaches designed for the task of knowledge
base completion (KBC) [81], i.e. predicting existing (missing) edges in large knowledge graphs.
Particularly, these methods approach the task through learning of a distributed representation (em-
bedding) for the nodes. In multi-relational graphs, a representation of the edge (relation) can also
be added, forming a commonly used triplet representation of (object, relation, subject). To pre-
dict the probability of a given edge in the knowledge graph, KBEs then choose one of a plethora of
functions designed to combine10 the three embeddings from the underlying triplet [81].

2.5 other architectures

Since the modern resurgence of neural networks into deep learning in 2010 [8], many other neural
architectures have been rediscovered or newly proposed, benefiting from the substantial increase
in the parallel processing power of modern GPUs, and the ever increasing amount of available
data. These include the idea of auto-encoding, with generative models such as Deep Belief Networks
(DBN) [82] trained in a layer-by-layer manner with Restricted Boltzmann Machines (RBM) [83].
Apart from the auto-encoders, there are also more recent generative models such as Generative
Adversarial Networks (GANs) [84]. Also the principle of recursion has been very successfully ex-
ploited with more advanced versions of the basic recurrent neural architectures (Section 2.3), such as
the popular Long-Short-Term-Memory networks (LSTM) [85] and additional extensions to emulate
memory in NNs, e.g. the Neural Turing Machines [32]. Driven by the recent success in providing
state-of-the-art results for a number of tasks, a lot of attention is also dedicated into engineering
various combinations and ensembles of the deep neural architectures to pursue further accuracy
increases [7]. The most recently introduced ideas include the mechanism of attention, with the, now
extremely popular, Transformer architecture [86], which is actually very closely related, as discussed
in [87], to the previously described Graph Neural Networks (GNNs) (Section 2.4), which we cover
extensively later in Chapter 7.

9 e.g. Â = D− 1
2 (A+ I)D− 1

2 , where D is the diagonal node-degree matrix and I is an identity matrix, such as in the original
Graph Convolutional Networks [75].

10 Note that there is no need for the “aggregate” operation in plain KBEs.
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R E L AT I O N A L L O G I C

Mathematical logic is the original language of the symbolic AI approaches, which was the dominant
paradigm during the first decades in AI [88]. While there are other representation formalisms for
structured data, knowledge and processes (e.g. UML, ERM, SQL, RDF, OWL etc.), specific to dif-
ferent application domains, mathematical logic still servers as the lingua franca for studying their
expressiveness and relationships [89, 90]. Consequently, almost all the existing practical formalisms
for symbolic representations can be seen as derived from FOL.

3.1 language representation

In this thesis we target relational logic, which limits the used FOL representation to contain no
function symbols other than constants.1 While this might seem limiting, the relational logic formalism
itself already covers the widest range of existing practical learning domains with structured data
sources, such as the graphs, networks, knowledge-bases, and relational databases [89].

3.1.1 Syntax

Syntax specifies the structure, or grammar, of the logic language, which is formed from formulas. In
the relational logic used in this thesis, formulas are formed from a set of constants, a set of variables,
a set of n-ary predicates for n ∈ N, and the propositional connectives ∨, ∧ and ¬ [20]. Constant
symbols represent objects in the domain of interest (e.g. alice) and will be written in lower-case.
Variables range over the objects in the domain and, to prevent confusion, will be written with a
capitalized first letter (e.g. Person).

A term is a constant or a variable. An atom is an n-ary predicate symbol, for some n ∈N, applied
to a tuple of n terms (e.g. friends(X, bob)). A ground atom, also called a proposition, is an atom which
only has constants as arguments (e.g. friends(alice, bob)). A literal φ is an atom or the negation of an
atom; a literal φ is called positive if it is an atom, and negative otherwise. A clause α is a universally
quantified disjunction of literals ∀x1...∀xn : φ1 ∨ ... ∨φk, such that x1, .., xn are the only variables
occurring in the literals φ1, ...,φk. Further, we mostly omit explicit quantifiers, but any variables
appearing in formulas are implicitly assumed to be universally quantified.

A clause containing exactly one positive literal is called a definite clause. A definite clause is
sometimes also referred to as a rule, and a set of definite clauses is sometimes called a logic program.
To help interpretability, a rule h∨¬b1 ∨ · · ·∨¬bk will usually be written as h ← b1 ∧ · · ·∧ bk, as
is common in the context of logic programming [91]. We refer to the literal h as the head of the rule
and the conjunction b1∧ · · ·∧bk as the body. A clause which consists of a single atom is also called
a fact.

1 At some places, we will state explicitly that we consider only function-free theories when there is a risk of confusion.
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3.1.2 Semantics

Semantics is an assignment of “meaning” to the, syntactically valid, logical sentences, which forms
foundation for the logical entailment.

3.1.2.1 Propositional

The Herbrand base of a set of first-order formulas P = {α1, . . . ,αm} is the set of all ground atoms
which can be constructed using the constants and predicates that appear in this set (while respecting
the arity of each predicate). A Herbrand interpretation of P, also called a possible worldω, is a mapping
that assigns a truth value to each element from P’s Herbrand base. This can also be seen simply
as a set of ground atoms (those which are true). We say that a possible world ω satisfies a ground
atom a, written ω |= a, if a ∈ ω. The satisfaction relation is then generalized to arbitrary ground
formulas through the following cases:

• If a is a ground atom then ω |= a iff a ∈ ω.

• If a is a disjunction a1 ∨ ... ∨ an then ω |= a iff there is an i ∈ {1, ..,n} such that ω |= ai.

• If a is a conjunction a1 ∧ ... ∧ an then ω |= a iff ω |= ai for every i ∈ {1, ..,n}.

• If a is a negation ¬a0 then ω |= a iff ω 6|= a0.

A set of ground formulas is satisfiable if there exists at least one possible world in which all
formulas from the set are true; such a possible world is called a Herbrand model. Further, given two
(sets of) formulas P and Q, we write P |= Q if every model of P is also a model of Q. Each set of
definite clauses has a unique Herbrand model that is minimal w.r.t. the subset relation ⊂, called its
least Herbrand model.

The least Herbrand model of a finite set of ground definite clauses can be constructed in a finite
number of steps using the immediate-consequence operator [92]. This immediate consequence operator
is a mapping Tp : I → I from Herbrand interpretations to Herbrand interpretations, defined for a
set of ground definite clauses P as Tp(ω) = {h | (h← b1 ∧ · · ·∧ bk) ∈ P, {b1, ...,bk} ⊆ ω}.

3.1.2.2 Relational

Now consider a set of non-ground definite clauses P. A substitution θ is a mapping from variables
to terms. For a clause α, we write αθ for the clause {φθ |φ ∈ α}, where φθ is obtained by replacing
each occurrence in φ of a variable v by the corresponding term θ(v). A grounding substitution is
then a substitution in which each variable is mapped to a constant. Clearly, if θ is a grounding
substitution, then for any literal φ it holds that φθ is ground. The grounding G of a clause α from P

is the set of ground clauses G(α) = {αθ1, ...,αθn} where θ1, ..., θn is the set of all possible grounding
substitutions, each mapping the variables occurring in α to constants appearing in P. Note that if
α is already ground, its grounding is a singleton. The grounding of P is then given by G(P) =⋃
α∈PG(α). The least Herbrand model of P is then defined as the least Herbrand model of G(P).

3.2 logic programming

Logic programming is a declarative programming paradigm for computation with logic programs
P = {α1, . . . ,αm}, which are used to encode data and knowledge about a given domain. Syntacti-
cally, the rules h← b1 ∧ · · ·∧ bk in the program P are commonly written as

1 h : − b1 , . . . , bk.
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Figure 1: An example of a graph structure encoded in relational logic (left), with two possible proof trees of
the query path(d,a) derived from it (right).

where each comma “,” stands for conjunction, and “: −” replaces the logical implication, which now
reads right-to-left. Recall that facts are definite clauses consisting of a single atom, i.e. rules with no
body. Note that such (ground) facts may be conveniently used to represent structured data, such as,
but not limited to, various graphs2.

Example 1 For graph structured data, we can simply define a binary predicate edge/2 with a set of atoms
edge(X, Y) for all adjacent nodes X, Y in the graph, while also retaining the orientation of each edge (given
by the order of the terms). Additionally, we may also use other propositions to assign attributes to the nodes
such as red(X) etc.3. The rules then commonly express generic (conjunctive) patterns to be searched within
the data (Section 3.3.1.1). An example of such encoding of graphs within logic is displayed in Figure 1 - left.

The computation in logic programming is then generally carried out by the means of the logical
entailment. This paradigm is particularly expressive with relational programs P containing (sets of)
interconnected non-ground clauses, where the entailment needs to be resolved (recursively) by the
means of substitution(s) (Section 3.1.2.2), enabling to compose general and reusable programming
patterns to target structured data problems.

Example 2 For example with the graph structured data (Example 1), we can define (recursive) patterns in
P such as

1 pa th ( X,Y ) : − edge ( X,Y ) .
2 pa th ( X,Y ) : − edge ( X,Z ) , pa th ( Z,Y ) .

which then automatically binds to a (possibly) multitude of substructures in the graph(s) via different substi-
tutions Pθ for the variables {X, Y,Z} upon execution of P (Figure 1).

Particularly, to target the assumed relational logic setting (Section 3), we consider the language of
Datalog [93] – a restricted function-free subset of Prolog [94]. Datalog is a domain specific language
used in advanced deductive database engines [89]. In contrast with Prolog, Datalog is a truly declar-
ative language, where the order of clauses and their literals does not influence execution, and it is
also guaranteed to terminate. Separate efficient execution engines can then be used for computing
the entailment [95].

While restricted, it is, importantly, still a relational language, and one can thus use logic variables
in the clauses α ∈ P to compose abstract relational patterns. We will further extensively use this

2 We later exploit the fact that relational logic is not limited to graphs while generalizing Graph Neural Networks in
various ways in Section 7.3.1.

3 See Section 7.1.1.1 for further options stemming from such an encoding.
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non-ground expressiveness in Part iii, while extending Datalog towards relational learning and
differentiable programming4.

3.2.1 Semantics

As mentioned, the Datalog paradigm allows for separation of the programs P from the underlying
evaluation engine, which leads to different, but equivalent, semantics.

3.2.1.1 Model-theory

Here, the semantics of a Datalog program P is defined by the means of its unique minimal model ω.
As outlined in Section 3.1.2, this minimal model can be constructed in a finite number of repeated
applications of the immediate consequence operator Tp. The operator Tp then expands the current
set of true atoms, i.e. the current Herbrand interpretation I, with their immediate consequences
as prescribed by the rules in P. It is initially applied to an empty interpretation I = ∅, iteratively
adding the head atoms of each ground rule instance αθ, the body of which is satisfied by the current
interpretation Ii as

1: I1 = Tp(∅)

2: I2 = Tp(Tp(∅))

3: I3 = Tp(Tp(Tp(∅)))

. . .

n: In = Tnp (∅)

The minimal model In = ω of P then corresponds to the least fixed-point n of Tp, where no more
facts are being added to Ii=n. For instance, following up on the Example 2 (Figure 1), such Ii=2
model will contain an atom path(., .) for all the paths in the graph (with length 1 and 2).

This simple bottom-up method is called naive evaluation, but with some additional optimizations
it is actually being used in practice. Likewise, we follow this approach, with some optimizations, it
in the evaluation part of the proposed LRNN framework (Chapter 5) and the associated methods
in Chapters 6 and 10.

3.2.1.2 Proof-theory

Similarly to querying a standard (non-deductive) database with SQL, in logic programming one
may also provide a query atom q to drive the evaluation engine towards a logical proof of the
specific target q. For instance, following up again on the Example 2, we can ask a query:

1 ?− path ( d,a ) .

While this could be achieved by computing the minimal model ω of P in the bottom-up fashion
(Section 3.2.1.1) and checking whether q ⊆ ω, if all we need is to find any derivation of q from P,
that might be very inefficient. Consequently, we commonly employ a top-down “proving” strategy,
which starts at the query atom q, and searches through the rules in P for a rule h← b1, . . . ,bn for
which there is some θ such that hθ = q. This search then continues recursively for the (possible)
body atoms b1θ, . . . ,bnθ of the rule that now need to be derived from P. Ultimately, the atoms to
be proved can be found directly as facts in P, forming the leaves of the induced recursive proof-tree

4 This is a distinguishing feature from many other procedural differentiable programming languages, such as PyTorch or
TensorFlow, which are effectively propositional in this sense (Section 8.2).
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of q from P, if successful. This procedure is visualized for the two possible derivations of path(d,a)
in Figure 1 - right.

This top-down, backward rule-chaining approach is then commonly used in Prolog and theorem
provers. Likewise, it was also used in some earlier versions [96, 97] of the proposed LRNN frame-
work, too. We note that in the supervised learning setting, we do evaluate LRNN programs w.r.t. a
target query atom. However, since the LRNN semantics5 requires evaluation of all possible deriva-
tions of each such query, we ultimately found it more efficient to employ (an optimized version of)
the bottom-up approach from Section 3.2.1.1.

3.3 relational learning

Relational machine learning (RML) is a subfield of machine learning targeting learning from sam-
ples that are variously structured or being part of a bigger structure themselves [18]. For that, RML
commonly relies on the relational logic language as the representation formalism for both the data
and models6, which is rooted in the earlier research on Inductive Logic Programming [19].

3.3.1 Inductive Logic Programming

As briefly outlined in the introduction Section 1.2.1, Inductive Logic Programming (ILP) uses (up
to first-order) logic representations to target logical concept learning. The goal of ILP learning is to
find a hypothesis (a set of rules) M ∈ M that covers all positive examples x ∈ X+ but no negative
example x ∈ X−, where the notion of “covering” is realized through some form of the logical
entailment |= relation. Additionally, one can also take into account a given background theory B,
typically also in the form of a set of (definite) clauses. Procedurally, this is typically implemented
via some form of search through the structured7 space of all possible hypotheses M.

More formally, an ILP learning from a set of positive X+ and negative X− examples X (repre-
sented also in FOL) can be defined as follows [19]:

Definition 1 Given a language describing hypotheses Lh, instances Li, a (optional) background theory
B, and the “covering” relation between Lh and Li, find a hypothesis M ∈ Lh such that ∀x ∈ X+ :
covers(B,M, x) = true and ∀x ∈ X− : covers(B,M, x) = false.

There are different ways to represent learning problems in ILP. While all commonly use defi-
nite clause logic as the hypothesis language Lh, they typically differ in the notion of an example
w.r.t. the covering relation. This results into different learning settings [102], such as learning from
entailment:

Definition 2 Let M and B be clausal theories and x be a clause. Then we say that M covers x (w.r.t. B) if
and only if M∧B |= x.

and learning from interpretations:

Definition 3 LetM be a clausal theory and x a Herbrand interpretation. Then we say thatM covers x under
interpretations if and only if x |=M.

Note that, apart from inclusion of the background theory B, which is optional, the two settings
differ in that the examples in the latter learning from interpretations setting must be fully specified,

5 which will be defined in Section 5.1.1
6 While there are relational learning frameworks based outside of the logical formalism, such as relational gaussian pro-

cesses [98] or probabilistic relational models [99], the most well-known relational learning systems are based on logic,
such as Markov logic networks [51], Bayesian logic programs [100], or Progol [101].

7 commonly structured into a hierarchical lattice w.r.t the subsumption �θ relation (Section 3.3.1.1).
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i.e. the truth value of every ground atom must be known. However, in most real-life problems the
examples indeed are fully given, and so learning from interpretations is typically a fully sufficient
learning setting, which we also mostly consider in this thesis8.

a note on complexity As discussed, ILP is a declarative, interpretable and highly expressive
learning paradigm. However, these characteristics come with a major drawback of extreme compu-
tational complexity. For instance, the introduced general ILP learning problem is undecidable in
general, and the complexity of most of the less general (decidable) versions still falls into the NP-
complete (or worse) category. To (partially) mitigate the issue in practice, the common strategy is to
dispense with the generality of the used FOL language or completeness (correctness) of hypothesis
evaluation, typically by selecting a bias restricting the hypotheses to have certain limited form (as
we do in Chapter 6) or by replacing the logical entailment with θ-subsumption.

3.3.1.1 θ-Subsumption

Generally, subsumption is a binary (“is-a”) relation between concepts used for categorization of
object classes from general to specific. In logic, we then commonly use θ-subsumption [103] to
categorize clauses into such taxonomies [104]. For that, we often treat the clauses α as sets of their
corresponding literals {φ1, . . . ,φk}. We can then define θ-subsumption as follows.

Definition 4 If α and β are clauses, we say that α θ-subsumes β (denoted α �θ β) if and only if there is
a substitution θ such that αθ ⊆ β.

As mentioned in the ILP Section 3.3.1, θ-subsumption is commonly used as a replacement for the
generally undecidable9 entailment |= relation. Note that if α �θ β holds for clauses α and β then
α |= β, but the converse does not hold in general10.

This notion is also particularly useful in relational pattern matching [72], where the pattern11 α is
being searched within the structure β, where the latter is commonly ground, as in the ILP setting of
learning from interpretations (Definition 3). Specifically for the graph-structured data (Example 1),
the θ-subsumption relation αθ ⊆ β between a non-ground clause (pattern) α and a ground clause
β directly corresponds to subgraph homomorphism matching used in graph pattern mining.

Example 3 Assume the following non-ground pattern (clause) α

α = edge(X, Y), red(Y), edge(Y,Z)

and a ground structure (clause) β, representing the attributed (colored) graph from Example 1

β = black(a), red(b),black(c),black(d), edge(b,a), edge(c,b), edge(d,b), edge(d,a)

Then α θ-subsumes β, because for θ = {X/c, Y/b,Z/a} it is true that αθ ⊆ β.

a note on complexity Deciding θ-subsumption between two clauses is an NP-complete prob-
lem. It is closely related to constraint satisfaction problems (CSP) with finite domains and tabular
constraints [105], conjunctive query containment [106] and homomorphism of relational structures.
The formulation of θ-subsumption as a constraint satisfaction problem has been exploited in the ILP
literature for the development of fast θ-subsumption algorithms [107, 108]. CSP solvers can also be
used to check whether two clauses are isomorphic, by using the primal CSP encoding described in
[107] together with an alldifferent constraint [109] over CSP variables representing logical variables.
In practice, this approach to isomorphism checking can be further optimized by pre-computing a

8 particularly in Chapter 10

9 Note however that deciding θ-subsumption is still a difficult, particularly an NP-complete, problem.
10 However, it does hold for non-selfresolving function-free clauses.
11 here we actually use De-Morgan’s laws to convert the disjunctive clause into conjunctive pattern while flipping the signs

of all the literals (see Section 10.2 for further details).
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directed hypergraph variant of Weisfeiler-Lehman (WL) coloring [59] (where terms play the role of
hyper-vertices and literals the role of directed hyper-edges) and by enriching the respective clauses
by unary literals with predicates representing the labels obtained by the Weisfeiler-Lehman proce-
dure, which helps the CSP solver to reduce its search space.

3.4 statistical relational learning

It can be noted that the described ILP setting is an idealized problem which focuses only on the
search aspect of learning, and does not take into account the generalization performance of the
learned programs on unobserved data [72]. Also, such ILP systems do not cope well with noise, or
the possibly inherent uncertainty, in a given learning domain. While there have been modifications
proposed to address these issues, such as setting a tolerance for misclassification rate of the learned
theories on training data, or to restrict the theories to some syntactically limited class or by their
length [101], the means to cope with these principled issues are rather limited in plain ILP.

To tackle these issues in a more principled way, many methods arose to merge the expressiveness
of logic and statistical machine learning under the area of Statistical Relational Learning (SRL) [64,
110]. SRL methods commonly approach the task by extending the ILP learning setting in two ways.
Firstly, they provide numerical annotations W to the clauses, typically encoding some probabilis-
tic information. Secondly, they relax the covering relation into a probabilistic (soft) setting as fol-
lows [110]:

Definition 5 Given an example x, a hypothesis M, and (optionally) a background theory B, the probabilistic
covers(B,M, x) relation returns a numeric value, typically reflecting the likelihood P(x|M,B) of the example
x given M and B .

The learning task can then be seen as an optimization search for a hypothesis (model) M maxi-
mizing the likelihood of the training data, or a similar objective function, e.g. employing some form
of regularization. Different choices of the probabilistic covers relation then lead to different SRL
approaches [110], akin to the aforementioned learning settings in ILP (Section 3.3.1).

Following this view, the statistical ML and ILP can be elegantly unified within the SRL frame-
work, since both can be seen as special cases of the same setting. Particularly, using the deterministic
corner case of the probabilistic covering relation yields classic ILP, while restricting the logic lan-
guage to (uniformly structured) propositional clauses, and providing only coverable12 examples (i.e.
∀x ∈ X : P(x) > 0), yields classic statistical ML. The SRL task can then be commonly divided into 2

subproblems:

1 Parameter learning – where only the parameters W of the theory (model) are being learned
from data (akin to classic statistical ML, as we do in Chapter 5)

2 Structure learning – where also the form of the logical theory M itself is a subject to learning
(akin to classic ILP + ML, as we do in Chapter 6)

There is a great variety of SRL methods [14], typically based either on imposing a probabilistic
interpretation on logical inference (programming), such as Stochastic Logic Programs [111] and
ProbLog [52], or utilizing representations defining probabilistic (graphical) models using a rela-
tional (logic) language, with Markov Logic Networks (MLNs) [51] and Bayesian logic programs
(BLPs) [50] as the main representatives. We will now detail these two main streams of SRL ap-
proaches a bit further to provide background for our proposed LRNN framework (Chapter 5) which
borrows ideas from both the paradigms.

12 Note that in SRL we can now also distinguish 2 different notions for a negative example – one that yields a small
enough value (akin to statistical ML), and one that is not covered at all (akin to ILP), often also referred to as a “counter-
example” [110].
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3.4.1 Probabilistic Logic Programming

This SRL paradigm can be seen as extending logic programming (Section 3.2) with probabilistic
choices [110]. This notion covers works such as Stochastic Logic Programs [111], Prism [112], and
Independent Choice Logic (ICL) [113]. Here we detail a bit further the, arguably most popular,
example of this paradigm called ProbLog [52], which can be seen as a probabilistic extension of the
logic programming language (Section 3.2).

In Problog, facts F for probabilistic predicates may be annotated with a probability value, indicating
the degree of belief that any ground instance Fθ of F is true. It is further assumed that the Fθ are
marginally independent. The probabilistic facts are then augmented with a logic program defining
further predicates. Let us demonstrate the setting on an example (adapted from [52]).

Example 4 Let us again follow up on the Example 1, displayed in Figure 1, by annotating the facts, corre-
sponding to the edges in the graph, with probabilities as follows:

0.9 :: edge(c,b). 0.7 :: edge(b,a). 0.6 :: edge(d,b). 0.9 :: edge(d,a).

Additionally, we assume the (simplified) definition of the path(X, Y) relation from Example 2

Problog then defines a probability distribution on (ground) proofs, i.e. executions of the logic program
(Section 3.2.1.2), simply as the product of the probabilities of the (ground) clauses (here, facts) used in the
proof. For instance, for the (only) proof of the goal query path(c,a), using the (marginally independent) facts
edge(c,b) and edge(b,a), the probability calculation for P(path(c,a)) will yield 0.9× 0.7.

Note that while the calculation was simple in the case where there is but a single ground proof
derivation of a query, the situation is much harder when there are multiple proofs, such as for the
derivation of P(path(d,a)) (Figure 1 - right), which consists of the edge edge(d,a)  0.9 itself as
well as the path edge(d,b)∧edge(b,a) 0.6×0.7 = 0.42. The complexity follows from the fact that
the different proofs are not commonly mutually exclusive, and their probabilities thus cannot be
combined easily (e.g. summing the 0.9+ 0.42 obviously does not yield a probability value). The re-
sulting problem can be reduced to computing the probability of a disjunctive normal form boolean
formula P(edge(d,a)∨ (edge(d,b)∧ edge(b,a))), which is, however, a known “disjoint-sum” NP-
hard problem. Additional restrictions thus have been proposed to enforce mutual exclusiveness of
the ground proofs and, consequently, improve the inference efficiency [112].

The discussed distribution at the level of individual facts F can be generalized to the possible
world semantics (Section 3.1.2), specifying a probability distribution on interpretations, following
from the “distribution semantics” introduced in [112].

3.4.2 Lifted Graphical Models

The other main stream of SRL approaches are arguably Lifted Graphical Models [63], representing
functions assigning probabilities to Herbrand interpretations (Section 3.1.2), with popular instances
such as Markov Logic Networks (MLNs) [51] or Bayesian Logic Programs (BLPs) [50].

The lifted models lift representation of probabilistic models the same way that propositional logic
is being lifted by FOL, so that rather than reasoning about particular instances, i.e. random vari-
ables (e.g., pixelAt(2, 3)), we can reason about whole groups of instances, also called parametrized
random variables (e.g., ∀X : pixelAt(2,X)). As compared to standard graphical models, this allows
for greater generalization, by tying parameters13 of varying number of objects, and also speedup
of inference, by exploiting symmetries of the ground model. Depending on the use of underlying
probabilistic model, lifted models can seen as either directed (e.g., Bayesian logic) or undirected
(e.g., Markov logic), which can both be albeit generalized by the notion of factor graphs [63].

13 Note the principal similarity of lifted (graphical) models with Convolutional Neural Networks (Section 1.1 and 2.2).
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w2 : ∀X : smokes(X) =⇒ cancer(X)

w1 : ∀X, Y : friends(X, Y) =⇒ (smokes(X)⇐⇒ smokes(Y))

Figure 2: A simple ground MLN from Example 5 unfolded for two constants {a,b} (adapted from [51]).

The distinguishing feature of particular lifted models is the choice of representation of random
variables and their grouping via shared parametrization, for which object oriented (ERM), struc-
tured query (SQL), and FOL languages exist. Here we will again focus on the logic-based for-
malisms, which are also by far the most prominent, with MLNs as the most important example14.

An MLN is given by a set of constants, a set of predicate symbols, and a set of FOL clauses
(“features”) associated with weights, commonly also referred to as “soft constraints” over the set
of possible worlds Ω. That is if a possible world ω does not satisfy a logical clause, it becomes
less probable, with the associated weights reflecting how strong each constraint is. Let us consider
the hackneyed example of a “friend-smokers” MLN (adapted from [51]), encoding the probabilistic
relationships between smoking and cancer, as well as the social influence of friends on the smoking
habit.

Example 5 Let us have the following weighted clauses

w1 : ∀X, Y : friends(X, Y) =⇒ (smokes(X)⇐⇒ smokes(Y))

w2 : ∀X : smokes(X) =⇒ cancer(X)

Here the clauses encode (i) the intuition that having a friend-smoker increases one’s probability of smoking,
and (ii) that smokers are more likely to have cancer.

Similarly to Problog, these clauses then provide means for assigning probabilities to possible
worlds (Section 3.1.2). Particularly the probability of a possible world ω w.r.t. an MLN is given by

P(Ω = ω) =
1

Z
exp

(∑
i

wi ·nFi(ω)
)

where nFi(ω) is the number of groundings (substitutions) of Fi present in ω, wi is the associated
weight of the clause Fi, and Z is a normalization constant, also known as partition function, sum-
ming the expression over all the possible worlds as

∑
ω∈Ω exp

(∑
iwi · nFi(ω)

)
to form a proper

probability distribution over the possible worlds Ω.
An MLN can be also viewed as a template for constructing ordinary Markov networks. Together

with a Herbrand domain (here a set of constants), an MLN corresponds to an ordinary Markov
network, where the nodes (random variables) correspond to all the possible atoms in the respective

14 While there are other systems besides MLNs, such as Bayesian logic programs [50], Probabilistic relational models [99],
and relational dependency networks [114], most of these can be emulated within the framework of Markov logic. Sim-
ilarly, there is also an interesting correspondence of MLNs to the introduced Problog (Section 3.4.1) language, further
detailed in [115].
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Herbrand base formed from the given predicates and constants (Section 3.1.2.2). Further, for every
ground instance Fiθ of a clause Fi in an MLN there will be an edge between any pair of atoms φ1θ,
φ2θ that occurs in Fiθ. The random variables (nodes) are then binary, reflecting simply whether
the respective atom is present in the Herbrand interpretation or not. For demonstration, a Markov
network obtained by grounding the aforementioned friend-smokers MLN for the constants (repre-
senting people) {a,b} is visualized in Figure 2. Note that for different (Herbrand) domains, different
ground Markov networks would be produced from the same MLN (knowledge-based) template.

The correspondence with ordinary Markov networks then makes it possible to use standard
inference methods such as Gibbs sampling, and the weights of Markov logic networks can then
be learned from data via maximization of some objective function, such as a weighted pseudo-
likelihood [51].



4
P R I O R W O R K

This background chapter provides a high-level (historical) survey into the main related research ar-
eas, with a particular focus on the crossover works between relational learning and neural networks.
As the combination of these two categories seems attractive from many viewpoints (Section 1.4), rel-
evant works have arisen from different backgrounds and communities. Particularly, it has been the
Statistical Relational Learning (SRL) community, the community of Neural-Symbolic Integration
(NSI), and recently also the “main-stream” deep learning (DL) community. Although aspects of the
particular methods often overlap across the communities, in this chapter we attempted to sort the
works accordingly, in order to provide an insight into the evolution of the diverse body of the prior
work combining relational logic representations with neural networks.

We notify in advance that in this chapter we only discuss works that were published before the
proposed LRNN framework (2015), and a further discussion of the more recent1, and also more
closely related, works will be presented in more detail in Chapter 8, after introduction of the LRNN
framework itself, where we can better explain the differences from our approach.

4.1 statistical relational learning

For their explicit logical approach to relational inference, the SRL methods are highly relevant to
our proposal. These include the discussed probabilistic logic programming methods (Section 3.4.1),
sharing the weighted definite clause representation formalism and the means of performing logic
inference, and the lifted (graphical) models, sharing additionally the strategy of using the weighted
logic theories as a template for unfolding standard “ground” machine learning models.

As already introduced in Section 3.4.1, Problog [52] is a probabilistic extension of Prolog [94],
specifying a probability distribution over all possible non-probabilistic subprograms of the given
Problog program. Building on top of the logic programming formalism (Section 3.2), which it also
extends with numerical parameters, the LRNN framework is syntactically very similar to Problog.
The main difference is in the explicit probabilistic interpretation of the numerical parameters in a
Problog program, as opposed to the mere (neural) weights used in LRNNs.

A closely related [115] approach to Problog is that of MLNs [51]. As introduced in Section 3.4.2,
an MLN is a first-order knowledge base with a (scalar) weight attached to each formula (clause),
and can be viewed as a template for constructing and parameterizing ground Markov network cor-
responding to its Herbrand interpretation(s). As opposed to classic Markov Networks, this strategy
enables MLNs to learn from arbitrarily structured data and to flexibly and modularly incorporate
varying domain knowledge [51]. Moreover, from the plain computation point of view, MLNs can
also be used as a compact language to specify very large Markov networks by efficiently capturing
the (possible) distribution symmetries.

In a similar fashion, Bayesian Logic Programs (BLPs) can be seen as a generalization (lifting)
of Bayesian networks [116], designed to overcome limitations of their propositional nature. For
that purpose they also use the language of definite clause logic, and establish a mapping between
ground atoms and random variables, for which they again define probability distributions over

1 This separation can also be largely understood as before and after the modern “deep learning era”.
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the FOL interpretations, and between the immediate consequence operator [92] in logic and the
dependency relation in the directed graphical model [117]. For the directed nature of the used
definite clauses (rules) and the underlying statistical model (Bayes networks), BLPs can be seen as
even more closely related to the LRNNs.

Very similarly, Dependency Networks [118] which, in contrast to the Markov or Bayesian net-
works, can be seen as an approximate representation of the underlying joint distribution with a set
of independently learned conditional probability distributions, were also lifted into the relational
setting [119].

4.1.1 Distinctions

The lifted modeling paradigm from SRL served as the main inspiration for the proposed LRNN
framework. The implied characteristics, together with the associated benefits as compared to the
underlying ground models, are shared by the LRNN framework, too. The major distinction is that
we utilize neural, rather than Markov or Bayesian, networks as the underlying ground model spec-
ification. Consequently, LRNNs are not a probabilistic model, which can be seen as the most major
limitation of LRNNs. Nevertheless, this choice also alleviates the computational complexity associ-
ated with normalization of probability values in the SRL models, enabling us to scale to much larger
problems.2 Also, none of these existing lifted graphical models is particularly well suited for learn-
ing parameters of latent relational structures, similarly to how latent features are learned in deep
learning models, as they typically need to employ expensive expectation maximization algorithms
for the purpose.

4.2 neural networks for relational data

Historically, the most common way to tackle learning from structured, relational data has been
propositionalization [15], which proved reasonably effective in practice [72]. Propositionalization is
a framework based on aggregating relational features (e.g. subgraphs) out of relational data into
standard attribute-value vectors. A number of practical works utilized this preprocessing scheme
with classic neural networks, which was sometimes presented as an “integrated” learning sys-
tem [16, 120, 121].

A more deeply integrated approach towards structured data representations with NNs was based
on learning embeddings, i.e. distributed fixed-size numerical (vector) representations of the symbolic
structures. This idea dates back to Linear Relational Embeddings [122] (due to Paccanaro and Hin-
ton), with follow-up papers proposing different schemas to improve learning [123] and extend the
embedding of symbols to their compositions [22]. This particular work then became widely pop-
ular as “word2vec” [22]. Extensions to embeddings of structures, such as trees, then date back to
recursive auto-associative memories (RAAMs) [124], followed by [124–126], where varying struc-
tures were transformed into vectors by training special auto-encoder neural networks [127]. Similar
line of work arose also from the idea of reduced descriptions [53] (also due to Hinton), with some
more recent representatives [128–131]. The representation of a relation in these works is typically
learned as a correlation or similarity measure, parametrized e.g. by a tensor [55], between couples
of entities, each of which is already encoded by a vector. This approach later became popular as
Recursive Neural Networks (Section 2.3).

In contrast to the logic-based approaches, an issue with standard neural networks is that to bind
(substitute) an abstract variable to some particular (ground) entity, and by those means reason
about its relations to other entities, the network is required to emulate some sort of memory. A
breakthrough in these attempts were Long-Short Term Memory networks (LSTM) [85], which can
learn very long causal dependencies through adaptive memory gates, emulated by a recursive

2 The reasoning here is completely analogical to the differences between classic neural networks and graphical models.
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circuit of neurons, and truncating the gradient where it does not harm (Section 2.5). This gave rise
to an interesting line of work tackling the issue of solving relational, and related combinatorial,
problems by introducing differentiable external memory addressing and operations. This paradigm
was made famous with the Neural Turing Machines (NTMs) [32] architecture, referring to the
Turing-completeness of recurrent neural networks [132], demonstrating effective learning of very
long distance relations, although mostly limited to sequential data structures.

From the relational learning perspective, various modifications to adapt classic neural networks
have been proposed in order to cope with certain facets of relational representations. As the most
simplistic case, multi-instance learning, i.e. learning from (independent) sets of examples, was ad-
dressed in [133], where the authors presented a neural model designed to learn from sets of feature-
tuples. However, this model also introduced a considerable aggregation bias as it relied completely
on an existence of a single tuple signature within a set.

Later, in a more involved work on using NNs for relational learning [45], followed by [134], the
authors suggested that an important desired capability of statistical relational learners, that is not
met in most of the systems, is to be able to combine selection and aggregation bias, i.e. to search
for patterns (selection) and learn how to aggregate statistical (numerical) information out of them
(aggregation) at the same time, for which they proposed Relational Neural Networks (RelNNs) [45],
with a structure based on a particular relational database schema from which the samples were to
be drawn. It was a combination of feed-forward and recurrent networks used to process the sample
tuples together with their related tuples. Their focus was thus on learning from the related (multi-
instance) tuple-sets, and the particular way they used to deal with the key problem of feeding the
possibly unlimited number of tuples into the limited network structure was by feeding them in a
sequence. To learn the appropriate aggregation function, they repeatedly fed these sequences into
(parts of) the recurrent network, while continuously reshuffling in order to avoid the unwanted
order-sensitive bias.

A similarly motivated method was then proposed in the (original) Graph Neural Network model
(GNN) [57], a simplified version of which recently became very popular in the deep learning com-
munity (Section 2.4). The original GNNs can actually be seen as a generalization of the RelNNs,
removing the restriction of the latter posed on the input graphs to be acyclic and rooted in a sin-
gle node. The two methods were further reviewed and compared in [135] and [56]. An interesting
primer on the topic can also be found in the work of [136], introducing a common framework uni-
fying some ideas of coping with the structured data learning. For further background on related
works in this category we refer to [137], providing a comprehensive review of relational learning
with (knowledge) graphs.

Other, more loosely related, lines of work in the deep learning community include the CNNs [9]
and techniques of indirect encoding [138], exploiting patterns and regularities in neural connec-
tions to create more compressed representations of large neural networks, for which they can be
perceived as a (simplified) instance of the proposed lifting (templating) strategy. However these
works are naturally geared towards learning from propositional, rather than relational, data.

4.2.1 Distinctions

The distinction to all the methods based on propositionalization [16, 120, 121], or any other type
of fixed-form data preprocessing, is clear. In these methods, some information about the original
structure is always lost as long as the structure is nontrivial, and the features have to be some-
how crafted in advance. A salient aspect of our framework is that it allows learning straight from
relational samples, rather than creating intermediate attribute vectors.

The (dynamically) structured embedding-based models [55, 57, 128–130], directly following the
structural bias of the input relational samples in the form of symbols, trees and graphs, are very
closely related. The main distinctions w.r.t. these can be clarified in terms of expressiveness. Par-
ticularly, virtually all of these models can be emulated within the proposed LRNN framework (as
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we show later in Chapter 7.2), but not vice versa. The underlying reason is that these models are
missing the means for definition of the lifted template, as utilized in LRNNs, which introduces the
additional flexibility and expressiveness. Consequently, all of these structure-embedding methods
are limited to learning from only certain types of relational data structures.

A distinction from the advanced neural architectures utilizing differentiable memory opera-
tions [32] is much more ambiguous, but can be viewed in terms of efficiency. While the Turing
completeness of the underlying recurrent NNs can be seen as a strong argument, similarly to the
universal approximation theorem [139], it by no means addresses the efficiency of learning [34],
which tends to be prohibitively difficult in these [35]. The distinction of our proposal, backed di-
rectly by the relational subset of FOL, is in the explicit logical reasoning, which does not need to
be approximated through the neural emulation. Thus, with the integrative approach, we do not
attempt to reinvent existing capabilities of logical, or combinatorial, reasoning within neural net-
works, but try to directly provide extensions of both.

4.3 neural-symbolic integration

On the border of the neural network computation and symbolic representation areas, there has been
a (rather small) community of Neural-Symbolic Integration (NSI) for learning and reasoning [140],
working towards combination of the neural learning and logic reasoning principles. Naturally, this
is highly relevant to the proposed topic, and so we introduce the evolution of the NSI domain in a
bit more detail in the following (sub-)sections.

4.3.1 Propositional

Within the NSI area, early attempts to integrate the logic and connectionist systems have mainly
been restricted to propositional logic. These go back all the way to the pioneering work by Mc-
Culloch and Pitts [21] from 1943, presenting the fundamental principles of encoding propositional
logic statements into neural networks and, from the opposite side, extracting the network’s behavior
back in the form of propositional expressions. The idea was based on the, now commonly known,
fact that logical connectives such as conjunction, disjunction and negation can be easily encoded
by binary threshold units with weights. By those means they proved that there is a one-to-one cor-
respondence between such networks and finite state automata, and an extension to the weighted
automata was given later [141].

There have been a number of systems following this paradigm of translating logic programs into
neural networks developed in the ’80s and ’90s. The idea was to perform the translation in a way
such that the network will settle in a state corresponding to a valid model of the original program
P [142]. The key proposal was to represent logic programs by the means of their associated semantic
consequence operator Tp [92] (Section 3.1.2), which was implemented in a network Np rather than
encoded directly by the programs. It was shown that every logic program can be implemented using
a 3-layer network of binary thresholds. The function of Tp, encoded in the corresponding network
Np, then maps encodings of Herbrand interpretations ω onto itself Tp(ω)→ ω, producing connec-
tionist computation of the semantics of P when applied in an iterative manner (Section 3.2.1.1). This
original idea resulted into many works investigating its different possibilities, mainly by replacing
the originally used threshold units [142] with differentiable sigmoidal activation functions, which
in turn made the network model trainable by standard gradient descent methods.

This approach also covers the popular Knowledge-Based Artificial Neural Network (KBANN)
system [67]. KBANN is a hybrid learning system built on top of connectionist learning techniques
that maps, in the presented spirit, problem-specific “domain theories”, represented by proposi-
tional logic programs, into neural networks, and then refines this reformulated knowledge using
backpropagation. A closely related approach was presented in Connectionist Inductive Lerarning
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and Logic Programming system (CILP) [120, 121], completing the learning and reasoning cycle by
providing corresponding algorithms for knowledge extraction back from the network.

Some further works to mention in this category include symmetric neural networks [143], and
automated inferencing and connectionist model [144], and a work on a sound approach to symbolic
knowledge extraction from trained neural networks [145].

4.3.2 Intermediate

A completely different strategy that emerged within NSI was trying to simulate forms of “reflex-
ive reasoning”, inspired by the human ability to perform variety of cognitive tasks with extreme
efficiency, providing decisions in almost instantaneous time. A prominent approach from this cate-
gory was presented in the SHRUTI system [146], showing how a connectionist network can encode
facts and rules involving n-ary predicates and variables, and how to perform a “reflexive” type
of inferences upon those. The relational knowledge base in SHRUTI was encoded by clusters of
cells connected into a sort of dependency network. The binding of variables in the model could
then be obtained by time-synchronization of activities of neurons and the inference mechanism
was encoded by means of rhythmic activity over them. While proposed as a (very non-traditional)
first-order reasoner and learner, the phase-encoding mechanism suggested in the work actually
restricted the first-order language [147] to contain only constants and “multi-place” relation sym-
bols [148]. This meant that a single rule could not be be freely instantiated in multiple places within
the network, considerably limiting the capabilities of SHRUTI, which was later addressed in [149].
Moreover, it did not originally address the learning part of NSI, and only very basic learning capa-
bilities were added later [150].

Another system combining restricted subsets of FOL with neural networks was ROBIN [151], a
structured neural network model capable of partial inference requiring variable bindings and rule
application. It was somewhat similar to SHRUTI, but used signatures instead of phase coding, and
was also unable to truly capture structured objects (only constants).

A work presenting parallel unification algorithm and an automated reasoning system for horn
clauses, implemented in a feed-forward neural network, was then presented in the Connectionist
Horn Clause Logic (CHCL) system [152]. However, this system also suffered from similar restric-
tions on copying formulas (or parts thereof), again limiting its ability to generate new terms.

The introduced CILP [120, 121] system was also followed by an extension to CILP++[16], a neural
learning system utilizing the FOL representation. The representation was however converted into a
propositional form through a selected (bottom-clause) propositionalization technique [15], prevent-
ing CILP++ from actually capturing relational information in data structures, and so the learning
and reasoning part of the system was still effectively propositional. While the number of existing,
mostly propositional, works attempting to reach some level of neural-symbolic integration has been
vast, we refer to [153] for a more comprehensive survey over the NSI field.

4.3.3 First order

NSI works extending the propositional models to the relational, or full first-order, logic settings
have been comparably scarce. As opposed to the propositional setting, there is the major obstacle
of encoding the possibly infinite variations of the FOL interpretations into the necessarily finite
neural network model [148]. A work following from [142] presented an attempt for expansion of
connectionist approach to FOL programming in [154] by approximating the FOL program by its
finite ground (propositional) subprograms, encoded in the same manner as [142], and showing that
for certain programs this leads to arbitrarily accurate encodings.

A more direct approach to capture FOL with NNs was introduced in [155], which later be-
came very prominent in the NSI community. The work was again based on the idea that logic
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programs can be represented by their associated single-step immediate consequence operators Tp
(Section 3.1.2). However, while in the propositional case the variables of the finite interpretation
were possible to be simulated by the (finitely many) nodes of the network directly, for the FOL
case, infinite interpretations had to be treated. The core solution to deal with this problem was
introduced in [155], where the authors proposed to encode the (possibly infinite) interpretations
of a logic program P by real numbers R, in such a way so as to exploit the natural ability of neu-
ral networks for processing these. That is the operator Tp was mapped to a function f : R 7→ R

defined on the (subset of) real numbers encoding interpretations of the program P, which could
in turn, under certain conditions, be approximated by a (sufficiently large) feed-forward network
with sigmoidal activation functions. This idea was then exploited and broadened into increasingly
expressive classes of programs and logic formalisms in a number of subsequent works [12, 156,
157].

A very different work, more closely related to our proposal, designed a technique forming a
class of Radial Basis Function networks directly from a flat relational rule set in a system called
First-Order Neural Networks (FONN) [39], which was further exploited in [158, 159]. The relational
capabilities in this model operated very naturally by binding the network structure to the relational
samples through substitution (Section 3.1.2.2), similarly to the proposed LRNNs. However the in-
puts in FONN were directly aggregated to produce a shallow, single-layer network. Also FONN
did not deal with aggregative type of reasoning as the patterns grounded from the used formulae
were all existentially quantified.

Some more exotic, and so far not much investigated, proposals to model FOL programs in-
cluded [160], using insights from fractal geometry to construct iterated function systems with at-
tractors corresponding to fixed points of the semantic consequence operators, and works exploring
fibring neural networks for a similar purpose [161]. Finally, works focusing on fuzzy logic inter-
pretations of the necessary transformation of logical theories into the numerical domain of neural
networks, such as detailed in [162], are generally related to the proposed semantics of LRNNs
(Section 5.1.3), as well as many of the works within NSI.

4.3.4 Distinctions

Although there have been many works proposed as neural (first-order) logic reasoners and/or learn-
ers within the NSI community, all the methods introduced before the LRNN framework differ from
it quite fundamentally. The main common theme in NSI was trying to find some uniform model
of a logic program (or the semantic operator Tp thereof) represented by some sort of static neural
network architecture, where full symbolic processing functionalities should emerge from the under-
lying neural structure or inference processes. In contrast, the most salient property of our approach
is that the ground network structure depends not only on the relational rule set but also on a par-
ticular learning example, i.e. different networks are dynamically constructed for different examples
in order to exploit their particular relational properties. This lifted modeling strategy was known
in SRL but unexploited in NSI. Consequently, it is somewhat difficult to categorize the LRNN
framework within the proposed NSI categorization dimensions [12], studying the correspondences
between logic programs and (static) neural models. From one perspective, it might be considered
as a hybrid, technical, application-oriented approach [70] due to our focus on practicality, utilizing
existing (SRL and DL) techniques. Yet from a different perspective, it actually provides complete
integration in the original NSI sense of [21].

We note that for the propositional case, the NSI idea of direct correspondence between logic pro-
grams and static neural networks, as introduced already by McCulloch and Pitts [21], is completely
feasible, elegant and efficient. Consequently, the propositional systems such as KBANN relate very
closely to our framework (i.e. they can be emulated within LRNNs as shown in Section 7.2.1.1).
Nevertheless, with the unbound interpretations of the FOL programs, exploitation of this direct
translation of a program P into a static network model Np (e.g. with the CORE method [155]) has



4.3 neural-symbolic integration 37

so far been of only theoretical interest. To capture the principally infinite variety of the FOL pro-
gram interpretations, encoding into (a vector of) real numbers was proposed in NSI, relying on the
universality of function approximation by a neural network [139]. Yet this universality, similarly to
the discussed Turing universality of recurrent NNs (Section 4.2.1), does not always come with effi-
ciency [34] (many other models have been proved as universal approximators [163]), and examples
of effective extrapolation (generalization) of this encoding of FOL interpretations by some neural
network architecture are yet to be presented. Consequently, most of the previously introduced first-
order NSI methods focused solely on deductive reasoning, whilst learning capabilities in these were
either very limited or not present at all.

As opposed to the approach of numeric interpretation encoding, we actually follow the original
(propositional) program interrelation very closely. The ability of coping with the possibly infinite
variations of the FOL interpretations then comes directly from the fact that we do not use a sin-
gle static neural model, as commonly done in NSI, but rather utilize the lifted modeling strategy
(Section 1.4.2). This effectively resolves a key issue identified in the NSI community as the “vari-
able binding problem” [148]. As opposed to most of the introduced, interesting yet rather abstract,
approaches proposing temporal synchronization [146] with matching in firing networks, binding
of activation functions [164] or transformations to approximate variable-free representations [156],
each coming with a respective class of restrictions, we simply directly bind the variables to ground
structures by the standard logical means (Section 3.1.2.2). Consequently, we retain the correctness
of the (purely) logical inference, as well as the efficiency of neural representation learning of the
symbolic structures (Section 4.2.1).





Part III

T H E F R A M E W O R K

In this part we discuss the proposed framework itself. Firstly in Chapter 5, we intro-
duce the formalism and inner workings of the framework, and demonstrate some novel
modeling paradigms enabled by integrating the neural learning with relational logic
templating. Secondly in Chapter 6, we extend the framework with structure learning of
the logical templates, allowing for a completely automated learning process. Thirdly in
Chapter 7, we demonstrate the framework from a new perspective of differentiable logic
programming to show benefits of such an approach, in contrast to standard deep learn-
ing methods, with a particular focus on graph neural network models and frameworks.
Lastly in Chapter 8, we discuss the more recent body of work related to the framework.





5
L I F T E D R E L AT I O N A L N E U R A L N E T W O R K S

In this chapter, we describe the Lifted Relational Neural Networks (LRNNs) – a machine learning
framework that uses the lifted modeling paradigm (Section 1.4.2) for deep relational learning, which
is the main contribution of this thesis (Section 1.5). Similarly to the other lifted models known from
SRL (Section 3.4), LRNNs are represented as sets of weighted relational logic rules, used to describe
the structure of a given learning setting. Together with a set of weighted relational facts, commonly
used to describe a learning sample, these weighted rules then define a standard, also referred to as
“ground”, neural network, whose outputs can be used for predicting truth-value of given (relational)
queries, corresponding to target labels in standard supervised learning.

During learning, a separate ground neural network is dynamically unfolded from the template for
each training and testing sample. The structure of these networks is obtained through grounding
(Section 3.1.2.2) of the relational rules w.r.t. the constants that appear in the data samples. The
weights of the ground networks are then determined by the weights of the relational rules. Crucially,
the weights of different ground neurons that were constructed from the same relational rule are
tied in our framework, similarly to how weights are shared in the lifted graphical models from
SRL (Section 3.4.2), or how weights are tied together by application of the convolutional filters in
CNNs (Section 2.2). Naturally, the weights are also shared across the different networks, and so
weight-updates performed for one training example are reflected in networks produced for other
examples. This allows the lifted model to be trained directly from arbitrary relational data using
efficient gradient-based optimization routines known from standard deep learning (Chapter 2).

The framework then provides a flexible way for implementing and combining a wide variety of
modeling concepts. In particular, the use of relational logic allows for a declarative specification of
latent relational structures, which can then be efficiently discovered in a given data set using deep
learning. Besides the increased (relational) expressiveness, an important advantage of classic lifted
models, including LRNNs, is that they can make explicit which symmetries exist in a domain, and
thus reduce the number of weights that have to be learned. Another advantage is that the logic
formulas can be provided by domain experts, which also offers a convenient way of incorporating
background knowledge (Section 3.3.1) and guiding the learning process towards certain paradigms1,
although the formulas can also be learned from data, e.g. through the ILP methods.2

The most salient properties of LRNNs then stem from the used strategy of lifted modeling, where
different ground neural networks are unfolded from the relational template to exploit each exam-
ple’s particular relational properties. While there have been previous works on dynamically embed-
ding varying relational input sample structures (Section 4.2), and works mapping logic programs
(templates) into neural architectures (Section 4.3), to our best knowledge none of the previous works
exploited both at the same time, as we do in LRNNs. Note that while the background on related
works preceding the LRNN framework was already introduced in Chapter 4, we will also further
discuss related works that appeared more recently in Chapter 8.

This chapter is further structured as follows. Section 5.1 formally introduces LRNNs, explains
how a ground network can be constructed for a given sample, and how the weights of an LRNN

1 as further detailed in Chapter 7

2 as further detailed in Chapter 6
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can be learned. Subsequently, Section 5.2 illustrates some of the modeling constructs that can be
encoded using LRNNs. Finally, Section 5.3 presents experimental evaluation, with conclusions in
the subsequent Section 5.4.

5.1 the framework

In this section, we formally introduce the framework of LRNNs. We define the representation lan-
guage, describe the translation into neural models and how to use them for inference. We then
discuss variant semantics with the choice of activation functions and negation, and detail the learn-
ing process.

5.1.1 Definition

A lifted relational neural network (LRNN) N is a set of weighted definite clauses, i.e. a set of pairs
(Ri,wi) where Ri is a definite clause and wi ∈ R. For an LRNN N, we write N∗ to denote the
corresponding set of definite clauses without weights, i.e. N∗ = {C | (C,w) ∈ N}.

5.1.1.1 Grounding

As already mentioned in the introduction, LRNNs are seen as templates for creating ground neural
networks, which will be obtained by standard grounding G(N∗) (Section 3.1.2.2) of the logical view
N∗ of the weighted LRNN template N. The resulting ground networks will (among others) contain
a neuron for each considered ground clause from N∗. Since it is clearly beneficial not to create
unnecessarily large networks, it is important to avoid including any ground clauses that are not
relevant (i.e. those that are not active in the least Herbrand model). In practice, however, most of
the rules in the standard grounding G(N∗) will be irrelevant, as their body can never be satisfied.
For that we define restricted grounding as follows.

Definition 6 A restricted grounding GR(N∗) limits the grounding G(N∗) to those rules which are “active”,
i.e. whose body is satisfied in the least Herbrand model H of N. It is defined by GR(N∗) = {hθ ← b1θ∧

· · ·∧ bkθ | (h← b1 ∧ · · ·∧ bk) ∈ N∗ and {hθ,b1θ, . . . ,bkθ} ⊆ H}.

We further denote such restricted grounding of a LRNN template N by N.

Example 6 Let the LRNN N be defined as follows:

N ={(mother(C,M)← parent(C,M)∧ female(M), 1),

(father(C, F)← parent(C, F)∧ male(F), 2),

(female(alice), 1), (parent(bob, alice), 1), (parent(eve, alice), 1)}.

The grounding of N is then given by:

N ={(mother(bob, alice)← parent(bob, alice)∧ female(alice), 1),

(mother(eve, alice)← parent(eve, alice)∧ female(alice), 1),

(female(alice), 1), (parent(bob, alice), 1), (parent(eve, alice), 1)}.

Note that N does not contain the predicates male/1 or father/2 as they do not appear in least Herbrand model.

Procedurally, the grounding N of an LRNN N is based on the generic (semi-naive) bottom-up3

routine introduced in Section 3.2.1.1, with some additional optimizations. Particularly, while build-
ing the least Herbrand model of N∗, we employ an efficient θ-subsumption engine to find the valid

3 We note that there is also a top-down version of the CSP-inspired grounder, that has been used in some previous
experiments [97], the original version of which is detailed in [96].
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substitutions of each relevant rule in the current Tp iteration. This engine, adopted from [108], is in-
spired by CSP techniques, including backtracking search with forward checking, a variable selection
heuristic and randomized restarting strategies.

5.1.2 Neural Networks

The neural network corresponding to an LRNN N is then constructed as follows.

5.1.2.1 Neurons

The neurons that appear in the network correspond to logical constructs, such as atoms, facts and
rules. Specifically, the network contains the following types of neurons:

• For each ground atom h occurring in N, there is a neuron Ah, called an atom neuron.

• For each ground fact (h,w) ∈ N, there is a neuron F(h,w), called a fact neuron.

• For every ground rule (cθ ← b1θ∧ · · ·∧ bkθ,w) ∈ N, there is a neuron R(cθ←b1θ∧···∧bkθ,w),
called a rule neuron.

• For every (possibly non-ground) rule (c← b1 ∧ · · ·∧ bk,w) ∈ N and every grounding h = cθ

of c that occurs in H, there is a neuron Aggh(c←b1∧···∧bk,w), called an aggregation neuron.

5.1.2.2 Weights and Connections

We now describe how the different neurons are connected, and how their outputs are defined.
Intuitively, the neural network computes for each ground atom h a truth value, which is encoded
by the output of the atom neuron Ah. To obtain these truth values, the network propagates values
in a way which closely mimics the immediate consequence operator4. In particular, when using the
immediate consequence operator, there are two ways in which h can become true: if h corresponds
to a fact, or if h is the head of a rule whose body is already satisfied. Similarly, the inputs of the
atom neuron Ah consist of the fact neurons of the form F(h,w) and aggregation neurons of the form
Aggh(c←b1∧···∧bk,w). The output of an atom neuron with inputs i1, ..., im is given by g∨(i1, ..., im),
where g∨ is an activation function that maps the inputs to a real-valued output. Different choices
are possible for g∨, as will be discussed in detail in Section 5.1.3.

A fact neuron F(h,w) has no input and has the value w as its output. The output of the aggrega-
tion neuron Aggh(c←b1∧···∧bk,w) intuitively expresses how strongly h can be derived using the rule
c← b1∧ · · ·∧ bk. Note that there can be several groundings of the rule that have the atom h in the
head, when the body of the rule contains variables that do not appear in the head. This is why we
need to distinguish rule neurons, which correspond to individual groundings of rules, from aggre-
gation neurons, which group together all groundings of a rule that have the same head. Specifically,
the inputs of the aggregation neuron Aggh(c←b1∧···∧bk) are all rule neurons R(cθ←b1θ∧···∧bkθ,w) for
which cθ = h. The output of this aggregation neuron is given byw ·g∗(i1, ..., im), where i1, ..., im are
its inputs, g∗ is an activation function, andw is the weight of the corresponding rule. Note that while
we will assume throughout this chapter that the weight of a rule and the value g∗(i1, ..., im) are
combined using multiplication, in principle other combination operators are also possible. The rule
neuron R(cθ←b1θ∧···∧bkθ,w) intuitively needs to fire if the atoms b1θ, ...,bkθ are all true. Accord-
ingly, its inputs i1, ..., ik are given by the atom neurons Ab1θ, ...,Abkθ, and its output is g∧(i1, ..., ik),
with g∧ being a third type of activation function. An overview of the different types of neurons and
their interconnections is shown in Table 5, where we write o(N) to denote the output of neuron N.

4 In fact, it is possible to precisely characterize the behavior of the neural network by using extensions of the immediate
consequence operator for multi-valued logics [165, 166].
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Table 1: Overview of the process of constructing a neural network from a given LRNN N.

Type of neuron Notation Output

Atom neuron Ah g∨(o(F(h,w)),o(Agghα1), ...,o(Agghαm))

Fact neuron F(h,w) w

Rule neuron R(cθ←b1θ∧...∧bkθ,w) g∧(o(Ab1θ), ...,o(Ab1θ))

Aggregation neuron Aggh(c←b1∧···∧bk,w) w · g∗(o(Rα1), ...,o(Rαm))
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Figure 3: Left: visualization of the rules from the LRNN template N from Example 7 (omitting the ground
facts). Right: the corresponding ground neural network. Atom neurons are denoted by “∨”, rule
neurons by “∧” and aggregation neurons by “∗”, the remaining neurons are fact neurons.

Example 7 Let us consider the following LRNN:

N ={(foal(A)← parent(A,B)∧ horse(B),wm), (foal(A)← sibling(A,B)∧ horse(B),wn),

(horse(dakotta),w1), (horse(cheyenne),w2), (horse(aida),w3),

(parent(star, aida),w4), (parent(star, cheyenne),w5), (sibling(star, dakotta),w6)}.

Figure 3 shows the LRNN N from the example, together with its ground neural network. To visualize the
creation of the neural network, colors are used to denote unique predicate signatures, while rectangles group
the neurons that have been derived from the same ground rule.

5.1.2.3 LRNNs as Neural Network Templates

To use LRNNs in practice, we typically start from a set of rules P and some labelled examples.
The labelled examples are used to learn weights for the general rules in P, as will be explained in
Section 5.1.6. This process leads to a trained LRNN N which contains weighted rules, but does not
contain any ground facts. Each time we want to use this LRNN, we then first add a set of weighted
ground facts M that describe the specific example about which we want to make a prediction. In
this way, for each prediction we make, a different ground neural network is constructed, with a
potentially very different structure. This process makes LRNNs similar in spirit to lifted graphical
models, and rather different from normal neural network frameworks.

Example 8 We consider an LRNN N containing rules for predicting the toxicity of molecules, based on
conformations of the atoms contained in them and their bonds. For example, it may be beneficial to assign
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Figure 4: Two example molecules (left), described by surrounding sets of ground facts M1 and M2, and a
(loose) visualization the LRNN template N (right) from Example 8, composed of weighted rules
aimed at describing general relational features of molecules, such as graph1, to be learned through
the corresponding weights.

atoms to some latent groups. Assuming we want to consider two latent groups, this can be accomplished
using the following rules:

wo1 : gr1(X)← O(X) wn1 : gr1(X)← N(X) ... wh1 : gr1(X)← H(X)

wo2 : gr2(X)← O(X) wn2 : gr2(X)← N(X) ... wh2 : gr2(X)← H(X)

The weightwo1 , for instance, represents the degree to which oxygen atoms (O) belong to the first latent group.
This membership degree is learned based on training data, i.e. all we need to specify is that we want to consider
two latent groups as the basis for making predictions and that none of the atoms O,N, ...,H is excluded a
priori from belonging to these groups. From the latent groups of atoms, we can now construct relational
patterns, such as small chains, trees or general graphlets. For instance, the following rule describes a small
relational pattern where an atom from gr1 is connected to an atom from gr2 through a bond (represented by
the predicate b):

wf1 : toxic← gr1(A)∧ b(A,B)∧ gr2(B) (3)

In general, there would be different rules with toxic in the head, each encoding a different relational pattern
in the body. Which of these relational patterns is actually predictive of toxicity is then again learned from
training data. For example, if (3) was found to be predictive, then wf1 would receive a high value after
training; otherwise, it might be set as 0. A rough visualization of the idea behind this template N is displayed
in Figure 4 - right.

Let M1 and M2 be two sets of (weighted) facts, each describing a given molecule, i.e. the particular confor-
mations of specific atoms and bonds (Figure 4 - left). To use the LRNN N for predicting the toxicity of these
molecules (after its weights have been trained), we construct the ground networks of N ∪M1 and N ∪M2,
and for both of the resulting ground neural networks we compute the output of an atom neuron corresponding
to the literal toxic. The ground neural networks for the two example molecules and template, visualized in
Figure 4, are then displayed in Figure 5. As can be seen from this figure, the neural networks for the two cases
are different in both size and structure, which is a result of the fact that N∗ ∪M∗1 and N∗ ∪M∗2 have different
Herbrand models.

5.1.3 Activation Functions

The behavior of an LRNN crucially depends on how the activation functions g∧, g∨ and g∗ are
chosen. Intuitively, g∧ should behave like a conjunction, in the sense that the atom neuron for h
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Figure 5: The two neural networks N ∪M1 and N ∪M2 grounded from the single LRNN N and the two
example molecules from Example 8. Atom neurons are denoted by “∨”, rule neurons by “∧” and
aggregation neurons by “∗”, the remaining neurons are fact neurons.
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should only receive a high weight from the rule neuron for h ← b1 ∧ · · ·∧ bk if the atom neurons
for b1, ...,bk all have a high output value. Similarly, g∨ and g∗ should intuitively behave like dis-
junctions; the reason why we need two types of disjunctive activation functions will become clear
below. One possibility for choosing the activation functions is to draw inspiration from the field
of fuzzy logic, where extensions of logical connectives to real-valued arguments have been widely
studied [167]. In particular, if all input weights are between 0 and 1, such fuzzy logic connectives
could straightforwardly be used. For example, in accordance with Gödel logic, we could choose the
activation functions as follows:

g∧(b1, ...,bk) = min(b1, ...,bk)

g∗(b1, ...,bm) = g∨(b1, ...,bm) = max(b1, ...,bk)

Alternatively, using the connectives from product logic, we obtain:

g∧(b1, ...,bk) = b1 · ... · bk
g∗(b1, ...,bm) = g∨(b1, ...,bm) = 1− (1− b1) · ... · (1− bk)

Another popular alternative are the Łukasiewicz connectives:

g∧(b1, ...,bk) = max(b1 + ... + bk − k+ 1, 0)

g∨(b1, ...,bm) = min(b1 + ... + bm, 1)

g∗(b1, ...,bm) = max(b1, ...,bk)

Note that g∨ and g∗ in this case correspond to the two types of disjunctions that are used in
Łukasiewicz logic. An advantage of using fuzzy logic connectives is that LRNNs can then be seen
as fuzzy logic programs. In particular, the predictions of an LRNN N are then precisely given by
the truth degrees of the corresponding atoms in the least Herbrand model of N, viewed as a fuzzy
logic program. However, using these fuzzy logic connectives also has two important drawbacks.
First, gradient-based learning is considerably less effective with such operations, compared to e.g.
sigmoidal activation functions. Second, it would be useful to consider parametrized families of
activation functions, such that a specific activation function could be chosen based on training
data. The latter issue could in principle be addressed by using continuous families of fuzzy logic
connectives, such as the Frank family of t-norms, which is parametrized by a real value, and has
the three aforementioned examples of fuzzy logic conjunctions as special cases. However, as this
would further complicate gradient-based learning, in this chapter we will focus on more standard
activation functions, and sigmoidal functions in particular.

Specifically, we will consider two classes of activation functions, which will be useful in slightly
different types of applications. The first class is defined as follows.

Definition 7 (Max-Sigmoid Activation Functions) The Max-Sigmoid (MS) collection of activation func-
tions are defined as:

g∧(b1, . . . ,bk) = sigm

a ·
 k∑
i=1

bi − k+ 1+ b0




g∗(b1, . . . ,bm) = max
i
bi

g∨(b1, . . . ,bk) = sigm

a ·
 k∑
i=1

bi + b0




where a,b0 ∈ R are parameters.
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Figure 6: A crude approximation of Łukasiewicz conjunction (left) and disjunction (right) by respective sig-
moidal activation functions for the use in LRNNs. A diagonal view of x1 = x2 is embedded to
detail the level of approximation of each operator.

The parameters a and b0 are typically fixed, although they could also be determined using train-
ing data (see Section 5.1.6). When learned from training data, they help to ensure that we select
an activation function that is appropriate for the domain being modelled. When the inputs are
between 0 and 1, the parameters a and b0 in the definition of g∧ and g∨ can be chosen such
that these activation functions approximate the Łukasiewicz connectives. To illustrate this, the func-
tions sigm

(
a · (b1 + · · ·+ bk − k+ 1+ b0)

)
and a · sigm

(
a · (b1 + · · ·+ bk + b0)

)
, with b0 = −0.5

and a = 6, are compared with the Łukasiewicz conjunction and disjunction, respectively, in Figure
6. The g∗ activation function groups different groundings of the same rule with the same head. If
we think of the bodies of these rules as patterns, choosing g∗ as the maximum means that we are
simply looking for the best match. This view is illustrated in the following example.

Example 9 Let us consider the following LRNN with the activation functions from the Max-Sigmoid family:

N = {(hasBrightEdge← isBright(E), 1),

(isBright(E)← edge(E,U,V)∧ bright(U)∧ bright(V), 1),

(bright(U)← yellow(U), 2), (bright(U)← red(U), 1), (bright(U)← blue(U), 0.5)}.

Note that hasBrightEdge is a predicate of arity 0. Let us also consider a set G describing a specific graph with
colored vertices.

G ={(edge(e1, v1, v2), 1), (edge(e2, v2, v3), 1), (edge(e3, v3, v4), 1), (edge(e4, v4, v1), 1),

(red(v1), 1), (blue(v2), 1), (yellow(v3), 1), (yellow(v4), 1)}

The output of the atom neuron AhasBrightEdge only depends on the “brightest edge”, which in this case is e3.
This is because the aggregation function g∗ is g∗(b1, . . . ,bm) = maxi bi. Note that any colored graph that
contains an edge connecting two yellow vertices would lead to the same output. Similar kinds of LRNNs
could be useful in practice, for instance, to detect molecules which contain a substructure that is similar to a
prescribed pattern. Instead of colors, we would then model physico-chemical properties of atoms (e.g. partial
charge) and instead of graph edges we would describe bonds in molecules.

In the next example, we illustrate how using a sigmoidal function for g∨ leads us intuitively to
accumulate the evidence coming from different rules with the same head.
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Example 10 Consider the following LRNN with the activation functions from the Max-Sigmoid family:

N ={(highPressure(X)← stressed(X), 1), (highPressure(X)← obese(X), 1),

(highPressure(X)← exercises(X),−1)}

and the set of weighted facts P = {(stressed(alice), 1), (obese(alice), 1), (stressed(bob), 1), (exercises(bob), 1)}.
Outputs of aggregation neurons for rules with the same head are combined using the activation function g∨.
In this particular example, if we construct the ground LRNN of N ∪P then the output of the atom neuron
AhighPressure(alice) will be higher than the output of the atom neuron AhighPressure(bob), because alice is stressed
and obese whereas bob is just stressed and exercises.

We now give an example of a scenario where the Max-Sigmoid class of activation functions is not
appropriate.

Example 11 Let us consider the following simple LRNN for predicting which individuals are infected with
the flu:

N ={(hasFlu(A)← friends(A,B)∧ hasFluDiagnosed(B), 1)}

and a set of weighted ground facts P about a group of people and their friendships. If we constructed the
ground neural networks of N ∪P using the activation functions from the Max-Sigmoid family then the
prediction of whether an individual has the flu would be entirely based on the existence of at least one person
who was already diagnosed with the flu. It would obviously be more meaningful to base the predictions on the
fraction of one’s friends who were diagnosed with the flu.

The next definition introduces a family of activation functions that are appropriate for situations
such as the one in the previous example.

Definition 8 (Avg-Sigmoid Activation Functions) The Avg-Sigmoid (AS) collection of activation func-
tions are defined as:

g∧(b1, . . . ,bk) = sigm

a ·
 k∑
i=1

bi − k+ b0




g∗(b1, . . . ,bm) =
1

m

m∑
i=1

bi

g∨(b1, . . . ,bk) = sigm

a ·
 k∑
i=1

bi + b0




An advantage of the Avg-Sigmoid family over the Max-Sigmoid family is that the functions from
the Avg-Sigmoid family are everywhere differentiable, which simplifies learning. Of course, a wide
variety of other families of activation functions can be used for LRNN learning, but in this chapter
we will limit ourselves to the two considered families.

Finally note that, in principle, a different activation function could be used for every neuron. For
example, we may have some rules that are aimed at detecting the existence of a pattern, suggesting
the use of a maximum, while for other rules we may want to accumulate the evidence provided
by different rules, suggesting the use of a summation or average. We could also consider a setting
where the different activation functions are learnable, e.g. by tuning the value of the parameter
b0. Note, however, that the latter could also be simulated in the basic framework, by adding an
additional atom to each rule body and learning the weight of that atom instead.
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5.1.4 Negation As Failure

There is a close connection between LRNNs, on the one hand, and (multi-valued extensions of)
logic programs, on the other hand. However, from a logic programming point of view, the syntax
of LRNNs is quite limited, as negation is not considered. In particular, negation-as-failure is a central
notion in most logic programming frameworks [91]. The idea is to use rules such as a← b∧ not c,
which intuitively encodes that we can derive a if b is true, unless we can prove that c is true (i.e.
c is an explicit exception to the default rule “if b then normally a”). In general, logic programs
with negation-as-failure may no longer have a unique least Herbrand model. This effectively makes
these logic programs non-deterministic, and thus unsuitable as a basis for LRNNs in general.

A logic program with negation-as-failure P is called stratified if there exists a partition P =

P1∪ ...∪Pn such that for each rule a← b1∧ ...∧bk∧not bk+1∧ ...∧not bk+l in Pi it holds that the
predicates used in the atoms bk+1, ...,bk+l do not occur in the head of any of the rules in Pi∪ ...∪Pn
[168]. It is easy to verify that stratified logic programs have a unique least Herbrand model. It turns
out that we can easily generalize LRNNs to cases where the corresponding logic program N∗ is a
stratified logic program with negation-as-failure. To this end, we define the grounding of such an
LRNN N as

N = {(hθ← b1θ∧ · · ·∧ bkθ∧ not bk+1θ∧ . . . ,∧not bk+lθ,w) : {hθ,b1θ, . . . ,bkθ} ⊆ H

and (h← b1 ∧ · · ·∧ bk ∧ not bk+1 ∧ not bk+l,w) ∈ N}

where H is the least Herbrand model of N∗. Note that we do not put any constraints on the contain-
ment of the atoms bk+1θ∧ · · ·∧ bk+lθ in the Herbrand model H. In a classical logic programming
setting, we can omit the rule hθ ← b1θ ∧ · · · ∧ bkθ ∧ not bk+1 ∧ not bk+l if one of the atoms
bk+1, ...,bk+l is in H. However, in accordance with most multi-valued extensions of negation-as-
failure, in LRNNs the atom neuron corresponding to not bi may have a non-zero output even if bi
has a non-zero output. Intuitively, if we can only derive that bi is partially true, a rule with not bi
in the body will still partially fire.

To construct the ground network of an LRNN with negation-as-failure, we consider an additional
type of neuron called negation neuron. For every ground atom not a that occurs in one of the rules
of the grounding N, we add one such negation neuron Nota, which has the atom neuron for a as
input, if it exists (i.e. if a ∈ H), and the constant 0 otherwise. This negation neuron is then added
as one of the inputs of the corresponding rule neuron. As with the other types of neurons, the
activation function gnot associated with a negation neuron can be chosen in different ways.

Example 12 Let us consider an LRNN N consisting of the rule

w1 : flies(X)← bird(X)∧ not antarctic(X)

and the fact bird(tweety). The grounding N contains the rule

flies(tweety)← bird(tweety)∧ not antarctic(tweety).

Therefore there will be a neuron Notantarctic(tweety) in the ground network. The input to this neuron is the
constant 0 in this case because antarctic(tweety) is not in the least Herbrand model of the corresponding
logic program N∗. Assuming that the activation function of negation neurons is 1− x, the output of this
neuron will be 1. The rule neuron Rflies(tweety)←bird(tweety)∧not antarctic(tweety) then has two inputs, the neuron
Notantarctic(tweety) and the atom neuron Abird(tweety). The rest of the network is constructed as for normal
LRNNs, following the rules described in Section 5.1.1.

In LRNNs where all the outputs are between 0 and 1, a natural choice for this activation function,
which is in line with the semantics of several existing multi-valued logic programming frameworks
[166], is gnot(x) = 1− x. In other contexts, where positive and negative values are associated with
positive and negative support, respectively, the choice gnot(x) = −x could be used.
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5.1.5 Recursive Rules

As mentioned, LRNNs are designed for lifted modeling of feed-forward neural networks. This tech-
nical limitation was established in order to avoid work with recurrent neural networks, since these
are much more difficult to train than feed-forward neural networks. It is easy to see that this is
the case when the rules in N∗ are free from cycles, i.e. when there exists a strict ordering ≺ of the
predicates such that for each predicate p2 occurring in the body of a rule with predicate p1 in the
head, it holds that p1 ≺ p2.

Note, however, that there are many cases where the logic program N∗ associated with an LRNN
contains cycles, but where the resulting ground neural network does not. Thus, in general, recursive
rules do not pose any problem to the LRNN framework as long as they do not induce directed cycles
in the resulting ground neural networks. For instance, rules defining directed paths (Example 2) in
acyclic graphs would not lead to directed cycles in the resulting ground neural networks, despite
being recursive. The feed-forwardness of the neural models will cover all the learning scenarios
presented later in this chapter, as well as most templates modeling common practical scenarios.
A technical treatment of a scenario where this is not true, and the ground neural networks may
contain directed cycles, will be presented later in the application Part v in Chapter 11.

An interesting consequence that might be seen as a potential complication caused by allowing
LRNNs to have recursion, even in the absence of directed cycles, is that the weights may be shared
among neurons that lie on a single directed path from the input to the output of the network. This
might intuitively seem to complicate the computation of gradients via backpropagation, since that
relies on the chain rule and linearity of partial differentiation of the function represented by the
underlying network. However, as we explain subsequently in Section 5.1.6, the resulting networks
can still be easily trained, using standard gradient-descent techniques, even in this case5.

5.1.6 Weight Learning

We consider an LRNN N whose weights we want to train. To this end, we assume that we also have
access to a list of training examples E = (E1, . . . ,Em), where each Ej is an LRNN. In applications,
these LRNNs encoding training examples would typically only contain ground facts. In such cases,
each training example intuitively describes some relational structure using a set of weighted atoms
(e.g. as displayed in Figure 5). We also assume that we are given a list Q = ({(q11, t11), . . . , (q

1
k1

, t1k1)},
. . . , {(qm1 , tm1 ), . . . , (qmkm , tmkm)}) where each qji is a ground atom, which we call a training query atom,
and t

j
i is its target value. For a query atom q

j
i, let yji denote the output of the atom neuron A

q
j
i

in the ground neural network of N ∪ Ej. The goal of the learning process is to find the weights
wh of the rules (and possibly facts) in N for which the loss J on the training query atoms J(Q) =∑m
j=1

∑kj
i=1 cost(yji, t

j
i) is minimized, where cost is some predefined loss function that measures the

discrepancy between the output of the neurons corresponding to the training query atoms and their
desired target values.

Example 13 Let us again consider the LRNN N from Example 8 and the sets of facts M1 and M2 describing
the two molecules (shown in Figure 5). We recall that N contains the rule for toxicity of molecules w1 :

toxic← gr1(A)∧b(A,B)∧ gr2(B) where b(., .) is a predicate for representing atomic bonds in the molecules,
and the predicates gr1(.) and gr2(.) are defined using the rules listed in Example 8. Let us suppose that we
want to learn the weights of this theory based on the knowledge that M1 is toxic and M2 is not. In other words,
the list of training examples in this case is given by E = (M1,M2). We also need to specify the corresponding
list of training query atoms Q, which in this case is given by Q = {{toxic, 1}, {toxic, 0}}. The weight learning
task is to optimize the weights so as to minimize the discrepancy between the toxicity according to the training

5 The situation is analogous to the popular Recursive Neural Networks, introduced earlier in the background Section 2.3.
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query atoms and the toxicity predicted by the LRNNs N ∪M1 and N ∪M2, where the predicted toxicity is
the output of the atom neuron Atoxic.

Similarly to conventional neural networks, weight adaptation is performed by gradient descent
steps:

wh ← wh − γ
∂J(Q)

∂wh

where γ > 0 is some given learning rate. Different from conventional neural networks, in the case
of LRNNs, we end up with different ground networks for the different learning examples Ej. This
is not problematic, however, because the weights for all the ground neural networks N ∪ Ej are fully
specified in the LRNN N.

It is then possible to learn the weights of an LRNN using standard gradient descent techniques,
based on gradients computed by backpropagation, except that the increments for the shared weights
must be accumulated. The same principle is exploited e.g. in CNNs, except that in LRNNs, the
weight-sharing is not limited to individual layers. However, this is not a problem for the gradient
computation, as demonstrated with the following backpropagation example.

Remark 1 Let us consider a ground N ∪ Ej as a regular feed forward neural network Nj with some weights
wk ∈ Wj in the network being shared, i.e. bound to the same value, even across the layers, but with the
restriction that each particular weight wk appears at most once on any simple path from the inputs Ej to
the outputs yj. Let the activation functions of layers l of Nj be gl, chosen from some set of differentiable
functions. Let further wa,b,...

k denote particular occurrences of some shared weight wk. Then we may express
the output of the network as

yj = g
1

(
. . .+wakg

2 (. . .) + . . .+wmg
2
(
· · ·+wbkg3 (. . .) + . . .

)
+ . . .

)
where ". . ." correspond to expressions with no wk occurrence. Considering each wk occurrence separately as
an independent variable, we have

∂yj

∂wak
=

∂

(
g1
(
wakg

2(. . .)
))

∂wak
= g1 ′(. . .)g2(. . .)

∂yj

∂wbk
=

∂

(
g1
(
wmg

2
(
wbkg

3 (. . .)
)))

∂wbk
= g1 ′(. . .)wmg

2 ′ (. . .)g3 (. . .)

Considering all occurrences wa,b,...
k as a single variable wk, we then have

∂yj

∂wk
=

∂

(
g1
(
wkg

2(. . .) +wmg
2
(
wkg

3 (. . .)
)))

∂wk
= g1 ′ (. . .)

(
g2 (. . .) +wmg

2 ′ (. . .)g3 (. . .)
)

i.e., we see that ∂yj∂wk
=
∂yj
∂wak

+
∂yj
∂wbk

which follows also directly from additivity of the differentiation operator
(keeping in mind that there is only one occurrence of wk on any simple path from an atom neuron to a fact
neuron). Therefore the gradient can be computed for the ground neural networks created from a given LRNN
with standard backpropagation and then the components corresponding to a particular weight wk can be
simply accumulated.

In the previous remark, we went beyond standard weight sharing in CNNs, but still limited
ourselves to networks without recursive application of the same weight on a single path in the
network, which is beyond linearity of partial differentiation. Nevertheless, even in that case the
gradient can be computed easily, as we clarify with the following, more general reasoning applicable
to arbitrary weight-sharing schemes.
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Remark 2 Let J(u1,u2, . . . ,un) be a loss function of a given ground neural network. To encode which of
these n weights are shared, we can consider a function f : Rm → Rn, where R = {w1, ...,wm} is the set
of distinct weight variables (m 6 n). For a given vector v ∈ Rm, the vector f(v) is obtained by copying
the values of the shared weights. For instance, if n = 3, R = {w1,w2} and the first two weights are shared,
then f(w1,w2) = (w1,w1,w2). It follows from elementary multivariate calculus that ∂

∂wi
(J◦ f) = ∇J · ∂f∂wi ,

where · denotes scalar product (noting that both∇J and ∂f
∂wi

are n-dimensional vectors). Since ∂f
∂wi

is a vector
which has 1 at position j iff the j-th weight is assigned to the shared weight wi, it follows that ∂

∂wi
(J ◦ f) can

be computed as the sum of the components of ∇J that correspond to the positions j to which wi is assigned.
In other words, this again means that in order to compute the partial derivative w.r.t. a shared weight wi,
we can simply compute the gradient using standard backpropagation, without assuming any weight sharing,
and then sum the individual terms corresponding to the given shared weight.

The complete weight learning algorithm then works as follows. First, the given LRNN N is
grounded w.r.t. every example Ej, leading to a set of ground neural networks with shared weights;
information about the origin of each weight is explicitly stored, such that the respective weights
in the template can be updated correctly. The algorithm then iterates over the ground networks in
a random order. Each time, it computes the gradient of the loss function for the current example
given the current weights in the template, and updates the weights accordingly. It continues iterat-
ing these steps, following the standard stochastic gradient descent procedure. To reduce the risk of
getting stuck in local optima, we can also employ a restart strategy for this algorithm, restarting the
search with randomly initialized weights after a given number of SGD epochs has been reached.
There are many restart sequences that we can use, e.g. Luby’s universal strategy [169].

For the Max-Sigmoid family of activation functions, learning is complicated by the fact that the
max operator introduces non-differentiable points to the optimization problem. As a consequence,
some weights, corresponding to ground rules which never contribute to the output value (because
they never give maximal output), may never be updated by SGD because the respective partial
derivatives of the loss function are zero. This may then lead to poor solutions. The restart strategies
mentioned above help to partially alleviate this problem6.

a note on structure learning For many types of lifted models, the learning process is
separated into two steps, called structure learning and weight learning (Section 3.4). In the case
of MLNs, for instance, the aim of structure learning consists of determining relevant first-order
formulas, whose associated weights are then determined in the subsequent weight learning step.
While LRNNs could, in principle, be used in a similar way, one of the main strengths of LRNNs is
the fact that they can learn predictive latent relational structures in an efficient way. When we use
LRNNs for this purpose, as we do in this chapter, the first-order rules are completely generic. Their
purpose is then to encode what types of latent structures we want to find, rather than to encode
domain knowledge. All domain knowledge is then obtained through weight learning. This way of
using LRNNs is illustrated in detail in the next section.

5.2 illustrative examples of lrnn modeling constructs

In this section we describe several modelling constructs that can straightforwardly be encoded
using LRNNs, but which would be difficult or impossible to implement in frameworks such as
CILP++ [16], which also combines logic and neural networks. The considered modelling constructs
correspond to different kinds of latent relational structures that can be effectively learned using
LRNNs. Frameworks such as CILP++ do not allow simultaneous learning of target and auxiliary
predicates, and are thus not well-suited for learning latent structures. Instead, they rely on propo-
sitionalization [15] and are thus only capable of learning latent features over the corresponding

6 However note that this is essentially the same situation as with max-pooling in CNNs (Section 2.2), which is commonly
simply ignored in practice.
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propositionalized representations. While somewhat similar modelling constructs can, in principle,
be used in MLNs and in probabilistic logic programming systems such as Problog [52], they would
require EM algorithms which repeatedly need to perform computationally expensive probabilistic
inference.

5.2.1 Implicit Soft Clustering

In many learning tasks, it has been observed that good results can be obtained by generating (soft)
clusters of objects. The idea is then to make predictions based on the membership degrees of a
given object in these clusters, rather than trying to make predictions directly from the features
describing the object itself. As an example, let us consider the problem of predicting adverse effects
of drugs. For this problem, the use of auxiliary clusters of similar drugs has been found to lead to
significant improvements in predictive accuracy [170]. However, existing methods to generate these
auxiliary clusters rely on a form of greedy discrete clustering, which can often be too crisp. Using
LRNNs, on the other hand, we can simply define predicates that represent these soft clusters, and
then automatically train the corresponding weights, which represent the membership degrees. This
is illustrated in the following example.

Example 14 Let us suppose that, similarly to the work of Davis, Costa, Berg, Page, Peissig, and Caldwell
2012, we have temporal data about patients, the drugs they took, and the time instants when changes in their
health occurred. We want to predict adverse effects of drugs or their combinations. Let us also assume that we
have a set of general rules like:

w
(1)
1 : effect(P,AE, T2) ← took(P,D1, T1)∧ period(T1, T2, T)∧ shortPeriod(T)∧

∧took(P,D2, T2)∧ drugGroup1(D1)∧ drugGroup2(D2)∧

∧effectGroup1(AE)

. . .

w
(2)
1 : effectGroup1(E) ← headache(E)

w
(2)
2 : effectGroup1(E) ← sneezing(E)

. . .

Here, effect(Patient, AdverseEffect, Time) is a predicate whose meaning is that the patient Patient had the
adverse effect AdverseEffect at time Time. Similarly, took(Patient, Drug, Time) states that the patient Patient
took the drug Drug at time Time, Period(T1, T2, T) is true when T = T2 − T1, i.e. it expresses that T
is the length of the time period from T1 to T2. For simplicity, we assume that time is discretized (e.g. it
may be enough to measure the time in days for certain types of adverse effects), which means that we may
represent these predicates extensively as facts. The predicate shortPeriod is a predicate which defines what
“short period” means in the given context; here we assume that it is specified by an expert7. Finally, the
predicates drugGroup1, . . . , drugGroupN and effectGroup1, . . . , effectGroupM are latent predicates which
will be learnt by the LRNN. For convenience, we use the superscript to index the latent predicates and
subscript to index the rules defining the latent predicates, starting from 1 for each of the predicates.

Intuitively, the adverse effects that happen to have high soft membership in the same clusters of effects,
defined by the effect-group predicates, are effects that tend to frequently occur together. The groups of drugs
are supposed to represent similar drugs. The intuition behind the rules for the predicate effect/3 is as follows.
Using these rules, we want to be able to capture the adverse effects which result from interactions of certain
drugs that were taken by the patient in a short time interval. Let us assume that we already have definitions
of the effectGroup/1 and drugGroup/1 in accordance with the described intuition. Then each of the rules
essentially says that if a person took a drug from group 1 and shortly after a drug from group 2 then the

7 The predicate shortPeriod could be learned using techniques analogical to those described later for the predicate
Similar(X, Y) in Section 5.3.2.1.
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patient will get (all the) adverse effects from the adverse-effect group 1. Note that the weights of these rules
can also be negative, encoding the fact that the drugs that were taken actually prevent the adverse effects from
the corresponding group.

Using the Avg-Sigmoid family of activation functions, weight learning in this LRNN can implicitly dis-
cover clusters of drugs which interact adversely with other clusters of drugs, clusters of adverse effects cor-
responding to these combinations of drugs, and an appropriate definition for the predicate shortPeriod. To
obtain these weights, we only require examples consisting of ground facts describing patients, the drugs they
have taken, when they have taken these drugs, and what adverse effects they experienced.

In Section 11.4 we will provide experimental results showing that LRNNs can indeed learn useful
soft clusters, using a scenario which is similar to the one from the previous example, in the domain
of organic chemistry. Note that we could not perform experiments for the problem setting from
example 14, as the required data are not publicly available for privacy reasons.

In the above example, soft clustering was essentially used to group related predicates. However,
the underlying idea can also be applied to more complex relational structures. To illustrate this, the
following example shows how we can group related (hyper)graphs in a similar way.

Example 15 Let us consider the problem of predicting properties of organic molecules (e.g. toxicity) that
depends on the presence of substructures from some rather large set. In this example, we will consider such
substructures based on aromatic six-rings. The basic aromatic six-ring is the benzene ring, which is a ring of
six carbon atoms, each connected to a hydrogen atom, connected by aromatic bonds. If some carbon atom is
replaced by another atom, we speak of a substitution.

If the patterns capturing classes of substructures in the molecules have the same structure, e.g. they are
all aromatic six-rings with substitutions at some positions, one could in principle use probabilistic modeling
to approximate them. The main idea would then be to estimate a probability distribution on the sets of
substitutions, such that sets of substitutions which are jointly occurring in the individual patterns would
have high probability. While such a probabilistic modeling approach is possible in principle, it would typically
require us to introduce latent concepts, in which case we would have to resort to EM. Using LRNNs, on the
other hand, learning latent representation patterns is straightforward. For instance, if we want to capture
pairwise dependencies between the substitutions in neighboring atoms, we can first define auxiliary binary
predicates of the following form:

w
(1)
1 : s1(carbon,nitrogen)

w
(1)
2 : s1(carbon,oxygen)

. . .

Each si is supposed to represent a group of substitution pairs which often appear together in discriminative
substructures (because the weights will be learned in this way). Then, we can define a predicate sixRing as
follows:

w
(2)
1 : sixRing(A,B,C,D,E, F)← ring(A,B,C,D,E, F)∧ s1(A,B)∧ s2(B,C)∧ . . . s6(F,A)

together with the following rule:

w1 : toxic(M)← atom(M,A)∧ atom(M,B)∧ · · ·∧ atom(M, F)∧ sixRing(A,B,C,D,E, F)

Intuitively, sixRing then represents a class of substructures whose presence in a molecule suggests that it is
toxic. We can similarly define predicates for five-rings and other structures. For each of the these classes of
substructures, we then add a rule, whose weight encodes how predictive that substructure is of toxicity, e.g.:

w2 : toxic(M)← atom(M,A)∧ atom(M,B)∧ · · ·∧ atom(M,E)∧ fiveRing(A,B,C,D,E) . . .

When learning the weights of this LRNN (based on examples of toxic and non-toxic molecules), we then
simultaneously discover the appropriate weights of the auxiliary predicates (e.g. s1, sixRing) as well as the
weights of the rules that predict the target predicate toxic. In other words, we jointly learn what the latent
substructures represent and how predictive they are.
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Finally, as an illustration of a more elaborate use of LRNNs for learning soft clusters, we refer to
the work of [171], where a method is proposed to simultaneously learn soft clusters of predicates
and soft clusters of entities, based on a reified representation of predicates.

5.2.2 Approximate Matching

If the body of a given rule is only approximately satisfied, it often makes sense to still derive the
head of that rule, but with a lower degree. Using LRNNs we can easily learn how the different
ways in which the body can be approximately satisfied should affect the degree to which we want
to derive the head. We refer to this modelling construct as approximate matching.

Example 16 Let us again consider the example about predicting who has the flu. Let us consider the following
rule, expressing that if X is in a group of 4 people who are mutual friends and all of them have flu symptoms,
then X has the flu:

w
(1)
1 : hasFlu(X)← clique(W,X, Y,Z)∧ fluSymptoms(W)∧ fluSymptoms(X) (4)

∧ fluSymptoms(Y)∧ fluSymptoms(Z).

The requirement that the friendship graph of W,X, Y,Z is a clique seems unnecessarily strict. For instance,
the rule is still meaningful if two of these four people are not actually friends, although in such a case we may
prefer to derive the conclusion that X has the flu with lower certainty. In general, the more of the friendship
relations are missing, the lower the certainty of the conclusion should intuitively be. This can easily be
expressed using LRNNs, e.g. by defining the predicate clique as a soft concept and automatically learning the
respective weights:

w
(2)
1 : clique(W,X, Y,Z) ← f(W,X)∧ f(W, Y)∧ f(W,Z)∧ f(X, Y)∧ f(X,Z)∧ f(Y,Z)

w
(3)
1 : f(X, Y) ← friends(X, Y)∧ friends(Y,X)

w
(3)
2 : f(X, Y) ← friends(X, Y)

w
(3)
3 : f(X, Y).

where the predicate friends is specified in the description of the examples. Note how the predicate f enables a
flexible definition of the predicate clique, and how this allows us to draw conclusions in situations which only
partially match the body of the rule (4). Using the activation functions from the Max-Sigmoid family for the
predicates hasFlu and f, we can obtain the desired behavior.

Other concepts which we do not describe in detail for the sake of brevity include e.g. lifted CNNs
and relational auto-encoders.

5.3 experiments

In this section, we describe experiments performed on 78 datasets about organic molecules: the Mu-
tagenesis dataset [172], four datasets from the predictive toxicology challenge, and 73 NCI datasets
[173]. The Mutagenesis dataset contains information about 188 molecules, with labels denoting
their mutagenicity. A number of published results for this dataset have relied on an extended set
of features, providing additional expert knowledge about relational properties of molecules. Since
we want to focus on the learning capabilities of our model, we will not rely on these additional fea-
tures, and only use atom bond information. The predictive toxicology challenge dataset (PTC) [174]
is composed of four datasets about molecules, labeled by their toxicity for female rats (fr) and mice
(fm) and male rats (mr) and mice (mm). Each of the NCI-GI datasets contains several thousands of
molecules, labeled by their ability to inhibit growth of different types of tumors. Detailed statistics
of these datasets are in Table 2.
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Table 2: Statistics of the three groups of molecular datasets used in the experiments. Except for the number
of datasets, the remaining numbers are averages over the datasets in the given group.

#datasets avg. #examples avg. #bonds avg. #atoms

NCI 73 3031 50 23

PTC 4 342 51 25

MUTA 1 188 56 26

We compare the performance of LRNNs with the state-of-the-art8 relational learners kFOIL [175]
and nFOIL [176], which respectively combine relational rule learning with support vector machines
and with naive Bayes learning. We also compare LRNNs with MLN-boost [177] and RDN-boost
[114], which are both based on functional gradient boosting [178] together with Markov logic net-
works and relational dependency networks [119], respectively. We also attempted a comparison
with CILP++ [16], but were not able to transform the datasets into the propositional representa-
tion which is used by CILP++ using the publicly available part of the CILP++ implementation. In
addition we performed experiments with Aleph [179], which we used both in its abductive and
inductive modes. In the abductive mode we gave Aleph the same graphlet defining rules as we
give to LRNNs in the experiments with the soft clustering modelling construct that we report in
Section 5.2.1. In theory, Aleph could learn definitions of crisp clusters by abduction, although it
cannot learn soft clusters. In practice we found that it was not effective. Interestingly, the inductive
mode of Aleph did not achieve competitive results on the NCI datasets either; it rarely exceeded
majority-class accuracy.

To demonstrate the versatility of LRNNs, we perform experiments with different templates, rep-
resenting some of the modeling constructs that were discussed in Section 5.2. Each time, we only
make use of generic templates, ensuring that the rules that are provided are not predictive by
themselves, and that the weight learning must thus create useful latent relational concepts in order
to be succesful. In particular, the considered templates do not relate to any specific property of
molecules and might be equally useful for other classification tasks. The idea is that useful latent
relational concepts emerge from the gradient descent based weight learning process, rather than
by explicit enumeration, in contrast to propositional approaches and ILP [19]. Nonetheless, in real
applications the fact that declaratively specified expert knowledge can be provided is of course
an important strength of LRNNs. Table 3 lists statistics of the ground neural networks for LRNNs
based on the different modelling constructs.

For all the reported experiments, we set the learning rate to 0.3 and training epochs to 3000. In
general, we found that training was not very sensitive to the learning rate (with the effective range
being up to 0.5) as long as a sufficient number of learning steps is used. We set the learning rate
relatively high so as to keep the number of necessary epochs to converge reasonable. The time9

for training an LRNN on a standard commodity machine with one CPU was in the order of a few
hours for the larger NCI-GI datasets, and in the order of a few minutes for the smaller datasets
such as Mutagenesis.

5.3.1 Soft Clustering

We start with a simple hand-crafted LRNN template which is based on the idea of implicit soft
clustering that was described in Section 5.2.1. The template defines 3 predicates for soft clusters of

8 For this specific task of molecules classification, these general relational learners have been recently surpassed by graph
neural networks, which witch we compare later in Chapter 7.

9 The computation performance of the framework has been recently greatly improved with the new version described in
Chapter 7, utilizing, among others, an optimization technique detailed later in Chapter 9.
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Table 3: Average sizes of ground neural networks (average number of atom neurons per network) correspond-
ing to the LRNNs based on the different modelling constructs.

Soft Clusters App. Matching Atom Embeddings Charge Charge+Soft

NCI 520 1145 1241 1373 1396

PTC 598 1619 1292 1414 1435

MUTA 696 1800 1338 1445 1482

atom types and 2 predicates for soft clusters of bond types. The predicates atgr1, atgr2, and atgr3,
representing soft clusters of atom types are defined by considering one rule for every atom type
occurring in the dataset, e.g.:

w
(1)
1 : atgr1(X)← o(X)

w
(1)
2 : atgr1(X)← br(X)

. . .

Similarly, the predicates bondgr1 and bondgr2 representing soft clusters of bond types are defined by
considering one rule for every bond type occurring in the dataset. These predicates are then used
to define rules for different types of atom chains of length 3, one for each group choice for each of
the 3 atoms’ soft clusters and each of the 2 bonds’ soft clusters, i.e. 243 rules in total:

w
(2)
(1,1,1;1,1) : chain3← atgr1(X)∧ bond(X, Y,B1)∧ atgr1(Y)∧ bond(Y,Z,B2)

∧ atgr1(Z)∧ bondgr1(B1)∧ bondgr1(B2),

. . .

w
(2)
(3,3,3;2,2) : chain3← atgr3(X)∧ bond(X, Y,B1)∧ atgr3(Y)∧ bond(Y,Z,B2)

∧ atgr3(Z)∧ bondgr2(B1)∧ bondgr2(B2).

The predicate chain3 then represents the, possibly varying, learning target for each of the molecular
datasets (e.g. toxicity or mutagenicity). A comparison between the results obtained with this LRNN
template and those obtained with kFoil, nFoil, MLN-boost and RDN-boost is shown in Figure 36. As
can clearly be seen from this figure, the LRNN method consistently outperforms the four baselines.

The learned weights of the rules defining the predicates atgr1, atgr2 and atgr3 can be interpreted
as membership degrees of the atom types to the three soft clusters. These degrees might be inter-
preted as defining a three-dimensional vector space embedding of the atom types. The first two
principal components of these embeddings, for different atom types from the Mutagenesis dataset,
are shown in Figure 35. Note that the atom types in the Mutagenesis dataset have been enriched
with contextual information, which is why there are different atom types c21, c22, . . . , c195 which all
refer to carbon atoms. The LRNNs are not given any explicit information about how these different
atom types are related, and thus have to reconstruct this information from the available training
data. It is therefore interesting to see that in the embedding from Figure 35, the nitrogen atoms are
mostly in the top left corner, carbons are mostly in the bottom right corner and the rest of the atoms
are around the center of the plot (where some further noticeable patterns can be observed, such as
halogen atoms being clustered together).

Next we demonstrate the importance of relational information in the molecule classification tasks.
Specifically, we show that a model which captures conformations of particular atom types leads to
better classification accuracy than a model which is only based on a soft clustering of atom types.
To this end, we created 3 templates with increasing complexity. The first template is based purely
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Figure 7: PCA projection of vector embeddings of atom types corresponding to the learned weights of soft
clusters in the Mutagenesis dataset. Brown denotes the group 14 of the periodic table (carbon
group), blue the group 15 (pnicotgens), red the group 16 (chalcogens), violet the group 17 (halogens)
and black the group 1 (hydrogen).

on soft clustering, i.e. it only considers relational chains of size 0. For each i ∈ {1, 2, 3} we consider
the following rules, one for each soft cluster of atom types:

w
(2)
(i) : chain1← atgri(X)

The second template involves relational chains composed of two atoms. It contains the following
rule for each i, j,k ∈ {1, 2, 3}:

w
(2)
(i,j,k) : chain2← atgri(X)∧ bond(X, Y,B1)∧ atgrj(Y)∧ bondgrk(B1)

Finally, we consider the template with the chain3 predicate, describing chains of 3 atoms, which we
used in the previous experiment.

Results for the three templates chain1, chain2 and chain3 are shown in Figure 9. While most of the
performance is clearly due to the use of soft clustering, using non-trivial relational chains does lead
to improved predictive accuracy. It is evident from the graph that relational chains of length greater
than 1 are better than relational chains of length 1. The difference between chains of lengths 2 and
3 is smaller but still statistically significant (p = 0.002, using binomial test).

5.3.2 Alternative Modeling Constructs

Beyond learning soft clusters of atom types and bond types, a wide variety of other constructs can
be used to solve the considered learning tasks. In this section, we briefly discuss a number of these
alternatives.

5.3.2.1 Learnable Numerical Transformations

In the previous section, we showed how the soft clusters that are learned by an LRNN can be
interpreted as vector space embeddings. Conversely, we can also generate soft clusters from a given
pre-trained embedding. To demonstrate this idea, we will use a simple vector space representation,
which encodes for each atom type how its valence electrons are distributed across the s,p,d,f orbitals.
For instance, the oxygen atom type O with electron configuration (1s2)[2s2, 2p4] is encoded as the
vector O := [2, 4, 0, 0]. To construct an LRNN that takes advantage of this external knowledge, we
actually use the similarity degrees induced by these vectors, rather than the vectors themselves. For
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Figure 8: Prediction errors of LRNNs, kFOIL, nFOIL, MLN-boost and RDN-boost measured by cross-
validation on 78 datasets about organic molecules.

this experiment, we measure the similarity between two atom types as the cosine between their
vector representations. We then construct the LRNN template as follows.

For each pair of atom-types (a1,a2) with similarity degree s, we add the following ground fact:

1.0 : Similar(a1,a2, s)

We also add rules which encode a learnable transformation of the similarities into a score that is useful
for the considered predictive task:

w−1 : Similar(X, Y)← Similar(X, Y,S),S > −1.0

w−0.9 : Similar(X, Y)← Similar(X, Y,S),S > −0.9

... ...

w0.9 : Similar(X, Y)← Similar(X, Y,S),S > 0.9

We then randomly sample three atom type vectors as prototype1 := [2, 0, 0, 14], prototype2 :=

[1, 0, 10, 0], prototype3 := [2, 6, 10, 0] and modify the definition of atom groups to reflect the similar-
ity to one of these prototypes:

w
(1)
1 : atgr1(X)← Similar(X,prototype1)

... ...

w
(1)
3 : atgr3(X)← Similar(X,prototype3)

We will refer to this method as atomEmbeddings.
As an alternative, we also tested how well the atom groups can be induced from the charge of

each atom within a given molecule. As this information is only available in the NCI datasets, for
this variant we do not consider the predictive toxicology datasets. To generate the atom groups, we
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Figure 9: Test errors of three LRNN templates with growing relational chain sizes as measured by cross-
validation on 78 datasets about organic molecules.

again use a learnable transformation, but this time based on partial atom charges. Noting that the
partial atom charges in the datasets are always between −1 and 1, this can be done as follows:

w−1 : atgr1(X)← Charge(X,C),C > −1.0

w−0.9 : atgr1(X)← Charge(X,C),C > −0.9

... ...

w0.9 : atgr1(X)← Charge(X,C),C > 0.9

This method will be referred to as atomCharge. Finally we also tried to combine the soft cluster
definition of atom groups with the definition based on atom charges, the results of which can be
seen as charge+softCluster in Figure 10. To construct these combined LRNNs, we simply merge the
definitions of the atom groups atgri from both of the LRNNs.

The experimental results for the considered methods are depicted in Figure 10. The test errors
of the LRNNs based purely on the partial charges are higher than the test errors of LRNNs based
purely on soft clustering, which was to be expected. Indeed, similar results for relational features
based on atom types or partial charges have been previously reported [180]. However, the fact that
the combined LRNNs did not outperform the soft clustering LRNNs is more surprising. It suggests
that the soft clusters built from the extended atom types present in the NCI datasets (e.g. c21, c22,
. . . ) may already capture the information present in the information about partial charges.

5.3.2.2 Approximate Matching

The aim of this experiment is to demonstrate the capability of LRNNs to capture structural sim-
ilarities within the relational features. Following the idea of the approximate matching construct
(see Section 5.3.2.2), we create a more flexible variant of the relation representing the bond between
two atoms, such that more complex structural patterns can be matched, with different degrees of
similarity. We use the template with chains of 3 consecutive atoms from Section 5.3.1, but replace
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Figure 10: Prediction errors of the various introduced LRNN modeling concepts as measured by cross-
validation on 78 datasets about organic molecules.

the predicate bond by a new predicate bondK. This new predicate is then defined in terms of the
predicate bond, as follows:

w1 : bondK(X, Y,B)← bond(X, Y,B)

w2 : bondK(X, Y,B)← bond(X,Z,B), bond(Z, Y,B2)

The results of the experiments with this template are displayed as approximateMatching in Figure 10.
Although the differences are small, the approximateMatching method obtained statistically signifi-
cantly better accuracies than the LRNNs which only used relational chains of length 3 with soft
clustering (p = 0.008, using binomial test).

5.4 conclusions

In this Chapter, we have introduced LRNNs, a framework for learning from relational data. Simi-
larly to lifted probabilistic frameworks such as Markov logic and Problog, learned LRNN models
are represented as sets of weighted first-order formulas. However, while Markov logic and Problog
models serve as templates for constructing probabilistic graphical models, LRNN models serve
as templates for constructing feedforward neural networks. This means that we can employ neural
network learning, based on backpropagation, to efficiently discover latent relational structures from
structured training data. Thanks to the use of first-order logic rules, we can easily specify what kind
of latent structures we want the network to explore. In the experimental results, we have shown that
very general rules, essentially indicating that we want to find predictive groups of atom types and
predictive groups of bond types, allow us to achieve state-of-the-art predictive accuracies on vari-
ous datasets about organic molecules. Furthermore, we have discussed and evaluated several other
modeling constructs, e.g. based on learning latent groups of graph patterns, approximate matching
of relational patterns, and using pre-trained vector space embeddings for relational learning.
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S T R U C T U R E L E A R N I N G O F L R N N S

As introduced in the previous Chapter 5, Lifted Relational Neural Networks (LRNNs) describe
relational domains using weighted relational logic rules which act as templates for constructing
neural networks from varying relational structures. While in Chapter 5 we have shown that using
LRNNs can lead to state-of-the-art results in various relational learning tasks (Section 5.3), these
results depended on hand-crafted rules (albeit very generic). In that case, only the weights of the
relational rules have to be learned from training data, which can be accomplished using a variant
of back-propagation (Section 5.1.6). The use of hand-crafted rules offers a natural way to incor-
porate domain knowledge and guide the learning process in various ways (Section 5.2). In some
applications, however, such domain knowledge is lacking.

In this chapter, we extend the framework of LRNNs with structure learning, thus enabling for a
fully automated learning process, where both the rules and their weights are learned from data, akin
to the structure learning task from SRL (Section 3.4). Similarly to many ILP methods (Section 3.3.1),
our structure learning algorithm proceeds in an iterative fashion by top-down searching through the
hypothesis space of all possible Horn clauses, considering the predicates that occur in the training
examples as well as invented soft concepts entailed by the best weighted rules found so far. In each
iteration, it may either learn a set of rules that intuitively correspond to a new layer of a neural
network template or to learn a set of rules that intuitively correspond to creating new connections
among existing layers, a strategy which we refer to as stacked structure learning. The rules that are
added in a given iteration either define one of the target predicates, or they define a new predicate
that may depend on predicates that were “invented” at earlier layers as well as on predicates from
the considered domain. Since the actual meaning of these predicates depends on both the learned
rules and their associated weights, structure learning is alternated with weight learning. Intuitively,
this means that the definitions of predicates defined in earlier layers can be fine-tuned based on the
rules which are added to later layers.

We present experimental result which show the ability to automatically induce useful hierarchical
soft concepts, leading to deep LRNNs with a predictive power comparable to that of LRNNs based
in the hand-crafted rules. We believe that this makes LRNNs a particularly convenient framework
for learning in relational domains, without any need for prior knowledge nor for any extensive hy-
pertuning. Somewhat surprisingly, we find that LRNNs with learned rules are often more compact
than those with hand-crafted rules. Finally, we also present some initial results which suggest that
the use of logical rules enable LRNNs to efficiently learn concepts which neural networks normally
struggle with.

6.1 structure learning

In this section we describe a structure learning algorithm for LRNNs1. The algorithm receives a
list of training examples and a list of training queries, and it produces a LRNN. For simplicity, we
will assume that constants are only used as identifiers of objects. In particular, we will assume that

1 It is advisable to recall the basic LRNN notions from Section 5.1 of the previous Chapter 5 before continuing.
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attribute values are represented using unary literals, e.g. we would use red(o) instead of color(o, red).
Besides that we do not put any restrictions on the structure of the training examples.

6.1.1 Structure of the Learned LRNNs

The structure learning algorithm will create LRNNs having a generic “stacked” structure which
we now describe. First, there are rules that define d new predicates, representing soft clusters (Sec-
tion 5.2.1) of unary predicates from the dataset. These can be thought of as the first layer of the
LRNN, where the weighted facts from the dataset comprise the zeroth layer. For instance, if the
unary predicates in the dataset are A,B, . . . ,Z then the LRNN will contain the following rules:

wa1 : α
1
1(X)← A(X) wb1 : α

1
1(X)← B(X) ... wz1 : α

1
1(X)← Z(X)

wa2 : α
1
2(X)← A(X) wb2 : α

1
2(X)← B(X) ... wz2 : α

1
2(X)← Z(X)

... ... ... ...

wad : α1d(X)← A(X) wbd : α1d(X)← B(X) ... wzd : α1d(X)← Z(X)

Here each αij is a latent predicate representing a soft cluster, the index i denotes the layer in which
it appears (in this case, the first layer) and j indexes the individual soft clusters in that level.

In general, the second layer will consist of two types of rules. First, there may be rules introducing
new latent predicates. In contrast to the unary predicates that were introduced in the first layer,
here the latent predicates could be also of higher arity, although in practice an upper bound will
be imposed for efficiency reasons. In the body of these rules, we may find predicates from the
dataset itself, or latent predicates that were introduced in the first layer. The new latent predicates
introduced in these rules may then be used in the bodies of rules in subsequent layers. Second,
there may also be rules that have a predicate from the dataset in their head. These will typically be
rules that were learned to predict the target predicates that we want to learn.

Example 17 For instance, in datasets of molecules, unary predicates can be used to represent types of atoms,
such as carbon or hydrogen. An example of a possible second layer rule is:

wp1 : p1(X, Y) ← bond(X, Y)∧α11(X)∧α
1
2(Y)

Here p1 is assumed to be one of the predicates from the dataset. Second layer rules that introduce a new latent
predicate could look as follows.

w21,1 : α21(V1,V2) ← bond(V1,V2)∧α11(V1)∧α
1
1(V2)

w21,2 : α21(V1,V3) ← bond(V1,V2)∧ bond(V2,V3)∧α11(V1)∧α
1
1(V3)

The actual intuitive meaning of the predicate α21 will depend on the weights w21,1, w21,2. For instance, if
both are large enough, the (atom neurons corresponding to the) predicate will have high output whenever its
arguments correspond to two atoms which are either one or two steps apart from each other in the molecule,
and which have sufficiently high membership in the soft cluster α11.

Any higher layers have a similar structure to the second layer, where the nth layer contains rules
whose bodies only contain predicates from layers 0 to n− 1, and whose heads either contain a target
predicate or introduce a new latent predicate.

6.1.2 Structure Learning Algorithm

The structure learning algorithm (Algorithm 1) iteratively constructs LRNNs that have the structure
described in the previous section. It alternates weight learning steps with rule learning steps2. In the

2 Variants of this strategy are employed by many structure learning algorithms in the context of statistical relational
learning, e.g. [181–183].
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Algorithm 1 General schema of structure learning

1: E← learning examples
2: d← latent concepts’ dimension
3: W,V,R← ∅
4: R← createLayer1Rules(E,d)
5: W← initWeights(R)

6: (F,V)← weightedFacts(E,R,W)

7: while ¬StoppingCriterion do
8: bestRule← ruleLearning(F,V,R)
9: bestRules← predicateInvention(bestRule)

10: R← R∪ bestRules
11: W← trainWeights(R,E,W)

12: (F,V)← weightedFacts(E,R,W)

13: return (R,W)

weight learning steps, the algorithm uses stochastic gradient descent to minimize the squared loss
of the LRNN by optimizing the weights of the rules, as described in Section 5.1.6 of the previous
Chapter 5. In the rule learning steps, the algorithm fixes the weights of all rules which define latent
predicates and it searches for some good rule R. This rule R should be such that the squared loss
of the LRNN decreases after we add R to it and and after we retrain the weights of all rules with
non-latent head predicates. Next we describe this algorithm in detail.

The first step of the structure learning algorithm (lines 4–5) is the construction of the first level
of the LRNN, which defines the unary predicates representing soft clusters of object properties, as
described in Section 6.1.1.

After the first step, the algorithm repeats the following procedure for a given number of iterations
or until no suitable rules can be found anymore. It fixes the weights of all rules defining latent
predicates (line 6). Then it runs a beam search algorithm searching through the space of possible
rules3 (line 8). The scoring function which is used by the beam search algorithm is computed as
follows. Given a rule R, the algorithm creates a copy of the current LRNN to which the given
candidate rule R is added. It then optimises the log-loss of this new LRNN (which corresponds to
maximum-likelihood estimation for logistic regression), training just the non-fixed weights, i.e. the
weights of the rules with non-latent predicates in their heads. The score of the rule R is then defined
to be the log-loss after training the non-fixed weights. The reason why we do not retrain all weights
of the LRNN when checking score of a rule R are efficiency considerations because training the
weights of the whole LRNN corresponds to training a deep neural network. After the beam search
algorithm finishes, the rule R∗ that it returned is added to the original LRNN.

Note that R∗ contains one of the target predicates in its head. However, in addition to adding R∗,
we also add a set of related rules that have latent predicates in their head (line 9), as follows. Here,
we will assume for simplicity that all latent predicates have the same arity k, but the same method
can still be used when the latent predicates are allowed to have different arities. Let i be the highest
index such that R∗ contains a latent predicate of the form αij (i.e. a latent predicate from layer i)
in its body, where we assume i = 1 if R∗ does not contain any latent predicates . Then for each
latent predicate αi+1j from the (i+ 1)-th layer, the algorithm adds to the LRNN all rules which have
αi+1j (V1, . . . ,Vk) in the head and which can be obtained by unifying V1, . . . ,Vk with the variables
in R∗. This process is illustrated in the following example.

3 The space of rules is defined by two user-specified constraints: maximum rule length and maximum number of variables
in a rule.
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Example 18 Revisiting the example of molecular datasets, let R∗ = p(A,B) ← bond(A,B) ∧ α12(A) ∧
α25(B) and let k = 1. Then the algorithm will add the following latent-predicate rules:

w31,1 : α31(V1) ← bond(V1,B)∧α12(V1)∧α
2
5(B)

w31,2 : α31(V1) ← bond(A,V1)∧α12(A)∧α
2
5(V1)

w32,1 : α32(V1) ← bond(V1,B)∧α12(V1)∧α
2
5(B)

w32,2 : α32(V1) ← bond(A,V1)∧α12(A)∧α
2
5(V1)

. . . . . . . . .

w3d,1 : α3d(V1) ← bond(V1,B)∧α12(V1)∧α
2
5(B)

w3d,2 : α3d(V1) ← bond(A,V1)∧α12(A)∧α
2
5(V1)

Note that the algorithm has to add the new rules to the layer 3 because R∗ already contained predicates from
the layer 2.

After the LRNN has been extended by all these rules obtained from R∗, the weights of all the
rules, including those corresponding to latent predicates, are retrained using stochastic gradient
descent (line 11). Note that typically there will be some latent predicates which are not used in any
rules; their weights are not considered during training. Subsequently, the algorithm again fixes the
weights of the rules corresponding to the latent predicates, and repeats the same process to find an
additional rule. This is repeated until a given stopping condition is met.

6.2 experiments

In this section we describe the results of experiments performed with the structure learning algo-
rithm on a real-life molecular dataset and on a difficult artificial learning problem.

6.2.1 Molecular Datasets

We performed experiments on 72 NCI datasets [173], each of which contains several thousands of
molecules, labeled by their ability to inhibit the growth of different types of tumors. We compare the
performance of the proposed LRNN structure learning method with the best previously published
LRNNs, which contain large generic, yet manually constructed weighted rule sets (described in
Section 5.3). For further comparison, we also include the relational learners kFOIL [175] and nFOIL
[176], which respectively combine relational rule learning with support vector machines and with
naive Bayes learning.

The results are shown in Figure 11 and Figure 12. The automatically learned LRNNs outper-
form both kFOIL and nFOIL in terms of predictive accuracy (measured using cross-validation).
The learned LRNNs are also competitive with the manually constructed LRNNs from Section 5.3,
although they do not outperform them. They are slightly worse than the largest of the manually
constructed LRNNs, based on graph patterns with 3 vertices, enumerating all possible combina-
tions of soft cluster types of the three atoms and soft cluster types of the two bonds connecting
them. Figure 13 displays statistics of the learned LRNN rule sets. These statistics show that the
structure learner turned out to produce quite complex LRNNs having multiple layers of invented
latent predicates.

The weights of the rules defining the latent predicates in the first layer of the LRNN can be
interpreted as coordinates of a vector-space embedding of the properties (atom types in our case). In
Figure 14, we plot the evolution of these embeddings as new rules are being added by the structure
learning algorithm. The left panel of Figure 14 displays the evolution of the embeddings of atom
types after these have been pre-trained using an unsupervised method which was originally used
for statistical predicate invention in [171]. The right panel of the same figure displays the evolution
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Figure 11: Comparison of crossvalidated test errors of LRNNs produced by structure learning with nFoil and
kFoil learners as baselines.
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Figure 12: Comparison of test errors of LRNNs produced automatically by structure learning with 3 hand-
crafted LRNNs with varying lengths of chain patterns from [97].

of the embeddings when starting from random initialization without any unsupervised pre-training.
What can be seen from these figures is how, as the model becomes more complex, the atom types
start to make more visible clusters. Interestingly and perhaps somewhat against intuition, the use
of the unsupervised pre-training seemed to consistently decrease predictive performance (we omit
details for the sake of brevity).

6.2.2 A Hard Artificial Problem

We consider the following variant of graph colorability, which can be seen as a relational general-
ization of the problem of learning the XOR function. For a graph, where each node may take on
different “shades” {sh1 . . . shn} of colors {col1 . . . colm} that are not observed (i.e. it is not given to
which color each shade corresponds), the task is to learn to classify graphs that are correctly colored,
i.e. where each edge in the graph connects two nodes of shades of different colors. In this problem,
learning a correct representation of the colors (as sets of shades) is completely decorrelated from
the target, but to correctly learn to classify correctly colored graphs, we need to learn some such
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Figure 13: Statistics of the learned LRNN rule sets from experiments with the 72 NCI datasets. We display
(i) the number of rules (including zeroth layer soft clusters), (ii) the number of conjunctive rules
(patterns) learned, (iii) the average length of these rules (patterns), and (iv) the overall number of
layers (depth of template).
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Figure 14: PCA projection of evolution of atom embeddings during first 6 iterations (denoted by colors) of
structure learning of a LRNN, with initialization based on unsupervised pre-training (left) and
with completely random initialization (right).

color concepts. An ideal learned LRNN correctly solving the problem could be very compact, for
instance for 3 colors if might look like

w1 : notCorrectlyColored ← cl0(X), edge(X, Y), cl0(Y)

w2 : notCorrectlyColored ← cl1(X), edge(X, Y), cl1(Y)

w3 : notCorrectlyColored ← cl2(X), edge(X, Y), cl2(Y)

together with rules defining the color concepts cl0, cl1 and cl2.
Initial experiments with these artificial problems showed that the structure learning algorithm

is able to learn appropriate LRNNs. The rule sets were typically different from the rule set shown
above but they also encoded correct solutions that were comparably short. The performance results,
shown in Table 4, suggest that the LRNN structure learning method is able to efficiently produce
accurate and compact solutions without extensive hyper-tuning.

6.3 related work

The structure learning strategy that we employ in the methods presented in this paper is in many
respects similar to structure learning methods from statistical relational learning such as [181–183].
However, what clearly distinguishes it from all these previous SRL approaches is its ability to auto-
matically induce hierarchies of latent concepts. In this respect, it is also related to meta-interpretive
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Table 4: Results of the structure learning algorithm (SL) on the graph coloring classification problem. Re-
ported statistics are majority train error, training error, and ratio of cases with zero learning error.
All problems were run 10 times with different random initialization seeds.

#colors-#shades majority error training error % of perfect solutions

2c-1s 0.5 0.025 0.9

2c-2s 0.5 0.0 1

3c-1s 0.33 0.0 1

3c-2s 0.33 0.014 0.6

3c-3s 0.33 0.111 0.4

4c-1s 0.25 0.1375 0.0

4c-2s 0.25 0.160 0.0

4c-3s 0.25 0.129 0.1

4c-4s 0.25 0.044 0.1

learning [71]. However, meta-interpretive learning is only applicable to the learning of crisp logic
programs. The structure learning approach is also related to works on refining architectures of
neural networks [184, 185]. However, from these it differs in its ability to handle relational data.

6.4 conclusions

In this chapter we have introduced a method for learning the structure of LRNNs, capable of
learning deep weighted rule sets with invented latent predicates. The predictive accuracies obtained
by the learned LRNNs were competitive with results that we obtained in our previous work using
manually constructed LRNNs. The method presented in this chapter therefore has the potential
to make LRNNs useful in domains where it would otherwise be difficult to come up with a rule
set manually. It also makes the adoption of LRNNs by non-expert users more straightforward, as
the proposed method can learn competitive LRNNs without requiring any user input (besides the
dataset).





7
D I F F E R E N T I A B L E L O G I C P R O G R A M M I N G W I T H L R N N S

The necessity to specify the relational rules can be possibly seen as a considerable limitation, or
unfair advantage, of LRNNs, when viewed as “knowledge-based” models, as compared against
generic, “knowledge-agnostic” models, such as classic deep neural networks. In response, the struc-
ture learning method introduced in the previous Chapter 6 was developed in order to skip the
necessity of specifying these rules. In this chapter, we take a somewhat opposite approach and
clearly demonstrate that the weighted relational rules do not necessarily encode any specific do-
main knowledge, but may be simply used to guide the learning process in a very generic way,
akin to standard (deep) machine learning practices. Particularly, we view the LRNN templating as
means for differentiable logic programming, and show how the weighted relational rules may actually
be used to directly encode existing deep learning architectures through an exact correspondence.

Moreover we show how the LRNN templating can, thanks to the used declarative Datalog ab-
straction (Section 3.2), result into more compact and elegant learning programs, in contrast with
the existing procedural deep learning paradigms operating more directly on the computational
graph level. Consequently, we demonstrate on practical examples1 that even very simple LRNN pro-
grams can be used to efficiently capture a wide range of deep learning models, such as MLPs and
CNNs, with a particular focus on the most recently popular Graph Neural Networks (GNNs).

Additionally, we show how even the most contemporary GNN models can be not only cov-
ered, but also easily extended within LRNNs towards higher relational expressiveness. In the ex-
periments, we then demonstrate correctness and also computation efficiency through comparison
against specialized GNN deep learning frameworks, while shedding some light on the learning
performance of existing GNN models.

The chapter is structured as follows. In Section 7.1, we introduce the syntax and semantics of
LRNNs when viewed as a differentiable logic programming language. Subsequently, we illustrate
the paradigm on a range of example models in Section 7.2. Capturing and extending GNNs is then
detailed in Section 7.3. In Section 7.4, we demonstrate practicality and computation efficiency of the
approach, and conclude in Section 7.6.

The content in this chapter is then generally based on the preliminaries of logic programming
(Section 3.2) and deep learning (i.e. “differentiable programming”, Chapter 2) as introduced in the
background Part ii of the thesis. Some additional details and technical differences between this new
view on LRNNs and the original framework from Chapter 5 are then detailed also in the appendix
Section A. We note again that, apart from the generally related work introduced in background
Chapter 4, we will also discuss the most recent related works jointly in Chapter 8.

7.1 the programming language of lrnns

In this section we directly follow up on the introduced LRNNs (Section 5.1), which were originally
introduced a learning framework for lifted modeling of neural networks oriented to relational data.
Yet, from another perspective, it can be also understood as a differentiable version of simple Datalog

1 Code to reproduce experiments from this chapter is available at https://github.com/GustikS/GNNwLRNNs. The LRNNs
framework itself can then be found at https://github.com/GustikS/NeuraLogic.
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programming (Section 3.2), where the templates, encoding various neuro-relational learning archi-
tectures, take the form of parameterized logic programs. During learning, when presented with
relational data such as various forms of graphs, the program interpreter dynamically unfolds dif-
ferentiable computational graphs to be used for the program parameter optimization by standard
(gradient descent) means.

This differs from the commonly used differentiable programming frameworks, such as PyTorch
or Tensorflow, in its declarative, relational nature, enabling one to abstract away from the procedural
details of the underlying computational graphs even further. We further explain the differences and
principles of this LRNN abstraction, in the new context of differentiable (logic) programming, in
the following subsections.

7.1.1 Syntax

The syntax of LRNN programming is derived directly from the Datalog [93] language (Section 3.2),
which we further extend with numerical parameters. Note that this has been exploited in many pre-
vious works, where the parameters can signify values associated with facts [186] or rules [187]. Such
extensions are typically designed to integrate standard statistical (or probabilistic [52]) modelling
techniques with the high expressiveness of relational representation and reasoning (Section 3.4).
In this chapter we seek to integrate Datalog with deep learning, for which we allow each literal in
each clause of the logic program to be associated with a tensor weight. A parameterized program,
formed by a multitude of such weighted rules, then declaratively encodes all computations to be
performed in a given learning scenario.

For clarity of correspondence with standard (neural) learning scenarios, we here further split2 the
program into unit clauses (facts), constituting the learning examples, and definite clauses (rules),
constituting the learning template.

7.1.1.1 Learning Examples

The learning examples contain factual description of a given world. For their representation we use
weighted ground facts. A learning example is then a set E = {(V1, e1), . . . , (Vj, ej)}, where each Vi is
a real-valued tensor and each ei is a ground fact, i.e. expression of the form

1 V1 : : p1(c11, . . . , c1q) .
2 . . .

3 Vj : : pn(cn1 , . . . , cnr ) .

where p1, . . . ,pn are predicates with corresponding arities q, . . . , r, and cji are arbitrary constants.
Standard logical representation is then a special case where each Vi = 13. One can either write
1::carbon(c1) or omit the weight and write, e.g., bond(c1,o2). The values do not have to be binary
and can represent a “degree of truth” to which a certain fact holds, such as 0.4::aromatic(c1).
The values are also not necessarily restricted to (0, 1), and can thus naturally represent numerical
features, such as 6::atomicNumber(c1) or 2.35::ionEnergy(c1, level2). Finally the values are not
necessarily restricted to scalars, and can thus have the form of feature vectors (tensors), such as
[1.0,−7, . . . , 3.14]::features(c1).

Ground facts in examples are also not restricted to unary predicates, and can thus describe not
only properties of individual objects, but values of arbitrary relational properties. For example,
one can assign feature values to edges in graphs, such as describing a bond between two atoms
[2.7,−1]::bond(c1,o2).

2 Note that this split is not necessary in general, and the template can also contain facts, as well as the learning examples
may contain rules, such as in the original LRNNs (Section 5.1) and some ILP learning settings (Section 3.3.1).

3 Since we consider a close world assumption (CWA) and least Herbrand model, one does not enumerate false facts with
zero value (Section 5.1.1).
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There is no syntactical restriction on how these representations can be mixed together, and one
can thus select which parts of the data are better modelled with (sub-symbolic) distributed numer-
ical representations, and which parts yield themselves to be represented by purely logical means,
and move continuously along this dimension as needed.

query : Queries (q) (Section 3.2.1.2) represent the classification labels or regression targets asso-
ciated with an example for supervised learning. They again utilize the same weighted fact repre-
sentation such as 1::class or 4.7::target(c1). Note that the target queries again do not have to be
unary, and one can thus use the same format for different tasks. For example, for knowledge graph
completion, we would use queries such as 1.0::coworker(alice,bob).

7.1.1.2 Learning Programs

The weighted logic programs written in LRNNs are then often referred to as templates. Syntactically,
a learning template P is a set of weighted rules P = {αi, {W

αi
j }} = {(Wi, c)← (Wi

1,b1), . . . , (Wi
k,bk)}

where each αi is a definite clause and each Wj is some real-valued tensor, i.e. expressions of the
form

1 W1 : : h11 ( . . . ) :- W1
1 : b11 ( . . . ) , . . . , W1

j : b1i ( . . . ) .

2 W2 : : h21 ( . . . ) :- W2
1 : b21 ( . . . ) , . . . , W2

k : b2j ( . . . ) .
3 . . .

4 Wn : : hqp ( . . . ) :- Wn
1 : bn1 ( . . . ) , . . . , Wn

l : bnk ( . . . ) .

where hji’s and bji’s are predicates forming positive, not necessarily different, literals, and Wj
i’s are

the associated tensors (also possibly reused in different places).
The template constitutes roughly what neural architecture (Chapter 2) means in deep learning4 –

i.e. it does not (necessarily) encode a particular model or knowledge of the problem, but rather a
generic mode of computation.

Example 19 Consider a simple template for learning with molecular data, encoding a generic idea that the
(distributed) representation (h(.)) of a chemical atom (e.g. o1) is dependent on the chemical atoms adjacent to
it. Given that a molecule can be represented by the set of contained atoms (a(.))5 and bonds (b(. , .)) between
them (see e.g. left part of Figure 15), we can encode this idea by a following rule

1 Wh1 : : h (X) :- Wa : a (Y) , Wb : b ( X,Y ) .

Moreover, one might be interested in using the representation of all atoms (h(X)) for deducing the represen-
tation of the whole molecule, for which we can write

1 Wq : : q :- Wh2 : h (X) .

to derive a single ground query atom (q), which can be associated with the learning target of the whole
molecule. The concrete semantics of this template then follows in the next section.

7.1.2 Semantics

To explain the correspondence between a relational template P and a “neural architecture”, we now
describe the mapping that takes the template and a given example description, consisting of ground
facts, and produces a standard neural model. Here, “standard neural model” refers to a specific

4 We deliberately refrain from using the common term of neural “model”, since a single template can have multiple logical
(and neural) models.

5 e.g. a(o1) denotes a logical atom declaring o1 to be a chemical atom. This fact can then be, e.g., associated with chemical
features of the oxygen o1 (Section 7.1.1.1). To distinguish, h(.) denotes the learned distributed representation of each
chemical atom.
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Table 5: Correspondence between the logical ground model and computation graph.

Logical construct Type of node Notation

Ground atom h Atom node Ah

Ground fact h Fact node F(h,~w)

Ground rule’s αθ body Rule node Rcθ(Wc
0cθ←Wα

1 b1θ∧···∧Wα
kbkθ)

Rule’s α ground head h Aggregation node Gh=cθi(Wc
0c←Wα

1 b1∧···∧Wα
kbk)

differentiable computational graph (Chapter 2). We note that this mapping is exactly analogous to
the original LRNN semantics explained in Section 5.1.2.2.

First, let Nl be the set of rules and facts obtained from the template and a learning exam-
ple Nl = P ∪ El by removing all the tensor weights. For instance, if we had a weighted rule
W::h :- W1:b1, W2:b2 , we would obtain h :- b1, b2. Then we construct the least Herbrand model
Nl of Nl, which can be done using standard theorem proving techniques (Section 3.2). One sim-
ple option is to employ a bottom-up grounding strategy by repeated application of the immediate
consequence operator (Section 3.2.1.1)6. We note that for the consequent neural learning, the target
query atom q associated with El must be logically entailed by Nl, i.e. present in Nl

7.
Having the least Herbrand model Nl containing q, we can directly construct a neural compu-

tational graph Gl. Intuitively, the structure of the graph contains all the logical derivations of the
target query literal q from the example evidence El through the template P. Again, this construc-
tion process is completely analogous8 to the original LRNN translation as defined in Section 5.1.1.
For the sake of clarity, we redefine the transformation mapping from Nl to a differentiable (neural)
graph, in the new context of this chapter, as follows:

• For each weighted ground fact (Vi, e) occurring directly in El, there is a node F(Vi,e) in the
computational graph, called a fact node.

• For each ground atom h occurring in N \ El, there is a node Ah in the computational graph,
called an atom node.

• For every rule c← b1 ∧ · · ·∧ bk ∈ P and every grounding substitution cθ = h ∈ N, there is a
node Gcθ=h(c←b1∧···∧bk) in the computational graph, called an aggregation node.

• For every ground rule αiθ = (cθ← b1θ∧ · · ·∧ bkθ) ∈ N, there is a node R(cθ←b1θ∧···∧bkθ) in
the computational graph, called a rule node.

An overview of the correspondence between the logical and the neural model, together with the
used notation is reviewed in Table 5.

The nodes of the computational graph that we defined above are then interconnected so as to
follow the derivation of the logical facts by the immediate consequence operator starting from El,
i.e. starting from the fact nodes F(Vi,e) which have no antecedent inputs in the computational graph
and simply output their associated values out(F(Vi,e)) = Vi. The fact nodes are then connected into
rule nodes Rαθ, particularly a node F(Vi,e) will be connected into every node Rαθ = R(cθ←b1θ∧···∧bkθ)

6 Another option is backward-chaining of the rules back from the associated query atom (q) through P into El. Note that
this choice is purely technical and, following proper logical inference in both cases, does not affect the resulting logical
(or neural) model.

7 Otherwise it stands as a “counter-example” in the ILP sense (Section 3.3.1), which are automatically considered false (or
having a default value) here via CWA.

8 With the main difference being the (tensor) parameterization of the rules, leading to definition of the underlying compu-
tation on the level of nodes (akin to “layers”) instead of neurons.
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template: α1 : Wh1 :: h(X) :- Wa : a(Y) , Wb : b(X,Y) . α2 : Wq :: q :- Wh2 : h(X) .
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Figure 15: A simple LRNN template with 2 rules described in Example 1. Upon receiving 2 example
molecules, 2 neural computation graphs get created, as prescribed by the semantics (Section 7.1.2).

where e = biθ for some i. Having all the inputs, corresponding to the body literals of the associated
ground rule, connected, the rule node will output a value calculated as

out(Rαθ) = g∧

(
Wα
1 · out(F(V1,b1θ)), . . . ,W

α
k · out(F(Vi,bkθ))

)
.

The rule node’s activation function g∧ is up to user’s choice. For scalar inputs, it can be for ex-
ample set to mimic conjunction from Lukasiewicz logic, as detailed for the original LRNNs in
Section 5.1.3. However, one can also choose to ignore the fuzzy-logical interpretation, and use com-
pletely distributed semantics and activations utilized commonly in deep learning, which is the
strategy chosen in this chapter. In this case the computation follows the common (matrix) calculus
by firstly aggregating the node’s input values into its activation value

act(Rαθ)
(l×1)

= Wα
1

(l×n)
· out(F1)

(n×1)
+ · · ·+ Wα

j
(l×m)

· out(Fk)
(m×1)

,

followed by an element-wise application of any differentiable function, such as logistic sigmoid

out(Rαθ)
(l×1)

= σ(act(Rαθ)
(l×1)

) = σ
(
act(Rαθ)1, . . . ,act(Rαθ)l

)
.

In general, the rule nodes are used to represent (conjunctive) patterns to be repeatedly matched in
the input (or transformed) data while reusing the same parameterization, such as the convolutional
filters in CNNs9.

The rule nodes are then connected into aggregation nodes. Particularly, a rule node R(cθ←b1θ∧···∧bkθ)
is connected into the aggregation node Gcθ=h(c←b1∧···∧bk) that corresponds to the same ground head
literal cθ. Having all the inputs, corresponding to different grounding substitutions θi of the rule
c ← (b1 ∧ · · ·∧ bk) with the same ground head h = cθ1 = · · · = cθq, connected, the aggregation
node will output the value

out(Gcαθ = h) = g∗

(
out(Rcθ1=hαθ1

), . . . ,out(Rcθq=hαθq
)
)

.

9 see e.g. Figure 17 for an example use.
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where g∗ is some aggregation function, such as avg or max. The aggregation nodes effectively
aggregate all the different ways by which a literal h can be derived from a single rule α. Their
semantic intuitively corresponds to a certain quantification over free variables appearing solely in
the rule’s α body. The aggregation g∗ is then applied in each dimension of the input values as

out(Ghα)
l×1

= g∗(out(R1)
l×1

, . . . ,out(Rq)
l×1

) =

(
g∗

(
out(R1)

1, . . . ,out(Rq)1
)

, . . . ,

. . . ,g∗
(
out(R1)

l, . . . ,out(Rq)l
))

.

Note that since all the input values are derived from a single rule α, their dimensionalities are nec-
essarily the same. Intuitively, the aggregation nodes are used to aggregate values from the pattern
matches of the underlying rule nodes, such as the pooling operation used in CNNs9.

The aggregation nodes are then connected into atom nodes. In particular, an aggregation node Ghα
will be connected into the atom node Ah that is associated with the same atom h. The inputs of
the atom node represent all the possible rules αi through which the same atom h can be derived.
Having them all connected, Ah will output the value

out(Ah) = g∨

(
Wc
1 · out(Ghα1), . . . ,W

c
m · out(Ghαm)

)
.

Apart from the choice of activation function g∨, the computation of the atom node’s output follows
exactly the same scheme as for the rule nodes. However, the atom nodes are used to combine the
aggregated values (pattern matches) from different rules (such as the combine operation in GNNs
in Section 2.4).

Finally, the atom nodes are connected into rule nodes in exactly the same fashion as fact nodes, i.e.
Ah will be connected into every R(cθ←b1θ∧···∧bkθ) where h = biθ for some i, and the whole process
continues recursively. Note that this process of transforming a learning example into a computation
graph is performed only once, as the subsequent neural training can only change the values of the
parameters but not the structure of the graphs.

Example 20 Let us follow up on the Example 1 by extending the described template with two example
molecules of hydrogen and water. The template will then be used to dynamically unfold two computation
graphs, one for each molecule, as depicted in Figure 15. Note that the computation graphs have different
structures, following from the different Herbrand models derived from each molecule’s facts, but share param-
eters in a scheme determined by the lifted structure of the joint template.

7.2 examples of common neural architectures

We demonstrate flexibility of the declarative LRNN templating, stemming from the abstraction
power of Datalog, by encoding a variety of common neural architectures in very simple differen-
tiable logic programs. For completeness, we start from simple neural models, where the advantages
of templating are not so apparent, but continue to advanced deep learning architectures, where
the expressiveness of relational templating stands out more clearly. Note that all templates in this
chapter are actual programs that can be run and trained with the LRNN interpreter.

7.2.1 Feed-forward Neural Networks

Multi-layer perceptrons (MLPs) form the most simple case where the weighted logic template is
restricted to propositional clauses, and its single Herbrand model thus directly corresponds to a
single neural model (Section 7.1.2). In this setting, the input example information can thus be en-
coded merely in the values of their associated tensors, which is the standard deep learning scenario.
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Ff,v Rh1α1θ Gh1α1 Ah1 Rh2α2θ Gh2α2 Ah2W1 W2
→

pruning
Ff,v Ah1 Ah2W1 W2

Figure 16: Demonstration of the pruning technique on a sample MLP model unfolded from a 2-rule template
of α1 = W1::h1:-f. and α2 = W2::h2:-h1.

In the vector form, we can associate each example Ei with a fact proposition [vi
1, . . . , vi

n]::features(0),
forming the input (0-th) node of the neural model. Each example is further associated with a query
vi

q::q.
In particular, an MLP with 3 layers, i.e. input layer(0), 1 hidden layer(1), and output layer(2), with

the corresponding weight matrices [ W
m×n

(1), W
1×m

(2)] can be directly modelled with the following rule

1 W
1×m

(2) : : q(2) :- W
m×n

(1) : f e a t u r e s (0) .

Naturally, we can extend it to a deeper MLP by stacking more rules as

1 W
r×m

(2) : : hidden(2) :- W
m×n

(1) : f e a t u r e s (0) .

2 . . .

3 W
1×s

(k) : : q(k) :- W
s×r

(k−1) : hidden(k−2) .

Once the template gets transformed into the corresponding neural model (Section 7.1.2), its com-
putation graph will consist of a linear chain of nodes (Section 2.1) corresponding to standard
fully-connected layers 1, . . . ,k with associated weight matrices [W(1),W(2) . . . ,W(k)], and activa-
tion functions of user’s choice. We note that it is also possible to specify the activation functions
with each rule (layer) separately, e.g. as

1 W(4) : : hidden(4) :- W(3) : hidden(2) . [g∧ = ReLU, g∗ = AVG]

Note that not all the weights need to be specified, and one can thus also write, e.g., either of

1 W : : h(2) :- h(0) . h(2) :- W : h(0) .

While each of these rules still encodes in essence a 3-layer MLP, either only the hidden (right) or
only the output (left) layer will carry learnable parameters, respectively. Moreover, following the
exact semantics (Section 7.1.2) for neural model creation, an aggregation node will be created on
top of a rule node, representing the hidden layer. Since there is no need for aggregation in MLPs, i.e.
only a single rule node ever gets created from each propositional rule, this introduces unnecessary
operations in the graph. Since such nodes arguably do not improve learning of the model, we
prune them out, as depicted in Figure 16. The technique is further described in more detail in
the appendix Section A.1.1. Note that we assume application of pruning, where applicable, in the
remaining examples described in this chapter.

7.2.1.1 Knowledge-based Artificial Neural Networks

As discussed in Section 4.3.1, the direct correspondence between a propositional program and a
neural network has been successfully exploited in a number of previous works, particularly the
original Knowledge-Based Artificial Neural Networks (KBANN) [67], and LRNNs can be possibly
seen as a direct extension of KBANN into relational setting. To emulate the KBANN inference and
learning, we simply fall back to scalar representation of features, e.g. 0::rain, 0.6::wet, 0.8::sunny,
and consider a propositional template encoding some background domain knowledge, such as
sprinkle :- wet , sunny. One then needs to choose a set of proper activation functions based on
desired multi-valued logic semantics, e.g. the Lukasiewicz’s fuzzy operators (Section 5.1.3). Note
that, choosing proper fuzzy logic activations, this still covers standard logical inference as a special
case with the use of binary fact values.
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Figure 17: Left: core part of a standard CNN architecture with sparse layer composed of sequential appli-
cations of a convolutional filter (h), creating a feature-map layer, followed by a pooling operator.
Right: the corresponding computation graph derived from a LRNN template.

7.2.2 Convolutional Neural Networks

The CNNs can no longer be represented with a propositional template. To emulate the additional
parts w.r.t. the MLPs, i.e. the convolutional filters and pooling (Section 2.2), we need to move to
relational rules (Section 3.2). Note that there is a natural, close relationship between convolutions and
relational rules (or relational patterns in general), where the point of both is to exploit symmetries
in data. Moreover, the point of both the aggregation nodes and the pooling layers is to enforce
certain transformation invariance. Let us demonstrate this relationship with the following example.

For clarity of presentation, consider a simplistic one-dimensional “image” consisting of 5 pixels
i = 1, ..., 5. While the regular grid structure of the image pixels is inherently assumed in CNN, we
will need to encode it explicitly. Considering the 1-dimensional case, it is enough to define a linear
ordering of the pixels such as next(1, 2), . . . ,next(4, 5). The (gray-scale) value vi of each pixel i can
then be encoded by a corresponding weighted fact vi:f(i). Next we encode a convolution filter of
size [1, 3], i.e. vector which combines the values of each three ([left,middle,right]) consecutive pixels,
and a (max/avg)-pooling layer that aggregates all the resulting values. This computation can be
encoded using the following template

1 h :- wl : f (A) , wm : f ( B ) , wr : f (C) , next ( A,B ) , next ( B,C ) .

A visualization of the CNN and the corresponding computation graph derived from the logic model
of the template presented with some example pixel values [v1, . . . , v5] is shown in Fig 17.

While this does not seem like a convenient way to represent learning with CNNs from images, the
important insight is that convolutions in neural networks correspond to weighted relational rules
(patterns). The efficiency of normal CNN encoding is due to the inherent assumptions that are
present in CNNs w.r.t. topology of their application domain, i.e. grids of pixel values, and similarly
complete, ordered structures. While with LRNNs we need to state all these assumptions explicitly,
it also means that we are not restricted to them – an advantage which will become clearer in the
subsequent sections.

7.2.3 Recursive and Recurrent Neural Networks

A recursive network also exploits the principle of convolution, however the input is no longer a grid
but a regular tree of an unknown structure. This prevents us from creating computation schemes
customized to a specific structure, as in the CNNs. Instead, we need to resort to a general convolu-
tional pattern that can be applied over any k-regular tree.
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Figure 18: Simple recurrent (left) and recursive (right) neural structures encoded through LRNNs.

For that purpose, we again utilize the expressiveness of relational logic. Firstly, we encode the
k-regular tree structure itself by providing a fact connecting each parent node in the tree to its
child-nodes, i.e. parent(nodei+1j ,nodeil, . . . ,node

i
l+k). Secondly, we associate all the leaf nodes in

the tree with their embedding vectors [vi
1, . . . , vi

n]::n(leafi). Finally, a single relational rule can then
be used to encode the recursive composition of representations in the, for instance 3-regular, tree as

1 n ( P ) :- W1 : n (C1 ) , W2 : n (C3 ) , W3 : n (C3 ) , parent ( P,C1 ,C2 ,C3 ) .

which directly forms the whole learning template. Given a particular example tree, this rule trans-
lates to a computation graph recursively combining the children node representations (n(C)) into
respective parent node representations, until the root node is reached. The root node representation
(n(root)) could then be fed into a standard MLP rule (Section 7.2.1) to output the value for a given
target query associated with the whole tree example.

A simple recurrent neural network unfolded over a linear (time) structure can then be modelled
in a simpler manner, where only a single (vector) input is given at each step and a linear chain of
hidden nodes (h(X)) replaces the prescribed tree hierarchy. Assuming encoding of the linear example
structure with predicate next(X, Y) as before, such a model can then be written as

1 h (Y) :- Wf : f (Y) , Wh : h (X) , next ( X,Y ) .

The final hidden representation (h(k)) could then again be fed into a MLP for a whole sequence-
level prediction. Neural architectures of both these templated models are displayed in Figure 18.

7.3 graph neural networks in lrnns

Graph (convolutional) Neural Networks (GNNs) (Section 2.4) can be seen as a generalization of the
introduced neural architectures (Section 7.2) to arbitrary graphs, for which they combine the ideas
of latent representation learning (Section 7.2.1), convolution (Section 7.2.2), and dynamic model
structure (Section 7.2.3).

While modelling CNNs in the weighted logic formalism was somewhat cumbersome (because
we had to explicitly represent the pixel grid), the encoding of GNNs is very straightforward. This is
due to the underlying general graph representation with no additional assumptions of its structure,
which yields itself very naturally to relational logic. The computation of the layer i update in GNNs
can then be represented by a single rule as follows

1 W(i) : : h(i) (V) :- h(i−1) (U) , edge ( V,U ) .



80 differentiable logic programming with lrnns

Fn1

Fn2

Fn3

Fn4

A(1)
h(n1)

A(1)
h(n2)

A(1)
h(n3)

A(1)
h(n4)

R41

R14

R12

R13

R21

R23

R31

R32

G1

G2

G3

G4

W2

W2

W2

W2

W1 W1

W1
W1

W1 W1
W1

A(n)
h(n1)

A(n)
h(n2)

A(n)
h(n3)

A(n)
h(n4)

. . .

. . .

. . .

. . .

. . .. . .

. . . . . .. . .

. . .. . .

Gqαn Aq
W(n)

Figure 19: A computation graph of a sample (g-SAGE) GNN as encoded in LRNNs. Given an input graph of
4 (fact) nodes (Fn1 . . . Fn4 ), neighbors of each node are firstly weighted and aggregated with rule
and aggregation nodes, respectively (reduced in size in picture). The result is then combined with
representation of the (central) node from the preceding layer, to form a new layer of 4 atom nodes,
copying the structure of the input graph. After n such layers, each with the same structure but
different parameters, a global readout (aggregation) node aggregates all the node representations,
passing to the final query (atom) node’s transformation.

where edge/2 is the binary relation of the given input graphs. With the choice of activation func-
tions as g∗ = avg,g∧ = ReLU, this simple rule can be already used to model the popular Graph
Convolutional Neural Networks (GCN) [75]10. The exact same rule (up to parameterization) is then
used at each layer. For the final output query (q) representing the whole graph we simply aggregate
representations of all the nodes as

1 W(d) : : q :- h(d−1) (U) .

A noticeable shortcoming of GCNs is that the representation of the “central” node (V) itself is not
used in the representation update. While this can be done by extending the graph (edge/2) with
self-loops, a novel11 GNN model called GraphSAGE (g-SAGE) [74] was proposed to address this
explicitly. To follow the architecture of g-SAGE, we thus split the template into 2 rules accordingly

1 h(i) (V) :- W(i)
1 : h(i−1) (U) , edge ( V,U ) .

2 h(i) (V) :- W(i)
2 : h(i−1) (V) .

and choose g∧ = ReLU,g∗ = max,g∨ = identity for the very model (g-SAGE), the depiction of
which can be seen in Figure 19.

Another popular extension taken from neural architectures for image recognition are residual
(skip) connections, where one effectively adds links to preceding layers at arbitrary depth (instead
of just the preceding layer), i.e. we simply add one or more rules in the form

1 W(i)
skip : : h(i) (V) :- h(i−skip) (V) .

This technique is also used in the Graph Isomorphism Network (GIN) [61], which is a theoretically
substantiated GNN based on the expressive power of the Weisfeiler-Lehman test (WL) [59]. Firstly,
the GIN model differs in that it adds residual connections from all the preceding layers to the final
layer (which the authors refer to as “jumping knowledge” [76]). Secondly, the particularity of GIN
is to add a 2-layered MLP on top of each aggregation to harvest its universal approximation power.
Particularly, update formula derived from the WL-correspondence [61] is

h(i)(v) =MLP(i)
(
(1+ ε(i−1)) · h(i−1)(v) +

∑
u∈N(v)

h(i−1)(u)
)

10 where the authors also denoted the rule as convolution, since it forms a linear approximation of a localized spectral
convolution [75].

11 Note that, differently from GCN with self-loops, the central node is parameterized differently from the neighbors.
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whereMLP is the 2-layered MLP (Section 2.1). To accommodate the extra MLP layer, we thus extend
the template as follows

1 mlp(i)
tmp (V) :- h (U) (i−1), edge ( V,U ) .

2 mlp(i)
tmp (V) :- (1 + ›(i−1)) : h(i−1) (V) .

3 W(i)
2 : : h(i) (V) :- W(i)

1 : mlp(i)
tmp (V) .

Note that, considering that such a single rule actually already models a 2-layer12 MLP (as described
in Section 7.2.1), a very similar computation can be carried out more simply with

1 W(i)
2a : : h(i) (V) :- W(i)

1a : h (U) (i−1), edge ( V,U ) .

2 W(i)
2b : : h(i) (V) :- W(i)

1b : h(i−1) (V) .

corresponding to a GIN version without the special (1+ ε(i)) coefficient, which the authors refer
to as “GIN-0” [61] and actually find performing better13. Finally they choose g∗ = sum as the
function to aggregate the neighborhood representations. The authors proved the GIN model to
belong to the most “powerful” class of GNN models, i.e. no other GNN model is more expressive
than GIN, and demonstrated the GIN-0 model to provide state-of-the-art performance in various
graph classification and completion tasks [61].

7.3.1 Extending GNNs

While the GIN model presents the most “powerful” version of the basic GNN idea, there is a large
number of ways in which the GNN approach can be extended. We discuss some of the direct,
natural extensions in this subsection.

7.3.1.1 Edge Representations

Originally aimed at single-relation graphs, GNNs do not adequately utilize the information about
the possibly different types of edges. While it is straightforward to associate edges with scalar
weights in the adjacency matrix, instead of using just binary edge indicators [75], extending to
richer edge representations is not so direct, and has only been explored recently [189–191].

In the templating approach, addressing edges is very simple, since we do not operate directly on
the graph but on the ground logical model, where each edge (edge(n1,n2)) forms an atom in exactly
the same way as the actual nodes (node(n1)) in the graph itself (similarly to an extra transformation
introduced in line-GNNs [192]). We can thus directly associate edges corresponding to different
relations with arbitrary features ([v1, . . . , vn]:: edge(n1,n2)), learn their distributed representations,
and predict their properties (or existence), just like GNNs do with the nodes. For basic learning with
edge representations, there is no need to change anything in the previously introduced templates.
However, one might want to associate extra transformations for edge and node representation
learning [190], in which case we would simply write

1 W(i) : : h(i) (V) :- h (U) (i−1), We : edge ( V,U ) .

A large number of structured data then come in the form of multi-relational graphs, where
the edges can take on different types. A straightforward extension is to learn a separate node
representation of the nodes for each of the relations, e.g. as

12 or 3-layer, depending on inclusion of the input layer in the count.
13 We note there is a slight difference, where GIN-0 firstly aggregates the neighbors and weights the result, while this

template aggregates the neighbors after weighting. Nevertheless we note that GNN authors often switch this order
themselves, for instance GraphSAGE in [188] performs weighting before aggregation, while it is vice-versa in [61].
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1 W(i) : : h(i)
x (V) :- hx (U) (i−1), We : edgetype=x ( V,U ) .

and to choose from the different representations depending on context, such as in multi-sense word
embeddings [193], or simply directly combine [194] these representations in the template.

7.3.1.2 Heterogeneous Graphs

The majority of current GNNs then assume homogeneous graphs, and learning from heterogeneous
graphs has just been marked as one of the future directions for GNNs [58]. In LRNNs, various
heterogeneous graphs [195] can be directly covered without any modification, since there is no
restriction to the types of nodes and relations to be used in the same template (and so we do not
have to e.g. split the graphs [196] or perform any extra operation [197] for such a task). In the
context of heterogeneous information networks, a similar “templating” idea has already become
popular as defining “meta-paths” [198, 199], which can be directly covered by a single LRNN rule
and, importantly, differentiated through.

We can further represent the relations as actual objects to be operated by logical means, by reify-
ing them into logical constants as

1 W(i)
1 : : h(i) (V) :- h (U) (i−1), h ( E ) (i−1), edge ( V,U,E ) .

where variable E represents the edge object and h(E) is its hidden representation. The learned
embeddings of the nodes and relations can then be directly used for predicting triplets of
(Object,Relation,Subject) in KBC, again with a simple template extension, e.g. for an MLP-based
KBE [200], as

1 W : : edge ( O,R,S ) :- Wo : h (O) , Wr : h (R) , Ws : h ( S ) .

7.3.1.3 Hypergraphs

Naturally, the GNN idea can be extended to hypergraphs, too, as was recently also proposed [201].
While extending to hypergraphs from the adjacency matrix form used for simple graphs can be
somewhat cumbersome, in the relational Datalog, hypergraphs are first-class citizens, so we can
just directly write

1 W(i)
1 : : h(i) (U1 ) :- h (U1 ) (i−1) , . . . , h (Un)(i−1) , edge (U1, . . . ,Un ) .

2 . . .

3 W(i)
1 : : h(i) (Un ) :- h (U1 ) (i−1) , . . . , h (Un)(i−1) , edge (U1, . . . ,Un ) .

and possibly combine with all the other extensions.
There are many other simple ways in which GNNs can be extended towards higher expressive-

ness and there is a wide variety of emerging works in this area. While reaching beyond the standard,
single adjacency matrix format, each of the novel extensions typically requires extra transformations
(and libraries) to create their necessary intermediate representations [192, 198]. Many of these exten-
sions are often deemed complex from the graph (GNN) point of view, but are rather trivial template
modifications with LRNNs, as indicated in the preceding examples (and following in Section 7.3.2).
This is due to the adopted declarative relational abstraction, as opposed to the procedural manip-
ulations on ground graphs, defined often on a per basis. On the other hand we note that LRNNs
currently cannot cover recent non-isotropic GNNs [188] with computation constructs such as atten-
tion, gating, or LSTMs [58]. While such construct could be included on an ad-hoc basis, they do not
yield themselves naturally to the LRNN semantics.
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7.3.2 Beyond GNN architectures

While we discussed possible ways for direct extensions of GNNs, there are more substantial al-
terations that break beyond the core principles of GNNs. One of them is the “message passing”
idea, where the nodes are restricted to “communicate” with neighbors through the existing edges
(WL label propagation [59]). Obviously, there is no such restriction in LRNNs, and we can design
templates for arbitrary message passing schemes, corresponding to more complex and expressive
convolutional filters. For instance, consider a simple extension beyond the immediate neighborhood
aggregation by defining edges as weighted paths of length 2 (introduced as “soft edges” in [202]):

1 W : : edge2 (U,W) :- W1 : edge ( U,V ) , W2 : edge (V,W) .

We can also easily compose the edges into small subgraph patterns of interest (also known as
“graphlets” or “motifs” used in, e.g., social network analysis [203]), such as triangles and other small
cliques (alternatively conveniently representable by the hyper-edges (Section 7.3.1.3)), and operate
on the level of these instead:

1 W : : node ( U,V,W ) :- W1 : edge ( U,V ) , W2 : edge (V,W) , W3 : edge(W,U ) .

Since both nodes and edges can be treated uniformly as logic atoms, we can easily alter the GNN
idea to hierarchically propagate latent representations of the edges, too. In other words, each edge
can aggregate representations of “adjacent” edges from previous layers:

1 W : : h(i)
edge ( E ) :- WF : h(i−1)

edge ( F ) , WU,V : edge ( U,V,E ) , WV,W : edge ( V,W,F ) .

Naturally, this can be further combined with the standard learning of the latent node representa-
tions (as we do in experiments in Section 7.4).

Moreover, the messages do not have to spread homogeneously through the graph and a custom
logic can drive the diffusion scheme. This can be, for instance, naturally put to work in the hetero-
geneous graph environments (Section 7.3.1.2) with explicit types, which can then be used to control
communication and representation learning of the nodes:

1 W : : h(i) (X) :- h(i−1) (Y) , edge ( X,Y,E ) , type ( E, typee1 ) .

Besides being able to represented the types explicitly as objects (as opposed to the vector embed-
dings), we can actually induce new types, for instance into latent hierarchical categories (such as
in [171]):

1 i s a ( edge1 , t y p ee1 ) .
2 . . .

3 W(1) : : i s a ( supertype(1)
e , t y p ee1 ) .

4 W(k) : : i s a ( A,C ) :- W(k−1)
1 : i s a ( A,B ) , W(k−1)

2 : i s a ( B,C ) .

Importantly, there is no need to directly follow the input graph structure in each layer. We can
completely abstract away from the graph representation in the subsequent layers and reason on the
level of the newly invented, logically derived, entities, such as, e.g., the various graphlets, latent
types, and their combinations:

1 W : : node(1)motif(T1, T2, T3) :- W1 :node (X) , W2 : node (Y) , W3 : node (Z) ,
2 W4 : type ( X,T1 ) , W5 : type ( Y,T2 ) , W6 : type ( Z,T3 ) ,
3 edge ( X,Y ) , edge ( Y,Z ) , edge ( X,Z ) .

Finally, the models can be directly extended with external relational background knowledge. Note
that such knowledge can be specified declaratively, with the same expressiveness as the templates
themselves, since they are consequently simply merged together, for instance:
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1 r ing6(A, . . . , F) :- Ve1 : edge ( A,B ) , . . . , Ve6 : edge ( F,A ) ,
2 Vn1node (A) , . . . , Vn6node ( F ) .
3 W : : node(n) (X) :- V1 : r ing6(X, . . . , F ) .

We further detail extending GNNs with such declarative background knowledge in a practical
case study in Section 7.5.1. Note that this is very different from the standard GNNs, where one
can only input ground information, in the form of numerical feature vectors along with the actual
nodes (and possibly edges). Nevertheless this does not mean that LRNNs cannot work with nu-
merical representations. On the contrary, besides the standard neural means, one can also directly
interact with it by the logical means, e.g. by arithmetic predicates to define learnable numerical
transformations (such as in [202]) over some given (or learned) node similarities:

1 W : : edgesim (N1 ,N2 ) :- s i m i l a r (N1 ,N2 , S im ) , W0.3 :> ( Sim , 0 . 3 ) .

7.4 experiments

The preceding examples were meant to demonstrate high expressiveness and encoding efficiency
of declarative LRNN templating. The main purpose of the experiments is to assess correctness
and efficiency of the actual learning. For that purpose, we select GNNs as the most general and
flexible of the commonly used neural architectures, since they encompass building blocks of all the
other introduced architectures. Given the focus on GNNs, we compare against two most popular14

GNN frameworks of Pytorch Geometric (PyG) [204] and Deep Graph Library (DGL) [205]. Both
these frameworks contain reference implementations of many popular GNN models, which makes
them ideal for such a comparison. Note also that both these frameworks are highly contemporary
and were specifically designed and optimized for creation and training of GNNs. For clarity of
presentation, we restrict ourselves to a single task of structure property prediction, but perform
experiments across a large number of datasets.

7.4.1 Datasets

For clarity of presentation, we restrict ourselves to a single task of graph classification, but perform
experiments across a large number of datasets to obtain statistically significant results. Particularly,
we assembled a collection of 78 popular molecular datasets, ranging from small instances, such as
the infamous Mutagenesis [172], to medium, such as the Predictive Toxicology Challenge [174], and
large, particularly various datasets from the National Cancer Institute NCI [206]15. Note that these
include popular datasets such as NCI1 [61, 62, 207] or NCI109 [207–209] that are commonly picked
by GNN authors, but we also include the 70 others. The tasks with these are generally to recognize
molecules w.r.t. their mutagenicity, toxicity or ability to inhibit growth of different types of tumors.
On average, each of these datasets contains app. 3000 samples each with app. 24 atoms and 51

bonds. Note we only use the basic (Mol2 [210]) types of atoms and bonds without extra chemical
features.

7.4.2 Modern GNN frameworks

While popular deep learning frameworks such as TensorFlow or Pytorch provide ways for effi-
cient acceleration of standard neural architectures such as MLPs and CNNs, implementing GNNs
is more challenging due to the irregular, dynamic, and sparse structure of the input graph data.
Nevertheless, following the success of vectorization of the classic neural architectures, both PyG

14 with, as of date, PyG having 7.3K stars and DGL having 4.7K stars on Github, respectively.
15 available at ftp://ftp.ics.uci.edu/pub/baldig/learning/nci/gi50/

ftp://ftp.ics.uci.edu/pub/baldig/learning/nci/gi50/
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Figure 20: Alignment of training errors of the 3 models (GCN, g-SAGE, GIN), as implemented in the 3

different frameworks (LRNNs, DGL, PyG), over first 5 (alphabetically) datasets.

and DGL adopt the standard (sparse) tensor representation of all the data to leverage vectorized
operations upon these. This includes the graphs themselves, which are then represented by their
sparse adjacency matrices Gii. Further, each node index i can be associated with a feature vector
([f1, . . . , fj]i) through an additional matrix Fji associated with each input graph.

Following the standard procedural differentiable programming paradigm, both frameworks then
represent model computations explicitly through a predefined graph of tensor transformations

applied directly to the input graph matrices, creating an updated feature tensor Fj
(k)

i at each step k.
The same tensor transformations are then applied to each input graph.

Both frameworks are based on similar ideas of message passing between the nodes (neighbor-
hood aggregation) and its respective acceleration through optimized sparse tensor operations and
batching (gather-scatter). DGL then seems to support a wider range of operations (and backends),
with high-level optimizations directed towards larger scale data and models (and a larger overhead),
while PyG utilizes more efficient low-level optimizations stemming from its tighter integration with
Pytorch.

7.4.3 Model and Training Correctness

Firstly, we evaluate correctness of the templated GNN architectures via correspondence to their
reference implementations in PyG and DGL. For this we select some of the most popular GNN
models introduced in previous chapters, particularly the original GCN [75], highly used Graph-
SAGE (g-SAGE) [74] and the “most powerful” GIN [61] (particularly GIN-0). Each of the models
comes with a slightly different aggregate-combine scheme and particular aggregation/activation
functions (detailed in Sections 2.4 and 7.3). Moreover, we keep original GCN and g-SAGE as 2-
layered models, while we adopt 5-layers for GIN (as proposed by the authors)16. We further use the
same latent dimension d = 10 for all the weights in all the models. Finally we set average-pooling
operation, followed by a single linear layer, as the final graph-level readout for prediction in each
of the models.

While the declarative templating takes a very different approach from the procedural GNN frame-
works, for the specific case of GNN templates it is easy to align their computations, as they are

16 Obviously the number of layers could be increased/equalized for all of the models, however we keep them distinct to
also accentuate their learning differences further.
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Table 6: Average Mahalanobis distances between the training errors of the respective models and frameworks
over all the datasets.

|LRNN,PyG| |LRNN,DGL| |DGL,PyG|

GCN 0.20 ± 0.10 0.22 ± 0.19 0.26 ± 0.23

G-SAGE 0.25 ± 0.17 0.33 ± 0.35 0.27 ± 0.20

GIN 0.49 ± 0.30 0.54 ± 0.40 0.52 ± 0.35

mostly simple sequential applications of the (i) neighborhood aggregation, (ii) weighting, and (iii)
non-linear activation, which can be covered altogether by a single rule (Section 7.3)17.

For the comparison, we choose the NCI [173] molecular datasets18, each containing thousands of
molecules labeled by their ability to inhibit growth of different types of tumors. Note we only use
the basic (Mol2 [210]) types of atoms and bonds without extra chemical features. For visual clarity
we present results only for the first 5 of the total 73 datasets in alphabetical order (while we note
that the results are very similar over the whole set). We use the same 10-fold crossvalidation splits
for all the models. We further use Glorot initialization scheme [211] where possible, and optimize
using ADAM with a learning rate of lr = 1.5e−5 (betas and epsilon kept the usual defaults) against
binary crossentropy over 2000 epochae. Note that some other works propose a more radical training
scheme with lr = 0.01 and exponential decay by 0.5 every 50 epochae [61], however we find GNN
training in this setting highly unstable19, and thus unsuitable for the alignment of the different
implementations. We then display the actual training errors (as opposed to accuracy) as the most
consistent evaluation metric for the alignment purpose in Figure 20 over the first 5 datasets for
demonstration. Additionally, we report aggregated Mahalanobis pair-wise distances [212] between
the training errors of the respective frameworks and models calculated over all the datasets in Ta-
ble 6. While it is very difficult to align the training perfectly due to the underlying stochasticity, we
can see that the performances are tightly aligned within a margin of standard deviation calculated
over the folds and datasets. The differences are generally highest for the most complex GIN model,
which also exhibits most unstable performance over the folds. Importantly, the differences between
LRNNs and the other frameworks is generally not greater than between PyG and DGL themselves,
which both utilize the exact same PyTorch modules and operations.

7.4.4 Computing Performance

The main aim of the declarative LRNN framework is quick prototyping of models aiming to in-
tegrate deep and relational learning capabilities, for which it generally provides more expressive
constructs than that of GNNs (Section 7.3) and does not contain any specific optimizations for com-
putation over graph data. Additionally, it introduces a startup model compilation overhead as the
particular models are not specified by the user but rather automatically induced by the theorem
prover. Moreover, it implements the neural training in a rather direct (but flexible) fashion of actual
traversal over each network (such as in Dynet [213]), and does so without batching, efficient tensor
multiplication or GPU support20. Nevertheless, we show that the increased expressiveness does not
come at the cost of computation performance.

17 However for a precise correspondence, care must be taken to respect the same order of the (i-iii) operations, which often
varies across different reports and implementations.

18 available at ftp://ftp.ics.uci.edu/pub/baldig/learning/nci/gi50/
19 as is e.g. also visible in the respective Figure 4 reported in [61].
20 However it is possible to export the networks to be trained by any neural backend rather than the native Java engine.

ftp://ftp.ics.uci.edu/pub/baldig/learning/nci/gi50/
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Table 7: Training times per epocha across the different models and frameworks. Additionally, the startup model
creation time (theorem proving) overhead of LRNNs is displayed.

model/engine LRNNs (s) PyG (s) DGL (s) LRNNs startup (s)

GCN 0.25 ± 0.01 3.24 ± 0.02 23.25 ± 1.94 35.2 ± 1.3

g-SAGE 0.34 ± 0.01 3.83 ± 0.04 24.23 ± 3.80 35.4 ± 1.8

GIN 1.41 ± 0.10 11.19 ± 0.06 52.04 ± 0.41 75.3 ± 3.2

We evaluate the training times of a GCN over 10 folds of a single dataset (containing app. 3000

molecules) over the different models. We set Pytorch as the DGL backend (to match PyG), and train
on CPU21 with a vanilla SGD (i.e. batch size=1) in all the frameworks. From the results in Table 7,
we see that LRNNs surprisingly train significantly faster than PyG, which in turn runs significantly
faster than DGL. While the performance edge of PyG over DGL generally agrees with [204]22, the
(app. 10x) edge of LRNN seems unexpected, even accounting for the startup theorem proving
overhead for the model creation (giving PyG a head start of app. 10 epochae). We account the
superior performance of LRNNs to the rather sparse, irregular, small, dynamic graphs for which
the common vectorization techniques, repeatedly transforming the tensors there and back, often
create more overhead than speedup, making it more efficient to traverse the actual spatial graph
representations [213]. Additionally, LRNNs are implemented in Java, removing the Python over-
head, and contain some generic novel computation compression [214] techniques (providing about
3x speedup for the GNN templates).

Note we also prevented the frameworks from batching over several graphs, which they do by
embedding the adjacency matrices into a block-diagonal matrix. While (mini) batching has been
shown to deteriorate model generalization [215, 216], it still remains the main source of speedup in
deep learning frameworks [217], and is a highlighted feature of PyG, too. We show the additional
PyG speedup gained by batching in Figure 21. While batching truly boosts the PyG performance
significantly, it still lacks behind the non-batched LRNNs23. For illustration, we additionally include
an inflated version of the GCN model by a 10x increase of all the tensor dimensionalities. In this
setting we can finally observe a performance edge from mini-batching, due to vectorization and
GPU24, over the non-batched LRNNs25.

a note on the startup overhead Recall that in the LRNNs workflow, the computation
graphs are only created once for each of the learning samples during startup (Section 7.1.2). The
subsequent training times are thus completely independent of reported the startup overhead stem-
ming from the involved theorem proving (grounding) and neural network creation. An estimate
of the total learning time can thus be obtained by timestartup + 2000 · timeepocha, rendering the
overhead practically negligible in all the reported experiments. Some further details on the theorem
proving overhead can then be found in the appendix Section A.3.

21 We evaluated the training on CPU as in this problem setting the python frameworks run slower on GPU (Figure 21).
22 We note that we run both frameworks in default configurations, and there might be settings in DGL for which it does

not lag behind PyG so rapidly. Note that for the small models of GCN and g-SAGE it is 10x slower, while for the bigger
GIN model only 5x, which is in agreement with DGL’s focus on large scale optimization.

23 While LRNNs currently do not support batching natively, it can be emulated by outsourcing the training to Dynet.
24 Also note that we used a non-high-end Ge-Force 940m, and the performance boost could thus be even more significant.
25 On the other hand note that dim = 100 is considerably high. Most implementations we found were in range {8,16,32}

and we did not observe any test performance improvement beyond dim = 5 with the reported datasets and models.
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Figure 21: Improving the computing performance of PyG via mini-batching and model size blow-up. The
actual GCN model (10 × 10 parameter matrices) and 10x inflated version (100× 100 parameter
matrices) as run on CPU and GPU. Compared to a non-batched (batch=1) LRNN run on CPU.

7.4.5 Model Generalization

Finally we evaluate learning performances of the different models. We select the discussed GNN
models of GCN, g-SAGE and GIN (we keep only the PyG implementation for clarity), and we fur-
ther include some example relational templates for demonstration. Particularly, we extend GIN with
edge (bond) representations and associate all literals in all rules with learnable matrices (Section 7.3),
denoted as “gin*”. In a second template we add a layer of graphlets (motifs) of size 3, aggregating
jointly representations of three neighboring nodes, on top of GIN, denoted as “graphlets”. Lastly,
we introduce latent bond learning (Section 7.3.2) into GIN, where bond (edge) representations are
also aggregated into latent hierarchies, denoted as “latent_bonds”. Note that we restrict these new
relational templates to the same tensor dimensionalities and number of layers as GIN. For statis-
tical soundness, we increase the number of datasets to the first 10 (alphabetically). We run all the
models on the same 10-fold crossvalidation splits with a 80:10:10 (train:val:test) ratio, and keep the
same, previously reported, training hyperparameters. We display the aggregated training errors in
Figure 22, and the cross-validated test errors, corresponding to the best validation errors in each
split, in Figure 23.

We can observe that the training performance follows intuition about capacity of each model,
where the more complex models generally dominate the simpler ones. However, the increased
capacity does not seem to consistently translate to better test performance (contrary to the intuition
stated in [61]). While we could certainly pick a subset of datasets to support the same hypothesis
on test sets, we can generally see that none of the models actually performs consistently better
than another, and even the simplest models (e.g. GCN) often outperform the “powerful” ones (GIN
and its modifications), and the test performances are thus generally inconclusive26. While this is in
contrast with the self-reported results accompanying the diverse GNN proposals on similar-sized
graph datasets, it is in agreement with another (much larger) recent benchmark [188].

Additionally, we include results of an old LRNN template reported in [97], denoted as “lrnn(2015)”.
It was based on small graphlets of size 3, similarly to the “graphlets” template (and similarly to
some other works [218, 219]), however it only contained a single layer of learnable parameters for
the atom and bond representations. Note that we use results from the original paper [97] experi-

26 We note that the conclusion could be different for different types of datasets.
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Figure 22: Comparison of train accuracies of selected models across 10 datasets.

ments, which were run with different hyperparameters and splits. Nevertheless, we can see that it
is again generally on par with performance of the more recent, deeper, and bigger GNN models.

7.5 case study : extending gnns with rings for molecule classification

For their ability of direct (deep) learning from graph data, GNNs have recently become extremely
popular in structured prediction tasks, such as classification of molecules [58, 78], which can be
understood as attributed graphs of atoms connected via chemical bonds. Since the standard GNNs
can be viewed as a continuous, differentiable version of the Weisfeiler-Lehman (WL) label propa-
gation algorithm [59] (Section 2.4), there are also considerable limitations to this class of models,
stemming from the limited expressiveness of the WL test, which is only based on the immedi-
ate neighborhood information gathered in each iteration [61, 62]. Consequently, information about
more complex relational substructures, such as node rings27, cannot be properly extracted. Natu-
rally, however, one might ask whether such increased expressiveness actually translates into some
measurable performance increase in practice.

So far in this chapter, we demonstrated how GNNs and their extensions can be easily captured
in the framework of LRNNs, when viewed as a differentiable logic programming language. In this
section, we extend the, mostly theoretical, discussion from Section 7.3.2 with a complete, practical
case study on how to extend the GNNs by modifying the underlying propagation rules to capture
atom rings in molecules, and experimentally evaluate the benefits of such an extension.

7.5.1 Molecular Rings

We build on the simple encoding of standard GNNs as introduced in Example 19. We again note
that all the example templates discussed in this chapter are actual code that can be run very effi-
ciently. Now we provide a short, but complete, demonstration on how to extended the GNNs from
Example 19 with the atom rings. These rings are normally beyond the scope of the underlying WL

27 with length > 3
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Figure 23: Comparison of test accuracies of selected models across 10 datasets.

expressiveness, but commonly present in aromatic molecules, and can thus be expected to be of
importance in organic molecular datasets, which we target in this short case study.

Using the language of relational logic, a ring can be easily defined as a crisp pattern based on the
existing bonds as

1 _r ing6(A, . . . , F) :- bond(A,B), . . . , bond(E, F), bond(F,A) .

A distributed representation of a ring can then be declared by aggregating all the contained atoms:

1 Wr : : r i n g (n)
6 (A, . . . , F) :- _r ing6(A, . . . , F), Wa :atom(n)(A), . . . , Wf :atom(n)(F) .

These can be further stacked hierarchically, replacing the crisp _ring6 pattern by the respective
distributed representation ring(n−1)

6 from the preceding layer. Similarly, we can then also propagate
the representation from the ring back into all the contained atoms by simply adding the following
rule

1 Wa′ : : a tom (n)(A) :- Wr′ : r ing (n−1)
6 (A, . . . , F ) .

Note that each ring pattern will be automatically instantiated in all possible revolutions, and so it
is enough to specify propagation into the “first” atom (A) only. We further refer to this template as
rings. We note that it is a good practice to add some basic transformation to produce at least some
output should a molecule contain no rings at all28, e.g. simply aggregating all pairs of connected
atoms:

1 Wq : : m o l e c u l e :- W1 :atom (A ) , W2 :atom (B ) , bond(A,B ) .

Naturally, this can be further combined with the standard GNN propagation scheme (Ex. 19), where
we aggregate the direct neighbor representations:

1 Wh : : a tom (n)(X) :- W1′ :atom(n−1)(Y), bond (X, Y ) .

In each layer n, the representation of an atom will thus get updated based on the neighbors as well
as all the atoms occupying the same rings. The particular contributions to the representation update
are then parameterized separately. We further refer to this joint template as rings+ gnn.

28 Otherwise such an un-entailed sample would be considered as a counter-example (in the ILP sense, Section 3.3.1).
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Figure 24: Comparison of the gnn, rings, and the joint gnn+ rings learners across several molecule classifi-
cation datasets w.r.t. training (left) and testing (right) dispersion (higher is better).

7.5.2 Experiments

For the experiments we encoded both 5 and 6 rings, added 3 layers for both the gnn and rings
embedding propagation, and set all the learnable tensor to randomly initialized 3 × 3 matrices.
We then evaluated the architectures across several datasets for molecule classification [172–174],
ranging from 188 to app. 3500 molecules. We note we only used the basic information on atom
types and their conformations. We left all the hyperparameters of the framework on their defaults,
learning with tanh activations, avg aggregations, and ADAM optimizer, trained for 2000 steps,
and evaluated with a 5-fold cross-validation. The results are displayed in Figure 24. We can see that
the rings template indeed performs better than the basic gnn learner, while both benefit from their
mutual combination.

7.5.3 Discussion

We have demonstrated the practical side of the LRNN encoding on a small learning scenario de-
signed to extend the basic GNN idea to capture atom rings in molecules. Note that all we had to
do was to declare a couple of simple rules specifying (i) what a ring is and (ii) how to update rep-
resentation of its contained atoms. The derivation of the particular dynamic computation graphs,
encoding the respective propagation scheme for each of the differently structured molecules, the
corresponding gradients, training and evaluation were then all performed completely automatically.
This allows for quick prototyping of diverse relational modelling ideas, where one can stack com-
plex structural patterns to be trained end-to-end with gradient descent. In the particular showcase
just demonstrated, we were then able to quickly assess the contribution of atom rings w.r.t basic
GNNs.

7.6 conclusions

In this chapter, we re-introduced29 LRNNs (Chapter 5) as a declarative, differentiable logic pro-
gramming approach for specification of advanced deep learning architectures. We demonstrated
how simple parameterized logic programs, also called templates, can be efficiently used for decla-
ration and optimization of complex convolutional models, with a particular focus on Graph Neural

29 Some technical details on the differences between this new view on LRNNs and the original framework from Chapter 5

are discussed in the appendix Section A.



92 differentiable logic programming with lrnns

Networks (GNNs). In contrast with the commonly used procedural (Python) frameworks, LRNNs
abstract away the creation of the specific computation graphs, which are dynamically unfolded
from the template by an underlying theorem prover. As a result, creating a diverse class of complex
neural architectures reduces to rather trivial modifications of the templates, distilling only the high
level idea of each architecture. We illustrated versatility of the approach on a number of examples,
ranging gradually from simple neural models to complex GNNs, including very recent GNN mod-
els and their extensions. Finally we showed how the existing models can be easily extended to even
higher relational expressiveness.

In the experiments, we then demonstrated correctness and computation efficiency by the means of
comparison against modern deep learning frameworks. We showed that while LRNNs are designed
with main focus on expressiveness, flexibility and abstraction, they do not suffer from computation
inefficiencies for the simpler (GNN) models, as one might expect. On the contrary, we demonstrated
that for a range of existing GNN models and their practical parameterizations, LRNNs actually out-
perform the existing frameworks optimized specifically for GNNs. Additionally, we also demon-
strated practical usefulness of the LRNN encoding approach in a case study of extending GNNs
with atom rings for molecule classification.

While there is a number of related works targeting the integration of deep and relational learning,
to our best knowledge, capturing advanced convolutional neural architectures in an exact manner,
as exemplified in this chapter, would not be possible with the other approaches. The proposed
relational upgrades can then be understood as proper extensions of the existing, arguably popular,
GNN models.

However, we also showed that generalization performance of the various state-of-the-art GNN
models is somewhat peculiar, as they actually performed with rather insignificant test error im-
provements, when measured uniformly over a large set of medium-sized, molecular structure-
property prediction datasets, which is actually in agreement with another recent benchmark [188].



8
R E L AT E D W O R K

In this chapter, we discuss the more recent1, works related to the framework. In contrast to the
prior work discussed in Chapter 4, the more recent body of work covered in this chapter can also
be distinguished through the noticeable influence by the “modern deep learning” practices. In
the recent years, we have also seen much more fusion between the different communities of NSI
(Section 4.3), SRL (Section 4.1), and also increased interest in relational learning from the “main
stream” deep learning community (Section 4.2), especially with the recent resurgence of the GNNs.
The respective categorization of the related work w.r.t. these communities (Chapter 4) thus does not
seem useful any longer.

Instead, we here view the modern streams of the related works roughly as (i) “Deep Relational
Learning”, representing models focused more on enhancing neural networks with relational expres-
siveness, akin to the Chapter 5, and (ii) “Differentiable Logic Programming”, with works exhibiting
some aspects of the declarative differentiable encoding of relational learning scenarios, akin to the
Chapter 7. Nevertheless, we note that the two research streams are naturally tightly interconnected
and overlapping.

8.1 deep relational learning

Shortly after LRNNs, two other frameworks for combining relational logic and neural networks
have been introduced [220, 221]. Neural Theorem Provers (NTPs) [220, 222] share a very similar
approach with LRNNs through the use of a definite clause logic templates with an underlying
theorem prover to derive ground computation graphs, which are differentiable under certain se-
mantics inspired by fuzzy logic. The use of parameterization slightly differs between the frame-
works, where NTPs are focused on learning embeddings of constants and LRNNs on embeddings
of whole relational constructs2. Consequently, NTPs represent all constants implicitly as (embed-
ding) vectors, for which the theorem prover cannot perform standard unification, and NTPs thus
introduce “soft-unification” [223], returning a value which is determined by dot-products of the
underlying embeddings fed into a sigmoid activation. While nicely relaxing classic unification, this
leads to effectively trying all possible constant combinations in the inference process. Additionally,
this prevents from using NTPs for explicit modeling of the exemplified convolutional neural archi-
tectures (Section 7.3), and also severely limits NTP’s scalability, where the latter has been partially
addressed by some recent NTP extensions [224, 225]. LRNNs are more flexible in this sense as
one can use the parameterization to specify which parts of the program keep the logical structure,
enabling for much more efficient evaluation (e.g. with magic sets [95]), and which parts should
succumb themselves to the exhaustive numerical optimization (and to combine them arbitrarily),
possibly enabling to find a more fine-grained neural-logic trade-off.

For interest, we describe how to implement a similar modeling concept to NTPs within the
LRNNs (Chapter 7).3 Particularly, the soft unification can be modeled by extending the template

1 i.e published after the original LRNNs [97] (Chapter 5)
2 Note that this includes learning embeddings of constants, too, as demonstrated in a number of the example templates.
3 We note that this could not have been done in full with the older version of LRNNs from Chapter 5.
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with an additional rule in the form of: match(X, Y) : − emb(X), emb(Y) with the values of the
facts emb(ci) being the embeddings of the (soft) constants ci (Section 7.1.1.1). For this particular
rule, we then set the g∧ as the dot product and g∨ as the sigmoid, making the match(X, Y) literal
yield the soft unification values for all the (relevant) pairs of constants substituted for X, Y. The
match(X, Y) literal can then be used in the rules requiring the soft-unification, where we further
choose both the activation functions g∨ and g∗ as the maximum, since in NTPs, any situation where
different unifying substitutions to the same variables need to be aggregated, is resolved by taking
the maximum value. Hence, it should be possible to represent models from the NTP framework in
LRNNs. However, other modeling constructs with distributed representation learning are actually
more natural to encode in LRNNs (Section 5.2, Section 7.2).

Another system introduced about the same time is called TensorLog [221, 226], which is a dif-
ferentiable probabilistic database based on belief propagation. TensorLog implements a subset of
Datalog (Section 3.2). It restricts the factor graphs constructed for the belief propagation step to be
tree-like. Further restrictions include the fact that only unary and binary predicates are allowed,
and only certain types of queries are supported. Because of these restrictions, it would be difficult
to directly compare TensorLog with LRNNs. Both approaches seem to be tailored towards different
types of tasks. One advantage of TensorLog is that it does not require a complete grounding of
the set of rules to perform inference. While we have relied on complete groundings in the original
framework4, even for LRNNs it would be sufficient to limit the grounding to the proofs of the given
query formula.5.

More loosely related are methods for incorporating domain knowledge in neural networks [227,
228], which can mostly be seen as a form of regularization [229, 230]. For instance, these include
“lifted rule injection” [231], allowing to incorporate implication rules into distributed representa-
tions for the task of knowledge base construction. While somewhat related (Section 11.4.4), it is
restricted to binary predicates, and only considers rules with a single atom in the body.

A well-substantiated line of research called Deep Relational Machines [46] also utilizes knowl-
edge to enhance NNs. It is, however, based on utilizing ILP [232] and other advanced discrete
search-space techniques to generate relational features for neural networks [233, 234]6. In a some-
what similar fashion, “Neural Networks for Relational Data” [235] generate relational features from
path-constrained random walks over input data. The relational features here thus take the form of
linear chains of binary predicates, the instantiations of which in the data are then weighted, aggre-
gated and sent to a logistic regression. The authors then compare this architecture against custom
implementation of some other models, including similar propositionalization-based NNs, such as
what the authors present as the “LRNN”, to demonstrate superiority of their architecture. We note
that the paper contains a number of misguided claims7, and the model used for the comparisons
does not actually represent the LRNN concept at all. We encourage the authors of [235] to compare
with the actual LRNN system. While the authors of [235] themselves claim relatedness (and overall
superiority) of their architecture over LRNNs, we take the liberty to clarify the main differences
here, too. Firstly, the architecture of [235] is actually limited to a single (shallow) layer of rules, simi-

4 However we introduce an optimization technique to compress the groundings in Chapter 9.
5 However, this requires a fast top-down inference engine (Section 3.2.1.2) and in our experiments, we have found such

top-down grounding of LRNNs to be actually slower than the bottom-up grounding (Section 5.1.1.1).
6 Recently, the Deep Relational Machines [46], when combined with an appropriate background knowledge, actually

achieved better performance than that of the original LRNNs for the datasets reported in Section 5.3.
7 particularly, regarding LRNNs, statements such as “While Šourek et al. [97] exploit tied parameters across facts, we

share parameters across multiple instances of the same rule”. Obviously that is exactly what LRNNs are doing as their
main characteristic, as explained in the paper used as a reference [97] by the authors. Similarly, “The formulation of
this [aggregation] layer is much more general and subsumes the approach of Sourek et al (2018) [97], which uses a max
combination layer”. It is obvious that the choice of any NN activation/aggregation function is arbitrary in this sense,
nevertheless, even in the original paper being referenced [97] we already presented the two example choices of both max
and avg (standard pooling), which is actually what the authors of [235] used, too. We advise the authors to actually read
the papers [97, 202] and compare with the actual system (with more than 1 layer, which is, obviously, a very degenerate
case [4]) in order to beat it on benchmarks, which certainly is possible (see e.g. the Deep Relational Machines [46]).
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larly to [39], restricting from modeling any latent (neural) relational concept (Section 5.2), which is a
defining LRNN characteristic. Secondly, these rules are limited to linear chains of binary predicates.
Thirdly, all the literals from the same rule share the same single weight here which, in combina-
tion with the shallow rule architecture, is not actually a “relational parameter tying” feature [235]
but a considerable limitation meaning that there is actually no useful parameter tying in the neu-
ral model at all, restricting from expressing any interesting convolutional pattern (Section 7.2.2),
and making the neural model (logistic regression) effectively propositional. On the other hand, the
rules here are automatically extracted by the relational random walks, as opposed to some other
propositionalization schemes, which is a neat contribution to this class of models.

The described concept then seems architecturally very close to a (prior) model called Relational
Logistic Regression [236], which has been later extended into another relational neural network
model called RelNN8 [237] by stacking multiple of these relational regressors on top of each
other. This model, finally, indeed resembles the LRNNs idea very closely, while the architecture
of the RelNN concept seems practically equivalent to the soft-clustering concept (Section 5.2.1)
introduced in the original LRNNs [97]. Unfortunately the paper [237], while technically sound,
again contains unsubstantiated (false) statements about LRNNs9, and we encourage the readers to
check the claimed “flexibility” and modularity of RelNNs10 over the LRNNs11 themselves (which
is convenient, as they are both standalone Java projects). Actually, lacking explicit representation
of the template and general logic program inference (Section 3.2.1) the, notably trivial12, RelNN
model is hardcoded to the exact scenario of unary-predicate soft-clustering and the three simplified
datasets presented in the paper. Interestingly, even the future works proposed in the RelNN pa-
per [237], such as the structure learning, parallelization, database querying and relational dropout,
had already been implemented in the LRNNs. On the other hand, the authors provide interesting
connections to the probabilistic models and MLNs (Section 3.4.2).

There are also interesting works utilizing standard, purely sub-symbolic, deep learning tech-
niques, aimed at learning semantics of logic programs from their raw (character-level) encoding [34].
Inspired by the (recurrent) architectures with differentiable memory [32, 33] (Section 4.2), these ad-
vanced engineering feats provide useful insights into representation learning of the dynamic sym-
bolic structures within the common fixed-size embedding spaces, and the resulting disadvantages
w.r.t. the logic-based systems for representation learning [238, 239]. However, there are also some
highly interesting deep learning works utilizing even more advanced neural architectures, such as
the transformer networks [86] in combination with the GNNs and gating, successfully addressing
similarly complex problems based on dynamic graph representations [49]. These can be again seen
along the lines of the advanced models with differentiable memory representations, however, they
address many of their shortcomings thanks to the explicit graph representation of the internal state.

Much of the most recent work using neural networks to target relational data is then based on
the GNNs. As discussed in Section 7.3.2, LRNNs can be seen as a generalization of GNNs. From
the graph-level perspective, the most similar idea to the introduced relational templating has be-
come popular in the knowledge discovery community as “meta-paths” [198, 199] defined on the
schema-level of a heterogeneous information network. A meta-path is simply a sequence of types,
the concrete instantiations of which are then searched for in the ground graphs (similarly to the re-

8 not to be confused with the prior RelNN model [56] (Section 4.2)
9 Quotation: “Sourek et al. (2015)’s models are the closest proposals to RelNNs, but RelNNs are more flexible in terms of

adding new types of layers in a modular way. These works are also limited in one or more of the following ways: 1- the
model is limited to only one input relation, 2- the structure of the model is highly dependent on the input data, 3- the
model allows for only one hidden layer, 4- the model cannot learn hidden object properties through general rules, or 5-
the model does not scale to large domains.” – all of which are literally, one by one, false. We encourage the authors to
actually check their claims (next time).

10 https://github.com/Mehran-k/RelNN

11 https://github.com/GustikS/NeuraLogic - further also described in Chaoter B.
12 The presented RelNN [237] system 10 (2018) is actually a trivial fragment of even the very limited 2013’s precursor [96]

of LRNNs, which came before the relational logistic regression [236] itself.

https://github.com/Mehran-k/RelNN
https://github.com/GustikS/NeuraLogic
https://github.com/Mehran-k/RelNN
https://github.com/GustikS/NeuraLogic
https://github.com/asch/discoverer
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lational walks from [235]). Such ground sequences can then be used to define node similarities [240,
241], random walks [198] as well as node embeddings [242, 243]. An extension from paths to small
directed acyclic graphs was then proposed as “meta-graph” (or “meta-structure”) [244, 245]. We
note that any meta-path or meta-graph can be understood as a conjunctive rule in a LRNN tem-
plate (Section 3.2). Naturally, we can stack multiple meta-graphs to create deep hierarchies and,
importantly, differentiate them through to jointly learn all the parameters, and provide further
extensions towards relational expressiveness, as exemplified in Section 7.3.1.

In a similar way to GNNs, so-called discriminative Gaifman models [246] were introduced. These
are models that aggregate information from locally sampled neighborhoods, motivated by Gaif-
man’s locality theorem [247]. In another work [248], the authors used GNNs to address the scala-
bility issue of MLNs (Section 3.4.2). The GNN representation here is used for an efficient stochastic
training of MLNs within the framework of variational EM, very similarly to an earlier work of [249],
which used flat NN embeddings for the same purpose.

An interesting theoretical work connecting GNNs and logic was then recently presented in [250],
where the authors studied their expressiveness in terms of (logical) boolean node classifiers (as
opposed to the WL test itself).

Encouragingly, there is also a growing number of application-oriented works utilizing the inte-
grated learning paradigm, ranging from the, closely related, planning domain [251, 252], to natural
language processing [253] and understanding [254, 255]. Most recently, the paradigm has even
brought attention of big corporations [256].

8.2 differentiable logic programming

The most closely related works here naturally comprise of other differentiable programming lan-
guages with relational expressiveness13, and there is a number of works targeting similar abilities by
extending logic programming with numerical parameters [24]. The most prominent framework in
this category is the language of Problog [52], where the parameters and values further posses prob-
abilistic interpretation (Section 3.4.1). The extension to Deep-Problog [69] then incorporates “neural
predicates” into Problog programs. Since probabilistic logic programs can be differentiated [259]
and trained as such, the gradients can be passed from the logic program to the neural modules and
trained jointly. While this is somewhat similar to LRNNs, Deep-Problog introduces a clear separa-
tion line between the neural and logical parts of the program, which communicate merely through
the gradient values (and so any gradient-based learner could be used instead). The logical part
with relational expressiveness is thus completely oblivious of structure of the gradient-ingesting
learner and vice versa, and it is thus impossible to model complex convolutional patterns (i.e. rela-
tional patterns in the neural part) as demonstrated in Chapter 7. On the other hand LRNNs do not
have probabilistic interpretation, which is elegantly incorporated in Deep-Problog. Related is also
an extension of kProblog [260], proposing integration of algebraic expressions into logic programs
towards more general tensor-algebraic and ML algorithms. A very interesting extension from the
language formalism perspective is targeting the increased answer-set programming expressiveness
with neural networks [261]. Within the classic SRL, apart from neuralization of the Problog, a neural
variant of the MLNs (Section 3.4.2) has also been introduced by defining the potential functions as
generic neural networks which are trained together with the model parameters in a tightly inte-
grated (sub-symbolic) manner [262].

13 Note that encoding computation graphs in common differentiable programming frameworks, such as PyTorch or Ten-
sorFlow, is effectively propositional. These frameworks provide sets of evaluation functions (modules), with predefined
hooks for backward differentiation, that can be assembled by users into differentiable programs in a procedural fashion. In
contrast, with relational programming, such programs are firstly automatically assembled from the declarative template
(by a theorem prover or grounder), and only then evaluated and differentiated in the same fashion. Such an approach
can also be understood as “meta-programming” [257, 258] from the perspective of the current procedural frameworks.
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Another line of work is focused on inducing Datalog programs with the help of numerical relax-
ation (Chapter 6). While such a task has traditionally been addressed by the means of Inductive
Logic Programming (ILP) [19], extending the rules with weights can help to relax the combinatorial
search into a gradient descent optimization, while providing robustness to noise. An example of
such an approach is δILP [27]. Similarly to LRNNs, the Datalog programs here are unfolded by
chaining the rules, where the associated parameters are trained against given target to be solved
by the program. The parameterization in these approaches is used differently as its purpose is
to determine the right structure of the template (in contrast to our structure learning from Chap-
ter 6). This is typically done by exhaustive enumeration from some restricted set of possible literal
combinations (particularly 2 literals with arity at most 2 and no constants for δILP), where each
combination is then associated with a weight to determine its appropriateness for the program
via gradient descent. The differentiability is again based on replacing the logical connectives with
fuzzy logic operators (particularly product t-norm). A very similar rule-inducing system was also
proposed in [263] to target comparable toy ILP tasks. Another recently proposed related system is
called Difflog [264], where the candidate rules are also exhaustively generated w.r.t. a more narrow
language bias, thanks to which it seem to scale beyond the previous systems. A different way to
scale up differentiable ILP even more is by skipping the exhaustive enumeration part, while giv-
ing up on the explicit logical representations even further, and relaxing the symbolic inference in
distributed embedding spaces processed through advanced neural architectures [265].

Closely related class of approaches here target full FOL expressiveness by providing mapping of
all the logical constructs into numerical (tensor) spaces (also referred to as “tensorization” [36]). For
instance, one can cast constants to vectors, functions terms to vector functions of the correspond-
ing dimensionality, and similarly predicates to tensors of the corresponding arity-dimension [266,
267]. Again adopting a fuzzy logic interpretation of the logical connectives [268], the learning prob-
lem can then be cast as a constrained numerical optimization problem, including works such as
LYRICS [269] and Logic Tensor Networks [42]. While the distributed representation of the logical
constructs is the subject of learning, in contrast with the discussed Datalog program structure learn-
ing approaches, the weight (strength) of each rule needs to be specified apriori – a limitation which
was recently addressed in [44, 270]. Other recent works based on the idea of fully dissolving the
logic into tensors, moving even further from the logical interpretation, include e.g. Neural Logic
Machines [43]. While these frameworks are theoretically even more expressive than LRNNs (lack-
ing the function terms and non-definite clauses), the whole logic interpretation is only approximate
and completely dissolved in the tensor weights in these frameworks. Consequently, they again lack
the capability of precise relational logic inference chaining, based on the underlying theorem prover,
which we use to explicitly model the advanced convolutional neural structures, such as the GNNs,
in Chapter 7.





Part IV

O P T I M I Z AT I O N S

In this part of the thesis, we introduce two principled methods for improving scalability
of the LRNN framework introduced in the previous part. Firstly in Chapter 9, we show
how to speedup the parameter learning part via lossless compression of the induced
neural networks. The technique, inspired by lifted inference, is then generally useful for
speeding up of any other structured, weight-sharing models, such as the GNNs, too.
The second technique, which we introduce in Chapter 10, then improves complexity of
the structure learning part via lossless pruning of the searched hypothesis space. Again,
the technique is also generally useful for any other relational logic learner following the
classic ILP strategy.





9
L O S S L E S S M O D E L C O M P R E S S I O N V I A L I F T I N G

As introduced in the respective SRL Section 3.4.2, lifting is an efficient technique to scale up graph-
ical models generalized to relational domains by exploiting the underlying symmetries. Concur-
rently, neural models (Chapter 2) are continuously expanding from grid-like tensor data into struc-
tured representations, such as various attributed graphs and relational databases. To address the
irregular structure of the data, these models typically extrapolate on the idea of convolution, ef-
fectively introducing parameter sharing in their, dynamically unfolded, computation graphs (e.g.
Section 2.3 and Section 2.4). The computation graphs themselves then reflect the symmetries of the
underlying data, similarly to the lifted graphical models.

Inspired by lifting, this chapter introduces a simple and efficient technique to detect the sym-
metries and compress the neural models without loss of any information. We then demonstrate
through experiments that such compression can lead to significant speedups of various “structured
convolutional models” across diverse tasks, such as molecule classification and knowledge-base
completion. This technique is applicable not only to the introduced LRNNs (Part iii) but, impor-
tantly, also various popular models such as standard Graph Neural Networks.

9.1 introduction

Lifted, often referred to as templated, models use highly expressive representation languages, typi-
cally based in weighted predicate logic, to capture symmetries in relational learning problems [271].
This includes learning from data such as chemical, biological, social, or traffic networks, and various
knowledge graphs, relational databases and ontologies. As detailed in Section 3.4.2, the idea has
been studied extensively in probabilistic settings under the notion of lifted graphical models [63],
with instances such as Markov Logic Networks (MLNs) [51] or Bayesian Logic Programs (BLPs) [50].

In a wider view, convolutions can be seen as instances of the templating idea in neural models,
where the same parameterized pattern is being carried around to exploit the underlying symmetries,
i.e. some forms of shared correlations in the data. In this analogy, the popular Convolutional Neural
Networks (CNN) (Section 2.2) themselves can be seen as a simple form of a templated model, where
the template corresponds to the convolutional filters, unfolded over regular spatial grids of pixels.
But the symmetries are further even more noticeable in structured, relational domains with discrete
element types. With convolutional templates for regular trees, the analogy covers Recursive Neural
Networks (Section 2.3), popular in natural language processing. Extending to arbitrary graphs,
the same notion covers works such as the Graph Convolutional Networks (Section 2.4) and their
variants [58], as well as various Knowledge-Base Embedding methods [272]. Extending even further
to relational structures, there are works integrating parameterized relational logic templates with
neural networks [69, 222, 262], including the introduced LRNN framework (Part iii).

The common underlying principle of templated models is a joint parameterization of the symme-
tries, allowing for better generalization. However, standard lifted models, such as MLNs, provide
another key advantage that, under certain conditions, the model computations can be efficiently
carried out without complete template unfolding, often leading to even exponential speedups [63].
This is known as “lifted inference” [273] and is utilized heavily in lifted graphical models as well
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as database query engines [274]. However, to our best knowledge, this idea has been so far unex-
ploited in the neural (convolutional) models. The main contribution of this chapter is thus a “lifting”
technique to compress symmetries in convolutional models applied to structured data, which we
refer to generically as “structured convolutional models”.

9.1.1 Related Work

The idea for the compression is inspired by lifted inference [273] used in templated graphical mod-
els. The core principle is that all equivalent sub-computations can be effectively carried out in a
single instance and broadcasted into successive operations together with their respective multiplici-
ties, potentially leading to significant speedups. While the corresponding “liftable” template formu-
lae (or database queries) generating the isomorphisms are typically assumed to be given [63], we
explore the symmetries from the unfolded ground structures, similarly to the approximate meth-
ods based on graph bisimulation [275]. All the lifting techniques are then based in some form
of first-order variable elimination (summation), and are inherently designed to explore structural
symmetries in graphical models. In contrast, we aim to additionally explore functional symmetries,
motivated by the fact that even structurally different neural computation graphs may effectively
perform identical function.

The learning in neural networks is also principally different from the model counting-based com-
putations in lifted graphical models in that it requires many consecutive evaluations of the models
as part of the encompassing iterative training routine. Consequently, even though we assume to
unfold a complete computation graph before it is compressed with the proposed technique, the
resulting speedup due to the subsequent training is still substantial. From the deep learning per-
spective, there have been various model compression techniques proposed to speedup the train-
ing, such as pruning, decreasing precision, and low-rank factorization [276]. However, to our best
knowledge, all the existing techniques are lossy in nature and do not exploit the model computation
symmetries. The most relevant line of work here are the LRNNs (Chapter 5) which however, despite
the name, so far provided only templating capabilities without lifted inference, i.e. with complete,
uncompressed ground computation graphs, as demonstrated in Section 5.1.2.3.

9.2 background

The compression technique described in this chapter is applicable to a number of structured con-
volutional models, ranging from simple recursive (Section 2.3) to fully relational neural models
(Part iii) The common characteristic of the targeted learners is the utilization of convolution (tem-
plating), where the same parameterized pattern is carried over different subparts of the data (repre-
sentation) with the same local structure, effectively introducing repetitive sub-computations in the
resulting computation graphs, which we exploit in this work.

The most prominent representatives within this category are currently Graph neural networks
(GNNs), which is why we choose them for brevity of demonstration of the proposed compression
technique. Note that in this chapter, we directly build on the GNN computation principles detailed
in the background Section 2.4. For now, recall that GNNs work by dynamically unfolding a param-
eterized computation template, interleaving convolution, aggregation and combination, over input
graphs of varying structure. An example computation graph of a generic GNN unfolded over an
example molecule of methane can then be seen in Figure 26.

9.2.1 Computation Graphs

The general idea of a computation graph has been introduced in the deep learning Chapter 2. For
the sake of this chapter, let us now redefine the notion of a computation graph more formally. A
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Figure 25: Depiction of the computation graph (left) compression (right) from Example 21.

computation graph is a tuple G = (N,E,F), where N = (1, 2, . . . ,n) is a list of nodes and E ⊆ N2×N

is a list of directed labeled edges. Each labeled edge is a triple of integers (n1,n2, l) where n1 and
n2 are nodes of the computation graph and l is the label. The labels are used to assign weights to
the edges in the computation graph. Note this allows to define the weight sharing scheme as part of
the graph (cf. Example 21 below). Finally, F = {f1, f2, . . . , fn} is the list of activation functions, one for
each node from N. As usual, the graph is assumed to be acyclic. Children of a node N are naturally
defined as all those nodes M such that (M,N,L) ∈ E, and analogically for parents. Note that since
E is a list, edges contained in it are ordered, and the same edge may appear multiple times (which
will be useful later). Children of each node are also ordered – given two children C and C ′ of a
node N, C precedes C ′ iff (C,N,L) precedes (C ′,N,L ′) in the list of edges E. We denote the lists of
children and parents of a given node N by Children(N) and Parents(N), respectively. Computation
graphs are then evaluated bottom up from the leaves of the graph (nodes with no children) to the
roots of the graph (nodes with no parents). Given a list of weights W, we can now define the value
of a node N ∈ N recursively as:

value(N;W) = fN

(
WL1 · value(M1;W), . . . ,WLm · value(Mm;W)

)
,

where (M1, . . . ,Mm) ≡ Children(N) is the (ordered) list of children of the node N, and L1, . . . ,Lm
are the labels of the respective edges (M1,N,L1), . . . , (Mm,N,Lm) ∈ E, and WLi is the Li-th compo-
nent of the list W. Note that with the structured convolutional models, such as GNNs, we assume
dynamic computation graphs (Chapter 2) where each learning sample Sj generates a separate Gj.
Consequently, we can associate the leaf nodes in each Gj with constant functions1, outputting the
corresponding node (feature) values from the corresponding structured input sample Sj.

9.3 problem definition

The problem of detecting the symmetries in computation graphs can then be formalized as follows.

Definition 9 (Problem Definition) Let G = (N,E,F) be a computation graph. We say that two nodes
N1,N2 are equivalent if, for any W, it holds that value(N1;W) = value(N2;W). The problem of detecting
symmetries in computation graphs asks to partition the nodes of the computation graph into equivalence
classes of mutually equivalent nodes.

Example 21 Consider the computation graph G = (N,E,F), depicted in Figure 25, where

N = {0, 1, 2, 3, 4}, E = ((0, 2, 1), (1, 3, 1), (2, 4, 2), (3, 4, 2)),

F = {f0 = f1 = 1, f2(x) = f3(x) = x, f4(x,y) = x · cos(y)}.

1 in contrast to static computation graphs where these functions are identities requiring the features at input.
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Let W = (w1,w2) be the weight list. The computation graph then computes the function (w1w2) ·cos(w1w2).
It is not difficult to verify that the nodes {0, 1}, and {2, 3} are functionally equivalent. This also means, as we
discuss in more detail in the next section, that we can “merge” them without changing the function that the
graph computes. The resulting reduced graph then has the form

N = {1, 3, 4}, E = {(1, 3, 1), (3, 4, 2), (3, 4, 2)},

F = {f1 = 1, f3(x) = x, f4(x,y) = x · cos(y)}.

In the example above, the nodes {0, 1} and {2, 3} are in fact also isomorphic in the sense that there
exists an automorphism (preserving weights and activation functions) of the computation graph
that swaps the nodes. Note that our definition is less strict: all we want the nodes to satisfy is
functional equivalence, meaning that they should evaluate to the same values for any initialization
of W.

We will also use the notion of structural-equivalence of nodes in computational graphs. Two nodes
are structurally equivalent if they have the same outputs for any assignment of weights W and for
any replacement of any of the activation functions in the graph.2 That is if two nodes are structurally
equivalent then they are also functionally equivalent but not vice versa. Importantly, the two nodes
do not need to be automorphic3 in the graph-theoretical sense while being structurally equivalent,
which also makes detecting structural equivalence easier from the computational point of view. In
particular, we describe a simple polynomial-time algorithm in Section 9.4.2.

9.4 two algorithms for compressing computation graphs

In this section we describe two algorithms for compression of computation graphs: a non-exact
algorithm for compression based on functional equivalency (cf. Definition 9) and an exact algorithm
for compression based on detection of structurally-equivalent nodes in the computation graph.
While the exact algorithm will guarantee that the original and the compressed computation graphs
represent the same function, that will not be the case for the non-exact algorithm. Below we first
describe the non-exact algorithm and then use it as a basis for the exact algorithm.

9.4.1 A Non-Exact Compression Algorithm

The main idea behind the non-exact algorithm is almost embarrassingly simple. The algorithm first
evaluates the computation graph with n randomly sampled parameter lists W1, . . . , Wn, i.e. with
n random initializations of the (shared) weights, and records the values of all the nodes of the
computation graph (i.e. n values per node). It then traverses the computation graph from the output
nodes in a breadth-first manner, and whenever it processes a node N, for which there exists a node
N ′ that has not been processed yet and all n of its recorded values are the same as those of the
currently processed node N, the algorithm replaces N by N ′ in the computation graph. In principle,
using larger n will decrease the probability of merging nodes that are not functionally equivalent as
long as there is a non-zero chance that any two non-equivalent nodes will have different values (this
is the same as the “amplification trick” normally used in the design of randomized algorithms).

It is easy to see that any functionally equivalent nodes will be mapped by the above described
algorithm to the same node in the compressed computation graph. However, it can happen that the
algorithm will also merge nodes that are not functionally equivalent but just happened (by chance)
to output the same values on all the random parameter initializations that the algorithm used. We
acknowledge that this can happen in practice, nevertheless it was not commonly encountered in

2 Here, we add that in this definition, obviously, when we replace a function f by function f ′, we have to replace all
occurrences of f in the graph also by f ′.

3 Here, when we say “automorphic nodes”, we mean that there exists an automorphism of the graph swapping the two
nodes.
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Figure 26: A multi-layer GNN model with a global readout unfolded over an example molecule of methane.
Colors are used to distinguish the weight sharing, as well as different node types categorized
w.r.t. the associated activation functions, denoted as input (I), convolution (C), and aggregation
(A) nodes, respectively.

Ih(c1)

Ih(n2)Ih(n3)Ih(n4)Ih(h4)

C(1)
h(c1)

C(1)
h(n2)C(1)
h(n3)C(1)
h(n4)C(1)
h(h4)

C21C31C41C51

C14C13C12C15 A1

A2A3A4A5

W2

4×W2

4×W1

4×W1
C(n)
h(c1)

C(n)
h(n2)C(n)
h(n3)C(n)
h(n4)C(n)
h(h4)

. . .

. . .. . .. . .. . .

. . .. . .. . .. . .. . .. . .. . .. . .

Ay Cy

W(n)

C1

H2H3H1H4

y

Figure 27: A compressed version of the GNN from Figure 26, with the compressed parts dotted.

our experiments (Section 9.5), unless explicitly emulated. To do that, we decreased the number
of significant digits used in each equivalence check between value(N;Wi) and value(N ′;Wi). This
allows to compress the graphs even further, at the cost of sacrificing fidelity w.r.t. the original model.

There are also cases when we can give (probabilistic) guarantees on the correctness of this algo-
rithm. One such case is when the activation functions in the computation graph are all polynomial.
In this case, we can use DeMillo-Lipton-Schwartz-Zippel Lemma [277] to bound the probability of
merging two nodes that are not functionally equivalent. However, since the activation functions
in the computation graphs that we are interested in are usually not polynomial, we omit the de-
tails here. In particular, obtaining similar probabilistic guarantees with activation functions such as
ReLU does not seem doable.4

9.4.2 An Exact Compression Algorithm

The exact algorithm for compressing computation graphs reuses the evaluation with random pa-
rameter initializations while recording the respective values for all the nodes. However, the next
steps are different. First, instead of traversing the computation graph from the output nodes to-
wards the leaves, it traverses the graph bottom-up, starting from the leaves. Second, rather than
merging the nodes with the same recorded value lists right away, the exact algorithm merely con-
siders these as candidates for merging. For that it keeps a data structure (based on a hash table) that
indexes the nodes of the computation graph by the lists of the respective values recorded for the
random parameter initializations. When, while traversing the graph, it processes a nodeN, it checks
if there is any node N ′ that had the same values over all the random parameter initializations and

4 In particular, the proof of DeMillo-Lipton-Schwartz-Zippel Lemma relies on the fact that any single variable polynomial
is zero for only a finite number of points, which is not the case for computation graphs with ReLUs.
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has already been processed. If so it checks if N and N ′ are structurally equivalent (which we explain
in turn) and if they are it replaces N by N ′. To test the structural equivalence of two nodes, the
algorithm checks the following conditions:

1. The activation functions of N and N ′ are the same.

2. The lists of children of both N and N ′ are the same (not just structurally equivalent but
identical, i.e. Children(N) = Children(N ′)), and if C is the i-th child of N and C ′ is the i-th
child of N ′, with (C,N,L1) and (C ′,N,L2) being the respective edges connecting them to N,
then the labels L1 and L2 must be equal, too.

One can show why the above procedure works by induction. We sketch the main idea here. The
base case is trivial. To show the inductive step we can reason as follows. When we are processing
the node N, by the assumption, the node N ′ has already been processed. Thus, we know that the
children of both N and N ′ must have already been processed as well. By the induction hypothesis,
if any of the children were structurally equivalent, they must have been merged by the algorithm,
and so it is enough to check identity of the child nodes. This reasoning then allows one to easily
finish a proof of correctness of this algorithm.

There is one additional optimization that we can do for symmetric activation functions. Here by
“symmetric” we mean symmetric with respect to permutation of the arguments. An example of
such a symmetric activation function is any function of the form f(x1, . . . , xk) = h

(∑k
i=1 xk

)
; such

functions are often used in neural networks. In this case we replace the condition 2 above by:

2’. There is a permutation π such that π(Children(N)) = Children(N ′)), and if C is the i-th child of
N and C ′ is the π(i)-th child of N ′, with (C,N,L1) and (C ′,N,L2) being the respective edges
connecting them to N, then the labels L1 and L2 must be equal.

It is not difficult to implement the above check efficiently (we omit the details). Note also that the
overall asymptotic complexity of compressing a graph G is simply the same as the n evaluations of
G.

Finally, to illustrate the effect of the lossless compression, we show the GNN model (Section 2.4),
unfolded over a sample molecule of methane from Figure26, compressed in Figure 27.

9.5 experiments

To test the proposed compression in practice, we selected some common structured convolutional
models, and evaluated them on a number of real datasets from the domains of (i) molecule classifi-
cation and (ii) knowledge-base completion. The questions to be answered by the experiments are:

1. How numerically efficient is the non-exact algorithm in achieving lossless compression?

2. What improvements does the compression provide in terms of graph size and speedup?

3. Is learning accuracy truly unaffected by the, presumably lossless, compression in practice?

models We chose mostly GNN-based models as their dynamic computation graphs encompass
all the elements of structured convolutional models (convolution, pooling, and recursive layer stack-
ing). Particularly, we choose well-known instances of GCNs and graph-SAGE (Section 2.4), each
with 2 layers. Additionally, we include Graph Isomorphism Networks (GIN) [61], which follow the
same computation scheme with 5 layers, but their particular operations (CW1

= identity, A =

sum, CW2
= MLP) are theoretically substantiated in the expressiveness of the Weisfeiler-Lehman

test [59]. This is interesting in that it should effectively distinguish non-isomorphic substructures
in the data by generating consistently distinct computations, and should thus be somewhat more
resistant to our proposed compression. Finally, we include a relational template (“graphlets”) intro-
duced in [202], which generalizes GNNs to aggregate small 3-graphlets instead of just neighbors.
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Figure 28: Compression of a scalar-parameterized graphlets model on a molecular dataset. We display pro-
gression of the selected metrics w.r.t. increasing number of significant digits (inits=1) used in the
value comparisons (left), and number of non-equivalent subgraph value clashes detected by the
exact algorithm w.r.t. the digits, weight re-initializations, and increased weight dimension (right).

datasets For structure property prediction, we used 78 organic molecule classification datasets
reported in previous works [172–174]. Nevertheless, we show only the (alphabetically) first 3 for
clarity, as the target metrics were extremely similar over the whole set. We note we also extended
GCNs with edge embeddings to account for the various bond types, further decreasing the symme-
tries. For knowledge base completion (KBC), we selected commonly known datasets of Kinships,
Nations, and UMLS [66] composed of different object-predicate-subject triplets. We utilized GCNs
to learn embeddings of all the items and relations, similarly to R-GCNs [194], and for prediction of
each triplet, we fed the three embeddings into an MLP, such as in [200], denoted as “KBE”.

experimental protocol We approached all the learning scenarios under simple unified set-
ting with standard hyperparameters, none of which was set to help the compression (sometimes
on the contrary). We used the (re-implemented) LRNN framework to encode all the models, and
also compared with popular GNN frameworks of PyTorch Geometric (PyG) [204] and Deep Graph
Library (DGL) [205]. If not dictated by the particular model, we set the activation functions simply
as CW = 1

1+e−W·x
and A = avg. We then trained against MSE using 1000 steps of ADAM, and

evaluated with a 5-fold crossvalidation.

9.5.1 Results

Firstly, we tested numerical efficiency of the non-exact algorithm itself (Section 9.4), for which we
used scalar weight representation in the models to detect symmetries on the level of individual “neu-
rons” (rather than “layers”). We used the (most expressive) graphlets model, where we checked the
functional symmetries to overlap with the structural symmetries. The results in Figure 28 then show
that the non-exact algorithm is already able to perfectly distinguish all structural symmetries with
but a single weight initialization within less than 12 significant digits. While more initializations
indeed improved the efficiency rapidly, in the end they proved unnecessary (but could be used in
cases where the available precision would be insufficient). Moreover this test was performed with
the actual low-range logistic activations. The displayed (10x) training time improvement (Figure28

- left) in the scalar models was then directly reflecting the network size reduction, and could be
pushed further by decreasing the numeric precision at the expected cost of degrading the learning
performance.
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Table 8: Training times per epocha across different models and frameworks over 3000 molecules. Additionally,
the startup graphs creation time of LRNNs (including the compression) is reported.

Model Lifting (s) LRNNs (s) PyG (s) DGL (s) LRNN startup (s)

GCN 0.25 ± 0.01 0.75± 0.01 3.24 ± 0.02 23.25 ± 1.94 35.2 ± 1.3

g-SAGE 0.34 ± 0.01 0.89± 0.01 3.83 ± 0.04 24.23 ± 3.80 35.4 ± 1.8

GIN 1.41 ± 0.10 2.84± 0.09 11.19 ± 0.06 52.04 ± 0.41 75.3 ± 3.2

Secondly, we performed similar experiments with standard tensor parameterization, where the
isomorphisms were effectively detected on the level of whole neural “layers”, since the vector out-
put values (of dim=3) were compared for equality instead. This further improved the precision of
the non-exact algorithm (Figure 28 - right), where merely the first 4 digits were sufficient to achieve
lossless compression in all the models and datasets (Figure 29). However, the training (inference)
time was no longer directly reflecting the network size reduction, which we account to optimiza-
tions used in the vectorized computations. Nevertheless the speedup (app. 3x) was still substantial.

We further compared with established GNN frameworks of PyG [204] and DGL [205]. We made
sure to align the exact computations of GCN, graph-SAGE, and GIN, while all the frameworks
performed equally w.r.t. the accuracies (as detailed in Section 7.4.35). For a more fair comparison,
we further increased all (tensor) dimensions to a more common dim=10. The compression effects,
as well as performance edge of the implemented LRNN framework itself, are displayed in Table 8

for a sample molecular dataset (MDA). Note that the compression was truly least effective for the
aforementioned GIN model, nevertheless still provided app. 2x speedup.

Finally, the results in Figure 30 confirm that the proposed lossless compression via lifting, with
either the exact algorithm or the non-exact algorithm with a high-enough numeric precision used,
indeed does not degrade the learning performance in terms of training and testing accuracy (both
were close within margin of variance over the crossvalidation folds).

Note that the used templated models are quite simple and do not generate any symmetries on
their own (which they would, e.g., with recursion), but rather merely reflect the symmetries in the
data themselves. Consequently, the speedup was overall lowest for the sparse knowledge graph of
Nations, further decomposed by the 2 distinct relation types, and higher for the Kinships dataset,
representing a more densely interconnected social network. The improvement was then generally
biggest for the highly symmetric molecular graphs where, interestingly, the compression often re-
duced the neural computation graphs to a size even smaller than that of the actual input molecules.
Note we only compressed symmetries within individual computation graphs (samples), and the
results thus cannot be biased by the potential existence of isomorphic samples [278], however, po-
tentially much higher compression rates could be also achieved with (dynamic) batching.

9.6 conclusions

We introduced a simple, efficient, lossless compression technique for structured convolutional mod-
els inspired by lifted inference. The technique is very light-weight and can be easily adopted by any
neural learner, but is most effective for structured convolutional models utilizing weight sharing
schemes to target relational data, such as in various GNNs. We have demonstrated with existing
models and datasets that a significant inference and training time reduction can be achieved with-
out affecting the learning results, and possibly extended beyond for additional speedup.

5 We note that these results have already been demonstrated in Chapter 7, Section 7.4.4, Table 7, demonstrating the perfor-
mance of the LRNNs versus the specialized GNN frameworks. Here we additionally demonstrate the contribution of the
incorporated optimization technique (Lifting) itself.
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Figure 29: Compression of 3 tensor-parameterized models of graphlets (left), GCNs (middle) and KBEs (right)
over the molecular (left, middle) and Kinships (right) datasets, with progression of selected metrics
against the increasing number of significant digits used for equivalence checking.
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We note that some further details on the introduced algorithms, reported experiments, and appli-
cation to the original LRNNs can also be found in the appendix Section A.2.
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L O S S L E S S H Y P O T H E S I S S PA C E P R U N I N G

In this chapter, we present a generic method to prune hypothesis spaces in search-based, induc-
tive logic programming (ILP) strategies (Section 3.3.1), such as the structure learning scenario from
Chapter 6. The main strategy of our method consists in removing hypotheses that are equivalent
to already considered hypotheses. The distinguishing feature of our method is that we use learned
domain theories to check for equivalence, in contrast to existing approaches which only prune iso-
morphic hypotheses. Specifically, we use such learned domain theories to saturate hypotheses and
then check if these saturations are isomorphic. While conceptually simple, we experimentally show
that the resulting pruning strategy can be surprisingly effective in reducing both computation time
and memory consumption when searching for long clauses, compared to approaches that only
consider isomorphism.

10.1 introduction

A key challenge for ILP algorithms (e.g. Progol [101]) is the fact that they typically have to search
through large hypothesis spaces. Methods for pruning this search space have the potential to dra-
matically improve the quality of learned hypotheses and the runtime of the algorithms. One way
of doing this is by filtering isomorphic hypotheses, which is the strategy used, for instance, in the
relational pattern mining algorithm Farmr [279]. However, pruning isomorphic hypotheses is often
not optimal, in the sense that it may be possible to prune hypotheses which are not isomorphic, but
which are nonetheless equivalent in the considered domain. For example, the hypothesis that “if X
is the father of Y then X and Y have the same last name” is equivalent to the hypothesis that “if X
is male and a parent of Y then X and Y have the same last name”.

In this chapter, we introduce a method which explicitly tries to prune equivalent hypotheses that
are created during the hypothesis search, while still maintaining completeness1. One important
challenge is that we need a quick way of testing whether a new hypothesis is equivalent to a previ-
ously considered one. To this end, we propose a saturation method which, given a first-order-logic
clause, derives a longer saturated clause that is equivalent to it modulo a domain theory. This satu-
ration method has the important property that two clauses are equivalent, given a domain theory,
whenever their saturations are isomorphic. This means that we can use saturations to detect equiva-
lent hypotheses as follows. We compute saturations of all hypotheses as they are being constructed,
as well as certain invariants2 of these saturations. Then we use the invariants to compute hashes
for the saturated hypotheses, which allows us to use hash tables to efficiently narrow down the
set of previously constructed hypotheses against which equivalence needs to be tested. In this way,
we can avoid the need to explicitly compare new hypotheses with all previously constructed ones,
which would clearly be infeasible in spaces with possibly millions of hypotheses. Note that this
technique crucially relies on the use of saturations, and would not be possible with e.g. just a no-

1 As we show later in the chapter, the completeness requirement disqualifies relative subsumption [103] as a candidate for
such a pruning method.

2 We use invariants based on a generalized version of Weisfeiler-Lehman procedure [59].

111
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tion of relative subsumption modulo a background theory. To avoid the need for any prior domain
knowledge, our method learns the required domain theories from the training data.

We experimentally show that our method can be orders of magnitude faster than methods which
merely check for isomorphism, even when taking into account the time needed for learning domain
theories.

10.2 background

In this chapter, we directly build on the notations and terminology of relational logic, as introduced
in the background Section 3.1. Additionally, we introduce some simple extensions for the ease of
presentation of the proposed technique. Particularly, for the set of variables occurring in a clause A
we will write vars(A), and we will denote the set of all respective terms as terms(A). For a clause A,

we then define the sign flipping operation as Ã def
=
∨
l∈A l̃, where ã = ¬a and ¬̃a = a for an atom a.

In other words, the sign flipping operation simply replaces each literal by its negation.
As discussed in Section 3.3.1.1, we will also commonly identify a clause Awith the corresponding

set of literals {φ1, ...,φk}. A clause A = {φ1, ...,φn} is then satisfied by a possible world ω, written
ω |= A, if for each grounding substitution θ, it holds that {φ1θ, ...,φnθ} ∩ω 6= ∅. The satisfaction
relation |= is then extended to (sets of) propositional combinations of clauses in the usual way, as
detailed in Section 3.1.2.

Recall also from Section 3.3.1.1 that if A and B are clauses, we say that A θ-subsumes B (denoted
A �θ B) if and only if there is a substitution θ such that Aθ ⊆ B. In this chapter, we will further call
A and B θ-equivalent (denoted A ≈θ B) if A �θ B and B �θ A. Note that the ≈θ relation is indeed
an equivalence relation (i.e. it is reflexive, symmetric and transitive). Clauses A and B are then said
to be isomorphic (denoted A ≈iso B) if there exists an injective substitution θ such that Aθ = B.
Finally, we say that A OI-subsumes B (denoted A �OI B [280]) if there is an injective substitution
such that Aθ ⊆ B. Note that A is isomorphic to B iff A �OI B and B �OI A.

Example 22 Let us consider the following four clauses:

C1 = p1(A,B)∨¬p2(A,B)

C2 = p1(A,B)∨¬p2(A,B)∨¬p2(A,C)

C3 = p1(X, Y)∨¬p2(X, Y)∨¬p2(X,Z)

C4 = p1(A,B)∨¬p3(A,B)

Then we can easily verify that C1 ≈θ C2 ≈θ C3 (and thus also Ci �θ Cj for i, j ∈ {1, 2, 3}). We also have
C1 6≈iso C2, C1 6≈iso C3, C2 ≈iso C3, as well as Ci 6�θ C4 and C4 6�θ Ci for any i ∈ {1, 2, 3}. Finally
we also have C1 �OI Ci for i ∈ {1, 2, 3}, C2 �OI C3 and C3 �OI C2.

10.2.1 Learning Setting

In this chapter we will work in the classical setting of learning from interpretations (Section 3.3.1).
Recall that in this setting, examples are interpretations and hypotheses are clausal theories (i.e.
conjunctions of clauses). An example e is said to be covered by a hypothesis H if e |= H (i.e. e is
covered by H if it is a model of H). Given a set of positive examples E+ and negative examples E−,
the training task is then to find a hypothesis H from some class of hypotheses H which optimizes
a given scoring function (e.g. training error). For the ease of presentation, we will restrict ourselves
to classes H of hypotheses in the form of clausal theories without constants, as constants can be
emulated by unary predicates (since we do not consider functions).

The covering relation e |= H can then be checked using a θ-subsumption solver (Section 3.3.1.1)
as follows. Each hypothesis H can be written as a conjunction of clauses H = C1∧ · · ·∧Cn. Clearly,
e 6|= H if there is an i in {1, . . . ,n} such that e |= ¬Ci, which holds precisely when Ci �θ ¬(

∧
e).
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Example 23 Let us consider the following example, inspired by the Michalski’s East-West trains datasets
[281]:

e = {eastBound(car1), hasCar(car1), hasLoad(car1, load1), boxShape(load1),

¬eastBound(load1),¬hasCar(load1),¬hasLoad(load1, car1),

¬hasLoad(load1, load1),¬hasLoad(car1, car1),¬boxShape(car1)}

and two hypotheses H1 and H2

H1 = eastBound(C)∨¬hasLoad(C,L)∨¬boxShape(L)

H2 = ¬eastBound(C)∨¬hasLoad(C,L)

To check if e |= Hi, i = 1, 2, using a θ-subsumption solver, we construct

¬(
∧
e) = ¬eastBound(car1)∨¬hasCar(car1)∨¬hasLoad(car1, load1)∨

∨ boxShape(load1)∨ eastBound(load1)∨ hasCar(load1)∨

∨ hasLoad(load1, car1)∨ hasLoad(load1, load1)∨ hasLoad(car1, car1)

∨boxShape(car1)

It is then easy to check that H1 6�θ ¬(
∧
e) and H2 �θ ¬(

∧
e), from which it follows that e |= H1 and

e 6|= H2.

In practice, when using a θ-subsumption solver to check Ci �θ ¬(
∧
e), it is usually beneficial

to flip the signs of all the literals, i.e. to instead check C̃i �θ
∨
e, which is clearly equivalent. This

is because θ-subsumption solvers often represent negative literals in interpretations implicitly to
avoid excessive memory consumption3, relying on the assumption that most predicates in real-life
datasets are sparse.

10.2.2 Theorem Proving Using SAT Solvers

The methods described in this chapter will require access to an efficient theorem prover for clausal
theories. Since we restrict ourselves to function-free theories (without equality), we can rely on a
simple theorem-proving procedure based on propositionalization, which is a consequence of the
following well-known result4 [282].

Theorem 1 (Herbrand’s Theorem) Let L be a first-order language without equality and with at least one
constant symbol, and let T be a set of clauses. Then T is unsatisfiable iff there exists some finite set T0 of
L-ground instances of clauses from T that is unsatisfiable.

Here Aθ is called an L-ground instance of a clause A if θ is a grounding substitution that maps
each variable occurring in A to a constant from the language L.

In particular, to decide if T |= C holds, where T is a set of clauses and C is a clause (without
constants and function symbols), we need to check if T ∧ ¬C is unsatisfiable. Since Skolemization
preserves satisfiability, this is the case iff T∧¬CSk is unsatisfiable, where ¬CSk is obtained from ¬C

using Skolemization. Let us now consider the restriction LSk of the considered first-order language
L to the constants appearing in CSk, or to some auxiliary constant s0 if there are no constants in
CSk. From Herbrand’s theorem, we know that T ∧ ¬CSk is unsatisfiable in LSk iff the grounding
of this formula w.r.t. the constants from LSk is satisfiable, which we can efficiently check using

3 This is true for the θ-subsumption solver based on [108] which we use in our implementation.
4 The formulation of Hebrand’s theorem used here is taken from notes by Cook and Pitassi:
http://www.cs.toronto.edu/∼toni/Courses/438/Mynotes/page39.pdf.
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a SAT solver. Moreover, it is easy to see that T ∧ ¬CSk is unsatisfiable in LSk iff this formula is
unsatisfiable in L 5.

In practice, it is not always necessary to completely ground the formula T ∧ ¬CSk. It is often
beneficial to use an incremental grounding strategy similar to cutting plane inference in Markov
logic [283]. To check if a clausal theory T is satisfiable, this method proceeds as follows.

step 0 : start with an empty Herbrand interpretation H and an empty set of ground formulas G.

step 1 : check which groundings of the formulas in T are not satisfied by H (e.g. using a CSP
solver). If there are no such groundings, the algorithm returns H, which is a model of T.
Otherwise the groundings are added to G.

step 2 : use a SAT solver to find a model of G. If G does not have any model then T is unsatisfiable
and the method finishes. Otherwise replace H by this model and go back to Step 1.

10.3 pruning hypothesis spaces using domain theories

In this section we show how domain theories can be used to prune the search space of ILP systems.
Let us start with two motivating examples.

Example 24 Let us consider the following two hypotheses for some target concept x:

H1 = x(A)∨¬animal(A)∨¬cod(A)

H2 = x(A)∨¬fish(A)∨¬cod(A)

Intuitively, these two hypotheses are equivalent since every cod is a fish and and every fish is an animal. Yet
ILP systems would need to consider both of these hypotheses separately becauseH1 andH2 are not isomorphic,
they are not θ-equivalent and neither of them θ-subsumes the other.

Example 25 Problems with redundant hypotheses abound in datasets of molecules, which are widespread in
the ILP literature. For instance, consider the following two hypotheses:

H1 = x(A)∨¬carb(A)∨¬bond(A,B)∨¬bond(B,C)∨¬hydro(C)

H2 = x(A)∨¬carb(A)∨¬bond(A,B)∨¬bond(C,B)∨¬hydro(C)

These two hypotheses intuitively represent the same molecular structures (a carbon and a hydrogen both
connected to the same atom of unspecified type). Again, however, their equivalence cannot be detected without
the domain knowledge that bonds in molecular datasets are symmetric6.

In the remainder of this section we will describe how background knowledge can be used to
detect equivalent hypotheses. First, we introduce the notion of saturations of clauses in Section
10.3.1. Subsequently, in Section 10.3.2 we show why pruning hypotheses based on these saturations
does not hurt the completeness of a refinement operator. In Section 10.3.3, we then explain how
these saturations can be used to efficiently prune search spaces of ILP algorithms. In Section 10.3.4
we describe a simple method for learning domain theories from the given training data. Finally, in
Section 10.3.5 we show why using relative subsumption is not sufficient.

5 Indeed, if T ∧ ¬CSk is unsatisfiable in L, then there is a set of corresponding L-ground instances of clauses that are
unsatisfiable. If we replace each constant appearing in these ground clauses which does not appear in Csk by an arbitrary
constant that does appear in Csk, then the resulting set of ground clauses must still be inconsistent, since T does not
contain any constants and there is no equality in the language, meaning that T ∧¬CSk cannot be satisfiable in LSk.

6 In the physical world, bonds do not necessarily have to be symmetric, e.g. there is an obvious asymmetry in polar bonds.
However, it is a common simplification in data mining on molecular datasets to assume that bonds are symmetric.
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10.3.1 Saturations

The main technical ingredient of the proposed method is the following notion of saturation.

Definition 10 (Saturation of a clause) Let B be a clausal theory and C a clause (without constants or
function symbols). If B 6|= C, we define the saturation of C w.r.t. B to be the maximal clause C ′ satisfying: (i)
vars(C ′) = vars(C) and (ii) B∧C ′θ |= Cθ for any injective grounding substitution θ. If B |= C, we define
the saturation of C w.r.t. B to be T, where T denotes tautology.

When B is clear from the context, we will simply refer to C ′ as the saturation of C.
Definition 10 naturally leads to a straightforward procedure for computing the saturation of a

given clause. Let P = {l1, l2, . . . , ln} be the set of all literals which can be constructed using variables
from C and predicate symbols from B and C. Let θ be an arbitrary injective grounding substitution;
note that we can indeed take θ to be arbitrary because B and C do not contain constants. If B 6|= C,
the saturation of C is given by the following clause:∨

{l ∈ P : B |= ¬lθ∨Cθ} (5)

This means in particular that we can straightforwardly use the SAT based theorem proving method
from Section 10.2.2 to compute saturations. The fact that (5) correctly characterizes the saturation
can be seen as follows. If C ′ is the saturation of C then B ∧ C ′θ |= Cθ by definition, which is
equivalent to B∧¬(Cθ) |= ¬(C ′θ). We have ¬(C ′θ) =

∧
{l̃θ : B∧¬(Cθ) |= l̃θ} =

∧
{l̃θ : B∧ lθ |= Cθ},

and thus C ′θ =
∨
{lθ : B∧ lθ |= Cθ}. Finally, since θ is injective, we have7 C ′ = (C ′θ)θ− =

∨
{l :

B∧ lθ |= Cθ}.

Example 26 Let us consider the following theory

B = {¬friends(X, Y)∨ friends(Y,X)}

which expresses the fact that friendship is a symmetric relation and a clause

C = ¬friends(X, Y)∨ happy(X).

To find the saturation of this clause, we first need a suitable injective substitution θ; let us take θ = {X 7→
c1, Y 7→ c2}. Then we have

B∪¬(Cθ) = B∪ {friends(c1, c2)∧¬happy(c1)}

|= friends(c1, c2)∧ friends(c2, c1)∧¬happy(c1),

After negating the latter formula and inverting the substitution (noting that it is injective) we get the follow-
ing saturation:

C ′ = ¬friends(X, Y)∨¬friends(Y,X)∨ happy(X).

Now, let us consider another clause D = ¬friends(X, Y)∨ happy(Y). This clause is not isomorphic to C.
However, it is easy to see that its saturation

D ′ = ¬friends(X, Y)∨¬friends(Y,X)∨ happy(Y)

is isomorphic to the saturation C ′ of C.

The next proposition will become important later in the chapter as it will allow us to replace
clauses by their saturations when learning from interpretations.

Proposition 1 If C ′ is a saturation of C w.r.t. B then B∧C ′ |= C.

7 Note that we are slightly abusing notation here, as θ−1 is not a substitution.
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Proof 1 We have B ∧ C ′ |= C iff B ∧ C ′ ∧ ¬C is unsatisfiable. Skolemizing ¬C, this is equivalent to
B∧ C ′ ∧ ¬(CθSk) being unsatisfiable, where θSk is a substitution representing the Skolemization. As in
Section 10.2.2, we find that the satisfiability of B ∧ C ′ ∧ ¬(CθSk) is also equivalent to the satisfiability
of the grounding of B∧ C ′ ∧ ¬(CθSk) w.r.t. the Skolem constants introduced by θSk. In particular, this
grounding must contain the ground clause C ′θSk. From the definition of saturation, we have that B ∧

C ′θSk∧¬(CθSk) |= F, where F denotes falsity (noting that θSk is injective). It follows that B∧C ′∧¬C |=

F, and thus also B∧C ′ |= C. �

The next proposition shows that saturations cover the same examples as the clauses from which
they were obtained, when B is a domain theory that is valid for all examples in the dataset.

Proposition 2 Let B be a clausal theory such that for all examples e from a given dataset it holds that
e |= B. Let C be a clause and let C ′ be its saturation w.r.t. B. Then for any example e from the dataset we
have (e |= C)⇔ (e |= C ′).

Proof 2 From the characterization of saturation in (5), it straightforwardly follows that C |= C ′, hence
e |= C implies e |= C ′. Conversely, if e |= C ′, then we have e |= B∧C ′, since we assumed that e |= B. Since
we furthermore know from Proposition 1 that B∧C ′ |= C, it follows that e |= C. �

Finally, we define positive and negative saturations, which only add positive or negative literals to
clauses. Among others, this will be useful in settings where we are only learning Horn clauses.

Definition 11 A positive (resp. negative) saturation of C is defined as C ′′ = C ∪ {l ∈ C ′ : l is a positive
(resp. negative) literal} where C ′ is a saturation of C.

Propositions 1 and 2 are also valid for positive or negative saturations; their proofs can be straight-
forwardly adapted. When computing the positive (resp. negative) saturation, we can restrict the set
P of candidate literals to the positive (resp. negative) ones. This can speed up the computation of
saturations significantly.

10.3.2 Searching the Space of Saturations

In this section we show how saturations can be used together with refinement operators to search
the space of clauses ordered by OI-subsumption8. Specifically, we show that if we have a refinement
operator that can completely generate some set of clauses then we can use the same refinement
operator, in combination with a procedure for computing saturations, to generate the set of all
saturations of the considered set of clauses. Since this set of saturations is typically smaller than
the complete set of clauses (as many clauses can lead to the same saturated clauses), this is already
beneficial for reducing the size of the hypothesis space. In Section 10.3.3, we show that it also allows
us to very quickly prune equivalent clauses. First we give a definition of refinement operator [284].

Definition 12 (Refinement operator) Let L be a first-order language. A refinement operator9 on the set
C of all L-clauses is a function ρ : C → 2C such that for any C ∈ C and any D ∈ ρ(C) it holds C �OI
D. A refinement operator ρ is complete if for any two clauses C and D such that C �OI D, a clause E
isomorphic to D (D ≈iso E) can be obtained from C by repeated application of the refinement operator (i.e.
E ∈ ρ(ρ(. . . ρ(C) . . . ))).

Most works define refinement operators w.r.t. θ-subsumption instead of OI-subsumption [284]. We
need the restriction to OI-subsumption as a technical condition for Proposition 3 below. It should be

8 Note that we only use OI-subsumption to partially order the constructed hypotheses, not to check the entailment relation.
9 What we call refinement operator in this chapter is often called downward refinement operator. Since we only consider

downward refinement operators in this chapter, we omit the word downward.
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noted, however, that our results remain valid for many refinement operators that are not specifically
based on OI-subsumption, including all refinement operators that only add new literals to clauses.
Also note that we do not use OI-subsumption as a covering operator but only to structure the space
of hypotheses. Therefore there is no loss in what hypotheses can be learnt.

The next definition formally introduces the combination of refinement operators and saturations.

Definition 13 (Saturated refinement operator) Let L be a first-order language. Let ρ be a refinement
operator on the set C of all L-clauses containing at most n variables. Let B be a clausal theory. Let σB : C→ C

be a function that maps a clause C to its saturation C ′ w.r.t. B. Then the function ρB = σB ◦ ρ is called the
saturation of ρ w.r.t. B.

Clearly, the saturation of a refinement operator w.r.t. some clausal theory B is a refinement op-
erator as well. However, it can be the case that ρ is complete whereas its saturation is not. As we
will show next, this is not a problem for completeness w.r.t. the given theory B in the sense that
saturations of all clauses from the given class C are guaranteed to be eventually constructed by the
combined operator, when ρ is a complete refinement operator.

Proposition 3 Let L be a first-order language. Let ρ be a complete refinement operator on the set of L-clauses
C, B be clausal theory, σB a function that maps a clause C to its saturation C ′ w.r.t. B and let ρB be the
saturation of ρ w.r.t. B. Let C ∈ C be a clause, SC and let SBC be the sets of clauses that can be obtained from
C by repeated application of ρ and ρB, respectively. Then for any clause D ∈ SC there is a clause D ′ ∈ SBC
such that σB(D) ≈iso D

′.

Proof 3 We first note that if A �OI B then σB(A) �OI σB(B) (assuming an extended definition of OI-
subsumption such that A �OI T for any A), which follows from the monotonicity of the entailment relation
|=. Let us define X = {σB(A)|A ∈ SC}. Note that X and SBC are not defined in the same way (X is the set of
saturations of clauses in SC whereas SBC is the set of clauses that can be obtained by the saturated refinement
operator ρB from the clause C). We need to show that these two sets are equivalent. Clearly, SBC ⊆ X. To
show the other direction, let us assume (for contradiction) that there is a clause X ∈ X for which there is
no clause Y ∈ SBC which is isomorphic to X. Let us assume that X is a minimal clause with this property,
meaning that for any clause X ′ contained in the set ZX = {Z ∈ X|Z �OI X∧ X 6≈iso Z} there is a clause
Y ′ ∈ SBC which is isomorphic to X ′. Clearly, if there is one such clause X then there is also a minimal one
which follows from the fact that all the considered clauses are finite and �OI is a partial order. Let us take a
clause X ′ ∈ ZX which is maximal10 w.r.t. the ordering induced by�OI and let Y ′ be the respective isomorphic
clause from SBC . Then ρ(Y ′) must contain a clause Y ′′, Y ′ 6≈iso Y

′′, that OI-subsumes X, which follows from
completeness of the refinement operator ρ. However, then σB(Y ′′) must be contained in SBC . It must also hold
that σB(Y ′′) �OI σB(X) = X. Here, σB(Y ′′) �OI σB(X) follows from the already mentioned observation
that if A �OI B then σB(A) �OI σB(B), and the equality σB(X) = X follows from the idempotence of σB,
noting that X is already a saturation of some clause. However, this is a contradiction with the maximality of
X ′ and the corresponding Y ′. �

10.3.3 Pruning Isomorphic Saturations

When searching the space of clauses or, in particular, saturations of clauses, we should avoid search-
ing through isomorphic clauses. It is easy to see that the sets of clauses generated by a (saturated)
complete refinement operator ρ from two isomorphic clauses C and C ′ will contain clauses that are
isomorphic (i.e. for any clause in the first set there will be an isomorphic clause in the second set
and vice versa). Therefore it is safe to prune isomorphic clauses during the search.

When searching through the hypothesis space of clauses, most ILP algorithms maintain some
queue of candidate clauses. This is the case, for instance, in algorithms based on best-first search

10 If we ordered the set of clauses by θ-subsumption instead of OI-subsumption then there would not have to exist a
maximal clause with this property.
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(Progol, Aleph [101]). Other algorithms, e.g. those based on level-wise search, maintain similar data
structures (e.g. Warmr [285]). Many of the clauses that are stored in such queues or similar data
structures will be equivalent, even if they are not isomorphic. Existing methods, even if they were
removing isomorphic clauses during search11, have to consider each of these equivalent clauses
separately, which may greatly affect their performance. This is where using saturations of clauses
w.r.t. some background knowledge is most useful because it can replace the different implicitly
equivalent clauses by their saturation.

In theory, one could try to test isomorphism of all pairs of clauses currently in the queue data
structures. However, this would be prohibitively slow in most practical cases. To efficiently detect
equivalences by checking isomorphism of saturations, we replace the queue data structure (or a
similar data structure used by the given algorithm) by a data structure that is based on hash tables.
When a new hypothesis H is constructed by the algorithm, we first compute its saturation H ′. Then,
we check whether the modified queue data structure already contains a clause that is isomorphic
to H ′. To efficiently check this, we use a straightforward generalization of the Weisfeiler-Lehman
labeling procedure [59]. We then only need to check whether two clauses are isomorphic if they
have the same hash value. We similarly check whether H ′ is isomorphic to a clause in the so-called
closed set of previously processed hypotheses. If H ′ is neither isomorphic to a clause in the queue
nor to a clause in the closed set, it is added to the queue.

Example 27 Let us again consider the two clauses from Example 24: H1 = x(A)∨¬animal(A)∨¬cod(A)
and H2 = x(A)∨ ¬fish(A)∨ ¬cod(A). Suppose that the theory B encodes the taxonomy of animals and
contains the rules ¬cod(X)∨ fish(X) and ¬fish(X)∨ animal(X). Computing the saturations of H1 and H2,
we obtain H ′1 = x(A) ∨ ¬animal(A) ∨ ¬cod(A) ∨ ¬fish(A) and H ′2 = x(A) ∨ ¬fish(A) ∨ ¬cod(A) ∨
¬animal(A), which are isomorphic. Therefore both of them can be replaced by the same saturations while the
corresponding algorithm keeps searching the hypothesis space.

Similarly as shown above for the two clauses from Example 24, saturations could be used to detect
equivalence of the two clauses from Example 25 w.r.t. the corresponding background knowledge
theory B.

In addition to equivalence testing, saturations can be used to filter trivial hypotheses, i.e. hy-
potheses covering every example, without explicitly computing their coverage on the dataset (which
would be very costly on large datasets). We illustrate this use of saturations in the next example.

Example 28 Consider a domain theory B = ¬professor(X) ∨ ¬student(X) which states that no one can
be both a student and a professor. Let us also consider a hypothesis H = employee(X)∨ ¬professor(X)∨
¬student(X). If the domain theory B is correct, H should cover all examples from the dataset and is thus
trivial. Accordingly, the saturation of H contains every literal, and is in particular equivalent to T.

10.3.4 Learning Domain Theories for Pruning

The domain theories that we want to use for pruning hypothesis spaces can be learned from the
given training dataset. Every clause C in such a learned domain theory should satisfy e |= C for all
examples e in the dataset. We construct such theories using a level-wise search procedure, starting
with an empty domain theory. The level-wise procedure maintains a list of candidate clauses (mod-
ulo isomorphism) with i literals. If a clause C in the list of candidate clauses covers all examples
(i.e. e |= C for all e from the dataset) then it is removed from the list and if there is no clause in the
domain theory which θ-subsumes C, then C is also added to the domain theory. Each of the remain-
ing clauses in the list, i.e. those which do not cover all examples in the dataset, are then extended
in all possible ways by the addition of a literal. This is repeated until a threshold on the maximum

11 For instance, Farmr [279] or RelF [286] remove isomorphic clauses (or conjunctive patterns), but many existing ILP
systems do not attempt removing isomorphic clauses.
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number of literals is reached. The covering of examples by the candidate clauses is checked using
θ-subsumption as outlined in Section 10.2.1.

It is worth pointing out that if we restrict the domain theories, e.g. to contain only clauses of
length at most 2 or only Horn clauses, the saturation process will be guaranteed to run in polyno-
mial time (which follows from the polynomial-time solvability of 2-SAT and Horn-SAT).

10.3.5 Why Relative Subsumption is Not Sufficient

Although the motivation behind relative subsumption [103] is similar to ours, relative subsumption
has two main disadvantages that basically disqualify it for the purpose of pruning the hypothesis
space. The first problem is that pruning hypotheses that are equivalent w.r.t. relative subsumption
may not guarantee completeness of the search. This is the same issue as with pruning based on
plain θ-subsumption which, unlike pruning based on isomorphism, may lead to incompleteness
of the search. Note that this is already the case in the more restricted setting of graph mining
under homomorphism [287]. The second issue with relative subsumption is that it would need
to be tested for all pairs of candidate hypotheses, whereas the pruning based on saturations and
isomorphism testing allows us to use the more efficient hashing strategy based on the Weisfeiler-
Lehman procedure.

10.4 experiments

In this section we evaluate the usefulness of the proposed pruning method on real datasets. We
test it inside an exhaustive feature construction algorithm which we then evaluate on a standard
molecular dataset KM20L2 from the NCI GI 50 dataset collection [173]. This dataset contains 1207

examples (molecules) and 94263 facts.

10.4.1 Methodology and Implementation

The evaluated feature construction method is a simple level-wise algorithm which works similarly
to the Warmr frequent pattern mining algorithm [285]. It takes two parameters: maximum depth
d and maximum number of covered examples t (also called “maximum frequency”). It returns all
connected12 clauses which can be obtained by saturating clauses containing at most d literals, and
which cover at most t examples. Unlike in frequent conjunctive pattern mining where minimum
frequency constraints are natural, when mining in the setting of learning from interpretations, the
analogue of the minimum frequency is the maximum frequency constraint13.

The level-wise algorithm expects as input a list of interpretations (examples) and the parameters
t and d > 0. It proceeds as follows:

step 0 : set i := 0 and L0 := {�} where � denotes the empty clause.

step 1 : construct a set Li+1 by extending each clause from Li with a negative literal (in all possible
ways).

step 2 : replace clauses in Li+1 by their negative saturations and for each set of mutually isomor-
phic clauses keep only one of them.

step 3 : remove from Li+1 all clauses which cover more than t examples in the dataset.

12 A clause is said to be connected if it cannot be written as disjunction of two non-empty clauses. For instance ∀X, Y :

p1(X)∨ p2(Y) is not connected because it can be written also as (∀X : p1(X))∨ (∀Y : p2(Y)) but ∀X, Y : p1(X)∨ p2(Y)∨

p3(X, Y) is connected. If a clause is connected then its saturation is also connected.
13 Frequent conjunctive pattern mining can be emulated in our setting. It is enough to notice that the clauses that we

construct are just negations of conjunctive patterns.
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Figure 31: Left panels: Runtime of the level-wise algorithm using saturations for pruning (red) and without
using saturations (blue). Right panels: Number of clauses constructed by the algorithm using
saturations (red) and without using saturations (blue). Top panels display results for maximal
number of covered examples equal to dataset size minus one and bottom panels for this parameter
set to dataset size minus 50, which corresponds to minimum frequency of 50. One minute, one
hour, and ten hours are highlighted by yellow, green, and purple horizontal lines. Runtimes are
extrapolated by exponential function and shown in dashed lines.

step 4 : if Li+1 is empty or i+ 1 > d then finish and return
⋃i+1
j=0 Lj. Otherwise set i := i+ 1 and

go to step 1.

As can be seen from the above pseudocode, we restricted ourselves to mining clauses which contain
only negative literals. This essentially corresponds to mining positive conjunctive queries, which is
arguably the most typical scenario. Nonetheless, it would be easy to allow the algorithm to search
for general clauses, as the θ-subsumption solver used in the implementation actually allows efficient
handling of negations.

We implemented the level-wise algorithm and the domain theory learner in Java14. To check
the coverage of examples using θ-subsumption, we used an implementation of the θ-subsumption
algorithm from [108]. For theorem proving, we used an incremental grounding solver which relies
on the Sat4j library [288] for solving ground theories and the θ-subsumption engine from [108].
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10.4.2 Results

We measured runtime and the total number of clauses returned by the level-wise algorithm with-
out saturations and with saturations. Both algorithms were exactly the same, the only difference
being that the second algorithm first learned a domain theory and then used it for computing the
saturations. Note in particular that both algorithms used the same isomorphism filtering. Therefore
any differences in computation time must be directly due to the use of saturations.

We performed the experiments reported here on the NCI dataset KM20L2. The learned domain
theories were restricted to contain only clauses with at most two literals. We set the maximum
number of covered examples equal to the number of examples in the dataset minus one (which cor-
responds to a minimum frequency constraint of 1 when we view the clauses as negated conjunctive
patterns). Then we also performed an experiment where we set it equal to the number of examples
in the dataset minus 50 (which analogically corresponds to a minimum frequency constraint of 50).
We set the maximum time limit to 10 hours.

The results of the experiments are shown in Figure 31. The pruning method based on saturations
turns out to pay off when searching for longer clauses where it improves the baseline by approxi-
mately an order of magnitude and allows it to search for longer hypotheses within the given time
limit. When searching for smaller clauses, the runtime is dominated by the time for learning the
domain theory, which is why the baseline algorithm is faster in that case. The number of generated
clauses, which is directly proportional to memory consumption, also becomes orders of magnitude
smaller when using saturations for longer clauses. Note that for every clause constructed by the
baseline algorithm, there is an equivalent clause constructed by the algorithm with the saturation-
based pruning. We believe these results clearly suggest the usefulness of the proposed method,
which could potentially also be used inside many existing ILP systems.

10.5 related work

The works most related to our approach are those relying on a special case of Plotkin’s relative
subsumption [103] called generalized subsumption [289]. Generalized subsumption was among
others used in [290]. In Section 10.3.5 we discussed the reasons why relative subsumption is not
suitable for pruning. Background knowledge was also used to reduce the space of hypotheses in
the Progol 4.4 system [101], which uses Plotkin’s relative clause reduction. Note that the latter is a
method for removing literals from bottom clauses, whereas in contrast our method is based on adding
literals to hypotheses. Hence, the Progol 4.4 strategy is orthogonal to the methods presented in this
chapter. Another key difference is that our approach is able to learn the background knowledge
from the training data whereas all the other approaches use predefined background knowledge.
Finally, our approach is not limited to definite clauses, which is also why we do not use SLD
resolution. On the other hand, as our method is rooted in first-order logic (due to the fact that we
use the learning from interpretations setting) and not directly in logic programming, it lacks some
of the expressive power of logic programming.

10.6 conclusions

In this chapter, we introduced a generally applicable method for pruning hypotheses in ILP, which
goes beyond mere isomorphism testing. We showed that the method is able to reduce the size of
the hypothesis space by orders of magnitudes, and also leads to a significant runtime reduction. An
interesting aspect of the proposed method is that it combines induction (domain theory learning)
and deduction (theorem proving) for pruning the search space.

14 available at https://github.com/martinsvat/Pruning-Hypotheses.

https://github.com/martinsvat/Pruning-Hypotheses




Part V

A P P L I C AT I O N S

In the following part, we demonstrate some use cases and applications of the (original)
LRNN framework from Chapter 5. While the application range is wide, for the sake
of brevity we select only two, highly diverse, examples. First in Chapter 11, we intro-
duce novel LRNN modeling concepts for knowledge base completion based on learning
of latent predictive categories. As a second application in Chapter 12, we demonstrate
the use of LRNNs for relational soccer team representation learning used in match out-
come prediction. A short summary of some other applications can also be found in the
appendix Part C.





11
L E A R N I N G P R E D I C T I V E C AT E G O R I E S

In Part iii, we introduced the LRNN framework and showed how it can be used across various re-
lational learning scenarios (Chapter 5) and enhancement of existing models (Chapter 7). However,
these were mostly limited to classification, particularly molecule classification. In this chapter, we
show how LRNNs can be easily used for enhancing knowledge-base completion (KBC), too. Partic-
ularly, we use the original LRNNs (Chapter 5) to declaratively specify and solve learning problems
in which latent categories of entities, properties and relations need to be jointly induced from a
knowledge base.

11.1 introduction

In this chapter, we first show how LRNNs can be used to learn a latent category structure that is
predictive in the sense that the properties of a given entity can be largely determined by the category
to which that entity belongs, and dually, the entities satisfying a given property can be largely
determined by the category to which that property belongs. This enables a form of transductive
reasoning which is based on the idea that similar entities have similar properties. We then extend
this model into a relational setting, in which entities not only have properties but can also be linked
by arbitrary relations.

As discussed in previous chapters, LRNNs were heavily inspired by lifted models, such as MLNs
(Section 3.4.2). Likewise, the approach proposed in this chapter is somewhat similar to the MLN’s
authors work on Statistical Predicate Invention [66], which uses crisp clustering based on second-
order MLNs. However, the use of LRNNs has several important advantages for learning latent
concepts. Firstly, LRNNs do not need to invoke costly EM algorithms and hence can be more
efficient than latent variable probabilistic models. Secondly, the learnt soft clusters can naturally be
interpreted as vector space embeddings of entities, properties and relations. Finally, the flexibility
of LRNNs means that the considered form of transductive reasoning can be extended in a natural
way to take into account various forms of prior domain knowledge, as well as alternative types of
heuristic reasoning (e.g. reasoning by analogy, modelling persistence or periodic behaviour).

The remainder of this chapter is structured as follows. Firstly, we slightly modify the original
LRNN network creation process (Section 5.1.2.2) to cope with recurrent connections in ground
networks. We then introduce the predictive templates for a non-relational setting in Section 11.2.1
and for a relational setting in Section 11.2.2. Next, in Section 11.3, we describe a simple model
encoded as a LRNN which is based on similarity-based reasoning. In Section 11.4 we evaluate the
method experimentally. Finally, we discuss related work in Section 11.5 and conclude the chapter
in Section 11.6.

11.1.1 Handling Recursion in LRNNs

In this chapter, we build directly on the formalization of the original LRNN framework, as intro-
duced in Section 5.1. There, in Section 5.1.5, we discussed how recursive rules do not pose problems
to the LRNN templating, as long as their grounding does not lead to directed cycles in the resulting
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neural networks. In this chapter, however, we will use recursive rule sets that may potentially lead
to recurrent ground neural networks. In order to maintain the feed-forward nature of the resulting
ground neural networks, and avoid training of recurrent neural networks, we modify the strategy
for constructing ground networks as follows. First we construct the ground network exactly as de-
scribed in Section 5. If this network contains directed cycles, we then proceed as follows. Let Q be a
given ground query atom1. We find the respective atom neuron corresponding to Q in the ground
network. If no such atom neuron exists, the output value for Q is 0. If there is such an atom neuron,
we perform a breadth-first search from this atom neuron (traversing the connections between neu-
rons in reverse, i.e. from output to input) and whenever we find an edge pointing from an already
visited atom neuron, we delete it. The resulting ground neural network is then feed-forward. While
this process enables us to stick with feed-forward neural networks, it comes at the price of a slightly
less intuitive semantics, in which the inference and output for non-query atom neurons may also
depend on the used queries. This is not problematic for any of the applications considered in this
chapter, as non-query atoms are not used within these.

11.2 learning predictive categories

In this section, we introduce a class of LRNN models that are aimed at learning predictive categories
of entities, properties and relations. We first introduce a model for attribute-valued data in Section
11.2.1, which is extended to cope with relational data in Section 11.2.2.

11.2.1 Predictive Categories for Attribute-Value Data

Let a set of entities be given, and for each entity, a list of properties that it satisfies. The basic as-
sumption underlying our model is that there exist some (possibly overlapping) categories, such that
every entity can be described accurately enough by its soft membership to each of these categories.
We furthermore assume that these categories can themselves be organised in a set of higher-level
categories. The idea is that the category hierarchy should allow us to predict which properties a
given entity has, where the properties associated with higher-level categories are typically (but not
necessarily) inherited by their sub-categories. To improve the generalization ability of our method,
we assume that a dual category structure exists for properties. The main task we consider is to learn
these (latent) category structures from the given input data.

To encode the above described model in a LRNN, we proceed as follows. We use HasProperty(e,p)
to denote that the entity e has the property p. For every entity e and for each category c at the lowest
level of the category hierarchy, we construct the following ground rule:

wec : IsA(e, c)

Note that weight wec intuitively reflects the soft membership of e to the category c; it will be
determined when training the ground network. Similarly, for each category c1 at a given level and
each category c2 one level above, we add the following ground rule:

wc1c2 : IsA(c1, c2)

In the same way, ground rules are added that link each property to a property category at the lowest
level, as well as ground rules that link property categories to higher-level categories. To encode the
idea that entity categories should be predictive of properties, we add the following rule for each
entity category ce and each property category cp:

wcecp : HasProperty(A,B)← IsA(A, ce), IsA(B, cp).

1 In general LRNNs support non-ground query atoms, too, but in this chapter we will not need them. Therefore we assume
only ground query atoms for simplicity.
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The weights wcecp encode which entity categories are related to which property categories, and
will again be determined when training weights of the LRNN. To encode transitivity of the is-a
relationship, we simply add the following rule:

wisa : IsA(A,C)← IsA(A,B), IsA(B,C).

Training examples are encoded as a set of facts of the form (HasProperty(e,p), l) where l ∈ {0, 1}, 0
denoting a negative example and 1 a positive example. We train the model using SGD as described
in [97]. In particular, in a LRNN, there is a neuron for any ground literal which is logically entailed
by the rules and facts in the LRNN and the output of this neuron represents the truth value of this
literal. Therefore if we want to train the weights of the LRNN, we just optimize the weights of the
network w.r.t. a loss function such as the mean squared error, where the loss function is computed
from the desired truth values of the query literals and the outputs obtained from the respective
atom neurons.

11.2.2 Predictive Categories for Relational Data

The model from Section 11.2.1 can be extended to cope with relational facts. Similar to our encoding
of properties, we will use a reified representation of relational facts, with e.g. Relation(ParentOf, e1, e2)
denoting that e1 is the parent of e2. In this way, we can induce predictive relation categories, similar
to the entity and property categories considered in Section 11.2.1.

To this end, analogously as for entity and property categories, for every relation r and every
(latent) relation category c we add the following ground rule:

wrc : IsA(r, c)

For each relation category c1 at a given level and each category c2 one level above, we add the
following ground rule:

wc1c2 : IsA(c1, c2).

Note that a rule encoding transitivity of the IsA relation was already added in the first part of the
model. Finally we encode that, like properties, relations among entities are typically determined by
their categories. Specifically, for each triple consisting of a pair of (not necessarily distinct) entity
clusters ce, c ′e and a relation cluster cr, we add the following ground rule:

wcrcec ′e : Relation(R,A,B)← IsA(R, cr), IsA(A, ce), IsA(B, c ′e) (6)

The LRNNs defined in this way will be referred to as fully-connected, as they contain rules for every
relation-entity-entity triple. Obviously, when a high number of clusters is used, the number of rules
of the form (6) may be prohibitively high. To address this, we can limit the triples for which such
rules are added. In particular, we will consider LRNNs which restrict such rules to those of the
following form:

wcrc2ic2i+1 : Relation(R,A,B)← IsA(R, cr), IsA(A, c2i), IsA(B, c2i+1) (7)

where c1, c2, . . . , cn are entity concepts. In fact the LRNNs with rules of this form can learn
anything that can be learned by LRNNs with rules of the form (6) as long as they have enough
rules.

In addition, to help the model learn symmetric and transitive relations (e.g. the “same-political-
bloc” relation), we also add rules of the following form:

wcrc ′ic
′
i
: Relation(R,A,B)← IsA(R, cr), IsA(A, c ′i), IsA(B, c ′i) (8)

Note that we do not need to explicitly consider these in the fully-connected model, as they are a
special case of (6).
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11.3 prediction using learned similarities

In this section we describe a LRNN model based on similarity degrees, for the same predictive task
that was considered in the previous section. While the similarity degrees could be obtained from
any source, we will use similarity degrees that have been obtained from the model described in the
previous section, by taking advantage of the fact that the cluster membership degrees can be inter-
preted as defining a vector-space embedding. Rather than using the membership degrees directly,
we will use the weights of the respective ground IsA(e, c) rules, which, unlike the membership
degrees, may also be negative2. In particular, the similarity degree between two entities is defined
as the cosine similarity between the vector representation of these entities, with the coordinates of
these vectors the soft memberships of the entity in each of the categories.

For each pair of entities (e1, e2) with similarity degree s, we add the following ground fact:

1.0 : Similar(e1, e2, s)

We furthermore add rules which encode a learnable transformation of the similarities into a score
which is useful for the given predictive task:

w−1 : Similar(X, Y)← Similar(X, Y,S),S > −1.0

w−0.9 : Similar(X, Y)← Similar(X, Y,S),S > −0.9

...

w0.9 : Similar(X, Y)← Similar(X, Y,S),S > 0.9

Finally we add one rule of the following type for every relation r:

wr : Relation(r,X, Y)← Relation(r,V ,W), Similar(X,V), Similar(Y,W).

Taking into account the aggregative nature of the used family of activation functions (cf. Section
5.1.3), these rules encode the intuition that in order to predict if X and Y are in relation r, we could
check how similar on average the entities known to be in this relation are to X and Y.

Naturally, not all relations can be accurately predicted by a model like the one described in
this section. However, this similarity based approach is quite natural, and serves as an important
illustrative example of how other strategies could be encoded (e.g. interpolation/extrapolation or
reasoning by analogy).

11.4 evaluation

11.4.1 Evaluation of the Model for Attribute-Value data (Section 11.2.1)

To evaluate the potential of the model proposed in Section 11.2.1, we have used the Animals dataset3,
which describes 50 animals in terms of 85 Boolean features, such as f ish, large, smelly, strong, and
timid. This dataset was originally created in [291], and was used among others for evaluating a
related learning task in [66]. For both entities and properties, we have used two levels of categories,
with in both cases three categories at the lowest level and two categories at the highest level.

Recall that we can view the category membership degrees as defining a vector-space embedding.
Figures 32 and 33 show the first two principal components of this embedding for a number of
entities and properties. We can see, for instance, that sea mammals are clustered together, and that
predators tend to be separated from herbivores. In Figure 33, we have highlighted two types of
properties: colours and teeth types. Note that these do not form clusters (e.g. a cluster of colours)

2 The membership degrees are simply obtained as applying sigmoids on the respective weights in this particular case, so
the two representations essentially bear the same information

3 Downloaded from https://alchemy.cs.washington.edu/data/animals/

https://alchemy.cs.washington.edu/data/animals/


11.4 evaluation 129

−1.2 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

lion

zebra

seal sheep

grizzlybear

humpbackwhale
persiancat

gorilla

hippopotamus

rabbit

giraffe

hamster

fox

buffalo

chihuahua

ox

walrus

skunk

polarbear

chimpanzee

killerwhale

leopard

giantpanda

moose

pig

seal

humpbackwhalebluewhale

walrus

killerwhale
dolphin

deer

zebra

elephant

sheep

hippopotamus

girafferhinoceros

buffalo

antelope

horse

ox

cow

leopard

pig

moose

giantpanda

mouse

mole
beaver

rabbit

rat

hamster

squirrel

wolf

liondalmatian
grizzlybeargermanshepherdbobcat

fox

collie

chihuahua

skunk

weasel
polarbear

tiger

raccoon

leopard

otter

siamesecat

Figure 32: Embedding of entities (animals, only a subset of entities is displayed). Several homogeneous
groups of animals are highlighted: sea mammals (blue), large herbivores (green), rodents (violet),
and other predators (red).

but they represent, as prototypes, different clusters of properties which tend to occur together. For
instance, blue is surrounded by properties which typically hold for water mammals; white and red
occur together with stripes, nocturnal, pads; gray occurs together with small and weak; etc. We also
evaluated the predictive ability of this model. We randomly divided the facts from the dataset in
two halves, trained the model on one half and tested it on the other one, obtaining AUC ROC of
0.77. We also performed an experiment with a 90-10 split, in order to be able to directly compare
our results with those from [66]; we obtained the same AUC PR 0.8 as reported in [66] (and AUC
ROC 0.86).

11.4.2 Evaluation of the Model for relational data (Section 11.2.2)

In order to evaluate the relational method proposed in Section 11.2.2 we performed experiments
with two relational datasets:4 Nations and UMLS. These datasets have previously been used to
evaluate statistical predicate invention methods in [66]. The Nations dataset contains a set of re-
lations between pairs of nations and their features [292]. It consists of relations such as ExportsTo
and GivesEconomicAidTo, as well as properties such as Monarchy. The dataset contains 14 nations, 56

relations and 111 properties. There are 2565 true ground atoms. The UMLS dataset contains data
from the Unified Medical Language System, which is a biomedical ontology [293]. It contains 49

relations and 135 biomedical entities. There are 6529 true ground atoms in this dataset.
Initial experiments have revealed two trends. First, accuracy consistently improved when we

increased the size of the LRNNs (contrarily to our expectation that overfitting might be a problem
when increasing the size). Second, for a fixed number of entity, property and relation categories,
adding the layer of more general concepts helps, but it also increased memory consumption and
runtime. Therefore, in the experiments, we created LRNNs as large as possible which still fitted in
memory. A consequence of this strategy is that the LRNNs with more than one layer of categories
had fewer categories in total than their single-layer counterparts. Similar effects also took place

4 Downloaded from https://alchemy.cs.washington.edu/data/nations/ and from https://alchemy.cs.washington.

edu/data/umls/.

https://alchemy.cs.washington.edu/data/nations/
https://alchemy.cs.washington.edu/data/umls/
https://alchemy.cs.washington.edu/data/umls/
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for fully-connected LRNNs when compared to LRNNs with isolated rules of the form (7) and (8);
therefore we did not consider fully connected LRNNs in our experiments.

For the Nations dataset, the largest single-layer LRNN which fitted in 40GB of memory had 100

property categories, 100 entity categories and 50 relation categories. The cross-validated AUC ROC
was 0.89 and AUC PR 0.74, which is within the standard error margin of the results obtained in [66].
The largest two-layer LRNN learned on this dataset had 20 property categories, 20 entity categories
and 10 relation categories. Its cross-validated AUC ROC was 0.88 and AUC PR 0.7. For comparison,
we also trained a single-layer LRNN with the exact same number of each type of categories, which
achieved AUC ROC 0.86 and AUC PR 0.67, which agrees with the above described general trends.

The first two principal components of the embeddings of the states are displayed in Figure 34.
When interpreting this embedding, note that this dataset relates to the political situation of 1950s.

For the UMLS dataset we used a LRNN with 100 entity categories and 50 relation categories. Due
to the size of the dataset, consisting of a total of 893k ground facts and memory limitations, we only
performed experiments with a largely subsampled training set, obtaining test AUC ROC 0.97 and
AUC PR 0.76. This is a lower AUC PR than obtained by the method from [66], but it is close to the
second-best method tested there and is better than the reported results for MLN structure learning.

11.4.3 Evaluation of the relational Model based on Similarities (Section 11.3)

The evaluation of the model introduced in Section 11.3 primarily serves to estimate the usefulness
of the embeddings learned by LRNNs. We have particulary focused on the embedding of countries,
whose first two principal components are shown in Figure 34. First, we have split the nations
dataset [292] into equally large training and testing parts. We trained the relational model described
in Section 11.2.2, extracted the learned cluster membership degrees as vector embeddings, and
calculated their pairwise cosine similarities. We included these similarities as ground facts, together
with all the true statements from the training part of the dataset. On top of these facts, we added
the transformation and inference rules to form the model described in Section 11.3. We then trained
this composite model on the same training part of the nations dataset that we used to obtain the
embeddings, and evaluated its generalization ability on the remaining testing part. We obtained
AUC ROC of 0.85 and 0.49 AUC PR, which is lower than the crossvalidated performance reported
for the best models, but indirectly proves that the previously learned embeddings indeed carry
useful information that may be subsequently reused for different predictive scenarios.

11.4.4 An Experiment with Real-Life Data from NELL

We have also evaluated the method on a real-life dataset. The main idea here was to analyse whether
the LRNN models described in this chapter could be used in an NLP pipeline to fill gaps in a
knowledge base. To test this idea we downloaded a collection consisting of about 29k actors from
NELL [294] with all their parental categories. For the experiments, we have subsampled the dataset
to 2k actors. In the end, the number of different parental categories assigned to actors in this
dataset turned out to be quite small. There were only 20 different categories such as comedian or
celebrity, resulting into a dataset of 4k true ground facts, which we completed with their negative
complement under the closed world assumption for evaluation. In the experiments, we have tested
the LRNN construct described in Section 11.2.1 and obtained a test-set AUC ROC 0.84 and AUC PR
0.43. This suggests that the LRNN method is indeed able to discover plausible properties of entities
in datasets obtained from text. This could be quite useful for suggesting properties or relations in
settings like NELL’s where feedback from users is also used to validate the predictions.
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11.5 related work

The proposed models essentially relies on the assumption that similar entities tend to have similar
properties, for some similarity function which is learned implicitly in terms of category membership
degrees. It is possible to augment this form of inference with other models of plausible reasoning,
such as reasoning based on analogical (and other logical) proportions [295, 296]. Moreover, as in
[297], we could take into account externally obtained similarity degrees, using rules such as those
in Section 11.3.

The model considered in this chapter is related to statistical predicate invention [66] which relies
on jointly clustering entities and relations. The dual representation of entity and property categories
is also reminiscent of formal concept analysis [298]. LRNNs themselves are also related to the long
stream of research in neural-symbolic integration [70], previous work on using neural networks for
relational learning [45], and more recent approaches such as [220, 221].

11.6 conclusions

We have illustrated how the declarative and flexible nature of LRNNs can be used for easy encod-
ing of non-trivial learning scenarios. The models that we considered in this chapter jointly learn
predictive categories of entities, their properties and relations between them. The main strength of
this approach lies in the ease with which the model can be extended to more complicated settings,
which is mainly due to the declarative nature of LRNNs. It seems remarkable that such a declarative
approach is able to obtain results which are close to the state-of-the-art method from [66], without
tailoring any part of the learning method to this particular problem setting.
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L E A R N I N G R E L AT I O N A L T E A M E M B E D D I N G S

In this chapter, we investigate the use of deep relational learning in the, somewhat unconventional,
domain of predictive sports analytics. Particularly, we use the basic LRNN framework (Section 5) to
learn “relational team embeddings”. These are latent learning representations which directly reflect
the historical relational interplay between the teams within a (soccer) league. On a large official
dataset of historical soccer results, we then compare different relational learners against strong
current domain-specific methods to show some very promising results of the relational approach
when combined with the representation learning (embedding) within LRNNs.

12.1 introduction

Sport analytics is a popular multi-billion dollar world-wide industry. It is a natural application do-
main for mathematical modelling, yet only recently we have started to see penetration of modern
machine learning methods into the field, with standard predictive techniques still being geared
towards simple statistical models [299]. We argue that incorporating relational learning techniques
might benefit the field considerably. It only seems natural as the data arising from sport records pos-
sess interesting relational characteristics on many levels of abstraction, from the matches themselves
forming relations between teams, players and seasons, to the course of the individual matches being
driven by the rules of each sport with characteristic game-play patterns stemming from these.

We investigate viability of the relational approach to the domain via experimental evaluation on
the task of soccer match outcome predictions based solely on historical results, i.e. without incorporat-
ing any features on the teams or players. This data format, composed solely of the team names and
the resulting match scores, was introduced by the Soccer Prediction Challenge [300]1, from which
we also adopt the respective dataset.

We then propose simple relational representations, background knowledge and modeling con-
cepts for which we provide some interpretable insights. Particularly, we focus on expressing a con-
cept we called “lifted relational team embeddings” in the original LRNN framework (Chapter 5).
Finally, we experimentally compare different relational approaches with strong methods from the
domain for their predictive performance on a large dataset of real soccer records.

12.1.1 Predictive Sports Analytics

In predictive sport analytics, the ultimate goal is to predict results of future matches. Given the
stochastic nature of sports, the goal translates to correctly estimating probabilities of the corre-
sponding outcomes. Particularly for a game of soccer, the aim is to estimate the probabilities of the
three possible outcomes loss, draw, win.

The task of predicting soccer results is well established in the literature. Typical approaches
include statistical models based on the Poisson distribution and its variations [301, 302], as well as
various rating systems [303, 304]. An example of a relational learning approach was also introduced
in [305], however the literature remains very scarce in this regard.

1 organized in conjunction with the MLJ’s special issue on Machine Learning for Soccer in 2017
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12.2 predictive models

We compare the proposed relational team embedding concept against a multitude of diverse learn-
ers. These consist of a simple prior probability baseline predictor, RDN-boost – a powerful SRL
method for boosting Relational Dependency Networks [114], and an actual state-of-the-art model [306]
that won the Soccer Prediction Challenge (2017) [300]. Note that each of these learners has been ac-
tually selected for being a strong performer in the given task.

baseline predictor is a simple model aggregating the prior probabilities of the individual
home and away outcomes in each league. Being often surprisingly hard to beat, we include it as a
baseline to serve as a natural lower bound for performance of all the learners.

rdn-boost learner follows a functional gradient boosting strategy on top of Relational De-
pendency Networks [114], powerful lifted graphical models designed to learn from data with re-
lational dependencies using pseudo-likelihood estimation techniques. Similarly to LRNNs, RDN-
boost learns from Herbrand interpretations for which it utilizes fragment of relational logic for
representation, where the inner nodes of the individual regression trees of the resulting ensemble
model represent conjunctions of the original predicates.

state-of-the-art model is the actual winning solution [306]2 from the mentioned 2017’s
Soccer Prediction Challenge. It is an ensemble, gradient boosted trees-based model utilizing expert-
designed features. Some of these features are derived from other, already sophisticated, models
from literature, such as the pi-ratings [303] or page-rank [307]. Other features are statistics based
on expert insights incorporating the home advantage, historical strength, current form, or match
importance. These are further aggregated in different ways w.r.t. seasons and leagues, to finally
form an input into a carefully tuned XGBoost algorithm [308].

lifted relational neural networks model is a custom generic template, encoding very
general background knowledge on the structure of soccer matches, designed for the prediction task
in the original LRNN formalism, as introduced in the respective Chapter 5. The model is further
detailed in the subsequent Section 12.2.1.

12.2.1 Knowledge Representation

In its raw form, the match records contain merely the team names and the result, hence we tried
to extract as much useful information as possible for each of the models. For the baseline this
was straightforward, and for the SotA model this was already done [306]. For the approaches of
RDN-boost and LRNNs we had to derive appropriate relational representation. Since they both
learn from Herbrand interpretations, we firstly encoded the records with numerical outcomes into
predicates, which we describe in Table 9.

12.3 lifted relational team embeddings

Here we describe the proposed relational embedding model as expressed in the language of LRNNs.
Firstly, we tested the hypothesis that there exists some predictive latent space embedding the teams.
This is based on an intuition from various rating systems, such as the pi-ratings [303], where each
team is assigned one or more parameters denoting its particular strength, possibly within different
areas, such as when playing at home stadium and when playing away. However, opposite to the
existing rating systems, the idea of the embedding approach is to explore meaning of these latent

2 This is also one of our contributions which is, however, omitted from this thesis for brevity, as it is only loosely related.
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Table 9: Overview of predicates extracted from the data for the relational learners.

Predicate Description

home(Tid) Team Tid is home team w.r.t. prediction match.

away(Tid) Team Tid is away team w.r.t. prediction match.

team(Tid,name) Team Tid has name name.

win(Mid, Tid1, Tid2) Win of home team Tid1 over away team Tid2 in
match Mid.

draw(Mid, Tid1, Tid2) Draw between home team Tid1 and Tid2 in match
Mid.

loss(Mid, Tid1, Tid2) Loss of home team Tid1 to team Tid2 in match
Mid.

scored(Mid, Tid,n) The team Tid scored more than n goals in match
Mid.

conceded(Mid, Tid,n) The team Tid conceded more than n goals in
match Mid.

goal_diff(Mid,n) Difference in goals scored by the teams is greater
than n.

recency(Mid,n) The match Mid was played more than n rounds
ago (w.r.t. prediction match).

parameters automatically by the means of regular learning from data. We can encode this scenario
in LRNNs as follows

w
(0)
1 : type1(T)← team(T,chelsea)

w
(0)
2 : type1(T)← team(T,arsenal)

. . .

w
(0)
j : type3(T)← team(T,everton)

where the types (type1 . . . type3) denote individual embedding dimensions of the teams. We may
directly use aggregation of such embeddings for the prediction of outcome of home vs. away team
matches using the following rules

w
(1)
(1;1) : outcome← home(T1)∧ type1(T1)∧ away(T2)∧ type1(T2)

w
(1)
(1;2) : outcome← home(T1)∧ type1(T1)∧ away(T2)∧ type2(T2)

. . .

w
(1)
(3;3) : outcome← home(T1)∧ type3(T1)∧ away(T2)∧ type3(T2)

This construct in principle creates a fully connected neural network with one hidden embedding
layer, such as e.g. in the famous “word2vec” embedding architecture [22]. For all the historical
matches we then jointly perform corresponding gradient updates of the weights to reflect the actual
values of the outcome labels. We further denote this architecture as embeddings.
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Figure 35: Visualization of PCA projection of the learned embeddings of individual teams from the home-
win model. A significant relationship between the home win rate, captured by the colorscale, and
the variance captured by the main X axis can be observed.

In theory, the embeddings possibly capture some information on the relational interplay between
the matches as they are jointly optimized on the whole match history. However, we find this ap-
proach quite limited as it is rather naive to expect the flat, fixed-size embeddings to reflect all the
possible nuances of the complex relational structure stemming from the different outcomes of differ-
ent historical matches played between different teams in different orders. Fortunately with LRNNs,
we can easily capture the relational structures explicitly while keeping the benefits of embedding
learning. For that we first extend the template with a predicate capturing the different outcomes of
historical matches (w.r.t. prediction match) through a learnable transformation as

w
(2)
1 : outcome(M,H,A) ← win(M,H,A)

w
(2)
2 : outcome(M,H,A) ← draw(M,H,A)

w
(2)
3 : outcome(M,H,A) ← loss(M,H,A)

with which we accordingly extend the predictive rules as

w
(1)
h−h(1;1) : outcome← home(T1)∧ type1(T1)∧ outcome(M, T1, T2)∧ type1(T2).

w
(1)
h−a(1;1) : outcome← home(T1)∧ type1(T1)∧ outcome(M, T2, T1)∧ type1(T2).

w
(1)
h−h(1;2) : outcome← home(T1)∧ type1(T1)∧ outcome(M, T1, T2)∧ type2(T2).

. . .

w
(1)
a−a(3;3) : outcome← away(T1)∧ type3(T1)∧ outcome(M, T2, T1)∧ type3(T2).

reflecting the possible settings of historical home and away positions of the actual home and away
teams in all historical matches played. By grounding of this template (Section 5.1.1), the LRNN
engine assures to create the corresponding relational histories transformed into the respective, dif-
ferently structured, neural networks. We denote this architecture as relational embeddings. The actual
embeddings of teams extracted from this model learned to predict home team win can then be seen
in Figure 35.
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Figure 36: Comparison of performance of the learners on English Premier League as measured by the RPS
metric (lower is better) from the 2017’s Soccer Prediction Challenge.

12.4 experiments

We compared approaches discussed in this chapter on data from the 2017 Soccer Prediction Chal-
lenge [300], organized in conjunction with the MLJ’s special issue on Machine Learning for Soccer.
Particularly we selected the world’s most prestigious English Premier League over the seasons 2006-
2016 for demonstration. In the dataset, for each historical match there is merely a simple record of
the team names and the resulting score. Contestants’ models were then evaluated using Ranked
Probability Score (RPS) [309], an evaluation metric designed for the ordinal outcomes.

For each of the historical matches, we actually extract 3 learning examples for each respective
outcome (loss,draw,win), and learn one corresponding model for each of the latter. For each
learner we then normalize the three outputs from the three models to obtain the final predictions
that form input to the RPS metric.

Calculation of the baseline involved no setup and for details on settings of the SotA and RDN-
boost models we refer to our submission for the Prediction Challenge detailed in [306]. For LRNNs
we set the learning rate (0.1) and number of learning steps (50), and actually utilized just a subset
of the predicates (Section 12.3) used by RDN-boost. LRNNs were then trained sequentially with a
history span of 5 years.

We display the final results in Figure 36. Notably, all the learners easily pass the natural baseline
(mean RPS 0.2260), with LRNNs (0.1976) performing significantly better than RDN-boost (0.2175),
while trailing just closely behind the state-of-the-art model (0.1961). We also see that the relational
embeddings generally dominate the standard embeddings (0.2027).

12.5 conclusions

We discussed how the domain of predictive sports analytics might benefit from relational learning
approaches, and experimentally proved that even simple LRNN templates with latent relational
structures may lead to surprisingly strong, competitive results in predicting soccer game outcomes.
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C O N C L U S I O N S

In this thesis, we addressed the problem of neural network learning with relational data and knowl-
edge, for which we introduced a declarative deep relational learning framework called Lifted Rela-
tional Neural Networks (LRNNs) in Part iii. The main idea underlying the framework is to approach
the neural networks through the lifted modeling paradigm, known otherwise from Statistical Rela-
tional Learning (SRL). Similarly to other lifted models from SRL, LRNNs are represented as sets of
weighted relational logic rules, used to describe the structure of a given learning setting. Together
with a set of weighted relational facts, commonly describing the learning samples, these rules define
standard, or “ground”, neural networks. Since, in the relational learning setting, different learning
samples may compose of different sets of weighted facts, a different neural network is constructed
to exploit the particular structure of each. Crucially, the weights of different ground neurons that
were constructed from the same relational rule are tied both within and across the networks. Con-
sequently, we can employ efficient optimization techniques known from standard deep learning for
parameter training of the rules, which compose the lifted model.

As discussed throughout the thesis, this approach offers many benefits. As set out, it allows
for end-to-end (deep) learning straight from relational data and knowledge, i.e. without any pre-
processing. The (indirect) encoding through the relational rules then provides flexible means for
implementing and combining a wide variety of novel modeling concepts, such as a declarative
specification of latent relational pattern types which are to be learned. Besides the increased (rela-
tional) expressiveness, an important advantage of lifted models, including the LRNNs, is that they
can make explicit which symmetries exist in a domain, reducing the overall number of parameters
and complexity of training. Another advantage is that the rules can be provided by domain experts
to incorporate additional background knowledge.

Additionally, we introduced several enhancements to the LRNN framework. Firstly, we developed
a structure learning method, removing the need for specification of the rules, thus enabling for a
fully automated learning process. The method is inspired by meta-interpretive learning, known
from Inductive Logic Programming (ILP), in which new predicates are being “invented” on top of
the previous relational patterns, for which we referred to the method as stacked structure learning.
Secondly, we demonstrated the LRNNs as a differentiable logic programming language to contrast
it directly with some advanced deep learning models and frameworks. Here we showed that very
simple relational programs (rules) can be elegantly used to encode advanced deep learning models,
with a particular focus on Graph Neural Networks (GNNs). We illustrated how to use our encoding
to easily generalize the existing state-of-the-art models, while also demonstrating computational
efficiency of the LRNN framework.

From the computational perspective, we then introduced two principled optimization techniques
to improve scalability of the framework in Part iv. Firstly, we developed a lossless compression tech-
nique designed to scale up training of the resulting weight-sharing (dynamic) neural computation
graphs via a technique inspired by lifted inference. We note that this technique is not limited to
the LRNNs, but is also applicable to standard deep learning models, such as the GNNs, leading to
significant speedups. Secondly, we introduced a technique incorporating learned domain theories
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for lossless pruning of the logical hypothesis search space used in the structure learning. Again,
this technique is also directly applicable to any classic ILP learner.

Lastly, we illustrated the framework on two selected applications in Part v. In the first use case,
we demonstrated how LRNNs can be used to jointly learn hierarchical latent predictive categories
of attributes, entities and relations for the task of knowledge-base completion. In the second appli-
cation, we demonstrated how we successfully used LRNNs for a, somewhat less ordinary, task of
soccer match outcome prediction based on learning of relational team embeddings.

13.1 future work

The framework already provides considerable expressiveness w.r.t. practical application domains of
relational learning. We now intend to push the computational efficiency (Part iv) of the paradigm
even further, using additional optimization techniques, language compilers, and emerging AI hard-
ware, such as the Graphcore’s IPU1 architecture. This should allow to directly embrace the inherent
irregularity and sparsity present in relational learning, instead of trying to circumvent it via the var-
ious approximation techniques based on mapping of logic into dense embedding spaces (Section 8).
Following up on the explicit relational logic encoding, our aim is then to not only explore novel
capabilities of the integrative approach to learning, but to also provide effective means to use the
weighted logic programming paradigm to improve “main-stream” SotA deep learning concepts,
as we did with the GNNs (Chapter 7), which currently seems as the most salient feature of our
framework w.r.t. the related works (Section 8).

Finally, and perhaps most importantly, we intend to make the actual system more user friendly
for the community, so as to encourage other researchers to take advantage of the concise weighted
Datalog encoding, and accelerate their own exploration of novel deep relational learning concepts.

1 https://www.graphcore.ai/

https://www.graphcore.ai/
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T E C H N I C A L D E TA I L S

In this appendix part, we provide some additional technical details clarifying the descriptions in-
troduced in the main framework Part iii, and some further content on the optimization technique
described in Chapter 9.

a.1 differences between the lrnns from chapter 5 and chapter 7

The view on LRNNs as a differentiable logic programming language, discussed in Chapter 7, closely
follows the original LRNNs framework introduced in Chapter 5. In fact, the main semantic differ-
ence is “merely” in the parameterization of the rules, where one can now include weights within
the bodies (conjunctions), too, e.g.

w
(2)
1 :: neuron

(2)
1 (X)← w

(1)
1 ·neuron

(0)
1 (X)∧w

(1)
2 ·neuron

(0)
2 (X)

We note that this could be in essence emulated in the original LRNNs through the use of auxiliary
predicates, such as in [202], as follows:

w
(2)
1 :: neuron

(2)
1 (X)← neuron

(1)
1 (X)∧neuron

(1)
2 (X)

w
(1)
1 :: neuron

(1)
1 (X)← neuron

(0)
1 (X)

w
(1)
2 :: neuron

(1)
2 (X)← neuron

(0)
2 (X)

which might be more appropriate in scenarios where the neurons correspond to actual logical con-
cepts under the fuzzy logic semantics1 (Section 5.1.3), while the second representation is arguably
more suitable to exploit the correspondence with standard deep learning architectures (Section 7.2).

Another difference is that in Chapter 7 we allow tensor weights and values. While these could
be again modeled in the original LRNNs, too, such as in the “soft-clustering” (embedding) con-
struct [97] used for atom representation learning:

wo1 :: gr1(X)← O(X) ... wh1 :: gr1(X)← H(X)

wo2 :: gr2(X)← O(X) ... wh2 :: gr2(X)← H(X)

the explicit tensor-valued weights offer an arguably more elegant representation of the same con-
struct:

[wo1 , wo2 ] :: gr(X) :- O(X) ... [wh1 , wh2 ] :: gr(X) :- H(X)

In general, the new representation can be thought of as merging the scalar weights of individual
neurons into tensors used by the nodes (prev. referred to as “neurons” in the original LRNNs) in the
computation graph. Note that it is possible to process any ground LRNN network into this form,
i.e. turn individual neurons into matrix layers, in a similar manner, as outlined in Algorithm 2.

1 Note that any model from the original LRNNs can still be directly encoded in the new formalism.
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Algorithm 2 Transforming ground neural network into vectorized form

1: function vectorize(neurons)
2: N← ⋃

neurons

3: (depth,N)← topologicOrder(N)
4: Layers = ∅
5: for i = 1 : depth do
6: Mi ← initMatrix()

7: M← neuronsAtLevel(i,N)

8: for neuron ∈M do
9: (Inputs,Weights)← inputs(neuron)

10: for (input,weight) ∈ (Inputs,Weights) do
11: if getLevel(input) = i+ 1 then
12: Mi(neuron, input) = weight
13: else
14: skipConnect← void(neuron, i+ 1)
15: Mi(neuron, skipConnect) = 1

16: Layers = Layers∪Mi

17: return Layers

Algorithm 3 Pruning linear chains of unnecessary transformations

1: function prune(neurons)
2: N← ⋃

neurons

3: for neuron ∈ N do
4: (inputs,weights)← inputs(neuron)

5: if inputs.size = 1∧weights = ∅ then
6: outputs← outputs(neuron)

7: for output ∈ outputs do
8: input = inputs[0]

9: output.replaceInput(neuron, input)
10: input.replaceOutput(neuron,output)

11: return connectedComponent(N)

Being heavily utilized in deep learning, such transformation can significantly speed up the train-
ing of the, more regularly structured and dense, networks. Moreover, by the resulting reduction
of the number of rules, effectively merging together semantically equivalent rules which do not
differ up to their (scalar) parameterization, we now also alleviate much of the complexity during
network creation, i.e. calculation of the least Herbrand model (Section 3.1.2), by avoiding repeated
calculations. This results into a significant speedup during the model creation process.

a.1.1 Network Pruning

Following the computation graph creation procedure from Section 7.1.2, we might end up with
unnecessary trivial neural transformations through auxiliary predicates in cases, where the original
rules have only a single literal in their body and are unweighted. For mitigation, we can apply
a straightforward procedure for detection and removal of linear chains of these trivial operations,
as described in Algorithm 3. While such an operation arguably changes the inference and logical
semantics of the original model, these structures do not contribute to learning capacity of the
model and, on the contrary, cause gradient diminishing. This technique is thus particularly suited
for improving training performance in correspondence with standard deep learning architectures.
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While this form of pruning can be theoretically performed directly in the template, it is easier to
execute as a post-processing step in the resulting neural networks, which is what we do.

a.2 lossless model compression via lifting

In this section we enclose some additional information on the lossless compression optimization
techniques introduced in Chapter 9, and describe the compression algorithms from a more practical
perspective.

the non-exact algorithm The idea behind the heuristic algorithm, is to pre-calculate the
equivalence classes of neurons N ∈ N via random initialization of the weights W (Algorithm 5),
and then to iterate the neurons in the computation graphs G, starting from output nodes, while
continuously replacing each node N by some, so far unprocessed, equivalent node N ′ ≡ N, if there
are any (Algorithm 4).

Algorithm 4 Processing Neurons

1: function Compression(G,W)
2: (N,E,F)← G

3: M,M← EquiClasses(N,W)
4: N ′ ← topologicOrder(N)
5: for n ∈ N ′ do
6: values←M[n]

7: if values ∈M then
8: n ′ ←M[values]

9: replace n by n ′ in G

Algorithm 5 Equivalence Classes of Neurons

1: function EquiClasses(N,W)
2: M[neuron 7→ valueList]← ∅
3: i← 0

4: while i < repetitions do
5: W← randomInit (W)
6: (N,V)← inferValues (N,W)

7: for (neuron, value) ∈ (N,V) do
8: valueList←M[neuron]

9: valueList = valueList∪ value
10: i← i+ 1

11: M[valueList 7→ N ′]← reverseMap (M)

12: return M,M

Iterating the graph in a top-down fashion while replacing the neurons by their effectively last
equivalents, in the given processing order, then ensures maximal possible compression. The re-
peated initialization of weights, as inspired by the polynomial identity testing [310], is then used to
minimize the chances of two different nodes accidentally yielding the same value. Apart from these
repetitions, the efficiency of the routine can be also simply increased by replacing the standard NN
activation functions with injective mappings to a wider output value range.

the exact algorithm The idea is again to pre-calculate the equivalence classes of neurons in
N via random initializations of W, however, this time it is only used for speedup. In this algorithm,
we iterate the neurons in G, starting from the leaf nodes, while continuously replacing each node N
by some structurally equivalent node N ′ ≡

struct
N, which has already been processed. The structural

equivalence can then be simply seen as defined recursively by the following statements:

1. every 2 nodes with no inputs and the same output value are necessarily equivalent

2. every 2 nodes with the same activation function and equivalent sets of inputs (including the
weights) are necessarily equivalent, too.

Processing the nodes in the bottom-up order then ensures that gradually bigger subgraphs can
be checked for the structural equivalence in linear time w.r.t. number of the root neuron input
connections.

Note that the whole compression process is in both cases linear w.r.t. size of the network, and is
thus no more (asymptotically) demanding than a single gradient descent step.
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a note on the lossy compression Note that if two subgraphs are structurally equivalent
in the sense introduced in Section 9.3, they necessarily lead to the same computations, including
parameter updates, and can thus be interchanged safely. However, even if two subgraphs producing
the same value are not structurally equivalent, they may still be functionally equivalent, i.e. perform
effectively the same computation, which happens e.g. in (linear) arithmetic circuits, rendering the
structural equivalence check too strict. Moreover if the values for 2 subgraphs differ just slightly, one
might expect to also observe similar learning behavior. This led to the idea of the lossy compression,
which can be easily emulated by conditioning the value equality check between nodes with some
numeric precision. The experimental results of such a setting were then discussed in Section 9.5.

a.2.1 Graph-Based Model Encoding in LRNNs

Here we detail the LRNN encoding of the models reported in the experiments in Chapter 9.

molecule classification For all the molecular models (templates), we first map all the atom
and bond types into (3-dimensional) embedding vectors as

{3} : atomemb(X) : − O(X). {3} : bondemb(X) : − 1(X)

. . . . . . . . . . . . . . . . . .

{3} : atomemb(X) : − H(X) {3} : bondemb(B) : − ar(B).

The GNN templates were then encoded analogically to the explanation in Section 7.3. For in-
stance, the GNN corresponding to a 2-layered spatial GCN [58] (Section 2.4), was encoded as

hiddenemb(X) : − {3} bond(X, Y,B), {3, 3} atomemb(Y), {3, 3} bondemb(B).

{3} goal
molecule

: − {3} bond(X, Y,B), {3, 3} hiddenemb(Y), {3, 3} bondemb(B).

and similarly for the other GNN models, which differ merely in the activation functions and number
of layers. The relational “graphlets” template then directly corresponds to Example 8 with no input
weights but a “cross-product” application of g∧, encoded as

243 goal
molecule

: − bond(X, Y,B), bond(Y,Z,C), bondemb(B), bondemb(C),

atomemb(X), atomemb(Y), atomemb(Z).

knowledge base completion In the selected, commonly used, KBC datasets, particularly
the Kinships, Nations, and UMLS [66], the tuples are represented in a reified form as r(R,O,S).
Analogously to the molecules, we again started by mapping all items into embeddings, which are
then utilized by similar MLP-based KBE (Section 2.4) templates for each of the 3 datasets as

person1emb(O) : − {3} r(R,O,S), {3, 3} relemb(R), {3, 3} personemb(S).

person2emb(S) : − {3} r(R,O,S), {3, 3} personemb(O), {3, 3} relemb(R).

{3} goal
kinships

(O,R,S) : − {3, 3} person1emb(O), {3, 3} relemb(R), {3, 3} person2emb(S).

{3} goal
nationatt

(N,A) : − {3, 3} nationemb(N), {3, 3} attemb(A).

nat1emb(O) : − {3} r(R,O,S), {3, 3} relemb(R), {3, 3} nationemb(S).

nat2emb(S) : − {3} r(R,O,S), {3, 3} nationemb(O), {3, 3} relemb(R).

{3} goal
nations

(O,R,S) : − {3, 3} nat1emb(O), {3, 3} relemb(R), {3, 3} nat2emb(S).
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Figure 37: A compressed representation of the two networks from Figure 5, with dashed lines illustrating the
compressed parts.

item1emb(O) : − {3, 3} itememb(O).

item1emb(O) : − {3} r(R,O,S), {3, 3} relemb(R), {3, 3} itememb(S).

item2emb(S) : − {3} r(R,O,S), {3, 3} itememb(O), {3, 3} relemb(R).

item2emb(S) : − {3, 3} itememb(S).

{3} goal
UMLS

(O,R,S) : − {3, 3} item1emb(O), {3, 3} relemb(R), {3, 3} item2emb(S).

a.2.2 Compression of the LRNN Templates

Previously, in Section 9.4.1, we demonstrated the compression effect on a classic GNN model in
Figures 26 and 27, respectively. Let us now do the same for a relational LRNN template encoding
the “graphlets” idea introduced in the Example 8, with the corresponding ground networks dis-
played in Figure 5. The resulting effect of all the compression techniques, here also including the
vectorization and pruning, as introduced in Section A.1, is displayed in Figure 37.

a.3 a note on the theorem proving and model complexity

Naturally, the performance of the theorem prover, or grounder, depends heavily on the complexity
of the template, and can theoretically lead to excessively large models. Nevertheless for LRNNs, we
only need to construct the least Herbrand model, which is typically much smaller in the real-world
(sparse) templates, such as the GNN computation schemes (Chapter 7). Also, excessively large
models would be translated into neural computation graphs too large to be trainable in practice,
anyway. Consequently, the overhead of the theorem prover (grounder) is commonly negligible w.r.t.
the overall learning time for practical model classes.

Note that the same also applies for large input graphs, such as the knowledge-bases, which can
be learned from with LRNNs, too (such as in [171]). For instance, the grounding and network
creation overhead of related (multi-relational) GNN models combining 1 layer of GNN with KBE
(described in Sections A.2.1, 9.5 and reported in [214] 2) on the KBC datasets of Nations, Kinships
and UMLS [66] takes 1s, 8s and 22s, corresponding to Herbrand models with app. 14314, 281552,
and 845511 atoms, translated into 11681, 42196, and 27506 neurons, leading to train epocha times
of app. 1.2s 0.440s, and 0.660s, respectively.

2 available at https://github.com/GustikS/NeuraLifting

https://github.com/GustikS/NeuraLifting
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I M P L E M E N TAT I O N

The somewhat unorthodox and novel learning paradigm, as introduced in this thesis, made it prac-
tically impossible to build on top of existing popular frameworks, such as PyTorch or TensorFlow,
which are inherently based on the common tensor-based, attribute-value machine learning princi-
ples. Consequently, we had to implement the whole functionality from scratch1.

In contrast to most of the contemporary Python machine learning frameworks, the LRNN frame-
work is implemented in Java. This unpopular2 choice was based in the crucial need for overall
computation performance, which here is not limited to bottlenecks in the form of matrix (ten-
sor) transformations, which can be easily outsourced from Python to C++, but includes complex
structured (recursive) operations stemming from the relational aspects of the proposed learning
paradigm. Consequently, fast algorithms have been required in all stages, ranging from the logic
language parsing and grounding, tightly integrated with the automated neural network creation, to
the subsequent parameter optimization. The typical two-language barrier present in the common
Python/C++ frameworks would thus be even more problematic here3. That being said, there are
two (very) high-level Python front-ends4, wrapping the input user interface into the framework.

b.1 user workflow

One way or another, the user workflow with the framework starts by providing the (i) learning
examples, (ii) target queries, and (iii) the learning template. The learning examples are expected to
be encoded in the discussed language of weighted Datalog (Section 7.1.1.1), which covers a wide
range of possible application domains (Section 1.2). For instance, one can provide list of molecular
graphs with rich annotations encoded, e.g., as follows

1 0 . 0 t o x i c :- [0 . 1 , 7 ] bond ( c_1 ,h_2 , b_ type_1 ) , [0 . 4 ,−3 , 6 ] atom ( c_1 ) , [0 . 1 ,−2 , 3 ] atom ( h_2 ) ,
2 [1 , 2 ] type ( b_type_1 ) , [2 . 1 ,−0 . 3 ] bond ( h_2 , c_3 , b_ type_4 ) , . . . .
3 . . .
4 0 . 9 t o x i c :- [0 .2 ,−1 ] bond ( c _ 1 , f _ 1 , b _ t y p e _ 6 ) , [0 . 4 ,−1 , 2 ] atom ( c_1 ) ,
5 [0 . 1 ,−3 , 0 ] atom ( f_1 ) , . . . .

each of which can be associated with some query, such as the simple ground fact “toxic” here, rep-
resenting the value of the target label (toxicity) of each molecule. Note that there may be multiple
queries associated with each example (provided as a comma-separated list), and these queries also
do not even need to be ground, which creates space for interesting learning settings, such as col-
lective classification [311]. This format of input files generally corresponds to standard supervised
machine learning scenarios.

1 Also, there were no such frameworks at the time we started with the project. An analysis of problems with the existing
deep learning frameworks can then be found in Section C.3

2 unpopular in classic ML but actually quite popular in SRL, for the aforementioned reasons.
3 Also, Julia was in infancy by that time.
4 One for the original version of LRNNs (Chapter 5) stemming from the work described in Section C.2 is available at https:
//github.com/jendas1/jupyter_neurologic. Another one for the more current version (Chapter 7), currently still in
progress, is available at https://github.com/LukasZahradnik/PyNeuraLogic.
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One may also wish to learn in the knowledge-base completion mode, which is very similar, except
that there is but a single (large) structure provided as the example input. In this case, the queries
are expected to be provided in a separate file, e.g. as a list

1 1 holds ( a m i n o _ a c i d _ p e p t i d e , a f f e c t s , c e l l _ f u n c t i o n ) .
2 . . .
3 0 holds ( r e p t i l e , r e s u l t _ o f , v i t a m i n ) .

of true and false facts to be deduced from the given knowledge-base, provided again in the same
(weighted) Datalog format.

The (relational) inference process is then encoded by the template. This can be also understood as
encoding of the deep learning architectures, and used as such (as shown in Chapter 7). For example,
to learn to classify the molecules with a GNN model, one could provide a template in the form of

1 {10 , 1 0 } l ay er 1 (X) :- {10 , 3 } atom (X) , {10 , 3 } atom (Y) , bond ( X,Y,B ) , {10 , 2 } type ( B ) .
2 {5 , 5 } l ay er 2 (X) :- {5 , 1 0 } l ay er 1 (X) , {5 , 1 0 } l ay er 1 (Y) , bond ( X,Y,B ) , {10 , 2 } type ( B ) .
3 {1 , 5 } t o x i c :- {5 , 5 } l ay er 2 (X) . [ a c t i v a t i o n =sigmoid, aggregat ion=avg ]

encoding a deep GNN with 6 layers5 of matrix transformations, hierarchically embedding the fea-
tures of both the atoms and the bonds between. These are interleaved with 3 layers of (average)
pooling, the final of which is a global one (since there is no variable in the toxic literal), aggregat-
ing all the atom embeddings into a single (scalar) value corresponding to the fact (query) toxic, as
prescribed by the last rule. The resulting value of toxic will then be automatically matched with
each of the example molecule’s query atom value within each of the induced networks. Finally,
the parameters associated with the rules6 will then be automatically trained to minimize the dis-
crepancy between the two values. Note that much more complex models than the GNNs7, can be
declared in the framework just as easily (as demonstrated in Chapter 7.3.1).

We also note that there are many other (meta-data) annotations one can use to further specify
various behaviors of the templates for different use cases, which is ultimately prescribed by the
actual grammar of the LRNN templating language. Likewise, there are many settings which can
be passed to the framework itself. For getting started with some running examples we refer to the
Github project (Section B.3).

b.2 project structure

The project is currently of a considerable size and complexity (50, 000+ lines of code) but, since
the original LRNN version [97] (Chapter 5), it has been completely reimplemented from scratch,
with a substantial focus on flexibility and modularity. For instance it is easy to add new types of
logical and non-logical constructs, functions, computation node types, node and weight-sharing
schemes, modes of grounding, graph iteration and backpropagation, training strategies, etc. This is
mainly based on a custom, modular execution graph-based software architecture, where the blocks
in the actual workflow of the framework are wrapped in abstract nodes of the execution graph
(Figure 38), which is automatically inferred at startup based on the provided settings and input
data formats. This allows to adaptively incorporate the specific instances of, e.g., the grounding
and training strategies (etc.), as part of the automated startup assembly of the workflow. Based

5 Note that if there are weights provided in both head and body of a rule, it actually corresponds to two consecutive
transformations (Section 7.2.1). The remaining (non-specified) activation and aggregation functions here are automatically
set at defaults (tanh and avg), which can also be specified in the framework settings.

6 Note that with the {...} brackets we only specify the dimensions of the (parameter) values. Nevertheless one can also specify
the actual values with [...] brackets, which can be also additionally fixed to a specific (non-trainable) value with the < ... >
brackets. For complete specification, please see the grammar of the templating language.

7 e.g. incorporating latent graphlet patterns, hyper-graphs etc. (Chapter 7.3.2)

https://github.com/GustikS/NeuraLogic/blob/master/Parsing/src/main/java/cz/cvut/fel/ida/logic/parsing/antlr/grammars/Neuralogic.g4
https://github.com/GustikS/NeuraLogic
https://github.com/GustikS/NeuraLogic/blob/master/Parsing/src/main/java/cz/cvut/fel/ida/logic/parsing/antlr/grammars/Neuralogic.g4
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Figure 38: Different types of abstract computation blocks used in the learning workflow. Prior to execution,
these block are firstly assembled into a workflow graph, the structure of which is dynamically
inferred from the input data and settings. The Java generics on the respective input and output
types (I/O) then provide flexibility while ensuring compile-time safety of all the possible learning
scenarios, represented by the different execution graph configurations.

heavily on the Java generics and Streams, these reconfigurable workflow graphs then provide type-
safety and efficient streaming of computation through the blocks.

The structure of the project itself then follows the standard Maven layout, consisting of the mod-
ules listed in Table 10.

b.3 reference

The LRNN framework (Part iii) which we gave a working title “NeuraLogic”8, is available at Github:

• project name: NeuraLogic

• home page: https://github.com/GustikS/NeuraLogic

• operating system: platform independent

• requirements: Java 1.8 or higher

– both OpenJDK and Oracle JDK tested

– for use, the runtime environment (JRE) will suffice

• license: MIT License (free)

8 obviously, due to the integration of Neural networks and (relational) Logic programming

https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://github.com/GustikS/NeuraLogic
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Table 10: A list of the high-level modules of the project.

Module Description

Algebra value definitions (scalar/vector/matrix...) with the respective operations

CLI simple command line interface to the framework, based on Apache com-
mons’ CLI

Drawing visualization of templates, grounding/inference and neural networks, based
on the DOT language (and GraphViz engine)

Frontend Python scripts for calling high-level functionalities, reading results, and (op-
tionally) exporting neural networks to Dynet, based on Py4J (in progress)

Learning high-level (supervised) machine learning definitions and functions

Logging simple logging and (color) formatting, based on the default java library

Logic base classes for working with logic and a subsumption engine providing effi-
cient first order logic grounding and inference, developed by Ondrej Kuzelka

Logical the logical part of the integration containing logic-based structures and com-
putation - i.e. weighted logic grounding, based on the Logic module

Neural the neural part of the integration containing neural-based structures and
computation - i.e. neural networks processing, backpropagation and stan-
dard deep learning functions and operations

Neuralization the process of conversion from the logical to the neural structures

Parsing definition and parsing of the NeuraLogic language into internal representa-
tion, based on the ANTLR parser generator

Pipelines high-level abstraction library for creating generic execution graphs, suitable
for ML workflows (custom made, Figure 38)

Resources test resources, templates, datasets, etc.

Settings central configuration/validation of all the settings and input sources (files)

Utilities generic utilities (maths, java DIY, etc.), utilizing GSON for serialization and
JMH for microbenchmarking

Workflow specific building blocks for typical ML worflows used with this framework,
based on the Pipelines module

http://commons.apache.org/proper/commons-cli/
https://graphviz.org/
http://dynet.io/
https://www.py4j.org/
https://github.com/supertweety
https://www.antlr.org/
https://github.com/google/gson
https://openjdk.java.net/projects/code-tools/jmh/


C
O T H E R A P P L I C AT I O N S O F T H E F R A M E W O R K

c.1 “relational learning with neural networks for machine translation”

This work [312] utilizes the LRNN framework for automatic evaluation of machine translation. Par-
ticularly, it aims to automate a human-based translation quality metric based on top of so-called
Universal Conceptual Cognitive Annotation (UCCA) semantic representation of sentences. The de-
signed LRNN templates are used to aggregate the information about semantic roles of constituents
and sub-structures of each sentence into latent (relational) representations, which are simultane-
ously used for evaluation of both the leaves and internal nodes of the tree-based tectogrammatical
UCCA representation. In the experiments, the approach is then compared against classic (feature-
based) neural network techniques on translation data from English to four different languages.

c.2 “learning relevant reasoning patterns with neuro-logic programming”

This introductory work [313] demonstrates the capability of the LRNN framework to capture di-
verse AI tasks based on different generic “reasoning patterns”. It describes common examples of
such reasoning patterns used in statistical and symbolic AI approaches and demonstrates how
each particular pattern may be captured within LRNNs. It further details the patterns in context of
learning and reasoning, with an extra focus on abilities that arise from combination of both. On se-
lected examples from simple game environments, it illustrates how the joint, declarative approach
of LRNNs broadens the scope of existing reasoning patterns through the ability to represent and
reason with relational information, while keeping the benefits of neural learning.

c.3 “integration of relational and deep learning frameworks”

This practically oriented work [314] targets the computational efficiency of the LRNNs w.r.t. exist-
ing deep learning frameworks, with a special focus on the underlying dynamic computation graphs.
As discussed in Section 7.4.4, the dynamic nature and irregular sparse structure of the computation
in relational learning scenarios introduces considerable problems to the common deep learning
frameworks. This works targets the associated problems via mathematical analysis, custom imple-
mentation, as well as interfacing with the existing frameworks of PyTorch, TensorFlow, and DyNet.
In the experiments it then compares the various solutions and demonstrates that none of the com-
peting frameworks was particularly well suited for the sparse, dynamic and irregular computation
arising in relational learning.
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neural networks.” In: Proceedings of the 2015th International Conference on Cognitive Computa-
tion: CoCo @ NIPS - Volume 1583. 2015, pp. 52–60.

[98] Wei Chu Vikas Sindhwani, Zoubin Ghahramani, and S Sathiya Keerthi. “Relational learning
with gaussian processes.” In: Advances in Neural Information Processing Systems 19: Proceedings
of the 2006 Conference. Vol. 19. MIT Press. 2007, p. 289.

[99] Nir Friedman, Lise Getoor, Daphne Koller, and Avi Pfeffer. “Learning probabilistic relational
models.” In: Ijcai. Vol. 99. 1999, pp. 1300–1309.

[100] Kristian Kersting. “An inductive logic programming approach to statistical relational learn-
ing.” In: AI Communications 19.4 (2006), pp. 389–390.

[101] Stephen Muggleton. “Inverse entailment and Progol.” In: New generation computing 13.3-4
(1995), pp. 245–286.

[102] Luc De Raedt. “Logical settings for concept-learning.” In: Artificial Intelligence 95.1 (1997),
pp. 187–201.

[103] Gordon D Plotkin. “A note on inductive generalization.” In: Machine intelligence 5.1 (1970),
pp. 153–163.

[104] Peter Flach. “Logical approaches to machine learning-an overview.” In: Think 1.2 (1992),
pp. 25–36.

[105] Rina Dechter, David Cohen, et al. Constraint processing. Morgan Kaufmann, 2003.

[106] Chandra Chekuri and Anand Rajaraman. “Conjunctive query containment revisited.” In:
Theor. Comput. Sci. 239.2 (2000), pp. 211–229.

[107] Jérôme Maloberti and Michéle Sebag. “Fast Theta-Subsumption with Constraint Satisfaction
Algorithms.” In: Machine Learning 55.2 (2004), pp. 137–174.
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Gustav Šourek, Filip Železný, and Ondřej Kuželka. “Lossless Compression of Structured Convolu-
tional Models via Lifting.” In: International Conference on Learning Representations. ICLR OpenReview.
2021

WoS: ∅, Scopus: ∅, Google: 2

Gustav Šourek, Martin Svatoš, Filip Železný, Steven Schockaert, and Ondřej Kuželka. “Stacked
structure learning for lifted relational neural networks.” In: International Conference on Inductive
Logic Programming. Springer. 2017, 140–151, ←− Best Paper Award
WoS: 0, Scopus: 2, Google: 6

Gustav Šourek, Suresh Manandhar, Filip Železný, Steven Schockaert, and Ondřej Kuželka. “Learn-
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Ondřej Hubáček, Gustav Šourek, and Filip Železný. “Learning to predict soccer results from rela-
tional data with gradient boosted trees.” In: Machine Learning 108.1 (2019), pp. 29–47

WoS: 8, Scopus: 13, Google: 22

Journal IF: 2.7, SJR: 1.0
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